WorldWideScience

Sample records for digital thermal monitoring

  1. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Directory of Open Access Journals (Sweden)

    Botean Adrian - Ioan

    2018-01-01

    Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.

  2. Thermal expansion coefficient determination of polylactic acid using digital image correlation

    Science.gov (United States)

    Botean, Adrian-Ioan

    2018-02-01

    This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.

  3. Digital radiation monitor system

    International Nuclear Information System (INIS)

    Quan Jinhu; Zhai Yongchun; Guan Junfeng; Ren Dangpei; Ma Zhiyuan

    2003-01-01

    The article introduced digital radiation monitor system. The contents include: how to use advanced computer net technology to establish equipment net for nuclear facility, how to control and manage measuring instruments on field equipment net by local area net, how to manage and issue radiation monitoring data by internet

  4. An Embedded Based Digital Controller for Thermal Process

    Directory of Open Access Journals (Sweden)

    A. Lakshmi Sangeetha

    2008-01-01

    Full Text Available This paper describes a low cost virtual instrumentation (VI system to monitor and control the electrically heated water bath temperature. The PIC16F877 based digital microcontroller is used as thermostat which controls and monitors the temperature. The digital controller also allows the user to modify the sensor (PT100 calibration data values if necessary. The developed programmable on/off control function provides on-line display of measuring temperature, set point as well as the control function output plots through the parallel port. This bus interaction is realized in Visual Basic/Assembly Language and uses a 16 bit, 10 ms sampling analog-to-digital converter (ADS 7805 for monitoring and controlling the parameters of the temperature local digital controller.

  5. The cyclical monitoring system for digital power supplies at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian

    2009-01-01

    Based on available digital PS testing system and long-distance monitoring hardwares, the cyclical monitoring system for digital power supplies (PS) was developed at SSRF. Two models, i.e.long-distance cyclical monitoring and local cyclical monitoring, were established. The software developed in LabVIEW language was applied to the two models without any user interface modification. The user interface is simple. The system is suitable for debugging the digital PSs during long-distance monitoring and examining the performance. The long-distance model imitates the digital PSs' status for fault analysis and communication between the digital PS and the centre control room. The local model simultaneously examines stability of 18 new PSs for 24 h, monitors the PS controller, and detects malfunction. Parameters and status of the controller can be stored in Excel or Text file. The two models have been used at SSRF for monitoring the digital PSs. (authors)

  6. Digital optical correlator x-ray telescope alignment monitoring system

    Science.gov (United States)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  7. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    Science.gov (United States)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial

  8. Development and application of all-digital monitoring system

    International Nuclear Information System (INIS)

    Xu Tao; Li Jing; Wang Wei

    2014-01-01

    All digital control system has developed into a mainstream means of monitoring, and achieved information, intelligence, and networking. All-digital control system is characterized by clear image, large transport stream, so the higher the data storage and network bandwidth should be required. Existing analog surveillance system architecture, hardware and software configuration can not meet the requirements of all-digital monitoring system, so how to solve the original analog surveillance system is gradually transformed into fully digital monitoring system, to avoid incompatibility issues in surveillance monitoring system upgrade become a research project. This paper describes the advantages and future direction of megapixels camera and proposes key technologies to solve the resolution and frame rate with the actual project requirements, achieves a core technology of megapixels video surveillance system, and proposes solutions for the actual renovation project problems. (authors)

  9. The role of digital data entry in participatory environmental monitoring.

    Science.gov (United States)

    Brammer, Jeremy R; Brunet, Nicolas D; Burton, A Cole; Cuerrier, Alain; Danielsen, Finn; Dewan, Kanwaljeet; Herrmann, Thora Martina; Jackson, Micha V; Kennett, Rod; Larocque, Guillaume; Mulrennan, Monica; Pratihast, Arun Kumar; Saint-Arnaud, Marie; Scott, Colin; Humphries, Murray M

    2016-12-01

    Many argue that monitoring conducted exclusively by scientists is insufficient to address ongoing environmental challenges. One solution entails the use of mobile digital devices in participatory monitoring (PM) programs. But how digital data entry affects programs with varying levels of stakeholder participation, from nonscientists collecting field data to nonscientists administering every step of a monitoring program, remains unclear. We reviewed the successes, in terms of management interventions and sustainability, of 107 monitoring programs described in the literature (hereafter programs) and compared these with case studies from our PM experiences in Australia, Canada, Ethiopia, Ghana, Greenland, and Vietnam (hereafter cases). Our literature review showed that participatory programs were less likely to use digital devices, and 2 of our 3 more participatory cases were also slow to adopt digital data entry. Programs that were participatory and used digital devices were more likely to report management actions, which was consistent with cases in Ethiopia, Greenland, and Australia. Programs engaging volunteers were more frequently reported as ongoing, but those involving digital data entry were less often sustained when data collectors were volunteers. For the Vietnamese and Canadian cases, sustainability was undermined by a mismatch in stakeholder objectives. In the Ghanaian case, complex field protocols diminished monitoring sustainability. Innovative technologies attract interest, but the foundation of effective participatory adaptive monitoring depends more on collaboratively defined questions, objectives, conceptual models, and monitoring approaches. When this foundation is built through effective partnerships, digital data entry can enable the collection of more data of higher quality. Without this foundation, or when implemented ineffectively or unnecessarily, digital data entry can be an additional expense that distracts from core monitoring objectives

  10. Thermal performance monitoring and optimisation

    International Nuclear Information System (INIS)

    Sunde, Svein; Berg; Oeyvind

    1998-01-01

    Monitoring of the thermal efficiency of nuclear power plants is expected to become increasingly important as energy-market liberalisation exposes plants to increasing availability requirements and fiercer competition. The general goal in thermal performance monitoring is straightforward: to maximise the ratio of profit to cost under the constraints of safe operation. One may perceive this goal to be pursued in two ways, one oriented towards fault detection and cost-optimal predictive maintenance, and another determined at optimising target values of parameters in response to any component degradation detected, changes in ambient conditions, or the like. Annual savings associated with effective thermal-performance monitoring are expected to be in the order of $ 100 000 for power plants of representative size. A literature review shows that a number of computer systems for thermal-performance monitoring exists, either as prototypes or commercially available. The characteristics and needs of power plants may vary widely, however, and decisions concerning the exact scope, content and configuration of a thermal-performance monitor may well follow a heuristic approach. Furthermore, re-use of existing software modules may be desirable. Therefore, we suggest here the design of a flexible workbench for easy assembly of an experimental thermal-performance monitor at the Halden Project. The suggested design draws heavily on our extended experience in implementing control-room systems featured by assets like high levels of customisation, flexibility in configuration and modularity in structure, and on a number of relevant adjoining activities. The design includes a multi-computer communication system and a graphical user's interface, and aims at a system adaptable to any combination of in-house or end user's modules, as well as commercially available software. (author)

  11. Monitoring the digital divide

    International Nuclear Information System (INIS)

    Canessa, E.; Cerdeira, H.A.; Matthews, W.; Cottrell, R.L.

    2003-05-01

    It is increasingly important to support the large numbers of scientists working in remote areas and having low-bandwidth access to the Internet. This will continue to be the case for years to come since there is evidence from PingER performance measurements that the, so-called, digital divide is not decreasing. In this work, we review the collaborative work of The Abdus Salam International Center for Theoretical Physics (ICTP) in Trieste - a leading organization promoting science dissemination in the developing world- and SLAC in Stanford, to monitor by PingER, Universities and Research Institutions all over the developing world following the recent 'Recommendations of Trieste' to help bridge the digital divide. As a result, PingER's deployment now covers the real-time monitoring of worldwide Internet performance and, in particular, West and Central Africa for the first time. We report on the results from the ICTP sites and quantitatively identify regions with poor performance, identify trends, discuss experiences and future work. (author)

  12. Monitoring the Digital Divide

    International Nuclear Information System (INIS)

    Cottrell, Les

    2003-01-01

    It is increasingly important to support the large numbers of scientists working in remote areas and having low bandwidth access to the Internet. This will continue to be the case for years to come since there is evidence from PingER performance measurements that the, so-called, digital divide is not decreasing. In this work, we review the collaborative work of The Abdus Salam International Center for Theoretical Physics (ICTP) in Trieste, a leading organization promoting science dissemination in the developing world- and SLAC in Stanford, to monitor by PingER, Universities and Research Institutions all over the developing world following the recent ''Recommendations of Trieste'' to help bridge the digital divide. As a result, PingER's deployment now covers the real-time monitoring of worldwide Internet performance and, in particular, West and Central Africa for the first time. We report on the results from the ICTP sites and quantitatively identify regions with poor performance, identify trends, discuss experiences and future work

  13. Development of a PZT-based wireless digital monitor for composite impact monitoring

    International Nuclear Information System (INIS)

    Liu, Peipei; Yuan, Shenfang; Qiu, Lei

    2012-01-01

    One of the major concerns in the whole lifetime of composite materials in aircraft is their susceptibility to impact damage. And there has existed a need in recent years to develop an online structural health monitoring (SHM) system for impact monitoring. This paper proposes a new PZT-based wireless digital impact monitoring system development method aimed at giving a localized area for further inspection. Based on this method, a PZT-based wireless digital impact monitor (WDIM) with advantages of compactness, light weight, low power consumption and high efficiency is developed. Differently from conventional SHM systems, the complex analog circuits are removed and the whole process is achieved in a digital way by turning the output of the PZT sensor directly into a digital queue through a comparator. A simple but efficient sub-region location method is implemented in a field programmable gate array (FPGA) as the processing core of the WDIM to detect and record the impact events. In addition, wireless communication technology is used in the WDIM to transmit data and form a monitoring network. To illustrate the capability of the WDIM, a complete process dealing with an impact event is investigated and the stability of the WDIM is also evaluated in this paper. The WDIM shows its potential for real online applications in aircraft. (paper)

  14. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan.

    Science.gov (United States)

    Chio, Shih-Hong; Lin, Cheng-Horng

    2017-07-18

    Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems), thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle) to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System) OEM (Original Equipment Manufacturer) board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK) technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs). The digital surface model (DSM) and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan's Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging) data are about 37% between -1 m and 1 m, and 66% between -2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  15. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan

    Directory of Open Access Journals (Sweden)

    Shih-Hong Chio

    2017-07-01

    Full Text Available Thermal infrared cameras sense the temperature information of sensed scenes. With the development of UASs (Unmanned Aircraft Systems, thermal infrared cameras can now be carried on a quadcopter UAV (Unmanned Aircraft Vehicle to appropriately collect high-resolution thermal images for volcanic geothermal monitoring in a local area. Therefore, the quadcopter UAS used to acquire thermal images for volcanic geothermal monitoring has been developed in Taiwan as part of this study to overcome the difficult terrain with highly variable topography and extreme environmental conditions. An XM6 thermal infrared camera was employed in this thermal image collection system. The Trimble BD970 GNSS (Global Navigation Satellite System OEM (Original Equipment Manufacturer board was also carried on the quadcopter UAV to gather dual-frequency GNSS observations in order to determine the flying trajectory data by using the Post-Processed Kinematic (PPK technique; this will be used to establish the position and orientation of collected thermal images with less ground control points (GCPs. The digital surface model (DSM and thermal orthoimages were then produced from collected thermal images. Tests conducted in the Hsiaoyukeng area of Taiwan’s Yangmingshan National Park show that the difference between produced DSM and airborne LIDAR (Light Detection and Ranging data are about 37% between −1 m and 1 m, and 66% between −2 m and 2 m in the area surrounded by GCPs. As the accuracy of thermal orthoimages is about 1.78 m, it is deemed sufficient for volcanic geothermal monitoring. In addition, the thermal orthoimages show some phenomena not only more globally than do the traditional methods for volcanic geothermal monitoring, but they also show that the developed system can be further employed in Taiwan in the future.

  16. Digital data monitoring display and logging

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1987-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2 Megawatt, open-pool, research reactor. The digital data provided by this system is useful for: closed loop control, real time experimental calculations, advanced simulation-as-knowledge techniques, improved operator training, and expert system applications. The purpose of this paper is to discuss the transition to the digital data world and the anticipated applications and benefits

  17. A Digital Power Quality Monitoring Equipment Designed for Digital Substation

    Science.gov (United States)

    Li, Wei; Wang, Xin; Geng, Jiewen

    2018-01-01

    Taking into account both current status and development trend of digital substation, this paper proposed a design of a new multi-channelled digital power quality monitoring equipment with high compatibility. The overall functional structure, hardware architecture, software architecture, interface architecture and some key techniques such as IEC 61850 modelling of transient event and harmonic measurement method under the condition of non-synchronous sampling are described in this paper.

  18. The role of digital data entry in participatory environmental monitoring

    NARCIS (Netherlands)

    Brammer, Jeremy R.; Brunet, Nicolas D.; Burton, A.C.; Cuerrier, Alain; Danielsen, Finn; Dewan, Kanwaljeet; Herrmann, Thora Martina; Jackson, Micha V.; Kennett, Rod; Larocque, Guillaume; Mulrennan, Monica; Pratihast, Arun Kumar; Saint-Arnaud, Marie; Scott, Colin; Humphries, Murray M.

    2016-01-01

    Many argue that monitoring conducted exclusively by scientists is insufficient to address ongoing environmental challenges. One solution entails the use of mobile digital devices in participatory monitoring (PM) programs. But how digital data entry affects programs with varying levels of

  19. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  20. Experience with digital acoustic monitoring systems for PWRs and BWRs

    International Nuclear Information System (INIS)

    Olma, B.J.

    1998-01-01

    Substantial progress could be reached both in system technics and in application of digital acoustic monitoring systems for assessing mechanical integrity of reactor primary systems. For the surveillance of PWRs and BWRs during power operation of the plants, acoustic signals of Loose Parts Monitoring System sensors are continuously monitored for signal bursts associated with metallic impacts. ISTec/GRS experience with its digital systems MEDEA and RAMSES has shown that acoustic signature analysis is very successful for detecting component failures at an early stage. Methods for trending and classification of digital burst signals are shown, experience with their practical use will be presented. (author)

  1. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability

    Science.gov (United States)

    Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur

    2018-01-01

    Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  2. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave as a means of improving monitoring of spoil tip stability

    Directory of Open Access Journals (Sweden)

    Lewińska Paulina

    2018-01-01

    Full Text Available Spoil tips are anthropogenic terrain structures built of leftover (coal mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel „Bogdanka” S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object’s outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.

  3. Monitoring Accessibility Services in Digital Television

    Directory of Open Access Journals (Sweden)

    Francisco Utray

    2012-01-01

    Full Text Available This paper addresses methodology and tools applied to the monitoring of accessibility services in digital television at a time when the principles of accessibility and design are being considered in all new audiovisual media communication services. The main objective of this research is to measure the quality and quantity of existing accessibility services offered by digital terrestrial television (DTT. The preliminary results, presented here, offer the development of a prototype for automatic monitoring and a methodology for obtaining quality measurements, along with the conclusions drawn by initial studies carried out in Spain. The recent approval of the UN Convention on the Rights of Persons with Disabilities gives special relevance to this research because it provides valuable guidelines to help set the priorities to improve services currently available to users.

  4. Experimental Adaptive Digital Performance Monitoring for Optical DP-QPSK Coherent Receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module.......We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module....

  5. Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography

    Science.gov (United States)

    Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.

  6. A novel technique to monitor thermal discharges using thermal infrared imaging.

    Science.gov (United States)

    Muthulakshmi, A L; Natesan, Usha; Ferrer, Vincent A; Deepthi, K; Venugopalan, V P; Narasimhan, S V

    2013-09-01

    Coastal temperature is an important indicator of water quality, particularly in regions where delicate ecosystems sensitive to water temperature are present. Remote sensing methods are highly reliable for assessing the thermal dispersion. The plume dispersion from the thermal outfall of the nuclear power plant at Kalpakkam, on the southeast coast of India, was investigated from March to December 2011 using thermal infrared images along with field measurements. The absolute temperature as provided by the thermal infrared (TIR) images is used in the Arc GIS environment for generating a spatial pattern of the plume movement. Good correlation of the temperature measured by the TIR camera with the field data (r(2) = 0.89) make it a reliable method for the thermal monitoring of the power plant effluents. The study portrays that the remote sensing technique provides an effective means of monitoring the thermal distribution pattern in coastal waters.

  7. Digital radiography with computerized conventional monitors compared to medical monitors in vertical root fracture diagnosis.

    Science.gov (United States)

    Tofangchiha, Maryam; Adel, Mamak; Bakhshi, Mahin; Esfehani, Mahsa; Nazeman, Pantea; Ghorbani Elizeyi, Mojgan; Javadi, Amir

    2013-01-01

    Vertical root fracture (VRF) is a complication which is chiefly diagnosed radiographically. Recently, film-based radiography has been substituted with digital radiography. At the moment, there is a wide range of monitors available in the market for viewing digital images. The present study aims to compare the diagnostic accuracy, sensitivity and specificity of medical and conventional monitors in detection of vertical root fractures. In this in vitro study 228 extracted single-rooted human teeth were endodontically treated. Vertical root fractures were induced in 114 samples. The teeth were imaged by a digital charge-coupled device radiography using parallel technique. The images were evaluated by a radiologist and an endodontist on two medical and conventional liquid-crystal display (LCD) monitors twice. Z-test was used to analyze the sensitivity, accuracy and specificity of each monitor. Significance level was set at 0.05. Inter and intra observer agreements were calculated by Cohen's kappa. Accuracy, specificity and sensitivity for conventional monitor were calculated as 67.5%, 72%, 62.5% respectively; and data for medical grade monitor were 67.5%, 66.5% and 68% respectively. Statistical analysis showed no significant differences in detecting VRF between the two techniques. Inter-observer agreement for conventional and medical monitor was 0.47 and 0.55 respectively (moderate). Intra-observer agreement was 0.78 for medical monitor and 0.87 for conventional one (substantial). The type of monitor does not influence diagnosis of vertical root fractures.

  8. Digital communication with fetal monitors.

    Science.gov (United States)

    Bozóki, Z

    1997-11-01

    Fetal heart rate (FHR) values in the averaged format that are provided by commercial computed cardiotocography analysis systems may be unsuitable for special analysis purposes. I developed a communication software program to obtain any measured values of fetal monitors for individual analysis of computed cardiotocography. The software program was used to study the data continuity of beat-to-beat FHR values as an experiment for chaos theory and power spectrum analysis. The results indicated that the signal loss was recognized at a precision of 95%. The described method of digital communication with fetal monitors was found to be useful for individual purposes in the field of computed cardiotocography analysis.

  9. The development of web monitoring digital area monitor

    International Nuclear Information System (INIS)

    Jung, Hoon-Jin; Lee, Jun-Hee; Namkoong, Phil; Lee, Dong-Hoon; Lee, Su-Hong; Kim, We-Su

    2005-01-01

    As CCTV and radiation area monitor have been used separately to date, there have existed inconveniences in managing the view images and radiation dose rates from them. Thus we became to develop the web monitoring digital area monitor which incorporated the existing two factors, CCTV and radiation area monitor, into one. As incorporated with digitalisation, this device will usually become linked with PC, so that the view image and radiation dose rate can be concurrently identified in convenience. These measured figures automatically become data-based on PC by SW program, and become displayed in various format. Moreover, they can be monitored in remote and real time basis in the internet environment. Its local unit uses the cost-effective GM tube and CMOS image sensor, and has the small LCD which directly indicates the measured dose rate. The image sensor is designed to be operated with pan and tilt motion, thus can eliminate the dead view zone. It is thought that the developed device at this time could make the radiation safety management of each work field be done with low cost-high efficiency manner, making role of the CCTV inspection system

  10. The development of web monitoring digital area monitor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoon-Jin; Lee, Jun-Hee; Namkoong, Phil; Lee, Dong-Hoon; Lee, Su-Hong; Kim, We-Su [Iljin Radiation Engineering Co., Seoul (Korea, Republic of)

    2005-11-15

    As CCTV and radiation area monitor have been used separately to date, there have existed inconveniences in managing the view images and radiation dose rates from them. Thus we became to develop the web monitoring digital area monitor which incorporated the existing two factors, CCTV and radiation area monitor, into one. As incorporated with digitalisation, this device will usually become linked with PC, so that the view image and radiation dose rate can be concurrently identified in convenience. These measured figures automatically become data-based on PC by SW program, and become displayed in various format. Moreover, they can be monitored in remote and real time basis in the internet environment. Its local unit uses the cost-effective GM tube and CMOS image sensor, and has the small LCD which directly indicates the measured dose rate. The image sensor is designed to be operated with pan and tilt motion, thus can eliminate the dead view zone. It is thought that the developed device at this time could make the radiation safety management of each work field be done with low cost-high efficiency manner, making role of the CCTV inspection system.

  11. Quaternion Based Thermal Condition Monitoring System

    Science.gov (United States)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  12. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  13. Monitoring solar-thermal systems: An outline of methods and procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  14. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    Romero G, M.; Vilchis P, A.E.

    1999-01-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  15. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  16. Virtual instrument for controlling and monitoring digitalized power supply in SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Chen Huanguang; Chinese Academy of Sciences, Beijing; Xu Ruinian; Shen Tianjian; Li Deming

    2006-01-01

    The Shanghai Synchrotron Radiation Facility (SSRF) needs extremely precise power supplies for their various magnets. A digital controller is being developed for the power converters of the SSRF power supply (PS). In the digital controller, a fully digital pulse-width modulator (PWM) directly controls the power unit insulated gate bipolar transistor (IGBT) of the PS. A program in LabVIEW language has been developed to control and monitor the digital PS via serial communication (RS232) from a PC and to modify its parameters as well. In this article, the software design of the virtual instrument for controlling and monitoring digitalized PS and its associated functions are described, and the essential elements of the program graphical main-VI and sub-VI source code are presented and explained. The communication protocol and the structure of the developed system are also included in this article. (authors)

  17. High accuracy digital aging monitor based on PLL-VCO circuit

    International Nuclear Information System (INIS)

    Zhang Yuejun; Jiang Zhidi; Wang Pengjun; Zhang Xuelong

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm 2 . After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%. (semiconductor integrated circuits)

  18. Digital control rod blocking monitor

    International Nuclear Information System (INIS)

    Funayama, Yoshio.

    1996-01-01

    The present invention system is used for monitoring of a power region of a reactor, and used for monitoring of simultaneous withdrawal of a plurality of control rods without increasing the size or complicating the system. Namely, the system processes signals from a neutron flux detectors at the periphery of control rods controlled for withdrawal. As a result of the processing, the digital monitoring system generates an alarm when the reactor power at the periphery of the control rods fluctuates exceeding an allowable range. In the system, a control rod information forming means prepares frame data comprising front data, positions of the control rods to be withdrawn, frame numbers and completion data. A serial data transmitting means transmits the frame data successively as repeating frame data rows. A control rod information receiving means takes up the frame data of each of control rods to be withdrawn from the transmitted frame data rows. Since the system of the present invention can monitor the withdrawal of a plurality of control rods simultaneously without increasing the size or complicating the system, cost can be saved and the maintenance can be improved. (I.S.)

  19. Methods for monitoring work-life balance in a digital world

    OpenAIRE

    Chong, Ming Ki; Whittle, Jon; Rashid, Umar; Ang, Chee Siang; Whiting, Rebecca; Roby, Helen; Chamakiotis, Petros; Symon, Gillian

    2014-01-01

    Digital technologies - smart phones, email, social networking, etc. - are fundamentally changing our relationship with work. Digital technologies enable us to be always connected. However, the question remains as to how digital technologies affect our work-life balance. In this position paper, we report on some methods we are using to study how to continuously monitor and observe work-life balance, and discuss the advantages/disadvantages of these methods. Work-life balance is a relatively un...

  20. A customized digital monitoring and display system for nonpower reactors

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1989-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2-MW open-pool research reactor. The digital data provided by this system will be useful for: improved operator training, real-time experimental calculations, noise analysis, closed-loop control, and expert system applications. This paper describes the analog-to-digital (A/D) transitions and the associated applications and benefits experienced

  1. Monitoring of degradation of porous silicon photonic crystals using digital photography

    Science.gov (United States)

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t  pSi-ch. PMID:25242902

  2. AE monitoring simplified using digital memory storage and source isolation

    International Nuclear Information System (INIS)

    Hutton, P.H.; Skorpik, J.R.

    1977-01-01

    The general trend in acoustic emission (AE) monitoring systems has been one of increasing complexity. This is particularly true in systems for continuous monitoring which are usually multichannel (perhaps 20 to 40) and incorporate a dedicated minicomputer. A unique concept which reverses this trend for selected applications has been developed at Battelle-Northwest, Richland, WA. This concept uses solid state digital memories to store acquired data in a permanent form which is easily retrieved. It also uses a fundamental method to accept AE data only from a selected area. The digital memory system is designed for short term or long term (months) monitoring. It has been successfully applied in laboratory testing such as fatigue crack growth studies, as well as field monitoring on bridges and piping to detect crack growth. The features of simplicity, versatility, and low cost contribute to expanded practical application of acoustic emission technology

  3. The development of digital monitoring technique

    International Nuclear Information System (INIS)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator's monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs

  4. The development of digital monitoring technique

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Kim, D. H.; Kim, J. S.; Kim, C. H.; Kim, G. O.; Park, H. Y.; Suh, S. Y.; Sung, S. H.; Song, S. J.; Lee, C. K.; Jang, G. S.; Hur, S.

    1997-08-01

    A study has been performed for advanced DSP technology for the digital nuclear I and C systems for the monitoring and diagnosis techniques for high-pressurized structures integrity in NSSS. In the development of advanced DSP technology, real time process, communication network and signal validation were selected as the essential technologies of the digital signal process, and the requirements and methodology for the application of these technologies in NPP were established through technical analysis. Based on its results, the DPIS and the signal validation algorithm were developed. For the real-time process, the necessary requirements were define and the methodology of real-time software modeling was developed. For the communication network, the methodology of selection of the communication technique and developing procedure were established with an extraction of requirements. Functions, requirements, structure and technical specification were developed for the DPIS, and a real-time signal validation algorithm was developed and implemented for the signal validation. In a study on monitoring techniques for abnormal conditions, test and experimental facilities have been set up in order to carry out the required tests during research activities. Studies concentrated on how to acquire proper vibration or emission signals from mechanical structures and equipments, and to diagnose effectively the abnormal conditions of high pressure structure integrity. The algorithms of automatic signal analysis and diagnosis for abnormal conditions have been developed in this study to assist the operator`s monitoring and diagnosis activities on structure integrity using new technologies. (author). 23 refs., 68 tabs., 196 figs.

  5. Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission is successfu...... drives an adaptive digital CD equalizer. © 2011 Optical Society of America.......We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission...

  6. Characterization of microcalcification: can digital monitor zooming replace magnification mammography in full-field digital mammography?

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Kwak, Jin Young; Son, Eun Ju; Youk, Ji Hyun; Choi, Seon Hyeong; Oh, Ki Keun; Han, Mooyoung

    2009-01-01

    The aim of this study was to compare the diagnostic accuracy and image quality of microcalcifications in zoomed digital contact mammography with digital magnification mammography. Three radiologists with different levels of experience in mammography reviewed 120 microcalcification clusters in 111 patients with a full-field digital mammography system relying on digital magnification mammogram (MAG) images and zoomed images from contact mammography (ZOOM) using commercially available zooming systems on monitors. Each radiologist estimated the probability of malignancy and rated the image quality and confidence rate. Performance was evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic (ROC) analysis. All three radiologists rated MAG images higher than ZOOM images for sensitivity with statistical significance (average value, 92% vs. 87%, P<0.05) and performance by ROC analysis improved with MAG imaging. The confidence rate for diagnosis decision and the assessment of lesion characteristics were also better in MAG images than in ZOOM images with statistical significance (P<0.0001). Digital magnification mammography can enhance diagnostic performance when characterizing microcalcifications. Images zoomed from digital contact mammography cannot serve as an alternative to direct magnification digital mammography. (orig.)

  7. Noninvasive continuous monitoring of digital pulse waves during hemodialysis

    DEFF Research Database (Denmark)

    Burkert, Antje; Scholze, Alexandra; Tepel, Martin

    2009-01-01

    Intermittent hemodynamic instability during hemodialysis treatment is a frequent complication in patients with end-stage renal failure. A noninvasive method for continuous hemodynamic monitoring is needed. We used noninvasive digital photoplethysmography and an algorithm for continuous, investiga...

  8. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  9. Process control and monitoring system: Thermal Power Plant Gacko

    International Nuclear Information System (INIS)

    Jeremovic, Dragan; Skoko, Maksim; Gjokanovic, Zdravko

    2004-01-01

    DCS Ovation system, manufactured by Westinghouse, USA, is described in this paper. Emphasize on concept of realization and basic characteristic in Thermal Power Plant Gacko is given in this paper. The most important, noticed by now, comparative effects and performances of new monitoring and control system according to classical monitoring and control system of 300 MW units Thermal Power Plant Gacko in Gacko, are given in the conclusion. (Author)

  10. Video and thermal imaging system for monitoring interiors of high temperature reaction vessels

    Science.gov (United States)

    Saveliev, Alexei V [Chicago, IL; Zelepouga, Serguei A [Hoffman Estates, IL; Rue, David M [Chicago, IL

    2012-01-10

    A system and method for real-time monitoring of the interior of a combustor or gasifier wherein light emitted by the interior surface of a refractory wall of the combustor or gasifier is collected using an imaging fiber optic bundle having a light receiving end and a light output end. Color information in the light is captured with primary color (RGB) filters or complimentary color (GMCY) filters placed over individual pixels of color sensors disposed within a digital color camera in a BAYER mosaic layout, producing RGB signal outputs or GMCY signal outputs. The signal outputs are processed using intensity ratios of the primary color filters or the complimentary color filters, producing video images and/or thermal images of the interior of the combustor or gasifier.

  11. Digital Heart-Rate Variability Parameter Monitoring and Assessment ASIC.

    Science.gov (United States)

    Massagram, W; Hafner, N; Mingqi Chen; Macchiarulo, L; Lubecke, V M; Boric-Lubecke, O

    2010-02-01

    This paper describes experimental results for an application-specific integrated circuit (ASIC), designed for digital heart rate variability (HRV) parameter monitoring and assessment. This ASIC chip measures beat-to-beat (RR) intervals and stores HRV parameters into its internal memory in real time. A wide range of short-term and long-term ECG signals obtained from Physionet was used for testing. The system detects R peaks with millisecond accuracy, and stores up to 2 min of continuous RR interval data and up to 4 min of RR interval histogram. The prototype chip was fabricated in a 0.5 ¿m complementary metal-oxide semiconductor technology on a 3×3 mm(2) die area, with a measured dynamic power consumption of 10 ¿W and measured leakage current of 2.62 nA. The HRV monitoring system including this HRV ASIC, an analog-to-digital converter, and a low complexity microcontroller was estimated to consume 32.5 ¿V, which is seven times lower power than a stand-alone microcontroller performing the same functions. Compact size, low cost, and low power consumption make this chip suitable for a miniaturized portable HRV monitoring system.

  12. Digital beam position monitor for the HAPPEX experiment

    International Nuclear Information System (INIS)

    Sherlon Kauffman; John Musson; Hai Dong; Lisa Kaufman; Arne Freyberger

    2005-01-01

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high precision (1um), high bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a RF receiver daughter board and a digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 3 MHz and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with resolution of 1um, 100 kHz output bandwidth, and overall latency of 1us. The results are available in both the analog and digital format

  13. Advanced software tools for digital loose part monitoring systems

    International Nuclear Information System (INIS)

    Ding, Y.

    1996-01-01

    The paper describes two software modules as analysis tools for digital loose part monitoring systems. The first module is called acoustic module which utilizes the multi-media features of modern personal computers to replay the digital stored short-time bursts with sufficient length and in good quality. This is possible due to the so-called puzzle technique developed at ISTec. The second module is called classification module which calculates advanced burst parameters and classifies the acoustic events in pre-defined classes with the help of an artificial multi-layer perception neural network trained with the back propagation algorithm. (author). 7 refs, 7 figs

  14. Advanced software tools for digital loose part monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y [Institute for Safety Technology (ISTec) GmbH, Garching (Germany)

    1997-12-31

    The paper describes two software modules as analysis tools for digital loose part monitoring systems. The first module is called acoustic module which utilizes the multi-media features of modern personal computers to replay the digital stored short-time bursts with sufficient length and in good quality. This is possible due to the so-called puzzle technique developed at ISTec. The second module is called classification module which calculates advanced burst parameters and classifies the acoustic events in pre-defined classes with the help of an artificial multi-layer perception neural network trained with the back propagation algorithm. (author). 7 refs, 7 figs.

  15. Thermal monitoring as a method for estimation of technical state of digital devices

    Directory of Open Access Journals (Sweden)

    Lavrich Yu. N.

    2015-08-01

    Full Text Available Requirements to the reliability level of modern element base are so high that traditional methods of assessing the technical condition of electronics become ineffective, the modern theory of reliability has almost no practical applications [1], and reliability index does not reflect the true state of an electronic device due to an insufficient amount of information received during testing of electronic devices. The majority of modern electronics are limitedly easy-to-test. They are equipped with small number of tools for direct measurement that leads to a delayed troubleshooting and the inability to take measures efficiently. Despite the fact that new generations of electronics use modern components and new design technologies, their performance is still defined by two states — serviceability or failure, and the failure still happens unexpectedly. We may note, that failure is an uncontrolled result of an irreversible degradation process, taking place in time and having appropriate time parameters, but it's not the critical act. Research of various structural and hierarchical levels of functional units of digital electronics show that temperature control can be used for automatic condition monitoring of such devices in real time. As a generalized control parameter, it is advisable to use the temperature of the case of the element, and the case itself — as a generalized point.

  16. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  17. Detection of impact damage on thermal protection systems using thin-film piezoelectric sensors for integrated structural health monitoring

    Science.gov (United States)

    Na, Jeong K.; Kuhr, Samuel J.; Jata, Kumar V.

    2008-03-01

    Thermal Protection Systems (TPS) can be subjected to impact damage during flight and/or during ground maintenance and/or repair. AFRL/RXLP is developing a reliable and robust on-board sensing/monitoring capability for next generation thermal protection systems to detect and assess impact damage. This study was focused on two classes of metallic thermal protection tiles to determine threshold for impact damage and develop sensing capability of the impacts. Sensors made of PVDF piezoelectric film were employed and tested to evaluate the detectability of impact signals and assess the onset or threshold of impact damage. Testing was performed over a range of impact energy levels, where the sensors were adhered to the back of the specimens. The PVDF signal levels were analyzed and compared to assess damage, where digital microscopy, visual inspection, and white light interferometry were used for damage verification. Based on the impact test results, an assessment of the impact damage thresholds for each type of metallic TPS system was made.

  18. Innovative fluxmeter for thermal monitoring of constructions and buildings

    International Nuclear Information System (INIS)

    Audouin, L.; Hovhanessian, G.

    2015-01-01

    A new device composed of a prefabricated concrete block including temperature sensors and resistance wire that are used to identify wall material properties and thermal flux transmitted to the wall, has been validated in the lab. This prefabricated blocks have to be integrated into the structure to monitor. These device provides real time information about thermal flux in the walls that can be useful for the monitoring of deterioration of wall physical properties (conductivity and diffusivity) due to aging or in case of accidents or during fire

  19. Monitoring Thermal Conditions in Footwear

    Science.gov (United States)

    Silva-Moreno, Alejandra. A.; Lopez Vela, Martín; Alcalá Ochoa, Noe

    2006-09-01

    Thermal conditions inside the foot were evaluated on a volunteer subject. We have designed and constructed an electronic system which can monitors temperature and humidity of the foot inside the shoe. The data is stored in a battery-powered device for later uploading to a host computer for data analysis. The apparatus potentially can be used to provide feedback to patients who are prone to having skin breakdowns.

  20. A digital control and monitoring system for PWR waste-disposal systems

    International Nuclear Information System (INIS)

    Ueda, Toshiharu; Fuchigami, Kazuyuki; Shimozato, Masao; Takazawa, Kazuo

    1982-01-01

    Mitsubishi Electric has developed a digital control and monitoring system for PWR waste-disposal systems. This novel system has improved operability due to its automated operations and control, and integrated supervisory functions. The system includes other features to improve operability: sequence control by a control computer, direct-digital process control, integrated supervision of operation states by a supervisory computer and a high-speed dataway, and CRT interfacing between the computer and dataway. (author)

  1. Enhance wound healing monitoring through a thermal imaging based smartphone app

    Science.gov (United States)

    Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh

    2018-03-01

    In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.

