WorldWideScience

Sample records for digital thermal monitoring

  1. Thermal monitoring as a method for estimation of technical state of digital devices

    Directory of Open Access Journals (Sweden)

    Lavrich Yu. N.

    2015-08-01

    Full Text Available Requirements to the reliability level of modern element base are so high that traditional methods of assessing the technical condition of electronics become ineffective, the modern theory of reliability has almost no practical applications [1], and reliability index does not reflect the true state of an electronic device due to an insufficient amount of information received during testing of electronic devices. The majority of modern electronics are limitedly easy-to-test. They are equipped with small number of tools for direct measurement that leads to a delayed troubleshooting and the inability to take measures efficiently. Despite the fact that new generations of electronics use modern components and new design technologies, their performance is still defined by two states — serviceability or failure, and the failure still happens unexpectedly. We may note, that failure is an uncontrolled result of an irreversible degradation process, taking place in time and having appropriate time parameters, but it's not the critical act. Research of various structural and hierarchical levels of functional units of digital electronics show that temperature control can be used for automatic condition monitoring of such devices in real time. As a generalized control parameter, it is advisable to use the temperature of the case of the element, and the case itself — as a generalized point.

  2. Digital radiation monitor system

    International Nuclear Information System (INIS)

    Quan Jinhu; Zhai Yongchun; Guan Junfeng; Ren Dangpei; Ma Zhiyuan

    2003-01-01

    The article introduced digital radiation monitor system. The contents include: how to use advanced computer net technology to establish equipment net for nuclear facility, how to control and manage measuring instruments on field equipment net by local area net, how to manage and issue radiation monitoring data by internet

  3. Monitoring the digital divide

    International Nuclear Information System (INIS)

    Canessa, E.; Cerdeira, H.A.; Matthews, W.; Cottrell, R.L.

    2003-05-01

    It is increasingly important to support the large numbers of scientists working in remote areas and having low-bandwidth access to the Internet. This will continue to be the case for years to come since there is evidence from PingER performance measurements that the, so-called, digital divide is not decreasing. In this work, we review the collaborative work of The Abdus Salam International Center for Theoretical Physics (ICTP) in Trieste - a leading organization promoting science dissemination in the developing world- and SLAC in Stanford, to monitor by PingER, Universities and Research Institutions all over the developing world following the recent 'Recommendations of Trieste' to help bridge the digital divide. As a result, PingER's deployment now covers the real-time monitoring of worldwide Internet performance and, in particular, West and Central Africa for the first time. We report on the results from the ICTP sites and quantitatively identify regions with poor performance, identify trends, discuss experiences and future work. (author)

  4. Monitoring the Digital Divide

    International Nuclear Information System (INIS)

    Cottrell, Les

    2003-01-01

    It is increasingly important to support the large numbers of scientists working in remote areas and having low bandwidth access to the Internet. This will continue to be the case for years to come since there is evidence from PingER performance measurements that the, so-called, digital divide is not decreasing. In this work, we review the collaborative work of The Abdus Salam International Center for Theoretical Physics (ICTP) in Trieste, a leading organization promoting science dissemination in the developing world- and SLAC in Stanford, to monitor by PingER, Universities and Research Institutions all over the developing world following the recent ''Recommendations of Trieste'' to help bridge the digital divide. As a result, PingER's deployment now covers the real-time monitoring of worldwide Internet performance and, in particular, West and Central Africa for the first time. We report on the results from the ICTP sites and quantitatively identify regions with poor performance, identify trends, discuss experiences and future work

  5. Digital thermal anemometry

    International Nuclear Information System (INIS)

    Stock, D.E.; Shook, M.

    1983-01-01

    Calibration and data reduction techniques relying completely on digital systems are described for standard hot-wire, cross-wires, and split-film probes. These techniques allow the probe to be calibrated in the actual orientation which will be used. Success of the method depends on initially balancing a dual element probe such that both sensors respond identically to velocity changes

  6. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability

    Science.gov (United States)

    Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur

    2018-01-01

    Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  7. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave as a means of improving monitoring of spoil tip stability

    Directory of Open Access Journals (Sweden)

    Lewińska Paulina

    2018-01-01

    Full Text Available Spoil tips are anthropogenic terrain structures built of leftover (coal mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel „Bogdanka” S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object’s outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  8. Digital communication with fetal monitors.

    Science.gov (United States)

    Bozóki, Z

    1997-11-01

    Fetal heart rate (FHR) values in the averaged format that are provided by commercial computed cardiotocography analysis systems may be unsuitable for special analysis purposes. I developed a communication software program to obtain any measured values of fetal monitors for individual analysis of computed cardiotocography. The software program was used to study the data continuity of beat-to-beat FHR values as an experiment for chaos theory and power spectrum analysis. The results indicated that the signal loss was recognized at a precision of 95%. The described method of digital communication with fetal monitors was found to be useful for individual purposes in the field of computed cardiotocography analysis.

  9. Digital control rod blocking monitor

    International Nuclear Information System (INIS)

    Funayama, Yoshio.

    1996-01-01

    The present invention system is used for monitoring of a power region of a reactor, and used for monitoring of simultaneous withdrawal of a plurality of control rods without increasing the size or complicating the system. Namely, the system processes signals from a neutron flux detectors at the periphery of control rods controlled for withdrawal. As a result of the processing, the digital monitoring system generates an alarm when the reactor power at the periphery of the control rods fluctuates exceeding an allowable range. In the system, a control rod information forming means prepares frame data comprising front data, positions of the control rods to be withdrawn, frame numbers and completion data. A serial data transmitting means transmits the frame data successively as repeating frame data rows. A control rod information receiving means takes up the frame data of each of control rods to be withdrawn from the transmitted frame data rows. Since the system of the present invention can monitor the withdrawal of a plurality of control rods simultaneously without increasing the size or complicating the system, cost can be saved and the maintenance can be improved. (I.S.)

  10. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    Romero G, M.; Vilchis P, A.E.

    1999-01-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  11. Thermal performance monitoring and optimisation

    International Nuclear Information System (INIS)

    Sunde, Svein; Berg; Oeyvind

    1998-01-01

    Monitoring of the thermal efficiency of nuclear power plants is expected to become increasingly important as energy-market liberalisation exposes plants to increasing availability requirements and fiercer competition. The general goal in thermal performance monitoring is straightforward: to maximise the ratio of profit to cost under the constraints of safe operation. One may perceive this goal to be pursued in two ways, one oriented towards fault detection and cost-optimal predictive maintenance, and another determined at optimising target values of parameters in response to any component degradation detected, changes in ambient conditions, or the like. Annual savings associated with effective thermal-performance monitoring are expected to be in the order of $ 100 000 for power plants of representative size. A literature review shows that a number of computer systems for thermal-performance monitoring exists, either as prototypes or commercially available. The characteristics and needs of power plants may vary widely, however, and decisions concerning the exact scope, content and configuration of a thermal-performance monitor may well follow a heuristic approach. Furthermore, re-use of existing software modules may be desirable. Therefore, we suggest here the design of a flexible workbench for easy assembly of an experimental thermal-performance monitor at the Halden Project. The suggested design draws heavily on our extended experience in implementing control-room systems featured by assets like high levels of customisation, flexibility in configuration and modularity in structure, and on a number of relevant adjoining activities. The design includes a multi-computer communication system and a graphical user's interface, and aims at a system adaptable to any combination of in-house or end user's modules, as well as commercially available software. (author)

  12. Digital data monitoring display and logging

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1987-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2 Megawatt, open-pool, research reactor. The digital data provided by this system is useful for: closed loop control, real time experimental calculations, advanced simulation-as-knowledge techniques, improved operator training, and expert system applications. The purpose of this paper is to discuss the transition to the digital data world and the anticipated applications and benefits

  13. A Digital Power Quality Monitoring Equipment Designed for Digital Substation

    Science.gov (United States)

    Li, Wei; Wang, Xin; Geng, Jiewen

    2018-01-01

    Taking into account both current status and development trend of digital substation, this paper proposed a design of a new multi-channelled digital power quality monitoring equipment with high compatibility. The overall functional structure, hardware architecture, software architecture, interface architecture and some key techniques such as IEC 61850 modelling of transient event and harmonic measurement method under the condition of non-synchronous sampling are described in this paper.

  14. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  15. Monitoring Accessibility Services in Digital Television

    Directory of Open Access Journals (Sweden)

    Francisco Utray

    2012-01-01

    Full Text Available This paper addresses methodology and tools applied to the monitoring of accessibility services in digital television at a time when the principles of accessibility and design are being considered in all new audiovisual media communication services. The main objective of this research is to measure the quality and quantity of existing accessibility services offered by digital terrestrial television (DTT. The preliminary results, presented here, offer the development of a prototype for automatic monitoring and a methodology for obtaining quality measurements, along with the conclusions drawn by initial studies carried out in Spain. The recent approval of the UN Convention on the Rights of Persons with Disabilities gives special relevance to this research because it provides valuable guidelines to help set the priorities to improve services currently available to users.

  16. The development of digital monitoring technique

    International Nuclear Information System (INIS)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator's monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs

  17. The development of digital monitoring technique

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator`s monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs.

  18. The cyclical monitoring system for digital power supplies at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian

    2009-01-01

    Based on available digital PS testing system and long-distance monitoring hardwares, the cyclical monitoring system for digital power supplies (PS) was developed at SSRF. Two models, i.e.long-distance cyclical monitoring and local cyclical monitoring, were established. The software developed in LabVIEW language was applied to the two models without any user interface modification. The user interface is simple. The system is suitable for debugging the digital PSs during long-distance monitoring and examining the performance. The long-distance model imitates the digital PSs' status for fault analysis and communication between the digital PS and the centre control room. The local model simultaneously examines stability of 18 new PSs for 24 h, monitors the PS controller, and detects malfunction. Parameters and status of the controller can be stored in Excel or Text file. The two models have been used at SSRF for monitoring the digital PSs. (authors)

  19. The development of web monitoring digital area monitor

    International Nuclear Information System (INIS)

    Jung, Hoon-Jin; Lee, Jun-Hee; Namkoong, Phil; Lee, Dong-Hoon; Lee, Su-Hong; Kim, We-Su

    2005-01-01

    As CCTV and radiation area monitor have been used separately to date, there have existed inconveniences in managing the view images and radiation dose rates from them. Thus we became to develop the web monitoring digital area monitor which incorporated the existing two factors, CCTV and radiation area monitor, into one. As incorporated with digitalisation, this device will usually become linked with PC, so that the view image and radiation dose rate can be concurrently identified in convenience. These measured figures automatically become data-based on PC by SW program, and become displayed in various format. Moreover, they can be monitored in remote and real time basis in the internet environment. Its local unit uses the cost-effective GM tube and CMOS image sensor, and has the small LCD which directly indicates the measured dose rate. The image sensor is designed to be operated with pan and tilt motion, thus can eliminate the dead view zone. It is thought that the developed device at this time could make the radiation safety management of each work field be done with low cost-high efficiency manner, making role of the CCTV inspection system

  20. The development of web monitoring digital area monitor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoon-Jin; Lee, Jun-Hee; Namkoong, Phil; Lee, Dong-Hoon; Lee, Su-Hong; Kim, We-Su [Iljin Radiation Engineering Co., Seoul (Korea, Republic of)

    2005-11-15

    As CCTV and radiation area monitor have been used separately to date, there have existed inconveniences in managing the view images and radiation dose rates from them. Thus we became to develop the web monitoring digital area monitor which incorporated the existing two factors, CCTV and radiation area monitor, into one. As incorporated with digitalisation, this device will usually become linked with PC, so that the view image and radiation dose rate can be concurrently identified in convenience. These measured figures automatically become data-based on PC by SW program, and become displayed in various format. Moreover, they can be monitored in remote and real time basis in the internet environment. Its local unit uses the cost-effective GM tube and CMOS image sensor, and has the small LCD which directly indicates the measured dose rate. The image sensor is designed to be operated with pan and tilt motion, thus can eliminate the dead view zone. It is thought that the developed device at this time could make the radiation safety management of each work field be done with low cost-high efficiency manner, making role of the CCTV inspection system.

  1. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  2. The role of digital data entry in participatory environmental monitoring

    NARCIS (Netherlands)

    Brammer, Jeremy R.; Brunet, Nicolas D.; Burton, A.C.; Cuerrier, Alain; Danielsen, Finn; Dewan, Kanwaljeet; Herrmann, Thora Martina; Jackson, Micha V.; Kennett, Rod; Larocque, Guillaume; Mulrennan, Monica; Pratihast, Arun Kumar; Saint-Arnaud, Marie; Scott, Colin; Humphries, Murray M.

    2016-01-01

    Many argue that monitoring conducted exclusively by scientists is insufficient to address ongoing environmental challenges. One solution entails the use of mobile digital devices in participatory monitoring (PM) programs. But how digital data entry affects programs with varying levels of

  3. Digital optical correlator x-ray telescope alignment monitoring system

    Science.gov (United States)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  4. An Embedded Based Digital Controller for Thermal Process

    Directory of Open Access Journals (Sweden)

    A. Lakshmi Sangeetha

    2008-01-01

    Full Text Available This paper describes a low cost virtual instrumentation (VI system to monitor and control the electrically heated water bath temperature. The PIC16F877 based digital microcontroller is used as thermostat which controls and monitors the temperature. The digital controller also allows the user to modify the sensor (PT100 calibration data values if necessary. The developed programmable on/off control function provides on-line display of measuring temperature, set point as well as the control function output plots through the parallel port. This bus interaction is realized in Visual Basic/Assembly Language and uses a 16 bit, 10 ms sampling analog-to-digital converter (ADS 7805 for monitoring and controlling the parameters of the temperature local digital controller.

  5. Experience with digital acoustic monitoring systems for PWRs and BWRs

    International Nuclear Information System (INIS)

    Olma, B.J.

    1998-01-01

    Substantial progress could be reached both in system technics and in application of digital acoustic monitoring systems for assessing mechanical integrity of reactor primary systems. For the surveillance of PWRs and BWRs during power operation of the plants, acoustic signals of Loose Parts Monitoring System sensors are continuously monitored for signal bursts associated with metallic impacts. ISTec/GRS experience with its digital systems MEDEA and RAMSES has shown that acoustic signature analysis is very successful for detecting component failures at an early stage. Methods for trending and classification of digital burst signals are shown, experience with their practical use will be presented. (author)

  6. Low fingertip temperature rebound measured by digital thermal monitoring strongly correlates with the presence and extent of coronary artery disease diagnosed by 64-slice multi-detector computed tomography.

    Science.gov (United States)

    Ahmadi, Naser; Nabavi, Vahid; Nuguri, Vivek; Hajsadeghi, Fereshteh; Flores, Ferdinand; Akhtar, Mohammad; Kleis, Stanley; Hecht, Harvey; Naghavi, Morteza; Budoff, Matthew

    2009-10-01

    Previous studies showed strong correlations between low fingertip temperature rebound measured by digital thermal monitoring (DTM) during a 5 min arm-cuff induced reactive hyperemia and both the Framingham Risk Score (FRS), and coronary artery calcification (CAC) in asymptomatic populations. This study evaluates the correlation between DTM and coronary artery disease (CAD) measured by CT angiography (CTA) in symptomatic patients. It also investigates the correlation between CTA and a new index of neurovascular reactivity measured by DTM. 129 patients, age 63 +/- 9 years, 68% male, underwent DTM, CAC and CTA. Adjusted DTM indices in the occluded arm were calculated: temperature rebound: aTR and area under the temperature curve aTMP-AUC. DTM neurovascular reactivity (NVR) index was measured based on increased fingertip temperature in the non-occluded arm. Obstructive CAD was defined as >or=50% luminal stenosis, and normal as no stenosis and CAC = 0. Baseline fingertip temperature was not different across the groups. However, all DTM indices of vascular and neurovascular reactivity significantly decreased from normal to non-obstructive to obstructive CAD [(aTR 1.77 +/- 1.18 to 1.24 +/- 1.14 to 0.94 +/- 0.92) (P = 0.009), (aTMP-AUC: 355.6 +/- 242.4 to 277.4 +/- 182.4 to 184.4 +/- 171.2) (P = 0.001), (NVR: 161.5 +/- 147.4 to 77.6 +/- 88.2 to 48.8 +/- 63.8) (P = 0.015)]. After adjusting for risk factors, the odds ratio for obstructive CAD compared to normal in the lowest versus two upper tertiles of FRS, aTR, aTMP-AUC, and NVR were 2.41 (1.02-5.93), P = 0.05, 8.67 (2.6-9.4), P = 0.001, 11.62 (5.1-28.7), P = 0.001, and 3.58 (1.09-11.69), P = 0.01, respectively. DTM indices and FRS combined resulted in a ROC curve area of 0.88 for the prediction of obstructive CAD. In patients suspected of CAD, low fingertip temperature rebound measured by DTM significantly predicted CTA-diagnosed obstructive disease.

  7. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  8. The role of digital data entry in participatory environmental monitoring.

    Science.gov (United States)

    Brammer, Jeremy R; Brunet, Nicolas D; Burton, A Cole; Cuerrier, Alain; Danielsen, Finn; Dewan, Kanwaljeet; Herrmann, Thora Martina; Jackson, Micha V; Kennett, Rod; Larocque, Guillaume; Mulrennan, Monica; Pratihast, Arun Kumar; Saint-Arnaud, Marie; Scott, Colin; Humphries, Murray M

    2016-12-01

    Many argue that monitoring conducted exclusively by scientists is insufficient to address ongoing environmental challenges. One solution entails the use of mobile digital devices in participatory monitoring (PM) programs. But how digital data entry affects programs with varying levels of stakeholder participation, from nonscientists collecting field data to nonscientists administering every step of a monitoring program, remains unclear. We reviewed the successes, in terms of management interventions and sustainability, of 107 monitoring programs described in the literature (hereafter programs) and compared these with case studies from our PM experiences in Australia, Canada, Ethiopia, Ghana, Greenland, and Vietnam (hereafter cases). Our literature review showed that participatory programs were less likely to use digital devices, and 2 of our 3 more participatory cases were also slow to adopt digital data entry. Programs that were participatory and used digital devices were more likely to report management actions, which was consistent with cases in Ethiopia, Greenland, and Australia. Programs engaging volunteers were more frequently reported as ongoing, but those involving digital data entry were less often sustained when data collectors were volunteers. For the Vietnamese and Canadian cases, sustainability was undermined by a mismatch in stakeholder objectives. In the Ghanaian case, complex field protocols diminished monitoring sustainability. Innovative technologies attract interest, but the foundation of effective participatory adaptive monitoring depends more on collaboratively defined questions, objectives, conceptual models, and monitoring approaches. When this foundation is built through effective partnerships, digital data entry can enable the collection of more data of higher quality. Without this foundation, or when implemented ineffectively or unnecessarily, digital data entry can be an additional expense that distracts from core monitoring objectives

  9. A customized digital monitoring and display system for nonpower reactors

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1989-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2-MW open-pool research reactor. The digital data provided by this system will be useful for: improved operator training, real-time experimental calculations, noise analysis, closed-loop control, and expert system applications. This paper describes the analog-to-digital (A/D) transitions and the associated applications and benefits experienced

  10. Noninvasive continuous monitoring of digital pulse waves during hemodialysis

    DEFF Research Database (Denmark)

    Burkert, Antje; Scholze, Alexandra; Tepel, Martin

    2009-01-01

    Intermittent hemodynamic instability during hemodialysis treatment is a frequent complication in patients with end-stage renal failure. A noninvasive method for continuous hemodynamic monitoring is needed. We used noninvasive digital photoplethysmography and an algorithm for continuous, investiga...

  11. Development and application of all-digital monitoring system

    International Nuclear Information System (INIS)

    Xu Tao; Li Jing; Wang Wei

    2014-01-01

    All digital control system has developed into a mainstream means of monitoring, and achieved information, intelligence, and networking. All-digital control system is characterized by clear image, large transport stream, so the higher the data storage and network bandwidth should be required. Existing analog surveillance system architecture, hardware and software configuration can not meet the requirements of all-digital monitoring system, so how to solve the original analog surveillance system is gradually transformed into fully digital monitoring system, to avoid incompatibility issues in surveillance monitoring system upgrade become a research project. This paper describes the advantages and future direction of megapixels camera and proposes key technologies to solve the resolution and frame rate with the actual project requirements, achieves a core technology of megapixels video surveillance system, and proposes solutions for the actual renovation project problems. (authors)

  12. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  13. ICPP digital wide area portal monitor

    International Nuclear Information System (INIS)

    Nichols, C.E.

    1978-01-01

    A portal montior is described which is used to check personnel for contamination. The monitor is extremely sensitive. In addition to personnel contamination control, it serves as an extremely effective SNM detector capable of detecting U-235 in half the quantities specified in Federal Standards

  14. AE monitoring simplified using digital memory storage and source isolation

    International Nuclear Information System (INIS)

    Hutton, P.H.; Skorpik, J.R.

    1977-01-01

    The general trend in acoustic emission (AE) monitoring systems has been one of increasing complexity. This is particularly true in systems for continuous monitoring which are usually multichannel (perhaps 20 to 40) and incorporate a dedicated minicomputer. A unique concept which reverses this trend for selected applications has been developed at Battelle-Northwest, Richland, WA. This concept uses solid state digital memories to store acquired data in a permanent form which is easily retrieved. It also uses a fundamental method to accept AE data only from a selected area. The digital memory system is designed for short term or long term (months) monitoring. It has been successfully applied in laboratory testing such as fatigue crack growth studies, as well as field monitoring on bridges and piping to detect crack growth. The features of simplicity, versatility, and low cost contribute to expanded practical application of acoustic emission technology

  15. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  16. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  17. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  18. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  19. Advanced software tools for digital loose part monitoring systems

    International Nuclear Information System (INIS)

    Ding, Y.

    1996-01-01

    The paper describes two software modules as analysis tools for digital loose part monitoring systems. The first module is called acoustic module which utilizes the multi-media features of modern personal computers to replay the digital stored short-time bursts with sufficient length and in good quality. This is possible due to the so-called puzzle technique developed at ISTec. The second module is called classification module which calculates advanced burst parameters and classifies the acoustic events in pre-defined classes with the help of an artificial multi-layer perception neural network trained with the back propagation algorithm. (author). 7 refs, 7 figs

  20. Advanced software tools for digital loose part monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y [Institute for Safety Technology (ISTec) GmbH, Garching (Germany)

    1997-12-31

    The paper describes two software modules as analysis tools for digital loose part monitoring systems. The first module is called acoustic module which utilizes the multi-media features of modern personal computers to replay the digital stored short-time bursts with sufficient length and in good quality. This is possible due to the so-called puzzle technique developed at ISTec. The second module is called classification module which calculates advanced burst parameters and classifies the acoustic events in pre-defined classes with the help of an artificial multi-layer perception neural network trained with the back propagation algorithm. (author). 7 refs, 7 figs.

  1. Quality control of the interpretation monitors of digital radiological images

    International Nuclear Information System (INIS)

    Favero, Mariana S.; Goulart, Adriano Oliveira S.

    2016-01-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  2. Characterization of microcalcification: can digital monitor zooming replace magnification mammography in full-field digital mammography?

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Kwak, Jin Young; Son, Eun Ju; Youk, Ji Hyun; Choi, Seon Hyeong; Oh, Ki Keun; Han, Mooyoung

    2009-01-01

    The aim of this study was to compare the diagnostic accuracy and image quality of microcalcifications in zoomed digital contact mammography with digital magnification mammography. Three radiologists with different levels of experience in mammography reviewed 120 microcalcification clusters in 111 patients with a full-field digital mammography system relying on digital magnification mammogram (MAG) images and zoomed images from contact mammography (ZOOM) using commercially available zooming systems on monitors. Each radiologist estimated the probability of malignancy and rated the image quality and confidence rate. Performance was evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic (ROC) analysis. All three radiologists rated MAG images higher than ZOOM images for sensitivity with statistical significance (average value, 92% vs. 87%, P<0.05) and performance by ROC analysis improved with MAG imaging. The confidence rate for diagnosis decision and the assessment of lesion characteristics were also better in MAG images than in ZOOM images with statistical significance (P<0.0001). Digital magnification mammography can enhance diagnostic performance when characterizing microcalcifications. Images zoomed from digital contact mammography cannot serve as an alternative to direct magnification digital mammography. (orig.)

  3. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  4. Digital radiography with computerized conventional monitors compared to medical monitors in vertical root fracture diagnosis.

    Science.gov (United States)

    Tofangchiha, Maryam; Adel, Mamak; Bakhshi, Mahin; Esfehani, Mahsa; Nazeman, Pantea; Ghorbani Elizeyi, Mojgan; Javadi, Amir

    2013-01-01

    Vertical root fracture (VRF) is a complication which is chiefly diagnosed radiographically. Recently, film-based radiography has been substituted with digital radiography. At the moment, there is a wide range of monitors available in the market for viewing digital images. The present study aims to compare the diagnostic accuracy, sensitivity and specificity of medical and conventional monitors in detection of vertical root fractures. In this in vitro study 228 extracted single-rooted human teeth were endodontically treated. Vertical root fractures were induced in 114 samples. The teeth were imaged by a digital charge-coupled device radiography using parallel technique. The images were evaluated by a radiologist and an endodontist on two medical and conventional liquid-crystal display (LCD) monitors twice. Z-test was used to analyze the sensitivity, accuracy and specificity of each monitor. Significance level was set at 0.05. Inter and intra observer agreements were calculated by Cohen's kappa. Accuracy, specificity and sensitivity for conventional monitor were calculated as 67.5%, 72%, 62.5% respectively; and data for medical grade monitor were 67.5%, 66.5% and 68% respectively. Statistical analysis showed no significant differences in detecting VRF between the two techniques. Inter-observer agreement for conventional and medical monitor was 0.47 and 0.55 respectively (moderate). Intra-observer agreement was 0.78 for medical monitor and 0.87 for conventional one (substantial). The type of monitor does not influence diagnosis of vertical root fractures.

  5. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  6. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan.

    Science.gov (United States)

    Chio, Shih-Hong; Lin, Cheng-Horng

    2017-07-18

    Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems), thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle) to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System) OEM (Original Equipment Manufacturer) board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK) technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs). The digital surface model (DSM) and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan's Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging) data are about 37% between -1 m and 1 m, and 66% between -2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  7. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Shih-Hong Chio

    2017-07-01

    Full Text Available Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems, thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System OEM (Original Equipment Manufacturer board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs. The digital surface model (DSM and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan’s Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging data are about 37% between −1 m and 1 m, and 66% between −2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  8. Development of a PZT-based wireless digital monitor for composite impact monitoring

    International Nuclear Information System (INIS)

    Liu, Peipei; Yuan, Shenfang; Qiu, Lei

    2012-01-01

    One of the major concerns in the whole lifetime of composite materials in aircraft is their susceptibility to impact damage. And there has existed a need in recent years to develop an online structural health monitoring (SHM) system for impact monitoring. This paper proposes a new PZT-based wireless digital impact monitoring system development method aimed at giving a localized area for further inspection. Based on this method, a PZT-based wireless digital impact monitor (WDIM) with advantages of compactness, light weight, low power consumption and high efficiency is developed. Differently from conventional SHM systems, the complex analog circuits are removed and the whole process is achieved in a digital way by turning the output of the PZT sensor directly into a digital queue through a comparator. A simple but efficient sub-region location method is implemented in a field programmable gate array (FPGA) as the processing core of the WDIM to detect and record the impact events. In addition, wireless communication technology is used in the WDIM to transmit data and form a monitoring network. To illustrate the capability of the WDIM, a complete process dealing with an impact event is investigated and the stability of the WDIM is also evaluated in this paper. The WDIM shows its potential for real online applications in aircraft. (paper)

  9. Digital beam position monitor for the HAPPEX experiment

    International Nuclear Information System (INIS)

    Sherlon Kauffman; John Musson; Hai Dong; Lisa Kaufman; Arne Freyberger

    2005-01-01

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high precision (1um), high bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a RF receiver daughter board and a digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 3 MHz and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with resolution of 1um, 100 kHz output bandwidth, and overall latency of 1us. The results are available in both the analog and digital format

  10. Performance monitoring pavements with thermal segregation in Texas.

    Science.gov (United States)

    2012-04-01

    This project conducted work to investigate the performance of asphalt surface mixtures that exhibited : thermal segregation during construction. From 2004 to 2009, a total of 14 construction projects were : identified for monitoring. Five of these pr...

  11. Digital Heart-Rate Variability Parameter Monitoring and Assessment ASIC.

    Science.gov (United States)

    Massagram, W; Hafner, N; Mingqi Chen; Macchiarulo, L; Lubecke, V M; Boric-Lubecke, O

    2010-02-01

    This paper describes experimental results for an application-specific integrated circuit (ASIC), designed for digital heart rate variability (HRV) parameter monitoring and assessment. This ASIC chip measures beat-to-beat (RR) intervals and stores HRV parameters into its internal memory in real time. A wide range of short-term and long-term ECG signals obtained from Physionet was used for testing. The system detects R peaks with millisecond accuracy, and stores up to 2 min of continuous RR interval data and up to 4 min of RR interval histogram. The prototype chip was fabricated in a 0.5 ¿m complementary metal-oxide semiconductor technology on a 3×3 mm(2) die area, with a measured dynamic power consumption of 10 ¿W and measured leakage current of 2.62 nA. The HRV monitoring system including this HRV ASIC, an analog-to-digital converter, and a low complexity microcontroller was estimated to consume 32.5 ¿V, which is seven times lower power than a stand-alone microcontroller performing the same functions. Compact size, low cost, and low power consumption make this chip suitable for a miniaturized portable HRV monitoring system.

  12. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  13. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  14. Digital dosimetry and personal and environmental monitoring assembly

    International Nuclear Information System (INIS)

    Cerovac, Z.; Radalj, Z.; Prlic, I.; Cerovac, H.

    1996-01-01

    Film+TLD and film or TLD Dosimetry have a certain delay in dose reporting, since the reports on occupational doses are usually available to the users within 40 days after the actual exposure. This is particularly important when the dose is received within the short-time interval or when the radiation source has some technical failures. For this reason, the additional monitoring is recommendable. The common Dosimetry service in Croatia is well established and the data available shows that over 80% of occupationally exposed persons are working in medical facilities, mainly with x-ray sources. Dosimetry services in the country are providing three types of dosemeters, film dosemeter badge, film+TLD dosemeter badge or plane TLD badge. We have decided to introduce the palette of digital pocket dosemeters to be used at different workplaces occupationally exposed to ionizing radiation. After the first experience with the ALARA 1G digital dosemeter it came out that this type of ionizing radiation measuring device is suitable for the various non-occupational purposes. After some technical improvement and with some telecommunication electronics this device is usable as a point environmental measuring station. This means that the probe of the record any change in normal environmental radiation field, send the data to the central station and to raise alarm if necessary. That is why we have made a prototype for environmental monitoring able to be connected to any kind of telecommunication net. (author)

  15. Digital system to monitor the natural frequency of mechanical resonators

    International Nuclear Information System (INIS)

    Brengartner, Tobias; Siegel, Michael; Urban, Martin; Monse, Benjamin; Frühauf, Dietmar

    2013-01-01

    Mechanical resonators are often used in process or condition monitoring. They are used for liquid-level limit detection or for viscosity and density sensing. Therefore, the resonator is preferably actuated at its natural frequency. In industrial applications, this is achieved by analogue closed resonant circuits. These circuits have been established because of the low energy consumption and low component costs. Due to the future trend of microprocessors, digital systems are now an interesting alternative and can achieve better results compared to analogue realizations. In this context, this paper presents a novel digital system for monitoring the natural frequency of mechanical resonators. The system is realized with newly developed algorithms and is based on a simple signal processing procedure with minimum computational cost. This allows the use of a low-power microcontroller, thus making the system interesting for industrial use. It is shown that the natural frequency can be measured in respect of high industrial requirements on reliability, fastness and accuracy, combined with the possibility of reducing energy consumption. (paper)

  16. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  17. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  18. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  19. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    Science.gov (United States)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial

  20. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    Science.gov (United States)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  1. Innovative fluxmeter for thermal monitoring of constructions and buildings

    International Nuclear Information System (INIS)

    Audouin, L.; Hovhanessian, G.

    2015-01-01

    A new device composed of a prefabricated concrete block including temperature sensors and resistance wire that are used to identify wall material properties and thermal flux transmitted to the wall, has been validated in the lab. This prefabricated blocks have to be integrated into the structure to monitor. These device provides real time information about thermal flux in the walls that can be useful for the monitoring of deterioration of wall physical properties (conductivity and diffusivity) due to aging or in case of accidents or during fire

  2. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  3. Experimental Adaptive Digital Performance Monitoring for Optical DP-QPSK Coherent Receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module.......We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module....

  4. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  5. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  6. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  7. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  8. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  9. Digital Enhancement of Night Vision and Thermal Images

    National Research Council Canada - National Science Library

    Teo, Chek

    2003-01-01

    .... This thesis explores the effect of the Contrast Limited Adaptive Histogram Equalization (CLAHE) process on night vision and thermal images With better contrast, target detection and discrimination can be improved...

  10. Methods for monitoring work-life balance in a digital world

    OpenAIRE

    Chong, Ming Ki; Whittle, Jon; Rashid, Umar; Ang, Chee Siang; Whiting, Rebecca; Roby, Helen; Chamakiotis, Petros; Symon, Gillian

    2014-01-01

    Digital technologies - smart phones, email, social networking, etc. - are fundamentally changing our relationship with work. Digital technologies enable us to be always connected. However, the question remains as to how digital technologies affect our work-life balance. In this position paper, we report on some methods we are using to study how to continuously monitor and observe work-life balance, and discuss the advantages/disadvantages of these methods. Work-life balance is a relatively un...

  11. Control and monitoring of doses to patients in a team of digital mammography

    International Nuclear Information System (INIS)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-01-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  12. Hyperspectral and thermal methodologies applied to landslide monitoring

    Science.gov (United States)

    Vellico, Michela; Sterzai, Paolo; Pietrapertosa, Carla; Mora, Paolo; Berti, Matteo; Corsini, Alessandro; Ronchetti, Francesco; Giannini, Luciano; Vaselli, Orlando

    2010-05-01

    Landslide monitoring is a very actual topic. Landslides are a widespread phenomenon over the European territory and these phenomena have been responsible of huge economic losses. The aim of the WISELAND research project (Integrated Airborne and Wireless Sensor Network systems for Landslide Monitoring), funded by the Italian Government, is to test new monitoring techniques capable to rapidly and successfully characterize large landslides in fine soils. Two active earthflows in the Northern Italian Appenines have been chosen as test sites and investigated: Silla (Bologna Province) and Valoria (Modena Province). The project implies the use of remote sensing methodologies, with particular focus on the joint use of airborne Lidar, hyperspectral and thermal systems. These innovative techniques give promising results, since they allow to detect the principal landslide components and to evaluate the spatial distribution of parameters relevant to landslide dynamics such as surface water content and roughness. In this paper we put the attention on the response of the terrain related to the use of a hyperspectral system and its integration with the complementary information obtained using a thermal sensor. The potentiality of a hyperspectral dataset acquired in the VNIR (Visible Near Infrared field) and of the spectral response of the terrain could be high since they give important information both on the soil and on the vegetation status. Several significant indexes can be calculated, such as NDVI, obtained considering a band in the Red field and a band in the Infrared field; it gives information on the vegetation health and indirectly on the water content of soils. This is a key point that bridges hyperspectral and thermal datasets. Thermal infrared data are closely related to soil moisture, one of the most important parameter affecting surface stability in soil slopes. Effective stresses and shear strength in unsaturated soils are directly related to water content, and

  13. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  14. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  15. Thermal micropressure sensor for pressure monitoring in a minute package

    International Nuclear Information System (INIS)

    Wang, S. N.; Mizuno, K.; Fujiyoshi, M.; Funabashi, H.; Sakata, J.

    2001-01-01

    A thermal micropressure sensor suitable for pressure measurements in the range from 7x10 -3 to 1x10 5 Pa has been fabricated by forming a titanium (Ti) thin-film resistor on a floating nondoped silica glass membrane, with the sensing area being as small as 60 μmx60 μm. The sensor performance is raised by: (1) increasing the ratio of gaseous thermal conduction in the total thermal conduction by sensor structure design; (2) compensating the effect of ambient-temperature drift by using a reference resistor located close to the sensing element but directly on the silicon substrate; and (3) utilizing an optimized novel constant-bias Wheatstone bridge circuit. By choosing a proper bias voltage, which can be found by simple calculation, the circuit extracts information on gaseous thermal conduction from the directly measurable total heat loss of the heated sensing element. The sensor was enclosed in a metal package with a capacity of about 0.5 ml by projection welding and was successfully applied to monitoring the pressure in the minute space

  16. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  17. Virtual instrument for controlling and monitoring digitalized power supply in SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Chen Huanguang; Chinese Academy of Sciences, Beijing; Xu Ruinian; Shen Tianjian; Li Deming

    2006-01-01

    The Shanghai Synchrotron Radiation Facility (SSRF) needs extremely precise power supplies for their various magnets. A digital controller is being developed for the power converters of the SSRF power supply (PS). In the digital controller, a fully digital pulse-width modulator (PWM) directly controls the power unit insulated gate bipolar transistor (IGBT) of the PS. A program in LabVIEW language has been developed to control and monitor the digital PS via serial communication (RS232) from a PC and to modify its parameters as well. In this article, the software design of the virtual instrument for controlling and monitoring digitalized PS and its associated functions are described, and the essential elements of the program graphical main-VI and sub-VI source code are presented and explained. The communication protocol and the structure of the developed system are also included in this article. (authors)

  18. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  19. Models for thermal and mechanical monitoring of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vilaithong, Rummiya

    2011-07-01

    At present, for economic reasons, there is an increasing emphasis on keeping transformers in service for longer than in the past. A condition-based maintenance using an online monitoring and diagnostic system is one option to ensure reliability of the transformer operation. The key parameters for effectively monitoring equipment can be selected by failure statistics and estimated failure consequences. In this work, two key aspects of transformer condition monitoring are addressed in depth: thermal behaviour and behaviour of on-load tap changers. In the first part of the work, transformer thermal behaviour is studied, focussing on top-oil temperatures. Through online comparison of a measured value of the top-oil temperature and its calculated value, some rapidly developing failures in power transformers such as malfunction of the cooling unit may be detected. Predictions of top-oil temperature can be obtained by means of a mathematical model. Long-term investigations on some dynamic top-oil temperature models are presented for three different types of transformer units. The last-state top-oil temperature, load current, ambient temperature and the operating state of pumps and fans are applied as inputs of the top-oil temperature models. In the fundamental physical models presented, some constant parameters are required and can be estimated using a least-squares optimization technique. Multilayer Feed-forward and Recurrent neural network models are also proposed and investigated. The neural network models are trained with three different Backpropagation training algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient and Automated Bayesian Regularization. The effect of varying operating conditions of the cooling units and the non-steady-state behaviour of loading conditions, as well as ambient temperature are noted. Results show sophisticated temperature prediction is possible using the neural network models that is generally more accurate than with the physical

  20. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  1. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  2. Democracy in the Digital Communication Environment: A Typology Proposal of Political Monitoring Processes

    OpenAIRE

    Feenstra, Ramón A.; Casero Ripollés, Andreu

    2014-01-01

    The digital environment creates new opportunities for citizen political participation. Among these, the monitoring of political and economic power centers stands out. This includes public scrutiny of the management of public funds and the activities of the public and economic systems, thus denouncing dysfunctional features. This article aims to describe, differentiate, and classify the various forms that monitoring can take in current democracies. The results indicate that three major monitor...

  3. Thermal monitoring of leakage through Karkheh embankment dam, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mirghasemi, A.A.; Bagheri, S.M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering; Heidarzadeh, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering]|[Mahab Ghodss Consulting Engineers, Tehran (Iran, Islamic Republic of)

    2007-07-01

    A newly developed and simple method for monitoring seepage in embankment dams was presented. The method of temperature measurement is based on the fact that a change in permeability results in a change in seepage flow, thereby causing a temperature change that can be readily measured in the dam body and foundation. In this study, water leaking through the Karkheh embankment dam was thermally analyzed to determine a pattern and amount of water seepage. With nearly 33 million cubic metres of fill, the Karkheh earth and rock-fill dam is the largest dam in Iran. Construction was completed in 2000. The thermal processes in the embankment were studied due to the dam's complex thermo-hydraulic behaviour. Thermal data was collected and analyzed during construction and operation of the dam. This paper presented the temperature variations for the different dam zones, including core, upstream shell, downstream shell, upstream filter, downstream filter and the plastic concrete cut-off wall. It was determined that the clay core works very well as an impermeable curtain. It was also shown that temperature variations of the Karkheh reservoir water is seasonal, and decrease as water depth increases. The reservoir water temperature remains constant beyond depths of 60 metres. The thermal behaviour of the core is not similar to that of the reservoir, indicating a very low value of seepage through the core. The pattern of temperature variations in the upstream shell in the left abutment is harmonic, while in the right abutment it is not harmonic. A harmonic pattern of temperature variation exists in some aquifers of the dam foundation, indicating high seepage through these aquifers. The Karkheh dam cut-off wall performs satisfactorily. It was determined that one dimensional equations for estimating seepage cannot be applied for the Karkheh dam. 17 refs., 11 figs.

  4. Digital processing method for monitoring the radioactivity of stack releases

    International Nuclear Information System (INIS)

    Vialettes, H.; Leblanc, P.; Perotin, J.P.; Lazou, J.P.

    1978-01-01

    The digital processing method proposed is adapted for data supplied by a fixed-filter detector normally used for analogue processing (integrator system). On the basis of the raw data (pulses) from the detector, the technique makes it possible to determine the rate of activity released whereas analogue processing gives only the released activity. Furthermore, the method can be used to develop alarm systems on the basis of a possible exposure rate at the point of fall-out, and by including in the program a coefficient which allows for atmospheric diffusion conditions at any given time one can improve the accuracy of the results. In order to test the digital processing method and demonstrate its advantages over analogue processing, various atmospheric contamination situations were simulated in a glove-box and analysed simultaneously, using both systems, from the pulses transmitted by the same sampling and fixed-filter detection unit. The experimental results confirm the advantages foreseen in the theoretical research. (author)

  5. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  6. Monitoring of the periodontal disease using digital image analyses

    International Nuclear Information System (INIS)

    Taba Junior, Mario.

    1995-01-01

    The radiographs play an important role in the diagnosis and management of periodontal disease although the most appropriate form of assessment vary. The great technologic advance and the easily accessible systems of digital image analyses, specify digitized radiographs, improve the diagnostic power. The studied group was 29 adults (14 female and 15 male) ranging in age from 18 to 45 years. They all had evidence of alveolar bone loss and established periodontitis. They were studied, without treatment, over a six month period with four posterior standardized vertical bite wings radiographs, electronic probing of attachment loss, and bacteriological and temperature analysis of periodontal pocket. The aim of this investigation was to determine the relationship between the loss of radiographic crestal bone height and probing attachment loss in digitized radiographs and show a standardization method for periodontal radiographs. Radiographic and probing attachment change at all sites, dichotomously classified as to not changing or loosing indicated 20.42% of sites were loosing by measurement of radiographic change and 5.29% were loosing by measurement of attachment change. There was concordance between the presence or absence of probing attachment loss and bone loss in 72% to 86% depending on the area. The results, admitting methodological limitations, indicate that when these two methods for the assessment of progressive periodontitis were used they represents measure degrees of different features of periodontitis and that the period of periodontal disease activity was detected in the either the soft tissue attachment or bone. (author)

  7. A digital control and monitoring system for PWR waste-disposal systems

    International Nuclear Information System (INIS)

    Ueda, Toshiharu; Fuchigami, Kazuyuki; Shimozato, Masao; Takazawa, Kazuo

    1982-01-01

    Mitsubishi Electric has developed a digital control and monitoring system for PWR waste-disposal systems. This novel system has improved operability due to its automated operations and control, and integrated supervisory functions. The system includes other features to improve operability: sequence control by a control computer, direct-digital process control, integrated supervision of operation states by a supervisory computer and a high-speed dataway, and CRT interfacing between the computer and dataway. (author)

  8. The thermal performance monitoring and optimisation system (TEMPO): lessons learnt

    International Nuclear Information System (INIS)

    Beere, W.H.Aa.

    2005-09-01

    The goal of condition monitoring, fault detection and diagnosis is to ensure the success of planned operations by recognizing anomalies in a plant. This is achieved by monitoring the condition of equipment and instrumentation, and by detection, identification, diagnosis and removal of faults. The method of using physical modelling for condition monitoring has been investigated at the Institutt for energiteknikk since 1998. The result of this work was the development of the TEMPO (ThErMal Performance monitoring and Optimisation) toolbox. In this toolbox plant wide models are built up of unit sub-models. These are then linked to measurements by using data reconciliation. This enables the comparison of calculated to measured values as well as an indication of the significance of any deviation. It also allows the calculation of unmeasured variables as well as an overall 'goodness of fit' indicator. Since its first release in 2000 the TEMPO toolbox has been used to model the turbine cycles of several NPPs. Installations include Forsmark 3 and Loviisa 2 with feasibility studies for Dukovany, Olkiluoto 2, Almaraz and Paks. The experience from creating and installing TEMPO at these plants has now been collated and is presented in this report. This experience is used to indicate which direction the further development of TEMPO should take. The experience of using TEMPO has shown that the data-reconciliation method can be applied to the turbine cycles of NPPs. Problems that have arose have primarily been connected to the usability of the toolbox. This has prompted a shift in the development emphasis from the task of developing the method to that of developing its usability. A summary of improvement proposals is given in this paper. The reader is welcome to comment on these proposals or to suggest alternative improvements. (Author)

  9. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  10. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  11. Digital upgrade of radiation-monitoring-system subcomponents

    International Nuclear Information System (INIS)

    Bohrisch, R.L

    1993-01-01

    This paper describes the experience of Southern California Edison (SCE) in upgrading an obsolete, analog, printed circuit board contain in most of the process and effluent radiation detectors at the San Onofre Nuclear Generating Station. The printed circuit board, which functions to produce a linear voltage and current that is proportional to the log of the radiation level, was reengineered by SCE with microprocessor-based digital technology and subjected to qualification testing, including seismic and environmental, for use in class I safety-related applications. The results, benefits, and disadvantages to this approach are discussed in this paper

  12. Mould thermal monitoring: a window on the mould

    Energy Technology Data Exchange (ETDEWEB)

    Normanton, A.S.; Hewitt, P.N.; Hunter, N.S.; Scoones, D.; Harris, B.

    2004-07-01

    Corus R, D and T at Teesside Technology Centre has developed over a number of years a mould thermal monitoring (MTM) system based on an array of thermocouples in the mould copper plates. The system is installed on the Corus slab casters in the UK, on slab casters at Outokumpu (UK), Sidmar (Belgium) and Kosice (Slovakia) and, at the time of the 4th European Continuous Casting Conference, was also on the medium thickness slab caster at Tuscaloosa (USA), which was sold to Nucor in 2004. The MTM system was also under development on the thin slab caster at Trico (USA) before plant closure (subsequently bought by Nucor), and aspects are currently being developed on the Corus DSP (direct sheet plant) thin slab caster at IJmuiden (The Netherlands). While a prime function is detection and prevention of sticker type breakouts, the MTM system allows real time assessment of thermal conditions, provides a valuable input for online grading and, most important, enables modifications to mould powder practices to be assessed. The present paper briefly outlines recent developments to the MTM system and presents examples of the use of the system to assist mould powder developments. (author)

  13. Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review

    Science.gov (United States)

    Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh

    2018-03-01

    Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.

  14. Monitoring solar-thermal systems: An outline of methods and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  15. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  16. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    Science.gov (United States)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  17. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  18. High accuracy digital aging monitor based on PLL-VCO circuit

    International Nuclear Information System (INIS)

    Zhang Yuejun; Jiang Zhidi; Wang Pengjun; Zhang Xuelong

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm 2 . After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%. (semiconductor integrated circuits)

  19. Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures

    Science.gov (United States)

    Aithal, Srivatsa; Dubowski, Jan J.

    2018-04-01

    Nanostructuring of semiconductor wafers with an atomic level depth resolution is a challenging task, primarily due to the limited availability of instruments for in situ monitoring of such processes. Conventional digital etching relies on calibration procedures and cumbersome diagnostics applied between or at the end of etching cycles. We have developed a photoluminescence (PL) based process for monitoring in situ digital photocorrosion (DPC) of GaAs/AlGaAs microstructures at rates below 0.2 nm per cycle. In this communication, we demonstrate that DPC of GaAs/AlGaAs microstructures could be monitored with open circuit potential (OCP) measured between the photocorroding surface of a microstructure and an Ag/AgCl reference electrode installed in the sample chamber. The excellent correlation between the position of both PL and OCP maxima indicates that the DPC process could be monitored in situ for materials that do not necessarily exhibit measurable PL emission.

  20. Open-source digital technologies for low-cost monitoring of historical constructions

    OpenAIRE

    Basto, Camilo; Pelà, Luca; Chacón Flores, Rolando Antonio

    2017-01-01

    This paper shows new possibilities of using novel, open-source, low-cost platforms for the structural health monitoring of heritage structures. The objective of the study is to present an assessment of increasingly available open-source digital modeling and fabrication technologies in order to identify the suitable counterparts of the typical components of a continuous static monitoring system for a historical construction. The results of the research include a simple case-study, which is pre...

  1. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Directory of Open Access Journals (Sweden)

    Frize Monique

    2004-06-01

    Full Text Available Abstract Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure

  2. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    with no or low quality heat flow data. This analysis requires knowledge oflithosphere age globally.A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg 1 deg grid forms the basis forthe statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publicationsfor data quality, and corrected for paleo-temperature effects where needed. These data are supplemented bycratonic geotherms based on xenolith data.Since heat flow measurements cover not more than half...

  3. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  4. An application study for the class 1E digital control and monitoring system

    International Nuclear Information System (INIS)

    Hiroyuki Fukumitsu

    1998-01-01

    This paper presents an application study for the Class 1E digital control and monitoring system to the next Japanese plants, especially about MMIS. The system architecture of hardware and software is also introduced, which will explain the strategic plan for the necessary software verification and validation according to the latest requirement from Japanese regulatory guide. (author)

  5. Control and monitoring of doses to patients in a team of digital mammography; Control y seguimiento de las dosis a pacientes en un equipo de mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-07-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  6. The development of NSSS digital integrity monitoring system

    International Nuclear Information System (INIS)

    Ham, Chang Shik; Kim, Jung Soo; Jung, Chul Hwan; Hwang, In Koo; Kim, Tak Hwane; Kim, Tae Hwane; Park, Jin Ho; Kyung, Sung Yoon; Hyeon, Ryu Kye; Seong, Joo Hyun; Kim, Georn Myung; Eun, Sung Hun; Kwack, Jin Gu; Park, Joon Hee

    1999-11-01

    The primary function of loose part monitoring system (LPMS) is to detect the occurrence of any loose part in the primary coolant system caused by being parted or loosened from the mechanical structure during normal operation and refueling times. The existing LPMSs generates an alarm when the detected signal from the accelerometer sensors attached to the surface of the primary pressure boundary was bigger than the alarm threshold value. The internal vibration monitoring system (IVMS) senses a change of vibration of the reactor vessel internal structure using the ex-core neutron signals. The vibrations of internal mechanical structure are caused by the high velocity flow of the pressurized primary coolant. If the flow-induced vibration forces to loosen the internal components supporting the fuel assembly, the safety of nuclear reactor will be affected. The IVMS provides the information of abnormality in the vibration pattern and amplitude for plant operators to take proper actions against the abnormal condition for nuclear power plants (NPPs). An advanced LPMS should be capable to identify the physical characteristics of the potential loose part from the detected signal. Those improved diagnostic function will be the capabilities to analyze the detected signal and to estimate the expected impact position and mass automatically. The technologies and methods of estimation for impact mass and position as well as a new modeling method of reactor internal vibration modes were developed and provided to Woojin Co. from Korea Energy Research Institute (KAERI). Based on the transferred technologies, Woojin Co. has designed the hardware system of LPMS and IVMS. Some of the hardware components were integrated and the hardware-oriented software modules were also developed and designed. (author)

  7. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  8. Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission is successfu...... drives an adaptive digital CD equalizer. © 2011 Optical Society of America.......We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission...

  9. Design of a continuous digital-output environmental radon monitor

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Spitz, H.; Cohen, N.

    1975-01-01

    A new field instrument for the continuous measurement of radon concentrations has been developed to investigate the magnitude and variability of environmental levels of 222 Rn. Passive diffusion of radon, but not its daughters, occurs through an open pore polyurethane foam into a sensitive volume where a static electric field directs the positively ionized radon daughter products to a central collecting electrode. Pulses in a ZnS(Ag) scintillator, resulting from the alpha emission of 218 Po and 214 Po, are observed with a photomultiplier tube and counted using standard NIM electronics. The detector unit has been fabricated into a small, convenient package for indoor air sampling without the use of air movers or pumps. The unit is unobtrusive and acceptable into a daily routine without disrupting normal family or business activities. The monitor can detect as little as 0.5 pCi/l for a 40-min. count (α = .05). The equilibrium detection efficiency of the instrument is 0.7 cpm/pCi/l. (U.S.)

  10. Assessment of the usability of a digital learning technology prototype for monitoring intracranial pressure

    Directory of Open Access Journals (Sweden)

    Lilian Regina de Carvalho

    Full Text Available ABSTRACT Objective: to assess the usability of a digital learning technology prototype as a new method for minimally invasive monitoring of intracranial pressure. Method: descriptive study using a quantitative approach on assessing the usability of a prototype based on Nielsen's ten heuristics. Four experts in the area of Human-Computer interaction participated in the study. Results: the evaluation delivered eight violated heuristics and 31 usability problems in the 32 screens of the prototype. Conclusion: the suggestions of the evaluators were critical for developing an intuitive, user-friendly interface and will be included in the final version of the digital learning technology.

  11. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    Science.gov (United States)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  12. Monitoring of degradation of porous silicon photonic crystals using digital photography

    Science.gov (United States)

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t  pSi-ch. PMID:25242902

  13. Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology

    Directory of Open Access Journals (Sweden)

    Ro'ee Eitan

    2014-12-01

    Full Text Available Thermal sensors (TS are essential for achieving optimized performance and reliability in the era of nanoscale microprocessor and system on chip (SoC. Compiling with the low-power and small die area of the mobile computing, the presented TS supports a wide range of sampling frequencies with an optimized power envelope. The TS supports up to 45 K samples/s, low average power consumption, as low as 20 μW, and small core Si area of 0.013 mm2. Advanced circuit techniques are used in order to overcome process variability, ensuring inaccuracy lower than ±2 °C without any calibration. All this makes the presented thermal sensor a cost-effective, low-power solution for 22 nm nanoscale digital process technology.

  14. Digitization

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    what a concept of digital media might add to the understanding of processes of mediatization and what the concept of mediatization might add to the understanding of digital media. It is argued that digital media open an array of new trajectories in human communication, trajectories which were...

  15. Use of a Digital Camera to Monitor the Growth and Nitrogen Status of Cotton

    Directory of Open Access Journals (Sweden)

    Biao Jia

    2014-01-01

    Full Text Available The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass. There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R2 value was 0.978, and the root mean square error (RMSE value was 1.479 g m−2. Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R2 value of 0.926 and an RMSE value of 1.631 g m−2. In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status.

  16. Application of the Digital Image Technology in the Visual Monitoring and Prediction of Shuttering Construction Safety

    Science.gov (United States)

    Ummin, Okumura; Tian, Han; Zhu, Haiyu; Liu, Fuqiang

    2018-03-01

    Construction safety has always been the first priority in construction process. The common safety problem is the instability of the template support. In order to solve this problem, the digital image measurement technology has been contrived to support real-time monitoring system which can be triggered if the deformation value exceed the specified range. Thus the economic loss could be reduced to the lowest level.

  17. Research and Development of Protection OPC server for China advanced research reactor digital monitoring system

    International Nuclear Information System (INIS)

    Jia Yuwen; Xu Qiguo

    2012-01-01

    OPC server was developed as I/O driver to communicate the digital monitoring system of China Advanced Research Reactor iFIX and protection system. The framework and working principle of the OPC server were researched, and an effective method was developed to resolve the special communication protocol. After commissioning and testing, the results show that this method is reliable and stable, makes the system easy to configure, and can reduce the complexity of the system. (authors)

  18. Training in remote monitoring technology. Digital camera module-14(DCM-14)

    International Nuclear Information System (INIS)

    Caskey, Susan

    2006-01-01

    The DCM-14 (Digital Camera Module) is the backbone of current IAEA remote monitoring surveillance systems. The control module is programmable with features for encryption, authentication, image compression and scene change detection. It can take periodic or triggered images under a variety of time sequences. This training session covered the DCM-14 features and related programming in DCMSET. It also described the processes for receiving, archiving and backing up the camera images using DCMPOLL and GEMINI software. Setting up a DCM-14 camera controller in the configuration of the remote monitoring system at Joyo formed an exercise. (author)

  19. A wide range gamma monitor with digital display for remote monitoring

    International Nuclear Information System (INIS)

    Risbud, V.H.; Thiagarajan, A.; Gangadharan, P.

    1976-01-01

    A wide range gamma monitor designed for remote monitoring in nuclear facilities is described. The instrument consists of two GM detectors and pre-amplifiers connected by a long coaxial cable to the power supply, scalers and timers and display devices. Automatic selection of detectors range of exposure rate and display (nixie) are achieved with this set up, radiation levels in active areas can easily be displayed in the control room. Other advantages are also pointed out. (A.K.)

  20. Cyber Dating Abuse: Investigating Digital Monitoring Behaviors Among Adolescents From a Social Learning Perspective.

    Science.gov (United States)

    Van Ouytsel, Joris; Ponnet, Koen; Walrave, Michel

    2017-07-01

    Just as with other forms of abuse such as bullying, dating violence is no longer limited to physical spaces. Several forms of dating violence can also be perpetrated by means of technology. Few studies have used a theoretical perspective to investigate cyber dating abuse. This study addresses this gap in the literature by focusing on the perpetration of digital monitoring behaviors-a form of cyber dating abuse-from a social learning perspective. We investigate the extent to which perceived social norms about cyber dating abuse, witnessing controlling behaviors among parents, and endorsing gender stereotypes are linked with adolescents' engagement in digital monitoring behaviors. The study draws on data from 466 secondary school students (71.0% girls, n = 331) aged between 16 and 22 years ( M = 17.99 years, SD = 0.92) in Flanders, Belgium, who were in a romantic relationship. Linear regression analysis indicates that being female, being older, the perceived social norms of peers, the endorsement of gender stereotypes, and having observed intrusive controlling behaviors by the father are significantly and positively related to adolescents' perpetration of digital monitoring behaviors. The findings have implications for practice and underscore the need for prevention efforts to address and lower the influence of these perceived social norms. Further implications include the need for prevention efforts to focus on diminishing the impact of gender stereotypical attitudes and the influence of witnessing controlling behaviors within the family context on cyber dating abuse perpetration.

  1. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  2. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  3. In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...

  4. Portable digital video surveillance system for monitoring flower-visiting bumblebees

    Directory of Open Access Journals (Sweden)

    Thorsdatter Orvedal Aase, Anne Lene

    2011-08-01

    Full Text Available In this study we used a portable event-triggered video surveillance system for monitoring flower-visiting bumblebees. The system consist of mini digital recorder (mini-DVR with a video motion detection (VMD sensor which detects changes in the image captured by the camera, the intruder triggers the recording immediately. The sensitivity and the detection area are adjustable, which may prevent unwanted recordings. To our best knowledge this is the first study using VMD sensor to monitor flower-visiting insects. Observation of flower-visiting insects has traditionally been monitored by direct observations, which is time demanding, or by continuous video monitoring, which demands a great effort in reviewing the material. A total of 98.5 monitoring hours were conducted. For the mini-DVR with VMD, a total of 35 min were spent reviewing the recordings to locate 75 pollinators, which means ca. 0.35 sec reviewing per monitoring hr. Most pollinators in the order Hymenoptera were identified to species or group level, some were only classified to family (Apidae or genus (Bombus. The use of the video monitoring system described in the present paper could result in a more efficient data sampling and reveal new knowledge to pollination ecology (e.g. species identification and pollinating behaviour.

  5. 162.5 MHz digital low-level radio frequency control monitoring system design and implementation

    International Nuclear Information System (INIS)

    Zhang Ruifeng; Wang Xianwu; Xu Zhe; Yi Xiaoping

    2014-01-01

    162.5 MHz high-frequency low-level control system self-developed by Institute of Modern Physics for ADS project took digital technology. All parameters' reading and writing, including loop parameter setting, open and close-loop operation, and condition monitoring, were achieved through the monitoring system. The system used lightweight client-server working mode that client running in the PC sent command data, server running on high-frequency digital low level system responded instructions to complete parameter monitoring and control. The system consisted of three parts. Firstly, server hardware system was constructed based on Atera Stratix Ⅲ family of field-programmable gate array (FPGA) development board. Secondly, the server software system was designed based on Micro C/OS Ⅱ real-time operating systems and lightweight TCP/IP protocol stack, and finally a client PC program was designed based on MFC. After a long test, it was indicated that the monitoring system works properly and stably. TCP sends and receives throughput reached 11.931038 Mbps and 8.117624 Mbps. (authors)

  6. Resolution requirements for monitor viewing of digital flat-panel detector radiographs: a contrast detail analysis

    International Nuclear Information System (INIS)

    Peer, Siegfried; Giacomuzzi, Salvatore M.; Peer, Regina; Gassner, Eva; Steingruber, Iris; Jaschke, Werner

    2003-01-01

    With the introduction of digital flat-panel detector systems into clinical practice, the still unresolved question of resolution requirements for picture archiving communication system (PACS) workstation monitors has gained new momentum. This contrast detail analysis was thus performed to define the differences in observer performance in the detection of small low-contrast objects on clinical 1K and 2K monitor workstations. Images of the CDRAD 2.0 phantom were acquired at varying exposures on an indirect-type digital flat-panel detector. Three observers evaluated a total of 15 images each with respect to the threshold contrast for each detail size. The numbers of correctly identified objects were determined for all image subsets. No significant difference in the correct detection ratio was detected among the observers; however, the difference between the two types of workstations (1K vs 2K monitors) despite less than 3% was significant at a 95% confidence level. Slight but statistically significant differences exist in the detection of low-contrast nodular details visualized on 1K- and 2K-monitor workstations. Further work is needed to see if this result holds true also for comparison of clinical flat-panel detector images and may, for example, exert an influence on the diagnostic accuracy of chest X-ray readings. (orig.)

  7. A Sensor-less Method for Online Thermal Monitoring of Switched Reluctance Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Stator winding is one of the most vulnerable parts in Switched Reluctance Machine (SRM), especially under thermal stresses during frequently changing operation circumstances and susceptible heat dissipation conditions. Thus real-time online thermal monitoring of the stator winding is of great sig...

  8. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  9. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  10. Development of Uncertainty Analysis Method for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute has developed a system-integrated modular advanced reactor (SMART) for a seawater desalination and electricity generation. Online digital core protection and monitoring systems, called SCOPS and SCOMS respectively were developed. SCOPS calculates minimum DNBR and maximum LPD based on the several online measured system parameters. SCOMS calculates the variables of limiting conditions for operation. KAERI developed overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system. By applying overall uncertainty factors in on-line SCOPS/SCOMS calculation, calculated LPD and DNBR are conservative with a 95/95 probability/confidence level. In this paper, uncertainty analysis method is described for SMART core protection and monitoring system

  11. Formulation of a strategy for monitoring control integrity in critical digital control systems

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  12. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  13. A sneak peek into digital innovations and wearable sensors for cardiac monitoring.

    Science.gov (United States)

    Michard, Frederic

    2017-04-01

    Many mobile phone or tablet applications have been designed to control cardiovascular risk factors (obesity, smoking, sedentary lifestyle, diabetes and hypertension) or to optimize treatment adherence. Some have been shown to be useful but the long-term benefits remain to be demonstrated. Digital stethoscopes make easier the interpretation of abnormal heart sounds, and the development of pocket-sized echo machines may quickly and significantly expand the use of ultrasounds. Daily home monitoring of pulmonary artery pressures with wireless implantable sensors has been shown to be associated with a significant decrease in hospital readmissions for heart failure. There are more and more non-invasive, wireless, and wearable sensors designed to monitor heart rate, heart rate variability, respiratory rate, arterial oxygen saturation, and thoracic fluid content. They have the potential to change the way we monitor and treat patients with cardiovascular diseases in the hospital and beyond. Some may have the ability to improve quality of care, decrease the number of medical visits and hospitalization, and ultimately health care costs. Validation and outcome studies are needed to clarify, among the growing number of digital innovations and wearable sensors, which tools have real clinical value.

  14. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    Science.gov (United States)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  15. DIGITAL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  16. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  17. Upgrading the Siemens Argonaut Reactor Graz with a digital monitoring system

    International Nuclear Information System (INIS)

    Froehlich, O.; Ninaus, W.

    1999-01-01

    This paper presents a modern design of a reactor monitoring system (MS) which was developed for a research reactor. This MS is using digital concepts, and it is more flexible than an analog MS, it co-operates better with the user, and it is a very helpful tool for a training-reactor in an university environment. The heart of the system is a process computer, and it was possible to access all important signals and functions of the original nuclear instrumentation by additional hardware. The monitoring software was written in C for the platform '32Bit-DOS-protected-mode' and shows on several high-resolution screen pages all the collected signals and the working conditions of the reactor. Moreover, all signals which are recorded on the random access memory can be saved to the hard disk of the computer and may thereby be used offline as well.(author)

  18. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    Science.gov (United States)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  19. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard, B.

    1998-01-01

    The XIA DXP-4C, a 4 channel, CAMAC based X-ray spectrometer, is based on digitally processing directly digitized preamplifier signals. Designed for instrumenting multi-detector arrays for synchrotron radiation applications, the DXP-4C was optimized for very high count rates at a low cost per detector channel. These design constraints coincidentally lead to an instrument which is very compact and relatively low power (3.4 W/channel), considering its count rate and MCA capabilities, and which therefore offers interesting possibilities for effective extension to portable applications. Further, because all functions (gain, filter parameters, pileup inspection criteria and internal calibrations) are digitally controlled, the design can be readily adapted to a large variety of user interfaces, including remote access interfaces. Here we present the basics of the design and examine approaches to lowering the power to less than 300 mW/channel while retaining count rate capabilities in excess of 50,000 cps. We then consider the engineering issues associated with portable and remote spectrometry applications, examining in detail the three cases of a lead paint detector, a remote contamination monitor, and a space mission spectrometer. (author)

  20. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  1. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  2. Digital beam position and phase monitor for P-LINAC for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed

    2013-07-01

    For the planned P-LINAC for the FAIR facility, Beam Position Monitors (BPM) will be installed at 14 locations along the LINAC. The digital signal processing to derive the transverse beam position and the beam phase will be implemented by ''Libera Single Pass H''. The specification for position measurement is 0.1 mm spatial resolution and phase accuracy is 1 degree with respect to 325 MHz acceleration frequency. The results from the Libera digital signal processing were compared with the time-domain approach and the FFT analytic calculations. The first test was performed at the GSI UNILAC with a Ne4+ beam at 1.4 MeV / u. A single BPM was used to act as a ''Bunch arrival monitor'' to characterize the dependence of beam arrival time on bunch shape. The signals were sampled at 117.440 MHz with a 16-bit ADC to produce I and Q data streams. The first experimental results are reported.

  3. Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test

    Directory of Open Access Journals (Sweden)

    Bruno Roux

    2008-11-01

    Full Text Available The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1 the use of unprocessed image data did not improve the results of image analyses; 2 vignetting had a significant effect, especially for the modified camera, and 3 normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces.

  4. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    Science.gov (United States)

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  5. Assessment of the usability of a digital learning technology prototype for monitoring intracranial pressure.