  2. Control and monitoring of doses to patients in a team of digital mammography

    International Nuclear Information System (INIS)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-01-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  3. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    International Nuclear Information System (INIS)

    Clough, D; Fletcher, S; Longstaff, A P; Willoughby, P

    2012-01-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  4. Monitoring system and methods for a distributed and recoverable digital control system

    Science.gov (United States)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  5. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  6. MONITORING OF HEAPS USING VARIOUS TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Helena Straková

    2015-07-01

    Full Text Available Coal heaps are frequently self-burning by definite environmental conditions, therefore thermal activity monitoring of these localities is important. For this purpose, data from terrestrial measurement or thermal infrared images are used. Subsurface coal fires monitored by terrestrial measurement by contact thermometers are time-consuming and dangerous because of landslides. That is a reason why coal fires are mostly monitored by thermal infrared images through remote sensing, i.e. satellite-borne or airborne data, which is much more suitable for thermal activity monitoring. The satellite data do not have sufficient geometric resolution (60 - 120m per pixel, aerial thermal data are accurate, but expensive. Unmanned aerial vehicles (UAV or better RPAS - remotely piloted aircraft systems can be solution – thermal images obtained by RPAS have good geometric resolution and can be used for small areas only and our case project areas are not so big. From economic point of view, low cost technology is preferred. The article describes opportunities of low-cost thermal infrared data, the use of RPAS (mapping by Microkopter system in thermal monitoring and photogrammetric tasks (coal heaps such as low cost aerial thermal mapping. The problems of planning and data acquisition are illustrated by creating an orthophoto. Theoretical preparation of data acquisition deals with RPAS Microkopter mission planning and operation. The obtained data are processed by several sets of software specially developed for close range aerial photogrammetry. The outputs are orthophoto images, digital elevation models and thermal map. As a bonus, low-cost aerial methods with small thermal camera are shown.

  7. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  8. Quality control of the interpretation monitors of digital radiological images

    International Nuclear Information System (INIS)

    Favero, Mariana S.; Goulart, Adriano Oliveira S.

    2016-01-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  9. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  10. Open-source digital technologies for low-cost monitoring of historical constructions

    OpenAIRE

    Basto, Camilo; Pelà, Luca; Chacón Flores, Rolando Antonio

    2017-01-01

    This paper shows new possibilities of using novel, open-source, low-cost platforms for the structural health monitoring of heritage structures. The objective of the study is to present an assessment of increasingly available open-source digital modeling and fabrication technologies in order to identify the suitable counterparts of the typical components of a continuous static monitoring system for a historical construction. The results of the research include a simple case-study, which is pre...

  11. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  12. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    Science.gov (United States)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  13. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    Science.gov (United States)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  14. Performance monitoring pavements with thermal segregation in Texas.

    Science.gov (United States)

    2012-04-01

    This project conducted work to investigate the performance of asphalt surface mixtures that exhibited : thermal segregation during construction. From 2004 to 2009, a total of 14 construction projects were : identified for monitoring. Five of these pr...

  15. Democracy in the Digital Communication Environment: A Typology Proposal of Political Monitoring Processes

    OpenAIRE

    Feenstra, Ramón A.; Casero Ripollés, Andreu

    2014-01-01

    The digital environment creates new opportunities for citizen political participation. Among these, the monitoring of political and economic power centers stands out. This includes public scrutiny of the management of public funds and the activities of the public and economic systems, thus denouncing dysfunctional features. This article aims to describe, differentiate, and classify the various forms that monitoring can take in current democracies. The results indicate that three major monitor...

  16. Digital system to monitor the natural frequency of mechanical resonators

    International Nuclear Information System (INIS)

    Brengartner, Tobias; Siegel, Michael; Urban, Martin; Monse, Benjamin; Frühauf, Dietmar

    2013-01-01

    Mechanical resonators are often used in process or condition monitoring. They are used for liquid-level limit detection or for viscosity and density sensing. Therefore, the resonator is preferably actuated at its natural frequency. In industrial applications, this is achieved by analogue closed resonant circuits. These circuits have been established because of the low energy consumption and low component costs. Due to the future trend of microprocessors, digital systems are now an interesting alternative and can achieve better results compared to analogue realizations. In this context, this paper presents a novel digital system for monitoring the natural frequency of mechanical resonators. The system is realized with newly developed algorithms and is based on a simple signal processing procedure with minimum computational cost. This allows the use of a low-power microcontroller, thus making the system interesting for industrial use. It is shown that the natural frequency can be measured in respect of high industrial requirements on reliability, fastness and accuracy, combined with the possibility of reducing energy consumption. (paper)

  17. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  18. Continuous monitoring of Hawaiian volcanoes with thermal cameras

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.

    2014-01-01

    Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.

  19. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  20. Digital beam position and phase monitor for P-LINAC for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed

    2013-07-01

    For the planned P-LINAC for the FAIR facility, Beam Position Monitors (BPM) will be installed at 14 locations along the LINAC. The digital signal processing to derive the transverse beam position and the beam phase will be implemented by ''Libera Single Pass H''. The specification for position measurement is 0.1 mm spatial resolution and phase accuracy is 1 degree with respect to 325 MHz acceleration frequency. The results from the Libera digital signal processing were compared with the time-domain approach and the FFT analytic calculations. The first test was performed at the GSI UNILAC with a Ne4+ beam at 1.4 MeV / u. A single BPM was used to act as a ''Bunch arrival monitor'' to characterize the dependence of beam arrival time on bunch shape. The signals were sampled at 117.440 MHz with a 16-bit ADC to produce I and Q data streams. The first experimental results are reported.

  1. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  2. Digital dosimetry and personal and environmental monitoring assembly

    International Nuclear Information System (INIS)

    Cerovac, Z.; Radalj, Z.; Prlic, I.; Cerovac, H.

    1996-01-01

    Film+TLD and film or TLD Dosimetry have a certain delay in dose reporting, since the reports on occupational doses are usually available to the users within 40 days after the actual exposure. This is particularly important when the dose is received within the short-time interval or when the radiation source has some technical failures. For this reason, the additional monitoring is recommendable. The common Dosimetry service in Croatia is well established and the data available shows that over 80% of occupationally exposed persons are working in medical facilities, mainly with x-ray sources. Dosimetry services in the country are providing three types of dosemeters, film dosemeter badge, film+TLD dosemeter badge or plane TLD badge. We have decided to introduce the palette of digital pocket dosemeters to be used at different workplaces occupationally exposed to ionizing radiation. After the first experience with the ALARA 1G digital dosemeter it came out that this type of ionizing radiation measuring device is suitable for the various non-occupational purposes. After some technical improvement and with some telecommunication electronics this device is usable as a point environmental measuring station. This means that the probe of the record any change in normal environmental radiation field, send the data to the central station and to raise alarm if necessary. That is why we have made a prototype for environmental monitoring able to be connected to any kind of telecommunication net. (author)

  3. Private or Public Law Enforcement? The Case of Digital Piracy Policies with Non-monitored Illegal Behaviors

    OpenAIRE

    Éric Darmon; Thomas Le Texier

    2014-01-01

    In the case of digital piracy should rights be publicly or privately enforced? The emergence of large-scale anti-piracy laws and the existence of non-monitored illegal channels raise important issues for the design of digital anti-piracy policies. In this paper, we study the impact of these two enforcement settings (public vs. private) in the presence of an illegal non-monitored outside option for users. Taking account of market outcomes, we show that in both cases, the optimal strategies of ...

  4. Reducing unidentified MOV failures: An innovative approach to thermal overload monitoring

    International Nuclear Information System (INIS)

    Hill, K.; Watson, M.E.; Ali, H.S.; Schlesinger, R.

    1991-01-01

    Historically the failure of motor-operated valves to actuate on demand has caused plant transients, reduced safety system reliability, and lost plant availability. The typical control and indication circuit design uses thermal overload contacts in the control circuit only. This has been recognized as a significant unidentified valve failure mode that may prevent the valve from performing its safety function when required. Different approaches have been evaluated to alert operations personnel to this thermal overload condition, but no cost-effective solution has provided indication of the thermal overload while maintaining valve position indication. Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) is utilizing a nuclear-qualified thermal overload monitor in valve control and indication circuits. This innovative approach has proven economical as no new cabling or indicating devices are required. Indication is provided using existing valve position indicating lights. The monitor is engineered to provide indication of a thermal overload trip as well as continuous indication of valve position, consistent with Regulatory Guide 1.97 and guidance provided by Generic Letter 89-10

  5. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  6. Design and Development of Intelligent Electrodes for Future Digital Health Monitoring: A Review

    Science.gov (United States)

    Khairuddin, A. M.; Azir, K. N. F. Ku; Kan, P. Eh

    2018-03-01

    Electrodes are sensors used in electrocardiography (ECG) monitoring system to diagnose heart diseases. Over the years, diverse types of electrodes have been designed and developed to improve ECG monitoring system. However, more recently, with the technological advances and capabilities from the Internet of Things (IoT), cloud computing and data analytics in personalized healthcare, researchers are attempting to design and develop more effective as well as flexible ECG devices by using intelligent electrodes. This paper reviews previous works on electrodes used in electrocardiography (ECG) monitoring devices to identify the key ftures for designing and developing intelligent electrodes in digital health monitoring devices.

  7. A sneak peek into digital innovations and wearable sensors for cardiac monitoring.

    Science.gov (United States)

    Michard, Frederic

    2017-04-01

    Many mobile phone or tablet applications have been designed to control cardiovascular risk factors (obesity, smoking, sedentary lifestyle, diabetes and hypertension) or to optimize treatment adherence. Some have been shown to be useful but the long-term benefits remain to be demonstrated. Digital stethoscopes make easier the interpretation of abnormal heart sounds, and the development of pocket-sized echo machines may quickly and significantly expand the use of ultrasounds. Daily home monitoring of pulmonary artery pressures with wireless implantable sensors has been shown to be associated with a significant decrease in hospital readmissions for heart failure. There are more and more non-invasive, wireless, and wearable sensors designed to monitor heart rate, heart rate variability, respiratory rate, arterial oxygen saturation, and thoracic fluid content. They have the potential to change the way we monitor and treat patients with cardiovascular diseases in the hospital and beyond. Some may have the ability to improve quality of care, decrease the number of medical visits and hospitalization, and ultimately health care costs. Validation and outcome studies are needed to clarify, among the growing number of digital innovations and wearable sensors, which tools have real clinical value.

  8. 162.5 MHz digital low-level radio frequency control monitoring system design and implementation

    International Nuclear Information System (INIS)

    Zhang Ruifeng; Wang Xianwu; Xu Zhe; Yi Xiaoping

    2014-01-01

    162.5 MHz high-frequency low-level control system self-developed by Institute of Modern Physics for ADS project took digital technology. All parameters' reading and writing, including loop parameter setting, open and close-loop operation, and condition monitoring, were achieved through the monitoring system. The system used lightweight client-server working mode that client running in the PC sent command data, server running on high-frequency digital low level system responded instructions to complete parameter monitoring and control. The system consisted of three parts. Firstly, server hardware system was constructed based on Atera Stratix Ⅲ family of field-programmable gate array (FPGA) development board. Secondly, the server software system was designed based on Micro C/OS Ⅱ real-time operating systems and lightweight TCP/IP protocol stack, and finally a client PC program was designed based on MFC. After a long test, it was indicated that the monitoring system works properly and stably. TCP sends and receives throughput reached 11.931038 Mbps and 8.117624 Mbps. (authors)

  9. Tuning the Thermochemical Properties of Oxonol Dyes for Digital Versatile Disc Recordable: Reduction of Thermal Interference in High-Speed Recording

    Science.gov (United States)

    Morishima, Shin-Ichi; Wariishi, Koji; Mikoshiba, Hisashi; Inagaki, Yoshio; Shibata, Michihiro; Hashimoto, Hirokazu; Kubo, Hiroshi

    To reduce thermal interference between adjacent recording marks on a recordable digital versatile disc, we examined the thermochemical behavior of oxonol dyes for digital versatile disc recordable (DVD-R). We found that oxonol dyes with Meldrum's acid skeleton exhibited an abrupt reduction in weight with increasing temperature without generating excessive heat that is the fundamental cause of thermal interference. DVD-R with the oxonol dyes suppressed fluctuation in the shapes of recorded marks, thereby attaining compatibility with high-speed recording.

  10. Prototype Digital Beam Position and Phase Monitor for the 100-MeV Proton Linac of PEFP

    CERN Document Server

    Yu In Ha; Kim, Sung-Chul; Park, In-Soo; Park, Sung-Ju; Tae Kim, Do

    2005-01-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current (pulse width and max. repetition rate of 1 ms and 120 Hz respectively). We are developing a prototype digital BPPM (Beam Position and Phase Monitor) for the PEFP linac utilizing the digital technology with field programmable gate array (FPGA). The RF input signals are down converted to 10 MHz and sampled at 40 MHz with 14-bit ADC to produce I and Q data streams. The system is designed to provide a position and phase resolution of 0.1% and 0.1? RMS respectively. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the prototype digital beam position and phase monitor will be described with the performance test results.

  11. Open circuit potential monitored digital photocorrosion of GaAs/AlGaAs quantum well microstructures

    Science.gov (United States)

    Aithal, Srivatsa; Dubowski, Jan J.

    2018-04-01

    Nanostructuring of semiconductor wafers with an atomic level depth resolution is a challenging task, primarily due to the limited availability of instruments for in situ monitoring of such processes. Conventional digital etching relies on calibration procedures and cumbersome diagnostics applied between or at the end of etching cycles. We have developed a photoluminescence (PL) based process for monitoring in situ digital photocorrosion (DPC) of GaAs/AlGaAs microstructures at rates below 0.2 nm per cycle. In this communication, we demonstrate that DPC of GaAs/AlGaAs microstructures could be monitored with open circuit potential (OCP) measured between the photocorroding surface of a microstructure and an Ag/AgCl reference electrode installed in the sample chamber. The excellent correlation between the position of both PL and OCP maxima indicates that the DPC process could be monitored in situ for materials that do not necessarily exhibit measurable PL emission.

  12. Portable digital video surveillance system for monitoring flower-visiting bumblebees

    Directory of Open Access Journals (Sweden)

    Thorsdatter Orvedal Aase, Anne Lene

    2011-08-01

    Full Text Available In this study we used a portable event-triggered video surveillance system for monitoring flower-visiting bumblebees. The system consist of mini digital recorder (mini-DVR with a video motion detection (VMD sensor which detects changes in the image captured by the camera, the intruder triggers the recording immediately. The sensitivity and the detection area are adjustable, which may prevent unwanted recordings. To our best knowledge this is the first study using VMD sensor to monitor flower-visiting insects. Observation of flower-visiting insects has traditionally been monitored by direct observations, which is time demanding, or by continuous video monitoring, which demands a great effort in reviewing the material. A total of 98.5 monitoring hours were conducted. For the mini-DVR with VMD, a total of 35 min were spent reviewing the recordings to locate 75 pollinators, which means ca. 0.35 sec reviewing per monitoring hr. Most pollinators in the order Hymenoptera were identified to species or group level, some were only classified to family (Apidae or genus (Bombus. The use of the video monitoring system described in the present paper could result in a more efficient data sampling and reveal new knowledge to pollination ecology (e.g. species identification and pollinating behaviour.

  13. Hyperspectral and thermal methodologies applied to landslide monitoring

    Science.gov (United States)

    Vellico, Michela; Sterzai, Paolo; Pietrapertosa, Carla; Mora, Paolo; Berti, Matteo; Corsini, Alessandro; Ronchetti, Francesco; Giannini, Luciano; Vaselli, Orlando

    2010-05-01

    Landslide monitoring is a very actual topic. Landslides are a widespread phenomenon over the European territory and these phenomena have been responsible of huge economic losses. The aim of the WISELAND research project (Integrated Airborne and Wireless Sensor Network systems for Landslide Monitoring), funded by the Italian Government, is to test new monitoring techniques capable to rapidly and successfully characterize large landslides in fine soils. Two active earthflows in the Northern Italian Appenines have been chosen as test sites and investigated: Silla (Bologna Province) and Valoria (Modena Province). The project implies the use of remote sensing methodologies, with particular focus on the joint use of airborne Lidar, hyperspectral and thermal systems. These innovative techniques give promising results, since they allow to detect the principal landslide components and to evaluate the spatial distribution of parameters relevant to landslide dynamics such as surface water content and roughness. In this paper we put the attention on the response of the terrain related to the use of a hyperspectral system and its integration with the complementary information obtained using a thermal sensor. The potentiality of a hyperspectral dataset acquired in the VNIR (Visible Near Infrared field) and of the spectral response of the terrain could be high since they give important information both on the soil and on the vegetation status. Several significant indexes can be calculated, such as NDVI, obtained considering a band in the Red field and a band in the Infrared field; it gives information on the vegetation health and indirectly on the water content of soils. This is a key point that bridges hyperspectral and thermal datasets. Thermal infrared data are closely related to soil moisture, one of the most important parameter affecting surface stability in soil slopes. Effective stresses and shear strength in unsaturated soils are directly related to water content, and

  14. Non-Contact Smartphone-Based Monitoring of Thermally Stressed Structures

    Science.gov (United States)

    Ozturk, Turgut; Mas, David; Rizzo, Piervincenzo

    2018-01-01

    The in-situ measurement of thermal stress in beams or continuous welded rails may prevent structural anomalies such as buckling. This study proposed a non-contact monitoring/inspection approach based on the use of a smartphone and a computer vision algorithm to estimate the vibrating characteristics of beams subjected to thermal stress. It is hypothesized that the vibration of a beam can be captured using a smartphone operating at frame rates higher than conventional 30 Hz, and the first few natural frequencies of the beam can be extracted using a computer vision algorithm. In this study, the first mode of vibration was considered and compared to the information obtained with a conventional accelerometer attached to the two structures investigated, namely a thin beam and a thick beam. The results show excellent agreement between the conventional contact method and the non-contact sensing approach proposed here. In the future, these findings may be used to develop a monitoring/inspection smartphone application to assess the axial stress of slender structures, to predict the neutral temperature of continuous welded rails, or to prevent thermal buckling. PMID:29670034

  15. Training in remote monitoring technology. Digital camera module-14(DCM-14)

    International Nuclear Information System (INIS)

    Caskey, Susan

    2006-01-01

    The DCM-14 (Digital Camera Module) is the backbone of current IAEA remote monitoring surveillance systems. The control module is programmable with features for encryption, authentication, image compression and scene change detection. It can take periodic or triggered images under a variety of time sequences. This training session covered the DCM-14 features and related programming in DCMSET. It also described the processes for receiving, archiving and backing up the camera images using DCMPOLL and GEMINI software. Setting up a DCM-14 camera controller in the configuration of the remote monitoring system at Joyo formed an exercise. (author)

  16. Formulation of a strategy for monitoring control integrity in critical digital control systems

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  17. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  18. A Sensor-less Method for Online Thermal Monitoring of Switched Reluctance Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Stator winding is one of the most vulnerable parts in Switched Reluctance Machine (SRM), especially under thermal stresses during frequently changing operation circumstances and susceptible heat dissipation conditions. Thus real-time online thermal monitoring of the stator winding is of great sig...

  19. Evaluation of risk and benefit in thermal effusivity sensor for monitoring lubrication process in pharmaceutical product manufacturing.

    Science.gov (United States)

    Uchiyama, Jumpei; Kato, Yoshiteru; Uemoto, Yoshifumi

    2014-08-01

    In the process design of tablet manufacturing, understanding and control of the lubrication process is important from various viewpoints. A detailed analysis of thermal effusivity data in the lubrication process was conducted in this study. In addition, we evaluated the risk and benefit in the lubrication process by a detailed investigation. It was found that monitoring of thermal effusivity detected mainly the physical change of bulk density, which was changed by dispersal of the lubricant and the coating powder particle by the lubricant. The monitoring of thermal effusivity was almost the monitoring of bulk density, thermal effusivity could have a high correlation with tablet hardness. Moreover, as thermal effusivity sensor could detect not only the change of the conventional bulk density but also the fractional change of thermal conductivity and thermal capacity, two-phase progress of lubrication process could be revealed. However, each contribution of density, thermal conductivity, or heat capacity to thermal effusivity has the risk of fluctuation by formulation. After carefully considering the change factor with the risk to be changed by formulation, thermal effusivity sensor can be a useful tool for monitoring as process analytical technology, estimating tablet hardness and investigating the detailed mechanism of the lubrication process.

  20. Fiber Optic Thermal Health Monitoring of Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  1. Use of a Digital Camera to Monitor the Growth and Nitrogen Status of Cotton

    Directory of Open Access Journals (Sweden)

    Biao Jia

    2014-01-01

    Full Text Available The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass. There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination (R2 value was 0.978, and the root mean square error (RMSE value was 1.479 g m−2. Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an R2 value of 0.926 and an RMSE value of 1.631 g m−2. In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status.

  2. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  3. Digital thermal anemometry

    International Nuclear Information System (INIS)

    Stock, D.E.; Shook, M.

    1983-01-01

    Calibration and data reduction techniques relying completely on digital systems are described for standard hot-wire, cross-wires, and split-film probes. These techniques allow the probe to be calibrated in the actual orientation which will be used. Success of the method depends on initially balancing a dual element probe such that both sensors respond identically to velocity changes

  4. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  5. The thermal impact of aquifer thermal energy storage (ATES) systems: a case study in the Netherlands, combining monitoring and modeling

    Science.gov (United States)

    Visser, Philip W.; Kooi, Henk; Stuyfzand, Pieter J.

    2015-05-01

    Results are presented of a comprehensive thermal impact study on an aquifer thermal energy storage (ATES) system in Bilthoven, the Netherlands. The study involved monitoring of the thermal impact and modeling of the three-dimensional temperature evolution of the storage aquifer and over- and underlying units. Special attention was paid to non-uniformity of the background temperature, which varies laterally and vertically in the aquifer. Two models were applied with different levels of detail regarding initial conditions and heterogeneity of hydraulic and thermal properties: a fine-scale heterogeneity model which construed the lateral and vertical temperature distribution more realistically, and a simplified model which represented the aquifer system with only a limited number of homogeneous layers. Fine-scale heterogeneity was shown to be important to accurately model the ATES-impacted vertical temperature distribution and the maximum and minimum temperatures in the storage aquifer, and the spatial extent of the thermal plumes. The fine-scale heterogeneity model resulted in larger thermally impacted areas and larger temperature anomalies than the simplified model. The models showed that scattered and scarce monitoring data of ATES-induced temperatures can be interpreted in a useful way by groundwater and heat transport modeling, resulting in a realistic assessment of the thermal impact.

  6. Cyber Dating Abuse: Investigating Digital Monitoring Behaviors Among Adolescents From a Social Learning Perspective.

    Science.gov (United States)

    Van Ouytsel, Joris; Ponnet, Koen; Walrave, Michel

    2017-07-01

    Just as with other forms of abuse such as bullying, dating violence is no longer limited to physical spaces. Several forms of dating violence can also be perpetrated by means of technology. Few studies have used a theoretical perspective to investigate cyber dating abuse. This study addresses this gap in the literature by focusing on the perpetration of digital monitoring behaviors-a form of cyber dating abuse-from a social learning perspective. We investigate the extent to which perceived social norms about cyber dating abuse, witnessing controlling behaviors among parents, and endorsing gender stereotypes are linked with adolescents' engagement in digital monitoring behaviors. The study draws on data from 466 secondary school students (71.0% girls, n = 331) aged between 16 and 22 years ( M = 17.99 years, SD = 0.92) in Flanders, Belgium, who were in a romantic relationship. Linear regression analysis indicates that being female, being older, the perceived social norms of peers, the endorsement of gender stereotypes, and having observed intrusive controlling behaviors by the father are significantly and positively related to adolescents' perpetration of digital monitoring behaviors. The findings have implications for practice and underscore the need for prevention efforts to address and lower the influence of these perceived social norms. Further implications include the need for prevention efforts to focus on diminishing the impact of gender stereotypical attitudes and the influence of witnessing controlling behaviors within the family context on cyber dating abuse perpetration.

  7. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bowden, N; Misner, A; Palmer, T

    2007-06-27

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to 3.5% within 7 days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  8. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  9. Control and monitoring of doses to patients in a team of digital mammography; Control y seguimiento de las dosis a pacientes en un equipo de mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-07-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  10. Assessment of core protection and monitoring systems for an advanced reactor SMART

    International Nuclear Information System (INIS)

    In, Wang Kee; Hwang, Dae Hyun; Yoo, Yeon Jong; Zee, Sung Qunn

    2002-01-01

    Analogue and digital core protection/monitoring systems were assessed for the implementation in an advanced reactor. The core thermal margins to nuclear fuel design limits (departure from nucleate boiling and fuel centerline melting) were estimated using the design data for a commercial pressurized water reactor and an advanced reactor. The digital protection system resulted in a greater power margin to the fuel centerline melting by at least 30% of rated power for both commercial and advanced reactors. The DNB margin with the digital system is also higher than that for the analogue system by 8 and 12.1% of rated power for commercial and advanced reactors, respectively. The margin gain with the digital system is largely due to the on-line calculations of DNB ratio and peak local power density from the live sensor signals. The digital core protection and monitoring systems are, therefore, believed to be more appropriate for the advanced reactor

  11. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    Science.gov (United States)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  12. Monitoring system for thermal plasma; Sistema de monitoreo para plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M.; Vilchis P, A.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  13. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  14. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  15. Development of Uncertainty Analysis Method for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute has developed a system-integrated modular advanced reactor (SMART) for a seawater desalination and electricity generation. Online digital core protection and monitoring systems, called SCOPS and SCOMS respectively were developed. SCOPS calculates minimum DNBR and maximum LPD based on the several online measured system parameters. SCOMS calculates the variables of limiting conditions for operation. KAERI developed overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system. By applying overall uncertainty factors in on-line SCOPS/SCOMS calculation, calculated LPD and DNBR are conservative with a 95/95 probability/confidence level. In this paper, uncertainty analysis method is described for SMART core protection and monitoring system

  16. Instrumentation and control systems for monitoring and data acquisition for thermal recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, J.; Hernandez, E.; Perozo, H. [PDVSA Intevep, S.A. (Venezuela)

    2011-07-01

    Thermal recovery methods are often applied to enhance oil recovery in heavy oil reservoirs, one of its challenges is to control the displacement of the thermal front. Methods are thus implemented to obtain data on the temperatures in the wells at any given time and to monitor other variables so that the behaviour of the thermal front can be predicted. The aim of this paper is to present a new control and instrumentation scheme to measure all of the variables. A software was created using Labview a graphs-based programming language software and PostgreSQL, a database management system. Using this software, sensors can be added or removed at any time; trends can be immediately visualized; and quality of the information is ensured since there is no human intervention in the data collection or processing. This paper presented a software which improves monitoring of all of the variables affecting the behaviour of the thermal front.

  17. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  18. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    Science.gov (United States)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  19. Resolution requirements for monitor viewing of digital flat-panel detector radiographs: a contrast detail analysis

    International Nuclear Information System (INIS)

    Peer, Siegfried; Giacomuzzi, Salvatore M.; Peer, Regina; Gassner, Eva; Steingruber, Iris; Jaschke, Werner

    2003-01-01

    With the introduction of digital flat-panel detector systems into clinical practice, the still unresolved question of resolution requirements for picture archiving communication system (PACS) workstation monitors has gained new momentum. This contrast detail analysis was thus performed to define the differences in observer performance in the detection of small low-contrast objects on clinical 1K and 2K monitor workstations. Images of the CDRAD 2.0 phantom were acquired at varying exposures on an indirect-type digital flat-panel detector. Three observers evaluated a total of 15 images each with respect to the threshold contrast for each detail size. The numbers of correctly identified objects were determined for all image subsets. No significant difference in the correct detection ratio was detected among the observers; however, the difference between the two types of workstations (1K vs 2K monitors) despite less than 3% was significant at a 95% confidence level. Slight but statistically significant differences exist in the detection of low-contrast nodular details visualized on 1K- and 2K-monitor workstations. Further work is needed to see if this result holds true also for comparison of clinical flat-panel detector images and may, for example, exert an influence on the diagnostic accuracy of chest X-ray readings. (orig.)

  20. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  1. An application study for the class 1E digital control and monitoring system

    International Nuclear Information System (INIS)

    Hiroyuki Fukumitsu

    1998-01-01

    This paper presents an application study for the Class 1E digital control and monitoring system to the next Japanese plants, especially about MMIS. The system architecture of hardware and software is also introduced, which will explain the strategic plan for the necessary software verification and validation according to the latest requirement from Japanese regulatory guide. (author)

  2. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Zuo

    2014-01-01

    Full Text Available Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting vector machine (SVM technology is applied to mine the data. The thermal performances of iron pipes and high-density polyethylene (HDPE pipes are compared. The data mining result shows that iron pipe has a better heat removal performance when flow rate is lower than 50 L/min. It has revealed that a turning flow rate exists for iron pipe which is 80 L/min. The prediction and classification results obtained from the data mining model agree well with the monitored data, which illustrates the validness of the approach.

  3. In-Situ Real-Time Temperature Monitoring of Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program addresses the need for interfacial and in-depth temperature monitoring of thermal protection systems (TPS). Novel, linear drive, eddy current methods...

  4. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    Science.gov (United States)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  5. Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology

    Directory of Open Access Journals (Sweden)

    Ro'ee Eitan

    2014-12-01

    Full Text Available Thermal sensors (TS are essential for achieving optimized performance and reliability in the era of nanoscale microprocessor and system on chip (SoC. Compiling with the low-power and small die area of the mobile computing, the presented TS supports a wide range of sampling frequencies with an optimized power envelope. The TS supports up to 45 K samples/s, low average power consumption, as low as 20 μW, and small core Si area of 0.013 mm2. Advanced circuit techniques are used in order to overcome process variability, ensuring inaccuracy lower than ±2 °C without any calibration. All this makes the presented thermal sensor a cost-effective, low-power solution for 22 nm nanoscale digital process technology.

  6. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  7. The development of monitoring techniques for thermal stratification in nuclear plant piping

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho.

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs

  8. The development of monitoring techniques for thermal stratification in nuclear plant piping

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Cheul Muu; Joo, Young Sang; Yoon, Kwang Sik; Park, Chi Seung; Choi, Ha Lim; Moon, Jae Wha; Bae, Sang Ho

    1996-12-01

    The conventional nondestructive testing has been performed in those area which are susceptible to thermal stress in according to NRC 88-08,11. In addition to that, it is necessary to set up a monitoring system to prevent severe thermal stress to pipes in early stages and to develop the non-intrusive techniques to diagnose the check valve because the thermal stratification has been caused by the malfunction of the check valve in ECCS pipe. Thermal stratification monitoring system has been designed and installed at ECCS line permanently and surge line temporally in YG nuclear power plant. The data is acceptable in according to TASCS guide line. Also, the data originated from ISMS is useful for the arrangement of a special UT program and stress analysis. Applying a togetherness of acoustics and magnetics signal, it is possible to determine the parameters of the function of the check valve internals without disassembling it. This series of tests show that the accelerometers can be use d to measure and to differentiate the three types of impacts; metal to metal impacts mechanical rubs, and worn internal parts. The magnet sensors can be used to detect the opening/closing of stainless check and fluttering of disk. (author). 50 refs., 5 tabs., 28 figs.

  9. Assessment of the usability of a digital learning technology prototype for monitoring intracranial pressure

    Directory of Open Access Journals (Sweden)

    Lilian Regina de Carvalho

    Full Text Available ABSTRACT Objective: to assess the usability of a digital learning technology prototype as a new method for minimally invasive monitoring of intracranial pressure. Method: descriptive study using a quantitative approach on assessing the usability of a prototype based on Nielsen's ten heuristics. Four experts in the area of Human-Computer interaction participated in the study. Results: the evaluation delivered eight violated heuristics and 31 usability problems in the 32 screens of the prototype. Conclusion: the suggestions of the evaluators were critical for developing an intuitive, user-friendly interface and will be included in the final version of the digital learning technology.

  10. A digital position-indication system for control rods

    International Nuclear Information System (INIS)

    Nishizawa, Yukio; Hayakawa, Toshifumi

    1979-01-01

    Systems that detect and indicate the position of the control rods that regulate the thermal output of a nuclear reactor play a particularly important role in monitoring its operational status. Conventionally, control rod position indication in pressurized water reactors has been of the analog type, utilizing the principle of the differential transformer. The present digital system was developed with the objective of achieving greater stability, greater accuracy, and higher reliability. The article gives a general description of the system and describes its advantages. (author)

  11. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Min; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2014-12-15

    As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  12. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyeong Min; Heo, Gyun Young; Na, Man Gyun

    2014-01-01

    As condition-based maintenance (CBM) has risen as a new trend, there has been an active movement to apply information technology for effective implementation of CBM in power plants. This motivation is widespread in operations and maintenance, including monitoring, diagnosis, prognosis, and decision-making on asset management. Thermal efficiency analysis in nuclear power plants (NPPs) is a longstanding concern being updated with new methodologies in an advanced IT environment. It is also a prominent way to differentiate competitiveness in terms of operations and maintenance costs. Although thermal performance tests implemented using industrial codes and standards can provide officially trustworthy results, they are essentially resource-consuming and maybe even a hind-sighted technique rather than a foresighted one, considering their periodicity. Therefore, if more accurate performance monitoring can be achieved using advanced data analysis techniques, we can expect more optimized operations and maintenance. This paper proposes a framework and describes associated methodologies for in-situ thermal performance analysis, which differs from conventional performance monitoring. The methodologies are effective for monitoring, diagnosis, and prognosis in pursuit of CBM. Our enabling techniques cover the intelligent removal of random and systematic errors, deviation detection between a best condition and a currently measured condition, degradation diagnosis using a structured knowledge base, and prognosis for decision-making about maintenance tasks. We also discuss how our new methods can be incorporated with existing performance tests. We provide guidance and directions for developers and end-users interested in in-situ thermal performance management, particularly in NPPs with large steam turbines.

  13. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    Science.gov (United States)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  14. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    Science.gov (United States)

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  15. Film-Screen Mammography versus digital storage plate mammography: Hard copy and monitor display of microcalcifications and focal findings - A retrospective clinical and histologic analysis

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Wenkel, E.; Aichinger, U.; Tartsch, M.; Kuchar, I.; Bautz, W.

    2003-01-01

    Purpose: A retrospective clinical-histological study to determine the diagnostic accuracy of mammography using conventional screen-film cassettes (hard copy), high-resolution digital phosphor storage plates (hard copy) and monitor display (soft copy) for microcalcifications and focal lesions (BI-RADS TM category 4 or 5). Materials and methods: From April to November 2001, 76 patients underwent conventional film-screen mammography and, after diagnosis and preoperative wire localization, digital mammography with the same exposure parameters. Five investigators retrospectively determined the diagnosis after the operation from randomly distributed mediolateral views (hard-copy reading) and from the monitor display (soft-copy reading). These results were correlated with the final histology. Results: The accuracy of conventional screen-film mammography, digital mammography and monitor-displayed mammography was 67%, 65% and 68% for all findings, (n = 76), 59%, 59% and 68% for microcalcifications (n = 44) and 75%, 72% and 63% for focal lesions (n = 32). The overall results showed no difference. Conclusions: Our findings indicate equivalence of conventional screen-film mammography, high-resolution digital phosphor storage plate mammography and monitor-displayed mammography. (orig.) [de

  16. Estimation of groundwater flow from temperature monitoring in a borehole heat exchanger during a thermal response test

    Science.gov (United States)

    Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei

    2018-05-01

    To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.

  17. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    Science.gov (United States)

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  18. Thermal micropressure sensor for pressure monitoring in a minute package

    International Nuclear Information System (INIS)

    Wang, S. N.; Mizuno, K.; Fujiyoshi, M.; Funabashi, H.; Sakata, J.

    2001-01-01

    A thermal micropressure sensor suitable for pressure measurements in the range from 7x10 -3 to 1x10 5 Pa has been fabricated by forming a titanium (Ti) thin-film resistor on a floating nondoped silica glass membrane, with the sensing area being as small as 60 μmx60 μm. The sensor performance is raised by: (1) increasing the ratio of gaseous thermal conduction in the total thermal conduction by sensor structure design; (2) compensating the effect of ambient-temperature drift by using a reference resistor located close to the sensing element but directly on the silicon substrate; and (3) utilizing an optimized novel constant-bias Wheatstone bridge circuit. By choosing a proper bias voltage, which can be found by simple calculation, the circuit extracts information on gaseous thermal conduction from the directly measurable total heat loss of the heated sensing element. The sensor was enclosed in a metal package with a capacity of about 0.5 ml by projection welding and was successfully applied to monitoring the pressure in the minute space

  19. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    with no or low quality heat flow data. This analysis requires knowledge oflithosphere age globally.A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg 1 deg grid forms the basis forthe statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publicationsfor data quality, and corrected for paleo-temperature effects where needed. These data are supplemented bycratonic geotherms based on xenolith data.Since heat flow measurements cover not more than half...