    Science.gov (United States)

    Carvalho, Lilian Regina de; Évora, Yolanda Dora Martinez; Zem-Mascarenhas, Silvia Helena

    2016-08-29

    to assess the usability of a digital learning technology prototype as a new method for minimally invasive monitoring of intracranial pressure. descriptive study using a quantitative approach on assessing the usability of a prototype based on Nielsen's ten heuristics. Four experts in the area of Human-Computer interaction participated in the study. the evaluation delivered eight violated heuristics and 31 usability problems in the 32 screens of the prototype. the suggestions of the evaluators were critical for developing an intuitive, user-friendly interface and will be included in the final version of the digital learning technology. avaliar a usabilidade de um protótipo educacional digital sobre um novo método para monitoração da pressão intracraniana de forma minimamente invasivo para enfermeiros e médicos. estudo descritivo com abordagem quantitativa sobre a avaliação de usabilidade de um protótipo com base nas dez Heurísticas de Nielsen. Participaram quatro especialistas da área de Interação Humano Computador. a avaliação resultou em oito heurísticas violadas e 31 problemas de usabilidade nas 32 telas do protótipo. as sugestões dos avaliadores foram cruciais para o desenvolvimento de uma interface amigável e intuitiva e serão consideradas na versão final da tecnologia educacional digital. evaluar la usabilidad de un prototipo educacional digital sobre un nuevo método para monitorización de la presión intracraneal, de manera mínimamente invasiva. estudio descriptivo con abordaje cuantitativo sobre la evaluación de usabilidad de un prototipo con base en las diez reglas Heurísticas de Nielsen. Participaron cuatro especialistas del área de Interacción Humana Computador. la evaluación resultó en ocho reglas heurísticas violadas y 31 problemas de usabilidad en las 32 pantallas del prototipo. las sugestiones de los evaluadores fueron cruciales para el desarrollo de una interfaz amigable e intuitiva y éstas serán consideradas en la

  6. Monitoring the consistency of the dynalyser output via digital display unit and calculated practical peak voltage

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Muhammad Jamal Mohd Isa; Abdul Aziz Mohd Ramli; Shahrul Azlan Azizan

    2010-01-01

    This study was carried out to ensure the adequacy and accuracy of the Dynalyser Digital Display unit for measuring the true kVp from the invasive kVp meter unit during calibration of non-invasive kVp meters. An invasive high voltage divider (dynalyser) coupled to the x-ray system measures the true kilo voltage supplied to the x-ray tube. The kVp output measured was displayed via its digital display unit while its waveform was acquired using a calibrated oscilloscope. The waveform was used to calculate the Practical Peak Voltage (PPV) using the International Standard method adapted from IEC 61676 and treated as the true kVp value. The kVp output was measured at 9 points ranging between 40 kV-120 kV with interval steps of 10 kV and monitored every day. The test result was evaluated for variation of output, intrinsic error and limit of variation in compliance with the IEC standard. Results showed that kVp output measured by the display unit everyday is consistent with variations of not more than ±0.45 kV, intrinsic error of not more than ±0.009 kV and limits of variation of less than 1% which comply with the IEC standard requirement. The kVp output via digital display unit has a total uncertainty of not more than 2.8 kV (k=2) while the PPV output via oscilloscope has total uncertainty of not more than 0.75 kV (k=2). As a conclusion, the dynalyser digital display unit complies with standard requirement and can be used to measure the true kVp output during the calibration of non-invasive kVp meters. (author)

  7. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  8. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  9. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  10. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    Science.gov (United States)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  11. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  12. Monitoring system for thermal plasma; Sistema de monitoreo para plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M.; Vilchis P, A.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  13. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  14. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  15. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  16. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Science.gov (United States)

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  17. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  18. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bowden, N; Misner, A; Palmer, T

    2007-06-27

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to 3.5% within 7 days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  19. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data

    Science.gov (United States)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars

    2017-12-01

    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  20. Private or Public Law Enforcement? The Case of Digital Piracy Policies with Non-monitored Illegal Behaviors

    OpenAIRE

    Éric Darmon; Thomas Le Texier

    2014-01-01

    In the case of digital piracy should rights be publicly or privately enforced? The emergence of large-scale anti-piracy laws and the existence of non-monitored illegal channels raise important issues for the design of digital anti-piracy policies. In this paper, we study the impact of these two enforcement settings (public vs. private) in the presence of an illegal non-monitored outside option for users. Taking account of market outcomes, we show that in both cases, the optimal strategies of ...

  1. Monitoring device for the thermal margin of nuclear reactors

    International Nuclear Information System (INIS)

    Yoshikawa, Tatsuo

    1984-01-01

    Purpose: To extend the operation region and insure the stability thereby significantly improve the operation performance of a nuclear reactor by properly calculating a limited value for the minimum critical power ratio (OLMCPR) reflecting the actual reactor core state. Constitution: The device comprises a nuclear constant calculator, an abnormal transient analyzer and a transient critical power calculator. The abnormal transient analyzer performs analysis for the abnormal transient phenomena with a large variation amount of the minimum critical power ratio using the nuclear constants calculated by the nuclear constant calculator, to thereby determine transient changes such as the flow rate, power, pressure and entrance enthalpy of the reactor core. The transient critical power calculator determines the limited value for the minimum critical power ratio reflecting the state of the reactor core at the time to be monitored based on the thus determined transient change and display the same. Even if the value of MCPR determined by the process computer is smaller than the value for the designed OLMCPR, if it is greater than the displayed OLMCPR, procession such as power distribution control is unnecessary. (Nakamoto, H.)

  2. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  3. Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection

    Science.gov (United States)

    Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.

    2015-01-01

    The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.

  4. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  5. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring.

    Science.gov (United States)

    Wu, Yichen; Ozcan, Aydogan

    2018-03-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. In-line digital holographic sensor for monitoring and characterizing marine particulates

    International Nuclear Information System (INIS)

    Owen, Robert B.; Zozulya, Alex A.

    2000-01-01

    We report an in-line digital holographic sensor (DHS) for monitoring and characterizing marine particulates. This system images individual particles over a deep depth of field (>25 cm) with a resolution of 5 μm. The DHS projects a collimated beam through the water column and onto a lensless CCD array. Some light is diffracted by particulates and forms an object beam; the undeflected remainder constitutes the reference beam. The two beams combine at the CCD array and create an in-line hologram, which is then numerically reconstructed. The DHS eliminates many problems traditionally associated with holography. The CCD recording material considerably lowers the exposure time and eliminates most vibration problems. The laser power needs are low; the DHS uses a small 10-mW diode laser. Rapid numerical reconstruction eliminates photographic processing and optical reconstruction. We successfully operated the DHS underwater on a remotely operated vehicle; our test results include tracing a single particle from one hologram to the next, thus deriving a velocity vector for marine mass transport. We outline our digital holographic reconstruction procedure, and present our graphical user interface and user software tools. The DHS is particularly useful for providing in situ ground-truth measurements for environmental remote sensing. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  7. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen; Ozcan, Aydogan

    2017-01-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  8. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  9. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen

    2017-08-31

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  10. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  11. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  12. Serial superficial digital flexor tendon biopsies for diagnosing and monitoring collagenase-induced tendonitis in horses

    Directory of Open Access Journals (Sweden)

    José C. de Lacerda Neto

    2013-06-01

    Full Text Available The purpose of this investigation was to demonstrate the feasibility of a biopsy technique by performing serial evaluations of tissue samples of the forelimb superficial digital flexor tendon (SDFT in healthy horses and in horses subjected to superficial digital flexor tendonitis induction. Eight adult horses were evaluated in two different phases (P, control (P1 and tendonitis-induced (P2. At P1, the horses were subjected to five SDFT biopsies of the left forelimb, with 24 hours (h of interval. Clinical and ultrasonographic (US examinations were performed immediately before the tendonitis induction, 24 and 48 h after the procedure. The biopsied tendon tissues were analyzed through histology. P2 evaluations were carried out three months later, when the same horses were subjected to tendonitis induction by injection of bacterial collagenase into the right forelimb SDFT. P2 clinical and US evaluations, and SDFT biopsies were performed before, and after injury induction at the following time intervals: after 24, 48, 72 and 96 h, and after 15, 30, 60, 90, 120 and 150 days. The biopsy technique has proven to be easy and quick to perform and yielded good tendon samples for histological evaluation. At P1 the horses did not show signs of localised inflammation, pain or lameness, neither SDFT US alterations after biopsies, showing that the biopsy procedure per se did not risk tendon integrity. Therefore, this procedure is feasible for routine tendon histological evaluations. The P2 findings demonstrate a relation between the US and histology evaluations concerning induced tendonitis evolution. However, the clinical signs of tendonitis poorly reflected the microscopic tissue condition, indicating that clinical presentation is not a reliable parameter for monitoring injury development. The presented method of biopsying SDFT tissue in horses enables the serial collection of material for histological analysis causing no clinical signs and tendon damage seen

  13. Personal digital assistants are comparable to traditional diaries for dietary self-monitoring during a weight loss program.

    Science.gov (United States)

    Yon, Bethany A; Johnson, Rachel K; Harvey-Berino, Jean; Gold, Beth Casey; Howard, Alan B

    2007-04-01

    Dietary self-monitoring is considered the core of behavioral weight control programs. As software for personal digital assistants (PDA) has become more available, this study investigated whether the use of a PDA would improve dietary self-monitoring frequency and subsequent weight loss over the use of traditional paper diaries. One-hundred-seventy-six adults (BMI 25-39.9) participated in a 6-month behavioral weight control program. Treatment subjects (n = 61) were provided with a PalmZire 21 with Calorie King's Diet Diary software installed. Their self-monitoring habits and weight loss were compared with the results from a previous program (n = 115) which followed the same protocol using paper diaries for self-monitoring. No significant differences in weight loss or dietary self-monitoring were found. More frequent self-monitoring correlated with weight loss in both groups (pself-monitoring that is fitting to their lifestyle and skills.

  14. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  15. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  16. A new paradigm of oral cancer detection using digital infrared thermal imaging

    Science.gov (United States)

    Chakraborty, M.; Mukhopadhyay, S.; Dasgupta, A.; Banerjee, S.; Mukhopadhyay, S.; Patsa, S.; Ray, J. G.; Chaudhuri, K.

    2016-03-01

    Histopathology is considered the gold standard for oral cancer detection. But a major fraction of patient pop- ulation is incapable of accessing such healthcare facilities due to poverty. Moreover, such analysis may report false negatives when test tissue is not collected from exact cancerous location. The proposed work introduces a pioneering computer aided paradigm of fast, non-invasive and non-ionizing modality for oral cancer detection us- ing Digital Infrared Thermal Imaging (DITI). Due to aberrant metabolic activities in carcinogenic facial regions, heat signatures of patients are different from that of normal subjects. The proposed work utilizes asymmetry of temperature distribution of facial regions as principle cue for cancer detection. Three views of a subject, viz. front, left and right are acquired using long infrared (7:5 - 13μm) camera for analysing distribution of temperature. We study asymmetry of facial temperature distribution between: a) left and right profile faces and b) left and right half of frontal face. Comparison of temperature distribution suggests that patients manifest greater asymmetry compared to normal subjects. For classification, we initially use k-means and fuzzy k-means for unsupervised clustering followed by cluster class prototype assignment based on majority voting. Average classification accuracy of 91:5% and 92:8% are achieved by k-mean and fuzzy k-mean framework for frontal face. The corresponding metrics for profile face are 93:4% and 95%. Combining features of frontal and profile faces, average accuracies are increased to 96:2% and 97:6% respectively for k-means and fuzzy k-means framework.

  17. Tuning the Thermochemical Properties of Oxonol Dyes for Digital Versatile Disc Recordable: Reduction of Thermal Interference in High-Speed Recording

    Science.gov (United States)

    Morishima, Shin-Ichi; Wariishi, Koji; Mikoshiba, Hisashi; Inagaki, Yoshio; Shibata, Michihiro; Hashimoto, Hirokazu; Kubo, Hiroshi

    To reduce thermal interference between adjacent recording marks on a recordable digital versatile disc, we examined the thermochemical behavior of oxonol dyes for digital versatile disc recordable (DVD-R). We found that oxonol dyes with Meldrum's acid skeleton exhibited an abrupt reduction in weight with increasing temperature without generating excessive heat that is the fundamental cause of thermal interference. DVD-R with the oxonol dyes suppressed fluctuation in the shapes of recorded marks, thereby attaining compatibility with high-speed recording.

  18. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    Science.gov (United States)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  19. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  20. Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, Christina; Zuber, Niklaus; Weishaupt, Dominik [Stadtspital Triemli Zurich, Department of Radiology and Nuclear Medicine, Zurich (Switzerland)

    2017-03-15

    The purpose was to report on the initial experience after implementation of a patient dose-monitoring system in conventional X-ray imaging. A dose-monitoring system collected dose data relating to different radiographs (one projection) and studies (two or more projections). Images were acquired on digital X-ray systems equipped with flat-panel detectors. During period 1, examinations were performed in a routine fashion in 12,614 patients. After period 1, technical modifications were performed and radiographers underwent training in radiation protection. During period 2, examinations were performed in 14,514 patients, and the radiographers were advised to read dose data after each radiograph/study. Dose data were compared by means of kerma area product (KAP, gray x centimetre squared) and entrance surface air kerma (ESAK, milligray). During period 1, 13,955 radiographs and 8,466 studies were performed, and in period 2 16,090 radiographs and 10,389 studies. In period 2, KAP values for radiographs were an average of 25 % lower and for studies 7 % lower, and ESAK values for radiographs were 24 % lower and for studies 5 % lower. The reduction in KAP was significant in 8/13 radiographs and in 6/14 studies, and the reduction in ESAK was significant in 6/13 radiographs and 5/14 studies. Implementation of a patient dose-monitoring system in conventional X-ray imaging allows easy data collection, supports dose reduction efforts, and may increase radiographers' dose awareness. (orig.)

  1. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    International Nuclear Information System (INIS)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author)

  2. Reducing unidentified MOV failures: An innovative approach to thermal overload monitoring

    International Nuclear Information System (INIS)

    Hill, K.; Watson, M.E.; Ali, H.S.; Schlesinger, R.

    1991-01-01

    Historically the failure of motor-operated valves to actuate on demand has caused plant transients, reduced safety system reliability, and lost plant availability. The typical control and indication circuit design uses thermal overload contacts in the control circuit only. This has been recognized as a significant unidentified valve failure mode that may prevent the valve from performing its safety function when required. Different approaches have been evaluated to alert operations personnel to this thermal overload condition, but no cost-effective solution has provided indication of the thermal overload while maintaining valve position indication. Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) is utilizing a nuclear-qualified thermal overload monitor in valve control and indication circuits. This innovative approach has proven economical as no new cabling or indicating devices are required. Indication is provided using existing valve position indicating lights. The monitor is engineered to provide indication of a thermal overload trip as well as continuous indication of valve position, consistent with Regulatory Guide 1.97 and guidance provided by Generic Letter 89-10

  3. Quality control of the interpretation monitors of digital radiological images; Controle de qualidade dos monitores de interpretacao de imagens radiologicas digitais: uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Favero, Mariana S.; Goulart, Adriano Oliveira S., E-mail: mariana@phymed.com.br [PhyMED - Consultores em Fisica Medica e Radioprotecao Ltda, Porto Alegre, RS (Brazil)

    2016-07-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  4. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  5. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  6. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  7. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  8. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong; Chen, Tao; Lubineau, Gilles

    2017-01-01

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film's structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  9. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  10. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  11. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    Science.gov (United States)

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-01-01

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions. PMID:29292781

  12. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces.

    Science.gov (United States)

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-12-08

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  13. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    Directory of Open Access Journals (Sweden)

    Víctor Echarri

    2017-12-01

    Full Text Available Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100, air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  14. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  15. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2014-12-15

    As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  16. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyeong Min; Heo, Gyun Young; Na, Man Gyun

    2014-01-01

    As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  17. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  18. The development of monitoring techniques for thermal stratification in nuclear plant piping

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho.

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs

  19. The development of monitoring techniques for thermal stratification in nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs.

  20. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  1. Digital holographic microscopy as a technique to monitor macrophages infected by leishmania

    Science.gov (United States)

    Mendoza-Rodríguez, E.; Organista-Castelblanco, C.; Camacho, M.; Monroy-Ramírez, F.

    2017-06-01

    The Digital Holographic Microscopy in Transmission technique (DHM) is considered a useful tool in the noninvasive quantifying of transparent biological objects like living cells. In this work, we propose this technique to study and to monitor control macrophages infected by Leishmania (mouse lineJ774.A1). When the promastigotes enter in contact with healthy macrophages, they got phagocytosed and latterly confined in the formed parasitophorous vacuole. These processes change the morphology and density of the host macrophage. Both parameters can be measured in a label-free analysis of cells with the aid of the DHM technique. Our technique begins with the optical record of the holograms using a modified Mach-Zehnder interferometer and the reconstruction of the complex optical field transmitted by macrophages. In the latter point, we employ the angular spectrum algorithm. With the complex optical field reconstruction, we compute the field amplitude and the phase difference maps, which leads to describe one morphological characterization for the samples. Using phase difference maps is possible to measure internal variations for the integral refractive index, estimating the infection level of macrophages. Through the changes in the integral refractive index, it is also possible to describe and quantify in two different states the evolution of the infection. With these results some parameters of cells have been quantified, making the DHM technique a viable tool for diagnosis of biological samples under the presence of some pathogen.

  2. Digital Divide in Sub-Saharan African Universities: Recommendations and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Boubakar; /Assoc. Afr. Univ.; Chukwuma, Victor; /Olabisi Onabanjo U.; Petitdidier, Monique; /CEPT, Velizy; Cottrell, Les; /SLAC; Bartons, Charles; /Australian Natl. U., RSES

    2009-12-17

    The Digital Divide prevents Africa from taking advantages of new information technologies. One of the most urgent priorities is to bring the Internet in African Universities, Research, and Learning Centers to the level of other regions of the world. eGY-Africa, and the Sharing Knowledge Foundation are two bottom-up initiatives by scientists to secure better cyber-infrastructure and Internet facilities in Africa. Recommendations by the present scientific communities are being formulated at national, regional and international levels. The Internet capabilities are well documented at country level overall, but this is not the case at the University level. The snapshot of the Internet status in universities in 17 African countries, obtained by a questionnaire survey, is consistent with measures of Internet penetration in the corresponding country. The monitoring of Internet performance has been proposed to those African universities to provide an information base for arguing the need to improve the coverage for Africa. A pilot program is recommended that will start scientific collaboration with Europe in western Africa using ICT. The program will lay the foundations for the arrival of new technologies like Grids.

  3. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  4. DOPA, a Digital Observatory for Protected Areas including Monitoring and Forecasting Services

    Science.gov (United States)

    Dubois, Gregoire; Hartley, Andrew; Peedell, Stephen; de Jesus, Jorge; Ó Tuama, Éamonn; Cottam, Andrew; May, Ian; Fisher, Ian; Nativi, Stefano; Bertrand, Francis

    2010-05-01

    The Digital Observatory for Protected Areas (DOPA) is a biodiversity information system currently developed as an interoperable web service at the Joint Research Centre of the European Commission in collaboration with other international organizations, including GBIF, UNEP-WCMC, Birdlife International and RSPB. DOPA is designed to assess the state and pressure of Protected Areas (PAs) and to prioritize them accordingly, in order to support decision making and fund allocation processes. To become an operational web service allowing the automatic monitoring of protected areas, DOPA needs to be able to capture the dynamics of spatio-temporal changes in habitats and anthropogenic pressure on PAs as well as the changes in the species distributions. Because some of the most valuable natural ecosystems and species on the planet cover large areas making field monitoring methods very difficult for a large scale assessment, the automatic collection and processing of remote sensing data are processes at the heart of the problem. To further be able to forecast changes due to climate change, DOPA has to rely on an architecture that enables it to communicate with the appropriate modeling web services. The purpose of this presentation is to present the architecture of the DOPA with special attention to e-Habitat, its web processing service designed for assessing the irreplaceability of habitats as well as for the modeling of habitats under different climate change scenarios. The use of open standards for spatial data and of open source programming languages for the development of the core functionalities of the system are expected to encourage the participation of the scientific community beyond the current partnerships and to favour the sharing of such an observatory which could be installed at any other location. Acknowledgement: Part of this work is funded under the 7th Framework Programme by the EuroGEOSS (www.eurogeoss.eu) project of the European Commission. The views

  5. Monitoring and optimization of thermal recovery wells at Nexen's Long Lake project

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, S.; Howe, A.; Wozney, G.; Zaffar, S. [Nexen Inc. (Canada); Nelson, A. [Matrikon Inc. (Canada)

    2011-07-01

    The Long Lake project, operated by Nexen and situated in the Athabasca Oil Sands area in Alberta, Canada is a steam assisted gravity drainage scheme. In such thermal recovery processes, access to real time information is crucial. Nexen used specific tools to optimize monitoring in its Long Lake project and the aim of this paper is to present those customized well and facilities dashboards and reservoir trends. Real time and historical data on pressure, temperature injection and production rates are used in a Honeywell PHD Historian connected to a Delta-V DCS system to optimize recovery from the deposit. Results showed that these enhanced monitoring capabilities provided Nexen the ability to react rapidly to abnormal conditions, which resulted in significant financial benefits. The implementation of dashboard and reservoir trends in its Long Lake project helped Nexen to better monitor the reservoir and thus to optimize bitumen recovery.

  6. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  7. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  8. A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures

    Science.gov (United States)

    Handcock, Rebecca N.; Gobbett, D. L.; González, Luciano A.; Bishop-Hurley, Greg J.; McGavin, Sharon L.

    2016-08-01

    Timely and accurate monitoring of pasture biomass and ground cover is necessary in livestock production systems to ensure productive and sustainable management. Interest in the use of proximal sensors for monitoring pasture status in grazing systems has increased, since data can be returned in near real time. Proximal sensors have the potential for deployment on large properties where remote sensing may not be suitable due to issues such as spatial scale or cloud cover. There are unresolved challenges in gathering reliable sensor data and in calibrating raw sensor data to values such as pasture biomass or vegetation ground cover, which allow meaningful interpretation of sensor data by livestock producers. Our goal was to assess whether a combination of proximal sensors could be reliably deployed to monitor tropical pasture status in an operational beef production system, as a precursor to designing a full sensor deployment. We use this pilot project to (1) illustrate practical issues around sensor deployment, (2) develop the methods necessary for the quality control of the sensor data, and (3) assess the strength of the relationships between vegetation indices derived from the proximal sensors and field observations across the wet and dry seasons. Proximal sensors were deployed at two sites in a tropical pasture on a beef production property near Townsville, Australia. Each site was monitored by a Skye SKR-four-band multispectral sensor (every 1 min), a digital camera (every 30 min), and a soil moisture sensor (every 1 min), each of which were operated over 18 months. Raw data from each sensor was processed to calculate multispectral vegetation indices. The data capture from the digital cameras was more reliable than the multispectral sensors, which had up to 67 % of data discarded after data cleaning and quality control for technical issues related to the sensor design, as well as environmental issues such as water incursion and insect infestations. We recommend

  9. COBRA-3M: a digital computer code for analyzing thermal-hydraulic behavior in pin bundles

    International Nuclear Information System (INIS)

    Marr, W.W.

    1975-03-01

    The COBRA-3M computer program is a modification of the thermal-hydraulic subchannel-analysis program COBRA-III. It includes detailed thermal models of fuel pin and duct wall. It is especially suitable for analyzing small pin bundles used in in-reactor or out-of-reactor experiments. (U.S.)

  10. Analog and digital appliance technology for the control and monitoring of space HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Gyoeri, M

    1987-01-01

    Both analog and digital devices are expected to meet the required control functions. The analog control device meets this function by way of a complicated circuitry and wiring technology of varying sophistication. In the digital control by a preprogrammed microprocessor. Digital technology allows to use the copied programme in different devices. Any change in the control of a system can be implemented and met by a programme change in digital technology. In analog technology, this change involves a change in wiring. (orig./HW).

  11. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  12. Research on transfer rule of the monitoring of operator in digital main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Li; Li Linfeng; Li Pengcheng; Lu Changshen; Huang Weigang; Dai Zhonghua; Huang Yuanzheng; Chen Qingqing

    2013-01-01

    In the digital main control room of nuclear power plants, monitoring the operating status of the system of reactor is not only one of the most important tasks of the operators, but also the basis and premise of controlling the system of reactor running correctly. After analyzing, inducing, summarizing the data obtained, we found the operators' monitor behavior could be classified as procedure transfer, abnormal transfer, and exchange transfer. The times of exchange transfer is 29% of the total transfer times, abnormal transfer is 14%, regulation transfer is 36%, and others are 21%. (authors)

  13. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  14. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  15. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  16. Effects of hyperthermia on intracellular CA/sup 2+/ monitored by digitized video image fluorescence microscopy

    International Nuclear Information System (INIS)

    Asher, C.R.; Mikkelsen, R.B.

    1987-01-01

    With digitized video image fluorescence microscopy and the fluorescent Ca/sup 2+/ dye, fuca-2, the authors examined heat effects on intracellular free Ca/sup 2+/, [Ca/sup 2/]/sub f/. HT-29 human colon cancer cells grown on coverslip were equilibrated with 2.0 μM fura-2 in RPMI 1540 (20 0 , 15 min), washed three times and incubated at 20 0 for 1 h. Coverslips were mounted in a Dvorok perfusion chamber sitting within a temperature controlled microscope stage. Fluorescence was monitored at 500 nm by epi-illumination at 385 nm, excitation maximum for free dye, and 340 nm, maximum for Ca/sup 2+/ complexed dye, with a computer controlled filter wheel. The emission intensity ratio, I/sub 340//I/sub 385/, which corrects for dye leakage, photo-bleaching and cell thickness was used to calculate [Ca/sup 2+/]/sub f/. Measurements of 200 cells at 37 0 using a bit pad and mouse to select 0.6 x 0.6 μ cytoplasmi areas indicated 3 populations of cells in terms of [Ca/sup 2+/]/sub f/ (70%, 40-60nM; 15% 70-110nM; 15%, 120-200 nM). Heating to 43 0 for 1 h resulted in an overall decrease in [Ca/sup 2+/]/sub f/ with greater than 90% cells within 30-50 nM. Not all cells responded to heat. Post-incubation for 3 h at 37 0 showed the identical cell distribution; at 24 h, cell distribution was that of non-heated cells. The relationship of these results to cell killing and thermotolerance are not understood, but these results indicated the importance of cell heterogeneity in response to heat

  17. Exploring Digital Surface Models from Nine Different Sensors for Forest Monitoring and Change Detection

    Directory of Open Access Journals (Sweden)

    Jiaojiao Tian

    2017-03-01

    Full Text Available Digital surface models (DSMs derived from spaceborne and airborne sensors enable the monitoring of the vertical structures for forests in large areas. Nevertheless, due to the lack of an objective performance assessment for this task, it is difficult to select the most appropriate data source for DSM generation. In order to fill this gap, this paper performs change detection analysis including forest decrease and tree growth. The accuracy of the DSMs is evaluated by comparison with measured tree heights from inventory plots (field data. In addition, the DSMs are compared with LiDAR data to perform a pixel-wise quality assessment. DSMs from four different satellite stereo sensors (ALOS/PRISM, Cartosat-1, RapidEye and WorldView-2, one satellite InSAR sensor (TanDEM-X, two aerial stereo camera systems (HRSC and UltraCam and two airborne laser scanning datasets with different point densities are adopted for the comparison. The case study is a complex central European temperate forest close to Traunstein in Bavaria, Germany. As a major experimental result, the quality of the DSM is found to be robust to variations in image resolution, especially when the forest density is high. The forest decrease results confirm that besides aerial photogrammetry data, very high resolution satellite data, such as WorldView-2, can deliver results with comparable quality as the ones derived from LiDAR, followed by TanDEM-X and Cartosat DSMs. The quality of the DSMs derived from ALOS and Rapid-Eye data is lower, but the main changes are still correctly highlighted. Moreover, the vertical tree growth and their relationship with tree height are analyzed. The major tree height in the study site is between 15 and 30 m and the periodic annual increments (PAIs are in the range of 0.30–0.50 m.

  18. An automatic energy-saving and thermal monitoring/controlling system for a pond

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Chien

    2017-01-01

    Full Text Available Because of low temperatures and oxygen in cold water, fish will die when cold currents arrive. This will cause tremendous loss of money. In order reduce the cooling of the pond, an automatic thermal detecting and cold-roofing system using a wind-proofing device, heaters, and thermal detectors is proposed. To reduce heat loss due to thermal convection above the pond surface, a motor-driven wind-proofing device automatically controlled by a PLC controller is adopted. Here, the wind-proofing device, thermal detectors, and heating system are connected to the PLC controller. The PLC will also be connected to the PC interface. The temperature thresholds used to trigger the heater and the wind proofing device can be set at the PC interface. Two options for manipulating the heating and the automatic heating can be selected. The related wind-proofing area and the number of heaters will be determined according to the current temperature. Moreover, the PLC can be wirelessly connected to the server PC in the control room. The pond keeper can monitor everything online and control the pond water's temperature. With this, the problem of fish dying in a cold wave can be solved. Consequently, to reduce the electrical exhaust when heating up the pond water, green energy, solar energy and wind energy, is used.

  19. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  20. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  1. Analysis of the thermal monitoring data collected at the Peach Bottom Atomic Power Station

    International Nuclear Information System (INIS)

    Witten, A.J.; Gray, D.D.

    1977-01-01

    A comprehensive study of the data collected as part of the environmental technical specifications program for Units 2 and 3 of the Peach Bottom Atomic Power Station was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The study included an analysis of both the hydrothermal and ecological data collected from 1967 through 1976. This paper presents the details of the hydrothermal analysis performed under this program. The two primary methods used for temperature monitoring, during both the preoperational and operational periods of the program, are a fixed thermograph network and boat survey measurements. Analysis of the boat survey data provides a fine resolution demonstrating variations in ambient temperature in Conowingo Pond, as well as providing a qualitative picture of the thermal plume produced by the Peach Bottom thermal discharge. The data from 18 thermograph stations was used for a quantitative probability analysis

  2. Development of a "Digital Bridge" Thermal Anemometer for Turbulence Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal anemometry (a.k.a. hot-wire anemometry) has been a key experimental technique in fluid mechanics for many decades. Due to the small physical size and high...

  3. Development of a "Digital Bridge" Thermal Anemometer for Turbulence Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal anemometry (a.k.a. hot-wire anemometry) has been a key experimental technique in fluid mechanics for many decades. Due to the small physical size and high...

  4. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    Science.gov (United States)

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  5. Monitoring of thermal regime of permafrost in the coastal zone of Western Yamal

    Science.gov (United States)

    Vasiliev, A.

    2009-04-01

    Data on thermal regime of permafrost are required for estimation of the climate change influence on permafrost dynamics. Monitoring of thermal regime of permafrost was arranged in the area of weather station "Marre-Sale", western Yamal. In terms of geomorphology, the area of our observations belongs to the second and third marine terraces; the surface of these terraces has been partly modified by recent cryogenic processes. The elevation varies from 10 to 30 m a.s.l. Marine clays lie at the base of the geological section of the coastal deposits. Their upper part was eroded and uneven surface of marine sediments is overlain by continental sandy sediments. Marine clays are saline. In the southern part of study area, low accumulative islands are forming. Their heights above sea level do not exceed 0.5 meters, and during high tides their surface is covered by sea water. The sediments accumulating at these islands are saline silty clays. Western Yamal region is located within continuous permafrost zone with thickness of 150 to 200 meters. Study of thermal regime in the on-shore zone has been performed since 1979 using the 10-12-m-deep boreholes. In 2007, five boreholes were included in the work program of the Thermal State of Permafrost (TSP) project developed as a part of IPY scientific activities. According to TSP program, temperature sensors were installed at depths 2, 3, 5, and 10 meters; measurements have been performed every six hours. In this presentation, results of our observations related to climate change are discussed. For different terrain units, increase of mean annual permafrost temperature during the last 30 years has reached 0.6 to 1.5 deg. C. In the transit zone, monitoring of thermal regime have been performed since 2006. Sensors were installed at depths 0, 0.25, 0.6, 0.75, 1.25, 1.75, and 2.25 meters. The active layer depth here reaches 1.9 meters, thus the 2.25-m-sensor is located within permafrost. Monitoring data show the sharp increase in mean

  6. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

    DEFF Research Database (Denmark)

    Alldieck, Thiemo; Bahnsen, Chris Holmberg; Moeslund, Thomas B.

    2016-01-01

    In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper...... introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two...

  7. Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): digital still images from transects on Kauai, Oahu, Molokai, Maui, and Hawaii 2011-2012 (NCEI Accession 0119360)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of digital still images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) taken 2011-2012 from 29 sites within 5 main...

  8. Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): digital still images from transects on Kauai, Oahu, Molokai, Maui, and Hawaii 2008-2010 (NCEI Accession 0104357)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of digital still images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) taken 2008-2010 from 24 sites within 5 main...

  9. Thermal monitoring of a granitic exfoliation sheet and cliff in Yosemite Valley, California (USA)

    Science.gov (United States)

    Guerin, Antoine; Matasci, Battista; Collins, Brian D.; Stock, Greg M.; Derron, Marc-Henri; Jaboyedoff, Michel

    2015-04-01

    In recent years, new remote sensing techniques such as Terrestrial Laser Scanner (TLS) and Infrared Thermography (IRT) have been used in parallel for rock weathering and weakness detection in slope stability analysis. Nevertheless, the effects of thermal stresses on rock face deformation are still poorly quantified, especially for steep and inaccessible cliffs. To better understand how daily temperature fluctuations influence the behavior of exfoliation joints (i.e., fractures separating exfoliation sheets), we monitored a granitic exfoliation sheet in detail using TLS and IRT over a several day period and also compiled a single TLS-IRT thermal panorama of a larger nearby granitic cliff composed of hundreds to thousands of similar exfoliation sheets. The exfoliation sheet had been previously instrumented for 3.5 years beginning in May 2010 using crackmeters and temperature sensors (Collins and Stock, 2010 and 2012), thereby providing an important baseline to compare our IRT measurements. For several consecutive days, a series of infrared thermal images (collected every 20 min.) of the exfoliation flake (19 m by 4 m by 0.1 m) was taken with a long range IRISYS IRI 4040 thermal imager, as well as several ground-based LiDAR scans, collected at 4 mm point spacing. These pictures were draped on the TLS triangular meshes to quantify the lateral propagation of temperature during the warming and cooling periods. The evolution of vertical and horizontal temperature profiles was also investigated. Results show that the sheet edge undergoes the most significant temperature changes and that warming takes place from the inside part to the border of the flake; conversely cooling takes place from the outside-inwards. Furthermore, the comparison of point clouds indicates a maximum crack aperture of over 1 cm occurring in the afternoon (12:00 to 15:00), when temperatures are at their maximum. The thermal panoramic image of the cliff (600 m wide by 300 m tall) was created using over

  10. High-sensitivity broadband infrared monitor of spatial structure of relativistic bunches and thermal fields

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.; Maslova, M.V.

    2004-01-01

    The monitor is intended for registration of spatial distribution of density of energy of pulsing radiation of thermal fields and bunches of relativistic electrons and protons in a wide spectral range 0,4 - 4 μm. In a measuring system of a monitor effective means of active and passive increase of the relation of a useful signal to noise, in view of particular conditions and requirements are used. The measuring channel can confidently allocate a useful signal on a background of handicaps, the size of which can make about 20 kE in a pulse [1]. The accuracy of measurement of amplitude of a signal of radiation makes 0,2% of maximum significances of a registrar scale. (author)

  11. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification.

    Science.gov (United States)

    Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; Macfall, James; Dewhirst, Mark; Das, Shiva K

    2012-04-07

    This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types

  12. Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.

    Science.gov (United States)

    Yassien, Khaled M; Agour, Mostafa

    2017-02-01

    A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.

  13. Formulae for thermal feedback of group constants in digital reactor simulation

    International Nuclear Information System (INIS)

    Perneczky, L.; Toth, I.; Vigassy, J.

    1976-01-01

    The problem, how the feedback of the thermohydraulic field to the neutron density in a reactor can be calculated is analysed. After a brief survey of the digital models in reactor simulation the applied model based on the time-dependent two-group diffusion equations is described. Using the reactor physical code system THERESA numerical results for the VVER-440 reactor are presented. (Sz.Z.)