  20. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  1. Methods for accurate cold-chain temperature monitoring using digital data-logger thermometers

    Science.gov (United States)

    Chojnacky, M. J.; Miller, W. M.; Strouse, G. F.

    2013-09-01

    Complete and accurate records of vaccine temperature history are vital to preserving drug potency and patient safety. However, previously published vaccine storage and handling guidelines have failed to indicate a need for continuous temperature monitoring in vaccine storage refrigerators. We evaluated the performance of seven digital data logger models as candidates for continuous temperature monitoring of refrigerated vaccines, based on the following criteria: out-of-box performance and compliance with manufacturer accuracy specifications over the range of use; measurement stability over extended, continuous use; proper setup in a vaccine storage refrigerator so that measurements reflect liquid vaccine temperatures; and practical methods for end-user validation and establishing metrological traceability. Data loggers were tested using ice melting point checks and by comparison to calibrated thermocouples to characterize performance over 0 °C to 10 °C. We also monitored logger performance in a study designed to replicate the range of vaccine storage and environmental conditions encountered at provider offices. Based on the results of this study, the Centers for Disease Control released new guidelines on proper methods for storage, handling, and temperature monitoring of vaccines for participants in its federally-funded Vaccines for Children Program. Improved temperature monitoring practices will ultimately decrease waste from damaged vaccines, improve consumer confidence, and increase effective inoculation rates.

  2. On-Orbit Health Monitoring and Repair Assessment of Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers On-orbit health MoNItoring and repair assessment of THERMal protection systems (OMNI_THERM). OMNI_THERM features impedance-based...

  3. Quality control of the interpretation monitors of digital radiological images; Controle de qualidade dos monitores de interpretacao de imagens radiologicas digitais: uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Favero, Mariana S.; Goulart, Adriano Oliveira S., E-mail: mariana@phymed.com.br [PhyMED - Consultores em Fisica Medica e Radioprotecao Ltda, Porto Alegre, RS (Brazil)

    2016-07-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  4. Upgrading the Siemens Argonaut Reactor Graz with a digital monitoring system

    International Nuclear Information System (INIS)

    Froehlich, O.; Ninaus, W.

    1999-01-01

    This paper presents a modern design of a reactor monitoring system (MS) which was developed for a research reactor. This MS is using digital concepts, and it is more flexible than an analog MS, it co-operates better with the user, and it is a very helpful tool for a training-reactor in an university environment. The heart of the system is a process computer, and it was possible to access all important signals and functions of the original nuclear instrumentation by additional hardware. The monitoring software was written in C for the platform '32Bit-DOS-protected-mode' and shows on several high-resolution screen pages all the collected signals and the working conditions of the reactor. Moreover, all signals which are recorded on the random access memory can be saved to the hard disk of the computer and may thereby be used offline as well.(author)

  5. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  6. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  7. Mobility Monitor

    DEFF Research Database (Denmark)

    Schæbel, Anne-Lise; Dybbro, Karina Løvendahl; Andersen, Lisbeth Støvring

    2015-01-01

    Undersøgelse af digital monitorering af plejehjemsbeboeres vendinger under søvn på Fremtidens Plejehjem, Nørresundby......Undersøgelse af digital monitorering af plejehjemsbeboeres vendinger under søvn på Fremtidens Plejehjem, Nørresundby...

  8. Models for thermal and mechanical monitoring of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vilaithong, Rummiya

    2011-07-01

    At present, for economic reasons, there is an increasing emphasis on keeping transformers in service for longer than in the past. A condition-based maintenance using an online monitoring and diagnostic system is one option to ensure reliability of the transformer operation. The key parameters for effectively monitoring equipment can be selected by failure statistics and estimated failure consequences. In this work, two key aspects of transformer condition monitoring are addressed in depth: thermal behaviour and behaviour of on-load tap changers. In the first part of the work, transformer thermal behaviour is studied, focussing on top-oil temperatures. Through online comparison of a measured value of the top-oil temperature and its calculated value, some rapidly developing failures in power transformers such as malfunction of the cooling unit may be detected. Predictions of top-oil temperature can be obtained by means of a mathematical model. Long-term investigations on some dynamic top-oil temperature models are presented for three different types of transformer units. The last-state top-oil temperature, load current, ambient temperature and the operating state of pumps and fans are applied as inputs of the top-oil temperature models. In the fundamental physical models presented, some constant parameters are required and can be estimated using a least-squares optimization technique. Multilayer Feed-forward and Recurrent neural network models are also proposed and investigated. The neural network models are trained with three different Backpropagation training algorithms: Levenberg-Marquardt, Scaled Conjugate Gradient and Automated Bayesian Regularization. The effect of varying operating conditions of the cooling units and the non-steady-state behaviour of loading conditions, as well as ambient temperature are noted. Results show sophisticated temperature prediction is possible using the neural network models that is generally more accurate than with the physical

  9. Monitoring and assessment of the outdoor thermal comfort in Bucharest (Romania)

    Science.gov (United States)

    Cheval, Sorin; Ciobotaru, Ana-Maria; Andronache, Ion; Dumitrescu, Alexandru

    2017-04-01

    Bucharest is one of the European cities most at risk of being affected by meteorological hazards. Heat or cold waves, extreme temperature events, heavy rains or prolonged precipitation deficits are all-season phenomena, triggering damages, discomfort or even casualties. Temperature hazards may occur annually and challenge equally the public, local business and administration to find adequate solutions for securing the thermal comfort in the outdoor environment of the city. The accurate and fine resolution monitoring of the air temperature pledges for the comprehensive assessment of the thermal comfort in order to capture as much as possible the urban influence. This study uses sub-hourly temperature data (10-min temporal resolution) retrieved over the period November 2014 - November 2016 collected from nine sensors placed either in plain urban conditions or within the three meteorological stations of the national network which are currently monitoring the climate of Bucharest (Băneasa, Filaret, Afumați). The relative humidity was estimated based on the data available at the three stations placed in WMO standard conditions, and the 10-min values of 8 Thermal Comfort Indices were computed, namely: Heat Index, Humidex, Relative Strain Index, Scharlau, Summer Simmer Index, Physiological Equivalent Index, Temperature-Humidity Index, Thom Discomfort Index. The indices were analysed statistically, both individually and combined. Despite the short range of the available data, this study emphasizes clear spatial differentiations of the thermal comfort, in a very good agreement with the land cover and built zones of the city, while important variations were found in the temporal regime, due to large variations of the temperature values (e.g. >4 centigrade between consecutive hours or >15 centigrade between consecutive days). Ultimately, this study has revealed that the continuous monitoring of the urban climate, at fine temporal and spatial resolution, may deliver

  10. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  11. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool

  12. Laser weld process monitoring and control using chromatic filtering of thermal radiation from a weld pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk; Baik, Sung Hoon; Chung, Chin Man

    2000-06-01

    The application of high power Nd: YAG lasers for precision welding in industry has been growing quite fast these days in diverse areas such as the automobile, the electronics and the aerospace industries. These diverse applications also require the new developments for the precise control and the reliable process monitoring. Due to the hostile environment in laser welding, a remote monitoring is required. The present development relates in general to weld process monitoring techniques, and more particularly to improved methods and apparatus for real-time monitoring of thermal radiation of a weld pool to monitor a size variation and a focus shift of the weld pool for weld process control, utilizing the chromatic aberration of focusing lens or lenses. The monitoring technique of the size variation and the focus shift of a weld pool is developed by using the chromatic filtering of the thermal radiation from a weld pool. The monitoring of weld pool size variation can also be used to monitor the weld depth in a laser welding. Furthermore, the monitoring of the size variation of a weld pool is independent of the focus shift of a weld pool and the monitoring of the focus shift of a weld pool is independent of the size variation of a weld pool.

  13. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  14. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard, B.

    1998-01-01

    The XIA DXP-4C, a 4 channel, CAMAC based X-ray spectrometer, is based on digitally processing directly digitized preamplifier signals. Designed for instrumenting multi-detector arrays for synchrotron radiation applications, the DXP-4C was optimized for very high count rates at a low cost per detector channel. These design constraints coincidentally lead to an instrument which is very compact and relatively low power (3.4 W/channel), considering its count rate and MCA capabilities, and which therefore offers interesting possibilities for effective extension to portable applications. Further, because all functions (gain, filter parameters, pileup inspection criteria and internal calibrations) are digitally controlled, the design can be readily adapted to a large variety of user interfaces, including remote access interfaces. Here we present the basics of the design and examine approaches to lowering the power to less than 300 mW/channel while retaining count rate capabilities in excess of 50,000 cps. We then consider the engineering issues associated with portable and remote spectrometry applications, examining in detail the three cases of a lead paint detector, a remote contamination monitor, and a space mission spectrometer. (author)

  15. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  16. Integrated Digital Platform for the Valorization of a Cultural Landscape

    Science.gov (United States)

    Angheluţǎ, L. M.; Ratoiu, L.; Chelmus, A. I.; Rǎdvan, R.; Petculescu, A.

    2017-05-01

    This paper presents a newly started demonstrative project regarding the implementation and validation of an interdisciplinary research model for the Aluniş-Bozioru (Romania) cultural landscape, with the development of an online interactive digital product. This digital product would provide complementary data about the historical monuments and their environment, and also, constant updates and statistical comparison in order to generate an accurate evaluation of the state of conservation for this specific cultural landscape. Furthermore, the resulted information will contribute in the decision making process for the regional development policies. The project is developed by an interdisciplinary joint team of researchers consisted of technical scientists with great experience in advanced non-invasive characterization of the cultural heritage (NIRD for Optoelectronics - INOE 2000) and a group of experts from geology and biology (Romanian Academy's "Emil Racoviţǎ" Institute of Speleology - ISER). Resulted scientific data will include: 3D digital models of the selected historical monuments, microclimate monitoring, Ground Penetrating Radar survey, airborne LIDAR, multispectral and thermal imaging, soil and rock characterization, environmental studies. This digital product is constituted by an intuitive website with a database that allows data corroboration, visualization and comparison of the 3D digital models, as well as a digital mapping in the GIS system.

  17. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    Science.gov (United States)

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  18. Comparing a recursive digital filter with the moving-average and sequential probability-ratio detection methods for SNM portal monitors

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1993-01-01

    The author compared a recursive digital filter proposed as a detection method for French special nuclear material monitors with the author's detection methods, which employ a moving-average scaler or a sequential probability-ratio test. Each of these nine test subjects repeatedly carried a test source through a walk-through portal monitor that had the same nuisance-alarm rate with each method. He found that the average detection probability for the test source is also the same for each method. However, the recursive digital filter may have on drawback: its exponentially decreasing response to past radiation intensity prolongs the impact of any interference from radiation sources of radiation-producing machinery. He also examined the influence of each test subject on the monitor's operation by measuring individual attenuation factors for background and source radiation, then ranked the subjects' attenuation factors against their individual probabilities for detecting the test source. The one inconsistent ranking was probably caused by that subject's unusually long stride when passing through the portal

  19. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong; Chen, Tao; Lubineau, Gilles

    2017-01-01

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film's structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  20. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  1. Personal digital assistants are comparable to traditional diaries for dietary self-monitoring during a weight loss program.

    Science.gov (United States)

    Yon, Bethany A; Johnson, Rachel K; Harvey-Berino, Jean; Gold, Beth Casey; Howard, Alan B

    2007-04-01

    Dietary self-monitoring is considered the core of behavioral weight control programs. As software for personal digital assistants (PDA) has become more available, this study investigated whether the use of a PDA would improve dietary self-monitoring frequency and subsequent weight loss over the use of traditional paper diaries. One-hundred-seventy-six adults (BMI 25-39.9) participated in a 6-month behavioral weight control program. Treatment subjects (n = 61) were provided with a PalmZire 21 with Calorie King's Diet Diary software installed. Their self-monitoring habits and weight loss were compared with the results from a previous program (n = 115) which followed the same protocol using paper diaries for self-monitoring. No significant differences in weight loss or dietary self-monitoring were found. More frequent self-monitoring correlated with weight loss in both groups (pself-monitoring that is fitting to their lifestyle and skills.

  2. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  3. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1993-10-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T[sub i], and ion thermal diffusivity, [chi][sub i], are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author).

  4. Ohmic ion temperature and thermal diffusivity profiles from the JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Esposito, B.

    1993-01-01

    The JET neutron emission profile monitor was used to study ohmically heated deuterium discharges. The radial profile of the neutron emissivity is deduced from the line-integral data. The profiles of ion temperature, T i , and ion thermal diffusivity, χ i , are derived under steady-state conditions. The ion thermal diffusivity is higher than, and its scaling with plasma current opposite to, that predicted by neoclassical theory. (author)

  5. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  6. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen; Ozcan, Aydogan

    2017-01-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  7. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen

    2017-08-31

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  8. Mould thermal monitoring: a window on the mould

    Energy Technology Data Exchange (ETDEWEB)

    Normanton, A.S.; Hewitt, P.N.; Hunter, N.S.; Scoones, D.; Harris, B.

    2004-07-01

    Corus R, D and T at Teesside Technology Centre has developed over a number of years a mould thermal monitoring (MTM) system based on an array of thermocouples in the mould copper plates. The system is installed on the Corus slab casters in the UK, on slab casters at Outokumpu (UK), Sidmar (Belgium) and Kosice (Slovakia) and, at the time of the 4th European Continuous Casting Conference, was also on the medium thickness slab caster at Tuscaloosa (USA), which was sold to Nucor in 2004. The MTM system was also under development on the thin slab caster at Trico (USA) before plant closure (subsequently bought by Nucor), and aspects are currently being developed on the Corus DSP (direct sheet plant) thin slab caster at IJmuiden (The Netherlands). While a prime function is detection and prevention of sticker type breakouts, the MTM system allows real time assessment of thermal conditions, provides a valuable input for online grading and, most important, enables modifications to mould powder practices to be assessed. The present paper briefly outlines recent developments to the MTM system and presents examples of the use of the system to assist mould powder developments. (author)

  9. Can Commercial Digital Cameras Be Used as Multispectral Sensors? A Crop Monitoring Test

    Directory of Open Access Journals (Sweden)

    Bruno Roux

    2008-11-01

    Full Text Available The use of consumer digital cameras or webcams to characterize and monitor different features has become prevalent in various domains, especially in environmental applications. Despite some promising results, such digital camera systems generally suffer from signal aberrations due to the on-board image processing systems and thus offer limited quantitative data acquisition capability. The objective of this study was to test a series of radiometric corrections having the potential to reduce radiometric distortions linked to camera optics and environmental conditions, and to quantify the effects of these corrections on our ability to monitor crop variables. In 2007, we conducted a five-month experiment on sugarcane trial plots using original RGB and modified RGB (Red-Edge and NIR cameras fitted onto a light aircraft. The camera settings were kept unchanged throughout the acquisition period and the images were recorded in JPEG and RAW formats. These images were corrected to eliminate the vignetting effect, and normalized between acquisition dates. Our results suggest that 1 the use of unprocessed image data did not improve the results of image analyses; 2 vignetting had a significant effect, especially for the modified camera, and 3 normalized vegetation indices calculated with vignetting-corrected images were sufficient to correct for scene illumination conditions. These results are discussed in the light of the experimental protocol and recommendations are made for the use of these versatile systems for quantitative remote sensing of terrestrial surfaces.

  10. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  11. In-line digital holographic sensor for monitoring and characterizing marine particulates

    International Nuclear Information System (INIS)

    Owen, Robert B.; Zozulya, Alex A.

    2000-01-01

    We report an in-line digital holographic sensor (DHS) for monitoring and characterizing marine particulates. This system images individual particles over a deep depth of field (>25 cm) with a resolution of 5 μm. The DHS projects a collimated beam through the water column and onto a lensless CCD array. Some light is diffracted by particulates and forms an object beam; the undeflected remainder constitutes the reference beam. The two beams combine at the CCD array and create an in-line hologram, which is then numerically reconstructed. The DHS eliminates many problems traditionally associated with holography. The CCD recording material considerably lowers the exposure time and eliminates most vibration problems. The laser power needs are low; the DHS uses a small 10-mW diode laser. Rapid numerical reconstruction eliminates photographic processing and optical reconstruction. We successfully operated the DHS underwater on a remotely operated vehicle; our test results include tracing a single particle from one hologram to the next, thus deriving a velocity vector for marine mass transport. We outline our digital holographic reconstruction procedure, and present our graphical user interface and user software tools. The DHS is particularly useful for providing in situ ground-truth measurements for environmental remote sensing. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  12. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  13. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  14. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  15. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  16. CEA SMAD 2016 Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Sandia National Laboratories has tested and evaluated an updated SMAD digitizer, developed by the French Alternative Energies and Atomic Energy Commission (CEA). The SMAD digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self-noise, dynamic range, system noise, response, passband, and timing. The SMAD digitizers have been updated since their last evaluation by Sandia to improve their performance when recording at a sample rate of 20 Hz for infrasound applications and 100 Hz for hydro-acoustic seismic stations. This evaluation focuses primarily on the 20 Hz and 100 Hz sample rates. The SMAD digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test- Ban-Treaty Organization (CTBTO).

  17. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring.

    Science.gov (United States)

    Wu, Yichen; Ozcan, Aydogan

    2018-03-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Optical fiber biocompatible sensors for monitoring selective treatment of tumors via thermal ablation

    Science.gov (United States)

    Tosi, Daniele; Poeggel, Sven; Dinesh, Duraibabu B.; Macchi, Edoardo G.; Gallati, Mario; Braschi, Giovanni; Leen, Gabriel; Lewis, Elfed

    2015-09-01

    Thermal ablation (TA) is an interventional procedure for selective treatment of tumors, that results in low-invasive outpatient care. The lack of real-time control of TA is one of its main weaknesses. Miniature and biocompatible optical fiber sensors are applied to achieve a dense, multi-parameter monitoring, that can substantially improve the control of TA. Ex vivo measurements are reported performed on porcine liver tissue, to reproduce radiofrequency ablation of hepatocellular carcinoma. Our measurement campaign has a two-fold focus: (1) dual pressure-temperature measurement with a single probe; (2) distributed thermal measurement to estimate point-by-point cells mortality.

  19. Application of the Digital Image Technology in the Visual Monitoring and Prediction of Shuttering Construction Safety

    Science.gov (United States)

    Ummin, Okumura; Tian, Han; Zhu, Haiyu; Liu, Fuqiang

    2018-03-01

    Construction safety has always been the first priority in construction process. The common safety problem is the instability of the template support. In order to solve this problem, the digital image measurement technology has been contrived to support real-time monitoring system which can be triggered if the deformation value exceed the specified range. Thus the economic loss could be reduced to the lowest level.

  20. The diagnosis of small solitary pulmonary nodule: comparison of standard and inverse digital images on a high resolution monitor using ROC analysis

    International Nuclear Information System (INIS)

    Choi, Byeong Kyoo; Lee, In Sun; Seo, Joon Beom; Lee, Jin Seong; Song, Koun Sik; Lim, Tae Hwan

    2002-01-01

    To study the impact of inversion of soft-copy chest radiographs on the detection of small solitary pulmonary nodules using a high-resolution monitor. The study group consisted of 80 patients who had undergone posterior chest radiography; 40 had a solitary noncalcified pulmonary nodule approximately 1 cm in diameter, and 40 were control subjects. Standard and inverse digital images using the inversion tool on a PACS system were displayed on high-resolution monitors (2048x2560x8 bit). Ten radiologists were requested to rank each image using a five-point scale (1=definitely negative, 3=equivocal or indeterminate, 5=definite nodule), and the data were interpreted using receiver operating characteristic (ROC) analysis. The area under the ROC curve for pooled data of standard image sets was significantly larger than that of inverse image sets (0.8893 and 0.8095, respectively; p 0.05). For detecting small solitary pulmonary nodules, inverse digital images were significantly inferior to standard digital images

  1. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  2. In-line monitoring of Li-ion battery electrode porosity and areal loading using active thermal scanning - modeling and initial experiment

    Science.gov (United States)

    Rupnowski, Przemyslaw; Ulsh, Michael; Sopori, Bhushan; Green, Brian G.; Wood, David L.; Li, Jianlin; Sheng, Yangping

    2018-01-01

    This work focuses on a new technique called active thermal scanning for in-line monitoring of porosity and areal loading of Li-ion battery electrodes. In this technique a moving battery electrode is subjected to thermal excitation and the induced temperature rise is monitored using an infra-red camera. Static and dynamic experiments with speeds up to 1.5 m min-1 are performed on both cathodes and anodes and a combined micro- and macro-scale finite element thermal model of the system is developed. It is shown experimentally and through simulations that during thermal scanning the temperature profile generated in an electrode depends on both coating porosity (or area loading) and thickness. It is concluded that by inverting this relation the porosity (or areal loading) can be determined, if thermal response and thickness are simultaneously measured.

  3. Digital signal processing for a thermal neutron detector using ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

    2016-07-11

    We present a digital signal processing system based on a photon counting approach which we developed for a thermal neutron detector consisting of ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs. Three digital filters have been evaluated: a moving sum, a moving sum after differentiation and a digital CR-RC{sup 4} filter. The performances of the detector with these filters are presented. A full analog signal processing using a CR-RC{sup 4} filter has been emulated digitally. The detector performance obtained with this analog approach is compared with the one obtained with the best performing digital approach. - Highlights: • Application of digital signal processing for a SiPM-based ZnS:6LiF neutron detector. • Optimisation of detector performances with 3 different digital filters. • Comparison with detector performances with a full analog signal processing.

  4. Observation of thermal plumes from submerged discharges in the Great Lakes and their implications for modeling and monitoring

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Paddock, R.A.; Frigo, A.A.

    1977-01-01

    Measurements of thermal plumes from submerged discharges of power plant cooling waters into the Great Lakes provide the opportunity to view the mixing processes at prototype scales and to observe the effects of the ambient environment on those processes. Examples of thermal plume behavior in Great Lakes' ambient environments are presented to demonstrate the importance of measurements of the detailed structure of the ambient environment, as well as of the plumes, for interpretation of prototype data for modeling and monitoring purposes. The examples are drawn from studies by Argonne National Laboratory (ANL) at the Zion Nuclear PowerStation and the D. C. Cook Nuclear Plant on Lake Michigan and at the J. A. FitzPatrick Nuclear Power Plant on Lake Ontario. These studies included measurements of water temperatures from a moving boat which provide a quasi-synoptic view of the three-dimensional temperature structure of the thermal plume and ambient water environment. Additional measurements of water velocities, which are made with continuously recording, moored, and profiling current meters, and of wind provide data on the detailed structure of the ambient environment. The detailed structure of the ambient environment, in terms of current, current shear, variable winds, and temperature stratification, often influence greatly thermal plume behavior. Although predictive model techniques and monitoring objectives often ignore the detailed aspects of the ambient environment, useful interpretation of prototype data for model evaluation or calibration and monitoring purposes requires detailed measurement of the ambient environment. Examination of prototype thermal plume data indicates that, in several instances, attention to only the gross characteristics of the ambient environment can be misleading and could result in significant errors in model calibration and extrapolation of data bases gathered in monitoring observations

  5. Research and Development of Protection OPC server for China advanced research reactor digital monitoring system

    International Nuclear Information System (INIS)

    Jia Yuwen; Xu Qiguo

    2012-01-01

    OPC server was developed as I/O driver to communicate the digital monitoring system of China Advanced Research Reactor iFIX and protection system. The framework and working principle of the OPC server were researched, and an effective method was developed to resolve the special communication protocol. After commissioning and testing, the results show that this method is reliable and stable, makes the system easy to configure, and can reduce the complexity of the system. (authors)

  6. How to succeed in the digital age? Monitor the organizational context, identify risks and opportunities, and manage change effectively

    Directory of Open Access Journals (Sweden)

    Fonseca Luis Miguel

    2017-09-01

    Full Text Available Due to the dynamic and inter-connected internal and external environments of the present digital age, organizations are faced with increased challenges to achieve enduring success. After reviewing the major management theories with an organizational focus, and the changes brought with the new ISO 9001:2015 Quality Management Systems International Standard Edition, the hypotheses that to succeed in the digital age organizations must monitor the organizational context, identify risks and opportunities, and manage change effectively, are presented. A worldwide survey was carried out among IRCA registered auditors concerning ISO 9001:2015 certified organizations, and by using a quantitative methodology (sample normality was confirmed through Kolmogorov-Smirnov test and the hypothesis were tested by using Pearson correlation coefficient. The results of this research highlight the need to properly monitor the organizational (internal and external context and identify the key issues that affect the organizations ability to deliver quality products and satisfy their customers and key stakeholders, and to plan, design, implement and control change in an effective and timely manner. These results support the notion that organizations should adopt appropriate organizational models for the present digital age, with emphasis on knowledge management and horizontal customer perspectives, willing to scan the environment, identify risk and opportunities and take timely and suitable actions.

  7. Thermal monitoring of leakage through Karkheh embankment dam, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Mirghasemi, A.A.; Bagheri, S.M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering; Heidarzadeh, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering]|[Mahab Ghodss Consulting Engineers, Tehran (Iran, Islamic Republic of)

    2007-07-01

    A newly developed and simple method for monitoring seepage in embankment dams was presented. The method of temperature measurement is based on the fact that a change in permeability results in a change in seepage flow, thereby causing a temperature change that can be readily measured in the dam body and foundation. In this study, water leaking through the Karkheh embankment dam was thermally analyzed to determine a pattern and amount of water seepage. With nearly 33 million cubic metres of fill, the Karkheh earth and rock-fill dam is the largest dam in Iran. Construction was completed in 2000. The thermal processes in the embankment were studied due to the dam's complex thermo-hydraulic behaviour. Thermal data was collected and analyzed during construction and operation of the dam. This paper presented the temperature variations for the different dam zones, including core, upstream shell, downstream shell, upstream filter, downstream filter and the plastic concrete cut-off wall. It was determined that the clay core works very well as an impermeable curtain. It was also shown that temperature variations of the Karkheh reservoir water is seasonal, and decrease as water depth increases. The reservoir water temperature remains constant beyond depths of 60 metres. The thermal behaviour of the core is not similar to that of the reservoir, indicating a very low value of seepage through the core. The pattern of temperature variations in the upstream shell in the left abutment is harmonic, while in the right abutment it is not harmonic. A harmonic pattern of temperature variation exists in some aquifers of the dam foundation, indicating high seepage through these aquifers. The Karkheh dam cut-off wall performs satisfactorily. It was determined that one dimensional equations for estimating seepage cannot be applied for the Karkheh dam. 17 refs., 11 figs.

  8. Research on transfer rule of the monitoring of operator in digital main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Li; Li Linfeng; Li Pengcheng; Lu Changshen; Huang Weigang; Dai Zhonghua; Huang Yuanzheng; Chen Qingqing

    2013-01-01

    In the digital main control room of nuclear power plants, monitoring the operating status of the system of reactor is not only one of the most important tasks of the operators, but also the basis and premise of controlling the system of reactor running correctly. After analyzing, inducing, summarizing the data obtained, we found the operators' monitor behavior could be classified as procedure transfer, abnormal transfer, and exchange transfer. The times of exchange transfer is 29% of the total transfer times, abnormal transfer is 14%, regulation transfer is 36%, and others are 21%. (authors)

  9. Digital Levelling in Subterranean Spaces

    Directory of Open Access Journals (Sweden)

    Tomáš Jiřikovský

    2007-06-01

    Full Text Available For precision levelling works are now more often used digital levels and code-scale staffs. Advantages in (and problems with their application to the regular line-levelling are well known and described. However, when using the digital levelling for measurements in specific local geodetic networks, monitoring networks and inside of buildings and underground spaces, new problems appear with the signalisation of the observed points, readability of the code (non-uniform illumination, temperature changes etc. The article informs about the application of two types of digital levels (Sokkia SDL-2, Trimble Zeiss DiNi 12T in the experimental subterranean levelling network for the basement settlement monitoring of a ten-floor building; the solution of marking of the points, field calibration and the system calibration of digital levels.

  10. Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring

    Directory of Open Access Journals (Sweden)

    L. Guerriero

    2017-06-01

    Full Text Available Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.

  11. Vibration monitoring and fault diagnostics of a thermal power plant

    International Nuclear Information System (INIS)

    Hafeez, T.; Ghani, R.; Chohan, G.Y.; Amir, M.

    2003-01-01

    A thermal power plant was monitored from HP-turbine to the generator end. The vibration data at different plant locations was obtained with the help of a data collector/analyzer. The spectra of-all locations generate the symptoms for different problems of moderate and high vibration levels like bent shaft, misalignment in the exciter rotor and three couplings, mechanical looseness on generator and exciter sides. The possible causes of these faults are discussed on the basis of presented vibration spectra in this paper. The faults were later on rectified on the basis of this diagnostics. (author)

  12. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  13. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  14. COMPARATIVE ASSESSMENT OF CHEMOTHERAPY EFFICIENCY MONITORING IN PULMONARY TUBERCULOSIS PATIENTS BY X-RAY EXAMINATION AND DIGITAL TOMOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    M. M. Nikitin

    2016-01-01

    Full Text Available Goal of the study: to investigate the capabilities of digital tomosynthesis for monitoring of tuberculous changes in the lungs against the background of chemotherapy.Materials and methods. Results of chemotherapy efficiency monitored by X-ray in 55 respiratory tuberculosis patients were analyzed. Before treatment and in 2 months after chemotherapy start all patients had X-ray and DT with consequent analysis of the obtained data.Results. When monitoring the efficiency of drug therapy for pulmonary tuberculosis by DT some additional diagnostic data were obtained in 36,4% of cases compared to X-ray. The article describes specific features of tuberculous changes visualization of the chest with the follow-up of changes by DT; opportunities for X-ray monitoring efficiency enhancement in these patients are presented.Conclusions. DT provides more accurate evaluation of tuberculous changes in the lungs compared to X-ray, which greatly enhances understanding of the course of the disease and registration of the pulmonary disease cure. 

  15. Assessment of the usability of a digital learning technology prototype for monitoring intracranial pressure.

    Science.gov (United States)

    Carvalho, Lilian Regina de; Évora, Yolanda Dora Martinez; Zem-Mascarenhas, Silvia Helena

    2016-08-29

    to assess the usability of a digital learning technology prototype as a new method for minimally invasive monitoring of intracranial pressure. descriptive study using a quantitative approach on assessing the usability of a prototype based on Nielsen's ten heuristics. Four experts in the area of Human-Computer interaction participated in the study. the evaluation delivered eight violated heuristics and 31 usability problems in the 32 screens of the prototype. the suggestions of the evaluators were critical for developing an intuitive, user-friendly interface and will be included in the final version of the digital learning technology. avaliar a usabilidade de um protótipo educacional digital sobre um novo método para monitoração da pressão intracraniana de forma minimamente invasivo para enfermeiros e médicos. estudo descritivo com abordagem quantitativa sobre a avaliação de usabilidade de um protótipo com base nas dez Heurísticas de Nielsen. Participaram quatro especialistas da área de Interação Humano Computador. a avaliação resultou em oito heurísticas violadas e 31 problemas de usabilidade nas 32 telas do protótipo. as sugestões dos avaliadores foram cruciais para o desenvolvimento de uma interface amigável e intuitiva e serão consideradas na versão final da tecnologia educacional digital. evaluar la usabilidad de un prototipo educacional digital sobre un nuevo método para monitorización de la presión intracraneal, de manera mínimamente invasiva. estudio descriptivo con abordaje cuantitativo sobre la evaluación de usabilidad de un prototipo con base en las diez reglas Heurísticas de Nielsen. Participaron cuatro especialistas del área de Interacción Humana Computador. la evaluación resultó en ocho reglas heurísticas violadas y 31 problemas de usabilidad en las 32 pantallas del prototipo. las sugestiones de los evaluadores fueron cruciales para el desarrollo de una interfaz amigable e intuitiva y éstas serán consideradas en la

  16. Feasibility study of applying a multi-channel analysis model to on-line core monitoring system

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, D. H.; Jun, T. H.

    1998-01-01

    A feasibility study was performed to evaluate the effect of implementing a multi-channel analysis model in on-line core monitoring system. A simplified thermal-hydraulic model has been used in the on-line core monitoring system of digital PWR. The design procedure, core thermal margin and computation time were investigated in case of replacing the simplified model with the multi-channel analysis model. For the given ranges of limiting conditions for operation in Yonggwang Unit 3 Cycle 1, the minimum DNBR of the simplified thermal-hydraulic code CETOP-D was compared to that of the multi-channel analysis code MATRA. A CETOP-D tuning is additionally required to ensure the accurate and conservative DNBR calculation but the MATRA tuning is not necessary. MATRA appeared to increase the DNBR overpower margin from 2.5% to 6% over the CETOP-D margin. MATRA took approximately 1 second to compute DNBR on the HP9000 workstation system, which is longer than the DNBR computation time of CETOP-D. It is, however, fast enough to perform the on-line monitoring of DNBR. It can be therefore concluded that the application of the multi-channel analysis model MATRA in the on-line core monitoring system is feasible

  17. Monitoring of thermal regime of permafrost in the coastal zone of Western Yamal

    Science.gov (United States)

    Vasiliev, A.

    2009-04-01

    Data on thermal regime of permafrost are required for estimation of the climate change influence on permafrost dynamics. Monitoring of thermal regime of permafrost was arranged in the area of weather station "Marre-Sale", western Yamal. In terms of geomorphology, the area of our observations belongs to the second and third marine terraces; the surface of these terraces has been partly modified by recent cryogenic processes. The elevation varies from 10 to 30 m a.s.l. Marine clays lie at the base of the geological section of the coastal deposits. Their upper part was eroded and uneven surface of marine sediments is overlain by continental sandy sediments. Marine clays are saline. In the southern part of study area, low accumulative islands are forming. Their heights above sea level do not exceed 0.5 meters, and during high tides their surface is covered by sea water. The sediments accumulating at these islands are saline silty clays. Western Yamal region is located within continuous permafrost zone with thickness of 150 to 200 meters. Study of thermal regime in the on-shore zone has been performed since 1979 using the 10-12-m-deep boreholes. In 2007, five boreholes were included in the work program of the Thermal State of Permafrost (TSP) project developed as a part of IPY scientific activities. According to TSP program, temperature sensors were installed at depths 2, 3, 5, and 10 meters; measurements have been performed every six hours. In this presentation, results of our observations related to climate change are discussed. For different terrain units, increase of mean annual permafrost temperature during the last 30 years has reached 0.6 to 1.5 deg. C. In the transit zone, monitoring of thermal regime have been performed since 2006. Sensors were installed at depths 0, 0.25, 0.6, 0.75, 1.25, 1.75, and 2.25 meters. The active layer depth here reaches 1.9 meters, thus the 2.25-m-sensor is located within permafrost. Monitoring data show the sharp increase in mean

  18. Thermal Excitation System for Shearography (TESS)

    Science.gov (United States)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.

  19. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of Beam losses

    CERN Document Server

    Guido Venturini, G G; Dehning, B; Kayal, M

    2012-01-01

    An Application Specific Integrated Circuit (ASIC) has been designed and fabricated to provide a compact solution to digitize current signals from ionization chambers and diamond detectors, employed as beam loss monitors at CERN and several other high energy physics facilities. The circuit topology has been devised to accept positive and negative currents, to have a wide dynamic range (above 120 dB), withstand radiation levels over 10 Mrad and offer different modes of operation, covering a broad range of applications. Furthermore, an internal conversion reference is employed in the digitization, to provide an accurate absolute measurement. This paper discusses the detailed characterization of the first prototype: linearity, radiation tolerance and temperature dependence of the conversion, as well as implications and system-level considerations regarding its use for beam instrumentation applications in a high energy physics facility.

  20. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    Directory of Open Access Journals (Sweden)

    Sergey V. Cherkasov

    2018-06-01

    Full Text Available The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic with the Khankala geothermal plant operating at different regimes: during the first survey – with, and the second – without reinjection of used geothermal fluid. Unmanned aerial vehicle Geoscan 201 equipped with digital (Sony DSX-RX1 and thermal imaging (Thermoframe-MX-TTX cameras was used. Besides different images of the geothermal plant obtained by the surveys, 13 thermal anomalies have been identified. Analysis of the shape and temperature facilitated determination of their different sources: fire, heating systems, etc., which was confirmed by a ground reconnaissance. Results of the study demonstrate a high potential of unmanned aerial vehicle based thermal imagery use for environmental and technological monitoring of geothermal fields under operation.

  1. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    Science.gov (United States)

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  2. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    Science.gov (United States)

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  3. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  4. Digital security technology simplified.

    Science.gov (United States)

    Scaglione, Bernard J

    2007-01-01

    Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.