  14. How to succeed in the digital age? Monitor the organizational context, identify risks and opportunities, and manage change effectively

    Directory of Open Access Journals (Sweden)

    Fonseca Luis Miguel

    2017-09-01

    Full Text Available Due to the dynamic and inter-connected internal and external environments of the present digital age, organizations are faced with increased challenges to achieve enduring success. After reviewing the major management theories with an organizational focus, and the changes brought with the new ISO 9001:2015 Quality Management Systems International Standard Edition, the hypotheses that to succeed in the digital age organizations must monitor the organizational context, identify risks and opportunities, and manage change effectively, are presented. A worldwide survey was carried out among IRCA registered auditors concerning ISO 9001:2015 certified organizations, and by using a quantitative methodology (sample normality was confirmed through Kolmogorov-Smirnov test and the hypothesis were tested by using Pearson correlation coefficient. The results of this research highlight the need to properly monitor the organizational (internal and external context and identify the key issues that affect the organizations ability to deliver quality products and satisfy their customers and key stakeholders, and to plan, design, implement and control change in an effective and timely manner. These results support the notion that organizations should adopt appropriate organizational models for the present digital age, with emphasis on knowledge management and horizontal customer perspectives, willing to scan the environment, identify risk and opportunities and take timely and suitable actions.

  15. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    Science.gov (United States)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  16. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    Science.gov (United States)

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  17. Apple fruit diameter and length estimation by using the thermal and sunshine hours approach and its application to the digital orchard management information system.

    Science.gov (United States)

    Li, Ming; Chen, Meixiang; Zhang, Yong; Fu, Chunxia; Xing, Bin; Li, Wenyong; Qian, Jianping; Li, Sha; Wang, Hui; Fan, Xiaodan; Yan, Yujing; Wang, Yan'an; Yang, Xinting

    2015-01-01

    In apple cultivation, simulation models may be used to monitor fruit size during the growth and development process to predict production levels and to optimize fruit quality. Here, Fuji apples cultivated in spindle-type systems were used as the model crop. Apple size was measured during the growing period at an interval of about 20 days after full bloom, with three weather stations being used to collect orchard temperature and solar radiation data at different sites. Furthermore, a 2-year dataset (2011 and 2012) of apple fruit size measurements were integrated according to the weather station deployment sites, in addition to the top two most important environment factors, thermal and sunshine hours, into the model. The apple fruit diameter and length were simulated using physiological development time (PDT), an indicator that combines important environment factors, such as temperature and photoperiod, as the driving variable. Compared to the model of calendar-based development time (CDT), an indicator counting the days that elapse after full bloom, we confirmed that the PDT model improved the estimation accuracy to within 0.2 cm for fruit diameter and 0.1 cm for fruit length in independent years using a similar data collection method in 2013. The PDT model was implemented to realize a web-based management information system for a digital orchard, and the digital system had been applied in Shandong Province, China since 2013. This system may be used to compute the dynamic curve of apple fruit size based on data obtained from a nearby weather station. This system may provide an important decision support for farmers using the website and short message service to optimize crop production and, hence, economic benefit.

  18. Apple fruit diameter and length estimation by using the thermal and sunshine hours approach and its application to the digital orchard management information system.

    Directory of Open Access Journals (Sweden)

    Ming Li

    Full Text Available In apple cultivation, simulation models may be used to monitor fruit size during the growth and development process to predict production levels and to optimize fruit quality. Here, Fuji apples cultivated in spindle-type systems were used as the model crop. Apple size was measured during the growing period at an interval of about 20 days after full bloom, with three weather stations being used to collect orchard temperature and solar radiation data at different sites. Furthermore, a 2-year dataset (2011 and 2012 of apple fruit size measurements were integrated according to the weather station deployment sites, in addition to the top two most important environment factors, thermal and sunshine hours, into the model. The apple fruit diameter and length were simulated using physiological development time (PDT, an indicator that combines important environment factors, such as temperature and photoperiod, as the driving variable. Compared to the model of calendar-based development time (CDT, an indicator counting the days that elapse after full bloom, we confirmed that the PDT model improved the estimation accuracy to within 0.2 cm for fruit diameter and 0.1 cm for fruit length in independent years using a similar data collection method in 2013. The PDT model was implemented to realize a web-based management information system for a digital orchard, and the digital system had been applied in Shandong Province, China since 2013. This system may be used to compute the dynamic curve of apple fruit size based on data obtained from a nearby weather station. This system may provide an important decision support for farmers using the website and short message service to optimize crop production and, hence, economic benefit.

  19. An electromagnetic signals monitoring and analysis wireless platform employing personal digital assistants and pattern analysis techniques

    Science.gov (United States)

    Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.

    2010-05-01

    This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a

  20. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    Science.gov (United States)

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  1. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  2. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  3. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  4. Use of Landsat thermal imagery for dynamically monitoring spontaneous combustion of Datong Jurassic coalfields in China

    Science.gov (United States)

    Xue, Yongan; Liu, Jin; Li, Jun; Shang, Changsheng; Zhao, Jinling; Zhang, Mingmei

    2018-06-01

    It is highly helpful and necessary to investigate and monitor the status of coal seam. Fortunately, remote sensing has facilitated the identification and dynamical monitoring of spontaneous combustion for a large area coal mining area, especially using the time series remotely-sensed datasets. In this paper, Datong Jurassic coal mining area is used as the study area, China, and an exclusion method and a multiple-factor analysis method are jointly used to identify the spontaneous combustion, including land surface temperature (LST), burnt rocks, and land use and land cover change (LUCC). The LST is firstly retrieved using a single-window algorithm due to a thermal infrared band of Landsat-5 TM (Thematic Mapper). Burnt rocks is then extracted using a decision-tree classification method based on a high-resolution SPOT-5 image. The thermal anomaly areas are identified and refined by the spatial overlay analysis of the above affecting factors. Three-period maps of coal fire areas are obtained and dynamically analyzed in 2007, 2009 and 2010. The results show that a total of 12 coal fire areas have been identified, which account for more than 1% of the total area of the study area. In general, there is an increasing trend yearly and a total of 771,970 m2 is increased. The average annual increase is 257,320 m2, the average annual growth rate is 3.78%, and the dynamic degree is 11.29%.

  5. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  6. Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard

    2007-05-01

    A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.

  7. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  8. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    International Nuclear Information System (INIS)

    Chavez Panduro, E.; Bravo Cabrejos, J.

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe 3+ sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  9. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Science.gov (United States)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  10. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Panduro, E., E-mail: 04130127@unmsm.edu.pe; Bravo Cabrejos, J., E-mail: jbravoc@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Fisicas (Peru)

    2010-01-15

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe{sup 3+} sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  11. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    Science.gov (United States)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  12. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of Beam losses

    CERN Document Server

    Guido Venturini, G G; Dehning, B; Kayal, M

    2012-01-01

    An Application Specific Integrated Circuit (ASIC) has been designed and fabricated to provide a compact solution to digitize current signals from ionization chambers and diamond detectors, employed as beam loss monitors at CERN and several other high energy physics facilities. The circuit topology has been devised to accept positive and negative currents, to have a wide dynamic range (above 120 dB), withstand radiation levels over 10 Mrad and offer different modes of operation, covering a broad range of applications. Furthermore, an internal conversion reference is employed in the digitization, to provide an accurate absolute measurement. This paper discusses the detailed characterization of the first prototype: linearity, radiation tolerance and temperature dependence of the conversion, as well as implications and system-level considerations regarding its use for beam instrumentation applications in a high energy physics facility.

  13. Thermal Analysis of the Al Window for a New CESR-c Luminosity Monitor

    CERN Document Server

    He, Yun; Palmer, Mark A; Rice, David

    2005-01-01

    A luminosity monitor using photons from radiative bhabha events at the CLEO interaction point (IP) has been installed in the Cornell Electron Storage Ring (CESR). A key vacuum and detector component is the photon window/converter whose uniformity and thickness are critical for determining the resolution of the total energy deposited in the segmented luminosity monitor. The window design must accommodate the operational requirements of the new monitor at CLEO-c beam energies of 1.5-2.5 GeV and also provide sufficient safety margin for operation at 5.3 GeV beam energies for Cornell High Energy Synchrotron Source (CHESS) running. During 5.3 GeV operation, intense stripes of synchrotron radiation from the interaction region superconducting quadrupole magnets as well as nearby bending magnets strike the window. During the course of window development, several materials and designs were evaluated. Thermal stresses were calculated using the finite element code ANSYS for various beam conditions to guide the cooling d...

  14. The development of on-line thermal performance monitors in Nuclear Electric Company's stations

    International Nuclear Information System (INIS)

    Conner, A.S.

    1992-01-01

    The paper examines the economic benefits of using on-line monitoring techniques in assisting Station Staff with the task of optimising the efficient use of reactor fuel. The role of thermal performance monitoring for detecting changes in plant condition is also examined and the way in which the data can be used by engineers to assist with the preparation of operating and maintenance programmes. To enable genuine gradual changes in plant performance to be detected when operating against a background of changing plant signal accuracy conditions, plant transducers have to be calibrated on a regular basis. This can be both costly and labour intensive. To reduce this requirement for regular calibrations, an automatic software signal verification program has been developed for use in on-line monitoring schemes. It forms part of the total unit performance calculation package and uses a whole plant model to verify plant signals. All plant signals used to calculate unit heat rate are verified typically every 15 minutes with signals going outside predetermined limits being automatically reported to the user. The program is interactive allowing the user to interrogate the condition of the signal, with respect to both its error magnitude and rate of drift outside signal limits. The program runs in real time mode on a Workstation connected directly to the plant

  15. Monitoring and assessment of the outdoor thermal comfort in Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Ciobotaru, Ana-Maria; Andronache, Ion; Dumitrescu, Alexandru

    2017-04-01

    Bucharest is one of the European cities most at risk of being affected by meteorological hazards. Heat or cold waves, extreme temperature events, heavy rains or prolonged precipitation deficits are all-season phenomena, triggering damages, discomfort or even casualties. Temperature hazards may occur annually and challenge equally the public, local business and administration to find adequate solutions for securing the thermal comfort in the outdoor environment of the city. The accurate and fine resolution monitoring of the air temperature pledges for the comprehensive assessment of the thermal comfort in order to capture as much as possible the urban influence. This study uses sub-hourly temperature data (10-min temporal resolution) retrieved over the period November 2014 - November 2016 collected from nine sensors placed either in plain urban conditions or within the three meteorological stations of the national network which are currently monitoring the climate of Bucharest (Băneasa, Filaret, Afumați). The relative humidity was estimated based on the data available at the three stations placed in WMO standard conditions, and the 10-min values of 8 Thermal Comfort Indices were computed, namely: Heat Index, Humidex, Relative Strain Index, Scharlau, Summer Simmer Index, Physiological Equivalent Index, Temperature-Humidity Index, Thom Discomfort Index. The indices were analysed statistically, both individually and combined. Despite the short range of the available data, this study emphasizes clear spatial differentiations of the thermal comfort, in a very good agreement with the land cover and built zones of the city, while important variations were found in the temporal regime, due to large variations of the temperature values (e.g. >4 centigrade between consecutive hours or >15 centigrade between consecutive days). Ultimately, this study has revealed that the continuous monitoring of the urban climate, at fine temporal and spatial resolution, may deliver

  16. Development of a time-to-digital converter ASIC for the upgrade of the ATLAS Monitored Drift Tube detector

    Science.gov (United States)

    Wang, Jinhong; Liang, Yu; Xiao, Xiong; An, Qi; Chapman, John W.; Dai, Tiesheng; Zhou, Bing; Zhu, Junjie; Zhao, Lei

    2018-02-01

    The upgrade of the ATLAS muon spectrometer for the high-luminosity LHC requires new trigger and readout electronics for various elements of the detector. We present the design of a time-to-digital converter (TDC) ASIC prototype for the ATLAS Monitored Drift Tube (MDT) detector. The chip was fabricated in a GlobalFoundries 130 nm CMOS technology. Studies indicate that its timing and power dissipation characteristics meet the design specifications, with a timing bin variation of ±40 ps for all 48 TDC slices and a power dissipation of about 6.5 mW per slice.

  17. GEODESIC MONITORING OF VERTICAL MOVEMENT OF JSC «GRODNO AZOT» BUILDINGS USING DIGITAL DNA 03 LEVEL

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2010-01-01

    Full Text Available The paper presents peculiar features and methodology pertaining to application of digital DNA 03 level for monitoring vertical movement of load-carrying structures in the workshops and foundations of various capacities, exhaust pipes and granulation towers having height from 100 to150 meters. The proposed methods presuppose usage of the results of engineering and geological investigations and highly accurate geodesic measurements considered in the process of hydro- and pneumatic tests of an isothermic storage of liquid ammonia and a production “Ammonia” shop taken as an example. 

  18. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard-Nelson, B.

    1998-01-01

    The XIA DXP-4C is a 4 channel, CAMAC based, X-ray spectrometer which digitally processes directly digitized preamplifier signals. The DXP-4C was designed for instrumenting multi-detector arrays for synchrotron radiation applications, and optimized for very high count rates at a low cost per detector channel. This produced a very compact and low power (3.4 W/channel) instrument for its count rate and MCA capabilities, which thus provides a strong basis for portable applications. Because all functions are digitally controlled, it can be readily adapted to various user interfaces, including remote access interfaces. Here the authors describe the design and examine approaches to lowering its power to 50 mW/channel. They then consider the issues in applying it to three typical portable or remote spectrometry applications

  19. Digital laser printing of aluminum micro-structure on thermally sensitive substrates

    International Nuclear Information System (INIS)

    Zenou, Michael; Sa’ar, Amir; Kotler, Zvi

    2015-01-01

    Aluminum metal is of particular interest for use in printed electronics due to its low cost, high conductivity and low migration rate in electrically driven organic-based devices. However, the high reactivity of Al particles at the nano-scale is a major obstacle in preparing stable inks from this metal. We describe digital printing of aluminum micro-structures by laser-induced forward transfer in a sub-nanosecond pulse regime. We manage to jet highly stable molten aluminum micro-droplets with very low divergence, less than 2 mrad, from 500 nm thin metal donor layers. We analyze the micro-structural properties of the print geometry and their dependence on droplet volume, print gap and spreading. High quality printing of aluminum micro-patterns on plastic and paper is demonstrated. (paper)

  20. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  1. Processing deficits in monitoring analog and digital displays: Implications for attentional theory and mental-state estimation research

    Science.gov (United States)

    Payne, David G.; Gunther, Virginia A. L.

    1988-01-01

    Subjects performed short term memory tasks, involving both spatial and verbal components, and a visual monitoring task involving either analog or digital display formats. These two tasks (memory vs. monitoring) were performed both singly and in conjunction. Contrary to expectations derived from multiple resource theories of attentional processes, there was no evidence that when the two tasks involved the same cognitive codes (i.e., either both spatial or both verbal/linguistics) there was more of a dual task performance decrement than when the two tasks employed different cognitive codes/processes. These results are discussed in terms of their implications for theories of attentional processes and also for research in mental state estimation.

  2. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    Science.gov (United States)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  3. Stochastic Estimation Methods for Induction Motor Transient Thermal Monitoring Under Non Linear Condition

    Directory of Open Access Journals (Sweden)

    Mellah HACEN

    2012-08-01

    Full Text Available The induction machine, because of its robustness and low-cost, is commonly used in the industry. Nevertheless, as every type of electrical machine, this machine suffers of some limitations. The most important one is the working temperature which is the dimensioning parameter for the definition of the nominal working point and the machine lifetime. Due to a strong demand concerning thermal monitoring methods appeared in the industry sector. In this context, the adding of temperature sensors is not acceptable and the studied methods tend to use sensorless approaches such as observators or parameters estimators like the extended Kalman Filter (EKF. Then the important criteria are reliability, computational cost ad real time implementation.

  4. The thermal explosion synthesis of AlNi monitored by neutron thermodiffractometry

    International Nuclear Information System (INIS)

    Turrillas, X.; Mas-Guindal, M.J.; Hansen, T.C.; Rodriguez, M.A.

    2010-01-01

    The synthesis of AlNi from thermally activated equimolar powder mixtures of aluminium and nickel was monitored in situ and acquired diffraction patterns every 2 s or less. The analysis of diffraction patterns (λ=1.3112A) permitted establishment of its kinetics, which could be modeled according to an equation expressed as kt=[α/(1-α)] 3/2 . From 1530 to ∼600 deg. C an activation energy of 9 ± 2 kJ mol -1 was estimated. Also, the crystallite size evolution on cooling was established to vary from ∼14 nm at 1530 deg. C to ∼28 nm at 180 deg. C. Finally, the reaction was found to occur through the melting of aluminium and the subsequent dissolving of nickel to form the polycrystalline single-phase product, AlNi.

  5. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  6. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage

    International Nuclear Information System (INIS)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2015-01-01

    We describe a gold nanoparticle (AuNP)-based thermal history indicator (THI) for monitoring low-temperature storage. The THI was prepared from tetrachloroaurate using gelatin as a reducing reagent. Gelatin also acts as a stabilizer to control the growth of the AuNPs. The size and shape of the AuNPs were characterized by UV–vis spectrophotometry and transmission electron microscopy and are initially found to be spherical with an average particle size of ∼19 nm. Initially, the color of the THIs is slightly pink, but after a 90-day storage in the freezer, as both the size and shape of the AuNPs change, the color of the THIs turns to red. After 90 days the absorbance peaks of THIs held at room temperature are red-shifted from 538 to 572 nm and possessed larger amplitude compared to those stored in the freezer. The color change is a function of both storage time and temperature. The observed increase in size is mainly due to storage temperature while the change in shape is mainly due to storage time. The THIs experiencing higher temperature treatments exhibit a more intense color change which is attributed to a localized surface plasmon resonance effect. Thus, the observed visual color changes can provide information regarding the thermal history the material has experienced. Accordingly, when used in conjunction with time-temperature sensitive products, the THI may serve as a proactive system for monitoring and controlling product quality and/or safety. For example, the THI is useful in safeguarding high-value biological products such as enzymes, antibodies, plasma, stem cells and other perishables that have to be stored at low temperatures. (author)

  7. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply

  8. A Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education Solution.

    Science.gov (United States)

    Sood, Mariam R; Toornstra, Annet; Sereno, Martin I; Boland, Mark; Filaretti, Daniele; Sood, Anuj

    2018-05-17

    Dyslexia, a specific learning difficulty and a disability as defined in the Equality Act 2010, is a lifelong condition that affects a child from the start of education. Dyslexia is characterized by difficulties in language processing (reading, spelling, and writing) which do not correspond with the child's general intellectual abilities. Although dyslexia cannot be cured, there is a consensus that interventions are more effective and have greater impact the earlier they are administered. Effective interventions start with diagnosis. Currently, formal diagnosis requires an assessment by a dyslexia specialist or educational psychologist. These assessments are expensive and are not easy for a non-specialist teacher or parent to interpret. Consequently, formal assessments are normally performed at a much later age, when interventions are less likely to be effective. Combining the latest in scientific research, expertise of dyslexia practitioners and real-time interactivity facilitated by digital technologies, we aim to provide a cost-effective and convenient solution that focuses on early dyslexia detection and management. We discuss the rationale and protocol for the design and development of a digital health solution aimed at improving the early detection, monitoring and management of dyslexia (DIMMAND) in young children (4-8 years). The primary objective is to create a game-based digital solution aimed at children, parents, and teachers that firstly assesses, then monitors and manages progress in a convenient, cost-effective and private environment. The proposed solution will be designed and developed in phases. In the initial phase, the full functional specification of the games that constitute the app will be designed, together with the overall architecture of the solution. Prototype proof-of-concept implementation for few of these games, and commercialization strategies will also be developed. The follow-on phases will see the design implemented into a validated

  9. Development of relative thermal stress index (RTSI) for Monitoring and Management of Dry Deciduous Ecosystem

    Science.gov (United States)

    Gupta, R. K.; Vijayan, D.

    Gir wildlife sanctuary located between 20 r 57 to 21 r 20 N and 70 r 28 to 71 r 13 E is the last home of Asiatic lions Its biodiversity comprises of 450 recorded flowering plant species 32 species of mammals 26 species of reptiles about 300 species of birds and more than 2000 species of insects As per 1995 census it has 304 lions and 268 leopards The movement of wildlife to thermally comfortable zones to reduce stress conditions forces the changes in management plan with reference to change in localized water demand This necessitates the use of space based thermal data available from AVHRR MODIS etc to monitor temperature of Gir-ecosystem for meso-scale level operational utility As the time scale of the variability of NDVI parameter is much higher than that for lower boundary temperature LBT the dense patch in riverine forest having highest NDVI value would not experience change in its vigour with the change in the season NDVI value of such patch would be near invariant over the year and temperature of this pixel could serve as reference temperature for developing the concept of relative thermal stress index RTSI which is defined as RTSI T p -T r T max -T r wherein T r T max and T p refer to LBT over the maximum NDVI reference point maximum LBT observed in the Gir ecosystem and the temperature of the pixel in the image respectively RTSI images were computed from AVHRR images for post-monsoon leaf-shedded and summer seasons Scatter plot between RTSI and NDVI for summer seasons

  10. Validation of the Grandway MD2301 digital automatic blood pressure monitor according to the European Society of Hypertension International Protocol.

    Science.gov (United States)

    Chen, Wan; Zeng, Zhao-Lin; Bing, Sen; Li, Lin-Yi; Wang, Rui; Wan, Yi

    2016-08-01

    The aim of the present study was to validate the Grandway MD2301 digital automatic blood pressure monitor according to the European Society of Hypertension International Protocol (ESH-IP) revision 2010. The ESH-IP revision 2010 for the validation of blood pressure-measuring devices in adults was followed precisely. Systolic and diastolic blood pressure (SBP and DBP, respectively) were measured sequentially in 33 adult patients and compared with a standard mercury sphygmomanometer (two observers). A total of 99 comparison pairs were obtained. The device produced 78, 95 and 99 measurements within 5, 10, and 15 mmHg for SBP and 83, 96, and 99 for DBP, respectively. The average device-observer difference was -1.81±4.22 mmHg for SBP and -0.15±3.93 mmHg for DBP. All of the data were within the standards requirements to pass the testing. The Grandway MD2301 digital automatic blood pressure monitor meets the standards of the ESH-IP revision 2010 and can be recommended for self/home measurement in the general population.

  11. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    Science.gov (United States)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  12. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  13. COMPARATIVE ASSESSMENT OF CHEMOTHERAPY EFFICIENCY MONITORING IN PULMONARY TUBERCULOSIS PATIENTS BY X-RAY EXAMINATION AND DIGITAL TOMOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    M. M. Nikitin

    2016-01-01

    Full Text Available Goal of the study: to investigate the capabilities of digital tomosynthesis for monitoring of tuberculous changes in the lungs against the background of chemotherapy.Materials and methods. Results of chemotherapy efficiency monitored by X-ray in 55 respiratory tuberculosis patients were analyzed. Before treatment and in 2 months after chemotherapy start all patients had X-ray and DT with consequent analysis of the obtained data.Results. When monitoring the efficiency of drug therapy for pulmonary tuberculosis by DT some additional diagnostic data were obtained in 36,4% of cases compared to X-ray. The article describes specific features of tuberculous changes visualization of the chest with the follow-up of changes by DT; opportunities for X-ray monitoring efficiency enhancement in these patients are presented.Conclusions. DT provides more accurate evaluation of tuberculous changes in the lungs compared to X-ray, which greatly enhances understanding of the course of the disease and registration of the pulmonary disease cure. 

  14. Monitoring taconite process streams with thermal neutron capture-gamma ray analysis. Report of investigations/1980

    International Nuclear Information System (INIS)

    Woodbury, F.B.W.

    1980-12-01

    The Bureau of Mines is evaluating alternative technologies to treat oxidized taconites. Since process control is an essential element in the application of these process technologies, research was performed on a prototype monitoring system utilizing a californium-252 (252-Cf) neutron source and a thermal neutron capture-gamma ray spectra analysis method to measure the amount of iron and percent solids in process slurries. The prototype system was used to monitor the concentrate and tailing streams in a 900-lb/hr flotation pilot plant during continuous around-the-clock tests. The iron content of the process slurries was determined by measuring the total peak areas under the capture spectrum peaks at 7.626-7.632 MeV, the associated escape peaks at 7.136-7.122 and 6.626-6.612 MeV, and the iron doublets at 4.900 and 4.998 MeV. A potential method for determining the percent solids in process slurries using the 2.22 MeV hydrogen capture peak is discussed

  15. FLICA III. A digital computer program for thermal-hydraulic analysis of reactors and experimental loops

    International Nuclear Information System (INIS)

    Plas, Roger.

    1975-05-01

    This computer program describes the flow and heat transfer in steady and transient state in two-phase flows. It is the present stage of the evolution about FLICA, FLICA II and FLICA II B codes which have been used and developed at CEA for the thermal-hydraulic analysis of reactors and experimental loops with heating rod bundles. In the mathematical model all the significant terms of the fundamental hydrodynamic equations are taken into account with the approximations of turbulent viscosity and conductivity. The two-phase flow is calculated by the homogeneous model with slip. In the flow direction an implicit resolution scheme is available, which make possible to study partial or total flow blockage, with upstream and downstream effects. A special model represents the helical wire effects in out-of pile experimental rod bundles [fr

  16. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  17. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  18. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  19. Emerging role of digital technology and remote monitoring in the care of cardiac patients.

    Science.gov (United States)

    Banchs, Javier E; Scher, David Lee

    2015-07-01

    Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Zuo

    2014-01-01

    Full Text Available Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting vector machine (SVM technology is applied to mine the data. The thermal performances of iron pipes and high-density polyethylene (HDPE pipes are compared. The data mining result shows that iron pipe has a better heat removal performance when flow rate is lower than 50 L/min. It has revealed that a turning flow rate exists for iron pipe which is 80 L/min. The prediction and classification results obtained from the data mining model agree well with the monitored data, which illustrates the validness of the approach.

  1. Estimation of groundwater flow from temperature monitoring in a borehole heat exchanger during a thermal response test

    Science.gov (United States)

    Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei

    2018-05-01

    To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.

  2. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  3. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    Science.gov (United States)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  4. A knowledge-based flight status monitor for real-time application in digital avionics systems

    Science.gov (United States)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  5. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard

    Science.gov (United States)

    Christiansen, H. H.

    2006-12-01

    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  6. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  7. Development of fabrication method for thermal expansion difference irradiation temperature monitor

    International Nuclear Information System (INIS)

    Noguchi, Kouichi; Takatsudo, Hiroshi; Miyakawa, Shun-ichi; Kobori, Takahisa; Miyo, Toshimasa

    1998-03-01

    This report describes the development activities for the fabrication of the Thermal Expansion Difference irradiation temperature monitor (TED) at the Oarai Engineering Center (OEC)/PNC. TED is used for various irradiation tests in the experimental fast reactor JOYO. TED is the most accurate off-line temperature monitor used for irradiation examination. The TED is composed of a metallic sphere lid and either a stainless steel or nickel alloy container. Once the container is filled with sodium, the metallic sphere lid is sealed by using a resistance weld. This capsule is then loaded into a reactor. Once a TED is loaded into the JOYO reactor, the sodium inside the metallic container increases as a result of thermal expansion. The TED identifies the peak irradiation temperature of the reactor based on a formula correlating temperature to increment values. This formula is established specifically for the particular TED being used during a calibration process performed when the TED is fabricated. Initially the TED was developed by Argonne National Laboratory (ANL) in the United States, and was imported by PNC for use in the JOYO reactor. In 1992 PNC decided to fabricate TED domestically in order to ensure the stability of future supplies. Based on technical information provided by ANL, PNC began fabrication of a TED on an experimental basis. In addition, PNC endeavored to make the domestically produced TED more efficient. This involved improving the techniques used in the sodium filling and the metallic sphere welding processes. These quality control efforts led to PNC's development of processes enabling the capsules to be filled with sodium to nearly 100%. As a result, the accuracy of the temperature dispersion in the out-pile calibration test was improved from +/-10degC to +/-5degC. In 1996 the new domestically fabricated TED was attached to a JOYO irradiation rig. In March of 1997, irradiation of the rig was started on the 30th duty cycle operation, and should be

  8. DUCKS: Low cost thermal monitoring units for near-vent deployment

    Science.gov (United States)

    Harris, A.; Pirie, D.; Horton, K.; Garbeil, H.; Pilger, E.; Ramm, H.; Hoblitt, R.; Thornber, C.; Ripepe, M.; Marchetti, E.; Poggi, P.

    2005-01-01

    During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ???US$10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican??? cases fitted with Germanium-Arsenide-Selenium windows. Two 1?? field of view (FOV) sensors allow specific vents to be targeted and a 60?? FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican???-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ???3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1?? and 15?? FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US$5500 for a single sensor system. We have also constructed self-contained units

  9. DUCKS: Low cost thermal monitoring units for near-vent deployment

    Science.gov (United States)

    Harris, Andrew; Pirie, Dawn; Horton, Keith; Garbeil, Harold; Pilger, Eric; Ramm, Hans; Hoblitt, Rick; Thornber, Carl; Ripepe, Maurizio; Marchetti, Emanuele; Poggi, Pasquale

    2005-05-01

    During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ˜US10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican™ cases fitted with Germanium-Arsenide-Selenium windows. Two 1° field of view (FOV) sensors allow specific vents to be targeted and a 60° FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican™-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ˜3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1° and 15° FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US5500 for a single sensor system. We have also constructed self-contained units

  10. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    International Nuclear Information System (INIS)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C.; Hahn, L.J.; Saliken, J.C.; McKinnon, J.G.; Donnelly, B.J.

    1998-01-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  11. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C. [Departments of Oncology and Medical Physics, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Hahn, L.J. [Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Saliken, J.C. [Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada)

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  12. Influence of season, age and management on scrotal thermal profile in Murrah bulls using scrotal infrared digital thermography

    Science.gov (United States)

    Ahirwar, Maneesh Kumar; Kataktalware, Mukund Amritrao; Ramesha, Kerekoppa Puttaiah; Pushpadass, Heartwin Amaladhas; Jeyakumar, Sakthivel; Revanasiddu, Deginal; Kour, Reen Jagish; Nath, Sapna; Nagaleekar, Anand Kumar; Nazar, Sayyad

    2017-12-01

    The aim of the present study was to examine the effects of non-genetic factors on scrotal thermographic profile viz., proximal pole temperature (PPT °C), mid pole temperature (MPT °C), distal pole temperature (DPT °C) and ocular temperature (OcT) of Murrah ( Bubalus bubalis) breeding bulls. A total of 109 buffalo bulls, maintained at three semen stations (SS), were monitored for scrotal surface and ocular temperatures using infrared thermography twice daily during rainy, winter and summer seasons using an FLIR i5 infrared camera and temperatures were measured. Thermograms were analysed by FLIR QuickReport v.1.2 SP2 software. Statistical analysis revealed that semen station, season, temperature humidity index (THI), housing system and timing of observations had significant ( P 80.88; system and timing of observations had a significant influence on scrotal surface temperature. The monitoring of scrotal surface temperature by infrared thermography was found to be useful in evaluating the effects of thermal stress on physiology and health of buffalo bulls.

  13. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  14. The History of the CONCAM Project: All Sky Monitors in the Digital Age

    Science.gov (United States)

    Nemiroff, Robert; Shamir, Lior; Pereira, Wellesley

    2018-01-01

    The CONtinuous CAMera (CONCAM) project, which ran from 2000 to (about) 2008, consisted of real-time, Internet-connected, fisheye cameras located at major astronomical observatories. At its peak, eleven CONCAMs around the globe monitored most of the night sky, most of the time. Initially designed to search for transients and stellar variability, CONCAMs gained initial notoriety as cloud monitors. As such, CONCAMs made -- and its successors continue to make -- ground-based astronomy more efficient. The original, compact, fisheye-observatory-in-a-suitcase design underwent several iterations, starting with CONCAM0 and with the last version dubbed CONCAM3. Although the CONCAM project itself concluded after centralized funding diminished, today more locally-operated, commercially-designed, CONCAM-like devices operate than ever before. It has even been shown that modern smartphones can operate in a CONCAM-like mode. It is speculated that the re-instatement of better global coordination of current wide-angle sky monitors could lead to better variability monitoring of the brightest stars and transients.

  15. Seven-channel digital telemetry system for monitoring and direct computer capturing of biological data.

    Science.gov (United States)

    Drewes, A M; Andreasen, A; Assentoft, J E; Nagel, O

    1993-09-01

    A seven-channel telemetry system for collection and display of biological data is presented. The system can amplify bioelectrical signals in the range of 2 microV to 200 mV and has a bandwidth of 0.1-80 Hz. After multiplexing, the signals are digitized with a resolution of 8 bits. The data are frequency modulated directly on a VHF transmitter. After receiving the data on a VHF receiver, they are routed directly to the RS232 input connector on the PC. Thereby the advantage of direct communication between the transmitter and the PC can be utilized. Expensive analog equipment is avoided and display of the signals on the PC screen as well as signal analysis can be performed. The system has been tested and was found to be stable and highly reliable.

  16. Digitally enhanced recovery: Investigating the use of digital self-tracking for monitoring leisure time physical activity of cardiovascular disease (CVD patients undergoing cardiac rehabilitation.

    Directory of Open Access Journals (Sweden)

    Jürgen Vogel

    Full Text Available Research has shown that physical activity is essential in the prevention and treatment of chronic diseases like cardiovascular disease (CVD. Smart wearables (e.g., smartwatches are increasingly used to foster and monitor human behaviour, including physical activity. However, despite this increased usage, little evidence is available on the effects of smart wearables in behaviour change. The little research which is available typically focuses on the behaviour of healthy individuals rather than patients. In this study, we investigate the effects of using smart wearables by patients undergoing cardiac rehabilitation. A field experiment involving 29 patients was designed and participants were either assigned to the study group (N = 13 patients who finished the study and used a self-tracking device or the control group (N = 16 patients who finished the study and did not use a device. For both groups data about physiological performance during cardiac stress test was collected at the beginning (baseline, in the middle (in week 6, at the end of the rehabilitation in the organized rehabilitation setting, and at the end of the study (after 12 weeks, at the end of the rehabilitation, including the organized rehabilitation plus another 6 weeks of self-organized rehabilitation. Comparing the physiological performance of both groups, the data showed significant differences. The participants in the study group not only maintained the same performance level as during the midterm examination in week 6, they improved performance even further during the six weeks that followed. The results presented in this paper provide evidence for positive effects of digital self-tracking by patients undergoing cardiac rehabilitation on performance of the cardiovascular system. In this way, our study provides novel insight about the effects of the use of smart wearables by CVD patients. Our findings have implications for the design of self-management approaches in a patient

  17. A digital filter-based approach to the remote condition monitoring of railway turnouts

    International Nuclear Information System (INIS)

    Garcia Marquez, Fausto Pedro; Schmid, Felix

    2007-01-01

    Railway operations in Europe have changed dramatically since the early 1990s, partly as a result of new European Union Directives. Performance targets have become more and more exacting, due to reductions in state support for railways and the need to increasing traffic. More intensive operations also place greater demands on the hardware of the railway. This is true for both rolling stock and infrastructure subsystems and components, particularly so in the case of the latter where the time available for maintenance is being reduced. The authors of this paper focus on the railway infrastructure, and more specifically on points. These are critical elements whose reliability is key to the operation of the whole system. Using intelligent monitoring systems, it is possible to predict problems and enable quick recovery before component failures disrupt operations. The authors have studied the application of remote condition monitoring to point mechanisms and their operation, and have identified algorithms which may be used to identify incipient failures. In this paper, the authors propose a Kalman filter for the linear discrete data filtering problem encountered when using current sensor data in a point condition monitoring system. The reason for applying Kalman filtering in this study was to increase the reliability of the model presented to the rule-based decision mechanism

  18. Observation of thermal plumes from submerged discharges in the Great Lakes and their implications for modeling and monitoring

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Paddock, R.A.; Frigo, A.A.