  5. Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. [Architectural Engineering Department, KFUPM, Dhahran 31261 (Saudi Arabia)

    2009-06-15

    In harsh climatic regions, buildings require air-conditioning in order to provide an acceptable level of thermal comfort. In many situations buildings are over cooled or the HVAC system is kept running for a much longer time than needed. In some other situations thermal comfort is not achieved due to improper operation practices coupled with poor maintenance and even lack it, and consequently inefficient air-conditioning systems. Mosques represent one type of building that is characterized by their unique intermittent operating schedule determined by prayer times, which vary continuously according to the local solar time. This paper presents the results of a study designed to monitor energy use and thermal comfort conditions of a number of mosques in a hot-humid climate so that both energy efficiency and the quality of thermal comfort conditions especially during occupancy periods in such intermittently operated buildings can be assessed accurately. (author)

  6. Processing deficits in monitoring analog and digital displays: Implications for attentional theory and mental-state estimation research

    Science.gov (United States)

    Payne, David G.; Gunther, Virginia A. L.

    1988-01-01

    Subjects performed short term memory tasks, involving both spatial and verbal components, and a visual monitoring task involving either analog or digital display formats. These two tasks (memory vs. monitoring) were performed both singly and in conjunction. Contrary to expectations derived from multiple resource theories of attentional processes, there was no evidence that when the two tasks involved the same cognitive codes (i.e., either both spatial or both verbal/linguistics) there was more of a dual task performance decrement than when the two tasks employed different cognitive codes/processes. These results are discussed in terms of their implications for theories of attentional processes and also for research in mental state estimation.

  7. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  8. Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection

    Science.gov (United States)

    Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.

    2015-01-01

    The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.

  9. Low fingertip temperature rebound measured by digital thermal monitoring strongly correlates with the presence and extent of coronary artery disease diagnosed by 64-slice multi-detector computed tomography.

    Science.gov (United States)

    Ahmadi, Naser; Nabavi, Vahid; Nuguri, Vivek; Hajsadeghi, Fereshteh; Flores, Ferdinand; Akhtar, Mohammad; Kleis, Stanley; Hecht, Harvey; Naghavi, Morteza; Budoff, Matthew

    2009-10-01

    Previous studies showed strong correlations between low fingertip temperature rebound measured by digital thermal monitoring (DTM) during a 5 min arm-cuff induced reactive hyperemia and both the Framingham Risk Score (FRS), and coronary artery calcification (CAC) in asymptomatic populations. This study evaluates the correlation between DTM and coronary artery disease (CAD) measured by CT angiography (CTA) in symptomatic patients. It also investigates the correlation between CTA and a new index of neurovascular reactivity measured by DTM. 129 patients, age 63 +/- 9 years, 68% male, underwent DTM, CAC and CTA. Adjusted DTM indices in the occluded arm were calculated: temperature rebound: aTR and area under the temperature curve aTMP-AUC. DTM neurovascular reactivity (NVR) index was measured based on increased fingertip temperature in the non-occluded arm. Obstructive CAD was defined as >or=50% luminal stenosis, and normal as no stenosis and CAC = 0. Baseline fingertip temperature was not different across the groups. However, all DTM indices of vascular and neurovascular reactivity significantly decreased from normal to non-obstructive to obstructive CAD [(aTR 1.77 +/- 1.18 to 1.24 +/- 1.14 to 0.94 +/- 0.92) (P = 0.009), (aTMP-AUC: 355.6 +/- 242.4 to 277.4 +/- 182.4 to 184.4 +/- 171.2) (P = 0.001), (NVR: 161.5 +/- 147.4 to 77.6 +/- 88.2 to 48.8 +/- 63.8) (P = 0.015)]. After adjusting for risk factors, the odds ratio for obstructive CAD compared to normal in the lowest versus two upper tertiles of FRS, aTR, aTMP-AUC, and NVR were 2.41 (1.02-5.93), P = 0.05, 8.67 (2.6-9.4), P = 0.001, 11.62 (5.1-28.7), P = 0.001, and 3.58 (1.09-11.69), P = 0.01, respectively. DTM indices and FRS combined resulted in a ROC curve area of 0.88 for the prediction of obstructive CAD. In patients suspected of CAD, low fingertip temperature rebound measured by DTM significantly predicted CTA-diagnosed obstructive disease.

  10. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Science.gov (United States)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.

    2018-03-01

    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  11. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  12. An automatic energy-saving and thermal monitoring/controlling system for a pond

    Directory of Open Access Journals (Sweden)

    Cheng Ching-Chien

    2017-01-01

    Full Text Available Because of low temperatures and oxygen in cold water, fish will die when cold currents arrive. This will cause tremendous loss of money. In order reduce the cooling of the pond, an automatic thermal detecting and cold-roofing system using a wind-proofing device, heaters, and thermal detectors is proposed. To reduce heat loss due to thermal convection above the pond surface, a motor-driven wind-proofing device automatically controlled by a PLC controller is adopted. Here, the wind-proofing device, thermal detectors, and heating system are connected to the PLC controller. The PLC will also be connected to the PC interface. The temperature thresholds used to trigger the heater and the wind proofing device can be set at the PC interface. Two options for manipulating the heating and the automatic heating can be selected. The related wind-proofing area and the number of heaters will be determined according to the current temperature. Moreover, the PLC can be wirelessly connected to the server PC in the control room. The pond keeper can monitor everything online and control the pond water's temperature. With this, the problem of fish dying in a cold wave can be solved. Consequently, to reduce the electrical exhaust when heating up the pond water, green energy, solar energy and wind energy, is used.

  13. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    Science.gov (United States)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  14. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  15. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces.

    Science.gov (United States)

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-12-08

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  16. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    Directory of Open Access Journals (Sweden)

    Víctor Echarri

    2017-12-01

    Full Text Available Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100, air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  17. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    Science.gov (United States)

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-01-01

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions. PMID:29292781

  18. SHDAS Production Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production digitizers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the digitizers is being conducted at Delta Group Electronics, the digitizer fabricator, in San Diego, California, performed by Sandia National Laboratories with the assistance of Leidos and Delta Group Electronics.

  19. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  20. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, Kevan

    1986-01-01

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  1. Thermal Analysis of the Al Window for a New CESR-c Luminosity Monitor

    CERN Document Server

    He, Yun; Palmer, Mark A; Rice, David

    2005-01-01

    A luminosity monitor using photons from radiative bhabha events at the CLEO interaction point (IP) has been installed in the Cornell Electron Storage Ring (CESR). A key vacuum and detector component is the photon window/converter whose uniformity and thickness are critical for determining the resolution of the total energy deposited in the segmented luminosity monitor. The window design must accommodate the operational requirements of the new monitor at CLEO-c beam energies of 1.5-2.5 GeV and also provide sufficient safety margin for operation at 5.3 GeV beam energies for Cornell High Energy Synchrotron Source (CHESS) running. During 5.3 GeV operation, intense stripes of synchrotron radiation from the interaction region superconducting quadrupole magnets as well as nearby bending magnets strike the window. During the course of window development, several materials and designs were evaluated. Thermal stresses were calculated using the finite element code ANSYS for various beam conditions to guide the cooling d...

  2. Photogrammetry, Digital mapping and Land Informations Systems

    DEFF Research Database (Denmark)

    Frederiksen, Poul

    1998-01-01

    Monitoring activities on photogrammetry, digital mapping and land information systems in State Land Service in Latvia in relation to the EU Phare Project Phase II, Technical Assistance to land Privatisation and registration in Latvia.......Monitoring activities on photogrammetry, digital mapping and land information systems in State Land Service in Latvia in relation to the EU Phare Project Phase II, Technical Assistance to land Privatisation and registration in Latvia....

  3. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

    DEFF Research Database (Denmark)

    Alldieck, Thiemo; Bahnsen, Chris Holmberg; Moeslund, Thomas B.

    2016-01-01

    In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper...... introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two...

  4. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  5. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle.

    Science.gov (United States)

    George, W D; Godfrey, R W; Ketring, R C; Vinson, M C; Willard, S T

    2014-11-01

    Digital infrared thermal imaging (DITI) using a thermal camera has potential to be a useful tool for the production animal industry. Thermography has been used in both humans and a wide range of animal species to measure body temperature as a method to detect injury or inflammation. The objective of these experiments was to compare the temperature of the eye (EYE) or muzzle (MUZ) measured using DITI to vaginal (VT) and rectal temperature (RT) as measures of core body temperature in hair sheep and beef cattle. In Exp.1 EYE, VT and RT were measured in lactating, multiparous hair sheep ewes (St. Croix White, n = 10, and Dorper × St. Croix White, n = 10) in a non-febrile state 5 times over a 48-h period. Data loggers were used to measure VT and a digital veterinary thermometer was used to measure RT. There was a high correlation (P 0.10) between RT or VT and MUZ. The findings of these three studies indicate that temperature of the eye, measured using DITI, can be used as an indicator of core body temperature in hair sheep and beef cattle as an alternative to using vaginal or rectal temperature.

  6. Validation of the Grandway MD2301 digital automatic blood pressure monitor according to the European Society of Hypertension International Protocol.

    Science.gov (United States)

    Chen, Wan; Zeng, Zhao-Lin; Bing, Sen; Li, Lin-Yi; Wang, Rui; Wan, Yi

    2016-08-01

    The aim of the present study was to validate the Grandway MD2301 digital automatic blood pressure monitor according to the European Society of Hypertension International Protocol (ESH-IP) revision 2010. The ESH-IP revision 2010 for the validation of blood pressure-measuring devices in adults was followed precisely. Systolic and diastolic blood pressure (SBP and DBP, respectively) were measured sequentially in 33 adult patients and compared with a standard mercury sphygmomanometer (two observers). A total of 99 comparison pairs were obtained. The device produced 78, 95 and 99 measurements within 5, 10, and 15 mmHg for SBP and 83, 96, and 99 for DBP, respectively. The average device-observer difference was -1.81±4.22 mmHg for SBP and -0.15±3.93 mmHg for DBP. All of the data were within the standards requirements to pass the testing. The Grandway MD2301 digital automatic blood pressure monitor meets the standards of the ESH-IP revision 2010 and can be recommended for self/home measurement in the general population.

  7. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    Science.gov (United States)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  8. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater

    Directory of Open Access Journals (Sweden)

    Fabio Sansivero

    2013-11-01

    Full Text Available Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.

  9. Developing Digital Image Techniques with Low-Cost Unmanned Mobile to Monitor the Safety of Dam and Affiliated Structure

    Science.gov (United States)

    Sung, Wen-Pei; Shih, Ming-Hsiang

    2016-04-01

    Global warming phenomena are increasingly serious, the El Niño and La Niña continue to occur repeatedly, causing the irregular drought and flood problem repeatedly. Mountain form of Taiwan is steep and storage ability of rainwater is insufficient to supply the livelihood of people and usage of industry which need to rely on rainwater reservoir. Thus, to ensure the water supply and self-reliance energy supply, one of ways to keep water resource is to build reservoir. Nevertheless, Taiwan is located on Pacific seismic belt; additionally, geological conditions are not fine, over-developed in the hills lead to more natural disasters in the future. Thus, strong shakes and typhoons which caused a degree of severe landslides around dam lead to reduce catchment of dam to result in affecting the safety of dam. Otherwise, the cracks and rusts in dam, induced by the defects of material, bad construction and seismic excitation respectively, thus, the mechanics phenomena of dam and its affiliated structures with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of dam. This research is aimed at the safety evaluation technique of dam and its affiliated structures to develop three dimensional digital image correlation techniques for monitoring the safety of dam and its affiliated structures. Namely, developing the unmanned mobile on two axis of digital image correlation method is to detect the digital images from geometric scanning techniques for dam structure. This developed technique combined with Unmanned Aerial Vehicle (UAV) to develop the near filed scanning and monitoring techniques for local deformation and cracks on dam and its affiliated structures.

  10. GEODESIC MONITORING OF VERTICAL MOVEMENT OF JSC «GRODNO AZOT» BUILDINGS USING DIGITAL DNA 03 LEVEL

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2010-01-01

    Full Text Available The paper presents peculiar features and methodology pertaining to application of digital DNA 03 level for monitoring vertical movement of load-carrying structures in the workshops and foundations of various capacities, exhaust pipes and granulation towers having height from 100 to150 meters. The proposed methods presuppose usage of the results of engineering and geological investigations and highly accurate geodesic measurements considered in the process of hydro- and pneumatic tests of an isothermic storage of liquid ammonia and a production “Ammonia” shop taken as an example. 

  11. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage

    International Nuclear Information System (INIS)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2015-01-01

    We describe a gold nanoparticle (AuNP)-based thermal history indicator (THI) for monitoring low-temperature storage. The THI was prepared from tetrachloroaurate using gelatin as a reducing reagent. Gelatin also acts as a stabilizer to control the growth of the AuNPs. The size and shape of the AuNPs were characterized by UV–vis spectrophotometry and transmission electron microscopy and are initially found to be spherical with an average particle size of ∼19 nm. Initially, the color of the THIs is slightly pink, but after a 90-day storage in the freezer, as both the size and shape of the AuNPs change, the color of the THIs turns to red. After 90 days the absorbance peaks of THIs held at room temperature are red-shifted from 538 to 572 nm and possessed larger amplitude compared to those stored in the freezer. The color change is a function of both storage time and temperature. The observed increase in size is mainly due to storage temperature while the change in shape is mainly due to storage time. The THIs experiencing higher temperature treatments exhibit a more intense color change which is attributed to a localized surface plasmon resonance effect. Thus, the observed visual color changes can provide information regarding the thermal history the material has experienced. Accordingly, when used in conjunction with time-temperature sensitive products, the THI may serve as a proactive system for monitoring and controlling product quality and/or safety. For example, the THI is useful in safeguarding high-value biological products such as enzymes, antibodies, plasma, stem cells and other perishables that have to be stored at low temperatures. (author)

  12. High-sensitivity broadband infrared monitor of spatial structure of relativistic bunches and thermal fields

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.; Maslova, M.V.

    2004-01-01

    The monitor is intended for registration of spatial distribution of density of energy of pulsing radiation of thermal fields and bunches of relativistic electrons and protons in a wide spectral range 0,4 - 4 μm. In a measuring system of a monitor effective means of active and passive increase of the relation of a useful signal to noise, in view of particular conditions and requirements are used. The measuring channel can confidently allocate a useful signal on a background of handicaps, the size of which can make about 20 kE in a pulse [1]. The accuracy of measurement of amplitude of a signal of radiation makes 0,2% of maximum significances of a registrar scale. (author)

  13. Monitoring and optimization of thermal recovery wells at Nexen's Long Lake project

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, S.; Howe, A.; Wozney, G.; Zaffar, S. [Nexen Inc. (Canada); Nelson, A. [Matrikon Inc. (Canada)

    2011-07-01

    The Long Lake project, operated by Nexen and situated in the Athabasca Oil Sands area in Alberta, Canada is a steam assisted gravity drainage scheme. In such thermal recovery processes, access to real time information is crucial. Nexen used specific tools to optimize monitoring in its Long Lake project and the aim of this paper is to present those customized well and facilities dashboards and reservoir trends. Real time and historical data on pressure, temperature injection and production rates are used in a Honeywell PHD Historian connected to a Delta-V DCS system to optimize recovery from the deposit. Results showed that these enhanced monitoring capabilities provided Nexen the ability to react rapidly to abnormal conditions, which resulted in significant financial benefits. The implementation of dashboard and reservoir trends in its Long Lake project helped Nexen to better monitor the reservoir and thus to optimize bitumen recovery.

  14. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  15. The thermal performance monitoring and optimisation system (TEMPO): lessons learnt

    International Nuclear Information System (INIS)

    Beere, W.H.Aa.

    2005-09-01

    The goal of condition monitoring, fault detection and diagnosis is to ensure the success of planned operations by recognizing anomalies in a plant. This is achieved by monitoring the condition of equipment and instrumentation, and by detection, identification, diagnosis and removal of faults. The method of using physical modelling for condition monitoring has been investigated at the Institutt for energiteknikk since 1998. The result of this work was the development of the TEMPO (ThErMal Performance monitoring and Optimisation) toolbox. In this toolbox plant wide models are built up of unit sub-models. These are then linked to measurements by using data reconciliation. This enables the comparison of calculated to measured values as well as an indication of the significance of any deviation. It also allows the calculation of unmeasured variables as well as an overall 'goodness of fit' indicator. Since its first release in 2000 the TEMPO toolbox has been used to model the turbine cycles of several NPPs. Installations include Forsmark 3 and Loviisa 2 with feasibility studies for Dukovany, Olkiluoto 2, Almaraz and Paks. The experience from creating and installing TEMPO at these plants has now been collated and is presented in this report. This experience is used to indicate which direction the further development of TEMPO should take. The experience of using TEMPO has shown that the data-reconciliation method can be applied to the turbine cycles of NPPs. Problems that have arose have primarily been connected to the usability of the toolbox. This has prompted a shift in the development emphasis from the task of developing the method to that of developing its usability. A summary of improvement proposals is given in this paper. The reader is welcome to comment on these proposals or to suggest alternative improvements. (Author)

  16. Superimpose methods for uncooled infrared camera applied to the micro-scale thermal characterization of composite materials

    Science.gov (United States)

    Morikawa, Junko

    2015-05-01

    The mobile type apparatus for a quantitative micro-scale thermography using a micro-bolometer was developed based on our original techniques such as an achromatic lens design to capture a micro-scale image in long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. The total size of the instrument was designed as it was put in the 17 cm x 28 cm x 26 cm size carrying box. The video signal synthesizer enabled to record a direct digital signal of monitoring temperature or positioning data. The encoded digital signal data embedded in each image was decoded to read out. The protocol to encode/decode the measured data was originally defined. The mixed signals of IR camera and the imposed data were applied to the pixel by pixel emissivity corrections and the pseudo-acceleration of the periodical thermal phenomena. Because the emissivity of industrial materials and biological tissues were usually inhomogeneous, it has the different temperature dependence on each pixel. The time-scale resolution for the periodic thermal event was improved with the algorithm for "pseudoacceleration". It contributes to reduce the noise by integrating the multiple image data, keeping a time resolution. The anisotropic thermal properties of some composite materials such as thermal insulating materials of cellular plastics and the biometric composite materials were analyzed using these techniques.

  17. Apollo telescope mount thermal systems unit thermal vacuum test

    Science.gov (United States)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  18. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Science.gov (United States)

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  19. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    Directory of Open Access Journals (Sweden)

    Emiliano Schena

    2016-07-01

    Full Text Available During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C, sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings, and frequency response (hundreds of kHz, are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures.

  20. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  1. Digital Divide in Sub-Saharan African Universities: Recommendations and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Boubakar; /Assoc. Afr. Univ.; Chukwuma, Victor; /Olabisi Onabanjo U.; Petitdidier, Monique; /CEPT, Velizy; Cottrell, Les; /SLAC; Bartons, Charles; /Australian Natl. U., RSES

    2009-12-17

    The Digital Divide prevents Africa from taking advantages of new information technologies. One of the most urgent priorities is to bring the Internet in African Universities, Research, and Learning Centers to the level of other regions of the world. eGY-Africa, and the Sharing Knowledge Foundation are two bottom-up initiatives by scientists to secure better cyber-infrastructure and Internet facilities in Africa. Recommendations by the present scientific communities are being formulated at national, regional and international levels. The Internet capabilities are well documented at country level overall, but this is not the case at the University level. The snapshot of the Internet status in universities in 17 African countries, obtained by a questionnaire survey, is consistent with measures of Internet penetration in the corresponding country. The monitoring of Internet performance has been proposed to those African universities to provide an information base for arguing the need to improve the coverage for Africa. A pilot program is recommended that will start scientific collaboration with Europe in western Africa using ICT. The program will lay the foundations for the arrival of new technologies like Grids.

  2. Digital citizenship and surveillance society - introduction

    OpenAIRE

    Hintz, Arne; Dencik, Lina; Wahl-Jorgensen, Karin

    2017-01-01

    Digital citizenship is typically defined as the (self-)enactment of people’s role in society through the use of digital technologies. It therefore has empowering and democratizing characteristics. However, as shown by this Special Section, the context of datafication and ubiquitous data collection and processing complicates this picture. The Snowden revelations have demonstrated the extent to which both state agencies and Internet companies monitor the activities of digital citizens and how t...

  3. Intraday monitoring of granitic exfoliation sheets with LiDAR and thermal imaging (Yosemite Valley, California, USA)

    Science.gov (United States)

    Guerin, Antoine; Derron, Marc-Henri; Jaboyedoff, Michel; Abellán, Antonio; Dubas, Olivier; Collins, Brian D.; Stock, Greg M.

    2016-04-01

    Rockfall activity in Yosemite Valley is often linked to the presence of exfoliation sheets associated with other structures such as faults, joints or geological contacts. Daily and seasonal temperature variations or freeze-thaw cycles may strongly promote crack propagation along discontinuities, ultimately leading to rockfalls (Stock et al., 2013). However, little is known concerning the impact of thermal variations on rock face deformation, despite its occurrence at all times of year. To understand the influence of daily temperature fluctuations on the behavior of exfoliation joints (i.e., fractures separating exfoliation sheets), we carried out two different experiments in October 2015: (a) We first monitored a sub-vertical granodiorite flake (19 m by 4 m by 0.1 m ; Collins and Stock, 2014) for 24 consecutive hours using LiDAR and infrared thermal sensors; (b) We monitored a rock cliff (60 m by 45 m) composed of tens of exfoliation sheets located on the southeast face of El Capitan (an ~1000-m-tall cliff located in western Yosemite Valley) for several hours (from 05:30 pm to 01:30 am) to investigate the diurnal cooling effect on rocks of different lithologies. To calibrate the raw apparent temperature measured by the thermal imager (FLIR T660 infrared camera), we fixed pieces of reflective paper (aluminum foil) and black duct tape on both monitored cliffs to measure the reflected temperature and the emissivity of the different rocks. In addition, ambient temperature and relative humidity readings were performed for each acquisition. We then compared the calibrated temperatures to the values registered by resistance temperature detectors (Pt100 sensors), also attached to the rock. Finally, we compared the millimeter scale deformations observed with LiDAR to the values measured by manual crackmeters (standard analog comparators with springs) installed beforehand in the fractures. For the first experiment (24-hour monitoring), a series of measurements were carried

  4. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chen

    2011-10-01

    Full Text Available Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA, notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS process for monitoring temperature in situ.

  5. Apple fruit diameter and length estimation by using the thermal and sunshine hours approach and its application to the digital orchard management information system.

    Science.gov (United States)

    Li, Ming; Chen, Meixiang; Zhang, Yong; Fu, Chunxia; Xing, Bin; Li, Wenyong; Qian, Jianping; Li, Sha; Wang, Hui; Fan, Xiaodan; Yan, Yujing; Wang, Yan'an; Yang, Xinting

    2015-01-01

    In apple cultivation, simulation models may be used to monitor fruit size during the growth and development process to predict production levels and to optimize fruit quality. Here, Fuji apples cultivated in spindle-type systems were used as the model crop. Apple size was measured during the growing period at an interval of about 20 days after full bloom, with three weather stations being used to collect orchard temperature and solar radiation data at different sites. Furthermore, a 2-year dataset (2011 and 2012) of apple fruit size measurements were integrated according to the weather station deployment sites, in addition to the top two most important environment factors, thermal and sunshine hours, into the model. The apple fruit diameter and length were simulated using physiological development time (PDT), an indicator that combines important environment factors, such as temperature and photoperiod, as the driving variable. Compared to the model of calendar-based development time (CDT), an indicator counting the days that elapse after full bloom, we confirmed that the PDT model improved the estimation accuracy to within 0.2 cm for fruit diameter and 0.1 cm for fruit length in independent years using a similar data collection method in 2013. The PDT model was implemented to realize a web-based management information system for a digital orchard, and the digital system had been applied in Shandong Province, China since 2013. This system may be used to compute the dynamic curve of apple fruit size based on data obtained from a nearby weather station. This system may provide an important decision support for farmers using the website and short message service to optimize crop production and, hence, economic benefit.

  6. Remote container monitoring and surveillance systems

    International Nuclear Information System (INIS)

    Resnik, W.M.; Kadner, S.P.

    1995-01-01

    Aquila Technologies Group is developing a monitoring and surveillance system to monitor containers of nuclear materials. The system will both visually and physically monitor the containers. The system is based on the combination of Aquila's Gemini All-Digital Surveillance System and on Aquila's AssetLAN trademark asset tracking technology. This paper discusses the Gemini Digital Surveillance system as well as AssetLAN technology. The Gemini architecture with emphasis on anti-tamper security features is also described. The importance of all-digital surveillance versus other surveillance methods is also discussed. AssetLAN trademark technology is described, emphasizing the ability to continually track containers (as assets) by location utilizing touch memory technology. Touch memory technology provides unique container identification, as well as the ability to store and retrieve digital information on the container. This information may relate to container maintenance, inspection schedules, and other information. Finally, this paper describes the combination of the Gemini system with AssetLAN technology, yielding a self contained, container monitoring and area/container surveillance system. Secure container fixture design considerations are discussed. Basic surveillance review functions are also discussed

  7. Digital intelligence sources transporter

    International Nuclear Information System (INIS)

    Zhang Zhen; Wang Renbo

    2011-01-01

    It presents from the collection of particle-ray counting, infrared data communication, real-time monitoring and alarming, GPRS and other issues start to realize the digital management of radioactive sources, complete the real-time monitoring of all aspects, include the storing of radioactive sources, transporting and using, framing intelligent radioactive sources transporter, as a result, achieving reliable security supervision of radioactive sources. (authors)

  8. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    International Nuclear Information System (INIS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-01-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler–Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges. (paper)

  9. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  10. Temporal digital subtraction radiography with a personal computer digital workstation

    International Nuclear Information System (INIS)

    Kircos, L.; Holt, W.; Khademi, J.

    1990-01-01

    Technique have been developed and implemented on a personal computer (PC)-based digital workstation to accomplish temporal digital subtraction radiography (TDSR). TDSR is useful in recording radiologic change over time. Thus, this technique is useful not only for monitoring chronic disease processes but also for monitoring the temporal course of interventional therapies. A PC-based digital workstation was developed on a PC386 platform with add-in hardware and software. Image acquisition, storage, and processing was accomplished using 512 x 512 x 8- or 12-bit frame grabber. Software and hardware were developed to accomplish image orientation, registration, gray scale compensation, subtraction, and enhancement. Temporal radiographs of the jaws were made in a fixed and reproducible orientation between the x-ray source and image receptor enabling TDSR. Temporal changes secondary to chronic periodontal disease, osseointegration of endosseous implants, and wound healing were demonstrated. Use of TDSR for chest imaging was also demonstrated with identification of small, subtle focal masses that were not apparent with routine viewing. The large amount of radiologic information in images of the jaws and chest may obfuscate subtle changes that TDSR seems to identify. TDSR appears to be useful as a tool to record temporal and subtle changes in radiologic images

  11. Application of embedded database to digital power supply system in HIRFL

    International Nuclear Information System (INIS)

    Wu Guanghua; Yan Huaihai; Chen Youxin; Huang Yuzhen; Zhou Zhongzu; Gao Daqing

    2014-01-01

    Background: This paper introduces the application of embedded MySQL database in the real-time monitoring system of the digital power supply system in Heavy Ion Research Facility in Lanzhou (HIRFL). Purpose: The aim is to optimize the real-time monitoring system of the digital power supply system for better performance. Methods: The MySQL database is designed and implemented under Linux operation system running on ARM processor, together with the related functions for real-time data monitoring, such as collection, storage and query. All status parameters of digital power supply system is collected and communicated with ARM by a FPGA, whilst the user interface is realized by Qt toolkits at ARM end. Results: The actual operation indicates that digital power supply can realize the function of real-time data monitoring, collection, storage and so on. Conclusion: Through practical application, we have found some aspects we can improve and we will try to optimize them in the future. (authors)

  12. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  13. ANALYSIS OF COMBINED UAV-BASED RGB AND THERMAL REMOTE SENSING DATA: A NEW APPROACH TO CROWD MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schulte

    2017-08-01

    Full Text Available Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.

  14. Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): digital still images from transects on Kauai, Oahu, Molokai, Maui, and Hawaii 2011-2012 (NCEI Accession 0119360)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of digital still images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) taken 2011-2012 from 29 sites within 5 main...

  15. Hawaii Coral Reef Assessment and Monitoring Program (CRAMP): digital still images from transects on Kauai, Oahu, Molokai, Maui, and Hawaii 2008-2010 (NCEI Accession 0104357)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of digital still images from the Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) taken 2008-2010 from 24 sites within 5 main...

  16. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  17. Comparison of electronic digital alarm dosimeter with TLD

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Pandey, J.P.N.; Shinde, A M.; Purohit, R.G.; Sarkar, P.K.

    2012-01-01

    Control of exposure of radiation workers on day to day basis has been made easy by use of semiconductor based electronic digital dosimeter. Additional dose constraints of 10 mSv for occupational radiation workers have made it essential to use such type of digital personal monitoring devices. In addition to conventional ionisation chamber based direct reading dosimeters, additional 35 semiconductor based digital dosimeters model MGP DMC 2000 S were used for the monitoring of personal exposure of radiation workers in a spent fuel reprocessing plant. Though better least count and good performance over a wide range of dose rate are claimed by the manufacture, before making use of such dosimeter on large scale, validation of its performance is required to be checked. In this paper, an effort is made to determine the performance of digital dosimeters, by exposing these digital dosimeters in combination with TLDs at different radiation levels and obtained results were compared and analysed

  18. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  19. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  20. Development of web monitoring radiation area monitor

    International Nuclear Information System (INIS)

    Jung, Hoon Jin; Lee, Jun Hee; Namkoong, Phil; Lee, Dong Hoon; Lee, Su Hong; Lee, Gun Bae

    2005-01-01

    Recently the increasing number of radioisotope industry and nuclear facility have ever raised the possibility of radiation safety accident. As such a result, radioisotope companies and nuclear facility operators have become to be much interested in radiation area monitoring for efficient radiation protection. At present, almost of the radiation area monitors which are imported products are outdated in aspect of their functions. Diversification of the monitoring work is urgently demanding additional functions to be added. Thus we have developed new-type digital area monitor which enables remote web monitoring with image and radiation dose rate value at distant places through using internet, the latest IT technology, and radiation measurement technology

  1. Monitoring the consistency of the dynalyser output via digital display unit and calculated practical peak voltage

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Muhammad Jamal Mohd Isa; Abdul Aziz Mohd Ramli; Shahrul Azlan Azizan

    2010-01-01

    This study was carried out to ensure the adequacy and accuracy of the Dynalyser Digital Display unit for measuring the true kVp from the invasive kVp meter unit during calibration of non-invasive kVp meters. An invasive high voltage divider (dynalyser) coupled to the x-ray system measures the true kilo voltage supplied to the x-ray tube. The kVp output measured was displayed via its digital display unit while its waveform was acquired using a calibrated oscilloscope. The waveform was used to calculate the Practical Peak Voltage (PPV) using the International Standard method adapted from IEC 61676 and treated as the true kVp value. The kVp output was measured at 9 points ranging between 40 kV-120 kV with interval steps of 10 kV and monitored every day. The test result was evaluated for variation of output, intrinsic error and limit of variation in compliance with the IEC standard. Results showed that kVp output measured by the display unit everyday is consistent with variations of not more than ±0.45 kV, intrinsic error of not more than ±0.009 kV and limits of variation of less than 1% which comply with the IEC standard requirement. The kVp output via digital display unit has a total uncertainty of not more than 2.8 kV (k=2) while the PPV output via oscilloscope has total uncertainty of not more than 0.75 kV (k=2). As a conclusion, the dynalyser digital display unit complies with standard requirement and can be used to measure the true kVp output during the calibration of non-invasive kVp meters. (author)

  2. ASTER Global Digital Elevation Model V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the U.S. National...

  3. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging

    Directory of Open Access Journals (Sweden)

    Frize Monique

    2004-06-01

    Full Text Available Abstract Background The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some nociceptive and most neuropathic pain pathologies are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to study the physiology of thermoregulation and the thermal dysfunction associated with pain. Assessing thermograms is a complex and subjective task that can be greatly facilitated by computerised techniques. Methods This paper presents techniques for automated computerised assessment of thermal images of pain, in order to facilitate the physician's decision making. First, the thermal images are pre-processed to reduce the noise introduced during the initial acquisition and to extract the irrelevant background. Then, potential regions of interest are identified using fixed dermatomal subdivisions of the body, isothermal analysis and segmentation techniques. Finally, we assess the degree of asymmetry between contralateral regions of interest using statistical computations and distance measures between comparable regions. Results The wavelet domain-based Poisson noise removal techniques compared favourably against Wiener and other wavelet-based denoising methods, when qualitative criteria were used. It was shown to improve slightly the subsequent analysis. The automated background removal technique based on thresholding and morphological operations was successful for both noisy and denoised images with a correct removal rate of 85% of the images in the database. The automation of the regions of interest (ROIs delimitation process was achieved successfully for images with a good contralateral symmetry. Isothermal division complemented well the fixed ROIs division based on dermatomes, giving a more accurate map of potentially abnormal regions. The measure

  4. PENGEMBANGAN PROGRAM PENGOLAHAN CITRA UNTUK RADIOGRAFI DIGITAL

    Directory of Open Access Journals (Sweden)

    EC Nugroho

    2012-09-01

    Full Text Available Telah dikembangkan sebuah program pengolahan citra untuk radiografi digital yang disusun menggunakan perangkat lunak Borland C++ Builder 4 Professional. Untuk melakukan pengolahan terhadap citra radiografi digital,dengan pengolahan terhadap pixel-pixel dari citra. Teknik pengolahan citra, meliputi pengaturan kecerahan citra (image brightness, kontras citra (image contras, pelembutan citra (image smoothing, penajaman citra (image sharpening, deteksi tepi (edge detection, citra negatif (negative image, dan histogram. Hasil pengolahan citra dihasilkan citra radiografi digital yang mudah  diinterprestasi  lebih  teliti  oleh  pengamat.  Tujuan penelitian ini adalah mendesain perangkat lunak pengolahan citra radiografi digital. Perangkat yang telah disusun kemudian digunakan untuk melakukan pengolahan terhadap citra radiografi digital. Hasil penelitian menunjukkan adanya peningkatan kualitas citra radiografi digital, sehingga dapat membantu seorang radiographer dalam mendiagnosa atau menginterprestasikan citra radiografi digital lebih teliti. Citra radiografi awal dan citra hasilnya dapat dilihat pada layar monitor sehingga  kualitas  pengolahan  dapat dibandingkan secara langsung. The image processing program has been developed for digital radiography that is designed by using software Borland C++ Builder 4 Professional to process the radiography digital image with image pixels processing. Image processing technique consists of image brightness, image contrast, image smoothing, image sharpening, edge detection, and negative image and histogram. From the result of image processing it produced radiography image that is easier to interpret by the observer. The purpose of this research is to design the software of image processing for digital radiography. Then the software is used as the image processor for digital radiography. The result shows that there is a quality improvement of digital radiography image, so it can help

  5. A Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education Solution.

    Science.gov (United States)

    Sood, Mariam R; Toornstra, Annet; Sereno, Martin I; Boland, Mark; Filaretti, Daniele; Sood, Anuj

    2018-05-17

    Dyslexia, a specific learning difficulty and a disability as defined in the Equality Act 2010, is a lifelong condition that affects a child from the start of education. Dyslexia is characterized by difficulties in language processing (reading, spelling, and writing) which do not correspond with the child's general intellectual abilities. Although dyslexia cannot be cured, there is a consensus that interventions are more effective and have greater impact the earlier they are administered. Effective interventions start with diagnosis. Currently, formal diagnosis requires an assessment by a dyslexia specialist or educational psychologist. These assessments are expensive and are not easy for a non-specialist teacher or parent to interpret. Consequently, formal assessments are normally performed at a much later age, when interventions are less likely to be effective. Combining the latest in scientific research, expertise of dyslexia practitioners and real-time interactivity facilitated by digital technologies, we aim to provide a cost-effective and convenient solution that focuses on early dyslexia detection and management. We discuss the rationale and protocol for the design and development of a digital health solution aimed at improving the early detection, monitoring and management of dyslexia (DIMMAND) in young children (4-8 years). The primary objective is to create a game-based digital solution aimed at children, parents, and teachers that firstly assesses, then monitors and manages progress in a convenient, cost-effective and private environment. The proposed solution will be designed and developed in phases. In the initial phase, the full functional specification of the games that constitute the app will be designed, together with the overall architecture of the solution. Prototype proof-of-concept implementation for few of these games, and commercialization strategies will also be developed. The follow-on phases will see the design implemented into a validated

  6. Development of digital photogrammetry for measurements of displacements in underground excavation

    International Nuclear Information System (INIS)

    Ohnishi, Yuzo; Ohtsu, Hiroyasu; Nishiyama, Satoshi; Ono, Tetsu; Matsui, Hiroya

    2002-03-01

    Because deformations are important indicators of the degree of stability during construction of rock structures, monitoring of deformation is a key element of construction of tunnels and structures for the underground research laboratory. Especially in the construction and maintenance of underground excavation, monitoring of deformations is needed for obtaining useful information to control its stability. We have been developing the application of digital photogrammetry to monitoring techniques in rock structures. Photogrammetric process has undergone a remarkable evolution with its transformation into digital photogrammetry. Photogrammetry has the advantage of measuring deformation of an object by some photos with easy measurements and excellent cost performance. In this paper, we present that the digital photogrammetry can monitor the displacements of the underground excavation accurately along with a capability of real-time measurement. (author)

  7. Development of a Real-Time Thermal Performance Diagnostic Monitoring system Using Self-Organizing Neural Network for Kori-2 Nuclear Power Unit

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1996-01-01

    In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. the system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the Kori-2 nuclear power unit is developed and examined is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, the algorithm is shown to be ale to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work. 5 figs., 3 tabs., 11 refs. (Author)

  8. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    Science.gov (United States)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  9. Apple fruit diameter and length estimation by using the thermal and sunshine hours approach and its application to the digital orchard management information system.