    1977-01-01

    Measurements of thermal plumes from submerged discharges of power plant cooling waters into the Great Lakes provide the opportunity to view the mixing processes at prototype scales and to observe the effects of the ambient environment on those processes. Examples of thermal plume behavior in Great Lakes' ambient environments are presented to demonstrate the importance of measurements of the detailed structure of the ambient environment, as well as of the plumes, for interpretation of prototype data for modeling and monitoring purposes. The examples are drawn from studies by Argonne National Laboratory (ANL) at the Zion Nuclear PowerStation and the D. C. Cook Nuclear Plant on Lake Michigan and at the J. A. FitzPatrick Nuclear Power Plant on Lake Ontario. These studies included measurements of water temperatures from a moving boat which provide a quasi-synoptic view of the three-dimensional temperature structure of the thermal plume and ambient water environment. Additional measurements of water velocities, which are made with continuously recording, moored, and profiling current meters, and of wind provide data on the detailed structure of the ambient environment. The detailed structure of the ambient environment, in terms of current, current shear, variable winds, and temperature stratification, often influence greatly thermal plume behavior. Although predictive model techniques and monitoring objectives often ignore the detailed aspects of the ambient environment, useful interpretation of prototype data for model evaluation or calibration and monitoring purposes requires detailed measurement of the ambient environment. Examination of prototype thermal plume data indicates that, in several instances, attention to only the gross characteristics of the ambient environment can be misleading and could result in significant errors in model calibration and extrapolation of data bases gathered in monitoring observations

  19. Monitoring of the thermal deformations on polymer parts using a vision system

    DEFF Research Database (Denmark)

    Dalla Costa, Giuseppe; Madruga, Daniel González; De Chiffre, Leonardo

    2017-01-01

    Dimensional measurements in production environment are affected by non‐controlled temperature conditions. In the case of polymer parts the high thermal expansion coefficient leads to significant dimensional changes. In order to achieve high accuracy in dimensional measurements, thermal deformatio...

  20. Digital immunohistochemistry platform for the staining variation monitoring based on integration of image and statistical analyses with laboratory information system.

    Science.gov (United States)

    Laurinaviciene, Aida; Plancoulaine, Benoit; Baltrusaityte, Indra; Meskauskas, Raimundas; Besusparis, Justinas; Lesciute-Krilaviciene, Daiva; Raudeliunas, Darius; Iqbal, Yasir; Herlin, Paulette; Laurinavicius, Arvydas

    2014-01-01

    Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC staining variance were

  1. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Directory of Open Access Journals (Sweden)

    Bushuev F.

    2016-10-01

    Full Text Available The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East are presented in the article. The results were obtained using a radio engineering complex (RC of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.

  2. Film-Screen Mammography versus digital storage plate mammography: Hard copy and monitor display of microcalcifications and focal findings - A retrospective clinical and histologic analysis

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Wenkel, E.; Aichinger, U.; Tartsch, M.; Kuchar, I.; Bautz, W.

    2003-01-01

    Purpose: A retrospective clinical-histological study to determine the diagnostic accuracy of mammography using conventional screen-film cassettes (hard copy), high-resolution digital phosphor storage plates (hard copy) and monitor display (soft copy) for microcalcifications and focal lesions (BI-RADS TM category 4 or 5). Materials and methods: From April to November 2001, 76 patients underwent conventional film-screen mammography and, after diagnosis and preoperative wire localization, digital mammography with the same exposure parameters. Five investigators retrospectively determined the diagnosis after the operation from randomly distributed mediolateral views (hard-copy reading) and from the monitor display (soft-copy reading). These results were correlated with the final histology. Results: The accuracy of conventional screen-film mammography, digital mammography and monitor-displayed mammography was 67%, 65% and 68% for all findings, (n = 76), 59%, 59% and 68% for microcalcifications (n = 44) and 75%, 72% and 63% for focal lesions (n = 32). The overall results showed no difference. Conclusions: Our findings indicate equivalence of conventional screen-film mammography, high-resolution digital phosphor storage plate mammography and monitor-displayed mammography. (orig.) [de

  3. Fatigue strain mapping via digital image correlation for Ni-based superalloys: The role of thermal activation on cube slip

    International Nuclear Information System (INIS)

    Mello, Alberto W.; Nicolas, Andrea; Sangid, Michael D.

    2017-01-01

    A deformation mechanism map for a Ni-based superalloy is presented during cyclic loading at low (300 °C), intermediate (550 °C), and high (700 °C) temperatures for low (0.7%) and high (1.0%) applied strain amplitudes. Strain mapping is performed via digital image correlation (DIC) during interrupted fatigue experiments at elevated temperatures at 1, 10, 100 and 1000 cycles, for each specified loading and temperature condition. The DIC measurements are performed in a scanning electron microscope, which allows high-resolution measurements of heterogeneous slip events and a vacuum environment to ensure stability of the speckle pattern for DIC at high temperatures. The cumulative fatigue experiments show that the slip bands are present in the first cycle and intensify with number of cycles; resulting in highly localized strain accumulation. The strain mapping results are combined with microstructure characterization via electron backscatter diffraction. The combination of crystal orientations and high-resolution strain measurements was used to determine the active slip planes. At low temperatures, slip bands follow the {111} octahedral planes. However, as temperature increases, both the {111} octahedral and {100} cubic slip planes accommodate strain. The activation of cubic slip via cross-slip within the ordered intermetallic γ’ phase has been well documented in Ni-based superalloys and is generally accepted as the mechanism responsible for the anomalous yield phenomenon. The results in this paper represent an important quantifiable study of cubic slip system activity at the mesoscale in polycrystalline γ-γ’ Ni-based superalloys, which is a key advancement to calibrate the thermal activation components of polycrystalline deformation models.

  4. Fatigue strain mapping via digital image correlation for Ni-based superalloys: The role of thermal activation on cube slip

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Alberto W.; Nicolas, Andrea; Sangid, Michael D., E-mail: msangid@purdue.edu

    2017-05-17

    A deformation mechanism map for a Ni-based superalloy is presented during cyclic loading at low (300 °C), intermediate (550 °C), and high (700 °C) temperatures for low (0.7%) and high (1.0%) applied strain amplitudes. Strain mapping is performed via digital image correlation (DIC) during interrupted fatigue experiments at elevated temperatures at 1, 10, 100 and 1000 cycles, for each specified loading and temperature condition. The DIC measurements are performed in a scanning electron microscope, which allows high-resolution measurements of heterogeneous slip events and a vacuum environment to ensure stability of the speckle pattern for DIC at high temperatures. The cumulative fatigue experiments show that the slip bands are present in the first cycle and intensify with number of cycles; resulting in highly localized strain accumulation. The strain mapping results are combined with microstructure characterization via electron backscatter diffraction. The combination of crystal orientations and high-resolution strain measurements was used to determine the active slip planes. At low temperatures, slip bands follow the {111} octahedral planes. However, as temperature increases, both the {111} octahedral and {100} cubic slip planes accommodate strain. The activation of cubic slip via cross-slip within the ordered intermetallic γ’ phase has been well documented in Ni-based superalloys and is generally accepted as the mechanism responsible for the anomalous yield phenomenon. The results in this paper represent an important quantifiable study of cubic slip system activity at the mesoscale in polycrystalline γ-γ’ Ni-based superalloys, which is a key advancement to calibrate the thermal activation components of polycrystalline deformation models.

  5. Developing Dynamic Digital Image Correlation Technique to Monitor Structural Damage of Old Buildings under External Excitation

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2014-01-01

    Full Text Available The capacity of buildings to resist external excitation is an important factor to consider for the structural design of buildings. When subject to external excitation, a building may suffer a certain degree of damages, and its residual capacity to resist external excitation cannot be evaluated. In this research, dynamic digital image correlation method combined with parameter evaluation available in system identification is used to evaluate the structural capacity to resist external excitation. The results reveal possible building latent safety problems so that timely structural reinforcement or dismantling of the building can be initiated to alleviate further damages. The results of experiments using the proposed method conform to the results obtained using the conventional method, but this method is more convenient and rapid than the latter in the subsequent procedure of data processing. If only the frequency change is used, the damages suffered by the building can be detected, but the damage location is not revealed. The interstory drift mode shape (IDMS based on the characteristic of story drift has higher sensitivity than the approximate story damage index (ADSI method based on modal frequency and vibration type; however, both indices can be used to determine the degree and location of building damages.

  6. Novel Method for Superposing 3D Digital Models for Monitoring Orthodontic Tooth Movement.

    Science.gov (United States)

    Schmidt, Falko; Kilic, Fatih; Piro, Neltje Emma; Geiger, Martin Eberhard; Lapatki, Bernd Georg

    2018-04-18

    Quantitative three-dimensional analysis of orthodontic tooth movement (OTM) is possible by superposition of digital jaw models made at different times during treatment. Conventional methods rely on surface alignment at palatal soft-tissue areas, which is applicable to the maxilla only. We introduce two novel numerical methods applicable to both maxilla and mandible. The OTM from the initial phase of multi-bracket appliance treatment of ten pairs of maxillary models were evaluated and compared with four conventional methods. The median range of deviation of OTM for three users was 13-72% smaller for the novel methods than for the conventional methods, indicating greater inter-observer agreement. Total tooth translation and rotation were significantly different (ANOVA, p < 0.01) for OTM determined by use of the two numerical and four conventional methods. Directional decomposition of OTM from the novel methods showed clinically acceptable agreement with reference results except for vertical translations (deviations of medians greater than 0.6 mm). The difference in vertical translational OTM can be explained by maxillary vertical growth during the observation period, which is additionally recorded by conventional methods. The novel approaches are, thus, particularly suitable for evaluation of pure treatment effects, because growth-related changes are ignored.

  7. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    Science.gov (United States)

    Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL; Saveliev, Alexei V [Chicago, IL

    2011-03-15

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  8. David Price--Pioneer of digital ICP monitoring, neurosurgeon and teacher.

    Science.gov (United States)

    Czosnyka, Marek; Kirollos, Ramez; van Hille, Philip

    2015-06-01

    In early 1970s first personal desk-top computers started to be available in hospitals. Mr Price was one of the pioneers introducing his own software to identify Marmarou's model of CSF space during infusion studies to diagnose patients suffering from hydrocephalus. His closed-loop control system for infusion of mannitol to manage patients at risk of intracranial hypertension was designed in 1977. The system worked successfully for 10 years in Pinderfields Hospital in Wakefield, UK. In the middle 1980's he initiated international cooperation with Children's Health Centre in Poland in long-term computer-assisted monitoring and analysis of ICP. Software designed in a course of this cooperation paved the way for contemporary package of ICM+ (Intensive Care Monitor, University of Cambridge, UK). Our scientific portfolio from these years (1985-1995) contains hundreds of head injured patients with waveform ICP analysis, introduction of compensatory reserve index RAP, few highly cited papers. Now, we understand ICP much better thanks to David's personal passion and extremely friendly support.

  9. Digital surveillance: a novel approach to monitoring the illegal wildlife trade.

    Science.gov (United States)

    Sonricker Hansen, Amy L; Li, Annie; Joly, Damien; Mekaru, Sumiko; Brownstein, John S

    2012-01-01

    A dearth of information obscures the true scale of the global illegal trade in wildlife. Herein, we introduce an automated web crawling surveillance system developed to monitor reports on illegally traded wildlife. A resource for enforcement officials as well as the general public, the freely available website, http://www.healthmap.org/wildlifetrade, provides a customizable visualization of worldwide reports on interceptions of illegally traded wildlife and wildlife products. From August 1, 2010 to July 31, 2011, publicly available English language illegal wildlife trade reports from official and unofficial sources were collected and categorized by location and species involved. During this interval, 858 illegal wildlife trade reports were collected from 89 countries. Countries with the highest number of reports included India (n = 146, 15.6%), the United States (n = 143, 15.3%), South Africa (n = 75, 8.0%), China (n = 41, 4.4%), and Vietnam (n = 37, 4.0%). Species reported as traded or poached included elephants (n = 107, 12.5%), rhinoceros (n = 103, 12.0%), tigers (n = 68, 7.9%), leopards (n = 54, 6.3%), and pangolins (n = 45, 5.2%). The use of unofficial data sources, such as online news sites and social networks, to collect information on international wildlife trade augments traditional approaches drawing on official reporting and presents a novel source of intelligence with which to monitor and collect news in support of enforcement against this threat to wildlife conservation worldwide.

  10. Digital surveillance: a novel approach to monitoring the illegal wildlife trade.

    Directory of Open Access Journals (Sweden)

    Amy L Sonricker Hansen

    Full Text Available A dearth of information obscures the true scale of the global illegal trade in wildlife. Herein, we introduce an automated web crawling surveillance system developed to monitor reports on illegally traded wildlife. A resource for enforcement officials as well as the general public, the freely available website, http://www.healthmap.org/wildlifetrade, provides a customizable visualization of worldwide reports on interceptions of illegally traded wildlife and wildlife products. From August 1, 2010 to July 31, 2011, publicly available English language illegal wildlife trade reports from official and unofficial sources were collected and categorized by location and species involved. During this interval, 858 illegal wildlife trade reports were collected from 89 countries. Countries with the highest number of reports included India (n = 146, 15.6%, the United States (n = 143, 15.3%, South Africa (n = 75, 8.0%, China (n = 41, 4.4%, and Vietnam (n = 37, 4.0%. Species reported as traded or poached included elephants (n = 107, 12.5%, rhinoceros (n = 103, 12.0%, tigers (n = 68, 7.9%, leopards (n = 54, 6.3%, and pangolins (n = 45, 5.2%. The use of unofficial data sources, such as online news sites and social networks, to collect information on international wildlife trade augments traditional approaches drawing on official reporting and presents a novel source of intelligence with which to monitor and collect news in support of enforcement against this threat to wildlife conservation worldwide.

  11. ANALYSIS OF COMBINED UAV-BASED RGB AND THERMAL REMOTE SENSING DATA: A NEW APPROACH TO CROWD MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schulte

    2017-08-01

    Full Text Available Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  12. Digital Surveillance: A Novel Approach to Monitoring the Illegal Wildlife Trade

    Science.gov (United States)

    Joly, Damien; Mekaru, Sumiko; Brownstein, John S.

    2012-01-01

    A dearth of information obscures the true scale of the global illegal trade in wildlife. Herein, we introduce an automated web crawling surveillance system developed to monitor reports on illegally traded wildlife. A resource for enforcement officials as well as the general public, the freely available website, http://www.healthmap.org/wildlifetrade, provides a customizable visualization of worldwide reports on interceptions of illegally traded wildlife and wildlife products. From August 1, 2010 to July 31, 2011, publicly available English language illegal wildlife trade reports from official and unofficial sources were collected and categorized by location and species involved. During this interval, 858 illegal wildlife trade reports were collected from 89 countries. Countries with the highest number of reports included India (n = 146, 15.6%), the United States (n = 143, 15.3%), South Africa (n = 75, 8.0%), China (n = 41, 4.4%), and Vietnam (n = 37, 4.0%). Species reported as traded or poached included elephants (n = 107, 12.5%), rhinoceros (n = 103, 12.0%), tigers (n = 68, 7.9%), leopards (n = 54, 6.3%), and pangolins (n = 45, 5.2%). The use of unofficial data sources, such as online news sites and social networks, to collect information on international wildlife trade augments traditional approaches drawing on official reporting and presents a novel source of intelligence with which to monitor and collect news in support of enforcement against this threat to wildlife conservation worldwide. PMID:23236444

  13. Comparison of 5-megapixel cathode ray tube monitors and 5-megapixel liquid crystal monitors for soft-copy reading in full-field digital mammography

    International Nuclear Information System (INIS)

    Schueller, Gerd; Schueller-Weidekamm, Claudia; Pinker, Katja; Memarsadeghi, Mazda; Weber, Michael; Helbich, Thomas H.

    2010-01-01

    Purpose: To retrospectively compare the image quality, lesion detection, and the diagnostic efficacy of 5-megapixel (MP) cathode ray tube monitors (CRTs) and 5-MP liquid crystal display monitors (LCDs) for soft-copy reading in full-field digital mammography (FFDM). Materials and methods: Informed consent was waived by the Institutional Review Board for the data analysis. A total of 220 cases were compared with two 5-MP (2048 x 2560 pixels) CRTs and two 5-MP (2048 x 2560 pixels) LCDs. Nine aspects of image quality (brightness, contrast, sharpness, noise, skin, fat, retromamillary space, glandular tissue, and detection of calcifications) were evaluated. In addition, the detection of breast lesions (mass, calcifications) and diagnostic efficacy, based on the BI-RADS classification, were correlated with histologic results (n = 70) and follow-up (n = 150). Results: Each aspect of the image quality was rated significantly better for 5-MP LCDs (p < 0.05) compared to the 5-MP CRTs. With 5-MP CRTs, 31 masses and 119 calcifications were detected, compared to 30 and 121 with 5-MP LCDs. The differences in diagnostic efficacy between 5-MP CRTs and 5-MP LCDs were not significant (p = 0.157) although 5-MP CRTs yielded two false-negative results. Both lesions were rated BI-RADS 3 with 5-MP CRTs. Both were invasive carcinomas at histology. The sensitivity, specificity, positive and negative predictive values, and accuracy were 0.966, 0.975, 0.933, 0.988, and 0.973 for 5-MP CRTs, compared to 1.0, 0.963, 0.903, 1.0, 0.973 for 5-MP LCDs. Conclusion: The image quality of 5-MP LCDs is significantly better than that of 5-MP CRTs for soft-copy reading in FFDM, based on histologic and follow-up correlation. However, lesion detection and diagnostic efficacy are comparable to 5-MP CRTs. The interpretation of the false-negative results suggests that the characterization of breast lesions with FFDM is not defined solely by the monitors, but is strongly influenced by the radiologist.

  14. Digital signal processing for a thermal neutron detector using ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

    2016-07-11

    We present a digital signal processing system based on a photon counting approach which we developed for a thermal neutron detector consisting of ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs. Three digital filters have been evaluated: a moving sum, a moving sum after differentiation and a digital CR-RC{sup 4} filter. The performances of the detector with these filters are presented. A full analog signal processing using a CR-RC{sup 4} filter has been emulated digitally. The detector performance obtained with this analog approach is compared with the one obtained with the best performing digital approach. - Highlights: • Application of digital signal processing for a SiPM-based ZnS:6LiF neutron detector. • Optimisation of detector performances with 3 different digital filters. • Comparison with detector performances with a full analog signal processing.

  15. Application of radio frequency based digital thermometer for real-time monitoring of dairy cattle rectal temperature

    Directory of Open Access Journals (Sweden)

    Tridib Debnath

    2017-09-01

    Full Text Available Aim: Dairy cattle health monitoring program becomes vital for detecting the febrile conditions to prevent the outbreak of the animal diseases as well as ensuring the fitness of the animals that are directly affecting the health of the consumers. The aim of this study was to validate real-time rectal temperature (RT data of radio frequency based digital (RFD thermometer with RT data of mercury bulb (MB thermometer in dairy cattle. Materials and Methods: Two experiments were conducted. In experiment I, six female Jersey crossbred cattle with a mean (±standard error of the mean body weight of 534.83±13.90 kg at the age of 12±0.52 years were used to record RT for 2 h on empty stomach and 2 h after feeding at 0, 30, 60, 90, and 120 min using a RFD thermometer as well as a MB thermometer. In experiment II, six female Jersey crossbred cattle were further used to record RT for 2 h before exercise and 2 h after exercise at 0, 30, 60, 90, and 120 min. Two-way repeated measures analysis of variance with post hoc comparisons by Bonferroni test was done. Results: Real-time RT data recorded by RFD thermometer as well as MB thermometer did not differ (p>0.05 before and after feeding/exercise. An increase (p<0.05 in RT after feeding/exercise in experimental crossbred cattle was recorded by both RFD thermometer and MB thermometer. Conclusion: The results obtained in the present study suggest that the body temperature recordings from RFD thermometer would be acceptable and thus RFD thermometer could work well for monitoring real-time RT in cattle.

  16. Evaluation of digital infra-red thermal imaging as an adjunctive screening method for breast carcinoma: a pilot study.

    Science.gov (United States)

    Rassiwala, Muffazzal; Mathur, Poonam; Mathur, Rajkumar; Farid, Khan; Shukla, Sapna; Gupta, P K; Jain, Beena

    2014-12-01

    Early screening plays a pivotal role in management of breast cancer. Given the socio-economic situation in India, there is a strong felt need for a screening tool which reaches the masses rather than waiting for the masses to reach tertiary centers to be screened. Digital infra-red thermal imaging (DITI) or breast thermography as a screening test offers this possibility and needs to be carefully assessed in Indian scenario. The study involved 1008 female patients of age 20-60 years that had not been diagnosed of cancer of breast earlier. All the subjects in this population were screened for both the breasts using DITI. Based on the measured temperature gradients (ΔT) in thermograms, the subjects were classified in one of the three groups, normal (ΔT ≤ 2.5), abnormal (ΔT > 2.5, breast cancer (ΔT ≥ 3). All those having (ΔT > 2.5) underwent triple assessment that consisted of clinical examination, radiological and histopathological examination. Those with normal thermograms were subjected to only clinical examination. Forty nine female breasts had thermograms with temperature gradients exceeding 2.5 and were subjected to triple assessment. Forty one of these which had ΔT ≥ 3 were proven to be having cancer of breast and were offered suitable treatment. Eight thermograms had temperature gradients exceeding 2.5 but less than 3. Most of these were lactating mothers or had fibrocystic breast diseases. As a screening modality, DITI showed sensitivity of 97.6%, specificity of 99.17%, positive predictive value 83.67% and negative predictive value 99.89%. Based on the results of this study involving 1008 subjects for screening of breast cancer, thermography turns out to be a very useful tool for screening. Because it is non-contact, pain-free, radiation free and comparatively portable it can be used in as a proactive technique for detection of breast carcinoma. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  18. An in vitro comparison of quantitative light-induced fluorescence-digital and spectrophotometer on monitoring artificial white spot lesions.

    Science.gov (United States)

    Kim, Hee Eun; Kim, Baek-Il

    2015-09-01

    The aim of this study was to evaluate the efficacy of quantitative light-induced fluorescence-digital (QLF-D) compared to a spectrophotometer in monitoring progression of enamel lesions. To generate artificial caries with various severities of lesion depths, twenty bovine specimens were immersed in demineralizing solution for 40 days. During the production of the lesions, repeat measurements of fluorescence loss (ΔF) and color change (ΔE) were performed in six distinct stages after the demineralization of the specimens: after 3, 5, 10, 20, 30, and 40 days of exposure to the demineralizing solution. Changes in the ΔF values in the lesions were analyzed using the QLF-D, and changes in the ΔE values in lesions were analyzed using a spectrophotometer. The repeated measures ANOVA of ΔF and ΔE values were used to determine whether there are significant differences at different exposure times in the demineralizing solution. Spearman's rank correlation coefficient was analyzed between ΔF and ΔE. The ΔF values significantly decreased based on the demineralizing period (pmonitoring color changes. Our findings demonstrate that QLF-D are a more efficient and stable tool for early caries detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    Science.gov (United States)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  20. Nuclear and thermal power plant components monitoring by pattern recognition methods

    International Nuclear Information System (INIS)

    Chehade, M.

    1981-05-01

    This study deals with the monitoring of complex systems with the aim of diagnosing failures or degradation of operation. The different monitoring and diagnostic techniques are reviewed and a statistical analyses of data is presented. The hardware and software for the acquisition and processing of data are presented. The method of monitoring is applied to the extraction valve and the pressurizer discharge isolation valve surveillance [fr

  1. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 3: Thermal hydraulic research and codes; Digital instrumentation and control; Structural performance

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-04-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) thermal hydraulic research and codes; (2) digital instrumentation and control; (3) structural performance

  2. Monitoring of Thermal Protection Systems using Robust Self-Organizing Optical Fiber Sensing Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective thermal protection systems are crucial for spacecraft or future hypersonic transports re-entering the atmosphere. Micro-meteoroids and orbital debris...

  3. On-line monitoring on thermal shock damage of ceramics using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Lee, Joon Hyun; Song, Sang Hun

    1999-01-01

    The objective of this paper is to investigate the degree of the thermal shock damage on alumina ceramic using acoustic emission technique. For this purpose, alumina ceramic specimen was heated in the elastic furnace and then was quenched into the water tank. When the specimen was quenched into water tank, a lot of micro-cracks were generated on the surface of specimen due to the thermal shock damage. In this study, acoustic emission technique was used to evaluate the elastic waves generated by the crack initiation and propagation on the surface of specimen. It was found that when the micro-crack was initiated on the surface of specimen, AE signals were the higher in amplitude than those of bubbling effect and crack propagation. A lot of AE events were generated at the first thermal shock, the number of AE events decreased gradually as the thermal shock cycle increased.

  4. A Study on infrared tracing and monitoring of thermal discharge from the power plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Sun; Hong, Wuk Hee; Kim, Yung Bae; Park, Jang Rae; Choi, Yung An; Park, Yung San [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-08-01

    Massive discharge of cooling water from the nuclear power plants as well as many thermal power plants would cause serious environmental problems. Hence, the task of predicting cooling water dispersion areas has enormous importance for better environmental management related with the power plant operation. For the last two decades, extensive field survey and dispersion modeling have been mainly applied to predict thermal discharge dispersion areas. In this study, the method of infrared thermal sensing was tested as a possible means of measuring the affected areas of thermal discharge at the thermal power plant sites. Many IR images obtained by using the terrestrial camera, or by using the airborne scanner, or from the Landsat iv satellite were analyzed from the pc with the IDRISI and resource software and further enhanced with other image analysis technologies. The result of study proved this IR imaging technology to be an potentially cost-effective tool for assessment of water-temperature increase caused by the thermal discharge from the power plants, however, further elaboration of procedure was highly requested. (author). 9 refs., 24 figs.

  5. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  6. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  7. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  8. Intraday monitoring of granitic exfoliation sheets with LiDAR and thermal imaging (Yosemite Valley, California, USA)

    Science.gov (United States)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Abellán, Antonio; Dubas, Olivier; Collins, Brian D.; Stock, Greg M.

    2016-04-01

    Rockfall activity in Yosemite Valley is often linked to the presence of exfoliation sheets associated with other structures such as faults, joints or geological contacts. Daily and seasonal temperature variations or freeze-thaw cycles may strongly promote crack propagation along discontinuities, ultimately leading to rockfalls (Stock et al., 2013). However, little is known concerning the impact of thermal variations on rock face deformation, despite its occurrence at all times of year. To understand the influence of daily temperature fluctuations on the behavior of exfoliation joints (i.e., fractures separating exfoliation sheets), we carried out two different experiments in October 2015: (a) We first monitored a sub-vertical granodiorite flake (19 m by 4 m by 0.1 m ; Collins and Stock, 2014) for 24 consecutive hours using LiDAR and infrared thermal sensors; (b) We monitored a rock cliff (60 m by 45 m) composed of tens of exfoliation sheets located on the southeast face of El Capitan (an ~1000-m-tall cliff located in western Yosemite Valley) for several hours (from 05:30 pm to 01:30 am) to investigate the diurnal cooling effect on rocks of different lithologies. To calibrate the raw apparent temperature measured by the thermal imager (FLIR T660 infrared camera), we fixed pieces of reflective paper (aluminum foil) and black duct tape on both monitored cliffs to measure the reflected temperature and the emissivity of the different rocks. In addition, ambient temperature and relative humidity readings were performed for each acquisition. We then compared the calibrated temperatures to the values registered by resistance temperature detectors (Pt100 sensors), also attached to the rock. Finally, we compared the millimeter scale deformations observed with LiDAR to the values measured by manual crackmeters (standard analog comparators with springs) installed beforehand in the fractures. For the first experiment (24-hour monitoring), a series of measurements were carried

  9. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  10. Digital multimeter-based immunosensing strategy for sensitive monitoring of biomarker by coupling an external capacitor with an enzymatic catalysis.

    Science.gov (United States)

    Tang, Dianping; Zhang, Bing; Liu, Bingqian; Chen, Guonan; Lu, Minghua

    2014-05-15

    A new digital multimeter (DMM)-based immunosensing system was designed for quantitative monitoring of biomarker (prostate-specific antigen, PSA used in this case) by coupling with an external capacitor and an enzymatic catalytic reaction. The system consisted of a salt bridge-linked reaction cell and a capacitor/DMM-joined electronic circuit. A sandwich-type immunoreaction with target PSA between the immobilized primary antibody and glucose oxidase (GOx)-labeled detection antibody was initially carried out in one of the two half-cells. Accompanying the sandwiched immunocomplex, the conjugated GOx could catalyze the oxidation of glucose, simultaneously resulting in the conversion of [Fe(CN)6](3-) to [Fe(CN)6](4-). The difference in the concentrations of [Fe(CN)6](3-)/[Fe(CN)6](4-) in two half-cells automatically produced a voltage that was utilized to charge an external capacitor. With the closing circuit switch, the capacitor discharged through the DMM, which could provide a high instantaneous current. Under the optimal conditions, the resulting currents was indirectly proportional to the concentration of target PSA in the dynamic range of 0.05-7 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1). The reproducibility, precision, and selectivity were acceptable. In addition, the methodology was validated by analyzing 12 clinical serum specimens, receiving a good accordance with the referenced values for the detection of PSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Impact of different environmental conditions on lithium-ion batteries performance through the thermal monitoring with fiber sensors

    Science.gov (United States)

    Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.

    2017-08-01

    In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.

  12. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments.

    Science.gov (United States)

    Tosi, Daniele; Macchi, Edoardo Gino; Braschi, Giovanni; Cigada, Alfredo; Gallati, Mario; Rossi, Sandro; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2014-04-01

    We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

  13. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle.

    Science.gov (United States)

    George, W D; Godfrey, R W; Ketring, R C; Vinson, M C; Willard, S T

    2014-11-01

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of these experiments was to compare the temperature of the eye (EYE) or muzzle (MUZ) measured using DITI to vaginal (VT) and rectal temperature (RT) as measures of core body temperature in hair sheep and beef cattle. In Exp.1 EYE, VT and RT were measured in lactating, multiparous hair sheep ewes (St. Croix White, n = 10, and Dorper × St. Croix White, n = 10) in a non-febrile state 5 times over a 48-h period. Data loggers were used to measure VT and a digital veterinary thermometer was used to measure RT. There was a high correlation (P 0.10) between RT or VT and MUZ. The findings of these three studies indicate that temperature of the eye, measured using DITI, can be used as an indicator of core body temperature in hair sheep and beef cattle as an alternative to using vaginal or rectal temperature.

  14. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Science.gov (United States)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.

    2018-03-01

    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  15. Stand development and reliability tests of the thermal monitoring means for NPP

    International Nuclear Information System (INIS)

    Nalivaev, V.I.; Nikul'shin, V.S.; Kichigin, A.B.; Dirin, V.F.

    2003-01-01

    The paper is devoted to the reliability tests of thermoelectric thermometers and resistance thermometers during their operation in the nominal mode. Five stands Reliability are developed and operate for realization of tests of all manufactured thermal converters. delivered at NPP. Description of all stands are presented [ru

  16. Monitoring of Thermal and Gas Activities in Mining Dump Hedvika, Czech Republic

    Science.gov (United States)

    Surovka, D.; Pertile, E.; Dombek, V.; Vastyl, M.; Leher, V.

    2017-10-01

    The negative consequences of mining of the black coal is occurrence of extractive waste storage locations - mining dumps. The mining activities carried out within the area of Ostrava are responsible for at least six mine dumps of loose materials arising as wastes from mining of mineral resources, many of which show presence of thermal processes. The thermal activity in dumps is responsible for many hazardous substances that pollute the environment and harm human health in the surroundings. This paper deals with the results of the first phase of project CZ.11.4.120/0.0/0.0/15_006/0000074 TERDUMP, on exploration of thermally active mining dumps are published in the article. As a first studied thermally active dump was a Hedvika dump. To localize of hot spots with hot gas emission was used a thermovision scanning by drone. The place with high temperature (49.8 °C) identified natural gas emission through natural cracks. Analysing the occurring pollutants in Hedvika Dump using the GC-MS or HPLC, respectively and the inert gases (CO2, CO and SO2) were determined by ion chromatography. The pollutants were determined in five sampling points during two measurements executed from July to August 2017.

  17. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  18. Thermal load resistance of erosion-monitoring beryllium maker tile for JET ITER like wall project

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Sundelin, P.; Rubel, M.; Coad, J.P.; Matthews, G.F.; Lungu, C.P.

    2007-01-01

    The ITER reference materials, beryllium (Be), carbon fibre composite (CFC) and tungsten (W), have been tested separately in tokamaks. An integrated test demonstrating both compatibility of metal plasma facing components with high-power operation and acceptable tritium retention has not yet been carried out. At JET, the size, magnetic field strength and high plasma current allow to conducting tests with the combination of the materials. Thus, the ITER-like Wall (ILW) project has been launched. In the project, Be will be the plasmafacing material on the main chamber wall of JET. To assess the erosion of the Be tiles, a Be marker tile was proposed and designed. The test samples which simulate the JET Be marker tile have been produced in MEdC, Romania in order to study the thermal load resistance of the JET Be marker (20 x 20 mm 2 size with 30 mm height). The marker tile sample consists of bulk Be, high-Z interlayer (2-3 μm Ni coating) and 8-9 μm Be coating. Thermionic Vacuum Arc (TVA) techniques based on the electron-induced evaporation have been selected for this purpose. In the present work, the global characterization of the maker tile samples and thermal load tests were performed. After the pre-characterization (microstructure observation by scanning electron microscope and elemental analysis by means of Wavelength Dispersive X-ray Spectroscopy and Energy Dispersive X-ray Spectroscopy), the thermal loading tests were performed in the electron beam facility JUDITH. The coating consisted of tiny platelets of ∝0.1 um in diameter and localized larger platelets of 1 um in diameter. The surface and bulk temperature were observed during the tests. In the screening thermal load test, the samples were loaded to 6 MW/m 2 for 10 s. The layers did not show any macroscopic damages at up to 4.5 MW/m 2 for 10 s (45 MJ/m 2 ). However, the coating delaminated and the maker was damaged when the thermal loading reached at 5 MW/m 2 (∝50 MJ/m 2 ). Cyclic heat load tests were

  19. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  20. Outdoor thermal monitoring of large scale structures by infrared thermography integrated in an ICT based architecture

    Science.gov (United States)

    Dumoulin, Jean; Crinière, Antoine; Averty, Rodolphe

    2015-04-01

    An infrared system has been developed to monitor transport infrastructures in a standalone configuration. Results obtained on bridges open to traffic allows to retrieve the inner structure of the decks. To complete this study, experiments were carried out over several months to monitor two reinforced concrete beams of 16 m long and 21 T each. Detection of a damaged area over one of the two beams was made by Pulse Phase Thermography approach. Measurements carried out over several months. Finally, conclusion on the robustness of the system is proposed and perspectives are presented.

  1. Workplace monitoring and occupational health studies in the Sostanj Thermal Power Plant, Slovenia

    International Nuclear Information System (INIS)

    Jacimovic, R.; Falnoga, I.; Jeran, Z.; Byrne, A.R.; Kobal, A.B.; Stropnik, B.

    1998-01-01

    Up to now, only a few investigations have been performed in the Sostanj Thermal Power Plant (TPP) involving comprehensive studies of trace elements, toxic elements, heavy metals and radionuclides in the workplaces. The aim of the project is development and application of nuclear and nuclear-related analytical techniques for workplace pollution and occupational health studies, leading to formation of a database concerning the trace element air pollution inside the Sostanj Thermal Power Plant. In this report, the emphasis is on the methodology and analytical development (neutron activation analysis, X-ray spectrometry, total-reflection X-ray fluorescence (TXRF) spectroscopy and proton induced X-ray emission (PIXE)), and to a lesser extent on the results obtained up to now. Analytical results for several certified reference materials of similar matrix as the real samples investigated were obtained. Results obtained by the k 0 -standardization method and XRF technique for aerosols (coarse and fine fractions) ore also presented and discussed. (author)

  2. The diagnosis of small solitary pulmonary nodule: comparison of standard and inverse digital images on a high resolution monitor using ROC analysis

    International Nuclear Information System (INIS)

    Choi, Byeong Kyoo; Lee, In Sun; Seo, Joon Beom; Lee, Jin Seong; Song, Koun Sik; Lim, Tae Hwan

    2002-01-01

    To study the impact of inversion of soft-copy chest radiographs on the detection of small solitary pulmonary nodules using a high-resolution monitor. The study group consisted of 80 patients who had undergone posterior chest radiography; 40 had a solitary noncalcified pulmonary nodule approximately 1 cm in diameter, and 40 were control subjects. Standard and inverse digital images using the inversion tool on a PACS system were displayed on high-resolution monitors (2048x2560x8 bit). Ten radiologists were requested to rank each image using a five-point scale (1=definitely negative, 3=equivocal or indeterminate, 5=definite nodule), and the data were interpreted using receiver operating characteristic (ROC) analysis. The area under the ROC curve for pooled data of standard image sets was significantly larger than that of inverse image sets (0.8893 and 0.8095, respectively; p 0.05). For detecting small solitary pulmonary nodules, inverse digital images were significantly inferior to standard digital images

  3. A database for the monitoring of thermal anomalies over the Amazon forest and adjacent intertropical oceans.

    Science.gov (United States)

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Sobrino, José A; Malhi, Yadvinder

    2015-01-01

    Advances in information technologies and accessibility to climate and satellite data in recent years have favored the development of web-based tools with user-friendly interfaces in order to facilitate the dissemination of geo/biophysical products. These products are useful for the analysis of the impact of global warming over different biomes. In particular, the study of the Amazon forest responses to drought have recently received attention by the scientific community due to the occurrence of two extreme droughts and sustained warming over the last decade. Thermal Amazoni@ is a web-based platform for the visualization and download of surface thermal anomalies products over the Amazon forest and adjacent intertropical oceans using Google Earth as a baseline graphical interface (http://ipl.uv.es/thamazon/web). This platform is currently operational at the servers of the University of Valencia (Spain), and it includes both satellite (MODIS) and climatic (ERA-Interim) datasets. Thermal Amazoni@ is composed of the viewer system and the web and ftp sites with ancillary information and access to product download.

  4. Digital Still Transect Images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): Data from 2004 (NODC Accession 0037908)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of video transect images (JPG files) from CRAMP surveys taken in 2004 at 6 sites, some of which had multiple depths. Digital images are...

  5. Digital Still Transect Images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) Maui 2006 (NODC Accession 0039627)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of digital still transect images (JPG files) from CRAMP surveys taken on Maui in 2006 at 8 sites, some of which had multiple depths. Surveys...

  6. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa

    International Nuclear Information System (INIS)

    Sainz, Carlos; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-01-01

    Radon ( 222 Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ( 226 Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m 3 respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. - Highlights: • Radon in water is the major source of indoor air radon concentration in thermal facilities. • Radon in water has been used to characterize the origin of water used for treatments in a spa. • Preliminary dose assessment from radon exposure has been performed.

  7. Description of the behavior of an aquifer by using continuous radon monitoring in a thermal spa

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, Carlos, E-mail: sainzc@unican.es; Rábago, Daniel; Fuente, Ismael; Celaya, Santiago; Quindós, Luis Santiago

    2016-02-01

    Radon ({sup 222}Rn) levels in air and water have been analyzed continuously for almost a year in Las Caldas de Besaya thermal spa, north Spain. Radon is a naturally occurring noble gas from the decay of radium ({sup 226}Ra) both constituents of radioactive uranium 238 series. It has been recognized as a lung carcinogen by the World Health Organization (WHO) and International Agency for Research on Cancer (IARC). Furthermore the Royal Decree R.D 1439/2010 of November, 2010 establishes the obligation to study occupational activities where workers and, where appropriate, members of the public are exposed to inhalation of radon in workplaces such as spas. Together with radon measures several physico-chemical parameters were obtained such as pH, redox potential, electrical conductivity and air and water temperature. The devices used for the study of the temporal evolution of radon concentration have been the RTM 2100, the Radon Scout and gamma spectrometry was complementarily used to determine the transfer factor of the silicone tubes in the experimental device. Radon concentrations obtained in water and air of the spa are high, with an average of 660 Bq/l and 2900 Bq/m{sup 3} respectively, where water is the main source of radon in the air. Radiation dose for workers and public was estimated from these levels of radon. The data showed that the thermal processes can control the behavior of radon which can be also influenced by various physical and chemical parameters such as pH and redox potential. - Highlights: • Radon in water is the major source of indoor air radon concentration in thermal facilities. • Radon in water has been used to characterize the origin of water used for treatments in a spa. • Preliminary dose assessment from radon exposure has been performed.

  8. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    Science.gov (United States)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  9. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues

    International Nuclear Information System (INIS)

    Maleke, C; Konofagou, E E

    2008-01-01

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 deg. C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 μm deg. C -1 (r = 0.93, p -1 , r = -0.92, p -1 , prior to and after lesion formation in seven bovine liver samples, respectively. This technique was thus capable of following the protein-denatured lesion formation based on the

  10. Comparing a recursive digital filter with the moving-average and sequential probability-ratio detection methods for SNM portal monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1993-01-01

    The author compared a recursive digital filter proposed as a detection method for French special nuclear material monitors with the author's detection methods, which employ a moving-average scaler or a sequential probability-ratio test. Each of these nine test subjects repeatedly carried a test source through a walk-through portal monitor that had the same nuisance-alarm rate with each method. He found that the average detection probability for the test source is also the same for each method. However, the recursive digital filter may have on drawback: its exponentially decreasing response to past radiation intensity prolongs the impact of any interference from radiation sources of radiation-producing machinery. He also examined the influence of each test subject on the monitor's operation by measuring individual attenuation factors for background and source radiation, then ranked the subjects' attenuation factors against their individual probabilities for detecting the test source. The one inconsistent ranking was probably caused by that subject's unusually long stride when passing through the portal

  11. Mobility Monitor

    DEFF Research Database (Denmark)

    Schæbel, Anne-Lise; Dybbro, Karina Løvendahl; Andersen, Lisbeth Støvring

    2015-01-01

    Undersøgelse af digital monitorering af plejehjemsbeboeres vendinger under søvn på Fremtidens Plejehjem, Nørresundby......Undersøgelse af digital monitorering af plejehjemsbeboeres vendinger under søvn på Fremtidens Plejehjem, Nørresundby...

  12. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction

    Directory of Open Access Journals (Sweden)

    Fabio Di Napoli

    2017-02-01

    Full Text Available Residual lifetime estimation has gained a key point among the techniques that improve the reliability and the efficiency of power converters. The main cause of failures are the junction temperature cycles exhibited by switching devices during their normal operation; therefore, reliable power converter lifetime estimation requires the knowledge of the junction temperature time profile. Since on-line dynamic temperature measurements are extremely difficult, in this work an innovative real-time monitoring strategy is proposed, which is capable of estimating the junction temperature profile from the measurement of the dissipated powers through an accurate and compact thermal model of the whole power module. The equations of this model can be easily implemented inside a FPGA, exploiting the control architecture already present in modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method.

  13. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  14. Monitoring and inventorying of the pollutant emissions from thermal power plants

    International Nuclear Information System (INIS)

    Vladescu, Gherghina; Iordache, Daniela; Iordache, Victorita; Ciomaga, Carmencita; Matei, Magdalena; Ilie, Ion; Motiu, Cornel

    2001-01-01

    Pollution due to emissions discharged in atmosphere as a result of human (anthropogenic) activities and the related environmental effects, such as acid depositions, land quality degradation, global warming/climate changes, building degradation, ozone layer depletion required the monitoring and inventorying of the polluting emissions at the local, regional and global levels. The paper briefly presents the international requirements concerning the development of a polluting emission inventory, the European methodologies for air polluting emission inventorying, programs and methodologies used in the Romanian electricity production sector for inventorying the polluting emissions and calculation of the dispersion of the pollutants discharged in the atmosphere. (author)

  15. Operation and maintenance of thermal power stations best practices and health monitoring

    CERN Document Server

    Chanda, Pradip

    2016-01-01

    This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control. .

  16. A Novel Thermal-Mechanical Detection System for Reactor Pressure Vessel Bottom Failure Monitoring in Severe Accidents

    International Nuclear Information System (INIS)

    Bi, Daowei; Bu, Jiangtao; Xu, Dongling

    2013-06-01

    Following the Fukushima Daiichi nuclear accident in Japan, there is an increased need of enhanced capabilities for severe accident management (SAM) program. Among others, a reliable method for detecting reactor pressure vessel (RPV) bottom failure has been evaluated as imperative by many utility owners. Though radiation and/or temperature measurement are potential solutions by tradition, there are some limitations for them to function desirably in such severe accident as that in Japan. To provide reliable information for assessment of accident progress in SAM program, in this paper we propose a novel thermal-mechanical detection system (TMDS) for RPV bottom failure monitoring in severe accidents. The main components of TMDS include thermally sensitive element, metallic cables, tension controlled switch and main control room annunciation device. With TMDS installed, there shall be a reliable means of keeping SAM decision-makers informed whether the RPV bottom has indeed failed. Such assurance definitely guarantees enhancement of severe accident management performance and significantly improve nuclear safety and thus protect the society and people. (authors)

  17. Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: Results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Vilardo, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C.

    2007-12-01

    A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and quantify temperature changes of the shallow thermal structure of a quiescent volcano such as Solfatara over long periods. Ambient temperature is the main parameter affecting IR temperatures, while air humidity and rain control image quality. A geometric correction of the images was necessary to remove the effects of slow movement of the camera. After a suitable correction the images give a reliable and detailed picture of the temperature changes, over the period October 2004 to January 2007, which suggests that origin of the changes were linked to anthropogenic activity, vegetation growth, and the increase of the flux of hydrothermal fluids in the area of the hottest fumaroles. Two positive temperature anomalies were registered after the occurrence of two seismic swarms which affected the hydrothermal system of Solfatara in October 2005 and October 2006. It is worth noting that these signs were detected in a system characterized by a low level of activity with respect to systems affected by real volcanic crisis where more spectacular results will be expected. Results of the experiment show that this kind of monitoring system can be a suitable tool for volcanic surveillance.

  18. Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts.

    Science.gov (United States)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2017-06-15

    Quality and safety of perishable products such as foods, pharmaceutics, and biologicals is a constant concern. We have developed a plasmonic thermal history indicator (THI) taking advantage of the localized surface plasmon resonance of gold nanoparticles (AuNPs) synthesized in situ in alginate, a natural polysaccharide. The color of the THIs becomes more intense with increased storage temperature and/or duration, with the color changing from grey to red with time of exposure at high temperature (40°C). The results suggest that decreasing viscosity with increasing number of AuNPs being synthesized in the system, along with aggregation of newly synthesized AuNPs onto larger ones and their settling are potentially responsible for the distinct color change observed. The use of alginate in the THIs also facilitates fabricating them as solid hydrogel matrices by adding divalent calcium ions. This alginate-AuNPs THI system is tunable by altering its composition to suit different time-temperature monitoring scenarios and the color-change reaction is irreversible. The THI provides a convenient, reliable, safe, and inexpensive means for tracking the thermal history of perishable products without the need for a read-out device. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Mobile Remote Lab System to Monitor in Situ Thermal Solar Installations

    Directory of Open Access Journals (Sweden)

    Gastón Saez de Arregui

    2013-01-01

    Full Text Available In this paper we describe the design and development of interconnected devices which allow monitoring in situ the performance of solar boilers. This mobile remote lab system comprises two huge blocks of hardware: a mobile station located by the boiler, which is monitored and controlled in a remote way, and a fixed station, located in the Laboratory of Energy for the Sustained Development of the Universidad Nacional de Rosario. The communication between the fixed and mobile devices is controlled by microcontrollers included in both stations and programmed in C language. The project is being developed through three parallel lines of work: 1 Design and development of fixed and mobile hardware; 2 Development of firmware and software necessary to register and communicate data; 3 Design and development of learning activities. This mobile remote lab will be useful to test the behavior of solar boilers in the place and environmental conditions where they are placed so as to evaluate their performance and efficiency anywhere. This is also in order to contribute for the implementation of norms for the certification of solar boilers. On the other hand, the data and results obtained from the development will be used as supplies for the design of learning activities

  20. Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content.

    Science.gov (United States)

    Tena, Noelia; Aparicio, Ramón; García-González, Diego L

    2009-11-11

    The monitoring of frying oils by an effective and rapid method is one of the demands of food companies and small food retailers. In this work, a method based on ATR-FTIR has been developed for monitoring the oil degradation in frying procedures. The IR bands changing during frying in sunflower, soybean, and virgin olive oils have been examined in their linear relationship with the content of total polar compounds, which is a preferred parameter for frying control. The bands assigned to conjugated and isolated trans double bonds that are commonly used for the determination of trans content provided the best relationships. Then, the area covering 978-960 cm(-1) was chosen to build a model for predicting polar material content for the particular case of virgin olive oil. A virgin olive oil was heated up to 94 h, and samples collected every 2 h constituted the training set. These samples were analyzed to obtain their FTIR spectra and to determine the composition of fatty acids and the content of total polar compounds. The excellent results predicting the polar material content (adjusted R(2) 0.997) was successfully validated with an external set of samples. The analysis of the fatty acid composition confirmed the relationship between the trans content and the content of total polar compounds.

  1. Políticas de inclusão digital no Brasil: a experiência da formação dos monitores dos telecentros GESAC | Digital inclusion policies in Brazil: the experience of training instructors for "telecenters"

    Directory of Open Access Journals (Sweden)

    Sayonara Leal

    2012-04-01

    Full Text Available Resumo Este trabalho tem como objetivo avaliar a formação dos monitores de pontos GESAC dentro dos propósitos do projeto de inclusão digital do Ministério das Comunicações, com ênfase na dimensão sócio-cognitiva da formação durante o período do treinamento, assim como os impactos desse programa instrucional nas comunidades locais atendidas pelos telecentros do GESAC. Serão analisadas as bases para a consolidação de uma política de Ciência e Tecnologia, que inclua o cidadão na chamada sociedade informacional, a partir não somente do acesso aos recursos materiais, mas também à formação para estimular a capacidade cognitiva do cidadão usuário do ponto GESAC em lidar com novas ferramentas e linguagens próprias às TIC. As técnicas utilizadas são: análise documental, questionários, entrevistas semi-estruturadas e grupos focais. Palavras-chave TIC; inclusão digital; política pública; pontos Gesac Abstract The main objective of this study was to evaluate the formation process of monitors in the GESAC’s points – the Digital Inclusion Project integrated to the Policy for Science and Technology developed by Ministry of Communications in Brazil. This research emphasized a socio-cognitive dimension in both the training period as well as the evaluation of this instructional program’s impact on the local community. Focus groups were coordinated by us in the local community attended by GESAC's “telecentros". Qualitative data was collected through documental analysis, questionnaries and semi-structured interviews as well. Building a Science & Technology Public Policy in Brazil demands not only promoting access to the material resources but also stimulating citizen participation among GESAC's point users. Including them in the "informational society" means enabling them to understand and handle proper ICT tools and languages. Keywords ICTs; digital inclusion, public policy, Gesac´s points

  2. Monitoring the sulfur content of coal streams by thermal-neutron-capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Martin, J.W.; Hall, A.W.

    1976-07-01

    A theory was developed for evaluating a complex, prompt gamma ray spectrum to serve as the basis for an instrument to monitor continuously the sulfur content of tonnage streams of coal. Equations for the energies and intensities of prompt gamma rays emitted from 13 most significant elements in coal are combined into a single equation that defines the basic electronic design of the meter. The sulfur content of up to 10 tons per hour of coal was determined in pilot plant tests with a prototype meter. The precision of 0.04 percent sulfur substantiates the validity of the theory. In subsequent industrial plant tests the precision was determined to be a comparable 0.05 percent sulfur

  3. Reservoir characterization and monitoring of cold and thermal heavy oil production using multi-transient EM

    Energy Technology Data Exchange (ETDEWEB)

    Engelmark, F. [Petroleum Geo-Services Asia Pacific Pte Ltd., Singapore (Singapore)

    2008-10-15

    This study emphasized the importance of mapping the in situ subsurface distribution of heavy oil for evaluating the amount of oil in place. The multi-transient electromagnetic (MTEM) method was shown to be an ideal method to characterize the large scale distribution of oil, including the average saturation levels, on the scale needed to optimize oil extraction using steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS). A feasibility study for an MTEM monitoring project would simulate reservoir temperature, water saturation and salinity to determine the evolution over time expressed in resistivity and the expanding steam chamber. The 4 factors influencing the resistivity in the monitoring phase were discussed. The temperature due to steaming causes a significant drop in resistivity of the affected rock volume, while the changes in water saturation affect resistivity. The drop in salinity of the pore water due to mixing with distilled water originating in the condensation of the injected steam causes an increase in resistivity, while the mineral dissolution and overall volume expansion causes formation damage that permanently changes the rock fabric. The overall effect of steam injection is a reduction in resistivity within the main part of the chamber, with a sudden increase in resistivity in the proximity of the injection well due to salt depletion. The lowered resistivity within a halo outside the steam chamber can be attributed to the heat radiation front expanding faster than the maturing steam chamber. The author noted that reservoir simulators do not yet incorporate the dynamic changes in porosity and permeability that are observed as permanent reductions of the elastic moduli and reduced resistivity. It was concluded that in order to fully describe the evolution of the steam chamber, this so called formation damage must be better understood. 6 refs., 7 figs.

  4. Input/output Buffer based Vedic Multiplier Design for Thermal Aware Energy Efficient Digital Signal Processing on 28nm FPGA

    DEFF Research Database (Denmark)

    Goswami, Kavita; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2016-01-01

    Multiplier is used for multiplication of a signal and a constant in digital signal processing (DSP). 28nm technology based Vedic multiplier is implemented with use of VHDL HDL, Xilinx ISE, Kintex-7 FPGA and XPower Analyzer. Vedic multiplier gain speed improvements by parallelizing the generation...... Programmable Gate Array (FPGA) in order to reduce the development cost. The development cost for Application Specific Integrated Circuits (ASICs) are high in compare to FPGA. Selection of the most energy efficient IO standards in place of signal gating is the main design methodology for design of energy...... efficient Vedic multiplier.There is 68.51%, 69.86%, 74.65%, and 78.39% contraction in total power of Vedic multiplier on 28nm Kintex-7 FPGA, when we use HSTL_II in place of HSTL_II_DCI_18 at 56.7oC, 53.5oC, 40oC and 21oC respectively....

  5. Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring

    Directory of Open Access Journals (Sweden)

    Hsiang-Chang Hsu

    2017-11-01

    Full Text Available The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN-coated fiber Bragg grating (FBG sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA. The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400-500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures.

  6. Workplace monitoring and occupational health studies in the Sostanj thermal power plant, Slovenia

    International Nuclear Information System (INIS)

    Jacimovic, R.; Falnoga, I.; Jeran, Z.; Kump, P.; Necemer, M.; Stropnik, B.; Kobal, A.B.

    2000-01-01

    Only a few investigations have been performed in the Sostanj Thermal Power Plant (TPP) involving comprehensive studies of trace and minor elements and radionuclides in the workplaces. Workers at the TPP in some sectors are exposed to high levels of coal dust, in others to dusty operations with ash and electrostatically precipitated fly ash, and in addition a force of welders is employed for maintenance and construction tasks. Welders work 5 to 6 hours per day and they are protected only from UV light. They are exposed to high concentrations of metals in inhaled welding fume. One method to determine the levels of trace and minor elements in the atmosphere at the working places is to sample aerosols. Aerosols were collected on Nuclepore polycarbonate membrane filters by a Casella personal sampler at different working places in the Sostanj TPP. In this report, the emphasis is on the methodology and analytical development (instrumental neutron activation analysis and X-ray spectrometry), and to a lesser extent on the results obtained up to now. Results obtained by the k 0 -method and XRF techniques for aerosols collected at different working places in the Sostanj TPP are presented and discussed. Results obtained for an intercomparison study for different samples provided by IAEA are not presented in this progress report but have been sent to the IAEA and the National Institute of Occupational Health (Denmark)

  7. DESIGN OF AN EDUCATIONAL SIMULATION PROGRAM USING DIGITAL VIDEO PROCESSING TO DETERMINE THE THERMAL EXPANSION OF MATERIALS

    Directory of Open Access Journals (Sweden)

    V. Gökhan BÖCEKÇİ

    2013-01-01

    Full Text Available The present report describes the realization of an educational simulation program to determine the amount of linear thermal expansion in experimental materials. An interferogram signal derived from an interferometric measurement system was modeled as a video signal in a computer environment. A simulation program was designed from the model signal in order to detect the amount of expansion in materials. The simulation program determined the amount of to heat by detecting the number of fringes in interferogram video signals of the material. This simulation program facilitated experimental studies n academic institutions which are deprived of interferometric measurement systems.

  8. Biomonitoring of bees. Upgrading of electronic monitoring of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cuhalev, I.; Rajh-Alatic, Z. [Electroinstitute Ljubljana (Slovakia)

    1995-12-31

    Environmental monitoring of the air quality associates procedures whose task is to acquire data about the measurement of the polluted air in the real time and on-line mode. Air quality measurements are made at the point of the measurement site which is the most exposed to pollution. Apart from the point measurements, there are also line measurements carried out. They are made in a particular area where they provide better results about the environmental pollution. Data that are obtained in this way provide the basis for adequate procedures for the air protection. The effect of noxious substances from the air on living organisms under laboratory conditions is known to a certain degree. The real extent of the effect of the air pollution under existing conditions in a particular area and time can only be established with biomonitoring. One of its most frequent forms is observation of a particular plant specimen which is sensitive to some noxious components from the air. Biomonitoring of plants provides data about the complex pollution stress to which an observed plant is exposed. It covers a certain time period and gives point results of an area. To get a complete insight into the effect of the pollution stress in an area biomonotoring was expanded onto bees

  9. Biomonitoring of bees. Upgrading of electronic monitoring of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cuhalev, I; Rajh-Alatic, Z [Electroinstitute Ljubljana (Slovakia)

    1996-12-31

    Environmental monitoring of the air quality associates procedures whose task is to acquire data about the measurement of the polluted air in the real time and on-line mode. Air quality measurements are made at the point of the measurement site which is the most exposed to pollution. Apart from the point measurements, there are also line measurements carried out. They are made in a particular area where they provide better results about the environmental pollution. Data that are obtained in this way provide the basis for adequate procedures for the air protection. The effect of noxious substances from the air on living organisms under laboratory conditions is known to a certain degree. The real extent of the effect of the air pollution under existing conditions in a particular area and time can only be established with biomonitoring. One of its most frequent forms is observation of a particular plant specimen which is sensitive to some noxious components from the air. Biomonitoring of plants provides data about the complex pollution stress to which an observed plant is exposed. It covers a certain time period and gives point results of an area. To get a complete insight into the effect of the pollution stress in an area biomonotoring was expanded onto bees

  10. Biomonitoring of bees. Upgrading of electronic monitoring of thermal power plants

    International Nuclear Information System (INIS)

    Cuhalev, I.; Rajh-Alatic, Z.

    1995-01-01

    Environmental monitoring of the air quality associates procedures whose task is to acquire data about the measurement of the polluted air in the real time and on-line mode. Air quality measurements are made at the point of the measurement site which is the most exposed to pollution. Apart from the point measurements, there are also line measurements carried out. They are made in a particular area where they provide better results about the environmental pollution. Data that are obtained in this way provide the basis for adequate procedures for the air protection. The effect of noxious substances from the air on living organisms under laboratory conditions is known to a certain degree. The real extent of the effect of the air pollution under existing conditions in a particular area and time can only be established with biomonitoring. One of its most frequent forms is observation of a particular plant specimen which is sensitive to some noxious components from the air. Biomonitoring of plants provides data about the complex pollution stress to which an observed plant is exposed. It covers a certain time period and gives point results of an area. To get a complete insight into the effect of the pollution stress in an area biomonotoring was expanded onto bees

  11. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  12. Synergistic Use of Thermal Infrared Field and Satellite Data: Eruption Detection, Monitoring and Science

    Science.gov (United States)

    Ramsey, Michael

    2015-04-01

    The ASTER-based observational success of active volcanic processes early in the Terra mission later gave rise to a funded NASA program designed to both increase the number of ASTER scenes following an eruption and perform the ground-based science needed to validate that data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER visible and thermal infrared (TIR) data are being acquired at numerous active volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many new targets such as Mt. Etna, the URP has increased the observational frequency by as much 50%. Examples of these datasets will be presented, which have been used for operational response to new eruptions as well as longer-term scientific studies. These studies include emplacement of new lava flows, detection of endogenous dome growth, and interpretation of hazardous dome collapse events. As a means to validate the ASTER TIR data and capture higher-resolution images, a new ground-based sensor has recently been developed that consists of standard FLIR camera modified with wavelength filters similar to the ASTER bands. Data from this instrument have been acquired of the lava lake at Kilauea and reveal differences in emissivity between molten and cooled surfaces confirming prior laboratory results and providing important constraints on lava

  13. Self-potential monitoring of a thermal pulse advecting through a preferential flow path

    Science.gov (United States)

    Ikard, S. J.; Revil, A.

    2014-11-01

    There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes

  14. A novel digitization scheme with FPGA-base TDC for beam loss monitors operating at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Warner, Arden; /Fermilab

    2011-11-01

    Recycling integrators are common current-to-frequency converting circuits for measurements of low current such as that produced by Fermilab's cryogenic ionization chambers. In typical digitization/readout schemes, a counter is utilized to accumulate the number of pulses generated by the recycling integrator to adequately digitize the total charge. In order to calculate current with reasonable resolution (e.g., 7-8 bits), hundreds of pulses must be accumulated which corresponds to a long sampling period, i.e., a very low sampling rate. In our new scheme, an FPGA-based Time-to-Digital Convertor (TDC) is utilized to measure the time intervals between the pulses output from the recycling integrator. Using this method, a sample point of the current can be made with good resolution (>10 bits) for each pulse. This effectively increases the sampling rates by hundreds of times for the same recycling integrator front-end electronics. This scheme provides a fast response to the beams loss and is potentially suitable for accelerator protection applications. Moreover, the method is also self-zero-suppressed, i.e., it produces more data when the beam loss is high while it produces significantly less data when the beam loss is low.

  15. Monitoring of the periodontal disease using digital image analyses; Monitoracao da progressao da doenca periodontal atraves de imagens digitalizadas

    Energy Technology Data Exchange (ETDEWEB)

    Taba Junior, Mario

    1995-12-31

    The radiographs play an important role in the diagnosis and management of periodontal disease although the most appropriate form of assessment vary. The great technologic advance and the easily accessible systems of digital image analyses, specify digitized radiographs, improve the diagnostic power. The studied group was 29 adults (14 female and 15 male) ranging in age from 18 to 45 years. They all had evidence of alveolar bone loss and established periodontitis. They were studied, without treatment, over a six month period with four posterior standardized vertical bite wings radiographs, electronic probing of attachment loss, and bacteriological and temperature analysis of periodontal pocket. The aim of this investigation was to determine the relationship between the loss of radiographic crestal bone height and probing attachment loss in digitized radiographs and show a standardization method for periodontal radiographs. Radiographic and probing attachment change at all sites, dichotomously classified as to not changing or loosing indicated 20.42% of sites were loosing by measurement of radiographic change and 5.29% were loosing by measurement of attachment change. There was concordance between the presence or absence of probing attachment loss and bone loss in 72% to 86% depending on the area. The results, admitting methodological limitations, indicate that when these two methods for the assessment of progressive periodontitis were used they represents measure degrees of different features of periodontitis and that the period of periodontal disease activity was detected in the either the soft tissue attachment or bone. (author). 116 refs., 17 figs., 8 tabs.

  16. Development of a Real-Time Thermal Performance Diagnostic Monitoring system Using Self-Organizing Neural Network for Kori-2 Nuclear Power Unit

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1996-01-01

    In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. the system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the Kori-2 nuclear power unit is developed and examined is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, the algorithm is shown to be ale to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work. 5 figs., 3 tabs., 11 refs. (Author)

  17. Development of a Global Evaporative Stress Index Based on Thermal and Microwave LST towards Improved Monitoring of Agricultural Drought

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Otkin, J.; Holmes, T. R.; Gao, F.

    2017-12-01

    This presentation will describe the development of a global agricultural monitoring tool, with a focus on providing early warning of developing vegetation stress for agricultural decision-makers and stakeholders at relatively high spatial resolution (5-km). The tool is based on remotely sensed estimates of evapotranspiration, retrieved via energy balance principals using observations of land surface temperature. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET generated with the ALEXI surface energy balance model. The LST inputs to ESI have been shown to provide early warning information about the development of vegetation stress with stress-elevated canopy temperatures observed well before a decrease in greenness is detected in remotely sensed vegetation indices. As a diagnostic indicator of actual ET, the ESI requires no information regarding antecedent precipitation or soil moisture storage capacity - the current available moisture to vegetation is deduced directly from the remotely sensed LST signal. This signal also inherently accounts for both precipitation and non-precipitation related inputs/sinks to the plant-available soil moisture pool (e.g., irrigation) which can modify crop response to rainfall anomalies. Independence from precipitation data is a benefit for global agricultural monitoring applications due to sparseness in existing ground-based precipitation networks, and time delays in public reporting. Several enhancements to the current ESI framework will be addressed as requested from project stakeholders: (a) integration of "all-sky" MW Ka-band LST retrievals to augment "clear-sky" thermal-only ESI in persistently cloudy regions; (b) operational production of ESI Rapid Change Indices which provide important early warning information related to onset of actual vegetation stress; and (c) assessment of ESI as a predictor of global yield anomalies; initial studies have shown the ability of intra

  18. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    Science.gov (United States)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  19. Digital broadcasting

    International Nuclear Information System (INIS)

    Park, Ji Hyeong

    1999-06-01

    This book contains twelve chapters, which deals with digitization of broadcast signal such as digital open, digitization of video signal and sound signal digitization of broadcasting equipment like DTPP and digital VTR, digitization of equipment to transmit such as digital STL, digital FPU and digital SNG, digitization of transmit about digital TV transmit and radio transmit, digital broadcasting system on necessity and advantage, digital broadcasting system abroad and Korea, digital broadcasting of outline, advantage of digital TV, ripple effect of digital broadcasting and consideration of digital broadcasting, ground wave digital broadcasting of DVB-T in Europe DTV in U.S.A and ISDB-T in Japan, HDTV broadcasting, satellite broadcasting, digital TV broadcasting in Korea, digital radio broadcasting and new broadcasting service.

  20. FPGA Design of the digital acquisition chain to test and implement ALPS, the new Beam Position Monitor for the Super Proton Synchrotron at CERN

    CERN Document Server

    Degl'Innocenti, Irene; Boccardi, Andrea

    This thesis presents the firmware design and the data analysis to test and implement part of the acquisition chain of ALPS (A Logarithmic Position Monitor), the new beam position monitor of the Super Proton Synchrotron (SPS) at CERN, the European Organization for Nuclear Research. CERN provides particle accelerators and detectors to accelerate beams of particles and observe their collisions and the SPS is the second larger circular machine in the accelerator complex. The SPS beam position monitor, the system that measures the transverse position of the accelerated particle beams along the pipe, is now under redesign. In the BPM acquisition chain the signal from the sensor is first conditioned by the analog front-end, then digitalised in the digital front-end and transmitted to the back-end for being processed. The goal of the thesis is the conception of firmware modules and analysis tools integrated with the acquisition chain, aiming to acquire and analyse data to qualify the system and finally implement ...

  1. Use of stable sulphur isotopes to monitor directly the behaviour of sulphur in coal during thermal desulphurization

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.

    1987-01-01

    A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.

  2. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  3. Motivating Struggling Middle School Readers: Digital Images as an Aid for Self-Monitoring and Enhancing Retellings of Text

    Science.gov (United States)

    Parenti, Melissa A.

    2016-01-01

    The benefits of motivation, mental imagery, self-monitoring and guided retellings on reading comprehension have long been lauded as effective methods for improving reading achievement. At a time when technology continues to flourish, yet secondary reading performance remains at a level far below proficiency, identifying strategies that assist in…

  4. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    accurately. These results indicate that thermal infrared hyperspectral imaging can support the oil industry profusely, by revealing new petroleum plays through direct detection of gaseous hydrocarbon seepages, serving as tools to monitor leaks along pipelines and oil processing plants, while simultaneously refining estimates of CH4 emissions.