    Directory of Open Access Journals (Sweden)

    Ming Li

    Full Text Available In apple cultivation, simulation models may be used to monitor fruit size during the growth and development process to predict production levels and to optimize fruit quality. Here, Fuji apples cultivated in spindle-type systems were used as the model crop. Apple size was measured during the growing period at an interval of about 20 days after full bloom, with three weather stations being used to collect orchard temperature and solar radiation data at different sites. Furthermore, a 2-year dataset (2011 and 2012 of apple fruit size measurements were integrated according to the weather station deployment sites, in addition to the top two most important environment factors, thermal and sunshine hours, into the model. The apple fruit diameter and length were simulated using physiological development time (PDT, an indicator that combines important environment factors, such as temperature and photoperiod, as the driving variable. Compared to the model of calendar-based development time (CDT, an indicator counting the days that elapse after full bloom, we confirmed that the PDT model improved the estimation accuracy to within 0.2 cm for fruit diameter and 0.1 cm for fruit length in independent years using a similar data collection method in 2013. The PDT model was implemented to realize a web-based management information system for a digital orchard, and the digital system had been applied in Shandong Province, China since 2013. This system may be used to compute the dynamic curve of apple fruit size based on data obtained from a nearby weather station. This system may provide an important decision support for farmers using the website and short message service to optimize crop production and, hence, economic benefit.

  10. The Security Research of Digital Library Network

    Science.gov (United States)

    Zhang, Xin; Song, Ding-Li; Yan, Shu

    Digital library is a self-development needs for the modern library to meet the development requirements of the times, changing the way services and so on. digital library from the hardware, technology, management and other aspects to objective analysis of the factors of threats to digital library network security. We should face up the problems of digital library network security: digital library network hardware are "not hard", the technology of digital library is relatively lag, digital library management system is imperfect and other problems; the government should take active measures to ensure that the library funding, to enhance the level of network hardware, to upgrade LAN and prevention technology, to improve network control technology, network monitoring technology; to strengthen safety management concepts, to prefect the safety management system; and to improve the level of security management modernization for digital library.

  11. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  12. Mathematical Calculations Of Heat Transfer For The CNC Deposition Platform Based On Chemical Thermal Method

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Hussein, Khalil A.

    2018-05-01

    Chemical thermal deposition techniques are highly depending on deposition platform temperature as well as surface substrate temperatures, so in this research thermal distribution and heat transfer was calculated to optimize the deposition platform temperature distribution, determine the power required for the heating element, to improve thermal homogeneity. Furthermore, calculate the dissipated thermal power from the deposition platform. Moreover, the thermal imager (thermal camera) was used to estimate the thermal destitution in addition to, the temperature allocation over 400cm2 heated plate area. In order to reach a plate temperature at 500 oC, a plate supported with an electrical heater of power (2000 W). Stainless steel plate of 12mm thickness was used as a heated plate and deposition platform and subjected to lab tests using element analyzer X-ray fluorescence system (XRF) to check its elemental composition and found the grade of stainless steel and found to be 316 L. The total heat losses calculated at this temperature was 612 W. Homemade heating element was used to heat the plate and can reach 450 oC with less than 15 min as recorded from the system.as well as the temperatures recorded and monitored using Arduino/UNO microcontroller with cold-junction-compensated K-thermocouple-to-digital converter type MAX6675.

  13. Two applications of direct digital down converters in beam diagnostics

    International Nuclear Information System (INIS)

    Powers, Tom; Flood, Roger; Hovater, Curt; Musson, John

    2000-01-01

    The technologies of direct digital down converters, digital frequency synthesis, and digital signal processing are being used in many commercial applications. Because of this commercialization, the component costs are being reduced to the point where they are economically viable for large scale accelerator applications. This paper will discuss two applications of these technologies to beam diagnostics. In the first application the combination of direct digital frequency synthesis and direct digital down converters are coupled with digital signal processor technology in order to maintain the stable gain environment required for a multi-electrode beam position monitoring system. This is done by injecting a CW reference signal into the electronics as part of the front-end circuitry. In the second application direct digital down converters are used to provide a novel approach to the measurement of beam intensity using cavity current monitors. In this system a pair of reference signals are injected into the cavity through an auxiliary port. The beam current is then calculated as the ratio of the beam signal divided by the average of the magnitude of the two reference signals

  14. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  15. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  16. Automation of a McBain-Bakr-type thermogravimetric analyzer using a digital image correlation technique

    International Nuclear Information System (INIS)

    Trexler, M.D.; Sanders, T.H. Jr.; Singh, P.M.

    2006-01-01

    Thermogravimetric analysis was used to obtain corrosion kinetics data for several materials in high-temperature environments. A thermogravimetric analyzer has been developed that uses a McBain-Bakr quartz spring balance in conjunction with a digital image acquisition and analysis package to accurately characterize materials through image correlation. This provides a new method for automatically measuring mass changes continuously with a variable resolution depending on the spring component. The decomposition of calcium oxalate was used to verify the validity of the technique. The results show two reactions, whose reaction temperatures were determined by the intercept method, upon heating to 650 deg. C. The mass loss at the first reaction temperature, 200 deg. C, was 20% and a 30% loss was observed at 500 deg. C. Comparison of the experimentally obtained results with those of other researchers who used commercial instruments suggests that the method of using digital image analysis in conjunction with a spring to monitor mass change is a viable and accurate replacement for automatic electrobalances and cathetometers for thermal analysis of materials. Additional comparison between corrosion tests performed on SA210 steel in H 2 S using both a commercial thermobalance and the developed technique confirmed that high-temperature corrosion can be monitored accurately with the proposed method

  17. Analysis of the thermal monitoring data collected at the Peach Bottom Atomic Power Station

    International Nuclear Information System (INIS)

    Witten, A.J.; Gray, D.D.

    1977-01-01

    A comprehensive study of the data collected as part of the environmental technical specifications program for Units 2 and 3 of the Peach Bottom Atomic Power Station was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The study included an analysis of both the hydrothermal and ecological data collected from 1967 through 1976. This paper presents the details of the hydrothermal analysis performed under this program. The two primary methods used for temperature monitoring, during both the preoperational and operational periods of the program, are a fixed thermograph network and boat survey measurements. Analysis of the boat survey data provides a fine resolution demonstrating variations in ambient temperature in Conowingo Pond, as well as providing a qualitative picture of the thermal plume produced by the Peach Bottom thermal discharge. The data from 18 thermograph stations was used for a quantitative probability analysis

  18. Fatigue Crack Growth in Bodies with Thermally Sprayed Coating

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Medřický, Jan; Tomek, L.; Siegl, J.; Mušálek, Radek; Curry, N.; Björklund, S.

    2016-01-01

    Roč. 25, 1-2 (2016), s. 311-320 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Thermal barrier coating * fatigue * crack growth * digital image correlation * digital image correlation Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0329-9

  19. Digital reactivity meter construction based on PC

    International Nuclear Information System (INIS)

    Yusi-Eko-Yulianto; Kristedjo-Kurnianto

    2003-01-01

    The reactivitymeter is a core reactivity measuring equipment, which inform the reactor operator the neutron flux development in the core. This digital reactivitymeter is needed to replace analog reactivitymeter, whenever it fails in the future. The replacement of thus reactivitymeter can keep the continuation of reactor operation. The digital reactivitymeter is constructed by using the digital signal processing and computer. Thus real time signal processing is displayed on the monitor graphically. This reactivitymeter has been tested in RSG-GAS and perform a good work. This performance is worthy to use this digital reactivitymeter for RSG-GAS operation

  20. Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus

    Science.gov (United States)

    de Rubeis, T.; Nardi, I.; Muttillo, M.

    2017-11-01

    The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out

  1. Development of fabrication method for thermal expansion difference irradiation temperature monitor

    International Nuclear Information System (INIS)

    Noguchi, Kouichi; Takatsudo, Hiroshi; Miyakawa, Shun-ichi; Kobori, Takahisa; Miyo, Toshimasa

    1998-03-01

    This report describes the development activities for the fabrication of the Thermal Expansion Difference irradiation temperature monitor (TED) at the Oarai Engineering Center (OEC)/PNC. TED is used for various irradiation tests in the experimental fast reactor JOYO. TED is the most accurate off-line temperature monitor used for irradiation examination. The TED is composed of a metallic sphere lid and either a stainless steel or nickel alloy container. Once the container is filled with sodium, the metallic sphere lid is sealed by using a resistance weld. This capsule is then loaded into a reactor. Once a TED is loaded into the JOYO reactor, the sodium inside the metallic container increases as a result of thermal expansion. The TED identifies the peak irradiation temperature of the reactor based on a formula correlating temperature to increment values. This formula is established specifically for the particular TED being used during a calibration process performed when the TED is fabricated. Initially the TED was developed by Argonne National Laboratory (ANL) in the United States, and was imported by PNC for use in the JOYO reactor. In 1992 PNC decided to fabricate TED domestically in order to ensure the stability of future supplies. Based on technical information provided by ANL, PNC began fabrication of a TED on an experimental basis. In addition, PNC endeavored to make the domestically produced TED more efficient. This involved improving the techniques used in the sodium filling and the metallic sphere welding processes. These quality control efforts led to PNC's development of processes enabling the capsules to be filled with sodium to nearly 100%. As a result, the accuracy of the temperature dispersion in the out-pile calibration test was improved from +/-10degC to +/-5degC. In 1996 the new domestically fabricated TED was attached to a JOYO irradiation rig. In March of 1997, irradiation of the rig was started on the 30th duty cycle operation, and should be

  2. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  3. A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures

    Science.gov (United States)

    Handcock, Rebecca N.; Gobbett, D. L.; González, Luciano A.; Bishop-Hurley, Greg J.; McGavin, Sharon L.

    2016-08-01

    Timely and accurate monitoring of pasture biomass and ground cover is necessary in livestock production systems to ensure productive and sustainable management. Interest in the use of proximal sensors for monitoring pasture status in grazing systems has increased, since data can be returned in near real time. Proximal sensors have the potential for deployment on large properties where remote sensing may not be suitable due to issues such as spatial scale or cloud cover. There are unresolved challenges in gathering reliable sensor data and in calibrating raw sensor data to values such as pasture biomass or vegetation ground cover, which allow meaningful interpretation of sensor data by livestock producers. Our goal was to assess whether a combination of proximal sensors could be reliably deployed to monitor tropical pasture status in an operational beef production system, as a precursor to designing a full sensor deployment. We use this pilot project to (1) illustrate practical issues around sensor deployment, (2) develop the methods necessary for the quality control of the sensor data, and (3) assess the strength of the relationships between vegetation indices derived from the proximal sensors and field observations across the wet and dry seasons. Proximal sensors were deployed at two sites in a tropical pasture on a beef production property near Townsville, Australia. Each site was monitored by a Skye SKR-four-band multispectral sensor (every 1 min), a digital camera (every 30 min), and a soil moisture sensor (every 1 min), each of which were operated over 18 months. Raw data from each sensor was processed to calculate multispectral vegetation indices. The data capture from the digital cameras was more reliable than the multispectral sensors, which had up to 67 % of data discarded after data cleaning and quality control for technical issues related to the sensor design, as well as environmental issues such as water incursion and insect infestations. We recommend

  4. Implementation of a dedicated digital projectional radiographic system in thoracic imaging

    International Nuclear Information System (INIS)

    Aberle, D.R.; Batra, P.; Hayrapetian, A.S.; Brown, K.; Morioka, C.A.; Steckel, R.J.

    1988-01-01

    An integrated digital radiographic system was evaluated with respect to image quality and impact on diagnosis relative to conventional chest radiographs for a variety of focal and diffuse lung processes. Digital images were acquired with a stimulable phosphor plate detector that was scanned by a semiconductor laser for immediate digitalization to a 2,048 X 2,464 X 10-bit image. Digital images were displayed on a 2,048-line monitor and printed on 14 X 17-inch film with use of a laser film printer (Kodak). Preliminary results with this system, including the effects of user interaction with the display monitor, inverse intensity display, and regional magnification techniques, indicate that it may be successfully implemented for thoracic imaging

  5. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  6. The thermal explosion synthesis of AlNi monitored by neutron thermodiffractometry

    International Nuclear Information System (INIS)

    Turrillas, X.; Mas-Guindal, M.J.; Hansen, T.C.; Rodriguez, M.A.

    2010-01-01

    The synthesis of AlNi from thermally activated equimolar powder mixtures of aluminium and nickel was monitored in situ and acquired diffraction patterns every 2 s or less. The analysis of diffraction patterns (λ=1.3112A) permitted establishment of its kinetics, which could be modeled according to an equation expressed as kt=[α/(1-α)] 3/2 . From 1530 to ∼600 deg. C an activation energy of 9 ± 2 kJ mol -1 was estimated. Also, the crystallite size evolution on cooling was established to vary from ∼14 nm at 1530 deg. C to ∼28 nm at 180 deg. C. Finally, the reaction was found to occur through the melting of aluminium and the subsequent dissolving of nickel to form the polycrystalline single-phase product, AlNi.

  7. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  8. Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, Christina; Zuber, Niklaus; Weishaupt, Dominik [Stadtspital Triemli Zurich, Department of Radiology and Nuclear Medicine, Zurich (Switzerland)

    2017-03-15

    The purpose was to report on the initial experience after implementation of a patient dose-monitoring system in conventional X-ray imaging. A dose-monitoring system collected dose data relating to different radiographs (one projection) and studies (two or more projections). Images were acquired on digital X-ray systems equipped with flat-panel detectors. During period 1, examinations were performed in a routine fashion in 12,614 patients. After period 1, technical modifications were performed and radiographers underwent training in radiation protection. During period 2, examinations were performed in 14,514 patients, and the radiographers were advised to read dose data after each radiograph/study. Dose data were compared by means of kerma area product (KAP, gray x centimetre squared) and entrance surface air kerma (ESAK, milligray). During period 1, 13,955 radiographs and 8,466 studies were performed, and in period 2 16,090 radiographs and 10,389 studies. In period 2, KAP values for radiographs were an average of 25 % lower and for studies 7 % lower, and ESAK values for radiographs were 24 % lower and for studies 5 % lower. The reduction in KAP was significant in 8/13 radiographs and in 6/14 studies, and the reduction in ESAK was significant in 6/13 radiographs and 5/14 studies. Implementation of a patient dose-monitoring system in conventional X-ray imaging allows easy data collection, supports dose reduction efforts, and may increase radiographers' dose awareness. (orig.)

  9. OAIS and Distributed Digital Preservation in Practice

    DEFF Research Database (Denmark)

    Zierau, Eld

    The aim of the paper is to illustrate how the distributed aspects of digital preservation can be aligned in practice, with the concepts and principles of the Open Archival Information System (OAIS) Reference Model. There has been a growing awareness within the digital preservation community...... of the need for cooperation between organizations to address digital preservation requirements. One common example is that replicas of preservation copies of digital objects need to be independently preserved (e.g., stored, managed, monitored, documented) to ensure that at least one correct replica...... will survive for as long as needed. Such independence can be achieved through distributed digital preservation that relies upon specific agreements between participating and contributing organizations. The OAIS Reference Model does not address the challenges of distributed digital preservation in detail...

  10. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    Science.gov (United States)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  11. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    International Nuclear Information System (INIS)

    Chavez Panduro, E.; Bravo Cabrejos, J.

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe 3+ sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  12. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Science.gov (United States)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  13. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Panduro, E., E-mail: 04130127@unmsm.edu.pe; Bravo Cabrejos, J., E-mail: jbravoc@unmsm.edu.pe [Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Fisicas (Peru)

    2010-01-15

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100 deg. C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000 deg. C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Moessbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe{sup 3+} sites with temperature, in both clays, the analyses reproduced results such as the 'camel back' curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  14. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  15. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  16. Serial superficial digital flexor tendon biopsies for diagnosing and monitoring collagenase-induced tendonitis in horses

    Directory of Open Access Journals (Sweden)

    José C. de Lacerda Neto

    2013-06-01

    Full Text Available The purpose of this investigation was to demonstrate the feasibility of a biopsy technique by performing serial evaluations of tissue samples of the forelimb superficial digital flexor tendon (SDFT in healthy horses and in horses subjected to superficial digital flexor tendonitis induction. Eight adult horses were evaluated in two different phases (P, control (P1 and tendonitis-induced (P2. At P1, the horses were subjected to five SDFT biopsies of the left forelimb, with 24 hours (h of interval. Clinical and ultrasonographic (US examinations were performed immediately before the tendonitis induction, 24 and 48 h after the procedure. The biopsied tendon tissues were analyzed through histology. P2 evaluations were carried out three months later, when the same horses were subjected to tendonitis induction by injection of bacterial collagenase into the right forelimb SDFT. P2 clinical and US evaluations, and SDFT biopsies were performed before, and after injury induction at the following time intervals: after 24, 48, 72 and 96 h, and after 15, 30, 60, 90, 120 and 150 days. The biopsy technique has proven to be easy and quick to perform and yielded good tendon samples for histological evaluation. At P1 the horses did not show signs of localised inflammation, pain or lameness, neither SDFT US alterations after biopsies, showing that the biopsy procedure per se did not risk tendon integrity. Therefore, this procedure is feasible for routine tendon histological evaluations. The P2 findings demonstrate a relation between the US and histology evaluations concerning induced tendonitis evolution. However, the clinical signs of tendonitis poorly reflected the microscopic tissue condition, indicating that clinical presentation is not a reliable parameter for monitoring injury development. The presented method of biopsying SDFT tissue in horses enables the serial collection of material for histological analysis causing no clinical signs and tendon damage seen

  17. Thermal particle image velocity estimation of fire plume flow

    Science.gov (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise

    2003-01-01

    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  18. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  19. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    International Nuclear Information System (INIS)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author)

  20. Development of a time-to-digital converter ASIC for the upgrade of the ATLAS Monitored Drift Tube detector

    Science.gov (United States)

    Wang, Jinhong; Liang, Yu; Xiao, Xiong; An, Qi; Chapman, John W.; Dai, Tiesheng; Zhou, Bing; Zhu, Junjie; Zhao, Lei

    2018-02-01

    The upgrade of the ATLAS muon spectrometer for the high-luminosity LHC requires new trigger and readout electronics for various elements of the detector. We present the design of a time-to-digital converter (TDC) ASIC prototype for the ATLAS Monitored Drift Tube (MDT) detector. The chip was fabricated in a GlobalFoundries 130 nm CMOS technology. Studies indicate that its timing and power dissipation characteristics meet the design specifications, with a timing bin variation of ±40 ps for all 48 TDC slices and a power dissipation of about 6.5 mW per slice.

  1. Digital readout alpha survey instrument

    International Nuclear Information System (INIS)

    Jacobs, M.E.

    1976-01-01

    A prototype solid-state digital readout alpha particle survey instrument has been designed and constructed. The meter incorporates a Ludlum alpha scintillator as a detector, digital logic circuits for control and timing, and a Digilin counting module with reflective liquid crystal display. The device is used to monitor alpha radiation from a surface. Sample counts are totalized over 10-second intervals and displayed digitally in counts per minute up to 19,999. Tests over source samples with counts to 15,600 cpm have shown the device to be rapid, versatile and accurate. The instrument can be fabricated in one man-week and requires about $835 in material costs. A complete set of drawings is included

  2. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 3: Thermal hydraulic research and codes; Digital instrumentation and control; Structural performance

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-04-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) thermal hydraulic research and codes; (2) digital instrumentation and control; (3) structural performance

  3. A wide range gamma monitor with digital display for remote monitoring

    International Nuclear Information System (INIS)

    Risbud, V.H.; Thiagarajan, A.; Gangadharan, P.

    1976-01-01

    A wide range gamma monitor designed for remote monitoring in nuclear facilities is described. The instrument consists of two GM detectors and pre-amplifiers connected by a long coaxial cable to the power supply, scalers and timers and display devices. Automatic selection of detectors range of exposure rate and display (nixie) are achieved with this set up, radiation levels in active areas can easily be displayed in the control room. Other advantages are also pointed out. (A.K.)

  4. Surface temperature monitoring by integrating satellite data and ground thermal camera network on Solfatara Crater in Campi Flegrei volcanic area (Italy)

    Science.gov (United States)

    Buongiorno, M. F.; Musacchio, M.; Silvestri, M.; Vilardo, G.; Sansivero, F.; caPUTO, T.; bellucci Sessa, E.; Pieri, D. C.

    2017-12-01

    Current satellite missions providing imagery in the TIR region at high spatial resolution offer the possibility to estimate the surface temperature in volcanic area contributing in understanding the ongoing phenomena to mitigate the volcanic risk when population are exposed. The Campi Flegrei volcanic area (Italy) is part of the Napolitan volcanic district and its monitored by INGV ground networks including thermal cameras. TIRS on LANDSAT and ASTER on NASA-TERRA provide thermal IR channels to monitor the evolution of the surface temperatures on Campi Flegrei area. The spatial resolution of the TIR data is 100 m for LANDSAT8 and 90 m for ASTER, temporal resolution is 16 days for both satellites. TIRNet network has been developed by INGV for long-term volcanic surveillance of the Flegrei Fields through the acquisition of thermal infrared images. The system is currently comprised of 5 permanent stations equipped with FLIR A645SC thermo cameras with a 640x480 resolution IR sensor. To improve the systematic use of satellite data in the monitor procedures of Volcanic Observatories a suitable integration and validation strategy is needed, also considering that current satellite missions do not provide TIR data with optimal characteristics to observe small thermal anomalies that may indicate changes in the volcanic activity. The presented procedure has been applied to the analysis of Solfatara Crater and is based on 2 different steps: 1) parallel processing chains to produce ground temperature data both from satellite and ground cameras; 2) data integration and comparison. The ground cameras images generally correspond to views of portion of the crater slopes characterized by significant thermal anomalies due to fumarole fields. In order to compare the satellite and ground cameras it has been necessary to take into account the observation geometries. All thermal images of the TIRNet have been georeferenced to the UTM WGS84 system, a regular grid of 30x30 meters has been

  5. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  6. The development of on-line thermal performance monitors in Nuclear Electric Company's stations

    International Nuclear Information System (INIS)

    Conner, A.S.

    1992-01-01

    The paper examines the economic benefits of using on-line monitoring techniques in assisting Station Staff with the task of optimising the efficient use of reactor fuel. The role of thermal performance monitoring for detecting changes in plant condition is also examined and the way in which the data can be used by engineers to assist with the preparation of operating and maintenance programmes. To enable genuine gradual changes in plant performance to be detected when operating against a background of changing plant signal accuracy conditions, plant transducers have to be calibrated on a regular basis. This can be both costly and labour intensive. To reduce this requirement for regular calibrations, an automatic software signal verification program has been developed for use in on-line monitoring schemes. It forms part of the total unit performance calculation package and uses a whole plant model to verify plant signals. All plant signals used to calculate unit heat rate are verified typically every 15 minutes with signals going outside predetermined limits being automatically reported to the user. The program is interactive allowing the user to interrogate the condition of the signal, with respect to both its error magnitude and rate of drift outside signal limits. The program runs in real time mode on a Workstation connected directly to the plant

  7. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  8. Remote supervision of GIS monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Pannunzio, J.; Juge, P.; Ficheux, A.; Rayon, J.L. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada)

    2007-07-01

    Operators of gas-insulated substations (GIS) are increasingly concerned with failure prevention, scheduled maintenance, personnel safety and shortage of maintenance crews. Until recently, the density levels of the insulating gas sulfur hexafluoride (SF6) was the only parameter controlled in gas-insulated substations. Modern digital type control and monitoring equipment have been widely used in the past decade. Remote indication of gas density and status of dynamic components was made possible and shown on local control panels. Modern GIS monitoring systems offer features such as SF6 monitoring, SF6 leakage trends, internal arc localization and detection. The required information is recorded in a local computer and displaced onto a local human machine interface (HMI) or a local industrial PC mounted next to the GIS. These monitoring systems are used as decision making tools to facilitate maintenance activities and optimize the management of assets. This paper presented the latest developments in digital monitoring systems in terms of modern digital architecture; management of information flows between monitoring systems and control systems; operation of remote supervision; configuration of high voltage substations and information sharing; and, types of links between GIS room and remote supervision. This paper also demonstrated what can be achieved by moving the central HMI of a GIS monitoring system to the decision-making centres. It was shown that integrated features that allow remote on-line or automated management have reached an acceptable level of reliability and comfort for operators. 5 figs.

  9. UNJUK KERJA APLIKASI DIGITAL SIGNAGE XIBO PADA PROSES PEMBUATAN PAPAN PENGUMUMAN DIGITAL DI JURUSAN TEKNIK ELEKTRO

    Directory of Open Access Journals (Sweden)

    Ketut Udy Ariawan

    2016-01-01

    Full Text Available Pendidikan Ganesha telah memanfaatkan media website sebagai sarana penyampaian informasi. Namun dalam lingkungan internal jurusan masih juga menggunakan cara konvensional dengan menempel lembar pengumuman pada papan informasi yang tersedia. Di era digital, papan pengumuman bermigrasi dari bentuk konvensional ke bentuk digital, sehingga dikenal istilah digital signage. Bentuk digital signage yang sering diterapkan saat ini adalah menggunakan seperangkat komputer yang dihubungkan ke satu atau beberapa buah TV Plasma untuk menampilkan informasi. Salah satu aplikasi digital signage yang mendukung proses pembuatan papan pengumuman digital dan berbasis Web adalah XIBO yang bersifat open source. Pada penelitian ini, proses pembuatan papan pengumuman digital dilakukan dengan cara membuat sebuah sistem yang terdiri dari komposisi software (XIBO, Web Hosting, dan Internet dan hardware (PC Server, PC Client, dan TV Plasma. Aplikasi XIBO yang digunakan terdiri dari XIBO CMS untuk diinstallkan pada web hosting melalui PC Server, XIBO CLIENT FOR WINDOWS untuk diinstallkan pada PC Client agar bisa terhubung dengan PC Server, dan TV Plasma digunakan untuk menampilkan display hasil desain konten papan pengumuman digital yang telah dibuat agar terlihat lebih tajam, cerah, dan besar jika dibandingkan menggunakan monitor komputer biasa. Penerapan XIBO pada web hosting dimaksudkan agar proses pembuatan desain konten papan pengumuman digital dan jadwal tayangnya dapat dilakukan secara online, dimana saja, dan kapan saja oleh admin, sehingga hal ini akan menjadikan digital signage lebih efektif dan efisien dari segi waktu, tenaga, dan biaya serta mudah dalam hal pengoperasiannya. Hasil penelitian ini nantinya diharapkan dapat memberikan kontribusi pada sarana penyampaian informasi secara digital terutama dalam bidang periklanan/advertising. Kata-kata kunci: Digital Signage, Web Hosting, XIBO. ABSTRACT During this time the Department of Electrical Engineering at the

  10. Monitoring of the periodontal disease using digital image analyses

    International Nuclear Information System (INIS)

    Taba Junior, Mario.

    1995-01-01

    The radiographs play an important role in the diagnosis and management of periodontal disease although the most appropriate form of assessment vary. The great technologic advance and the easily accessible systems of digital image analyses, specify digitized radiographs, improve the diagnostic power. The studied group was 29 adults (14 female and 15 male) ranging in age from 18 to 45 years. They all had evidence of alveolar bone loss and established periodontitis. They were studied, without treatment, over a six month period with four posterior standardized vertical bite wings radiographs, electronic probing of attachment loss, and bacteriological and temperature analysis of periodontal pocket. The aim of this investigation was to determine the relationship between the loss of radiographic crestal bone height and probing attachment loss in digitized radiographs and show a standardization method for periodontal radiographs. Radiographic and probing attachment change at all sites, dichotomously classified as to not changing or loosing indicated 20.42% of sites were loosing by measurement of radiographic change and 5.29% were loosing by measurement of attachment change. There was concordance between the presence or absence of probing attachment loss and bone loss in 72% to 86% depending on the area. The results, admitting methodological limitations, indicate that when these two methods for the assessment of progressive periodontitis were used they represents measure degrees of different features of periodontitis and that the period of periodontal disease activity was detected in the either the soft tissue attachment or bone. (author)

  11. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  12. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  13. Políticas de inclusão digital no Brasil: a experiência da formação dos monitores dos telecentros GESAC | Digital inclusion policies in Brazil: the experience of training instructors for "telecenters"

    Directory of Open Access Journals (Sweden)

    Sayonara Leal

    2012-04-01

    Full Text Available Resumo Este trabalho tem como objetivo avaliar a formação dos monitores de pontos GESAC dentro dos propósitos do projeto de inclusão digital do Ministério das Comunicações, com ênfase na dimensão sócio-cognitiva da formação durante o período do treinamento, assim como os impactos desse programa instrucional nas comunidades locais atendidas pelos telecentros do GESAC. Serão analisadas as bases para a consolidação de uma política de Ciência e Tecnologia, que inclua o cidadão na chamada sociedade informacional, a partir não somente do acesso aos recursos materiais, mas também à formação para estimular a capacidade cognitiva do cidadão usuário do ponto GESAC em lidar com novas ferramentas e linguagens próprias às TIC. As técnicas utilizadas são: análise documental, questionários, entrevistas semi-estruturadas e grupos focais. Palavras-chave TIC; inclusão digital; política pública; pontos Gesac Abstract The main objective of this study was to evaluate the formation process of monitors in the GESAC’s points – the Digital Inclusion Project integrated to the Policy for Science and Technology developed by Ministry of Communications in Brazil. This research emphasized a socio-cognitive dimension in both the training period as well as the evaluation of this instructional program’s impact on the local community. Focus groups were coordinated by us in the local community attended by GESAC's “telecentros". Qualitative data was collected through documental analysis, questionnaries and semi-structured interviews as well. Building a Science & Technology Public Policy in Brazil demands not only promoting access to the material resources but also stimulating citizen participation among GESAC's point users. Including them in the "informational society" means enabling them to understand and handle proper ICT tools and languages. Keywords ICTs; digital inclusion, public policy, Gesac´s points

  14. Digital Enhancement of Night Vision and Thermal Images

    National Research Council Canada - National Science Library

    Teo, Chek

    2003-01-01

    .... This thesis explores the effect of the Contrast Limited Adaptive Histogram Equalization (CLAHE) process on night vision and thermal images With better contrast, target detection and discrimination can be improved...

  15. Stochastic Estimation Methods for Induction Motor Transient Thermal Monitoring Under Non Linear Condition

    Directory of Open Access Journals (Sweden)

    Mellah HACEN

    2012-08-01

    Full Text Available The induction machine, because of its robustness and low-cost, is commonly used in the industry. Nevertheless, as every type of electrical machine, this machine suffers of some limitations. The most important one is the working temperature which is the dimensioning parameter for the definition of the nominal working point and the machine lifetime. Due to a strong demand concerning thermal monitoring methods appeared in the industry sector. In this context, the adding of temperature sensors is not acceptable and the studied methods tend to use sensorless approaches such as observators or parameters estimators like the extended Kalman Filter (EKF. Then the important criteria are reliability, computational cost ad real time implementation.

  16. Sodium fast reactor power monitoring using {sup 20}F tagging agent

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, Centre de Saclay, 91191 Gif sur Yvette Cedex (France); Ban, G. [ENSICAEN, F-14050 Caen (France); Dumarcher, V.; Brau, H. P.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A. M.; Montagu, T.; Dautremer, T.; Barat, E.

    2009-07-01

    This work deals with the use of gamma spectrometry to monitor the fourth generation sodium fast reactor (SFR) power. Simulation part has shown that power monitoring in short response time and with high accuracy is possible measuring delayed gamma emitters produced in the liquid sodium. An experimental test is under preparation at French SFR Phenix experimental reactor to validate simulation studies. Physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as sodium velocity, atomic densities, neutron spectra and incident neutron cross-sections of fission reactions, and also sodium activation reactions producing gamma emitters. Then, a thermal hydraulic transfer function was used for taking into account primary sodium flow in our calculations. Gamma spectra were then determined by Monte-Carlo simulations. The experiment will be set during the reactor 'ultimate testing'. The Delayed Neutron Detection (DND) system cell has been chosen as the best available primary sodium sample for gamma power monitoring on Phenix reactor due to short sodium transit time from reactor core to measurement sample and homogenized sampling in the reactor hot pool. The main gamma spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The signal is then processed by a digital signal processing system (called Adonis) which always gives optimum answer even for high count rate and various time activity measurements. For power monitoring problematic, use of a short decay period gamma emitter as the {sup 20}F will allow to obtain a very fast response system without cumulative and flow distortion effects. These works introduce advantages and performances of this new power monitoring system for future SFR. (authors)

  17. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  18. Power Control and Monitoring Requirements for Thermal Vacuum/Thermal Balance Testing of the MAP Observatory

    Science.gov (United States)

    Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)

    2002-01-01

    The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.

  19. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  20. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    Science.gov (United States)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  1. Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2017-01-01

    Full Text Available Vision-based monitoring systems using visible spectrum (regular video cameras can complement or substitute conventional sensors and provide rich positional and classification data. Although new camera technologies, including thermal video sensors, may improve the performance of digital video-based sensors, their performance under various conditions has rarely been evaluated at multimodal facilities. The purpose of this research is to integrate existing computer vision methods for automated data collection and evaluate the detection, classification, and speed measurement performance of thermal video sensors under varying lighting and temperature conditions. Thermal and regular video data was collected simultaneously under different conditions across multiple sites. Although the regular video sensor narrowly outperformed the thermal sensor during daytime, the performance of the thermal sensor is significantly better for low visibility and shadow conditions, particularly for pedestrians and cyclists. Retraining the algorithm on thermal data yielded an improvement in the global accuracy of 48%. Thermal speed measurements were consistently more accurate than for the regular video at daytime and nighttime. Thermal video is insensitive to lighting interference and pavement temperature, solves issues associated with visible light cameras for traffic data collection, and offers other benefits such as privacy, insensitivity to glare, storage space, and lower processing requirements.

  2. Analog and digital appliance technology for the control and monitoring of space HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Gyoeri, M

    1987-01-01

    Both analog and digital devices are expected to meet the required control functions. The analog control device meets this function by way of a complicated circuitry and wiring technology of varying sophistication. In the digital control by a preprogrammed microprocessor. Digital technology allows to use the copied programme in different devices. Any change in the control of a system can be implemented and met by a programme change in digital technology. In analog technology, this change involves a change in wiring. (orig./HW).

  3. Virology: The Next Generation from Digital PCR to Single Virion Genomics

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Brazelton De Cardenas, Jessica N.; Hayden, Randall T.

    2015-10-01

    In the past 25 years, virology has had major technology breakthroughs stemming first from the introduction of nucleic acid amplification testing, but more recently from the use of next-generation sequencing, digital PCR, and the possibility of single virion genomics. These technologies have and will improve diagnosis and disease state monitoring in clinical settings, aid in environmental monitoring, and reveal the vast genetic potential of viruses. Using the principle of limiting dilution, digital PCR amplifies single molecules of DNA in highly partitioned endpoint reactions and reads each of those reactions as either positive or negative based on the presence or absence of target fluorophore. In this review, digital PCR will be highlighted along with current studies, advantages/disadvantages, and future perspectives with regard to digital PCR, viral load testing, and the possibility of single virion genomics.

  4. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  5. Perancangan Papan Informasi Digital Berbasis Web pada Raspberry pi

    Directory of Open Access Journals (Sweden)

    Rizal Panuntun

    2015-04-01

    Full Text Available Digital signage is information boards migrate from conventional forms to digital form. Form of digital signage used in computer by connecting to monitor to display the information. Digital notice board (digital signage puts a digital-based information services in one direction. Many digital signage applications appear with the development of information technology. Unfortunately, if used as a digital signage devices, the implementation of existing digital signage applications using a desktop computer is unefficient. Signage applications that developed to be implemented on a single board computers such as raspberry-pi is still rare. In that case, there are any idea to implement a mini computer raspberry-pi as digital signage devices. Mini computer raspberry-Pi was chosen because of its small size and power saving. so it can be efficient and flexible than a regular desktop computer. Forming of this thesis includes designing web server using PHP and MySQL and raspberry pi configuration. The results of this research is to implement digital signage in raspbeery pi that produce a web-based digital information boards that efficient and power saving.

  6. Self-tuning digital Mössbauer detection system

    Science.gov (United States)

    Veiga, A.; Grunfeld, C. M.; Pasquevich, G. A.; Mendoza Zélis, P.; Martínez, N.; Sánchez, F. H.

    2014-01-01

    Long term gamma spectroscopy experiments involving single-channel analyzer equipment depend upon thermal stability of the detector and its associated high-voltage supply. Assuming constant discrimination levels, a drift in the detector gain impacts the output rate, producing an effect on the output spectrum. In some cases (e.g. single-energy resonant absorption experiments) data of interest can be completely lost. We present a digital self-adapting discrimination strategy that tracks emission line shifts using statistical measurements on a predefined region-of-interest of the spectrum. It is developed in the form of a synthesizable module that can be intercalated in the digital processing chain. It requires a moderate to small amount of digital resources and can be easily activated and deactivated.

  7. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  8. General digitalized system on nuclear power plants

    International Nuclear Information System (INIS)

    Akagi, Katsumi; Kadohara, Hozumi; Taniguchi, Manabu

    2000-01-01

    Hitherto, instrumentation control system in a PWR nuclear power plant has stepwisely adopted digital technology such as application of digital instrumentation control device to ordinary use (primary/secondary system control device, and so on), application of CRT display system to monitoring function, and so forth, to realize load reduction of an operator due to expansion of operation automation range, upgrading of reliability and maintenance due to self-diagnosis function, reduction of mass in cables due to multiple transfer, and upgrading of visual recognition due to information integration. In next term PWR plant instrumentation control system, under consideration of application practice of conventional digital technology, application of general digitalisation system to adopt digitalisation of overall instrumentation control system containing safety protection system, and central instrumentation system (new type of instrumentation system) and to intend to further upgrade economics, maintenance, operability/monitoring under security of reliability/safety is planned. And, together with embodiment of construction program of the next-term plant, verification at the general digitalisation proto-system aiming at establishment of basic technology on the system is carried out. Then, here was described on abstract of the general digitalisation system and characteristics of a digital type safety protection apparatus to be adopted in the next-term plant. (G.K.)

  9. Digital upgrade of radiation-monitoring-system subcomponents

    International Nuclear Information System (INIS)

    Bohrisch, R.L

    1993-01-01

    This paper describes the experience of Southern California Edison (SCE) in upgrading an obsolete, analog, printed circuit board contain in most of the process and effluent radiation detectors at the San Onofre Nuclear Generating Station. The printed circuit board, which functions to produce a linear voltage and current that is proportional to the log of the radiation level, was reengineered by SCE with microprocessor-based digital technology and subjected to qualification testing, including seismic and environmental, for use in class I safety-related applications. The results, benefits, and disadvantages to this approach are discussed in this paper

  10. Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data

    Science.gov (United States)

    Gulbe, Linda; Caune, Vairis; Korats, Gundars

    2017-12-01

    The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.

  11. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification.

    Science.gov (United States)

    Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; Macfall, James; Dewhirst, Mark; Das, Shiva K

    2012-04-07

    This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types

  12. ICPP digital wide area portal monitor

    International Nuclear Information System (INIS)

    Nichols, C.E.

    1978-01-01

    A portal montior is described which is used to check personnel for contamination. The monitor is extremely sensitive. In addition to personnel contamination control, it serves as an extremely effective SNM detector capable of detecting U-235 in half the quantities specified in Federal Standards

  13. Digital control for the Penn State Breazeale reactor

    International Nuclear Information System (INIS)

    Raiskums, G.A.

    1991-01-01

    Digital control has been an integral part of Canada deuterium uranium (CANDU) nuclear power reactor technology since the 1960s. Much of the high CANDU production reliability can be attributed to the fault-tolerant and flexible control algorithms achievable with digital control. Atomic Energy of Canada Limited (AECL) has now transported this technology to research reactors, using industrial-grade microcomputers to solve equipment aging and spares obsolescence problems so prevalent at older installations. The open architecture of the Intel 8086-based computers provides for wide availability and reasonably priced, quality hardware from numerous sources. AECL recently supplied the Pennsylvania State University Breazeale Reactor (PSBR) with a new console containing a digital control and monitoring system. The reactor safety system (RSS) was also replaced with hardwired relay logic and truly analog state-of-the-art wide range nuclear instrumentation supplied by AECL's subcontractor, Gamma-Metrics. Retaining analog hardware for the mandated RSS functions was key to minimizing licensing efforts and the extensive verification and validation that would be required for safety system software. This paper elaborates on the digital control and monitoring portion of the PSBR console replacement, with emphasis on the key system objectives

  14. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  15. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  16. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  17. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  18. Fully integrated digital GAMMA camera-computer system

    International Nuclear Information System (INIS)

    Berger, H.J.; Eisner, R.L.; Gober, A.; Plankey, M.; Fajman, W.

    1985-01-01

    Although most of the new non-nuclear imaging techniques are fully digital, there has been a reluctance in nuclear medicine to abandon traditional analog planar imaging in favor of digital acquisition and display. The authors evaluated a prototype digital camera system (GE STARCAM) in which all of the analog acquisition components are replaced by microprocessor controls and digital circuitry. To compare the relative effects of acquisition matrix size on image quality and to ascertain whether digital techniques could be used in place of analog imaging, Tc-99m bone scans were obtained on this digital system and on a comparable analog camera in 10 patients. The dedicated computer is used for camera setup including definition of the energy window, spatial energy correction, and spatial distortion correction. The display monitor, which is used for patient positioning and image analysis, is 512/sup 2/ non-interlaced, allowing high resolution imaging. Data acquisition and processing can be performed simultaneously. Thus, the development of a fully integrated digital camera-computer system with optimized display should allow routine utilization of non-analog studies in nuclear medicine and the ultimate establishment of fully digital nuclear imaging laboratories

  19. Monitoring taconite process streams with thermal neutron capture-gamma ray analysis. Report of investigations/1980

    International Nuclear Information System (INIS)

    Woodbury, F.B.W.

    1980-12-01

    The Bureau of Mines is evaluating alternative technologies to treat oxidized taconites. Since process control is an essential element in the application of these process technologies, research was performed on a prototype monitoring system utilizing a californium-252 (252-Cf) neutron source and a thermal neutron capture-gamma ray spectra analysis method to measure the amount of iron and percent solids in process slurries. The prototype system was used to monitor the concentrate and tailing streams in a 900-lb/hr flotation pilot plant during continuous around-the-clock tests. The iron content of the process slurries was determined by measuring the total peak areas under the capture spectrum peaks at 7.626-7.632 MeV, the associated escape peaks at 7.136-7.122 and 6.626-6.612 MeV, and the iron doublets at 4.900 and 4.998 MeV. A potential method for determining the percent solids in process slurries using the 2.22 MeV hydrogen capture peak is discussed

  20. Fiber-optic combined FPI/FBG sensors for monitoring of radiofrequency thermal ablation of liver tumors: ex vivo experiments.

    Science.gov (United States)

    Tosi, Daniele; Macchi, Edoardo Gino; Braschi, Giovanni; Cigada, Alfredo; Gallati, Mario; Rossi, Sandro; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2014-04-01

    We present a biocompatible, all-glass, 0.2 mm diameter, fiber-optic probe that combines an extrinsic Fabry-Perot interferometry and a proximal fiber Bragg grating sensor; the probe enables dual pressure and temperature measurement on an active 4 mm length, with 40 Pa and 0.2°C nominal accuracy. The sensing system has been applied to monitor online the radiofrequency thermal ablation of tumors in liver tissue. Preliminary experiments have been performed in a reference chamber with uniform heating; further experiments have been carried out on ex vivo porcine liver, which allowed the measurement of a steep temperature gradient and monitoring of the local pressure increase during the ablation procedure.

  1. Epistemic agency in an environmental sciences watershed investigation fostered by digital photography

    Science.gov (United States)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2018-05-01

    This collective case study investigates the role of digital photography to support high school students' engagement in science inquiry practices during a three-week environmental sciences unit. The study's theoretical framework brings together research from digital photography, participation in environmental science practices, and epistemic agency. Data analysed include field notes and video transcripts from two groups of learners (n = 19) that focus on how high school students used digital photography during their participation in two distinct environmental monitoring practices: stream mapping and macroinvertebrate identification. Our study resulted in two findings related to the role of digital photography where students developed knowledge as they engaged in environmental monitoring inquiry practices. First, we found that digital photography was integral to the youths' epistemic agency (defined as their confidence that they could build knowledge related to science in their community) as they engaged in data collection, documenting environmental monitoring procedures, and sharing data in the classroom. Based this finding, an implication of our work is a refined view of the role of digital photography in environmental sciences education where the use of photography enhances epistemic agency in inquiry-based activities. Second, we found that the youths innovated a use of digital photography to foster a recognition that they were capable and competent in scientific procedures during a streamside study. Based on this finding, we offer a theoretical implication that expands the construct of epistemic agency; we posit that epistemic agency includes a subcomponent where the students purposefully formulate an external recognition as producers of scientific knowledge.

  2. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG

    Science.gov (United States)

    Trumpis, Michael; Insanally, Michele; Zou, Jialin; Elsharif, Ashraf; Ghomashchi, Ali; Sertac Artan, N.; Froemke, Robert C.; Viventi, Jonathan

    2017-04-01

    Objective. High channel count electrode arrays allow for the monitoring of large-scale neural activity at high spatial resolution. Implantable arrays featuring many recording sites require compact, high bandwidth front-end electronics. In the present study, we investigated the use of a small, light weight, and low cost digital current-sensing integrated circuit for acquiring cortical surface signals from a 61-channel micro-electrocorticographic (μECoG) array. Approach. We recorded both acute and chronic μECoG signal from rat auditory cortex using our novel digital current-sensing headstage. For direct comparison, separate recordings were made in the same anesthetized preparations using an analog voltage headstage. A model of electrode impedance explained the transformation between current- and voltage-sensed signals, and was used to reconstruct cortical potential. We evaluated the digital headstage using several metrics of the baseline and response signals. Main results. The digital current headstage recorded neural signal with similar spatiotemporal statistics and auditory frequency tuning compared to the voltage signal. The signal-to-noise ratio of auditory evoked responses (AERs) was significantly stronger in the current signal. Stimulus decoding based on true and reconstructed voltage signals were not significantly different. Recordings from an implanted system showed AERs that were detectable and decodable for 52 d. The reconstruction filter mitigated the thermal current noise of the electrode impedance and enhanced overall SNR. Significance. We developed and validated a novel approach to headstage acquisition that used current-input circuits to independently digitize 61 channels of μECoG measurements of the cortical field. These low-cost circuits, intended to measure photo-currents in digital imaging, not only provided a signal representing the local cortical field with virtually the same sensitivity and specificity as a traditional voltage headstage but

  3. Digital remote viewing system for coronary care unit

    International Nuclear Information System (INIS)

    Cho, P.S.; Tillisch, J.; Huang, H.K.

    1987-01-01

    A digital remote viewing system developed for the coronary care unit at the UCLA Medical Center has been in clinical operation since March 1, 1987. The present system consists of three 512-line monitors, VAX 11/750, Gould IP8500 image processor and a broad-band communication system. The patients' images are acquired with a computed radiography system and are transmitted to the coronary care unit, which is five floors above the radiology department. This exhibit presents the architecture and the performance characteristics of the system. Also, the second-generation system, which consists of an intelligent local work station with three 1,024-line monitors and a fast digital communication network, will be introduced

  4. Digital memory for TV image information

    International Nuclear Information System (INIS)

    Paretti, C.

    1975-01-01

    A system employing closed circuit TV camera and MOS memory is presented to take image information and store it. The apparatus is made in two sections: analog filters and digital memory. Filters have been used to select low amplitude signals from high frequency and low frequency noise components. The memory is arranged to make nondestroying overlap of digit array: this facility is useful for microscope image prejection to overcome depth of field limits, as in automatic nuclear emulsion scanners for personnel radiation monitoring. (author)

  5. Digitized video subject positioning and surveillance system for PET

    International Nuclear Information System (INIS)

    Picard, Y.; Thompson, C.J.

    1995-01-01

    Head motion is a significant contribution to the degradation of image quality of Positron Emission Tomography (PET) studies. Images from different studies must also be realigned digitally to be correlated when the subject position has changed. These constraints could be eliminated if the subject's head position could be monitored accurately. The authors have developed a video camera-based surveillance system to monitor the head position and motion of subjects undergoing PET studies. The system consists of two CCD (charge-coupled device) cameras placed orthogonally such that both face and profile views of the subject's head are displayed side by side on an RGB video monitor. Digitized images overlay the live images in contrasting colors on the monitor. Such a system can be used to (1) position the subject in the field of view (FOV) by displaying the position of the scanner's slices on the monitor along with the current subject position, (2) monitor head motion and alert the operator of any motion during the study and (3) reposition the subject accurately for subsequent studies by displaying the previous position along with the current position in a contrasting color

  6. Information collection and processing of dam distortion in digital reservoir system

    Science.gov (United States)

    Liang, Yong; Zhang, Chengming; Li, Yanling; Wu, Qiulan; Ge, Pingju

    2007-06-01

    The "digital reservoir" is usually understood as describing the whole reservoir with digital information technology to make it serve the human existence and development furthest. Strictly speaking, the "digital reservoir" is referred to describing vast information of the reservoir in different dimension and space-time by RS, GPS, GIS, telemetry, remote-control and virtual reality technology based on computer, multi-media, large-scale memory and wide-band networks technology for the human existence, development and daily work, life and entertainment. The core of "digital reservoir" is to realize the intelligence and visibility of vast information of the reservoir through computers and networks. The dam is main building of reservoir, whose safety concerns reservoir and people's safety. Safety monitoring is important way guaranteeing the dam's safety, which controls the dam's running through collecting the dam's information concerned and developing trend. Safety monitoring of the dam is the process from collection and processing of initial safety information to forming safety concept in the brain. The paper mainly researches information collection and processing of the dam by digital means.

  7. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply

  8. Smarter radiation monitors for safeguards and security

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Pratt, J.C.; Markin, J.T.; Scurry, T. Jr.

    1983-01-01

    Radiation monitors for nuclear safeguards and security depend on internal control circuits to determine when diversion of special nuclear materials is taking place. Early monitors depended on analog circuits for this purpose, subsequently, digital logic controllers made better monitoring methods possible. Now, versatile microprocessor systems permit new, more efficient, and more useful monitoring methods. One such method is simple stepwise monitoring, which has variable alarm levels to expedite monitoring where extended monitoring periods are required. Another method, sequential probability ratio logic, tests data as it accumulates against two hypothesis - background, or background plus a transient diversion signal - and terminates monitoring as soon as a decision can be made that meets false-alarm and detection confidence requirements. A third method, quantitative monitoring for personnel, calculates count ratios of high- to low-energy gamma-ray regions to predict whether the material detected is a small quantity of bare material or a larger quantity of shielded material. In addition, microprocessor system subprograms can assist in detector calibration and trouble-shooting. Examples of subprograms are a variance analysis technique to set bias levels in plastic scintillators and a state-of-health routine for detecting malfunctions in digital circuit components

  9. Using feedback through digital technology to disrupt and change habitual behavior : a critical review of current literature

    NARCIS (Netherlands)

    Sander Hermsen; Reint-Jan Renes; Jeana Frost; Peter Kerkhof

    2016-01-01

    Habitual behavior is often hard to change because of a lack of self-monitoring skills. Digital technologies offer an unprecedented chance to facilitate self-monitoring by delivering feedback on undesired habitual behavior. This review analyzed the results of 72 studies in which feedback from digital

  10. Use of Landsat thermal imagery for dynamically monitoring spontaneous combustion of Datong Jurassic coalfields in China

    Science.gov (United States)

    Xue, Yongan; Liu, Jin; Li, Jun; Shang, Changsheng; Zhao, Jinling; Zhang, Mingmei

    2018-06-01

    It is highly helpful and necessary to investigate and monitor the status of coal seam. Fortunately, remote sensing has facilitated the identification and dynamical monitoring of spontaneous combustion for a large area coal mining area, especially using the time series remotely-sensed datasets. In this paper, Datong Jurassic coal mining area is used as the study area, China, and an exclusion method and a multiple-factor analysis method are jointly used to identify the spontaneous combustion, including land surface temperature (LST), burnt rocks, and land use and land cover change (LUCC). The LST is firstly retrieved using a single-window algorithm due to a thermal infrared band of Landsat-5 TM (Thematic Mapper). Burnt rocks is then extracted using a decision-tree classification method based on a high-resolution SPOT-5 image. The thermal anomaly areas are identified and refined by the spatial overlay analysis of the above affecting factors. Three-period maps of coal fire areas are obtained and dynamically analyzed in 2007, 2009 and 2010. The results show that a total of 12 coal fire areas have been identified, which account for more than 1% of the total area of the study area. In general, there is an increasing trend yearly and a total of 771,970 m2 is increased. The average annual increase is 257,320 m2, the average annual growth rate is 3.78%, and the dynamic degree is 11.29%.

  11. RF applications in digital signal processing

    CERN Document Server

    Schilcher, T

    2008-01-01

    Ever higher demands for stability, accuracy, reproducibility, and monitoring capability are being placed on Low-Level Radio Frequency (LLRF) systems of particle accelerators. Meanwhile, continuing rapid advances in digital signal processing technology are being exploited to meet these demands, thus leading to development of digital LLRF systems. The rst part of this course will begin by focusing on some of the important building-blocks of RF signal processing including mixer theory and down-conversion, I/Q (amplitude and phase) detection, digital down-conversion (DDC) and decimation, concluding with a survey of I/Q modulators. The second part of the course will introduce basic concepts of feedback systems, including examples of digital cavity eld and phase control, followed by radial loop architectures. Adaptive feed-forward systems used for the suppression of repetitive beam disturbances will be examined. Finally, applications and principles of system identi cation approaches will be summarized.

  12. Pediatric radiation dose management in digital radiography

    International Nuclear Information System (INIS)

    Neitzel, U.

    2004-01-01

    Direct digital radiography (DR) systems based on flat-panel detectors offer improved dose management in pediatric radiography. Integration of X-ray generation and detection in one computer-controlled system provides better control and monitoring

  13. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Directory of Open Access Journals (Sweden)

    Bushuev F.

    2016-10-01

    Full Text Available The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East are presented in the article. The results were obtained using a radio engineering complex (RC of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.

  14. DUCKS: Low cost thermal monitoring units for near-vent deployment

    Science.gov (United States)

    Harris, Andrew; Pirie, Dawn; Horton, Keith; Garbeil, Harold; Pilger, Eric; Ramm, Hans; Hoblitt, Rick; Thornber, Carl; Ripepe, Maurizio; Marchetti, Emanuele; Poggi, Pasquale

    2005-05-01

    During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ˜US10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican™ cases fitted with Germanium-Arsenide-Selenium windows. Two 1° field of view (FOV) sensors allow specific vents to be targeted and a 60° FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican™-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ˜3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1° and 15° FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US5500 for a single sensor system. We have also constructed self-contained units

  15. DUCKS: Low cost thermal monitoring units for near-vent deployment

    Science.gov (United States)

    Harris, A.; Pirie, D.; Horton, K.; Garbeil, H.; Pilger, E.; Ramm, H.; Hoblitt, R.; Thornber, C.; Ripepe, M.; Marchetti, E.; Poggi, P.

    2005-01-01

    During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ???US$10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican??? cases fitted with Germanium-Arsenide-Selenium windows. Two 1?? field of view (FOV) sensors allow specific vents to be targeted and a 60?? FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican???-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ???3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1?? and 15?? FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US$5500 for a single sensor system. We have also constructed self-contained units

  16. Thermal monitoring of a granitic exfoliation sheet and cliff in Yosemite Valley, California (USA)

    Science.gov (United States)

    Guerin, Antoine; Matasci, Battista; Collins, Brian D.; Stock, Greg M.; Derron, Marc-Henri; Jaboyedoff, Michel

    2015-04-01

    In recent years, new remote sensing techniques such as Terrestrial Laser Scanner (TLS) and Infrared Thermography (IRT) have been used in parallel for rock weathering and weakness detection in slope stability analysis. Nevertheless, the effects of thermal stresses on rock face deformation are still poorly quantified, especially for steep and inaccessible cliffs. To better understand how daily temperature fluctuations influence the behavior of exfoliation joints (i.e., fractures separating exfoliation sheets), we monitored a granitic exfoliation sheet in detail using TLS and IRT over a several day period and also compiled a single TLS-IRT thermal panorama of a larger nearby granitic cliff composed of hundreds to thousands of similar exfoliation sheets. The exfoliation sheet had been previously instrumented for 3.5 years beginning in May 2010 using crackmeters and temperature sensors (Collins and Stock, 2010 and 2012), thereby providing an important baseline to compare our IRT measurements. For several consecutive days, a series of infrared thermal images (collected every 20 min.) of the exfoliation flake (19 m by 4 m by 0.1 m) was taken with a long range IRISYS IRI 4040 thermal imager, as well as several ground-based LiDAR scans, collected at 4 mm point spacing. These pictures were draped on the TLS triangular meshes to quantify the lateral propagation of temperature during the warming and cooling periods. The evolution of vertical and horizontal temperature profiles was also investigated. Results show that the sheet edge undergoes the most significant temperature changes and that warming takes place from the inside part to the border of the flake; conversely cooling takes place from the outside-inwards. Furthermore, the comparison of point clouds indicates a maximum crack aperture of over 1 cm occurring in the afternoon (12:00 to 15:00), when temperatures are at their maximum. The thermal panoramic image of the cliff (600 m wide by 300 m tall) was created using over

  17. A new paradigm of oral cancer detection using digital infrared thermal imaging

    Science.gov (United States)

    Chakraborty, M.; Mukhopadhyay, S.; Dasgupta, A.; Banerjee, S.; Mukhopadhyay, S.; Patsa, S.; Ray, J. G.; Chaudhuri, K.

    2016-03-01

    Histopathology is considered the gold standard for oral cancer detection. But a major fraction of patient pop- ulation is incapable of accessing such healthcare facilities due to poverty. Moreover, such analysis may report false negatives when test tissue is not collected from exact cancerous location. The proposed work introduces a pioneering computer aided paradigm of fast, non-invasive and non-ionizing modality for oral cancer detection us- ing Digital Infrared Thermal Imaging (DITI). Due to aberrant metabolic activities in carcinogenic facial regions, heat signatures of patients are different from that of normal subjects. The proposed work utilizes asymmetry of temperature distribution of facial regions as principle cue for cancer detection. Three views of a subject, viz. front, left and right are acquired using long infrared (7:5 - 13μm) camera for analysing distribution of temperature. We study asymmetry of facial temperature distribution between: a) left and right profile faces and b) left and right half of frontal face. Comparison of temperature distribution suggests that patients manifest greater asymmetry compared to normal subjects. For classification, we initially use k-means and fuzzy k-means for unsupervised clustering followed by cluster class prototype assignment based on majority voting. Average classification accuracy of 91:5% and 92:8% are achieved by k-mean and fuzzy k-mean framework for frontal face. The corresponding metrics for profile face are 93:4% and 95%. Combining features of frontal and profile faces, average accuracies are increased to 96:2% and 97:6% respectively for k-means and fuzzy k-means framework.

  18. Influence of season, age and management on scrotal thermal profile in Murrah bulls using scrotal infrared digital thermography

    Science.gov (United States)

    Ahirwar, Maneesh Kumar; Kataktalware, Mukund Amritrao; Ramesha, Kerekoppa Puttaiah; Pushpadass, Heartwin Amaladhas; Jeyakumar, Sakthivel; Revanasiddu, Deginal; Kour, Reen Jagish; Nath, Sapna; Nagaleekar, Anand Kumar; Nazar, Sayyad

    2017-12-01

    The aim of the present study was to examine the effects of non-genetic factors on scrotal thermographic profile viz., proximal pole temperature (PPT °C), mid pole temperature (MPT °C), distal pole temperature (DPT °C) and ocular temperature (OcT) of Murrah ( Bubalus bubalis) breeding bulls. A total of 109 buffalo bulls, maintained at three semen stations (SS), were monitored for scrotal surface and ocular temperatures using infrared thermography twice daily during rainy, winter and summer seasons using an FLIR i5 infrared camera and temperatures were measured. Thermograms were analysed by FLIR QuickReport v.1.2 SP2 software. Statistical analysis revealed that semen station, season, temperature humidity index (THI), housing system and timing of observations had significant ( P 80.88; system and timing of observations had a significant influence on scrotal surface temperature. The monitoring of scrotal surface temperature by infrared thermography was found to be useful in evaluating the effects of thermal stress on physiology and health of buffalo bulls.

  19. Integrated fiber optical and thermal sensor for noninvasive monitoring of blood and human tissue

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schiffner, Gerhard

    2007-05-01

    A novel concept of noninvasive monitoring of human tissue and blood based on optical diffuse reflective spectroscopy combined with metabolic heat measurements has been under development. A compact integrated fiber optical and thermal sensor has been developed. The idea of the method was to evaluate by optical spectroscopy haemoglobin and derivative concentrations and supplement with data associated with the oxidative metabolism of glucose. Body heat generated by glucose oxidation is based on the balance of capillary glucose and oxygen supply to the cells. The variation in glucose concentration is followed also by a difference from a distance (or depth) of scattered through the body radiation. So, blood glucose can be estimated by measuring the body heat and the oxygen supply. The sensor pickup contains of halogen lamp and LEDs combined with fiber optical bundle to deliver optical radiation inside and through the patient body, optical and thermal detectors. Fiber optical probe allows diffuse scattering measurement down to a depth of 2.5 mm in the skin including vascular system, which contributes to the control of the body temperature. The sensor pickup measures thermal generation, heat balance, blood flow rate, haemoglobin and derivative concentrations, environmental conditions. Multivariate statistical analysis was applied to convert various signals from the sensor pickup into physicochemical variables. By comparing the values from the noninvasive measurement with the venous plasma result, analytical functions for patient were obtained. Cluster analysis of patient groups was used to simplify a calibration procedure. Clinical testing of developed sensor is being performed.

  20. Mining Contextual Information for Ephemeral Digital Video Preservation

    Directory of Open Access Journals (Sweden)

    Chirag Shah

    2009-06-01

    Full Text Available Normal 0 For centuries the archival community has understood and practiced the art of adding contextual information while preserving an artifact. The question now is how these practices can be transferred to the digital domain. With the growing expansion of production and consumption of digital objects (documents, audio, video, etc. it has become essential to identify and study issues related to their representation. A cura­tor in the digital realm may be said to have the same responsibilities as one in a traditional archival domain. However, with the mass production and spread of digital objects, it may be difficult to do all the work manually. In the present article this problem is considered in the area of digital video preservation. We show how this problem can be formulated and propose a framework for capturing contextual infor­mation for ephemeral digital video preservation. This proposal is realized in a system called ContextMiner, which allows us to cater to a digital curator's needs with its four components: digital video curation, collection visualization, browsing interfaces, and video harvesting and monitoring. While the issues and systems described here are geared toward digital videos, they can easily be applied to other kinds of digital objects.

  1. Digital communication system

    International Nuclear Information System (INIS)

    Union, D.C.

    1980-01-01

    A digital communication system for communicating among two central consoles and a plurality of local controllers, e.g. in a radiation and monitoring system, provides communication between each of the consoles and all of the local controllers via dual paths. Each path is independent of the other and each extends from one of the consoles to all of the local controllers from opposite directions, thereby forming a unique non-continuous loop. (author)

  2. Digital preservation putting it to work

    CERN Document Server

    Ogryczak, Włodzimierz; Pałka, Piotr; Śliwiński, Tomasz

    2017-01-01

    This book addresses the process of maintaining digital objects through time to ensure continued access, an aspect that has become a crucial issue in recent years. It offers a concise yet comprehensive discussion of key concepts and requirements for long-term digital preservation, and presents a pioneering framework for digital repositories that enables the long-term archiving and metadata management for large volumes of digital resources based on a system that has already been completely designed and launched. In the framework, the reliability of information readouts is ensured by the repository with two-level data recording replication and monitoring mechanisms in the repository management system (RMS) and the file systems, and by the RMS’s distributed nature. The advanced RMS allows operations on the archival storage to be scheduled, while also taking into account low energy consumption requirements. After presenting the framework in detail, the book assesses and demonstrates the approach’s viability ...

  3. Digital BPM Systems for Hadron Accelerators

    CERN Document Server

    Belleman, J; Kasprowicz, G; Raich, U

    2009-01-01

    The CERN Proton Synchrotron has been fitted with a new trajectory measurement system (TMS). Analogue signals from forty beam position monitors are digitized at 125MS/s, and then further treated entirely in the digital domain to derive the positions of all individual particle bunches on the fly. Large FPGAs handle all digital processing. The system fits in fourteen plug-in modules distributed over three half-width cPCI crates. Data are stored in circular buffers of large enough size to keep a fewseconds-worth of position data. Multiple clients can then request selected portions of the data, possibly representing many thousands of consecutive turns, for display on operator consoles. The system uses digital phase-locked loops to derive its beamlocked timing reference. Programmable state machines, driven by accelerator timing pulses and information from the accelerator control system, direct the order of operations. The cPCI crates are connected to a standard Linux computer by means of a private Gigabit Ethernet ...

  4. Color reproduction software for a digital still camera

    Science.gov (United States)

    Lee, Bong S.; Park, Du-Sik; Nam, Byung D.

    1998-04-01

    We have developed a color reproduction software for a digital still camera. The image taken by the camera was colorimetrically reproduced on the monitor after characterizing the camera and the monitor, and color matching between two devices. The reproduction was performed at three levels; level processing, gamma correction, and color transformation. The image contrast was increased after the level processing adjusting the level of dark and bright portions of the image. The relationship between the level processed digital values and the measured luminance values of test gray samples was calculated, and the gamma of the camera was obtained. The method for getting the unknown monitor gamma was proposed. As a result, the level processed values were adjusted by the look-up table created by the camera and the monitor gamma correction. For a color transformation matrix for the camera, 3 by 3 or 3 by 4 matrix was used, which was calculated by the regression between the gamma corrected values and the measured tristimulus values of each test color samples the various reproduced images were displayed on the dialogue box implemented in our software, which were generated according to four illuminations for the camera and three color temperatures for the monitor. An user can easily choose he best reproduced image comparing each others.

  5. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  6. Extensive feedwater quality control and monitoring concept for preventing chemistry-related failures of boiler tubes in a subcritical thermal power plant

    International Nuclear Information System (INIS)

    Vidojkovic, Sonja; Onjia, Antonije; Matovic, Branko; Grahovac, Nebojsa; Maksimovic, Vesna; Nastasovic, Aleksandra

    2013-01-01

    Prevention and minimizing corrosion processes on steam generating equipment is highly important in the thermal power industry. The maintenance of feedwater quality at a level corresponding to the standards of technological designing, followed by timely respond to the fluctuation of measured parameters, has a decisive role in corrosion prevention. In this study, the comprehensive chemical control of feedwater quality in 210 MW Thermal Power Plant (TPP) was carried out in order to evaluate its potentiality to assure reliable function of the boiler and discover possible irregularity that might be responsible for frequent boiler tube failures. Sensitive on-line and off-line analytical instruments were used for measuring key and diagnostic parameters considered to be crucial for boiler safety and performances. Obtained results provided evidences for exceeded levels of oxygen, silica, sodium, chloride, sulfate, copper, and conductivity what distinctly demonstrated necessity of feedwater control improvement. Consequently, more effective feedwater quality monitoring concept was recommended. In this paper, the explanation of presumable root causes of corrosive contaminants was given including basic directions for their maintenance in proscribed limits. -- Highlights: • Feedwater quality monitoring practice in a thermal power plant has been evaluated. • The more efficient feedwater quality control have been applied. • Analysis of feedwater quality parameters has been performed. • Exceeded levels of corrosive contaminants were found. • Recommendations for their maintenance at proscribed values were given

  7. Image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Lehtovirta, J.; Matsi, P.; Soimakallio, S.

    1992-01-01

    The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512x512 image format) viewed on a 625 line monitor were processed in 3 different ways: 1.standard display; 2.digital edge enhancement for the standard display; 3.inverse intensity display. The radiographs were interpreted independently by 3 radiologists. Diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease, 17 with pneumonia /atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases respectively. Sensitivity of conventional radiography when averaged overall findings was better than that of digital techniques (P<0.001). Differences in diagnostic accuracy measured by sensitivity and specificity between the 3 digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P<0.05) but poorer specificity for pulmonary emphysema (0.85 vs 0.93; P<0.05) compared with inverse intensity display. It is concluded that when using 512x512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted. (author). 12 refs.; 4 figs.; 2 tabs

  8. Permafrost in vegetated scree slopes below the timberline - characterization of thermal properties and permafrost conditions by temperature measurements and geoelectrical monitoring

    Science.gov (United States)

    Schwindt, Daniel; Kneisel, Christof

    2010-05-01

    Discontinuous alpine permafrost is expected to exist at altitudes above 2400m a.s.l. at mean annual air temperatures (MAAT) of less than -1°C. Below timberline only a few sites are known, where sporadic permafrost exists in vegetated talus slopes with positive MAAT. Aim of the study is to characterize permafrost-humus interaction, the thermal regime and its influence on temporal and spatial permafrost variability. Results of geophysical and thermal measurements from three talus slopes, located in the Swiss Alps (Engadin, Appenzell) at elevations between 1200 and 1800m a.s.l. with MAAT between 2.8°C and 5.5°C are presented. Parent rock-material of the slopes are granite (Bever Valley, Engadin) and dolomite (Susauna Valley, Engadin; Brüeltobel, Appenzell). Joint application of electrical resistivity tomography (ERT) and refraction seismic tomography (RST) is used to detect and characterize permafrost. To observe temporal and spatial variability in ice content and characteristics year-around geoelectrical monitoring and quasi-3D ERT are used. A forward modeling approach has been applied to validate the results of geoelectrical monitoring. A number of temperature data loggers were installed in different depth of the humus layer and in different positions of the slope to monitor the ground thermal regime. Isolated permafrost has been detected by the combination of ERT and RST in the lower parts of the investigated talus slopes. Results from geophysical measurements and monitoring indicate a high spatial and temporal variability in ice content and ice characteristics (temperature, density, content of unfrozen water) for all sites. A distinct rise of resistivities between November and December indicates a decrease of unfrozen water content, caused by a pronounced cooling in the lower parts of the slope. Decreasing ice content and extent of the permafrost lenses can be observed in decreasing seismic velocities from 2600m/sec in spring to only 1500m/sec in October. Ice

  9. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  10. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    Science.gov (United States)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the

  11. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations

    Science.gov (United States)

    Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.

    2014-01-01

    Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.

  12. Radioisotope dust pollution monitor

    International Nuclear Information System (INIS)

    Szepke, R.; Harasimczuk, J.; Dobrowiecki, J.

    1990-01-01

    Measuring principles and specification of two dust monitors: station-type AMIZ and portable-type PIK-10 for ambient air pollution are presented. The first one, a fully automatic instrument is destined for permanent monitoring of air pollution in preset sampling time from .25 to 24 hours. The second one was developed as a portable working model. Both instruments display their results in digital form in dust concentration units. (author)

  13. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    Science.gov (United States)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  14. The modelling of a digital forensic readiness approach for wireless local area networks

    CSIR Research Space (South Africa)

    Ngobeni, S

    2012-06-01

    Full Text Available generated by the mobile stations and to conduct a proper digital forensic investigation. This paper attempts to address this issue by proposing a wireless digital forensic readiness model designed to monitor, log and preserve wireless network traffic...

  15. Compact digital NTSC TV signal transmission system using SM optical fibers and its application to operating status monitoring for laser cutting machine; Digital gazo shingo no kan`igata hikari fiber denso system to sono laser cutter no dosa jotai kanshi eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Asada, H. [NEC Shizuoka, Ltd., Shizuoka (Japan); Rabou, N. [University of Helwan, (Egypt); Ikeda, H.; Shimodaira, Y.; Yoshida, H. [Shizuoka University, Shizuoka (Japan)

    1998-02-01

    This paper describes a compact bandwidth-compressed digital NTSC picture code transmission system in which circuit configurations are simplified and made inexpensive. The bandwidth of digital NTSC picture codes is compressed in accordance with subjective evaluation, and so the sampling rate is set at 8.13 MHz (2.28 times fsc) and the quantizing level at 5 bits. The frame bits for detecting the frames of picture elements me generated by alternately generating 1 and 0 when the frames are specified. The proposed system is constructed using edge- emitting LED`s (ELED`s) and single- mode (SM) fibers for transmitting digital NTSC picture codes w m to easily distribute video signals from a video camera to video monitors. The transmitter was 80 times 100mm in size, 120 g in weight, and 1000mw in power dissipation. The receiver was 55 times 120 mm in size, 100g in weight, and 800mw in power dissipation. Using the compact bandwidth-compressed digital NTSC picture code transmission system a shot of the working pice in the laser cutting machine, as an example, was satisfactorily transmitted via SM optical fibers without noses. 18 refs., 12 figs., 2 tabs.

  16. Application of LabVIEW in SSRF digital power supply development

    International Nuclear Information System (INIS)

    Tang Junlong; Chen Huanguang; Ke Xinhua; Chinese Academy of Science, Beijing; Xu Ruinian; Li Deming

    2007-01-01

    During development of the Shanghai Synchrotron Radiation Facility (SSRF) digital power supply, a digital pulse-width modulator (PWM) directly controls the power circuit insulated gate bipolar transistor (IGBT). A program in LabVIEW language has been developed to perform computer control and monitor for the digital PS via serial communication (RS232). The program provides a friendly user interface to the digital PS that makes it easy to observe its behavior and modify its parameters. Another program, also in LabVIEW language, has been developed to test long term stability of the digital power supply and store the experimental data via extremely precise Keithley instrument and computer. The experimental data are stored in an Excel file which can be processed and analyzed in the future. (authors)

  17. Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.

    Science.gov (United States)

    Yassien, Khaled M; Agour, Mostafa

    2017-02-01

    A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.

  18. Digital marketing strategies, online reviews and hotel performance

    OpenAIRE

    Pelsmacker, De, Patrick; Tilburgh, van, Sophie; Holthof, Christian

    2018-01-01

    Abstract: We investigate to what extent digital marketing strategies (such as having a digital marketing plan, responsiveness to guest reviews, and monitoring and tracking online review information) influence hotel room occupancy and RevPar directly, and indirectly through the mediating effect of the volume and valence of online reviews they lead to, and to what extent this mechanism is different for different types of hotels in terms of star rating and independent versus chain hotels. The re...

  19. Digital Earth Watch And Picture Post Network: Measuring The Environment Through Digital Images

    Science.gov (United States)

    Schloss, A. L.; Beaudry, J.; Carrera, F.; Pickle, J.

    2010-12-01

    Digital Earth Watch (DEW) involves individuals, schools, organizations and communities in a systematic monitoring project of their local environment, especially vegetation health. The program offers people the means to join the Picture Post network and to study and analyze their own findings using DEW software. A Picture Post is an easy-to-use and inexpensive platform for repeatedly taking digital photographs as a standardized set of images of the entire 360 ° landscape, which then can be shared over the Internet on the Picture Post website. This simple concept has the potential to create a wealth of information and data on changing environmental conditions, which is important for a society grappling with the effects of environmental change. Picture Post participants study change over time in their local area, compare digital images with NASA satellite imagery and contribute towards improving their own communities. A key message in DEW is that although plants are dynamic and respond continuously to their environment, they do so either on a time-scale that most people don't notice or with a subtlety our senses can't detect. DEW has created simple tools for monitoring vegetation as a means towards understanding the connection between global climate change and local effects. Picture Posts may be added by anyone interested in monitoring a particular location. The value of a Picture Post is in the commitment of participants to take repeated photographs - monthly, weekly, or even daily - to build up a long-term record over many years. DEW is being developed by a collaborative effort led by the University of New Hampshire with the Federation of Earth Science Information Partners, the University of Southern Maine, and Worcester Polytechnic Institute. This poster will show examples of picture posts and data that can be collected and will describe our soon-to-be-released “ virtual ” picture post cell phone app. The Picture Post network is new and we invite individuals

  20. Electronic thermal sensor and Data Collection Platform technology: Part 5 in Thermal surveillance of active volcanoes using the Landsat-1 Data Collection System

    Science.gov (United States)

    Preble, Duane M.; Friedman, Jules D.; Frank, David

    1976-01-01

    Five Data Collection Platforms (DCP) were integrated electronically with thermall sensing systems, emplaced and operated in an analog mode at selected thermally significant volcanic and geothermal sites. The DCP's transmitted 3260 messages comprising 26,080 ambient, surface, and near-surface temperature records at an accuracy of ±1.15 °C for 1121 instrument days between November 14, 1972 and April 17, 1974. In harsh, windy, high-altitude volcanic environments the DCP functioned best with a small dipole antenna. Sixteen kg of alkaline batteries provided a viable power supply for the DCP systems, operated at a low-duty cycle, for 5 to 8 months. A proposed solar power supply system would lengthen the period of unattended operation of the system considerably. Special methods of data handling such as data storage via a proposed memory system would increase the significance of the twice-daily data reception enabling the DCP's to record full diurnal-temperature cycles at volcanic or geothermal sites. Refinements in the temperature-monitoring system designed and operated in experiment SR 251 included a backup system consisting of a multipoint temperature scanner, a servo mechanism and an analog-to-digital recorder. Improvements were made in temperature-probe design and in construction of corrosion-resistant seals by use of a hydrofluoric-acid-etching technique.

  1. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yamaguchi, Yasuhiro

    2005-01-01

    A new inventive radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for monitoring doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. Scintillations from the detector induced by thermal and fast neutrons, photons and muons were discriminated by analyzing their waveforms, and their light outputs were directly converted into the corresponding doses by applying the G-function method. Characteristics of DARWIN were studied by both calculation and experiment. The calculated results indicate that DARWIN gives reasonable estimations of doses in most radiation fields. It was found from the experiment that DARWIN has an excellent property of measuring doses from all particles that significantly contribute to the doses in surrounding environments of accelerator facilities - neutron, photon and muon with wide energy ranges. The experimental results also suggested that DARWIN enables us to monitor small fluctuation of neutron dose rates near the background-level owing to its high sensitivity. (author)

  2. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  3. On the simulation of transients and accidents in PWRs with digital instrumentation and control using an LQR digital controller

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.; Oliva, J.J. Rivero

    2015-01-01

    New nuclear power plant designs are including integrated I and C digital systems for protection, control, alarming and monitoring. Existing operating nuclear power plants, as is the case of Angra 1 nuclear power plant, have to consider the replacement of their I and C analog systems by digital systems for retrofitting their facilities. However, before replacing the analog control loops by digital ones it is necessary to design and evaluate their performance, which requires modeling of the plant and its control system with extensive simulations under several normal and abnormal operation conditions. This paper discusses the use of a linear quadratic regulator (LQR) digital controller for evaluating the plant stability behavior before the actuation of the reactor protection system. The objective is to evaluate the effect of digital controllers on plant behavior for several transients and accident conditions. For this purpose, a numerical model was developed and implemented as a MatlabTM tool. This paper discusses an adequate framework in order to simulate a set of transients and accidents that constitute the design basis in the final safety analysis report of PWR power plants to evaluate the performance of digital controllers such as LQR regulators.(author)

  4. FPGA Design of the digital acquisition chain to test and implement ALPS, the new Beam Position Monitor for the Super Proton Synchrotron at CERN

    CERN Document Server

    Degl'Innocenti, Irene; Boccardi, Andrea

    This thesis presents the firmware design and the data analysis to test and implement part of the acquisition chain of ALPS (A Logarithmic Position Monitor), the new beam position monitor of the Super Proton Synchrotron (SPS) at CERN, the European Organization for Nuclear Research. CERN provides particle accelerators and detectors to accelerate beams of particles and observe their collisions and the SPS is the second larger circular machine in the accelerator complex. The SPS beam position monitor, the system that measures the transverse position of the accelerated particle beams along the pipe, is now under redesign. In the BPM acquisition chain the signal from the sensor is first conditioned by the analog front-end, then digitalised in the digital front-end and transmitted to the back-end for being processed. The goal of the thesis is the conception of firmware modules and analysis tools integrated with the acquisition chain, aiming to acquire and analyse data to qualify the system and finally implement ...

  5. Digital processing method for monitoring the radioactivity of stack releases

    International Nuclear Information System (INIS)

    Vialettes, H.; Leblanc, P.; Perotin, J.P.; Lazou, J.P.

    1978-01-01

    The digital processing method proposed is adapted for data supplied by a fixed-filter detector normally used for analogue processing (integrator system). On the basis of the raw data (pulses) from the detector, the technique makes it possible to determine the rate of activity released whereas analogue processing gives only the released activity. Furthermore, the method can be used to develop alarm systems on the basis of a possible exposure rate at the point of fall-out, and by including in the program a coefficient which allows for atmospheric diffusion conditions at any given time one can improve the accuracy of the results. In order to test the digital processing method and demonstrate its advantages over analogue processing, various atmospheric contamination situations were simulated in a glove-box and analysed simultaneously, using both systems, from the pulses transmitted by the same sampling and fixed-filter detection unit. The experimental results confirm the advantages foreseen in the theoretical research. (author)

  6. A Novel Thermal-Mechanical Detection System for Reactor Pressure Vessel Bottom Failure Monitoring in Severe Accidents

    International Nuclear Information System (INIS)

    Bi, Daowei; Bu, Jiangtao; Xu, Dongling

    2013-06-01

    Following the Fukushima Daiichi nuclear accident in Japan, there is an increased need of enhanced capabilities for severe accident management (SAM) program. Among others, a reliable method for detecting reactor pressure vessel (RPV) bottom failure has been evaluated as imperative by many utility owners. Though radiation and/or temperature measurement are potential solutions by tradition, there are some limitations for them to function desirably in such severe accident as that in Japan. To provide reliable information for assessment of accident progress in SAM program, in this paper we propose a novel thermal-mechanical detection system (TMDS) for RPV bottom failure monitoring in severe accidents. The main components of TMDS include thermally sensitive element, metallic cables, tension controlled switch and main control room annunciation device. With TMDS installed, there shall be a reliable means of keeping SAM decision-makers informed whether the RPV bottom has indeed failed. Such assurance definitely guarantees enhancement of severe accident management performance and significantly improve nuclear safety and thus protect the society and people. (authors)

  7. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    Science.gov (United States)

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates

  8. DOPA, a Digital Observatory for Protected Areas including Monitoring and Forecasting Services

    Science.gov (United States)

    Dubois, Gregoire; Hartley, Andrew; Peedell, Stephen; de Jesus, Jorge; Ó Tuama, Éamonn; Cottam, Andrew; May, Ian; Fisher, Ian; Nativi, Stefano; Bertrand, Francis

    2010-05-01

    The Digital Observatory for Protected Areas (DOPA) is a biodiversity information system currently developed as an interoperable web service at the Joint Research Centre of the European Commission in collaboration with other international organizations, including GBIF, UNEP-WCMC, Birdlife International and RSPB. DOPA is designed to assess the state and pressure of Protected Areas (PAs) and to prioritize them accordingly, in order to support decision making and fund allocation processes. To become an operational web service allowing the automatic monitoring of protected areas, DOPA needs to be able to capture the dynamics of spatio-temporal changes in habitats and anthropogenic pressure on PAs as well as the changes in the species distributions. Because some of the most valuable natural ecosystems and species on the planet cover large areas making field monitoring methods very difficult for a large scale assessment, the automatic collection and processing of remote sensing data are processes at the heart of the problem. To further be able to forecast changes due to climate change, DOPA has to rely on an architecture that enables it to communicate with the appropriate modeling web services. The purpose of this presentation is to present the architecture of the DOPA with special attention to e-Habitat, its web processing service designed for assessing the irreplaceability of habitats as well as for the modeling of habitats under different climate change scenarios. The use of open standards for spatial data and of open source programming languages for the development of the core functionalities of the system are expected to encourage the participation of the scientific community beyond the current partnerships and to favour the sharing of such an observatory which could be installed at any other location. Acknowledgement: Part of this work is funded under the 7th Framework Programme by the EuroGEOSS (www.eurogeoss.eu) project of the European Commission. The views

  9. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues

    International Nuclear Information System (INIS)

    Maleke, C; Konofagou, E E

    2008-01-01

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 deg. C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 μm deg. C -1 (r = 0.93, p -1 , r = -0.92, p -1 , prior to and after lesion formation in seven bovine liver samples, respectively. This technique was thus capable of following the protein-denatured lesion formation based on the

  10. Digital Culture and Digital Library

    Directory of Open Access Journals (Sweden)

    Yalçın Yalçınkaya

    2016-12-01

    Full Text Available In this study; digital culture and digital library which have a vital connection with each other are examined together. The content of the research consists of the interaction of culture, information, digital culture, intellectual technologies, and digital library concepts. The study is an entry work to integrity of digital culture and digital library theories and aims to expand the symmetry. The purpose of the study is to emphasize the relation between the digital culture and digital library theories acting intersection of the subjects that are examined. Also the perspective of the study is based on examining the literature and analytical evaluation in both studies (digital culture and digital library. Within this context, the methodology of the study is essentially descriptive and has an attribute for the transmission and synthesis of distributed findings produced in the field of the research. According to the findings of the study results, digital culture is an inclusive term that describes the effects of intellectual technologies in the field of information and communication. Information becomes energy and the spectrum of the information is expanding in the vertical rise through the digital culture. In this context, the digital library appears as a new living space of a new environment. In essence, the digital library is information-oriented; has intellectual technology support and digital platform; is in a digital format; combines information resources and tools in relationship/communication/cooperation by connectedness, and also it is the dynamic face of the digital culture in time and space independence. Resolved with the study is that the digital libraries are active and effective in the formation of global knowing and/or mass wisdom in the process of digital culture.

  11. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  12. Possible extensions of XIA's digital spectrometer technology to portable and remote monitoring instrumentation

    International Nuclear Information System (INIS)

    Warburton, W.K.; Darknell, D.A.; Hubbard-Nelson, B.

    1998-01-01

    The XIA DXP-4C is a 4 channel, CAMAC based, X-ray spectrometer which digitally processes directly digitized preamplifier signals. The DXP-4C was designed for instrumenting multi-detector arrays for synchrotron radiation applications, and optimized for very high count rates at a low cost per detector channel. This produced a very compact and low power (3.4 W/channel) instrument for its count rate and MCA capabilities, which thus provides a strong basis for portable applications. Because all functions are digitally controlled, it can be readily adapted to various user interfaces, including remote access interfaces. Here the authors describe the design and examine approaches to lowering its power to 50 mW/channel. They then consider the issues in applying it to three typical portable or remote spectrometry applications

  13. Linear accelerator calibration monitor with a memory

    International Nuclear Information System (INIS)

    Dixon, R.L.; Ekstrand, K.E.

    1979-01-01

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility

  14. Monitoring an electric cable core

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Marris, A.

    1984-01-01

    A method of, and apparatus for, continuously monitoring an advancing core having a continuous covering comprises directing X-ray radiation laterally towards the advancing covered core; continuously forming an X-ray image pattern of the advancing covered core and translating the image pattern into a visible image pattern; continuously transforming the visible pattern into a digital bit pattern; and processing the digital bit pattern using a microprocessor with interfacing electronics to provide an image profile of the advancing covered core and/or to provide analogue and/or digital signals indicative of the overall diameter and eccentricity of the covered core and of the thickness of the covering. (author)

  15. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard

    Science.gov (United States)

    Christiansen, H. H.

    2006-12-01

    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  16. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    Science.gov (United States)

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  17. Control system of digital x-ray systems by quality parameters

    International Nuclear Information System (INIS)

    Balashov, S.V.; Kovalenko, Yu.N.

    2013-01-01

    The paper proposed a control system of X-ray digital equipment on quality indicators. Two basic parameters were determined: image quality and patients' radiation load. A method for monitoring these indicators is proposed. The criterion of equipment suitability is to obtain control digital X-ray images of diagnostically acceptable quality at a fixed low entrance dose in the plane of the digital detector. It is shown that the control system of X-ray digital equipment based on indicators of quality is the most appropriate in situations of deficit of financial resources, since minimizing the costs for the purchase and running of control systems, does not require highly skilled technical personnel, and reduces the duration of the equipment inspection. (authors)

  18. Development of the temperature field at the WWER-440 core outlet monitoring system and application of the data analyses methods

    International Nuclear Information System (INIS)

    Spasova, V.; Georgieva, N.; Haralampieva, Tz.

    2001-01-01

    On-line internal reactor monitoring by 216 thermal couples, located at the reactor core outlet, is carried out during power operation of WWER-440 Units 1 and 2 at Kozloduy NPP. Automatic monitoring of technology process is performed by IB-500MA, which collects and performs initial data processing (discrediting and conversion of analogue signals into digital mode). The paper also presents the results and analyses of power distribution monitoring during the past 21-th and current 22-th fuel cycle at Kozloduy NPP, Unit 1 by using archiving system capacity and related software. The possibility to perform operational assessment and analysis of power distribution in the reactor core in each point of the fuel cycle is checked by comparison of the neutron-physical calculation results with reactor coolant system parameters. Paper shows that the processing and analysis of accumulated significant amount of data in the archive files increases accuracy and reliability of power distribution monitoring in the reactor core in each moment of the fuel cycle of WWER-440 reactors at Kozloduy NPP

  19. Digital immunohistochemistry platform for the staining variation monitoring based on integration of image and statistical analyses with laboratory information system.

    Science.gov (United States)

    Laurinaviciene, Aida; Plancoulaine, Benoit; Baltrusaityte, Indra; Meskauskas, Raimundas; Besusparis, Justinas; Lesciute-Krilaviciene, Daiva; Raudeliunas, Darius; Iqbal, Yasir; Herlin, Paulette; Laurinavicius, Arvydas

    2014-01-01

    Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC staining variance were

  20. Computer-aided methods of determining thyristor thermal transients

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1988-08-01

    An accurate tracing of the thyristor thermal response is investigated. This paper offers several alternatives for thermal modeling and analysis by using an electrical circuit analog: topological method, convolution integral method, etc. These methods are adaptable to numerical solutions and well suited to the use of the digital computer. The thermal analysis of thyristors was performed for the 1000 MVA converter system at the Princeton Plasma Physics Laboratory. Transient thermal impedance curves for individual thyristors in a given cooling arrangement were known from measurements and from manufacturer's data. The analysis pertains to almost any loading case, and the results are obtained in a numerical or a graphical format. 6 refs., 9 figs

  1. Application of network technology to Remote Monitoring System

    International Nuclear Information System (INIS)

    Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

    1994-01-01

    The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests

  2. Digital Collections, Digital Libraries & the Digitization of Cultural Heritage Information.

    Science.gov (United States)

    Lynch, Clifford

    2002-01-01

    Discusses digital collections and digital libraries. Topics include broadband availability; digital rights protection; content, both non-profit and commercial; digitization of cultural content; sustainability; metadata harvesting protocol; infrastructure; authorship; linking multiple resources; data mining; digitization of reference works;…

  3. Centralized digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.

    1987-01-01

    A hardware and software design for the centralized control of a research nuclear reactor by a digital computer are presented, as well as an investigation of automatic-feedback control. Current reactor-control philosophies including redundancy, inherent safety in failure, and conservative-yet-operational scram initiation were used as the bases of the design. The control philosophies were applied to the power-monitoring system, the fuel-temperature monitoring system, the area-radiation monitoring system, and the overall system interaction. Unlike the single-function analog computers currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control-rod movements to conform with operator requests, automatically log the required physical parameters during reactor operation, perform the required system tests, and monitor facility safety and security. Reactor power control is based on signals received from ion chambers located near the reactor core. Absorber-rod movements are made to control the rate of power increase or decrease during power changes and to control the power level during steady-state operation. Additionally, the system incorporates a rudimentary level of artificial intelligence

  4. Digital holographic microscopy as a technique to monitor macrophages infected by leishmania

    Science.gov (United States)

    Mendoza-Rodríguez, E.; Organista-Castelblanco, C.; Camacho, M.; Monroy-Ramírez, F.

    2017-06-01

    The Digital Holographic Microscopy in Transmission technique (DHM) is considered a useful tool in the noninvasive quantifying of transparent biological objects like living cells. In this work, we propose this technique to study and to monitor control macrophages infected by Leishmania (mouse lineJ774.A1). When the promastigotes enter in contact with healthy macrophages, they got phagocytosed and latterly confined in the formed parasitophorous vacuole. These processes change the morphology and density of the host macrophage. Both parameters can be measured in a label-free analysis of cells with the aid of the DHM technique. Our technique begins with the optical record of the holograms using a modified Mach-Zehnder interferometer and the reconstruction of the complex optical field transmitted by macrophages. In the latter point, we employ the angular spectrum algorithm. With the complex optical field reconstruction, we compute the field amplitude and the phase difference maps, which leads to describe one morphological characterization for the samples. Using phase difference maps is possible to measure internal variations for the integral refractive index, estimating the infection level of macrophages. Through the changes in the integral refractive index, it is also possible to describe and quantify in two different states the evolution of the infection. With these results some parameters of cells have been quantified, making the DHM technique a viable tool for diagnosis of biological samples under the presence of some pathogen.

  5. H. Sapiens Digital: From Digital Immigrants and Digital Natives to Digital Wisdom

    Science.gov (United States)

    Prensky, Marc

    2009-01-01

    As we move further into the 21st century, the digital native/digital immigrant paradigm created by Marc Prensky in 2001 is becoming less relevant. In this article, Prensky suggests that we should focus instead on the development of what he calls "digital wisdom." Arguing that digital technology can make us not just smarter but truly wiser, Prensky…

  6. Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng

    2013-01-01

    To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123

  7. Latest nuclear monitoring instrumentation and control system and its planned application

    International Nuclear Information System (INIS)

    Kawakami, Seishiro; Sato, Toshifumi; Ikeda, Jun

    2002-01-01

    With the recent rapid progress made in electronic devices used in digital monitoring and control systems, Toshiba has developed special-purpose digital monitoring equipment and human-machine interface equipment that meet the special requirement of high reliability and long-term supply and maintainability for nuclear power plants, and is scheduled to apply these new products to actual nuclear power plants. Moreover, for the in-core sensor, which is a special-purpose product for nuclear power plants, Toshiba has been developing a new local power range monitor (LPRM) detector as the comprehensive result of improvements made up to now, and has developed the first domestic gamma-thermo (GT) detector as a pivot of the next-generation neutron monitoring system. (author)

  8. Comparison of 5-megapixel cathode ray tube monitors and 5-megapixel liquid crystal monitors for soft-copy reading in full-field digital mammography

    International Nuclear Information System (INIS)

    Schueller, Gerd; Schueller-Weidekamm, Claudia; Pinker, Katja; Memarsadeghi, Mazda; Weber, Michael; Helbich, Thomas H.

    2010-01-01

    Purpose: To retrospectively compare the image quality, lesion detection, and the diagnostic efficacy of 5-megapixel (MP) cathode ray tube monitors (CRTs) and 5-MP liquid crystal display monitors (LCDs) for soft-copy reading in full-field digital mammography (FFDM). Materials and methods: Informed consent was waived by the Institutional Review Board for the data analysis. A total of 220 cases were compared with two 5-MP (2048 x 2560 pixels) CRTs and two 5-MP (2048 x 2560 pixels) LCDs. Nine aspects of image quality (brightness, contrast, sharpness, noise, skin, fat, retromamillary space, glandular tissue, and detection of calcifications) were evaluated. In addition, the detection of breast lesions (mass, calcifications) and diagnostic efficacy, based on the BI-RADS classification, were correlated with histologic results (n = 70) and follow-up (n = 150). Results: Each aspect of the image quality was rated significantly better for 5-MP LCDs (p < 0.05) compared to the 5-MP CRTs. With 5-MP CRTs, 31 masses and 119 calcifications were detected, compared to 30 and 121 with 5-MP LCDs. The differences in diagnostic efficacy between 5-MP CRTs and 5-MP LCDs were not significant (p = 0.157) although 5-MP CRTs yielded two false-negative results. Both lesions were rated BI-RADS 3 with 5-MP CRTs. Both were invasive carcinomas at histology. The sensitivity, specificity, positive and negative predictive values, and accuracy were 0.966, 0.975, 0.933, 0.988, and 0.973 for 5-MP CRTs, compared to 1.0, 0.963, 0.903, 1.0, 0.973 for 5-MP LCDs. Conclusion: The image quality of 5-MP LCDs is significantly better than that of 5-MP CRTs for soft-copy reading in FFDM, based on histologic and follow-up correlation. However, lesion detection and diagnostic efficacy are comparable to 5-MP CRTs. The interpretation of the false-negative results suggests that the characterization of breast lesions with FFDM is not defined solely by the monitors, but is strongly influenced by the radiologist.

  9. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    Science.gov (United States)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  10. Digital Collections, Digital Libraries and the Digitization of Cultural Heritage Information.

    Science.gov (United States)

    Lynch, Clifford

    2002-01-01

    Discusses the development of digital collections and digital libraries. Topics include digitization of cultural heritage information; broadband issues; lack of compelling content; training issues; types of materials being digitized; sustainability; digital preservation; infrastructure; digital images; data mining; and future possibilities for…

  11. Digital Technology in the protection of cultural heritage Bao Fan Temple mural digital mapping survey

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2015-08-01

    the actual state of the mural surface patch model. For the degradation of the surface of the pigment layer, we use the patch model to simulate the scan obtained from an analysis. Statistics calculated relatively objective mural surface area from volume data, providing more accurate quantitative data for the mural conservation, especially, providing a viable technology for accurate monitoring of continued degradation. We believe, in order to make use of the three-dimensional laser scanning technology in a digital heritage conservation application, the technology should not only be used to record the object geometry and play a role in record keeping aspects, but, rather, should be used during the investigation to protect against targeted degradation and a more meaningful interpretation function. Like the development of the medical application of X-ray technology not only retains a picture, but more importantly, through this technical interpretation of patient pathology, guides doctors in carrying out the treatment work. Therefore, in the process of digitization of cultural heritage research, the focus should shift to the use of digital technology in the analysis of heritage object degradation and degradation monitoring surveys can promote the application of digital technology in the conservation of cultural heritage.

  12. Digital Technology in the protection of cultural heritage Bao Fan Temple mural digital mapping survey

    Science.gov (United States)

    Zheng, Y.

    2015-08-01

    the mural surface patch model. For the degradation of the surface of the pigment layer, we use the patch model to simulate the scan obtained from an analysis. Statistics calculated relatively objective mural surface area from volume data, providing more accurate quantitative data for the mural conservation, especially, providing a viable technology for accurate monitoring of continued degradation. We believe, in order to make use of the three-dimensional laser scanning technology in a digital heritage conservation application, the technology should not only be used to record the object geometry and play a role in record keeping aspects, but, rather, should be used during the investigation to protect against targeted degradation and a more meaningful interpretation function. Like the development of the medical application of X-ray technology not only retains a picture, but more importantly, through this technical interpretation of patient pathology, guides doctors in carrying out the treatment work. Therefore, in the process of digitization of cultural heritage research, the focus should shift to the use of digital technology in the analysis of heritage object degradation and degradation monitoring surveys can promote the application of digital technology in the conservation of cultural heritage.

  13. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  14. Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Grupo de Fotônica e Fluidos Complexos (GFFC), Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil); Jacinto, Carlos [Grupo de Fotônica e Fluidos Complexos (GFFC), Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2016-01-15

    Photo-thermal therapies, based on the light-induced local heating of cancer tumors and tissues, are nowadays attracting an increasing attention due to their effectiveness, universality, and low cost. In order to avoid undesirable collateral damage in the healthy tissues surrounding the tumors, photo-thermal therapies should be achieved while monitoring tumor’s temperature in such a way that thermal therapy could be stopped before reaching the damage limit. Measuring tumor temperature is not an easy task at all and novel strategies should be adopted. In this work it is demonstrated how luminescent nanoparticles, in particular Neodymium doped LaF{sub 3} nanoparticles, could be used as multi-functional agents capable of simultaneous heating and thermal sensing. Advantages and disadvantages of such nanoparticles are discussed and the future perspectives are briefly raised. - Highlights: • Thermal control is essential in novel photo-thermal therapies. • Thermal control and heating can be achieved by Neodymium doped nanoparticles. • Perspectives of Neodymium doped nanoparticles in potential in vivo applications are discussed.

  15. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  16. A unique radiation area monitoring system

    International Nuclear Information System (INIS)

    Murphy, P.C.; Allen, G.C.

    1978-01-01

    The Remote Area Monitoring Systems (RAMS) monitors four radiation areas with two independent systems in each area. Each system consists of power supplies, four ionization chambers, and four analog and digital circuits. The first system controls the warning beacons, horns, annunciation panel and interlocks. The second system presents a quantitative dose rate indication at the console and in the radiation area

  17. Thermal imaging in medicine

    Directory of Open Access Journals (Sweden)

    Jaka Ogorevc

    2015-12-01

    Full Text Available AbstractIntroduction: Body temperature monitoring is one of the oldest and still one of the most basic diagnostic methods in medicine. In recent years thermal imaging has been increasingly used in measurements of body temperature for diagnostic purposes. Thermal imaging is non-invasive, non-contact method for measuring surface body temperature. Method is quick, painless and patient is not exposed to ionizing radiation or any other body burden.Application of thermal imaging in medicine: Pathological conditions can be indicated as hyper- or hypothermic patterns in many cases. Thermal imaging is presented as a diagnostic method, which can detect such thermal anomalies. This article provides an overview of the thermal imaging applications in various fields of medicine. Thermal imaging has proven to be a suitable method for human febrile temperature screening, for the detection of sites of fractures and infections, a reliable diagnostic tool in the detection of breast cancer and determining the type of skin cancer tumour. It is useful in monitoring the course of a therapy after spinal cord injury, in the detection of food allergies and detecting complications at hemodialysis and is also very effective at the course of treatment of breast reconstruction after mastectomy. With thermal imaging is possible to determine the degrees of burns and early detection of osteomyelitis in diabetic foot phenomenon. The most common and the oldest application of thermal imaging in medicine is the field of rheumatology.Recommendations for use and standards: Essential performance of a thermal imaging camera, measurement method, preparation of a patient and environmental conditions are very important for proper interpretation of measurement results in medical applications of thermal imaging. Standard for screening thermographs was formed for the human febrile temperature screening application.Conclusion: Based on presented examples it is shown that thermal imaging can

  18. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    Science.gov (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  19. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  20. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nakamiya

    2013-06-01

    Full Text Available We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method” using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”. Our new method detects vehicles based on tires’ thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8% out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  1. Robust vehicle detection under various environmental conditions using an infrared thermal camera and its application to road traffic flow monitoring.

    Science.gov (United States)

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-06-17

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.

  2. Monitoring of dry sliding wear using fractal analysis

    NARCIS (Netherlands)

    Zhang, Jindang; Regtien, Paulus P.L.; Korsten, Maarten J.

    2005-01-01

    Reliable online monitoring of wear remains a challenge to tribology research as well as to the industry. This paper presents a new method for monitoring of dry sliding wear using digital imaging and fractal analysis. Fractal values, namely fractal dimension and intercept, computed from the power

  3. Using digital media to promote kidney disease education.

    Science.gov (United States)

    Goldstein, Karen; Briggs, Michael; Oleynik, Veronica; Cullen, Mac; Jones, Jewel; Newman, Eileen; Narva, Andrew

    2013-07-01

    Health-care providers and patients increasingly turn to the Internet-websites as well as social media platforms-for health-related information and support. Informed by research on audience behaviors and preferences related to digital health information, the National Kidney Disease Education Program (NKDEP) developed a comprehensive and user-friendly digital ecosystem featuring content and platforms relevant for each audience. NKDEP's analysis of website metrics and social media conversation mapping related to CKD revealed gaps and opportunities, informing the development of a digital strategy to position NKDEP as a trustworthy digital source for evidence-based kidney disease information. NKDEP launched a redesigned website (www.nkdep.nih.gov) with enhanced content for multiple audiences as well as a complementary social media presence on Twitter and Facebook serving to drive traffic to the website as well as actively engage target audiences in conversations about kidney disease. The results included improved website metrics and increasing social media engagement among consumers and health-care providers. NKDEP will continue to monitor trends, explore new directions, and work to improve communication across digital platforms. Published by Elsevier Inc.

  4. The impact of digital imaging on patient doses during barium studies

    International Nuclear Information System (INIS)

    Broadhead, D.A.; Chapple, C.-L.; Faulkner, K.

    1995-01-01

    Barium studies performed on 10 digital and four non-digital fluoroscopic systems were monitored with dose-area product meters as part of a Regional Patient Dosimetry Audit programme. The data have been collected using a computer to read and reset the dose-area product meter and also to collect patient and examination details. A comparison of dose-area product measurements from digital and non-digital fluoroscopy units on over 10 000 barium studies is presented. The data have been corrected according to patient size. The mean size corrected dose-area product for a barium meal examination was found to be 7.62 Gy cm -2 for a digital set compared with 15.45 Gy cm -2 for a non-digital set with 2462 and 1308 patients included in each measurement series, respectively. Dose-area products were also a factor of approximately two lower for barium enema, barium swallow and barium follow-through examinations performed on digital systems. (author)

  5. development of microcontroller based binaural digital hearing aids

    African Journals Online (AJOL)

    HOD

    but only a small portion of human population seek help and use them [3], though the ... stigma of putting on of digital hearing aid will no longer be there as before. ... 36, No. 3, July 2017 911 aids including the programmability, self-monitoring,.

  6. Digital Humanities and networked digital media

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital...... materials centred on the digitisation of non-digital, finite works, corpora and oeuvres. The second section discusses “the big tent” of contemporary digital humanities. It is argued that there can be no unifying interpretation of digital humanities above the level of studying digital materials with the help...... of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials...

  7. Design of the digitizing beam position limit detector

    International Nuclear Information System (INIS)

    Merl, R.

    1998-01-01

    The Digitizing Beam Position Limit Detector (DBPLD) is designed to identify and react to beam missteering conditions in the Advanced Photon Source (APS) storage ring. The high power of the insertion devices requires these missteering conditions to result in a beam abort in less than 2 milliseconds. Commercially available beam position monitors provide a voltage proportional to beam position immediately upstream and downstream of insertion devices. The DBPLD is a custom VME board that digitizes these voltages and interrupts the heartbeat of the APS machine protection system when the beam position exceeds its trip limits

  8. Development of relative thermal stress index (RTSI) for Monitoring and Management of Dry Deciduous Ecosystem

    Science.gov (United States)

    Gupta, R. K.; Vijayan, D.

    Gir wildlife sanctuary located between 20 r 57 to 21 r 20 N and 70 r 28 to 71 r 13 E is the last home of Asiatic lions Its biodiversity comprises of 450 recorded flowering plant species 32 species of mammals 26 species of reptiles about 300 species of birds and more than 2000 species of insects As per 1995 census it has 304 lions and 268 leopards The movement of wildlife to thermally comfortable zones to reduce stress conditions forces the changes in management plan with reference to change in localized water demand This necessitates the use of space based thermal data available from AVHRR MODIS etc to monitor temperature of Gir-ecosystem for meso-scale level operational utility As the time scale of the variability of NDVI parameter is much higher than that for lower boundary temperature LBT the dense patch in riverine forest having highest NDVI value would not experience change in its vigour with the change in the season NDVI value of such patch would be near invariant over the year and temperature of this pixel could serve as reference temperature for developing the concept of relative thermal stress index RTSI which is defined as RTSI T p -T r T max -T r wherein T r T max and T p refer to LBT over the maximum NDVI reference point maximum LBT observed in the Gir ecosystem and the temperature of the pixel in the image respectively RTSI images were computed from AVHRR images for post-monsoon leaf-shedded and summer seasons Scatter plot between RTSI and NDVI for summer seasons

  9. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  10. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    International Nuclear Information System (INIS)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C.; Hahn, L.J.; Saliken, J.C.; McKinnon, J.G.; Donnelly, B.J.

    1998-01-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  11. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, G.A.; Loye, M.P.; Rewcastle, J.C. [Departments of Oncology and Medical Physics, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Hahn, L.J. [Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 2N4 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Saliken, J.C. [Department of Diagnostic Imaging, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary, Canada T2N 2T7 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Centre, Calgary, Canada T2N 4N2 (Canada)

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue. (author)

  12. Systematic, digital student feedback for differentiated teaching

    DEFF Research Database (Denmark)

    Graf, Stefan Ting; Carlsen, Dorthe

    2017-01-01

    The article reports results from a qualitative study of Elevbaro, a prototype of a digital tool for student feedback developed in connection with the demonstration school project, inclusion, and differentiated teaching in digital learning environments. At the same time the study represents...... the first step of validating Elevbaro as a systematic feedback tool. There is general consensus that feedback is central to the quality of teaching, but the focus on and the exploration of systematic student feedback is an overlooked topic. Especially as regards differentiated teaching and complex teaching...... patterns, there is a need for supplementary and digital monitoring of a group of students and of individual students. The article examines how students and teachers understand and use Elevbaro, which is built on frequent ratings of five set statements in connection with teaching over a certain period...

  13. Potential of acoustic monitoring for safety assessment of primary system

    International Nuclear Information System (INIS)

    Olma, B.J.

    1997-01-01

    Safety assessment of the primary system and its components with respect to their mechanical integrity is increasingly supported by acoustic signature analysis during power operation of the plants. Acoustic signals of Loose Parts Monitoring System sensors are continuously monitored by dedicated digital systems for signal bursts associated with metallic impacts. Several years of ISTec/GRS experience and the practical use of its digital systems MEDEA and RAMSES have shown that acoustic monitoring is very successful for detecting component failures at an early stage. Advanced powerful tools for classification and acoustic evaluation of burst signals have recently been realized. The paper presents diagnosis experiences of BWR's and PWR's safety assessment. (author). 7 refs, 8 figs

  14. The use of UAVs for monitoring land degradation

    Science.gov (United States)

    Themistocleous, Kyriacos

    2017-10-01

    Land degradation is one of the causes of desertification of drylands in the Mediterranean. UAVs can be used to monitor and document the various variables that cause desertification in drylands, including overgrazing, aridity, vegetation loss, etc. This paper examines the use of UAVs and accompanying sensors to monitor overgrazing, vegetation stress and aridity in the study area. UAV images can be used to generate digital elevation models (DEMs) to examine the changes in microtopography as well as ortho-photos were used to detect changes in vegetation patterns. The combined data of the digital elevation models and the orthophotos can be used to identify the mechanisms for desertification in the study area.

  15. Clinical evaluation of digital displays for PACS work stations

    International Nuclear Information System (INIS)

    Highman, J.H.; Craig, J.O.M.C.; Dawood, R.M.; Todd-Pokropek, A.; Porter, A.; Glass, H.I.; Wadsworth, J.

    1989-01-01

    The requirements for display of radiographic images at PAVS work stations is critical if reporting at CRT terminal is to become routine practice. This study determines the accuracy of reporting for the digital images displayed on commercially available systems. A number of pathologic conditions were selected by virtue of the high demands they made on spatial and contrast resolution. They included hyperparathyroid subperiosteal resorption in the hands, pneumocystis pneumonia, and mammographic microcalcification. For each condition, a series of up to 100 films were collected; approximately half were normal controls. These were digitized at 200 μm. Original films and their digitized images displayed on a 1,280-line monitor have been reported

  16. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  17. Electrical-thermal coupling of induction machine for improved ...

    African Journals Online (AJOL)

    Electrical-thermal coupling of induction machine for improved thermal performance. ... Nigerian Journal of Technology ... The interaction of its electrical and mechanical parts leads to an increase in temperature which if not properly monitored ...

  18. Web tools to monitor and debug DAQ hardware

    International Nuclear Information System (INIS)

    Desavouret, Eugene; Nogiec, Jerzy M.

    2003-01-01

    A web-based toolkit to monitor and diagnose data acquisition hardware has been developed. It allows for remote testing, monitoring, and control of VxWorks data acquisition computers and associated instrumentation using the HTTP protocol and a web browser. This solution provides concurrent and platform independent access, supplementary to the standard single-user rlogin mechanism. The toolkit is based on a specialized web server, and allows remote access and execution of select system commands and tasks, execution of test procedures, and provides remote monitoring of computer system resources and connected hardware. Various DAQ components such as multiplexers, digital I/O boards, analog to digital converters, or current sources can be accessed and diagnosed remotely in a uniform and well-organized manner. Additionally, the toolkit application supports user authentication and is able to enforce specified access restrictions

  19. Heat management in integrated circuits on-chip and system-level monitoring and cooling

    CERN Document Server

    Ogrenci-Memik, Seda

    2016-01-01

    This essential overview covers the subject of thermal monitoring and management in integrated circuits. Specifically, it focuses on devices and materials that are intimately integrated on-chip (as opposed to in-package or on-board) for the purposes of thermal monitoring and thermal management.

  20. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  1. Digital Forensics in Cloud Computing

    Directory of Open Access Journals (Sweden)

    PATRASCU, A.

    2014-05-01

    Full Text Available Cloud Computing is a rather new technology which has the goal of efficiently usage of datacenter resources and offers them to the users on a pay per use model. In this equation we need to know exactly where and how a piece of information is stored or processed. In today's cloud deployments this task is becoming more and more a necessity and a must because we need a way to monitor user activity, and furthermore, in case of legal actions, we must be able to present digital evidence in a way in which it is accepted. In this paper we are going to present a modular and distributed architecture that can be used to implement a cloud digital forensics framework on top of new or existing datacenters.

  2. Application of digital waveform processing to position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Takenaka, Yasuto; Uritani, Akira; Mori, Chizuo

    1995-01-01

    In a charge-division type position-sensitive proportional counter (PSPC) with an anode wire of small resistance, a reflected component from an opposite end and thermal noise involved in signals deteriorate the position resolution of the PSPC. A digital waveform processing method was applied to the reduction of these undesirable effects by skillfully utilizing their signal characteristics that can be observed as inversely correlative signals between two-output signals from both sides of the PSPC. The digital waveform processing could improve the position resolution compared to a conventional pulse height processing method with analog filters. When the digital waveform processing was applied to signals of an equivalent circuit simulating the PSPC, the position resolutions defined by the full width at half maximum were improved to about 30% of those of conventional analog pulse processing. In the case of an actual PSPC, the position resolutions by the digital waveform processing were improved by 4-10% as compared with those of conventional pulse height processing. (author)

  3. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  4. Impact of different environmental conditions on lithium-ion batteries performance through the thermal monitoring with fiber sensors

    Science.gov (United States)

    Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.

    2017-08-01

    In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.

  5. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-09-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  6. An Integrated Hot-Stage Microscope-Direct Analysis in Real Time-Mass Spectrometry System for Studying the Thermal Behavior of Materials.

    Science.gov (United States)

    Ashton, Gage P; Harding, Lindsay P; Parkes, Gareth M B

    2017-12-19

    This paper describes a new analytical instrument that combines a precisely temperature-controlled hot-stage with digital microscopy and Direct Analysis in Real Time-mass spectrometry (DART-MS) detection. The novelty of the instrument lies in its ability to monitor processes as a function of temperature through the simultaneous recording of images, quantitative color changes, and mass spectra. The capability of the instrument was demonstrated through successful application to four very varied systems including profiling an organic reaction, decomposition of silicone polymers, and the desorption of rhodamine B from an alumina surface. The multidimensional, real-time analytical data provided by this instrument allow for a much greater insight into thermal processes than could be achieved previously.

  7. Digital tomosynthesis of the chest: A literature review

    International Nuclear Information System (INIS)

    Molk, N.; Seeram, E.

    2015-01-01

    Digital tomosynthesis is a relatively novel imaging modality using limited angle tomography to provide 3D imaging. The purpose of this review is to compare the sensitivity of digital tomosynthesis of the chest and plain film chest imaging in accurately identifying pulmonary nodules and to compare the effective dose between standard chest examinations using digital tomosynthesis and CT. A review of current literature has shown that small scale studies found digital tomosynthesis to be three times more effective in identifying pulmonary nodules compared to conventional radiography and at lower doses compared with routine chest CT examinations. This indicates that tomosynthesis could potentially be a beneficial imaging modality and could be used in a number of ways to detect and monitor pulmonary nodules for cancer. However with limited research, large-scale studies would need to be performed to confirm its benefits and identify where it is best used in the clinical setting. - Highlights: • The detection of pulmonary nodules is compared between tomosynthesis and plain film. • The effective dose of digital chest tomosynthesis and chest CT are compared. • The place of digital tomosynthesis of the chest in the clinical setting is explored. • Three times more pulmonary nodules are seen with tomosynthesis. • The effective dose of tomosynthesis is significantly lower than CT

  8. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    Science.gov (United States)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  9. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  10. Reactor power monitoring device

    International Nuclear Information System (INIS)

    Dogen, Ayumi; Ozawa, Michihiro.

    1983-01-01

    Purpose: To significantly improve the working efficiency of a nuclear reactor by reflecting the control rod history effect on thermal variants required for the monitoring of the reactor operation. Constitution: An incore power distribution calculation section reads the incore neutron fluxes detected by neutron detectors disposed in the reactor to calculate the incore power distribution. A burnup degree distribution calculation section calculates the burnup degree distribution in the reactor based on the thus calculated incore power distribution. A control rod history date store device supplied with the burnup degree distribution renews the stored control rod history data based on the present control rod pattern and the burnup degree distribution. Then, thermal variants of the nuclear reactor are calculated based on the thus renewed control rod history data. Since the control rod history effect is reflected on the thermal variants required for the monitoring of the reactor operation, the working efficiency of the nuclear reactor can be improved significantly. (Seki, T.)

  11. Digital broadcasting

    International Nuclear Information System (INIS)

    Park, Ji Hyeong

    1999-06-01

    This book contains twelve chapters, which deals with digitization of broadcast signal such as digital open, digitization of video signal and sound signal digitization of broadcasting equipment like DTPP and digital VTR, digitization of equipment to transmit such as digital STL, digital FPU and digital SNG, digitization of transmit about digital TV transmit and radio transmit, digital broadcasting system on necessity and advantage, digital broadcasting system abroad and Korea, digital broadcasting of outline, advantage of digital TV, ripple effect of digital broadcasting and consideration of digital broadcasting, ground wave digital broadcasting of DVB-T in Europe DTV in U.S.A and ISDB-T in Japan, HDTV broadcasting, satellite broadcasting, digital TV broadcasting in Korea, digital radio broadcasting and new broadcasting service.

  12. Formulae for thermal feedback of group constants in digital reactor simulation

    International Nuclear Information System (INIS)

    Perneczky, L.; Toth, I.; Vigassy, J.

    1976-01-01

    The problem, how the feedback of the thermohydraulic field to the neutron density in a reactor can be calculated is analysed. After a brief survey of the digital models in reactor simulation the applied model based on the time-dependent two-group diffusion equations is described. Using the reactor physical code system THERESA numerical results for the VVER-440 reactor are presented. (Sz.Z.)

  13. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  14. Development of an artificial neural network model for on-line thermal margin estimation of a nuclear reactor core

    International Nuclear Information System (INIS)

    Kim, Hyun Koon

    1992-02-01

    One of the key safety parameters related to thermal margin in a Pressurized Water Reactor (PWR) core, is Departure from Nucleate Boiling Ratio (DNBR), which is to be assessed and continuously monitored during operation via either an analog or a digital monitoring system. The digital monitoring system, in general, allows more thermal margin than the analog system through the on-line computation of DNBR using the measured parameters as inputs to a simplified, fast running computer code. The purpose of this thesis is to develop an advanced method for on-line DNBR estimation by introducing an artifactual neural network model for best-estimation of DNBR at the given reactor operating conditions. the neural network model, consisting of three layers with five operating parameters in the input layer, provides real-time prediction accuracy of DNBR by training the network against the detailed simulation results for various operating conditions. The overall training procedure is developed to learn the characteristics of DNBR behaviour in the reactor core. First, a set of random combination of input variables is generated by Latin Hypercube Sampling technique performed on a wide range of input parameters. Second, the target values of DNBR to be referenced for training are calculated using a detailed simulation code, COBRA-IV. Third, the optimized training input data are selected. Then, training is performed using an Error Back Propagation algorithm. After completion of training, the network is tested on the examining data set in order to investigate the generalization capability of the network responses for the steady state operating condition as well as for the transient situations where DNB is of a primary concern. The test results show that the values of DNBR predicted by the neural network are maintained at a high level of accuracy for the steady state condition, and are in good agreements with the transient situation, although slightly conservative as compared to those

  15. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  16. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1987-01-01

    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  17. Thermal heat-balance mode flow-to-frequency converter

    Science.gov (United States)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  18. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absor

    Directory of Open Access Journals (Sweden)

    Mustofa

    2015-10-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperatures were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficiency was about 19%, while thermal efficiency of above 50% and correspondent cell efficiency of 11%, respectively.

  19. How European PR practitioners handle digital and social media

    NARCIS (Netherlands)

    Verhoeven, P.; Tench, R.; Zerfass, A.; Moreno, A.; Verčič, D.

    2012-01-01

    The European Communication Monitor (ECM) 2010 showed that digital communication and social media have grown in importance in the media mix of European organizations. Both new media types are positively correlated to the perceived impact of public relations (PR) in the organization. Specifically

  20. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    Science.gov (United States)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  1. THE EFFECT OF IMAGE ENHANCEMENT METHODS DURING FEATURE DETECTION AND MATCHING OF THERMAL IMAGES

    Directory of Open Access Journals (Sweden)

    O. Akcay

    2017-05-01

    Full Text Available A successful image matching is essential to provide an automatic photogrammetric process accurately. Feature detection, extraction and matching algorithms have performed on the high resolution images perfectly. However, images of cameras, which are equipped with low-resolution thermal sensors are problematic with the current algorithms. In this paper, some digital image processing techniques were applied to the low-resolution images taken with Optris PI 450 382 x 288 pixel optical resolution lightweight thermal camera to increase extraction and matching performance. Image enhancement methods that adjust low quality digital thermal images, were used to produce more suitable images for detection and extraction. Three main digital image process techniques: histogram equalization, high pass and low pass filters were considered to increase the signal-to-noise ratio, sharpen image, remove noise, respectively. Later on, the pre-processed images were evaluated using current image detection and feature extraction methods Maximally Stable Extremal Regions (MSER and Speeded Up Robust Features (SURF algorithms. Obtained results showed that some enhancement methods increased number of extracted features and decreased blunder errors during image matching. Consequently, the effects of different pre-process techniques were compared in the paper.

  2. A Temperature-to-Digital Converter Based on an Optimized Electrothermal Filter

    NARCIS (Netherlands)

    Kashmiri, S.M.; Xia, S.; Makinwa, K.A.A.

    2009-01-01

    This paper describes the design of a CMOS temperature-to-digital converter (TDC). It operates by measuring the temperature-dependent phase shift of an electrothermal filter (ETF). Compared to previous work, this TDC employs an ETF whose layout has been optimized to minimize the thermal phase spread

  3. A semi-automated method of monitoring dam passage of American Eels Anguilla rostrata

    Science.gov (United States)

    Welsh, Stuart A.; Aldinger, Joni L.

    2014-01-01

    Fish passage facilities at dams have become an important focus of fishery management in riverine systems. Given the personnel and travel costs associated with physical monitoring programs, automated or semi-automated systems are an attractive alternative for monitoring fish passage facilities. We designed and tested a semi-automated system for eel ladder monitoring at Millville Dam on the lower Shenandoah River, West Virginia. A motion-activated eel ladder camera (ELC) photographed each yellow-phase American Eel Anguilla rostrata that passed through the ladder. Digital images (with date and time stamps) of American Eels allowed for total daily counts and measurements of eel TL using photogrammetric methods with digital imaging software. We compared physical counts of American Eels with camera-based counts; TLs obtained with a measuring board were compared with TLs derived from photogrammetric methods. Data from the ELC were consistent with data obtained by physical methods, thus supporting the semi-automated camera system as a viable option for monitoring American Eel passage. Time stamps on digital images allowed for the documentation of eel passage time—data that were not obtainable from physical monitoring efforts. The ELC has application to eel ladder facilities but can also be used to monitor dam passage of other taxa, such as crayfishes, lampreys, and water snakes.

  4. A digital signal processing system for coherent laser radar

    Science.gov (United States)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  5. Pipeline monitoring with unmanned aerial vehicles

    Science.gov (United States)

    Kochetkova, L. I.

    2018-05-01

    Pipeline leakage during transportation of combustible substances leads to explosion and fire thus causing death of people and destruction of production and accommodation facilities. Continuous pipeline monitoring allows identifying leaks in due time and quickly taking measures for their elimination. The paper describes the solution of identification of pipeline leakage using unmanned aerial vehicles. It is recommended to apply the spectral analysis with input RGB signal to identify pipeline damages. The application of multi-zone digital images allows defining potential spill of oil hydrocarbons as well as possible soil pollution. The method of multi-temporal digital images within the visible region makes it possible to define changes in soil morphology for its subsequent analysis. The given solution is cost efficient and reliable thus allowing reducing timing and labor resources in comparison with other methods of pipeline monitoring.

  6. Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts.

    Science.gov (United States)

    Wang, Yi-Cheng; Lu, Lin; Gunasekaran, Sundaram

    2017-06-15

    Quality and safety of perishable products such as foods, pharmaceutics, and biologicals is a constant concern. We have developed a plasmonic thermal history indicator (THI) taking advantage of the localized surface plasmon resonance of gold nanoparticles (AuNPs) synthesized in situ in alginate, a natural polysaccharide. The color of the THIs becomes more intense with increased storage temperature and/or duration, with the color changing from grey to red with time of exposure at high temperature (40°C). The results suggest that decreasing viscosity with increasing number of AuNPs being synthesized in the system, along with aggregation of newly synthesized AuNPs onto larger ones and their settling are potentially responsible for the distinct color change observed. The use of alginate in the THIs also facilitates fabricating them as solid hydrogel matrices by adding divalent calcium ions. This alginate-AuNPs THI system is tunable by altering its composition to suit different time-temperature monitoring scenarios and the color-change reaction is irreversible. The THI provides a convenient, reliable, safe, and inexpensive means for tracking the thermal history of perishable products without the need for a read-out device. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Operational digital image processing within the Bureau of Land Management

    International Nuclear Information System (INIS)

    Work, E.A.; Story, M.

    1991-01-01

    An overview of the use of operational digital image processing at the U.S. Bureau of Land Management (BLM) is presented. The BLM digital image analysis facility for the processing and analysis of aerial photography and satellite data is described, and its role within the Bureau's operational structure is explained. Attention is given to examples of BLM digital data analysis projects that have utilized Landsat (MSS and TM), NOAA-AVHRR, or SPOT data. These projects include: landcover mapping to assist land use planning or special projects; monitoring of wilderness units to detect unauthorized activities; stratification aid for detailed field inventories; identification/quantification of unauthorized use (agricultural and mineral trespass); and fire fuels mapping and updates. 3 refs

  8. DNBR calculation in digital core protection system by a subchannel analysis code

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, T. H.; Ji, S. K.

    2001-01-01

    The DNBR calculation uncertainty and DNBR margin were evaluated in digital core protection system by a thermal-hydrualic subchannel analysis code MATRA. A simplified thermal-hydraulic code CETOP is used to calculate on-line DNBR in core protection system at a digital PWR. The DNBR tuning process against a best-estimate subchannel analysis code is required for CETOP to ensure accurate and conservative DNBR calculation but not necessary for MATRA. The DNBR calculations by MATRA and CETOP were performed for a large number of operating condition in Yonggwang nulcear units 3-4 where the digitial core protection system is initially implemented in Korea. MATRA resulted in a less negative mean value (i.e., reduce the overconservatism) and a somewhat larger standard deviation of the DNBR error. The uncertainty corrected minimum DNBR by MATRA was shown to be higher by 1.8% -9.9% that the CETOP DNBR

  9. Change detection and characterization of volcanic activity using ground based low-light and near infrared cameras to monitor incandescence and thermal signatures

    Science.gov (United States)

    Harrild, Martin; Webley, Peter; Dehn, Jonathan

    2015-04-01

    Knowledge and understanding of precursory events and thermal signatures are vital for monitoring volcanogenic processes, as activity can often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash up to aircraft cruise altitudes. Using ground based remote sensing techniques to monitor and detect this activity is essential, but often the required equipment and maintenance is expensive. Our investigation explores the use of low-light cameras to image volcanic activity in the visible to near infrared (NIR) portion of the electromagnetic spectrum. These cameras are ideal for monitoring as they are cheap, consume little power, are easily replaced and can provide near real-time data. We focus here on the early detection of volcanic activity, using automated scripts, that capture streaming online webcam imagery and evaluate image pixel brightness values to determine relative changes and flag increases in activity. The script is written in Python, an open source programming language, to reduce the overall cost to potential consumers and increase the application of these tools across the volcanological community. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures and effusion rates to be determined from pixel brightness. The results of a field campaign in June, 2013 to Stromboli volcano, Italy, are also presented here. Future field campaigns to Latin America will include collaborations with INSIVUMEH in Guatemala, to apply our techniques to Fuego and Santiaguito volcanoes.

  10. Digital autonomous terminal access communications

    Science.gov (United States)

    Novacki, S.

    1987-01-01

    A significant problem for the Bus Monitor Unit is to identify the source of a given transmission. This problem arises from the fact that the label which identifies the source of the transmission as it is put into the bus is intercepted by the Digital Autonomous Terminal Access Communications (DATAC) terminal and removed from the transmission. Thus, a given subsystem will see only data associated with a label and never the identifying label itself. The Bus Monitor must identify the source of the transmission so as to be able to provide some type of error identification/location in the event that some problem with the data transmission occurs. Steps taken to alleviate this problem by modifications to the DATAC terminal are discussed.

  11. Technology monitoring; Technologie-Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R. [Eicher und Pauli AG, Liestal (Switzerland); Ott, W. [Econcept AG, Zuerich (Switzerland)

    2003-07-01

    This study made for the Swiss Federal Office of Energy (SFOE) examines ways of systematically monitoring energy technology development and the cost of such technologies in order to pave the way to a basis for judging the economic development of new energy technologies. Initial results of a survey of the past development of these technologies are presented and estimates are made of future developments in the areas of motor-based combined heat and power systems, fuel-cell heating units for single-family homes and apartment buildings, air/water heat pumps for new housing projects and high-performance thermal insulation. The methodology used for the monitoring and analysis of the various technologies is described. Tables and diagrams illustrate the present situation and development potential of various fields of technology.

  12. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  13. Automation of a thermal expansion instrument

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.L.

    1979-03-01

    Automation of a thermal expansion instrument using a minicomputer system and with analog-to-digital converter inputs and flip-flop relay outputs is described. The necessary hardware link and the software were developed to allow equipment control, data acquisition, data reduction, and report generation by the minicomputer. The design of the automation allows non-programmers to run the experiment, reduce the data, and generate the report.

  14. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    Science.gov (United States)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  15. Digital Twin concept for smart injection molding

    Science.gov (United States)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  16. Very High Resolution Panoramic Photography to Improve Conventional Rangeland Monitoring 1994

    Science.gov (United States)

    Rangeland monitoring often includes repeat photographs as a basis for documentation and although photographic equipment and electronics have been evolving rapidly, basic rangeland photo monitoring methods have changed little over time. Ground based digital photography is underutilized, especially s...

  17. Remote Arrhythmia Monitoring System Developed

    Science.gov (United States)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  18. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  19. Integrating existing radiation monitors into a microprocessor-based display system

    International Nuclear Information System (INIS)

    Kalita, R, S.; Bartucci, C.M.; Mason, R.G.; Greaves, C.

    1992-01-01

    Plantwide digital radiation monitoring systems (RMSs) have been generally installed as part of the original design for newer nuclear reactors. For older plants, area and process radiation monitors were either analog or a combination of analog and digital but were not part of an integrated system design. At some plants, individual monitors have been replaced or modified, resulting in a rainbow of different monitors and vendors being represented at the plant. Usually at some point, consideration is given to replacing these monitors with a state-of-the-art RMS to improve overall reliability and achieve the benefits of sound human factors engineering. This can be a very costly project in terms of expenditures for engineering, equipment, construction, startup, and time. When human engineering deficiencies (HEDs) became an issue at Zion station, Commonwealth Edison elected to install a computer-based radiation monitoring display system (RMDS) that would interface existing raidation monitors. After reviewing the existing as-built RMS configuration and internal circuits of the various monitors, it was concluded that a microprocessor-based RMDS could be successfully designed and installed that would solve the HEDs and would tie the older analog channels into a system configuration. Although in many cases, internal modifications were made to existing RMS monitors, the RMDS upgrade allowed the existing RMS monitors to retain their original functionality and location

  20. Digital Support Interventions for the Self-Management of Low Back Pain

    DEFF Research Database (Denmark)

    Nicholl, Barbara I; Sandal, Louise Fleng; Stochkendahl, Mette Jensen

    2017-01-01

    BACKGROUND: Low back pain (LBP) is a common cause of disability and is ranked as the most burdensome health condition globally. Self-management, including components on increased knowledge, monitoring of symptoms, and physical activity, are consistently recommended in clinical guidelines as cost......-effective strategies for LBP management and there is increasing interest in the potential role of digital health. OBJECTIVE: The study aimed to synthesize and critically appraise published evidence concerning the use of interactive digital interventions to support self-management of LBP. The following specific...... questions were examined: (1) What are the key components of digital self-management interventions for LBP, including theoretical underpinnings? (2) What outcome measures have been used in randomized trials of digital self-management interventions in LBP and what effect, if any, did the intervention have...

  1. PERSEPSI GURU TENTANG DIGITAL NATIVES, SUMBER BELAJAR DIGITAL DAN MOTIVASI MEMANFAATKAN SUMBER BELAJAR DIGITAL

    Directory of Open Access Journals (Sweden)

    Ferdinandus Bate Dopo

    2016-06-01

    TEACHER’S PERCEPTION OF DIGITAL NATIVES, DIGITAL LEARNING RESOURCES AND MOTIVATION TO UTILIZE DIGITAL LEARNING RESOURCES Abstract This study aims to reveal (1 the influence of teacher's perception of digital natives toward teacher’s motivation to utilize digital learning resources. (2 the influence of teacher's perception of digital learning resources toward teacher’s motivation to utilize digital learning resources and (3 the influence both of teacher's perception of digital natives and digital learning resources toward teacher’s motivation to utilize digital learning resources. This study used the descriptive-correlational quantitative approach. The Population and sample were high school teachers of Regina Pacis Bajawa, SMA Seminari Mataloko and SMA Negeri 1 Golewa. Sampling technique in this research was proportional random sampling. A questionnaire was used to obtain the data. The data were analyzed using the Likert scale. The instrument was developed based on lattice theory of assessment instruments relevant to the study variables. The analysis technique used is a regression followed by statistic technique of t test and F test with the significance level of 0.05. The results are as follows. (1 There is a positive and significant influence of teacher's perception of digital natives toward teacher’s motivation to utilize digital learning resources. (2 There is a positive and significant influence of teacher's perception of digital learning resources and teacher’s motivation to utilize digital learning resources. (3 There is a positive and significant influence both of teacher's perception of digital learning resources and teacher’s motivation to utilize digital learning resources. Keywords: perception, digital natives, digital learning resources, motivation

  2. Sound card based digital correlation detection of weak photoelectrical signals

    International Nuclear Information System (INIS)

    Tang Guanghui; Wang Jiangcheng

    2005-01-01

    A simple and low-cost digital correlation method is proposed to investigate weak photoelectrical signals, using a high-speed photodiode as detector, which is directly connected to a programmably triggered sound card analogue-to-digital converter and a personal computer. Two testing experiments, autocorrelation detection of weak flickering signals from a computer monitor under background of noisy outdoor stray light and cross-correlation measurement of the surface velocity of a motional tape, are performed, showing that the results are reliable and the method is easy to implement

  3. Reliability analysis of digital based I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)

    1999-10-01

    Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.

  4. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  5. Analysis of thermal water utilization in the northeastern Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2012-12-01

    Full Text Available The presented research aims at identification of thermal water users in NE Slovenia, at finding type and amountof the produced thermal water as well as its utilization practice. The energetic overview has been upgradedby a description of current observational monitoring practice and thermal waste water management, but technologicalproblems of thermal water use and their mitigation are discussed also. We have ascertained that 14 of 26active geothermalwells tap the Mura Formation aquifer in which the only reinjection well is perforated also. Totalthermal water abstraction summed to 3.29 million m3 in 2011. Cascade use of thermal water is abundant, whereindividual space and sanitary water heating is followed by heating of spa infrastructure and balneology. Greenhouseheating systems and district heating were also identified. Operational monitoring of these geothermal wellsis generally insufficient, and geothermal aquifers are overexploited due to decades of historical water abstraction.All these facts indicate the need for applying appropriate measures which will improve their natural conditions aswell as simultaneously enable further and even higher thermal water utilization in the future.

  6. Evaluating a Personal Learning Environment for Digital Storytelling

    Directory of Open Access Journals (Sweden)

    Nikolaos Marianos

    2011-10-01

    Full Text Available The evaluation of flexible and personal learning environments is extremely challenging. It should not be limited to the assessment of products, but should address the quality of educative experience with close monitoring. The evaluation of a PLE using digital storytelling is even more complicated, due to the unpredictability of the usage scenarios. This paper presents an evaluation methodology for PLEs using digital storytelling, using a participatory design approach. The results from an open validation trial indicate that this methodology is able to incorporate all necessary factors and that the selected evaluation tools are appropriate for addressing the quality of educative experience.

  7. Sodium fast reactor power monitoring using gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A.M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, CEA - Saclay DRT/LIST/DETECS/SSTM, Batiment 516 - P.C. no 72, Gif sur Yvette, F-91191 (France); Montagu, T.; Dautremer, T.; Barat, E. [CEA, LIST, Laboratoire Processus Stochastiques et Spectres (France); Ban, G. [ENSICAEN (France)

    2009-06-15

    This work deals with the use of high flux gamma spectrometry to monitor the fourth generation of sodium fast reactor (SFR) power. The simulation study part of this work has shown that power monitoring in a short time response and with a good accuracy is possible. An experimental test is under preparation at the French SFR Phenix experimental reactor to validate simulation studies. First, physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as the sodium velocity, the atomic densities, Phenix neutron spectrum and incident neutron cross-sections of reactions producing gamma emitters. A thermal hydraulic transfer function was used for modeling primary sodium flow in our calculations. For the power monitoring problematic, use of a short decay period gamma emitter will allow to have a very fast response system without cumulative effect. We have determined that the best tagging agent is 20F which emits 1634 keV energy photons with a decay period of 11 s. The gamma spectrum was determined by flux point and a pulse high tally MCNP5.1.40 simulation and shown the possibility to measure the signal of this radionuclide. The experiment will be set during the reactor 'end life testing'. The Delayed Neutron Detection (DND) room has been chosen as the best available location on Phenix reactor to measure this kind of radionuclide due to a short transit time from reactor core to measurement sample. This location is optimum for global power measurement because homogenized sampling in the reactor hot pool. The main spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The HPGe diode signal will be processed by the Adonis digital signal processing due to high flux and fast activity measurement. Post-processing softwares will be used to limit statistical problems of the

  8. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  9. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absorbers Design

    Directory of Open Access Journals (Sweden)

    Mustofa Mustofa

    2017-03-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperaturs were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficieny was about 19%, while thermal efficiency of above 50% and correspondeng cell efficiency of 11%, respectively

  10. Digital Systems Validation Handbook. Volume 2. Chapter 18. Avionic Data Bus Integration Technology

    Science.gov (United States)

    1993-11-01

    interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion software, which make up digital...1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error detection and...formulate all the significant behavior of a system. MULTIVERSION PROGRAMMING. N-version programming. N-VERSION PROGRAMMING. The independent coding of a

  11. Digital control for nuclear reactors - lessons learned

    International Nuclear Information System (INIS)

    Bernard, J.A.; Aviles, B.N.; Lanning, D.D.

    1992-01-01

    Lessons learned during the course of the now decade-old MIT program on the digital control of nuclear reactors are enumerated. Relative to controller structure, these include the importance of a separate safety system, the need for signal validation, the role of supervisory algorithms, the significance of command validation, and the relevance of automated reasoning. Relative to controller implementation, these include the value of nodal methods to the creation of real-time reactor physics and thermal hydraulic models, the advantages to be gained from the use of real-time system models, and the importance of a multi-tiered structure to the simultaneous achievement of supervisory, global, and local control. Block diagrams are presented of proposed controllers and selected experimental and simulation-study results are shown. In addition, a history is given of the MIT program on reactor digital control

  12. Thermal imagers: from ancient analog video output to state-of-the-art video streaming

    Science.gov (United States)

    Haan, Hubertus; Feuchter, Timo; Münzberg, Mario; Fritze, Jörg; Schlemmer, Harry

    2013-06-01

    The video output of thermal imagers stayed constant over almost two decades. When the famous Common Modules were employed a thermal image at first was presented to the observer in the eye piece only. In the early 1990s TV cameras were attached and the standard output was CCIR. In the civil camera market output standards changed to digital formats a decade ago with digital video streaming being nowadays state-of-the-art. The reasons why the output technique in the thermal world stayed unchanged over such a long time are: the very conservative view of the military community, long planning and turn-around times of programs and a slower growth of pixel number of TIs in comparison to consumer cameras. With megapixel detectors the CCIR output format is not sufficient any longer. The paper discusses the state-of-the-art compression and streaming solutions for TIs.

  13. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  14. Survey of hydrogen monitoring devices

    International Nuclear Information System (INIS)

    Lai, W.

    1981-01-01

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels

  15. System of message for gamma-radiation monitor

    International Nuclear Information System (INIS)

    Bolic, M.D.; Koturovic, A.M.

    2001-01-01

    Paper describes a system of voice messages for gamma-radiation monitor based on PC. The systems reproduces recorded messages that is simpler than the process of their synthesis. Message choice is based on combination of recorded digital results and/or received reference messages or warnings. The system of generation of voice messages applies the Windows based software. The total memory array required to create independent voice system is maximum 1.7 mbyte. The monitor may be used for continuous monitoring of radioactivity level with 5-8 s period of message repetition. Another option of the system operation is based on monitor application for the environment monitoring. Period of messages in this case is equal to 5-30 min [ru

  16. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    OpenAIRE

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a tempera...

  17. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    Science.gov (United States)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  18. Uso do levantamento aéreo expedito convencional e digital para o monitoramento da cobertura florestal no Paraná: estado da arte e potencialidades Conventional aerial sketchmapping and digital aerial sketchmapping development for forest monitoring in Paraná: state of art and potentialities

    Directory of Open Access Journals (Sweden)

    Fernando Luís Dlugosz

    2010-12-01

    Full Text Available

    O artigo apresenta uma abordagem sobre a técnica de Levantamento Aéreo Expedito no que diz respeito às suas características, aplicações e potencialidades para as condições brasileiras, principalmente no monitoramento das mudanças na cobertura florestal no Estado do Paraná. O método consiste na observação e anotação de feições ou fenômenos a partir de  sobrevoos na área de interesse, voando a baixas altitudes ao longo de uma rota pré-determinada. Também são apresentadas as vantagens da introdução da sistematização digital, que definiu a nova  denominação para a técnica como Levantamento Aéreo Expedito Digital. Neste caso, as anotações são realizadas digitalmente sobre tela sensível ao toque, de um computador portátil e não sobre mapa em papel, como na técnica convencional. O desenvolvimento de metodologias que demonstrem eficiência técnica e viabilidade econômica tem recebido maior ênfase em pesquisa, em função da necessidade da obtenção de informações confiáveis para subsidiar a tomada de decisões, em nível governamental, para um adequado processo de fiscalização e/ou de planejamento de uma determinada região. Considerando a dinâmica de uso da terra e a necessidade de se monitorar a cobertura vegetal,  pode-se afirmar que o Levantamento Aéreo Expedito apresenta elevado potencial de aplicação às condições brasileiras e ainda ótima relação custo-benefício.

    doi: 10.4336/2010.pfb.30.63.245

    This paper presents an approach to the technique of aerial sketchmapping in respect to its characteristics, applications and potential for use in Brazil, mainly to monitor changes in forest cover in Paraná state. The method consists of observation and annotation of features or phenomena from overflights in the area of interest flying at low altitudes along a predetermined route. It also presents the advantages obtained with the introduction of digital aerial sketchmapping, which

  19. USING ONLINE TOOLS FOR EVALUATION THE DIGITAL COMPETENCE OF TEACHERS AND PRINCIPALS IN NORWAY

    Directory of Open Access Journals (Sweden)

    Iryna V. Ivanyuk

    2015-05-01

    Full Text Available The article is devoted to the problems of digital competence evaluation in general secondary education in Norway. Attention is drawn to the fact that the monitoring and evaluation of digital competence of the participants of the educational process in secondary schools at the national level, specially created Norwegian Centre for ICT in education. The content and process using online tools for self-evaluation of digital competence of teachers and principals are described. The examples of estimation of digital competence through online tools «School Mentor» and «Teacher Mentor» on levels and proposed activities to improve are presented. The main approaches used in the formation of scale evaluation of the level of digital competence of the teacher are found out.

  20. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    After two years of very strong growth, the solar thermal market marked time in 2007 with 6,9% less collectors being sold with respect to year 2006. In the end this market reached 2,9 million m 2 facing 3,1 million m 2 in 2006, an equivalent capacity of more than 2000 MWth. This decrease is explained for a large part by a strong decline of the german market, the largest market of the european union. Conversely, other countries are continuing to develop their markets and are showing double-digit growth rates. (A.L.B.)