  5. MONITORING OF HEAPS USING VARIOUS TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Helena Straková

    2015-07-01

    Full Text Available Coal heaps are frequently self-burning by definite environmental conditions, therefore thermal activity monitoring of these localities is important. For this purpose, data from terrestrial measurement or thermal infrared images are used. Subsurface coal fires monitored by terrestrial measurement by contact thermometers are time-consuming and dangerous because of landslides. That is a reason why coal fires are mostly monitored by thermal infrared images through remote sensing, i.e. satellite-borne or airborne data, which is much more suitable for thermal activity monitoring. The satellite data do not have sufficient geometric resolution (60 - 120m per pixel, aerial thermal data are accurate, but expensive. Unmanned aerial vehicles (UAV or better RPAS - remotely piloted aircraft systems can be solution – thermal images obtained by RPAS have good geometric resolution and can be used for small areas only and our case project areas are not so big. From economic point of view, low cost technology is preferred. The article describes opportunities of low-cost thermal infrared data, the use of RPAS (mapping by Microkopter system in thermal monitoring and photogrammetric tasks (coal heaps such as low cost aerial thermal mapping. The problems of planning and data acquisition are illustrated by creating an orthophoto. Theoretical preparation of data acquisition deals with RPAS Microkopter mission planning and operation. The obtained data are processed by several sets of software specially developed for close range aerial photogrammetry. The outputs are orthophoto images, digital elevation models and thermal map. As a bonus, low-cost aerial methods with small thermal camera are shown.

  6. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  7. The use of a personal digital assistant for dietary self-monitoring does not improve the validity of self-reports of energy intake.

    Science.gov (United States)

    Yon, Bethany Ann; Johnson, Rachel K; Harvey-Berino, Jean; Gold, Beth Casey

    2006-08-01

    Underreporting of energy intake is a pervasive problem and resistant to improvement, especially among people with overweight and obesity. The goal of this study was to investigate whether the use of a personal digital assistant (PDA) for dietary self-monitoring would reduce underreporting prevalence and improve the validity of self-reported energy intake. Adults with overweight and obesity (n=61, 92% women, mean age 48.2 years, mean body mass index 32.3) were provided with a PalmZire 21 (Palm, Inc, Sunnyvale, CA) loaded with Calorie King's Diet Diary software (version 3.2.2, 2002, Family Health Network, Costa Mesa, CA). Subjects participated in a 24-week in-person behavioral weight control program and were asked to self-monitor their diet and exercise habits using the PDA. Basal metabolic rate and physical activity level were estimated at baseline. Energy intake from 7-day electronic food records were collected within the first month of the weight-control program. As subjects were actively losing weight, Bandini's adjustments were used to correct self-reported energy intake for weight loss. In this group, where 41% of the subjects were categorized as low-energy reporters, the use of a PDA did not improve validity of energy reporting when compared to what is reported in the literature.

  8. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    OpenAIRE

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a tempera...

  9. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  10. Digital monitoring of mycelium growth kinetics and vigor of shiitake (Lentinula edodes (Berk. Pegler on agar medium Monitoramento digital do crescimento e vigor do shiitake (Lentinula edodes (Berk. Pegler em meio de cultura

    Directory of Open Access Journals (Sweden)

    Renato Mamede de Castro Montini

    2006-03-01

    Full Text Available The mycelium growth kinetics and vigor of shiitake (Lentinula edodes (Berk. Pegler strains LE 96/17, LE 98/51, LE 98/53, and LE 98/56 were studied under different agar medium compositions. The strains were from the mycological collection of the Módulo de Cogumelos, Faculdade de Ciências Agronômicas, Unesp-Botucatu, Brazil. Mycelium fragments from stock cultures were transferred to Petri dishes with Sawdust extract-Dextrose-Agar medium. The area of growth and vigor (density of the mycelia were daily recorded with a digital camera, during incubation, until the complete colonization of the Petri dish. The images were analyzed by the freeware UTHSCSA ImageTool, v. 2.0, developed by the University of Texas Health Science Center, San Antonio. The kinetics of mycelium growth, as measured by the mycelium area (mm², has as a deterministic component an exponential function of Gompertz. The vigor, as evaluated by mycelium color in gray scale, was similar for all strains, reached a maximal value between the 4th and 5th day of incubation and decreased further on. The velocity of growth of L. edodes strains was lower in enriched culture media, while vigor was higher. Digital monitoring permits a objective evaluation of the growth kinetics of L. edodes in vitro.Avaliou-se o crescimento e vigor das linhagens LE 96/17, LE 98/51, LE 98/53 e LE 98/56 de Lentinula edodes (Berk Pegler em diferentes composições de meio de cultura. As linhagens foram provenientes da Micoteca do Módulo de Cogumelos da Faculdade de Ciências Agronômicas, Unesp, Campus de Botucatu. Os isolados foram obtidos por propagação vegetativa, pela transferência asséptica do micélio para o meio de cultura de extrato de serragem-dextrose-ágar. O crescimento e vigor do micélio foi fotografado diariamente com uma câmera digital, durante a incubação, até a colonização total da placa de Petri. As imagens foram analisadas pelo programa UTHSCSA ImageTool (freeware, versão 2

  11. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  12. Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation.

    Science.gov (United States)

    Moriura, Nobuyuki; Matsuda, Yoshinori; Oichi, Wataru; Nakashima, Shinya; Hirai, Tatsuo; Sameshima, Takeshi; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Higashi, Katsuhide; Toyoda, Hideyoshi

    2006-01-01

    Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.

  13. Digital security technology simplified.

    Science.gov (United States)

    Scaglione, Bernard J

    2007-01-01

    Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.

  14. Monitoring the restoration of interfacial contact for self healing thermal interface materials for LED and microelectronic applications

    NARCIS (Netherlands)

    Lafont, U.L.; Van Zeijl, H.W.; Van der Zwaag, S.

    2013-01-01

    While conventional self healing materials focus on the restoration of mechanical properties, newer generations of self healing materials focus on the restoration of other functional (i.e. non-mechanical) properties. Thermal conductivity is an example of an important functional property of a Thermal

  15. Long-term thermal two- and three-dimensional analysis of roller compacted concrete dams supported by monitoring verification

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanovic, V.; Savic, L. [Belgrade Univ. (Serbia). Faculty of Civil Engineering; Stefanakos, J. [National Technical Univ. of Athens (Greece). Dept. of Water Resources and Environmental Engineering

    2010-04-15

    This study investigated the long-term thermal-field evolution of roller compacted concrete (RCC) dams. Thermal computational analyses of the dams are needed as a result of the layer-based construction technologies used to build the dams. Two-dimensional (2-D) and 3-D unsteady phased models of the RCC dams were used to determine the time evolution of thermal field in a dam based on the Platanovryssi dam in Greece. The finite element method (FEM) was used to account for the dam geometry, different types of concrete used; actual initial and boundary conditions; the thermal and mechanical properties of the dam as a function of aging and temperature; and the RCC construction technology. The influence of all the parameters on the thermal behaviour of the RCC gravity dam was analyzed. Results of the study showed that the 2-D model accurately described the RCC dam thermal field. The thermal behaviour of the dam was influenced primarily by the thermal properties of the mixture and the boundary conditions. Variations of layer thickness did not significantly influence the temperature field. 18 refs., 3 tabs., 10 figs.

  16. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  17. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  18. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  19. An investigation of thermal anomalies in the Central American volcanic chain and evaluation of the utility of thermal anomaly monitoring in the prediction of volcanic eruptions. [Central America

    Science.gov (United States)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1975-01-01

    The author has identified the following significant results. Ground truth data collection proves that significant anomalies exist at 13 volcanoes within the test site of Central America. The dimensions and temperature contrast of these ten anomalies are large enough to be detected by the Skylab 192 instrument. The dimensions and intensity of thermal anomalies have changed at most of these volcanoes during the Skylab mission.

  20. Polycrystalline semiconductor probes for monitoring the density distribution of an intense thermal neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Graul, J.; Mueller, R.G.; Wagner, E.

    1975-05-01

    The applicability of semiconductor detectors for high thermal neutron flux densities is theoretically estimated and experimentally examined. For good thermal stability and low radiation capture rate silicon carbide is used as semiconductor material, produced in polycristalline layers to achieve high radiation resistance. The relations between crystallinity, photoelectric sensitivity and radiation resistance are shown. The radiation resistance of polycrystalline SiC-probes is approximately 100 times greater than that of conventional single crystal radiation detectors. For thermal neutron measurement they can be used in the flux range of approx. 10 10 13 (cm -2 sec -1 ) with operation times of 1.6 a >= tsub(b,max) >= 30 d, resp. (orig.) [de

  1. Methodology for monitoring and automated diagnosis of ball bearing using para consistent logic, wavelet transform and digital signal processing

    International Nuclear Information System (INIS)

    Masotti, Paulo Henrique Ferraz

    2006-01-01

    The monitoring and diagnosis area is presenting an impressive development in recent years with the introduction of new diagnosis techniques as well as with the use the computers in the processing of the information and of the diagnosis techniques. The contribution of the artificial intelligence in the automation of the defect diagnosis is developing continually and the growing automation in the industry meets this new techniques. In the nuclear area, the growing concern with the safety in the facilities requires more effective techniques that have been sought to increase the safety level. Some nuclear power stations have already installed in some machines, sensors that allow the verification of their operational conditions. In this way, the present work can also collaborate in this area, helping in the diagnosis of the operational condition of the machines. This work presents a new technique for characteristic extraction based on the Zero Crossing of Wavelet Transform, contributing with the development of this dynamic area. The technique of artificial intelligence was used in this work the Paraconsistent Logic of Annotation with Two values (LPA2v), contributing with the automation of the diagnosis of defects, because this logic can deal with contradictory results that the techniques of feature extraction can present. This work also concentrated on the identification of defects in its initial phase trying to use accelerometers, because they are robust sensors, of low cost and can be easily found the industry in general. The results obtained in this work were accomplished through the use of an experimental database, and it was observed that the results of diagnoses of defects shown good results for defects in their initial phase. (author)

  2. Surface temperature monitoring by integrating satellite data and ground thermal camera network on Solfatara Crater in Campi Flegrei volcanic area (Italy)

    Science.gov (United States)

    Buongiorno, M. F.; Musacchio, M.; Silvestri, M.; Vilardo, G.; Sansivero, F.; caPUTO, T.; bellucci Sessa, E.; Pieri, D. C.

    2017-12-01

    Current satellite missions providing imagery in the TIR region at high spatial resolution offer the possibility to estimate the surface temperature in volcanic area contributing in understanding the ongoing phenomena to mitigate the volcanic risk when population are exposed. The Campi Flegrei volcanic area (Italy) is part of the Napolitan volcanic district and its monitored by INGV ground networks including thermal cameras. TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR data is 100 m for LANDSAT8 and 90 m for ASTER, temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV for long-term volcanic surveillance of the Flegrei Fields through the acquisition of thermal infrared images. The system is currently comprised of 5 permanent stations equipped with FLIR A645SC thermo cameras with a 640x480 resolution IR sensor. To improve the systematic use of satellite data in the monitor procedures of Volcanic Observatories a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally correspond to views of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been

  3. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    Science.gov (United States)

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  4. Extensive feedwater quality control and monitoring concept for preventing chemistry-related failures of boiler tubes in a subcritical thermal power plant

    International Nuclear Information System (INIS)

    Vidojkovic, Sonja; Onjia, Antonije; Matovic, Branko; Grahovac, Nebojsa; Maksimovic, Vesna; Nastasovic, Aleksandra

    2013-01-01

    Prevention and minimizing corrosion processes on steam generating equipment is highly important in the thermal power industry. The maintenance of feedwater quality at a level corresponding to the standards of technological designing, followed by timely respond to the fluctuation of measured parameters, has a decisive role in corrosion prevention. In this study, the comprehensive chemical control of feedwater quality in 210 MW Thermal Power Plant (TPP) was carried out in order to evaluate its potentiality to assure reliable function of the boiler and discover possible irregularity that might be responsible for frequent boiler tube failures. Sensitive on-line and off-line analytical instruments were used for measuring key and diagnostic parameters considered to be crucial for boiler safety and performances. Obtained results provided evidences for exceeded levels of oxygen, silica, sodium, chloride, sulfate, copper, and conductivity what distinctly demonstrated necessity of feedwater control improvement. Consequently, more effective feedwater quality monitoring concept was recommended. In this paper, the explanation of presumable root causes of corrosive contaminants was given including basic directions for their maintenance in proscribed limits. -- Highlights: • Feedwater quality monitoring practice in a thermal power plant has been evaluated. • The more efficient feedwater quality control have been applied. • Analysis of feedwater quality parameters has been performed. • Exceeded levels of corrosive contaminants were found. • Recommendations for their maintenance at proscribed values were given

  5. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  6. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  7. A mobile device-based imaging spectrometer for environmental monitoring by attaching a lightweight small module to a commercial digital camera.

    Science.gov (United States)

    Cai, Fuhong; Lu, Wen; Shi, Wuxiong; He, Sailing

    2017-11-15

    Spatially-explicit data are essential for remote sensing of ecological phenomena. Lately, recent innovations in mobile device platforms have led to an upsurge in on-site rapid detection. For instance, CMOS chips in smart phones and digital cameras serve as excellent sensors for scientific research. In this paper, a mobile device-based imaging spectrometer module (weighing about 99 g) is developed and equipped on a Single Lens Reflex camera. Utilizing this lightweight module, as well as commonly used photographic equipment, we demonstrate its utility through a series of on-site multispectral imaging, including ocean (or lake) water-color sensing and plant reflectance measurement. Based on the experiments we obtain 3D spectral image cubes, which can be further analyzed for environmental monitoring. Moreover, our system can be applied to many kinds of cameras, e.g., aerial camera and underwater camera. Therefore, any camera can be upgraded to an imaging spectrometer with the help of our miniaturized module. We believe it has the potential to become a versatile tool for on-site investigation into many applications.

  8. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  9. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  10. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    Science.gov (United States)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal

  11. Photoacoustic Monitoring of Internal Plastification in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate Copolymers: Measurements of Thermal Parameters

    Directory of Open Access Journals (Sweden)

    Sanchez Ruben R.

    1999-01-01

    Full Text Available Basic data on thermophysical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate copolymers poly(3HB-co-3HV were investigated with the aim of understanding the role of 3-hydroxyvalerate monomeric units (3HV incorporated during random copolymerization. The results show strong evidence that internal plastification is produced by the introduction of 3HV units in the copolymer. It was observed that copolymer thermal conductivity increased approximately linearly with the 3HV content. On the other hand, thermal diffusivity was very sensitive to the change in the copolymer composition showing a sudden rise that attained a saturation plateau. Amplitude-frequency plots indicate that a thermoelastic bending mechanism is operating. In this paper a new photoacoustic arrangement for the measurement of thermal effusivity is presented.

  12. Permafrost in vegetated scree slopes below the timberline - characterization of thermal properties and permafrost conditions by temperature measurements and geoelectrical monitoring

    Science.gov (United States)

    Schwindt, Daniel; Kneisel, Christof

    2010-05-01

    Discontinuous alpine permafrost is expected to exist at altitudes above 2400m a.s.l. at mean annual air temperatures (MAAT) of less than -1°C. Below timberline only a few sites are known, where sporadic permafrost exists in vegetated talus slopes with positive MAAT. Aim of the study is to characterize permafrost-humus interaction, the thermal regime and its influence on temporal and spatial permafrost variability. Results of geophysical and thermal measurements from three talus slopes, located in the Swiss Alps (Engadin, Appenzell) at elevations between 1200 and 1800m a.s.l. with MAAT between 2.8°C and 5.5°C are presented. Parent rock-material of the slopes are granite (Bever Valley, Engadin) and dolomite (Susauna Valley, Engadin; Brüeltobel, Appenzell). Joint application of electrical resistivity tomography (ERT) and refraction seismic tomography (RST) is used to detect and characterize permafrost. To observe temporal and spatial variability in ice content and characteristics year-around geoelectrical monitoring and quasi-3D ERT are used. A forward modeling approach has been applied to validate the results of geoelectrical monitoring. A number of temperature data loggers were installed in different depth of the humus layer and in different positions of the slope to monitor the ground thermal regime. Isolated permafrost has been detected by the combination of ERT and RST in the lower parts of the investigated talus slopes. Results from geophysical measurements and monitoring indicate a high spatial and temporal variability in ice content and ice characteristics (temperature, density, content of unfrozen water) for all sites. A distinct rise of resistivities between November and December indicates a decrease of unfrozen water content, caused by a pronounced cooling in the lower parts of the slope. Decreasing ice content and extent of the permafrost lenses can be observed in decreasing seismic velocities from 2600m/sec in spring to only 1500m/sec in October. Ice

  13. Assessment of core protection and monitoring systems for an advanced reactor SMART

    International Nuclear Information System (INIS)

    In, Wang Kee; Hwang, Dae Hyun; Yoo, Yeon Jong; Zee, Sung Qunn

    2002-01-01

    Analogue and digital core protection/monitoring systems were assessed for the implementation in an advanced reactor. The core thermal margins to nuclear fuel design limits (departure from nucleate boiling and fuel centerline melting) were estimated using the design data for a commercial pressurized water reactor and an advanced reactor. The digital protection system resulted in a greater power margin to the fuel centerline melting by at least 30% of rated power for both commercial and advanced reactors. The DNB margin with the digital system is also higher than that for the analogue system by 8 and 12.1% of rated power for commercial and advanced reactors, respectively. The margin gain with the digital system is largely due to the on-line calculations of DNB ratio and peak local power density from the live sensor signals. The digital core protection and monitoring systems are, therefore, believed to be more appropriate for the advanced reactor

  14. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-09-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  15. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-01-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  16. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  17. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  18. SHDAS Production Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production digitizers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the digitizers is being conducted at Delta Group Electronics, the digitizer fabricator, in San Diego, California, performed by Sandia National Laboratories with the assistance of Leidos and Delta Group Electronics.

  19. Heat flux-based strategies for the thermal monitoring of sub-fumarolic areas: Examples from Vulcano and La Soufrière de Guadeloupe

    Science.gov (United States)

    Gaudin, Damien; Ricci, Tullio; Finizola, Anthony; Delcher, Eric; Alparone, Salvatore; Barde-Cabusson, Stéphanie; Brothelande, Elodie; Di Gangi, Fabio; Gambino, Salvatore; Inguaggiato, Salvatore; Milluzzo, Vincenzo; Peltier, Aline; Vita, Fabio

    2017-09-01

    Although it is relatively easy to set-up, the monitoring of soil temperature in sub-fumarolic areas is quite rarely used to monitor the evolution of hydrothermal systems. Indeed, measurements are highly sensitive to environmental conditions, in particular daily and seasonal variations of atmospheric temperatures and rainfalls, which can be only partially filtered by the established statistical analysis. In this paper, we develop two innovative processing methods, both based on the computation of the heat flux in the soil. The upward heat flux method (UHF), designed for dry environments, consists in computing both the conductive and convective components of the heat flux between two thermocouples placed vertically. In the cases of wet environments, the excess of total heat method (ETH) allows the integration of rain gauges data in order to correct the heat balance from the superficial cooling effect of the precipitations. The performances of both processing techniques are faced to established methods (temperature gradient and coefficient of determination) on soil temperature time series from two test volcanoes. At La Fossa di Vulcano (Italy), the UHF method undoubtedly detects three thermal crises between 2009 and 2012, enabling to quantify not only the intensity but also the precise timing of the heat flux increase with respect to corresponding geochemical and seismic crises. At La Soufrière de Guadeloupe (French Lesser Antilles), despite large rainfalls dramatically influencing the thermal behavior of the soil, a constant geothermal heat flux is retrieved by the ETH method, confirming the absence of fumarolic crisis during the observation period (February-August 2010). Being quantitative, robust, and usable in almost any context of sub-fumarolic zones, our two heat flux-based methods increase the potential of soil temperature for the monitoring, but also the general interpretation of fumarolic crises together with geochemical and seismological observations. A

  20. Integrated Digital Platform for the Valorization of a Cultural Landscape

    Science.gov (United States)

    Angheluţǎ, L. M.; Ratoiu, L.; Chelmus, A. I.; Rǎdvan, R.; Petculescu, A.

    2017-05-01

    This paper presents a newly started demonstrative project regarding the implementation and validation of an interdisciplinary research model for the Aluniş-Bozioru (Romania) cultural landscape, with the development of an online interactive digital product. This digital product would provide complementary data about the historical monuments and their environment, and also, constant updates and statistical comparison in order to generate an accurate evaluation of the state of conservation for this specific cultural landscape. Furthermore, the resulted information will contribute in the decision making process for the regional development policies. The project is developed by an interdisciplinary joint team of researchers consisted of technical scientists with great experience in advanced non-invasive characterization of the cultural heritage (NIRD for Optoelectronics - INOE 2000) and a group of experts from geology and biology (Romanian Academy's "Emil Racoviţǎ" Institute of Speleology - ISER). Resulted scientific data will include: 3D digital models of the selected historical monuments, microclimate monitoring, Ground Penetrating Radar survey, airborne LIDAR, multispectral and thermal imaging, soil and rock characterization, environmental studies. This digital product is constituted by an intuitive website with a database that allows data corroboration, visualization and comparison of the 3D digital models, as well as a digital mapping in the GIS system.

  1. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    International Nuclear Information System (INIS)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W.; Laumonier, Herve; Trillaud, Herve; Seror, Olivier; Sesay, Musa-Bahazid; Grenier, Nicolas

    2010-01-01

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  2. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W. [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Laumonier, Herve; Trillaud, Herve [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Saint-Andre, CHU Bordeaux, Bordeaux (France); Seror, Olivier [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Jean Verdier, Bondy (France); Sesay, Musa-Bahazid [Service d' Anesthesie Reanimation III, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France); Grenier, Nicolas [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France)

    2010-01-15

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  3. Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring

    Science.gov (United States)

    2012-01-01

    3000 4000 5000 −20 0 20 I ( C − ra te ) 0 1000 2000 3000 4000 5000 20 40 60 T c (o C ) 0 1000 2000 3000 4000 5000 6 8 10 12 14 t (s) R e (m Ω...battery systems,” J. Electrochem. Soc., vol. 132, pp. 5–12, 1985. [8] C. Forgez, D. V. Do, G. Friedrich , M. Morcrette, and C. Delacourt, “Thermal modeling...Automotive Research Center at the University of Michigan. She was an assistant professor (1998-2000) at the Uni- versity of California, Santa Barbara

  4. Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): digital still images from transects on Maui, Molokai, and Kauai, 2007 (NODC Accession 0056791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of digital still transect images (JPG files) from CRAMP surveys taken in 2007 from 9 sites on Maui, 3 sites on Molokai, and 1 site on Kauai....

  5. Model-based optimal monitoring as a design tool for thermal management functions; Modellbasierte Optimalsteuerung als Auslegungswerkzeug fuer Thermomanagementfunktionen

    Energy Technology Data Exchange (ETDEWEB)

    Appelt, Christian; Kaeppner, Christoph [Volkswagen AG, Wolfsburg (Germany)

    2012-11-01

    Increasing vehicle and environmental sensoring leads to further improvement of situational control strategies. In case of optimal control, the energy efficiency of the entire vehicle can benefit. However, a truly optimal control often results from a hardware demanding real-time optimization process, which typically cannot be provided by vehicle control units. This article describes a method to support the process of parameter application and function development in the field of thermal management. A heat storage prototype system is used to demonstrate a model based optimal control for a fuel efficient heat flow into the transmission and the combustion engine. Instead of designing an evitable optimal control function and fitting its parameters with a series of vehicle tests, a physically based thermal drivetrain model is used. Due to the model's highly multiple real-time capability, the global optimal dynamic programming method generates a control trajectory depending on the defined environmental conditions. Simpler control patterns are then developed by analyzing these trajectories and by identifying their cause of action. The resulting control strategy is tested by measuring the fuel saving potential on a roller test bench. (orig.)

  6. Real-time monitoring of initial thermal oxidation on Si(001) surfaces by synchrotron radiation photoemission spectroscopy

    CERN Document Server

    Yoshigoe, A; Teraoka, Y

    2003-01-01

    The thermal oxidation of Si(001) surfaces at 860 K, 895 K, 945 K and 1000 K under the O sub 2 pressure of 1 x 10 sup - sup 4 Pa has been investigated by time-resolved photoemission measurements with synchrotron radiation. Based on time evolution analyses by reaction kinetics models, it was found that the oxidation at 860 K, 895 K and 945 K has progressed with the Langmuir adsorption type, whereas the oxidation at 1000 K has showed the character of the two-dimensional island growth involving SiO desorption. The oxidation rates increases with increasing surface temperature in the passive oxidation condition. The time evolution of each Si oxidation state (Si sup n sup + : n = 1, 2, 3, 4) derived from the Si-2p core-level shifts has also been analyzed. The results revealed that the thermal energy contribution to the migration process of the adsorbed oxygen and the emission of the bulk silicon atoms. Thus, the fraction of the Si sup 4 sup + bonding state, i.e. SiO sub 2 structure, was increased. (author)

  7. Digital radiography

    International Nuclear Information System (INIS)

    Brody, W.R.

    1984-01-01

    Digital Radiography begins with an orderly introduction to the fundamental concepts of digital imaging. The entire X-ray digital imagining system is described, from an overall characterization of image quality to specific components required for a digital radiographic system. Because subtraction is central to digital radiographic systems, the author details the use of various subtraction methods for image enhancement. Complex concepts are illustrated with numerous examples and presented in terms that can readily be understood by physicians without an advanced mathematics background. The second part of the book discusses implementations and applications of digital imagining systems based on area and scanned detector technologies. This section includes thorough coverage of digital fluoroscopy, scanned projection radiography, and film-based digital imaging systems, and features a state-of-the-art synopsis of the applications of digital subtraction angiography. The book concludes with a timely assessment of anticipated technological advances

  8. Digital intelligence sources transporter

    International Nuclear Information System (INIS)

    Zhang Zhen; Wang Renbo

    2011-01-01

    It presents from the collection of particle-ray counting, infrared data communication, real-time monitoring and alarming, GPRS and other issues start to realize the digital management of radioactive sources, complete the real-time monitoring of all aspects, include the storing of radioactive sources, transporting and using, framing intelligent radioactive sources transporter, as a result, achieving reliable security supervision of radioactive sources. (authors)

  9. Digital Culture and Digital Library

    Directory of Open Access Journals (Sweden)

    Yalçın Yalçınkaya

    2016-12-01

    Full Text Available In this study; digital culture and digital library which have a vital connection with each other are examined together. The content of the research consists of the interaction of culture, information, digital culture, intellectual technologies, and digital library concepts. The study is an entry work to integrity of digital culture and digital library theories and aims to expand the symmetry. The purpose of the study is to emphasize the relation between the digital culture and digital library theories acting intersection of the subjects that are examined. Also the perspective of the study is based on examining the literature and analytical evaluation in both studies (digital culture and digital library. Within this context, the methodology of the study is essentially descriptive and has an attribute for the transmission and synthesis of distributed findings produced in the field of the research. According to the findings of the study results, digital culture is an inclusive term that describes the effects of intellectual technologies in the field of information and communication. Information becomes energy and the spectrum of the information is expanding in the vertical rise through the digital culture. In this context, the digital library appears as a new living space of a new environment. In essence, the digital library is information-oriented; has intellectual technology support and digital platform; is in a digital format; combines information resources and tools in relationship/communication/cooperation by connectedness, and also it is the dynamic face of the digital culture in time and space independence. Resolved with the study is that the digital libraries are active and effective in the formation of global knowing and/or mass wisdom in the process of digital culture.

  10. Development of elements of the condition monitoring system of turbo generators of thermal power stations and nuclear power plants

    Science.gov (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.

    2017-08-01

    The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing

  11. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro

    2012-02-01

    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  12. In situ monitoring of thermal crystallization of ultrathin tris(8-hydroxyquinoline) aluminum films using surface-enhanced Raman scattering.

    Science.gov (United States)

    Muraki, Naoki

    2014-01-01

    Thermal crystallization of 3, 10, and 60 nm-thick tris(8-hydroxyquinoline)aluminum (Alq3) films is studied using surface-enhanced Raman scattering with a constant heating rate. An abrupt higher frequency shift of the quinoline-stretching mode is found to be an indication of a phase transition of Alq3 molecules from amorphous to crystalline. While the 60 nm-thick film shows the same crystallization temperature as a bulk sample, the thinner films were found to have a lower crystallization temperature and slower rate of crystallization. Non-isothermal kinetics analysis is performed to quantify kinetic properties such as the Avrami exponent constants and crystallization rates of ultrathin Alq3 films.

  13. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    Science.gov (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  14. Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: Thermal stability, conductivity and antimicrobial properties

    Science.gov (United States)

    Yılmaz Baran, Nuray; Saçak, Mehmet

    2017-10-01

    A novel Schiff base polymer containing phenol group, Poly(3-[[4-(dimethylamino)benzylidene]amino]phenol) P(3-DBAP), was prepared by oxidative polycondensation reaction of 3-[[4-(dimethylamino)benzylidene]amino]phenol (3-DBAP) using NaOCl, H2O2, O2 oxidants in aqueous alkaline medium. Yield and molecular weight distribution of P(3-DBAP) were monitored depending on oxidant types and concentration, monomer concentration and as well as polymerization temperature and time. UV-Vis, FTIR and 1HNMR techniques were used to identify the structures of Schiff base monomer and polymer. Thermal behavior of P(3-DBAP), which was determined to be thermally stable up to 1200 °C via TG-DTG techniques, was illuminated by Thermo-IR spectra recorded in the temperature range of 25-800 °C. It was determined that the electrical conductivity value of the P(3-DBAP) increased 108 fold after doped with iodine for 24 h at 60 °C according to undoped form and it was measured 4.6 × 10-4 S/cm. Also, antibacterial and antifungal activities of the monomer and polymer were assayed against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Feacalis, Klebsiella pneumoniae, Bacillus subtilis bacteria, and Candida albicans, Saccharomyces cerevisiae fungi.

  15. Compact digital NTSC TV signal transmission system using SM optical fibers and its application to operating status monitoring for laser cutting machine; Digital gazo shingo no kan`igata hikari fiber denso system to sono laser cutter no dosa jotai kanshi eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Asada, H. [NEC Shizuoka, Ltd., Shizuoka (Japan); Rabou, N. [University of Helwan, (Egypt); Ikeda, H.; Shimodaira, Y.; Yoshida, H. [Shizuoka University, Shizuoka (Japan)

    1998-02-01

    This paper describes a compact bandwidth-compressed digital NTSC picture code transmission system in which circuit configurations are simplified and made inexpensive. The bandwidth of digital NTSC picture codes is compressed in accordance with subjective evaluation, and so the sampling rate is set at 8.13 MHz (2.28 times fsc) and the quantizing level at 5 bits. The frame bits for detecting the frames of picture elements me generated by alternately generating 1 and 0 when the frames are specified. The proposed system is constructed using edge- emitting LED`s (ELED`s) and single- mode (SM) fibers for transmitting digital NTSC picture codes w m to easily distribute video signals from a video camera to video monitors. The transmitter was 80 times 100mm in size, 120 g in weight, and 1000mw in power dissipation. The receiver was 55 times 120 mm in size, 100g in weight, and 800mw in power dissipation. Using the compact bandwidth-compressed digital NTSC picture code transmission system a shot of the working pice in the laser cutting machine, as an example, was satisfactorily transmitted via SM optical fibers without noses. 18 refs., 12 figs., 2 tabs.

  16. Digital mammography; Mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, M.; Torres, R.

    2010-07-01

    Mammography represents one of the most demanding radiographic applications, simultaneously requiring excellent contrast sensitivity, high spatial resolution, and wide dynamic range. Film/screen is the most widely extended image receptor in mammography due to both its high spatial resolution and contrast. The film/screen limitations are related with its narrow latitude, structural noise and that is at the same time the medium for the image acquisition, storage and presentation. Several digital detector made with different technologies can overcome these difficulties. Here, these technologies as well as their main advantages and disadvantages are analyzed. Also it is discussed its impact on the mammography examinations, mainly on the breast screening programs. (Author).

  17. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  18. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  19. Digital squares

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Kim, Chul E

    1988-01-01

    Digital squares are defined and their geometric properties characterized. A linear time algorithm is presented that considers a convex digital region and determines whether or not it is a digital square. The algorithm also determines the range of the values of the parameter set of its preimages....... The analysis involves transforming the boundary of a digital region into parameter space of slope and y-intercept...

  20. Digital skrivedidaktik

    DEFF Research Database (Denmark)

    Digital skrivedidaktik består af to dele. Første del præsenterer teori om skrivekompetence og digital skrivning. Digital skrivning er karakteriseret ved at tekster skrives på computer og med digitale værktøjer, hvilket ændrer skrivningens traditionelle praksis, produkt og processer. Hvad er digital...... om elevens skriveproces) og Blogskrivning (der styrker eleverne i at bruge blogs i undervisningen)....

  1. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  2. Digital Citizenship

    Science.gov (United States)

    Isman, Aytekin; Canan Gungoren, Ozlem

    2014-01-01

    Era in which we live is known and referred as digital age.In this age technology is rapidly changed and developed. In light of these technological advances in 21st century, schools have the responsibility of training "digital citizen" as well as a good citizen. Digital citizens must have extensive skills, knowledge, Internet and …

  3. Contrast Enhanced Microscopy Digital Image Correlation: A General Method to Contact-Free Coefficient of Thermal Expansion Measurement of Polymer Films

    Science.gov (United States)

    Jairo A. Diaz; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Thermal expansion represents a vital indicator of the processing history and dimensional stability of materials. Solvent-sensitive, thin, and compliant samples are particularly challenging to test. Here we describe how textures highlighted by contrast enhanced optical microscopy modes (i.e., polarized light (PL), phase contrast (PC)) and bright field (BF) can be used...

  4. Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring

    International Nuclear Information System (INIS)

    Talbert, Robert J; Holan, Scott H; Viator, John A

    2007-01-01

    Discriminating viable from thermally coagulated blood in a burn wound can be used to profile burn depth, thus aiding the removal of necrotic tissue. In this study, we used a two-wavelength photoacoustic imaging method to discriminate coagulated and non-coagulated blood in a dermal burn phantom. Differences in the optical absorption spectra of coagulated and non-coagulated blood produce different values of the ratio of peak photoacoustic amplitude at 543 and 633 nm. The absorption values obtained from spectroscopic measurements indicate that the ratio of photoacoustic pressure for 543 and 633 nm for non-coagulated blood was 15.7:1 and 1.6:1 for coagulated blood. Using planar blood layers, we found the photoacoustic ratios to be 13.5:1 and 1.6:1, respectively. Using the differences in the ratios of coagulated and non-coagulated blood, we propose a scheme using statistical classification analysis to identify the different blood samples. Based upon these distinctly different ratios, we identified the planar blood samples with an error rate of 0%. Using a burn phantom with cylindrical vessels containing coagulated and non-coagulated blood, we achieved an error rate of 11.4%. These results have shown that photoacoustic imaging could prove to be a valuable tool in the diagnosis of burns

  5. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    Science.gov (United States)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  6. Digital subtraktion

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder

    2004-01-01

    Digital subtraktion er en metode til at fjerne uønskede oplysninger i et røntgenbillede. Subtraktionsteknikken bruges primært i forbindelse med angiografi hvor man kun er interesseret i at se selve karret. Derfor er digital subtraktion i daglig tale synonymt med DSA eller DVI – hhv. Digital...... Subtraction Angiography eller Digital Vascular Imaging. Benævnelserne er to røntgenfirmaers navn for den samme teknik. Digital subtraktion kræver speciel software, samt at apparaturet kan eksponere i serier....

  7. Digital preservation

    CERN Document Server

    Deegan, Marilyn

    2013-01-01

    Digital preservation is an issue of huge importance to the library and information profession right now. With the widescale adoption of the internet and the rise of the world wide web, the world has been overwhelmed by digital information. Digital data is being produced on a massive scale by individuals and institutions: some of it is born, lives and dies only in digital form, and it is the potential death of this data, with its impact on the preservation of culture, that is the concern of this book. So how can information professionals try to remedy this? Digital preservation is a complex iss

  8. Digital Natives or Digital Tribes?

    Science.gov (United States)

    Watson, Ian Robert

    2013-01-01

    This research builds upon the discourse surrounding digital natives. A literature review into the digital native phenomena was undertaken and found that researchers are beginning to identify the digital native as not one cohesive group but of individuals influenced by other factors. Primary research by means of questionnaire survey of technologies…

  9. CEA SMAD 2016 Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Sandia National Laboratories has tested and evaluated an updated SMAD digitizer, developed by the French Alternative Energies and Atomic Energy Commission (CEA). The SMAD digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMAD digitizers have been updated since their last evaluation by Sandia to improve their performance when recording at a sample rate of 20 Hz for infrasound applications and 100 Hz for hydro-acoustic seismic stations. This evaluation focuses primarily on the 20 Hz and 100 Hz sample rates. The SMAD digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test- Ban-Treaty Organization (CTBTO).

  10. A digital position-indication system for control rods

    International Nuclear Information System (INIS)

    Nishizawa, Yukio; Hayakawa, Toshifumi

    1979-01-01

    Systems that detect and indicate the position of the control rods that regulate the thermal output of a nuclear reactor play a particularly important role in monitoring its operational status. Conventionally, control rod position indication in pressurized water reactors has been of the analog type, utilizing the principle of the differential transformer. The present digital system was developed with the objective of achieving greater stability, greater accuracy, and higher reliability. The article gives a general description of the system and describes its advantages. (author)

  11. Simultaneous validation of the Grandway MD2301 digital automatic blood pressure monitor by the British Hypertension Society and the Association for the Advancement of Medical Instrumentation/the International Organization for Standardization protocols.

    Science.gov (United States)

    Huang, Jinhua; Wang, Yun; Liu, Zhaoying; Wang, Yuling

    2017-02-01

    The aim of this study was to determine the accuracy of the Grandway MD2301 digital automatic blood pressure monitor by the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI)/the International Organization for Standardization (ISO) protocols. A total of 85 participants were included for evaluation based on the requirements of the BHS and the AAMI/ISO protocols. The validation procedure and data analysis followed the protocols precisely. The device achieved A/A grading for the BHS protocol and maintained A/A grading throughout the low, medium and high blood pressure ranges. The device also fulfilled the requirement of the AAMI/ISO protocol with device-observer differences of -0.9±5.6 and 0.8±5.2 mmHg for systolic and diastolic blood pressure, respectively, for criterion 1, and -0.9±4.7 and 0.8±4.2 mmHg, respectively, for criterion 2. The Grandway MD2301 digital automatic blood pressure monitor achieved A/A grade of the BHS protocol and passed the requirements of the AAMI/ISO protocol in adults.

  12. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  13. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    Science.gov (United States)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  14. COBRA - 3C/KFKI: a digital computer program for steady and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements

    International Nuclear Information System (INIS)

    Vigassy, J.; Kovacs, L.M.

    1977-11-01

    COBRA-3C/KFKI is a digital computer program for the CDC-3300 computer in FORTRAN language. The program is a revised version of the original COBRA-3C code. The code calculates steady-state and transient flow and enthalpy transport in rod-bundle nuclear fuel elements in both boiling and nonboiling conditions. The mathematical model is formulated by dividing the bundle flow area into flow subchannels that are assumed to contain one-dimensional flow and are coupled to each other by turbulent and diversion crossflow mixing. The program neglects sonic velocity propagation but allows for a temporal and spatial acceleration of the diversion crossflow in the transverse momentum equation. A semiexplicit finite-difference scheme is used to perform a boundary-value solution where the boundary conditions are the inlet enthalpy, inlet flow rate and exit pressure. (D.P.)

  15. The Change of the Seebeck Coefficient Due to Neutron Irradiation and Thermal Fatigue of Nuclear Reactor Pressure Vessel Steel and its Application to the Monitoring of Material Degradation

    International Nuclear Information System (INIS)

    Niffenegger, M.; Reichlin, K.; Kalkhof, D.

    2002-05-01

    The monitoring of material degradation, that might be caused by neutron irradiation and thermal fatigue, is an important topic in lifetime extension of nuclear power plants. We therefore investigated the application of the Seebeck effect for determining material degradation of common reactor pressure vessel steel. The Seebeck coefficient (SC) of several irradiated Charpy specimens made from Japanese JRQ-steel were measured. The specimens suffered a fluence from 0 up to 4.5 x 10 19 neutrons per cm 2 with energies higher than 1 MeV. The measured changes of the SC within this range were about 500 nV, increasing continuously in the range under investigation. Some indications of saturation appeared at fluencies larger than 4.55 x 10 19 neutrons per cm 2 . We obtained a linear dependency between the SC and the temperature shift ΔT 41 of the Charpy-Energy- Temperature curve which is widely used to characterize material embrittlement. Similar measurements were performed on specimens made from the widely used austenitic steel X6CrNiTi18-10 (according to DIN 1.4541) that were fatigued by applying a cyclic strain amplitude of 0.28%. For this kind of fatigue the observed change of SC was somewhat smaller than for the irradiated specimens. Further investigations were made to quantify the size of the gage volume in which the thermoelectric power is generated. It appeared that the information gathered from a Thermo Electric Power (TEP) measurement is very local. To overcome this problem we propose a novel TEP-method using a Thermoelectric Scanning Microscope (TSM). We finally conclude that the change of the SC has a potential for monitoring of material degradation due to neutron irradiation and thermal fatigue, but it has to be taken into account that several influencing parameters could contribute to the TEP in either an additional or extinguishing manner. A disadvantage of the method is the requirement of a clean surface without any oxide layer. A part of this disadvantage can

  16. Digital mammography

    International Nuclear Information System (INIS)

    Bick, Ulrich; Diekmann, Felix

    2010-01-01

    This state-of-the-art reference book provides in-depth coverage of all aspects of digital mammography, including detector technology, image processing, computer-aided diagnosis, soft-copy reading, digital workflow, and PACS. Specific advantages and disadvantages of digital mammography in comparison to screen-film mammography are thoroughly discussed. By including authors from both North America and Europe, the book is able to outline variations in the use, acceptance, and quality assurance of digital mammography between the different countries and screening programs. Advanced imaging techniques and future developments such as contrast mammography and digital breast tomosynthesis are also covered in detail. All of the chapters are written by internationally recognized experts and contain numerous high-quality illustrations. This book will be of great interest both to clinicians who already use or are transitioning to digital mammography and to basic scientists working in the field. (orig.)

  17. Digital Insights

    DEFF Research Database (Denmark)

    Knudsen, Gry Høngsmark

    , by incorporating media as both channel, frame, and apparatus for advertising response, the dissertation brings into attention that more aspects than the text-reader relationship influence ad response. Finally, the dissertation proposes the assemblage approach for exploring big data in consumer culture research...... and practices with digital media, when they meet and interpret advertising. Through studies of advertising response on YouTube and experiments with consumers’ response to digitally manipulated images, the dissertation shows how digital media practices facilitate polysemic and socially embedded advertising......This dissertation forwards the theory of digital consumer-response as a perspective to examine how digital media practices influence consumers’ response to advertising. Digital consumer-response is a development of advertising theory that encompasses how consumers employ their knowledge...

  18. Apollo telescope mount thermal systems unit thermal vacuum test

    Science.gov (United States)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  19. Apple Fruit Diameter and Length Estimation by Using the Thermal and Sunshine Hours Approach and Its Application to the Digital Orchard Management Information System

    OpenAIRE

    Li, Ming; Chen, Meixiang; Zhang, Yong; Fu, Chunxia; Xing, Bin; Li, Wenyong; Qian, Jianping; Li, Sha; Wang, Hui; Fan, Xiaodan; Yan, Yujing; Wang, Yan?an; Yang, Xinting

    2015-01-01

    In apple cultivation, simulation models may be used to monitor fruit size during the growth and development process to predict production levels and to optimize fruit quality. Here, Fuji apples cultivated in spindle-type systems were used as the model crop. Apple size was measured during the growing period at an interval of about 20 days after full bloom, with three weather stations being used to collect orchard temperature and solar radiation data at different sites. Furthermore, a 2-year da...

  20. Digital Signage

    OpenAIRE

    Fischer, Karl Peter

    2011-01-01

    Digital Signage for in-store advertising at gas stations/retail stores in Germany: A field study Digital Signage networks provide a novel means of advertising with the advantage of easily changeable and highly customizable animated content. Despite the potential and increasing use of these media empirical research is scarce. In a field study at 8 gas stations (with integrated convenience stores) we studied the effect of digital signage advertising on sales for different products and servi...

  1. Sports Digitalization

    DEFF Research Database (Denmark)

    Xiao, Xiao; Hedman, Jonas; Tan, Felix Ter Chian

    2017-01-01

    evolution, as digital technologies are increasingly entrenched in a wide range of sporting activities and for applications beyond mere performance enhancement. Despite such trends, research on sports digitalization in the IS discipline is surprisingly still nascent. This paper aims at establishing...... a discourse on sports digitalization within the discipline. Toward this, we first provide an understanding of the institutional characteristics of the sports industry, establishing its theoretical importance and relevance in our discipline; second, we reveal the latest trends of digitalization in the sports...

  2. Digital printing

    Science.gov (United States)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  3. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  4. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  5. The Integration of a Small Thermal Desorption (TD) System for Air Monitoring into a Mobile Analytical Laboratory in France Used by the NRBC Emergency First Responder Police Organization

    International Nuclear Information System (INIS)

    Roberts, G. M.

    2007-01-01

    A mobile analytical laboratory has been developed in France by Thales Security Systems in conjunction with the French department of defense (DGA) to rapidly identify the composition of toxic substances released accidentally or by terrorist activity at a location of high civilian population density. Accurate and fast identification of toxic material is critical for first responder teams that attend an incident site. Based on this analysis defined decontamination protocols for contaminated people can be implemented, and specific medical treatment can be administered to those worst affected. Analysing samples with high technology instrumentation close to the point of release is therefore highly advantageous and is only possible with mobile analytical platforms. Transporting samples back to a central laboratory for analysis is not realistic due to time limitations. This paper looks at one particular aspect of analysis performed in this mobile multi-technique laboratory namely air monitoring for CW or TIC compounds. Air sampling and pre concentration is achieved using a small, innovative Thermal Desorption system (Unitytm) in combination with a gas chromatograph-mass spectroscopy system for the detection and identification of specific analytes. Implementation of the Unity TD system in the confines of this small mobile environment will be reviewed in this paper. (author)

  6. Airborne digital-image data for monitoring the Colorado River corridor below Glen Canyon Dam, Arizona, 2009 - Image-mosaic production and comparison with 2002 and 2005 image mosaics

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    Airborne digital-image data were collected for the Arizona part of the Colorado River ecosystem below Glen Canyon Dam in 2009. These four-band image data are similar in wavelength band (blue, green, red, and near infrared) and spatial resolution (20 centimeters) to image collections of the river corridor in 2002 and 2005. These periodic image collections are used by the Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey to monitor the effects of Glen Canyon Dam operations on the downstream ecosystem. The 2009 collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits, unlike the image sensors that GCMRC used in 2002 and 2005. This study examined the performance of the SH52 sensor, on the basis of the collected image data, and determined that the SH52 sensor provided superior data relative to the previously employed sensors (that is, an early ADS40 model and Zeiss Imaging's Digital Mapping Camera) in terms of band-image registration, dynamic range, saturation, linearity to ground reflectance, and noise level. The 2009 image data were provided as orthorectified segments of each flightline to constrain the size of the image files; each river segment was covered by 5 to 6 overlapping, linear flightlines. Most flightline images for each river segment had some surface-smear defects and some river segments had cloud shadows, but these two conditions did not generally coincide in the majority of the overlapping flightlines for a particular river segment. Therefore, the final image mosaic for the 450-kilometer (km)-long river corridor required careful selection and editing of numerous flightline segments (a total of 513 segments, each 3.2 km long) to minimize surface defects and cloud shadows. The final image mosaic has a total of only 3 km of surface defects. The final image mosaic for the western end of the corridor has

  7. Digital Audiobooks

    DEFF Research Database (Denmark)

    Have, Iben; Pedersen, Birgitte Stougaard

    Audiobooks are rapidly gaining popularity with widely accessible digital downloading and streaming services. The paper is framing how the digital audiobook expands and changes the target groups for book publications and how it as an everyday activity is creating new reading experiences, places...

  8. Digital TMI

    Science.gov (United States)

    Rios, Joseph

    2012-01-01

    Presenting the current status of the Digital TMI project to visiting members of the FAA Command Center. Digital TMI is an effort to store national-level traffic management initiatives in a standards-compliant manner. Work is funded by the FAA.

  9. Use of thermal infrared imaging for monitoring renewed dome growth at Mount St. Helens, 2004: Chapter 17 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    Science.gov (United States)

    Schneider, David J.; Vallance, James W.; Wessels, Rick L.; Logan, Matthew; Ramsey, Michael S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    A helicopter-mounted thermal imaging radiometer documented the explosive vent-clearing and effusive phases of the eruption of Mount St. Helens in 2004. A gyrostabilized gimbal controlled by a crew member housed the radiometer and an optical video camera attached to the nose of the helicopter. Since October 1, 2004, the system has provided thermal and video observations of dome growth. Flights conducted as frequently as twice daily during the initial month of the eruption monitored rapid changes in the crater and 1980-86 lava dome. Thermal monitoring decreased to several times per week once dome extrusion began. The thermal imaging system provided unique observations, including timely recognition that the early explosive phase was phreatic, location of structures controlling thermal emissions and active faults, detection of increased heat flow prior to the extrusion of lava, and recognition of new lava extrusion. The first spines, 1 and 2, were hotter when they emerged (maximum temperature 700-730°C) than subsequent spines insulated by as much as several meters of fault gouge. Temperature of gouge-covered spines was about 200°C where they emerged from the vent, and it decreased rapidly with distance from the vent. The hottest parts of these spines were as high as 500-730°C in fractured and broken-up regions. Such temperature variation needs to be accounted for in the retrieval of eruption parameters using satellite-based techniques, as such features are smaller than pixels in satellite images.

  10. Digital displacements

    DEFF Research Database (Denmark)

    Pors, Anja Svejgaard

    2014-01-01

    In recent years digital reforms are being introduced in the municipal landscape of Denmark. The reforms address the interaction between citizen and local authority. The aim is, that by 2015 at least 80 per cent of all correspondence between citizens and public authority will be transmitted through...... digital interface. However, the transformation of citizen services from traditional face-to-face interaction to digital self-service gives rise to new practices; some citizens need support to be able to manage self-service through digital tools. A mixture of support and teaching, named co......-service, is a new task in public administration, where street level bureaucrats assist citizens in using the new digital solutions. The paper is based on a case study conducted primarily in a citizen service centre in Copenhagen, Denmark. Based on ethnography the paper gives an empirical account of the ongoing...

  11. Digitized mammograms

    International Nuclear Information System (INIS)

    Bruneton, J.N.; Balu-Maestro, C.; Rogopoulos, A.; Chauvel, C.; Geoffray, A.

    1988-01-01

    Two observers conducted a blind evaluation of 100 mammography files, including 47 malignant cases. Films were read both before and after image digitization at 50 μm and 100 μm with the FilmDRSII. Digitization permitted better analysis of the normal anatomic structures and moderately improved diagnostic sensitivity. Searches for microcalcifications before and after digitization at 100 μm and 50 μm showed better analysis of anatomic structures after digitization (especially for solitary microcalcifications). The diagnostic benefit, with discovery of clustered microcalcifications, was more limited (one case at 100 μm, nine cases at 50 μm). Recognition of microcalcifications was clearly improved in dense breasts, which can benefit from reinterpretation after digitization at 50 μm rather 100μm

  12. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging

    Directory of Open Access Journals (Sweden)

    Tae-Hoon Kim

    2017-03-01

    Full Text Available This study developed a device measuring the X-ray source-detector angle (SDA and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR was evaluated using the signal-to-noise (SNR, contrast-to-noise ratio (CNR, spatial resolution, distortion and entrance surface dose (ESD. According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05, whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines.

  13. ASTER Global Digital Elevation Model V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the U.S. National...

  14. High speed imaging, lightning mapping arrays and thermal imaging: a synergy for the monitoring of electrical discharges at the onset of volcanic explosions

    Science.gov (United States)

    Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa

    2017-04-01

    Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is

  15. Digital communication system

    International Nuclear Information System (INIS)

    Union, D.C.

    1980-01-01

    A digital communication system for communicating among two central consoles and a plurality of local controllers, e.g. in a radiation and monitoring system, provides communication between each of the consoles and all of the local controllers via dual paths. Each path is independent of the other and each extends from one of the consoles to all of the local controllers from opposite directions, thereby forming a unique non-continuous loop. (author)

  16. Digital Ethics/Going Digital.

    Science.gov (United States)

    Wilson, Bradley

    1996-01-01

    Finds that the recent National Press Photographers Association code of ethics can serve as a model for any photography staff. Discusses how digital imaging is becoming commonplace in classrooms, due to decreasing costs and easier software. Explains digital terminology. Concludes that time saved in the darkroom and at the printer is now spent on…

  17. Digital Levelling in Subterranean Spaces

    Directory of Open Access Journals (Sweden)

    Tomáš Jiřikovský

    2007-06-01

    Full Text Available For precision levelling works are now more often used digital levels and code-scale staffs. Advantages in (and problems with their application to the regular line-levelling are well known and described. However, when using the digital levelling for measurements in specific local geodetic networks, monitoring networks and inside of buildings and underground spaces, new problems appear with the signalisation of the observed points, readability of the code (non-uniform illumination, temperature changes etc. The article informs about the application of two types of digital levels (Sokkia SDL-2, Trimble Zeiss DiNi 12T in the experimental subterranean levelling network for the basement settlement monitoring of a ten-floor building; the solution of marking of the points, field calibration and the system calibration of digital levels.

  18. Digital radiography

    International Nuclear Information System (INIS)

    Coulomb, M.; Dal Soglio, S.; Pittet-Barbier, L.; Ranchoup, Y.; Thony, F.; Ferretti, G.; Robert, F.

    1992-01-01

    Digital projection radiography may replace conventional radiography some day, provided it can meet several requirements: equal or better diagnostic effectiveness of the screen-film systems; reasonable image cost; real improvement in the productivity of the Departments of Imaging. All digital radiographic systems include an X-ray source, an image acquisition and formatting sub-system, a display and manipulation sub-system, and archiving subsystem and a laser editing system, preferably shared by other sources of digital images. Three digitization processes are available: digitization of the radiographic film, digital fluorography and phospholuminescent detectors with memory. The advantages of digital fluoroscopy are appealing: real-time image acquisition, suppression of cassettes; but its disadvantages are far from negligible: it cannot be applied to bedside radiography, the field of examination is limited, and the wide-field spatial resolution is poor. Phospholuminescent detectors with memory have great advantages: they can be used for bedside radiographs and on all the common radiographic systems; spatial resolution is satisfactory; its current disadvantages are considerable. These two systems, have common properties making up the entire philosophy of digital radiology and specific features that must guide our choice according to the application. Digital fluorography is best applied in pediatric radiology. However, evaluation works have showed that it was applicable with sufficient quality to many indications of general radiology in which a fluoroscopic control and fast acquisition of the images are essential; the time gained on the examination may be considerable, as well as the savings on film. Detectors with memory are required for bedside radiographs, in osteoarticular and thoracic radiology, in all cases of traumatic emergency and in the resuscitation and intensive care departments

  19. Licensing process of the digital application: Nuclear measurement analysis and control power range neutron monitor (NUMAC-PRNM) system for their implementation in the Laguna Verde NPP unit 2

    International Nuclear Information System (INIS)

    Ledesma-Carrion, R.; Hernandez-Cortes, A.

    1998-01-01

    This paper describe the licensing process performed by the Mexican Regulatory Commission (CNSNS) for the NUclear Measurement Analysis and Control-Power Range Neutron Monitor (NUMAC-PRNM) system, which sends trip signals to the Reactor Protection System (RPS), and has been implemented in the Laguna Verde Nuclear Power Plant Unit (LVNPP-U2) before its first fuel loading. The review and approval process was performed with the advise role of the United States of America Nuclear Regulatory Commission (USNRC): the regulatory frame applied includes the Code of Federal Regulation, some Regulatory Guides and some Industrial Standards. The evaluation covered topics related with the software, hardware and firmware specifications, design, tests, training, maintenance and operational experience. After the revision of these topics, the NUMAC-PRNM was approved through the CNSNS Safety Evaluation Report (SER) and then installed in the LVNPP-U2. This paper include a description of the regulatory requirements to this digital application, the safety concerns involved, the compliance to these requirements by the utility and the results of the CNSNS evaluation, mentioning the experience acquired during the process and the method used to perform the evaluation. Additionally, the interface between the designer-vendor, the utility and the regulatory body during the licensing process is commented. Finally, the conclusion is presented, taking into account the operational experience of the NUMAC applications implemented in the LVNPP. It also gives the future regulatory tasks related to the assessment of digital performance equipment and upgrades. (author)

  20. Becoming digital

    DEFF Research Database (Denmark)

    Pors, Anja Svejgaard

    2015-01-01

    . An ethnographic account of how digital reforms are implemented in practice shows how street-level bureaucrat’s classic tasks such as specialized casework are being reconfigured into educational tasks that promote the idea of “becoming digital”. In the paper, the author argues that the work of “becoming digital....... Originality/value: The study contributes to ethnographic research in public administration by combining two separate subfields, e-government and street-level bureaucracy, to discern recent transformations in public service delivery. In the digital era, tasks, control and equality are distributed in ways...

  1. Digital Humanities

    DEFF Research Database (Denmark)

    Brügger, Niels

    2016-01-01

    , and preserving material to study, as an object of study in its own right, as an analytical tool, or for collaborating, and for disseminating results. The term "digital humanities" was coined around 2001, and gained currency within academia in the following years. However, computers had been used within......Digital humanities is an umbrella term for theories, methodologies, and practices related to humanities scholarship that use the digital computer as an integrated and essential part of its research and teaching activities. The computer can be used for establishing, finding, collecting...

  2. Digital Snaps

    DEFF Research Database (Denmark)

    Sandbye, Mette; Larsen, Jonas

    . Distance as the New Punctum / Mikko Villi -- pt. II. FAMILY ALBUMS IN TRANSITION -- ch. 4. How Digital Technologies Do Family Snaps, Only Better / Gillian Rose -- ch. 5. Friendship Photography: Memory, Mobility and Social Networking / Joanne Garde-Hansen -- ch. 6. Play, Process and Materiality in Japanese...... -- ch. 9. Retouch Yourself: The Pleasures and Politics of Digital Cosmetic Surgery / Tanya Sheehan -- ch. 10. Virtual Selves: Art and Digital Autobiography / Louise Wolthers -- ch. 11. Mobile-Media Photography: New Modes of Engagement / Michael Shanks and Connie Svabo....

  3. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  4. Digital Leadership

    DEFF Research Database (Denmark)

    Zupancic, Tadeja; Verbeke, Johan; Achten, Henri

    2016-01-01

    Leadership is an important quality in organisations. Leadership is needed to introduce change and innovation. In our opinion, in architectural and design practices, the role of leadership has not yet been sufficiently studied, especially when it comes to the role of digital tools and media....... With this paper we intend to initiate a discussion in the eCAADe community to reflect and develop ideas in order to develop digital leadership skills amongst the membership. This paper introduces some important aspects, which may be valuable to look into when developing digital leadership skills....

  5. Digital radiography

    International Nuclear Information System (INIS)

    Zani, M.L.

    2002-01-01

    X-ray radiography is a very common technique used to check the homogeneity of a material or the inside of a mechanical part. Generally the radiation that goes through the material to check, produced an image on a sensitized film. This method requires time because the film needs to be developed, digital radiography has no longer this inconvenient. In digital radiography the film is replaced by digital data and can be processed as any computer file. This new technique is promising but its main inconvenient is that today its resolution is not so good as that of film radiography. (A.C.)

  6. Digital radiography

    International Nuclear Information System (INIS)

    Kusano, Shoichi

    1993-01-01

    Firstly, from an historic point of view, fundamental concepts on digital imaging were reviewed to provide a foundation for discussion of digital radiography. Secondly, this review summarized the results of ongoing research in computed radiography that replaces the conventional film-screen system with a photo-stimulable phosphor plate; and thirdly, image quality, radiation protection, and image processing techniques were discussed with emphasis on picture archiving and communication system environment as our final goal. Finally, future expansion of digital radiography was described based on the present utilization of computed tomography at the National Defense Medical College Hospital. (author) 60 refs

  7. Monitoring the expanding distribution of non-indigenous dwarf eelgrass Zostera japonica in a Pacific Northwest USA estuary using high-resolution digital aerialphotomaps

    Science.gov (United States)

    The proliferation of non-indigenous species is a world-wide issue. Environmental managers need improved methods of detecting and monitoring the distribution of such invaders over large areas. In recent decades, numerous estuaries of the Pacific Northwest USA have experienced th...

  8. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    Science.gov (United States)

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Non-destructive assay employing 2D and 3D digital radiographic imaging acquired with thermal neutrons and reactor-produced radioisotopes

    International Nuclear Information System (INIS)

    Silvani, Maria Ines; Almeida, Gevaldo Lisboa de; Lopes, Ricardo T.

    2011-01-01

    The inner structure of some objects can only be visualized by using suitable techniques, when safety reasons or expensive costs preclude the application of invasive procedures. The kind of agent rendering an object partially transparent, unveiling thus its features, depends upon the object size and composition. As a rough rule of thumb, light materials are transparent to gamma and X-rays while the heavy ones are transparent to neutrons. When, after traversing an object, they hit a proper 2-D detector, a radiograph is produced representing a convoluted cross section, called projection, of that object. Taking a large number of such projections for different object attitudes, it is possible to obtain a 3-D tomography of the object as a map of attenuation coefficients. This procedure however, besides a time-consuming task, requires specially tailored equipment and software, not always available or affordable. Yet, in some circumstances it is feasible to replace the 3-D tomography by a stereoscopy, allowing one to visualize the spatial configuration of the object under analysis. In this work, 2-D and 3-D radiographic images have been acquired using thermal neutrons and reactor-produced radioisotopes and proper imaging plates as detectors. The stereographic vision has been achieved by taking two radiographs of the same object at different angles, from the detector point of view. After a treatment to render them red-white and green-white they were properly merged to yield a single image capable to be watched with red-green glasses. All the image treatment and rendering has been performed with the software ImageJ. (author)

  10. Cognitive State Monitoring and the Design of Adaptive Instruction in Digital Environments: Lessons Learned from Cognitive Workload Assessment using a Passive Brain-Computer Interface Approach

    Directory of Open Access Journals (Sweden)

    Peter eGerjets

    2014-12-01

    Full Text Available According to Cognitive Load Theory, one of the crucial factors for successful learning is the type and amount of working-memory load (WML learners experience while studying instructional materials. Optimal learning conditions are characterized by providing challenges for learners without inducing cognitive over- or underload. Thus, presenting instruction in a way that WML is constantly held within an optimal range with regard to learners’ current working-memory capacity might be a good method to provide these optimal conditions. The current paper elaborates how digital learning environments, which achieve this goal can be developed by combining approaches from Cognitive Psychology, Neuroscience, and Computer Science. One of the biggest obstacles that needs to be overcome is the lack of an unobtrusive method of continuously assessing learners’ WML in real-time. We propose to solve this problem by applying passive Brain-Computer Interface (BCI approaches to realistic learning scenarios in digital environments. In this paper we discuss the methodological and theoretical prospects and pitfalls of this approach based on results from the literature and from our own research. We present a strategy on how several inherent challenges of applying BCIs to WML and learning can be met by refining the psychological constructs behind WML, by exploring their neural signatures, by using these insights for sophisticated task designs, and by optimizing algorithms for analyzing EEG data. Based on this strategy we applied machine-learning algorithms for cross-task classifications of different levels of WML to tasks that involve studying realistic instructional materials. We obtained very promising results that yield several recommendations for future work.

  11. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  12. Digital Relationships

    DEFF Research Database (Denmark)

    Ledborg Hansen, Richard

    -­rich information and highly interesting communication are sky-­high and rising. With a continuous increase in digitized communication follows a decrease in face-­to-­face encounters and our ability to engage in inter-­personal relationships are suffering for it (Davis, 2013). The behavior described in this paper......-­‐Jones, 2011) for increases in effectiveness and efficiency we indiscriminately embrace digital communication and digitized information dissemination with enthusiasm – at the risk of ignoring the potentially dark side of technology. However, technology also holds a promise for better understanding precisely...... for the same reasons – that the growing amount of digitized communication “out there” represents data waiting to be sifted, analyzed and decoded. In this paper “Facebook behavior” refers to a particular behavior characterized by presenting your self and representations of selected self in the hope of getting...

  13. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  14. The Security Research of Digital Library Network

    Science.gov (United States)

    Zhang, Xin; Song, Ding-Li; Yan, Shu

    Digital library is a self-development needs for the modern library to meet the development requirements of the times, changing the way services and so on. digital library from the hardware, technology, management and other aspects to objective analysis of the factors of threats to digital library network security. We should face up the problems of digital library network security: digital library network hardware are "not hard", the technology of digital library is relatively lag, digital library management system is imperfect and other problems; the government should take active measures to ensure that the library funding, to enhance the level of network hardware, to upgrade LAN and prevention technology, to improve network control technology, network monitoring technology; to strengthen safety management concepts, to prefect the safety management system; and to improve the level of security management modernization for digital library.

  15. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10); Caracterização de campos de nêutrons térmicos para a calibração de monitores de nêutrons em termos da grandeza equivalente de dose ambiente H⁎(10)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W. [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratório Nacional de Metrologia das Radiações Ionizantes; Astuto, Achilles, E-mail: larissapaizante@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources {sup 241}AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m{sup 3}. The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons.

  16. Development of web monitoring radiation area monitor

    International Nuclear Information System (INIS)

    Jung, Hoon Jin; Lee, Jun Hee; Namkoong, Phil; Lee, Dong Hoon; Lee, Su Hong; Lee, Gun Bae

    2005-01-01

    Recently the increasing number of radioisotope industry and nuclear facility have ever raised the possibility of radiation safety accident. As such a result, radioisotope companies and nuclear facility operators have become to be much interested in radiation area monitoring for efficient radiation protection. At present, almost of the radiation area monitors which are imported products are outdated in aspect of their functions. Diversification of the monitoring work is urgently demanding additional functions to be added. Thus we have developed new-type digital area monitor which enables remote web monitoring with image and radiation dose rate value at distant places through using internet, the latest IT technology, and radiation measurement technology

  17. Uso do levantamento aéreo expedito convencional e digital para o monitoramento da cobertura florestal no Paraná: estado da arte e potencialidades Conventional aerial sketchmapping and digital aerial sketchmapping development for forest monitoring in Paraná: state of art and potentialities

    Directory of Open Access Journals (Sweden)

    Fernando Luís Dlugosz

    2010-12-01

    Full Text Available

    O artigo apresenta uma abordagem sobre a técnica de Levantamento Aéreo Expedito no que diz respeito às suas características, aplicações e potencialidades para as condições brasileiras, principalmente no monitoramento das mudanças na cobertura florestal no Estado do Paraná. O método consiste na observação e anotação de feições ou fenômenos a partir de  sobrevoos na área de interesse, voando a baixas altitudes ao longo de uma rota pré-determinada. Também são apresentadas as vantagens da introdução da sistematização digital, que definiu a nova  denominação para a técnica como Levantamento Aéreo Expedito Digital. Neste caso, as anotações são realizadas digitalmente sobre tela sensível ao toque, de um computador portátil e não sobre mapa em papel, como na técnica convencional. O desenvolvimento de metodologias que demonstrem eficiência técnica e viabilidade econômica tem recebido maior ênfase em pesquisa, em função da necessidade da obtenção de informações confiáveis para subsidiar a tomada de decisões, em nível governamental, para um adequado processo de fiscalização e/ou de planejamento de uma determinada região. Considerando a dinâmica de uso da terra e a necessidade de se monitorar a cobertura vegetal,  pode-se afirmar que o Levantamento Aéreo Expedito apresenta elevado potencial de aplicação às condições brasileiras e ainda ótima relação custo-benefício.

    doi: 10.4336/2010.pfb.30.63.245

    This paper presents an approach to the technique of aerial sketchmapping in respect to its characteristics, applications and potential for use in Brazil, mainly to monitor changes in forest cover in Paraná state. The method consists of observation and annotation of features or phenomena from overflights in the area of interest flying at low altitudes along a predetermined route. It also presents the advantages obtained with the introduction of digital aerial sketchmapping, which

  18. Digital Collections, Digital Libraries & the Digitization of Cultural Heritage Information.

    Science.gov (United States)

    Lynch, Clifford

    2002-01-01

    Discusses digital collections and digital libraries. Topics include broadband availability; digital rights protection; content, both non-profit and commercial; digitization of cultural content; sustainability; metadata harvesting protocol; infrastructure; authorship; linking multiple resources; data mining; digitization of reference works;…

  19. digital natives and digital immigrants

    OpenAIRE

    Cardina, Bruno; Francisco, Jerónimo; Reis, Pedro; trad. Silva, Fátima

    2011-01-01

    This article focuses on the generational gaps in school learning. Initially, we have tried to provide the framework in relation to the term digital native in order to understand the key aspects of the generation born after the advent and the global use of the Internet. They were found to be “multitasking” people, linked to technology and connectivity, as opposed to digital immigrants, born in an earlier period and seeking to adapt to the technological world. We also present some r...

  20. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    International Nuclear Information System (INIS)

    Nozawa, Takashi; Ozawa, Kazumi; Asakura, Yuuki; Kohyama, Akira; Tanigawa, Hiroyasu

    2014-01-01

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited