WorldWideScience

Sample records for digital radio antenna

  1. Radio antennas

    Science.gov (United States)

    Gibson, S. W.

    This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.

  2. Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    Science.gov (United States)

    Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.

    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.

  3. La radio digital

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Cortés S.

    2015-01-01

    Full Text Available La radio digital es un producto de la llamada convergencia digital. Las nuevas tecnologías interconectadas permiten la aparición de nuevos modos de audiencia y la implementación de herramientas versátiles. Habla del problema de los estándares, de la radio satelital, la radio digital terrestre, las radios internacionales, la interactividad.

  4. Antenna unit and radio base station therewith

    Science.gov (United States)

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  5. Compact Low Frequency Radio Antenna

    Science.gov (United States)

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  6. The digital sport radio.

    Directory of Open Access Journals (Sweden)

    Hilario José ROMERO BEJARANO

    2014-07-01

    Full Text Available Radio has been immersed in recent years in a phase of technological integration and business of multimedia, as well as diversification of systems and channels for broadcasting. In addition, Internet has been consolidated as the platform of digital radio that more has evolved as a result of its continued expansion. However, the merger radio-Internet must be understood as a new form of communication, and not solely as a new complementary medium. In this context, it is of great interest to analyze that transformations in the way of reception, contents, languages, programs and schedules, has brought with it for the radio that integration. To this end is taken as main reference the sports areas, a key aspect and broadly representative of the current broadcasting landscape.

  7. Multibeam smart antenna field trial experiments in mobile radio environments

    Science.gov (United States)

    Perini, Patrick

    1996-01-01

    Several types of high gain multibeam antennas were tested and compared to traditional sector and omni antennas in various mobile radio environments. A vehicle equipped with a mobile transmitter drove in several mobile radio environments while the received signal strength (RSS) was recorded on multiple antenna channels attached to multibeam, sector and omni directional antennas. The RSS data recorded included the fast (rayleigh) fading and was averaged into local means based on the mobile's position/speed. Description of the experiment and analysis of the gain improvement, average RSS, diversity gain are presented.

  8. Active Surface Compensation for Large Radio Telescope Antennas

    Directory of Open Access Journals (Sweden)

    Congsi Wang

    2018-01-01

    Full Text Available With the development of radio telescope antennas with large apertures, high gain, and wide frequency bands, compensation methods, such as mechanical or electronic compensation, are obviously essential to ensure the electrical performance of antennas that work in complex environments. Since traditional compensation methods can only adjust antenna pointing but not the surface accuracy, which are limited for obtaining high surface precision and aperture efficiency, active surface adjustment has become an indispensable tool in this field. Therefore, the development process of electrical performance compensation methods for radio telescope antennas is introduced. Further, a series of analyses of the five key technologies of active surface adjustment is presented. Then, four typical large antennas that have been designed with active main reflector technology are presented and compared. Finally, future research directions and suggestions for reflector antenna compensation methods based on active surface adjustment are presented.

  9. Antenna data storage concept for phased array radio astronomical instruments

    Science.gov (United States)

    Gunst, André W.; Kruithof, Gert H.

    2018-04-01

    Low frequency Radio Astronomy instruments like LOFAR and SKA-LOW use arrays of dipole antennas for the collection of radio signals from the sky. Due to the large number of antennas involved, the total data rate produced by all the antennas is enormous. Storage of the antenna data is both economically and technologically infeasible using the current state of the art storage technology. Therefore, real-time processing of the antenna voltage data using beam forming and correlation is applied to achieve a data reduction throughout the signal chain. However, most science could equally well be performed using an archive of raw antenna voltage data coming straight from the A/D converters instead of capturing and processing the antenna data in real time over and over again. Trends on storage and computing technology make such an approach feasible on a time scale of approximately 10 years. The benefits of such a system approach are more science output and a higher flexibility with respect to the science operations. In this paper we present a radically new system concept for a radio telescope based on storage of raw antenna data. LOFAR is used as an example for such a future instrument.

  10. Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array

    Directory of Open Access Journals (Sweden)

    Changjiang Deng

    2013-01-01

    Full Text Available This paper gives a feasible and simple solution of generating OAM-carrying radio beams. Eight Vivaldi antenna elements connect sequentially and fold into a hollow cylinder. The circular Vivaldi antenna array is fed with unit amplitude but with a successive phase difference from element to element. By changing the phase difference at the steps of 0, ±45°, ±90°, ±135°, and 180°, the OAM radio beam can be generated with mode numbers 0, ±1, ±2, ±3, and 4. Simulations show that the OAM states of ±2 and ±3 are the same as the traditional states, while the OAM states of 0, ±1, and 4 differ at the boresight. This phenomenon can be explained by the radiation pattern difference between Vivaldi antenna and tripole antenna. A solution of distinguishing OAM states is also proposed. The mode number of OAM can be distinguished with only 2 receivers.

  11. Antenna architecture of a nanosatellite for radio astronomy

    NARCIS (Netherlands)

    Budianu, A.; Meijerink, Arjan; Bentum, Marinus Jan; Smith, David M.P.; Boonstra, Albert Jan

    2014-01-01

    Recent technological advancements have led to the emergence of a new miniaturized satellite platforms and this opened up the path for a whole new range of applications. The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project is one of these applications, and aims to develop a

  12. Development of Radio Frequency Antenna Radiation Simulation Software

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Rozaimah Abd Rahim; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2014-01-01

    Antennas are widely used national wide for radio frequency propagation especially for communication system. Radio frequency is electromagnetic spectrum from 10 kHz to 300 GHz and non-ionizing. These radiation exposures to human being have radiation hazard risk. This software was under development using LabVIEW for radio frequency exposure calculation. For the first phase of this development, software purposely to calculate possible maximum exposure for quick base station assessment, using prediction methods. This software also can be used for educational purpose. Some results of this software are comparing with commercial IXUS and free ware NEC software. (author)

  13. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.

    2015-01-01

    . The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range

  14. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  15. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  16. Ultra - Wideband, zero visual signature RF vest antenna for man-portable radios

    OpenAIRE

    Lebaric, Jovan E.; Adler, Richard W.; Limbert, Matthew E.

    2001-01-01

    This paper presents the recent research of the COMbat Wear INtegration (COMWIN) RF Vest antenna presented at MILCOM2000. This version of the ultra-wideband VHF/UHF (30 MHz to 500 MHz) vest antenna, designated as MK-III, is integrated into the existing dismounted Marine/Soldier Kevlar flak vest and has no visual signature. This antenna is one of the three COMWIN antennas developed at the Naval Postgraduate School (NPS) for the Joint Tactical Radio System applications. ...

  17. Smart Antenna UKM Testbed for Digital Beamforming System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  18. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    Science.gov (United States)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlationare proportional to N2 and dominate at sufficiently large N. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope's bandwidth (the so-called "FX" structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with 2 opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chipmemory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the IC's size and power consumption. It isintended for fabrication in a 32 nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76 to 3.3 pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N = 4096. The system-level energy efficiency, including board-levelI/O, power supplies, and controls, is expected to be 5 to 7 pJ per CMAC operation. Existing correlators for the JVLA (N = 32) and ALMA (N = 64) telescopes achieve about 5000 pJ and 1000 pJ respectively usingapplication-specific ICs in older technologies. To our knowledge, the largest-N existing correlator is LEDA atN = 256; it

  19. Adaptive algorithm based on antenna arrays for radio communication systems

    Directory of Open Access Journals (Sweden)

    Fedosov Valentin

    2017-01-01

    Full Text Available Trends in the modern world increasingly lead to the growing popularity of wireless technologies. This is possible due to the rapid development of mobile communications, the Internet gaining high popularity, using wireless networks at enterprises, offices, buildings, etc. It requires advanced network technologies with high throughput capacity to meet the needs of users. To date, a popular destination is the development of spatial signal processing techniques allowing to increase spatial bandwidth of communication channels. The most popular method is spatial coding MIMO to increase data transmission speed which is carried out due to several spatial streams emitted by several antennas. Another advantage of this technology is the bandwidth increase to be achieved without expanding the specified frequency range. Spatial coding methods are even more attractive due to a limited frequency resource. Currently, there is an increasing use of wireless communications (for example, WiFi and WiMAX in information transmission networks. One of the main problems of evolving wireless systems is the need to increase bandwidth and improve the quality of service (reducing the error probability. Bandwidth can be increased by expanding the bandwidth or increasing the radiated power. Nevertheless, the application of these methods has some drawbacks, due to the requirements of biological protection and electromagnetic compatibility, the increase of power and the expansion of the frequency band is limited. This problem is especially relevant in mobile (cellular communication systems and wireless networks operating in difficult signal propagation conditions. One of the most effective ways to solve this problem is to use adaptive antenna arrays with weakly correlated antenna elements. Communication systems using such antennas are called MIMO systems (Multiple Input Multiple Output multiple input - multiple outputs. At the moment, existing MIMO-idea implementations do not

  20. Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

    Directory of Open Access Journals (Sweden)

    Radial Anwar

    2014-01-01

    Full Text Available Antenna is one of the important subsystem components in a radio telescope system. In this paper, analysis on the effect of parasitic element on 408 MHz antenna in a radio telescope system is presented. Higher gain up to 10.24 dBi with reduction on beamwidth size has been achieved by optimizing the position of parasitic element relative to the driven element. The proposed antenna is suitable to be utilized in a transient radio telescope array.

  1. FOREWORD: Radio and Antenna Days of the Indian Ocean (RADIO 2012)

    Science.gov (United States)

    Monebhurrun, Vikass; Lesselier, Dominique

    2013-04-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the 'Radio and Antenna Days of the Indian Ocean' (RADIO 2012) international conference that was held from 24th to 27th September 2012 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2012 is the first of a series of conferences that is to be regularly organized in the Indian Ocean region. The aim is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. Following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world, a need was felt for the organization of such an international event in this region. The Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, provided an excellent environment for the organization of the 1st RADIO international conference. The Local Organizing Committee consisted of scientists from SUPELEC, the University of Mauritius, and the University of Technology, Mauritius. Various members of staff of the University of Mauritius provided help for the organization of the conference. The International Union of Radio Science (URSI) made available technical and financial sponsorship for partial support of young scientists. A number of companies also supported RADIO 2012 ('Platinum': GSMA, ICTA & MMF, 'Gold': CST & FEKO). The event itself was organized in a premier hotel on Mauritius. In this foreword, we would like to take the opportunity again to thank all the people, institutions and companies that made the event such a success. More than 120 abstracts were submitted to the conference and were peer-reviewed by an international scientific committee. RADIO 2012 overall featured six oral sessions, one poster session and two workshops. Three internationally recognized

  2. 2nd Radio and Antenna Days of the Indian Ocean (RADIO 2014)

    Science.gov (United States)

    2014-10-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the ''Radio and Antenna Days of the Indian Ocean'' (RADIO 2014) international conference that was held from 7th to 10th April 2014 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2014 is the second of a series of conferences organized in the Indian Ocean region. The aim of the conference is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. The RADIO international conference emerged following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world and a need was felt for the organization of such an event in this region. Following numerous requests, the Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, was again chosen for the organization of the 2nd RADIO international conference. The conference was organized by the Radio Society, Mauritius and the Local Organizing Committee consisted of scientists from SUPELEC, France, the University of Mauritius, and the University of Technology, Mauritius. We would like to take the opportunity to thank all people, institutions and companies that made the event such a success. We are grateful to our gold sponsors CST and FEKO as well as URSI for their generous support which enabled us to partially support one PhD student and two scientists to attend the conference. We would also like to thank IEEE-APS and URSI for providing technical co-sponsorship. More than hundred and thirty abstracts were submitted to the conference. They were peer-reviewed by an international scientific committee and, based on the reviews, either accepted, eventually after revision, or rejected. RADIO 2014 brought together participants from twenty countries spanning

  3. The contribution of the Georges Heights Experimental Radar Antenna to Australian radio astronomy

    Science.gov (United States)

    Orchiston, Wayne; Wendt, Harry

    2017-12-01

    During the late 1940s and throughout the1950s Australia was one of the world’s foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation’s Division of Radiophysics based in Sydney. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials attached to recycled radar receivers, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division’s short-lived Georges Heights Field Station but in 1948 was relocated to the new Potts Hill Field Station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, galactic and extragalactic research programs that it was used for.

  4. Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    X. L. Travassos

    2012-01-01

    Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.

  5. The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)

    Science.gov (United States)

    Belotserkovskii, G. B.

    This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.

  6. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  7. Modems for emerging digital cellular-mobile radio system

    Science.gov (United States)

    Feher, Kamilo

    1991-01-01

    Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.

  8. Mantle cloaking for co-site radio-frequency antennas

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Alessio, E-mail: alessio.monti@uniroma3.it; Barbuto, Mirko [“Niccolò Cusano” University, Via Don Carlo Gnocchi 3, Rome 00166 (Italy); Soric, Jason; Alù, Andrea [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto [Department of Engineering, “Roma Tre” University, Via Vito Volterra 62, Rome 00146 (Italy); Trotta, Fabrizio [Antenna Department, ELETTRONICA S.p.A., Via Tiburtina Valeria Km 13700, Rome 00131 (Italy)

    2016-03-14

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  9. Mantle cloaking for co-site radio-frequency antennas

    International Nuclear Information System (INIS)

    Monti, Alessio; Barbuto, Mirko; Soric, Jason; Alù, Andrea; Ramaccia, Davide; Vellucci, Stefano; Toscano, Alessandro; Bilotti, Filiberto; Trotta, Fabrizio

    2016-01-01

    We show that properly designed mantle cloaks, consisting of patterned metallic sheets placed around cylindrical monopoles, allow tightly packing the same antennas together in a highly dense telecommunication platform. Our experimental demonstration is applied to the relevant example of two cylindrical monopole radiators operating for 3G and 4G mobile communications. The two antennas are placed in close proximity, separated by 1/10 of the shorter operational wavelength, and, after cloaking, are shown to remarkably operate as if isolated in free-space. This result paves the way to unprecedented co-siting strategies for multiple antennas handling different services and installed in overcrowded platforms, such as communication towers, satellite payloads, aircrafts, or ship trees. More broadly, this work presents a significant application of cloaking technology to improve the efficiency of modern communication systems.

  10. Olfar: orbiting low frequency antenna for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very

  11. OLFAR - Orbiting low frequency antennas for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high

  12. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  13. Realization and Measurement of a Wearable Radio Frequency Identification Tag Antenna

    Directory of Open Access Journals (Sweden)

    Shudao ZHOU

    2014-06-01

    Full Text Available The realization and measurements of a wearable Radio Frequency Identification tag antenna which achieves good simulation results in the Ultimate High Frequency band under the standard of the United States in design procedures is presented. The wearable tag antenna is constructed using a flexible substrate, on whose surface the antenna patch is adhered. A bowtie shape is chosen as the geometry of the antenna patch because of its large bandwidth that brings to the tag and its simple structure. The substrate of the tag antenna is realized using a foam material while the patch on the substrate surface is cut out from copper foil tape. Then, the impedance of the realized tag antenna is extracted from S parameters which are measured with a vector network analyzer with a coaxial fixture. Finally, the radiation pattern of the tag is characterized by normalized reading distances of different directions of the antenna integrated with a microchip, thus indicating the validity of the realized tag antenna.

  14. Next Generation Radio over Fiber Network Management for a Distributed Antenna System

    DEFF Research Database (Denmark)

    Santiago, Carlos; Gangopadhyay, Bodhisattwa; arsenio, Artur

    2009-01-01

    Dette dokument beskriver funktioner og procedurer i futon Radio Over Fiber Manager til at operere med det øvre (net) og nederste (fysiske) lag, der anvendes til transport af trådløse signaler mellem en central enhed (CU) og Remote Antenna Units. Også, det giver nogle mekanismer og procedurer, der...

  15. Antenna design and implementation for the future space Ultra-Long wavelength radio telescope

    Science.gov (United States)

    Chen, Linjie; Aminaei, Amin; Gurvits, Leonid I.; Wolt, Marc Klein; Pourshaghaghi, Hamid Reza; Yan, Yihua; Falcke, Heino

    2018-04-01

    In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.

  16. The Digital Motion Control System for the Submillimeter Array Antennas

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  17. Long range ultra-high frequency (UHF) radio frequency identification (RFID) antenna design

    Science.gov (United States)

    Reynolds, Nathan D.

    There is an ever-increasing demand for radio frequency identification (RFID) tags that are passive, long range, and mountable on multiple surfaces. Currently, RFID technology is utilized in numerous applications such as supply chain management, access control, and public transportation. With the combination of sensory systems in recent years, the applications of RFID technology have been extended beyond tracking and identifying. This extension includes applications such as environmental monitoring and healthcare applications. The available sensory systems usually operate in the medium or high frequency bands and have a low read range. However, the range limitations of these systems are being overcome by the development of RFID sensors focused on utilizing tags in the ultra-high frequency (UHF) band. Generally, RFID tags have to be mounted to the object that is being identified. Often the objects requiring identification are metallic. The inherent properties of metallic objects have substantial effects on nearby electromagnetic radiation; therefore, the operation of the tag antenna is affected when mounted on a metallic surface. This outlines one of the most challenging problems for RFID systems today: the optimization of tag antenna performance in a complex environment. In this research, a novel UHF RFID tag antenna, which has a low profile, long range, and is mountable on metallic surfaces, is designed analytically and simulated using a 3-D electromagnetic simulator, ANSYS HFSS. A microstrip patch antenna is selected as the antenna structure, as patch antennas are low profile and suitable for mounting on metallic surfaces. Matching and theoretical models of the microstrip patch antenna are investigated. Once matching and theory of a microstrip patch antenna is thoroughly understood, a unique design technique using electromagnetic band gap (EBG) structures is explored. This research shows that the utilization of an EBG structure in the patch antenna design yields

  18. Optimization of a Conical Corrugated Antenna Using Multiobjective Heuristics for Radio-Astronomy Applications

    OpenAIRE

    López-Ruiz, S.; Sánchez Montero, R.; Tercero-Martínez, F.; López-Espí, P. L.; López-Fernandez, J. A.

    2016-01-01

    This paper presents the design of a tree sections corrugated horn antenna with a modified linear profile, using NURBS, suitable for radio-astronomy applications. The operating band ranges from 4.5 to 8.8 GHz. The aperture efficiency is higher than 84% and the return losses are greater than 20 dB in the whole bandwidth. The antenna optimization has been carried out with multiobjective versions of an evolutionary algorithm (EA) and a particle swarm optimization (PSO) algorithm. We show that bot...

  19. Novel Digital Radio over Fibre for 4G-LTE

    OpenAIRE

    Li, Tongyun; Penty, Richard Vincent; White, Ian Hugh

    2015-01-01

    Digital radio over fibre (RoF) technology has been suggested as a promising solution to replace conventional analogue RoF technology for multi-service in-building wireless coverage. However in conventional digital RoF, digitisation leads to high data rates which in turn results in high capital expenditure (CAPEX) and operational expenditure (OPEX). This paper investigates a novel methodology to transmit efficiently a digitised radio service over an optical link to provide...

  20. Transmit Antenna Selection for Power Adaptive Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad

    2017-03-31

    The high hardware cost associated with multiple antennas at the secondary transmitter of an underlay cognitive radio (CR) can be reduced by antenna selection. This paper analyzes different power adaptive transmit antenna selection (TAS) schemes for an underlay CR, which ensure that the instantaneous interference caused by the secondary transmitter to the primary receiver is below a predetermined level. We consider the optimal continuous power adaptive TAS and present a low-complexity antenna and power level selection scheme, named sequential antenna and power level selection scheme (SAPS), for discrete power adaptation. Exact statistical characterizations of the signal-to-interference plus noise ratio at the secondary receiver are derived for the considered schemes. Based on the newly derived statistics, we prove that the considered schemes achieve the highest diversity order equaling the number of antennas at the secondary transmitter. Further, we also derive a closed-form expression of the ergodic capacity for the underlay CR with SAPS scheme. Finally, we show that the proposed scheme outperforms existing schemes in terms of ergodic capacity.

  1. Optimization of a Conical Corrugated Antenna Using Multiobjective Heuristics for Radio-Astronomy Applications

    Directory of Open Access Journals (Sweden)

    S. López-Ruiz

    2016-01-01

    Full Text Available This paper presents the design of a tree sections corrugated horn antenna with a modified linear profile, using NURBS, suitable for radio-astronomy applications. The operating band ranges from 4.5 to 8.8 GHz. The aperture efficiency is higher than 84% and the return losses are greater than 20 dB in the whole bandwidth. The antenna optimization has been carried out with multiobjective versions of an evolutionary algorithm (EA and a particle swarm optimization (PSO algorithm. We show that both techniques provide good antenna design, but the experience carried out shows that the results of the evolutionary algorithm outperform the particle swarm results.

  2. The modelling and design of radio tomography antennas

    CSIR Research Space (South Africa)

    Vogt, DR

    2000-09-01

    Full Text Available , as are the in- terfaces between layers of different materials. By contrast, RT is a transmission technique. It can produce images of targets where there is no clearly defined boundary between the target and the host rock. Disseminated sulphide mineralization... stream_source_info Vogt_2000.pdf.txt stream_content_type text/plain stream_size 311829 Content-Encoding UTF-8 stream_name Vogt_2000.pdf.txt Content-Type text/plain; charset=UTF-8 The Modelling and Design of Radio...

  3. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    Science.gov (United States)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation

  4. Point-to-point radio link variation at E-band and its effect on antenna design

    NARCIS (Netherlands)

    Al-Rawi, A.; Dubok, A.; Herben, M.H.A.J.; Smolders, A.B.

    2015-01-01

    Radio propagation will strongly influence the design of the antenna and front-end components of E-band point-to-point communication systems. Based on the ITU rain model, the rain attenuation is estimated in a statistical sense and it is concluded that for backhaul links of 1–10 km, antennas with a

  5. Development of a smart-antenna test-bed, demonstrating software defined digital beamforming

    NARCIS (Netherlands)

    Kluwer, T.; Slump, Cornelis H.; Schiphorst, Roelof; Hoeksema, F.W.

    2001-01-01

    This paper describes a smart-antenna test-bed consisting of ‘common of the shelf’ (COTS) hardware and software defined radio components. The use of software radio components enables a flexible platform to implement and test mobile communication systems as a real-world system. The test-bed is

  6. Printed silver nanowire antennas with low signal loss at high-frequency radio

    Science.gov (United States)

    Komoda, Natsuki; Nogi, Masaya; Suganuma, Katsuaki; Kohno, Kazuo; Akiyama, Yutaka; Otsuka, Kanji

    2012-05-01

    Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those obtained using etched copper foil antennas, because their surfaces were much smoother than those of etched copper foil antennas. This was the case even though the resistivity of silver nanowire lines was 43-71 μΩ cm, which is much higher than that of etched copper foil (2 μΩ cm). When printed silver nanowire antennas were heated at 100 °C, they achieved signal losses that were much lower than those of silver paste antennas comprising microparticles, nanoparticles, and flakes. Furthermore, using a low temperature process, we succeeded in remotely controlling a commercialized radio-controlled car by transmitting a 2.45 GHz signal via a silver nanowire antenna printed on a polyethylene terephthalate film.Silver nanowires are printable and conductive, and are believed to be promising materials in the field of printed electronics. However, the resistivity of silver nanowire printed lines is higher than that of metallic particles or flakes even when sintered at high temperatures of 100-400 °C. Therefore, their applications have been limited to the replacement of transparent electrodes made from high-resistivity materials, such as doped metallic oxides, conductive polymers, carbon nanotubes, or graphenes. Here we report that using printed silver nanowire lines, signal losses obtained in the high-frequency radio were lower than those

  7. RADIO-SELECTED QUASARS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Helfand, David J.; White, Richard L.

    2009-01-01

    We have conducted a pilot survey for z > 3.5 quasars by combining the FIRST radio survey with the Sloan Digital Sky Survey (SDSS). While SDSS already targets FIRST sources for spectroscopy as quasar candidates, our survey includes fainter quasars and greatly improves the discovery rate by using strict astrometric criteria for matching the radio and optical positions. Our method allows for selection of high-redshift quasars with less color bias than with optical selection, as using radio selection essentially eliminates stellar contamination. We report the results of spectroscopy for 45 candidates, including 29 quasars in the range 0.37 3.5. We compare quasars selected using radio and optical criteria, and find that radio-selected quasars have a much higher fraction of moderately reddened objects. We derive a radio-loud quasar luminosity function at 3.5 < z < 4.0, and find that it is in good agreement with expectations from prior SDSS results.

  8. Improvements to Host Country Radio Astronomy at Robledo: Another antenna, a new receiver, a new backend

    Science.gov (United States)

    Rizzo, J. R.; García-Miró, G.

    2013-05-01

    NASA hosts three complexes worldwide built for spacecraft tracking, whose sensitive antennas are suitable for radio astronomy. Since more than a decade, INTA has managed guaranteed Spanish time at the complex located in Robledo de Chavela, in the frame of the Host Country Radio Astronomy (HCRA) program. Until now, the vast majority of the scientific results were achieved using a K-band (18 to 26 GHz) receiver, attached to the 70m antenna, and a narrow-band autocorrelator. In the recent years, we have undertaken two large instrumental projects: (1) the incorporation of a second antenna (34m in diameter), working in Q-band (38 to 50 GHz); and (2) the design and construction of a wideband backend, which may operate with both the Q- and K-band receivers, providing instantaneous bandwidths from 100 MHz to 6 GHz, and resolutions from 6 to 200 kHz. The new wideband backend is expanding the HCRA possibilities due its bandwidth, versatility, spectral resolution and stability of the baselines. Its IF processor splits each of the two circular-polarization signals, and downconverts them to four base-band channels, 1.5 GHz width. Two different frequencies may be tuned independently. Digitalisation is done through FPGA-based FFT spectrometers, which may be independently configured. Once end-to-end assembled, the commissioning of the new backend was done using the 34m antenna in Q-band. We report the main characteristics of both the antenna recently incorporated to HCRA, and the wideband backend.

  9. A thresholding-based antenna switching in MIMO cognitive radio networks with SWIPT-enabled secondary receiver

    KAUST Repository

    Benkhelifa, Fatma

    2017-07-31

    Simultaneous wireless power and information transfer (SWIPT) in a cognitive radio (CR) network is considered where a multiple antenna energy harvesting (EH) secondary receiver (SR) harvests the energy using the antenna switching (AS) technique. In fact, the AS technique selects a subset of the SR antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). In this context, we propose a thresholding-based antenna selection strategy, termed as the prioritizing data selection (PDS) scheme, which selects the ID antennas such that the received power from the secondary transmitter (ST) at these antennas is above a certain threshold. For this scheme, we derive the analytic expressions of the probability mass function (PMF) of the selected ID antennas, the average harvested energy, and the outage probability. In the simulation results, we illustrate the performance of the PDS scheme and we compare it to the prioritizing energy selection (PES) scheme which selects the EH antennas such that the received power from ST at these antennas is above a certain threshold. For both schemes, we show that there is a tradeoff between the outage probability and the average harvested energy.

  10. Comparison of Antenna Array Systems Using OFDM for Software Radio via the SIBIC Model

    Directory of Open Access Journals (Sweden)

    Robert D. Palmer

    2005-09-01

    Full Text Available This paper investigates the performance of two candidates for software radio WLAN, reconfigurable OFDM modulation and antenna diversity, in an indoor environment. The scenario considered is a 20 m×10 m×3 m room with two base units and one mobile unit. The two base units use omnidirectional antennas to transmit and the mobile unit uses either a single antenna with equalizer, a fixed beamformer with equalizer, or an adaptive beamformer with equalizer to receive. The modulation constellation of the data is QPSK and 16-QAM. The response of the channel at the mobile unit is simulated using a three-dimensional indoor WLAN propagation model that generates multipath components with realistic spatial and temporal correlation. An underlying assumption of the scenario is that existing antenna hardware is available and could be exploited if software processing resources are allocated. The results of the simulations indicate that schemes using more resources outperform simpler schemes in most cases. This implies that desired user performance could be used to dynamically assign software processing resources to the demands of a particular indoor WLAN channel if such resources are available.

  11. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  12. Transmit Antenna Selection for Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad

    2016-03-28

    Cognitive radio (CR) technology addresses the problem of spectrum under-utilization. In underlay CR mode, the secondary users are allowed to communicate provided that their transmission is not detrimental to primary user communication. Transmit antenna selection is one of the low-complexity methods to increase the capacity of wireless communication systems. In this article, we propose and analyze the performance benefit of a transmit antenna selection scheme for underlay secondary system that ensures the instantaneous interference caused by the secondary transmitter to the primary receiver is below a predetermined level. Closed-form expressions of the secondary link outage probability, higher order amount of fading, and ergodic capacity are derived for the proposed scheme. Monte-carlo simulations are also carried out to confirm various mathematical results presented in this article.

  13. Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-10-01

    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA) . The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4+0.9-0.3% and 10.3+2.8-1.7% respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8+2.1-1.3% in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60°.

  14. Nullspace MUSIC and Improved Radio Frequency Emitter Geolocation from a Mobile Antenna Array

    Science.gov (United States)

    Kintz, Andrew L.

    This work advances state-of-the-art Radio Frequency (RF) emitter geolocation from an airborne or spaceborne antenna array. With an antenna array, geolocation is based on Direction of Arrival (DOA) estimation algorithms such as MUSIC. The MUSIC algorithm applies to arbitrary arrays of polarization sensitive antennas and yields high resolution. However, MUSIC fails to obtain its theoretical resolution for simultaneous, closely spaced, co-frequency signals. We propose the novel Nullspace MUSIC algorithm, which outperforms MUSIC and its existing modifications while maintaining MUSIC(apostrophe)s fundamental orthogonality test. Nullspace MUSIC applies a divide-and-conquer approach and estimates a single DOA at a time. Additionally, an antenna array on an aircraft cannot be perfectly calibrated. RF waves are blocked, reflected, and scattered in a time-varying fashion by the platform around the antenna array. Consequently, full-wave electromagnetics simulations or demanding measurements of the entire platform cannot eliminate the mismatch between the true, in-situ antenna patterns and the antenna patterns that are available for DOA estimation (the antenna array manifold). Platform-induced manifold mismatch severely degrades MUSIC(apostrophe)s resolution and accuracy. We show that Nullspace MUSIC improves DOA accuracy for well separated signals that are incident on an airborne antenna array. Conventionally, geolocation from a mobile platform draws Lines of Bearing (LOB) from the antenna array along the DOAs to find the locations where the DOAs intersect with the ground. However, averaging the LOBs in the global coordinate system yields large errors due to geometric dilution of precision. Since averaging positions fails, a single emitter is typically located by finding the position on the ground that yields the Minimum Apparent Angular Error (MAAE) for the DOA estimates over a flight. We extend the MAAE approach to cluster LOBs from multiple emitters. MAAE clustering

  15. Spectrum sensing using single-radio switched-beam antenna systems

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Wilcox, David; De Carvalho, Elisabeth

    2012-01-01

    of the reactive loads rotate the narrowband beampattern to different angular positions dividing the whole space around the cognitive receiver into several angular subspaces. The beampattern directionality leverages the performance of spectrum sensing algorithms like the energy detection by enhancing the receive......The paper describes spectrum sensing using single-radio switched-beam arrays with reactance-loaded parasitic elements. At a given frequency, the antenna's loading conditions (reactive loads) are optimized for maximum average beamforming gain in the beampattern look direction. Circular permutations...

  16. Coverage Range and Cost Comparison of Remote Antenna Unit Designs for Inbuilding Radio over Fiber Technology

    Directory of Open Access Journals (Sweden)

    Razali Ngah

    2013-09-01

    Full Text Available Future communication needs to be ubiquitous, broadband, convergent, and seamless. Radio over fiber (RoF technology is one of the most important enabler in access network for the technologies. Adoption of RoF faces bottleneck in optoelectronics, that they are still expensive, high power consumption, and limited in bandwidth. To solve the problem, transceiver in remote antenna unit (RAU is developed, i.e. electroabsorption transceiver (EAT and asymmetric FabryPerot modulator (AFPM. This paper compares their coverage range and cost in providing WCDMA and WLAN services. Needed gain of RF amplifier for supporting picocell is also discussed.

  17. Combined Sector and Channel Hopping Schemes for Efficient Rendezvous in Directional Antenna Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    AbdulMajid M. Al-Mqdashi

    2017-01-01

    Full Text Available Rendezvous is a prerequisite and important process for secondary users (SUs to establish data communications in cognitive radio networks (CRNs. Recently, there has been a proliferation of different channel hopping- (CH- based schemes that can provide rendezvous without relying on any predetermined common control channel. However, the existing CH schemes were designed with omnidirectional antennas which can degrade their rendezvous performance when applied in CRNs that are highly crowded with primary users (PUs. In such networks, the large number of PUs may lead to the inexistence of any common available channel between neighboring SUs which result in a failure of their rendezvous process. In this paper, we consider the utilization of directional antennas in CRNs for tackling the issue. Firstly, we propose two coprimality-based sector hopping (SH schemes that can provide efficient pairwise sector rendezvous in directional antenna CRNs (DIR-CRNs. Then, we propose an efficient CH scheme that can be combined within the SH schemes for providing a simultaneous sector and channel rendezvous. The guaranteed rendezvous of our schemes are proven by deriving the theoretical upper bounds of their rendezvous delay metrics. Furthermore, extensive simulation comparisons with other related rendezvous schemes are conducted to illustrate the significant outperformance of our schemes.

  18. Proactive Spectrum Sharing for SWIPT in MIMO Cognitive Radio Systems Using Antenna Switching Technique

    KAUST Repository

    Benkhelifa, Fatma

    2017-04-24

    In this paper, we consider the simultaneous wireless information and power transfer (SWIPT) for the spectrum sharing (SS) in a multiple-input multiple-output (MIMO) cognitive radio (CR) network. The secondary transmitter (ST) selects only one antenna which maximizes the received signal-to-noise ratio (SNR) at the secondary receiver (SR) and minimizes the interference induced at the primary receiver (PR). Moreover, PR is an energy harvesting (EH) node using the antenna switching (AS) which assigns a subset of its antennas to harvest the energy and assigns the rest to decode its information data. The objective of this work is to show that the SS is advantageous for both SR and PR sides and leads to a win-win situation. To illustrate the incentive of the SS in CR network, we evaluate the energy and data performance metrics in terms of the average harvested energy, the power outage, and the mutual outage probability (MOP) which declares a data outage event if the PR or SR is in an outage. We present some special cases and asymptotic results of the derived analytic results. Through the simulation results, we show the impact of various simulation parameters and the benefits due to the presence of ST.

  19. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    Science.gov (United States)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  20. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    Science.gov (United States)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  1. Occupational exposure to radiofrequency fields in antenna towers

    International Nuclear Information System (INIS)

    Alanko, T.; Hietanen, M.

    2007-01-01

    Exposure of workers to radiofrequency fields was assessed in two medium-sized antenna towers. Towers had transmitting antennas from different networks, e.g. mobile phone networks, radio and digital TV sub-stations and amateur radio. The levels of radiofrequency fields were measured close to the ladders of the towers. All measured values were below ICNIRP occupational reference levels. (authors)

  2. Snow noise disturbance in Antarctic radio communications and development of mobile antenna for snow vehicle in Antarctica

    Directory of Open Access Journals (Sweden)

    Isao Fukushima

    1997-07-01

    Full Text Available Radio operators of the Japanese Antarctic Research Expedition (JARE have encountered critical radio noise disturbances caused by blizzards during oversnow travel. This noise appears to be caused by corona discharge at the edges of the vertical whip antenna. This paper describes several examples of snow noise experienced in Antarctica by JARE, the mechanism of generation of the noise, and a method of reducing the intensity of the noise. It also describes a High Effeciency Transmission Line Antenna which is small enough to mount on a snow vehicle and reduces the intensity of the snow noise.

  3. Adaptive antenna system by ESP32-PICO-D4 and its application to web radio system

    Directory of Open Access Journals (Sweden)

    Toshiro Kodera

    2018-04-01

    Full Text Available Adaptive antenna technique has an important role in the IoT environment in order to establish reliable and stable wireless communication in high congestion situation. Even if knowing antenna characteristics in advance, electromagnetic wave propagation in non-line-of-sight environment is very complex and unpredictable, therefore, the adjustment the antenna radiation for the optimum signal reception is important for the better wireless link. This article presents a simple but effective adaptive antenna system for Wi-Fi utilizing the function of a highly integrated component, ESP32-PICO-D4. This chip is a system-in-chip containing all components for Wi-Fi and Bluetooth application except for antenna. Together with SP3T RF switch and dielectric antennas and high-resolution audio DAC, completed web-radio system is made in the size of 50 × 50 mm. Keywords: Beam switching, Adaptive antenna, System-in-chip, ESP32, Web-radio

  4. An Orbital Angular Momentum (OAM) Mode Reconfigurable Antenna for Channel Capacity Improvement and Digital Data Encoding.

    Science.gov (United States)

    Liu, Baiyang; Lin, Guoying; Cui, Yuehui; Li, RongLin

    2017-08-29

    For purpose of utilizing orbital angular momentum (OAM) mode diversity, multiple OAM beams should be generated preferably by a single antenna. In this paper, an OAM mode reconfigurable antenna is proposed. Different from the existed OAM antennas with multiple ports for multiple OAM modes transmitting, the proposed antenna with only a single port, but it can be used to transmit mode 1 or mode -1 OAM beams arbitrary by controlling the PIN diodes on the feeding network through a programmable microcontroller which control by a remote controller. Simulation and measurement results such as return loss, near-field and far-field radiation patterns of two operating states for mode 1 and mode -1, and OAM mode orthogonality are given. The proposed antenna can serve as a candidate for utilizing OAM diversity, namely phase diversity to increase channel capacity at 2.4 GHz. Moreover, an OAM-mode based encoding method is experimentally carried out by the proposed OAM mode reconfigurable antenna, the digital data are encoded and decoded by different OAM modes. At the transmitter, the proposed OAM mode reconfigurable antenna is used to encode the digital data, data symbol 0 and 1 are mapped to OAM mode 1 and mode -1, respectively. At the receiver, the data symbols are decoded by phase gradient method.

  5. Radio Channel Sounding Using a Circular Horn Antenna Array in the Horizontal Plane in the 2.3 GHz Band

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Sakata, Tsutomu; Ogawa, Koichi

    2012-01-01

    This paper presents results from an outdoor radio propagation experiment at 2.35 GHz using a channel sounder and a spherical horn antenna array. The propagation test was performed in Aalborg city in Denmark. Comparing the ray-tracing results and the results obtained with the proposed method...... on the measured data shows a good match in both the spatial and time domains....

  6. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    International Nuclear Information System (INIS)

    Shin, Dong-Youn; Lee, Yongshik; Kim, Chung Hwan

    2009-01-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 o C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 μΩ cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  7. Performance characterization of screen printed radio frequency identification antennas with silver nanopaste

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Youn, E-mail: dongyoun.shin@gmail.co [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Lee, Yongshik, E-mail: yongshik.lee@yonsei.ac.k [School of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Kim, Chung Hwan, E-mail: chkim@kimm.re.k [Nanomachine Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-09-01

    The era of wireless communication has come and it is going to flourish in the form of radio frequency identification (RFID) tags. The employment of RFID tags in daily commodities, however, is constrained due to the manufacturing cost. Therefore, industries in the field have sought for alternative manufacturing methods at an ultra low cost and various printing processes have been considered such as inkjet, gravure, flexo, off-set and screen. Although such printing processes are age-old, their applications have been mainly limited to graphic arts and design rules for electronic appliances have not been fully established yet. In this paper, the selection of ink and printing process to fabricate RFID antennas is discussed. The developed silver nanopaste in the range of 20 to 50 nm without the inclusion of microparticles and flakes was sintered at 120 {sup o}C for 1 min, which is lower than that of conventional silver paste with microparticles and flakes, and its resistivity was found to be approximately 3 {mu}{Omega} cm. The radiation performances of various screen printed RFID antennas with silver nanopaste were found comparable to those of copper etched ones.

  8. On Secure Underlay MIMO Cognitive Radio Networks with Energy Harvesting and Transmit Antenna Selection

    KAUST Repository

    Lei, Hongjiang

    2017-03-20

    In this paper, we consider an underlay multipleinput- multiple-output (MIMO) cognitive radio network (CRN) including a pair of primary nodes, a couple of secondary nodes, and an eavesdropper, where the secondary transmitter is powered by the renewable energy harvested from the primary transmitter in order to improve both energy efficiency and spectral efficiency. Based on whether the channel state information (CSI) of wiretap links are available or not, the secrecy outage performance of the optimal antenna selection (OAS) scheme and suboptimal antenna selection (SAS) scheme for underlay MIMO CRN with energy harvesting are investigated and compared with traditional space-time transmission scheme. The closed-form expressions for exact and asymptotic secrecy outage probability are derived. Monte-Carlo simulations are conducted to testify the accuracy of the analytical results. The analysis illustrates that OAS scheme outperforms SAS scheme. Furthermore, the asymptotic result shows that no matter which scheme is considered, the OAS and SAS schemes can achieve the same secrecy diversity order.

  9. Ping-Pong Beam Training with Hybrid Digital-Analog Antenna Arrays

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro; Carvalho, Elisabeth De; Andersen, Jørgen Bach

    2017-01-01

    In this article we propose an iterative training scheme that approximates optimal beamforming between two transceivers equipped with hybrid digital-analog antenna arrays. Inspired by methods proposed for digital arrays that exploit algebraic power iterations, the proposed training procedure...... is based on a series of alternate (ping-pong) transmissions between the two devices over a reciprocal channel. During the transmissions, the devices updates their digital beamformers by conjugation and normalization operations on the received digital signal, while the analog beamformers are progressively...

  10. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  11. An Antenna Diversity Scheme for Digital Front-End with OFDM Technology

    Institute of Scientific and Technical Information of China (English)

    Fa-Long Luol; Ward Williams; Bruce Gladstone

    2011-01-01

    In,this paper, we propose a new antenna diversity scheme for OFDM-based wireless communication and digital broadcasting applications. Compared with existing schemes, such as post-fast Fourier transform (FFT), pre-FFT, and polyphase-based fitter-bank, the proposed scheme performs optimally and has very low computational complexity. It offers a better compromise between performance, power consumption, and complexity in real-time implementation of the receivers of broadband communication and digital broadcasting systems.

  12. Studi Perencanaan Migrasi Sistem Digital Oleh Penyelenggara Radio Trunking di Indonesia

    Directory of Open Access Journals (Sweden)

    Awangga Febian Surya Admaja

    2013-06-01

    Full Text Available Sistem Radio Trunking merupakan sistem radio yang berbasis repeater untuk satu atau lebih menara dengan menggunakan lebih dari satu frekuensi, dimana pengguna secara semi-privat dapat memiliki kanal tersendiri untuk melakukan pembicaraan secara grup. Di Indonesia, alokasi pada pita frekuensi radio trunking analog direncanakan akan digunakan untuk trunking digital, dimana aplikasi sistem radio trunking  yang baru harus menggunakan teknologi trunking digital dan sistem analog yang ada disyaratkan untuk beralih ke teknologi digital. Studi ini bertujuan untuk melihat seberapa besar kesiapan dari penyelenggara radio trunking di Indonesia dalam melakukan migrasi radio trunking digital. Studi ini menggunakan pendekatan kualitatif melalui wawancara mendalam dan didukung dengan data kuantitatif untuk menunjukkan nilai indeks kesiapan dari penyelenggara radio trunking. Studi ini menghasilkan nilai indeks kesiapan dari sampel penyelenggara radio trunking dengan skema perencanaan migrasi sesuai dengan nilai indeks kesiapan.

  13. Prioritizing Data/Energy Thresholding-Based Antenna Switching for SWIPT-Enabled Secondary Receiver in Cognitive Radio Networks

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2017-01-01

    Simultaneous wireless power and information transfer (SWIPT) is considered in cognitive radio networks with a multi-antenna energy harvesting (EH) secondary receiver (SR). The SR harvests the energy from the secondary transmitter and primary transmitter. The SR uses the antenna switching technique which selects a subset of antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). The AS technique is performed via a thresholding-based strategy inspired from the maximum ratio combining technique with an output threshold (OT-MRC) which is proposed in two ways: the prioritizing data selection (PDS) scheme, and the prioritizing energy selection (PES) scheme. For both schemes, we study the expressions and the asymptotic results of the probability mass function of the selected ID antennas, the average harvested energy, the power outage probability, and the data outage probability. We deduce the performance of the joint PDS and PES scheme. We evaluate all performance metrics for the Rayleigh and Nakagami fading channels. Through the simulation results, we show the impact of different simulation parameters on the performance metrics. We also show that there is a tradeoff between the data and energy performance metrics.

  14. A Thresholding-Based Antenna Switching in SWIPT-Enabled MIMO Cognitive Radio Networks with Co-Channel Interference

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider the simultaneous wireless power and information transfer (SWIPT) for spectrum sharing (SS) in cognitive radio (CR) networks with a multiple antenna SWIPT-Enabled secondary receiver (SR). The SR harvests the energy from the signals sent from the secondary transmitter (ST) and the interfering signals sent from the primary transmitter (PT). Moreover, the ST uses the antenna switching (AS) technique which selects a subset of the antennas to decode the information and the rest to harvest the energy. The antenna selection is performed via a thresholding strategy inspired from the maximum ratio combining (MRC) technique with an output threshold (OT-MRC). The thresholding-based antenna selection strategy is proposed in two ways: one is prioritizing the information data and the other is prioritizing the harvested energy. For the two proposed selection schemes, we study the probability mass function of the selected antennas, the average harvested energy, and the data transmission outage probability. Through the analytic expressions and the simulation results, we show that there is a tradeoff between the outage probability and the harvested energy for both schemes. We see also that the preference of one scheme on the other is also affected by this energy-data trade off.

  15. Prioritizing Data/Energy Thresholding-Based Antenna Switching for SWIPT-Enabled Secondary Receiver in Cognitive Radio Networks

    KAUST Repository

    Benkhelifa, Fatma

    2017-12-04

    Simultaneous wireless power and information transfer (SWIPT) is considered in cognitive radio networks with a multi-antenna energy harvesting (EH) secondary receiver (SR). The SR harvests the energy from the secondary transmitter and primary transmitter. The SR uses the antenna switching technique which selects a subset of antennas to decode the information (namely the information decoding (ID) antennas) and the rest to harvest the energy (namely the EH antennas). The AS technique is performed via a thresholding-based strategy inspired from the maximum ratio combining technique with an output threshold (OT-MRC) which is proposed in two ways: the prioritizing data selection (PDS) scheme, and the prioritizing energy selection (PES) scheme. For both schemes, we study the expressions and the asymptotic results of the probability mass function of the selected ID antennas, the average harvested energy, the power outage probability, and the data outage probability. We deduce the performance of the joint PDS and PES scheme. We evaluate all performance metrics for the Rayleigh and Nakagami fading channels. Through the simulation results, we show the impact of different simulation parameters on the performance metrics. We also show that there is a tradeoff between the data and energy performance metrics.

  16. A Thresholding-Based Antenna Switching in SWIPT-Enabled MIMO Cognitive Radio Networks with Co-Channel Interference

    KAUST Repository

    Benkhelifa, Fatma

    2016-10-23

    In this paper, we consider the simultaneous wireless power and information transfer (SWIPT) for spectrum sharing (SS) in cognitive radio (CR) networks with a multiple antenna SWIPT-Enabled secondary receiver (SR). The SR harvests the energy from the signals sent from the secondary transmitter (ST) and the interfering signals sent from the primary transmitter (PT). Moreover, the ST uses the antenna switching (AS) technique which selects a subset of the antennas to decode the information and the rest to harvest the energy. The antenna selection is performed via a thresholding strategy inspired from the maximum ratio combining (MRC) technique with an output threshold (OT-MRC). The thresholding-based antenna selection strategy is proposed in two ways: one is prioritizing the information data and the other is prioritizing the harvested energy. For the two proposed selection schemes, we study the probability mass function of the selected antennas, the average harvested energy, and the data transmission outage probability. Through the analytic expressions and the simulation results, we show that there is a tradeoff between the outage probability and the harvested energy for both schemes. We see also that the preference of one scheme on the other is also affected by this energy-data trade off.

  17. Architectures/Algorithms/Tools for Ultra-Low Power, Compact EVA Digital Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The EVA digital radio imposes tight constraints on power consumption, latency, throughput, form factor, reconfigurability, single event upset and fault tolerance,...

  18. Reliability-centered maintenance for ground-based large optical telescopes and radio antenna arrays

    Science.gov (United States)

    Marchiori, G.; Formentin, F.; Rampini, F.

    2014-07-01

    In the last years, EIE GROUP has been more and more involved in large optical telescopes and radio antennas array projects. In this frame, the paper describes a fundamental aspect of the Logistic Support Analysis (LSA) process, that is the application of the Reliability-Centered Maintenance (RCM) methodology for the generation of maintenance plans for ground-based large optical telescopes and radio antennas arrays. This helps maintenance engineers to make sure that the telescopes continue to work properly, doing what their users require them to do in their present operating conditions. The main objective of the RCM process is to establish the complete maintenance regime, with the safe minimum required maintenance, carried out without any risk to personnel, telescope and subsystems. At the same time, a correct application of the RCM allows to increase the cost effectiveness, telescope uptime and items availability, and to provide greater understanding of the level of risk that the organization is managing. At the same time, engineers shall make a great effort since the initial phase of the project to obtain a telescope requiring easy maintenance activities and simple replacement of the major assemblies, taking special care on the accesses design and items location, implementation and design of special lifting equipment and handling devices for the heavy items. This maintenance engineering framework is based on seven points, which lead to the main steps of the RCM program. The initial steps of the RCM process consist of: system selection and data collection (MTBF, MTTR, etc.), definition of system boundaries and operating context, telescope description with the use of functional block diagrams, and the running of a FMECA to address the dominant causes of equipment failure and to lay down the Critical Items List. In the second part of the process the RCM logic is applied, which helps to determine the appropriate maintenance tasks for each identified failure mode. Once

  19. Radio Frequency Enhanced Plasma Potential and Flows in the Scrap-Off Layer of an Active Antenna

    Science.gov (United States)

    Martin, Michael John

    Ion cyclotron resonance heating (ICRH) systems are critical components of current and future tokamak experiments aimed at producing nuclear fusion energy. During ICRH a host of deleterious effects occur, including increased heat flux to plasma facing components and modification of launched wave power. A suspected root cause of these effects is the radio frequency (RF) rectification of the plasma potential. Interest in the antenna scrape-off layer (SOL) region has drawn increasing interest, as it is recognized that mitigating these effects is necessary to achieving fusion power. This dissertation investigates the RF rectification of the plasma potential and the resulting cross-field flows that form due to an active RF antenna. The experiment is performed in the Large Plasma Device (LAPD) utilizing a fast wave antenna and RF amplifier system developed for these studies. The RF system is capable of 150 kW output power for a 1 ms pulse that is repeated at the 1 Hz repetition rate of the LAPD plasma discharge. Upon application of the RF pulse to the antenna, the DC plasma potential, measured with an emissive probe, dramatically increases in certain spatial locations by a factor greater than 10 Te. The largest plasma potentials are observed at locations magnetically connected to the top and bottom of the antenna, and they exist only in the private SOL created between the antenna and a limiter placed 3.6 m away along the LAPD axis. The DC rectified potentials scale linearly with the antenna current over a factor of 12x in the applied current. These DC potentials increase plasma materials interactions (PMI), resulting in the sputtering of antenna materials whose presence is detected in the bulk plasma by the coatings that develop on probe diagnostics. The DC rectified potentials persist in the plasma long after the RF current in the antenna has rung down on the same time scales as the change in the density. At the top and bottom of the antenna are circular flows, often

  20. Compact printed two dipole array antenna with a high front-back ratio for ultra-high-frequency radio-frequency identification handheld reader applications

    DEFF Research Database (Denmark)

    Liu, Qi; Zhang, Shuai; He, Sailing

    2015-01-01

    A printed two-dipole array antenna with a high front-back ratio is proposed for ultra-high-frequency (UHF) radio-frequency identification handheld readers. The proposed antenna is a parasitic dual-element array with the ends of both elements folded back towards each other for additional coupling....

  1. Prototype specification of antenna and radio front-end schemes for PAN devices

    DEFF Research Database (Denmark)

    Wang, Yu; Nguyen, Hung Tuan; johansson, Anders

    2007-01-01

    be implemented in the prototype directly, or used as references in antenna selections for the prototype. Interference mitigation on antenna system level for both HDR and LDR systems is investigated. For the LDR system, interference from the HDR system and UWB systems is identified as most critical. Front......This document provides antenna system specifications for the MAGNET Beyond prototype. Requirements on selecting antenna elements and diversity antenna systems are presented. A number of antenna elements and diversity systems suitable for MAGNET systems are specified. Presented antennas can......-end filtering with high attenuation on 5.2 GHz is suggested to suppress interference from the HDR system. A low-complexity switching diversity antenna system is designed to mitigate UWB interference. The performance of proposed scheme is evaluated with measured channels. The implementation of the scheme...

  2. Antennas.

    Science.gov (United States)

    1982-03-03

    arc csch csch - 1 Russian English rot curl lg log !i FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA P.M. Geruni This article presents the basic...rlpe’ I operating band, MHz elliptical Xk, mm X , m fk, MHz z wavgudeeg MHz f =1.2f f =0.95f waegid H X B rip = E40 104.5 56.4 2872 5410 3446 5141 E48...aperture In order to do this, we expand (30) into a series with respect to y. Limiting ourselves to the first three terms of the expansion, we obtain r

  3. Radio Capacity Estimation for Millimeter Wave 5G Cellular Networks Using Narrow Beamwidth Antennas at the Base Stations

    Directory of Open Access Journals (Sweden)

    AlMuthanna Turki Nassar

    2015-01-01

    Full Text Available This paper presents radio frequency (RF capacity estimation for millimeter wave (mm-wave based fifth-generation (5G cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS. This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.

  4. Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras

    Science.gov (United States)

    Pappa, Richard S.; Giersch, Louis R.; Quagliaroli, Jessica M.

    2000-01-01

    This paper discusses photogrammetric measurements of a 5m-diameter inflatable space antenna using four Kodak DC290 (2.1 megapixel) digital cameras. The study had two objectives: 1) Determine the photogrammetric measurement precision obtained using multiple consumer-grade digital cameras and 2) Gain experience with new commercial photogrammetry software packages, specifically PhotoModeler Pro from Eos Systems, Inc. The paper covers the eight steps required using this hardware/software combination. The baseline data set contained four images of the structure taken from various viewing directions. Each image came from a separate camera. This approach simulated the situation of using multiple time-synchronized cameras, which will be required in future tests of vibrating or deploying ultra-lightweight space structures. With four images, the average measurement precision for more than 500 points on the antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-plane.

  5. Design of a Microstrip Bowtie Antenna for Indoor Radio-Communications

    Directory of Open Access Journals (Sweden)

    Fraga-Rosales Hector

    2017-01-01

    Full Text Available In this paper, a microstrip bowtie patch antenna (MBPA for wireless indoor communications is carried out. Here, a microstrip transmission-line feed network was designed in order to match the MBPA. The proposed antenna uses a ground plane with the aim of narrowing down the back lobes in comparison with bowtie sheet antennas, which radiation pattern is omni-directional. The far-field pattern of the antenna was simulated using a finite-element numerical algorithm and obtained by interpolation employing near-field equipment. The experimental results are described in detail intending to agree well with the simulated predictions. The antenna was designed, measured and built and its far field performance was evaluated with a 2.11 GHz resonant frequency. The azimuth and elevation antenna patterns, antenna gain and, the matching frequency were the main parameters obtained to analyze the antenna behaviour. The antenna has a gain approximately equal to 8.77 dBi and its beam-widths are higher than 100° in E plane.

  6. Quantitative Radio-Cardiography with the Digital Autofluoroscope

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M. A.; Moussa-Mahmoud, L.; Blau, M. [Roswell Park Memorial Institute, Buffalo, NY (United States)

    1969-05-15

    The Digital Autofluoroscope was designed primarily to permit a quantitative evaluation of the rapid flow of short-lived radioisotopes through compartments within organs. To perform these studies, the instrument is operated in the dynamic mode. In this mode the patient is positioned in front of the detector, the radioactive material is administered, and the instrument automatically accumulates data in a magnetic core memory for a preset period of time varying from 30 milliseconds to 1 minute. At the end of the accumulation period, the stored information is dumped on computer-compatible digital magnetictape, the memory is cleared, and a new accumulation cycle commences. Upon completion of a study, the tape is replayed and anatomical sites identified from the images of the distribution of the radioactive material. A memory flagging system is then used to obtain quantitative information on a regional basis. Radio-cardiograms are performed following the intravenous injection of a bolus of 10 millicuries of {sup 99m}Tc, and rapid sequence recording of the cardiac inflow and outflow data is obtained at the rate of five frames per second. Upon completion of the study, the digital tape is played back and the locations of the four chambers of the heart are identified. The memory elements corresponding to each of these anatomical sites are then flagged, the data is replayed, and the inflow and outflow curves for each chamber are recorded separately. An EKG trigger device can be used to initiate every count-record cycle to permit the accumulation of data only during diastole. The resulting data is easier to interpret as changes in cardiac volume due to normal contractions are not recorded. This technique has been evaluated in 20 volunteers to establish normal values. Over 50 patients with congenital and acquired heart disease have been studied, and the following parameters evaluated: (1) cardiac output, (2) pulmonary blood transit time, (3) pulmonary blood volume, and (4) the

  7. Antenna toolkit

    CERN Document Server

    Carr, Joseph

    2006-01-01

    Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con

  8. Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection

    KAUST Repository

    Tourki, Kamel

    2014-03-01

    We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI

  9. Receive antenna selection for underlay cognitive radio with instantaneous interference constraint

    KAUST Repository

    Hanif, Muhammad Fainan

    2015-06-01

    Receive antenna selection is a low complexity scheme to reap diversity benefits.We analyze the performance of a receive antenna selection scheme in spectrum sharing systems where the antenna that results in highest signal-to-interference plus noise ratio at the secondary receiver is selected to improve the performance of secondary transmission. Exact and asymptotic behaviours of the received SINR are derived for both general and interference limited scenarios over general fading environment. These results are then applied to the outage and average bit error rate analysis when the secondary transmitter changes the transmit power in finite discrete levels to satisfy the instantaneous interference constraint at the primary receiver.

  10. A Model of Path Arrival Rate for In-Room Radio Channels with Directive Antennas

    DEFF Research Database (Denmark)

    Pedersen, Troels

    and orientation are picked uniformly at random we derive an exact expression of the mean arrival rate for a rectangular room predicted by the mirror source theory. The rate is quadratic in delay, inversely proportional to the room volume, and proportional to the product of beam coverage fractions...... that the power-delay spectrum is unaffected by the antenna directivity. However, Monte Carlo simulations show that antenna directivity does indeed play an important role for the distribution of instantaneous mean delay and rms delay spread....

  11. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  12. Transmit Antenna Selection for Underlay Cognitive Radio with Instantaneous Interference Constraint

    KAUST Repository

    Hanif, Muhammad; Yang, Hong Chuan; Alouini, Mohamed-Slim

    2016-01-01

    Cognitive radio (CR) technology addresses the problem of spectrum under-utilization. In underlay CR mode, the secondary users are allowed to communicate provided that their transmission is not detrimental to primary user communication. Transmit

  13. On Secure Underlay MIMO Cognitive Radio Networks with Energy Harvesting and Transmit Antenna Selection

    KAUST Repository

    Lei, Hongjiang; Xu, Ming; Ansari, Imran Shafique; Pan, Gaofeng; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we consider an underlay multipleinput- multiple-output (MIMO) cognitive radio network (CRN) including a pair of primary nodes, a couple of secondary nodes, and an eavesdropper, where the secondary transmitter is powered

  14. Using radio frequency and ultrasonic antennas for inspecting pin-type insulators on medium-voltage overhead distribution lines

    Directory of Open Access Journals (Sweden)

    Cícero Lefort Borges

    2013-05-01

    Full Text Available This paper summarises the activities undertaken when using antennas (ultrasound and radiofrequency for identifying insulators in pre-failure state by detecting the noise emitted by the distribution line and correlating this with these insulators (porcelain pin type dielectric breakdown. This has led to developing low-cost maintenance procedures and providing support and criteria for engineer-ing decisions regarding replacing these insulators. The technique used two detectors; a radio frequency detector was used in a first investigation of a particular distribution line, set to 40 MHz and installed on the roof of a moving vehicle. The ultrasound detector was used for inspecting (phases A, B, C each structure (pole selected. Atmospheric conditions had no influence on defining pre-failure insulators (pin type based on the noise detection technique. Pin type insulators emitting noise should be replaced since measurement was made from the ground and near the base of the post.

  15. Environmental Assessment for Leasing Land for the Siting, Construction and Operation of a Commercial AM Radio Antenna at Los Alamos National Laboratory, Los Alamos, NM

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-02-16

    The United States (U.S.) Department of Energy (DOE) proposes to lease approximately 3 acres of land at the Los Alamos National Laboratory (LANL) on the southeast tip of Technical Area (TA) 54 for the siting, construction and operation of an AM radio broadcasting antenna. This Environmental Assessment (EA) has been developed in order to assess the environmental effects of the Proposed Action and No Action alternative. The Proposed Action includes the lease of land for the siting, construction and operation of an AM radio broadcasting antenna in TA-54, just north of Pajarito Road and State Highway 4. The No Action Alternative was also considered. Under the No Action Alternative, DOE would not lease land on LANL property for the siting and operation of an AM radio broadcasting antenna; the DOE would not have a local station for emergency response use; and the land would continue to be covered in native vegetation and serve as a health and safety buffer zone for TA-54 waste management activities. Other potential sites on LANL property were evaluated but dismissed for reasons such as interference with sensitive laboratory experiments. Potential visual, health, and environmental effects are anticipated to be minimal for the Proposed Action. The radio broadcasting antenna would be visible against the skyline from some public areas, but would be consistent with other man-made objects in the vicinity that partially obstruct viewsheds (e.g. meteorological tower, power lines). Therefore, the net result would be a modest change of the existing view. Electromagnetic field (EMF) emissions from the antenna would be orders or magnitude less than permissible limits. The proposed antenna construction would not affect known cultural sites, but is located in close proximity to two archaeological sites. Construction would be monitored to ensure that the associated road and utility corridor would avoid cultural sites.

  16. Performance analysis for IEEE 802.11 distributed coordination function in radio-over-fiber-based distributed antenna systems.

    Science.gov (United States)

    Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong

    2013-09-09

    In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.

  17. Radio-Frequency design of a Lower Hybrid Slotted Waveguide Antenna.

    Czech Academy of Sciences Publication Activity Database

    Helou, W.; Goniche, M.; Hillairet, J.; Žáček, František; Achard, J.; Adámek, Jiří; Bogár, Ondrej; Mollard, P.; Pascal, J.-Y.; Poli, S.; Šesták, David; Volpe, R.; Zajac, Jaromír

    2017-01-01

    Roč. 123, November (2017), s. 223-227 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] Institutional support: RVO:61389021 Keywords : Lower Hybrid Current Drive * Slotted Waveguide Antenna * Phased arrays Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 https://www.sciencedirect.com/science/article/pii/S0920379617304076

  18. Simplified polynomial digital predistortion for multimode software defined radios

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2010-01-01

    a simplified approach using polynomial digital predistortion in the intermediated frequency (IF) domain. It is fully implementable in software and no hardware changes are required on the digital or analog platform. The adaptation algorithm selected was Least Mean Squares because of its relevant simplicity...

  19. Raft and floating radio frequency identification (RFID) antenna systems for detecting and estimating abundance of PIT-tagged fish in rivers

    Science.gov (United States)

    Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.

    2016-01-01

    Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.

  20. Application of Digital Cellular Radio for Mobile Location Estimation

    Directory of Open Access Journals (Sweden)

    Farhat Anwar

    2012-08-01

    Full Text Available The capability to locate the position of mobiles is a prerequisite to implement a wide range of evolving ITS services. Radiolocation has the potential to serve a wide geographical area. This paper reports an investigation regarding the feasibility of utilizing cellular radio for the purpose of mobile location estimation. Basic strategies to be utilized for location estimation are elaborated. Two possible approaches for cellular based location estimation are investigated with the help of computer simulation. Their effectiveness and relative merits and demerits are identified. An algorithm specifically adapted for cellular environment is reported with specific features where mobiles, irrespective of their numbers, can locate their position without adversely loading the cellular system.Key Words: ITS, GSM, Cellular Radio, DRGS, GPS.

  1. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A

    2007-01-01

    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  2. Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2011-01-01

    The performance of optical phase-modulated (PM) radio-over-fiber (RoF) links assisted with coherent detection and digital signal processing (PM-Coh) is analyzed and experimentally demonstrated for next-generation wireless-over-fiber systems. PM-Coh offers high linearity for transparent transport ...

  3. Radio Refractivity Study in Akure-Owo Digital Microwave Link in ...

    African Journals Online (AJOL)

    This work is a study of radio refractivity in Akure-Owo Digital Microwave Link in South Western Nigeria. Meteorological data of air temperature, atmospheric pressure, relative humidity, and water vapour pressure were measured between January and December 2006 at the observatory centre of the Nigerian meteorological ...

  4. Theoretical Feasibility of Digital Communication Over Ocean Areas by High Frequency Radio

    Science.gov (United States)

    1979-11-01

    The theoretical reliability of digital data transmission via high frequency radio is examined for typical air traffic routes in the Atlantic and Pacific areas to assist the U.S. Department of Transportation in the evaluation of a system for improving...

  5. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    Science.gov (United States)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  6. Analisis Migrasi Radio Trunking Analog ke Radio Trunking Digital di Indonesia

    Directory of Open Access Journals (Sweden)

    Riza Azmi

    2013-09-01

    Full Text Available Dalam Tabel Alokasi Spektrum Frekuensi di Indonesia pada catatan kaki INS9 dan INS13 disebutkan bahwa alokasi pada pita-pita frekuensi yang digunakan untuk teknologi trunking direncanakan dimigrasi ke sistem komunikasi trunking digital pada waktu yang akan ditentukan oleh pemerintah. Terkait dengan hal itu, studi ini bertujuan untuk mengkaji bagaimana kelayakan migrasi dari sistem trunking analog ke sistem trunking digital dan hal-hal yang terkait dengannya. Dengan menggunakan analisis biaya dan manfaat (Cost-Benefit Analysis studi ini melihat bahwa migrasi hanya dapat dilakukan jika umur masing-masing lisensi dari operator telah berakhir, atau dengan kata lain pemerintah dapat mendorong transisi ke digital dengan menerbitkan lisensi baru yaitu lisensi trunking digital.

  7. Antennas from theory to practice

    CERN Document Server

    Huang, Yi

    2008-01-01

    Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag

  8. Interactive Lab to Learn Radio Astronomy, Microwave & Antenna Engineering at the Technical University of Cartagena (Spain

    Directory of Open Access Journals (Sweden)

    Fernando Daniel Quesada-Pereira

    2011-02-01

    Full Text Available An initiative carried out at the Technical University of Cartagena (UPCT, Spain to encourage students and promote the interest for Scientific and Engineering Culture between society is presented in this contribution. For this purpose, a long-term project based on the set-up of an interactive laboratory surrounding a small Radio Telescope (SRT system has been carried out. The main novelty is that this project is entirely being developed by students of last courses of our Telecommunication Engineering Faculty, under the supervision of four lecturers. This lab offers the possibility to remotely control the SRT, and it provides a set of multimedia web-based applications to produce a novel, practical, multidisciplinary virtual laboratory to improve the learning and teaching processes in related sciences and technologies.

  9. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  10. Achievable Rate of Spectrum Sharing Cognitive Radio Multiple-Antenna Channels

    KAUST Repository

    Sboui, Lokman

    2015-04-28

    We investigate the spectral efficiency gain of an uplink Cognitive Radio (CR) Multi-Input-Multi-Output system in which the Secondary User (SU) is allowed to share the spectrum with the Primary User (PU) using a specific precoding scheme to communicate with a common receiver. The proposed scheme exploits, at the same time, the free eigenmodes of the primary channel after a space alignment procedure and the interference threshold tolerated by the PU. At the common receiver, we adopt a Successive Interference Cancellation (SIC) technique to eliminate the effect of the detected primary signal transmitted through the exploited eigenmodes. Furthermore, we analyze the SIC operation inaccuracy as well as the CSI estimation imperfection on the PU and SU throughputs. Numerical results show that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, the CR rate remains non-zero for high Signal to Noise Ratio which is usually impossible when we only employ a space alignment technique. We show that a modified water-filling power allocation policy at the PU can increase the secondary rate with a marginal degradation of the primary rate. Finally, we investigate the behavior of the PU and SU rates through the study of the rate achievable region.

  11. Beyond digital interference cancellation

    NARCIS (Netherlands)

    Venkateswaran, V.

    2010-01-01

    One of the major drawbacks towards the realization of MIMO and multi-sensor wireless communication systems is that multiple antennas at the receiver each have their own separate radio frequency (RF) front ends and analog to digital converter (ADC) units, leading to increased circuit size and power

  12. Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation

    Science.gov (United States)

    Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho

    2016-11-01

    We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.

  13. Adaptive antenna system by ESP32-PICO-D4 and its application to web radio system

    OpenAIRE

    Kodera, Toshiro

    2017-01-01

    Adaptive antenna technique has an important role in the IoT environment in order to establish reliable and stable wireless communication in high congestion situation. Even if knowing antenna characteristics in advance, electromagnetic wave propagation in the non-line-of-sight environment is very complex and unpredictable, therefore, the adjustment the antenna radiation for the optimum signal reception is important for the better wireless link. This article presents a simple but effective adap...

  14. Radio digital e interactiva. Formatos y prácticas sociales

    Directory of Open Access Journals (Sweden)

    Aurora García González

    2012-04-01

    Full Text Available Una consecuencia de la eclosión de Internet ha sido la aparición, en los últimos 20 años, de los medios digitales (lector de MP3, Play Station… que, podrían considerarse medios preexistentes que han devenido en digitales trasformando sus lenguajes, sus formas de expresión y sobre todo las prácticas sociales del que los usa. Naturalmente la radio no ha sido ajena a este fenómeno, máxime cuando se ha presentado la radio digital como la evolución natural de la radio analógica todavía en uso. Está claro que Internet establece una forma de radiodifusión distinta a la conocida. Para la audiencia es una nueva forma de consumir la misma radio, ofreciendo posibilidad de acceder a bancos de datos de programas y diseñar la propia oferta radiofónica a la hora y en lugar que el usuario decida, transformándose en una oferta de radio a la carta.

  15. A novel method for the evaluation of polarization and hemisphere coverage of HF radio noise measurement antennas

    NARCIS (Netherlands)

    Witvliet, Ben A.; van Maanen, Erik; Bentum, Mark J.; Slump, Cornelis H.; Schiphorst, Roel

    2015-01-01

    In HF (3-30 MHz) communications the ambient electromagnetic background noise or 'radio noise' generally is the limiting factor in reception. Radio noise measurements are needed for spectrum pollution control and to provide reference levels for radio system design. This article discusses the

  16. Direction of Radio Finding via MUSIC (Multiple Signal Classification) Algorithm for Hardware Design System

    Science.gov (United States)

    Zhang, Zheng

    2017-10-01

    Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.

  17. MARBLE (Multiple Antenna Radio-interferometry for Baseline Length Evaluation): Development of a Compact VLBI System for Calibrating GNSS and Electronic Distance Measurement Devices

    Science.gov (United States)

    Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.

    2012-12-01

    We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.

  18. Oralidad terciaria: mirada ecológica a la radio digital

    Directory of Open Access Journals (Sweden)

    Adriana Ángel-Botero

    2016-01-01

    Full Text Available El crecimiento y la apropiación acelerados de las nuevas tecnologías (telefonía móvil, tabletas, computadores personales han generado una reconfiguración mediática de la radio, lo cual, a su vez, ha redefinido un nuevo hábitat de escucha radial basado en la oralidad terciaria. De esta manera, y partiendo de los planteamientos hechos por Ong sobre la oralidad secundaria como modo de conciencia, este estudio analiza la manera como la oralidad terciaria se constituye como tecnología de pensamiento que cambia la experiencia de escucha de la radio en plataformas web. Retomando estudios fenomenológicos previamente realizados en la tradición del campo del media ecology, la presente investigación se sustenta en un estudio fenomenológico basado en entrevistas a oyentes de radio digital. Estas entrevistas fueron estructuradas según los cuatro existencialismos propuestos por Van Manen: espacialidad, temporalidad, relacionalidad y corporalidad. A partir del análisis de estos existencialismos, se proponen tres características de la oralidad terciaria, como la vivacidad, la transcodificación y la adresividad.

  19. Zeroth order resonator (ZOR) based RFID antenna design

    Science.gov (United States)

    Masud, Muhammad Mubeen

    Meander-line and multi-layer antennas have been used extensively to design compact UHF radio frequency identification (RFID) tags; however the overall size reduction of meander-line antennas is limited by the amount of parasitic inductance that can be introduced by each meander-line segment, and multi-layer antennas can be too costly. In this study, a new compact antenna topology for passive UHF RFID tags based on zeroth order resonant (ZOR) design techniques is presented. The antenna consists of lossy coplanar conductors and either inter-connected inter-digital capacitor (IDC) or shunt inductor unit-cells with a ZOR frequency near the operating frequency of the antenna. Setting the ZOR frequency near the operating frequency is a key component in the design process because the unit-cells chosen for the design are inductive at the operating frequency. This makes the unit-cells very useful for antenna miniaturization. These new designs in this work have several benefits: the coplanar layout can be printed on a single layer, matching inductive loops that reduce antenna efficiency are not required and ZOR analysis can be used for the design. Finally, for validation, prototype antennas are designed, fabricated and tested.

  20. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea

    2009-01-01

    types of signals defined in IEEE 802.16 (WiMAX) standard for wireless networks: a 90 Mbps single-carrier signal (64-QAM at 2.4 GHz) and a 78 Mbps multitone orthogonal frequency-division multiple access (OFDMA) signal. The power budget of this configuration supports a 4-element antenna array....... on a directly-modulated reflective emiconductor amplifier (R-SOA) and exploits the interplay between transmission-line dispersion and tunable optical filtering to achieve flexible true time delay, with $2pi$ beam steering at the different antennas. The system was characterized, then successfully tested with two...

  1. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  2. A 60-GHz energy harvesting module with on-chip antenna and switch for co-integration with ULP radios in 65-nm CMOS with fully wireless mm-wave power transfer measurement

    NARCIS (Netherlands)

    Gao, H.; Matters - Kammerer, M.; Harpe, P.J.A.; Milosevic, D.; Roermund, van A.H.M.; Linnartz, J.P.M.G.; Baltus, P.G.M.

    2014-01-01

    In this paper the architecture and performance of a co-integrated 60 GHz on-chip wireless energy harvester and ultra-low power (ULP) radio in 65-nm CMOS are discussed. Integration of an on-chip antenna with wireless power receiver and wireless data transfer module is the crucial next step to achieve

  3. Information and Announcements Institute of Radio Physics and ...

    Indian Academy of Sciences (India)

    ics and optical communication, computer organization and architecture, microproces- sors, advanced digital circuits, antennas and radio wave propagation, guided wave trans- mission, microwave and mm wave engg., in- dustrial economics and management, com- munication links and networking, computer aided analysis ...

  4. FPGA applications for single dish activity at Medicina radio telescopes

    Science.gov (United States)

    Bartolini, M.; Naldi, G.; Mattana, A.; Maccaferri, A.; De Biaggi, M.

    FPGA technologies are gaining major attention in the recent years in the field of radio astronomy. At Medicina radio telescopes, FPGAs have been used in the last ten years for a number of purposes and in this article we will take into exam the applications developed and installed for the Medicina Single Dish 32m Antenna: these range from high performance digital signal processing to instrument control developed on top of smaller FPGAs.

  5. New Methods of Stereo Encoding for FM Radio Broadcasting Based on Digital Technology

    Directory of Open Access Journals (Sweden)

    P. Stranak

    2007-12-01

    Full Text Available The article describes new methods of stereo encoding for FM radio broadcasting. Digital signal processing makes possible to construct an encoder with properties that are not attainable using conventional analog solutions. The article describes the mathematical model of the encoder, on the basis of which a specific program code for DSP was developed. The article further deals with a new method of composite clipping which does not cause impurities in the output spectrum, and at the same time preserves high separation between the left and right audio channels. The application of the new method is useful mainly where there are unwanted signal overshoots on the input of the stereo encoder, e.g., in case of signal transmission from the studio to the transmitter site through a route with psychoacoustic lossy compression of data rate.

  6. A RADIO SEARCH FOR PULSAR COMPANIONS TO SLOAN DIGITAL SKY SURVEY LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Camilo, Fernando; Silvestri, Nicole M.; Anderson, Scott F.; Kleinman, S. J.; Liebert, James W.

    2009-01-01

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M sun ) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive white dwarf (WD) or a neutron star (NS) as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs, suggesting that the SDSS LMWDs may have NS companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al., who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as 'ordinary' WDs). We discuss the constraints our nondetections place on the probability P MSP that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P MSP +4 -2 %.

  7. The cultural-historical value of and problems with digitized advertisements : Historical newspapers and the portable radio, 1950- 1969

    NARCIS (Netherlands)

    Verhoef, J.

    2015-01-01

    This article demonstrates how a digital newspaper archive such as Delpher offers new possibilities to do justice to the value of newspaper advertisements when conducting historical research. A case study into the way advertisements tried to cater to youngsters in portable radio advertisements

  8. 47 CFR 25.214 - Technical requirements for space stations in the satellite digital audio radio service and...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Technical requirements for space stations in the satellite digital audio radio service and associated terrestrial repeaters. 25.214 Section 25.214 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  9. 47 CFR 25.144 - Licensing provisions for the 2.3 GHz satellite digital audio radio service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Licensing provisions for the 2.3 GHz satellite digital audio radio service. 25.144 Section 25.144 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25...

  10. Wireless receiver architectures and design antennas, RF, synthesizers, mixed signal, and digital signal processing

    CERN Document Server

    Rouphael, Tony J

    2014-01-01

    Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver's analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, s

  11. Spiral Slotted Microstrip Antenna Design for 700 MHz Band Application

    Directory of Open Access Journals (Sweden)

    Ricardo Meneses González

    2016-01-01

    Full Text Available This work describes the design and implementation of spiral slotted microstrip antenna. Recently, just like other countries, in Mexico, terrestrial digital television has been implemented (analogic shutdown; as a consequence, the 700 MHz UFH Band (698–806 MHz has been opened to new telecommunications services, particularly wireless mobile communication. This technological advance represents a radio mobile antenna design challenge because it is necessary to design an antenna whose dimensions must be small enough, which satisfies gain, resonance frequency, and bandwidth requirements and is of low cost.

  12. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry

    Science.gov (United States)

    Schaefer, R. T.; MacAskill, J. A.; Mojarradi, M.; Chutjian, A.; Darrach, M. R.; Madzunkov, S. M.; Shortt, B. J.

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  13. Digitally synthesized high purity, high-voltage radio frequency drive electronics for mass spectrometry.

    Science.gov (United States)

    Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J

    2008-09-01

    Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.

  14. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Obervatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2012-01-01

    Roč. 7, Oct (2012), s. 1-42 ISSN 1748-0221 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : large detector systems for particle and astroparticle physics * antennas Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.869, year: 2011

  15. Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2017-01-01

    Roč. 12, Oct (2017), s. 1-38, č. článku T10005. ISSN 1748-0221 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : antennas * detector alignment and calibration methods (lasers, sources, particle-beams) * large detector systems for particle and astroparticle physics Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 1.220, year: 2016

  16. Re-configurable digital receiver for optically envelope detected half cycle BPSK and MSK radio-on-fiber signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Prince, Kamau; Zibar, Darko

    2011-01-01

    We present the first known integration of a digital receiver into optically envelope detection radio-on-fiber systems. We also present a re-configurable scheme for two different types of optically envelope detected wireless signals while keeping the complexity of used optical components low. Our...... novel digital receiver consists of a digital signal processing unit integrating functions such as filtering, peak-powers detection, symbol synchronization and signal demodulation for optically envelope detected half-cycle binary phase-shift-keying and minimum-shift-keying signals. Furthermore, radio......-frequency signal down-conversion is not required in our proposed approach; simplifying evens more the optical receiver front-end. We experimentally demonstrate error-free optical transmission (bit-error rate corresponding to 10−3 related to FEC-compatible levels) for both 416.6 Mbit/s half-cycle binary phase...

  17. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  18. Software Defined Radio (SDR and Direct Digital Synthesizer (DDS for NMR/MRI Instruments at Low-Field

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2013-11-01

    Full Text Available A proof-of-concept of the use of a fully digital radiofrequency (RF electronics for the design of dedicated Nuclear Magnetic Resonance (NMR systems at low-field (0.1 T is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS for pulse generation, a Software Defined Radio (SDR for a digital receiving of NMR signals and a Digital Signal Processor (DSP for system control and for the generation of the gradient signals (pulse programmer. The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…. The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.

  19. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field

    Science.gov (United States)

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  20. Antenna Controller Replacement Software

    Science.gov (United States)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; hide

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  1. The Antenna Bride and Bridegroom

    Science.gov (United States)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  2. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  3. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    Science.gov (United States)

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-06-22

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  4. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    Directory of Open Access Journals (Sweden)

    Caroline Loss

    2016-06-01

    Full Text Available The Internet of Things (IoT scenario is strongly related with the advance of the development of wireless sensor networks (WSN and radio frequency identification (RFID systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM 900 and digital cellular system (DCS 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  5. Antennas for light and plasmons

    NARCIS (Netherlands)

    Dikken, D.J.W.

    2015-01-01

    Antennas have been used for over a century as emitters, scatterers and receivers of electromagnetic waves. All wireless communication devices, such as radio, mobile phones and satellite communication are strongly dependent on the capability of an antenna to localize propagating electromagnetic waves

  6. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  7. 47 CFR 74.737 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV...

  8. 47 CFR 74.1237 - Antenna location.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.1237 Section 74.1237 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... FM Broadcast Booster Stations § 74.1237 Antenna location. (a) An applicant for a new station to be...

  9. 47 CFR 73.753 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate...

  10. COMWIN Antenna System Fiscal Year 2000 Report

    National Research Council Canada - National Science Library

    Adams, R

    2000-01-01

    .... The Joint Tactical Radio (JTR) requires this frequency. The figure of merit to determine whether the radio is efficient in the band is a Standing Wave Ratio (VSWR) of less than 3:1. The COMWIN antenna system would consist of three antennas. The first antenna, in the form of a vest, would operate in the 30- to 500-MHz band. The helmet antenna would operate in the 500- to 2000 MHz band. An antenna that runs down the edges would operate in the 2- to 30-MHz band.

  11. Primena metode MUSIC za određivanje smera dolaska radio-signala korišćenjem antenskih nizova ADCOCK / Application of the MUSIC method for direction of arrival estimation using the ADCOCK antenna arrays

    Directory of Open Access Journals (Sweden)

    Miljko M. Erić

    2002-01-01

    Full Text Available Analiziran je problem procene smera dolaska radio-signala metodom MUSIC korišćenjem antenskih nizova ADCOCK. Formulisan je matematički model signala na antenskom nizu ADCOCK. Izvedene su relacije između vektora prostiranja ADCOCK i vektora prostiranja ukupnog antenskog niza (niza od koga se ADCOCK-ov niz formira. Definisana je kriterijumska funkcija algoritma MUSIC i funkcija neodređenosti antenskog niza ADCOCK. Prikazani su rezultati simulacije, kao i rezultati praktične verifikacije mogućnosti primene metode MUSIC na antenske nizove ADCOCK. / The MUSIC based Direction of Arrival estimation using the ADCOCK antenna arrays is considered. Starting from signal model formulation, the cost function of the MUSIC algorithm and the ambiguity functions for the ADCOCK antenna array have been formulated. Some simulation results and some preliminary results of the verification in practice are presented.

  12. A FPGA-based Fast Converging Digital Adaptive Filter for Real-time RFI Mitigation on Ground Based Radio Telescopes

    Science.gov (United States)

    Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.

    2018-02-01

    Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.

  13. 47 CFR 73.6025 - Antenna system and station location.

    Science.gov (United States)

    2010-10-01

    ... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station... clearly the radiation characteristics of the antenna above and below the horizontal plane. In cases where...

  14. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin; Niver, Edip

    2011-01-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without

  15. 75 FR 17874 - Digital Audio Broadcasting Systems and Their Impact on the Terrestrial Radio Broadcast Service

    Science.gov (United States)

    2010-04-08

    ... power (ERP), and implements interference mitigation and remediation procedures to resolve promptly... ERP increase undertaken pursuant to the procedures adopted. The increase in FM hybrid digital ERP will... increases in FM digital ERP do not adversely affect existing FM analog operations. These rule changes...

  16. ENERGY-EFFICIENT PASSIVE ANTENNA CODE PULSE MODULATION DUE TO THE REFLECTION OF MICROWAVE SIGNAL

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2015-01-01

    Full Text Available The article describes an antenna in a corner reflector with a p-i-n-diodes, integrated with the housing transceiver, which allows not only to provide bidirectional communication with the base station as a result of multipath radio three times, but with minimal energy consumption to provide digitally transmit information on the reflected wave flow of any complexity, which allow to eliminate energy in the transmit path and extend the life of the device. 

  17. Digital broadcasting

    International Nuclear Information System (INIS)

    Park, Ji Hyeong

    1999-06-01

    This book contains twelve chapters, which deals with digitization of broadcast signal such as digital open, digitization of video signal and sound signal digitization of broadcasting equipment like DTPP and digital VTR, digitization of equipment to transmit such as digital STL, digital FPU and digital SNG, digitization of transmit about digital TV transmit and radio transmit, digital broadcasting system on necessity and advantage, digital broadcasting system abroad and Korea, digital broadcasting of outline, advantage of digital TV, ripple effect of digital broadcasting and consideration of digital broadcasting, ground wave digital broadcasting of DVB-T in Europe DTV in U.S.A and ISDB-T in Japan, HDTV broadcasting, satellite broadcasting, digital TV broadcasting in Korea, digital radio broadcasting and new broadcasting service.

  18. Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-fiber link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Highest reported bit rate of 2.5 Gb/s for optically phase modulated radio-over-fiber (RoF) link, employing digital coherent detection, is demonstrated. Demodulation of 3$,times,$ 2.5 Gb/s quadrature phase-shift keying modulated wavelength-division-multiplexed RoF channels is achieved after 79 km ...... of transmission through deployed fiber. Error-free performance (bit-error rate corresponding to $10^{{-}4}$) is achieved using a digital coherent receiver in combination with a $K$-means algorithm for radio-frequency phase recovery....

  19. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  20. Digitally-assisted analog and RF CMOS circuit design for software-defined radio

    CERN Document Server

    Okada, Kenichi

    2011-01-01

    This book describes the state-of-the-art in RF, analog, and mixed-signal circuit design for Software Defined Radio (SDR). It synthesizes for analog/RF circuit designers the most important general design approaches to take advantage of the most recent CMOS technology, which can integrate millions of transistors, as well as several real examples from the most recent research results.

  1. A combined analogue+ digital software defined radio receiver front-end for Bluetooth and Hiperlan/2

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Schiphorst, Roelof; Hoeksema, F.W.; Klumperink, Eric A.M.; Nauta, Bram; Slump, Cornelis H.

    2004-01-01

    The number of wireless communication links is witnessing tremendous growth and new standards are being introduced at high pace. However, circuit development is costly and time consuming due to mask costs and design iterations. Moreover, with ever-increasing radio standard complexity, these costs are

  2. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  3. Blind I/Q imbalance compensation technique for direct-conversion digital radio transceivers

    CSIR Research Space (South Africa)

    De Witt, JJ

    2009-05-01

    Full Text Available . Digital signal processing techniques have widely been proposed to compensate for these mixer imperfections. Of these techniques, the class of blind compensation techniques seems very attractive since no test signals are required. This paper presents a...

  4. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Enrico, E-mail: enrico.sowade@mb.tu-chemnitz.de [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Göthel, Frank [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Zichner, Ralf [Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany); Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany)

    2015-03-30

    Highlights: • Inkjet printing of UHF antennas on cardboard substrates. • Development of primer layer to compensate the absorptiveness of the cardboard and the rough surface. • Manufacturing of UHF antennas in a fully digital manner for packaging applications. - Abstract: In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S{sub 11} and the antenna gain.

  5. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  6. La Radio comuntiaria en Chile y su re-construcción en la era digital

    OpenAIRE

    Ramírez Cáceres, Juan Domingo

    2015-01-01

    La tesis investiga la Radio Comunitaria en Chile con la finalidad de describir y comprender los procesos por los cuales las personas y las comunidades se reúnen en torno a estos proyectos, en un accionar asociativo que recoge la profundidad de las relaciones sociales y culturales de las comunidades en las que están insertas. Observa de qué manera operan y cómo sus actores ven su desarrollo y proyecciones. Indaga en las experiencias comunitarias como ejercicio del Derecho a la Comunicación; ex...

  7. A sixth-order continuous-time bandpass sigma-delta modulator for digital radio IF

    NARCIS (Netherlands)

    Engelen, van J.A.E.P.; Plassche, van de R.J.; Stikvoort, E.F.; Venes, A.G.W.

    1999-01-01

    This paper presents a sixth-order continuous-time bandpass sigma-delta modulator (SDM) for analog-to-digital conversion of intermediate-frequency signals. An important aspect in the design of this SDM is the stability analysis using the describing function method. The key to the analysis is the

  8. COMWIN Antenna Project: Final Report FY 1999 to 2002

    National Research Council Canada - National Science Library

    Adams, R

    2002-01-01

    .... The purpose of the first aim is to make the antenna compatible with the hand-held radio that will be manufactured in accordance with the Operational Requirements Document of the Joint Tactical Radio...

  9. El reto digital para las radios públicas y ciudadanas

    Directory of Open Access Journals (Sweden)

    José Ignacio López Vigil

    2010-09-01

    Full Text Available El cambio de la tecnología analógica a la digital ha representado ahorros, muchas de las etapas del proceso se han inmaterializado y con un solo clic se ha ahorrado horas de trabajo y esfuerzos: La forma de enviar y recibir audios, la forma de grabar y editar, la posibilidad de distribuir, el derecho a intercambiarlos, el tiempo de escucharlos. Casi todo ha cambiado, hasta ciertas barreras que antes condicionaban el ejercicio pleno de la libertad de expresión. Las nuevas tecnologías y la convergencia digital han sido aprovechadas para promover la libertad de expresión y la diversidad cultural desde las emisoras públicas y ciudadanas.

  10. Antenna development for astroparticle and radioastronomy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Didier, E-mail: charrier@emn.fr [Subatech, Ecole des Mines de Nantes - CNRS/IN2P3 - Universite de Nantes (France)

    2012-01-11

    An active dipole antenna is in operation since five years at the Nancay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of 'Butterfly' antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m Multiplication-Sign 1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  11. International Conference on Antenna Theory and Techniques

    Science.gov (United States)

    1999-12-03

    Krüger, Introduction to Solar radio astronomy and radio physics.- D.Reidel publishing company. Dordrecht: Hol- land/Boston: USA. London: England. 1982...REFERENCES 1. M. S. Juk, J. B. Molochkov Designing lens, scan- ning, broadband of antennae and feeder devices. - Moscow: Energia , 1973. - 440 p...system of this antenna was exe- cuted. Besides the thermal deformations of a mirror caused by daytime solar heating were investigated as well as

  12. 162.5 MHz digital low-level radio frequency control monitoring system design and implementation

    International Nuclear Information System (INIS)

    Zhang Ruifeng; Wang Xianwu; Xu Zhe; Yi Xiaoping

    2014-01-01

    162.5 MHz high-frequency low-level control system self-developed by Institute of Modern Physics for ADS project took digital technology. All parameters' reading and writing, including loop parameter setting, open and close-loop operation, and condition monitoring, were achieved through the monitoring system. The system used lightweight client-server working mode that client running in the PC sent command data, server running on high-frequency digital low level system responded instructions to complete parameter monitoring and control. The system consisted of three parts. Firstly, server hardware system was constructed based on Atera Stratix Ⅲ family of field-programmable gate array (FPGA) development board. Secondly, the server software system was designed based on Micro C/OS Ⅱ real-time operating systems and lightweight TCP/IP protocol stack, and finally a client PC program was designed based on MFC. After a long test, it was indicated that the monitoring system works properly and stably. TCP sends and receives throughput reached 11.931038 Mbps and 8.117624 Mbps. (authors)

  13. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  14. Model-based analysis of digital radio frequency control systems for a heavy-ion synchrotron

    International Nuclear Information System (INIS)

    Spies, Christopher

    2013-12-01

    In this thesis, we investigate the behavior of different radio frequency control systems in a heavy-ion synchrotron, which act on the electrical fields used to accelerate charged particles, along with the longitudinal dynamics of the particles in the beam. Due to the large physical dimensions of the system, the required precision can only be achieved by a distributed control system. Since the plant is highly nonlinear and the overall system is very complex, a purely analytical treatment is not possible without introducing unacceptable simplifications. Instead, we use numerical simulation to investigate the system behavior. This thesis arises from a cooperation between the Institute of Microelectronic Systems at Technische Universitaet Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research. A new heavy-ion synchrotron, the SIS100, is currently being built at GSI; its completion is scheduled for 2016. The starting point for the present thesis was the question whether a control concept previously devised at GSI is feasible - not only in the ideal case, but in the presence of parameter deviations, noise, and other disturbances - and how it can be optimized. In this thesis, we present a system model of a heavy-ion synchrotron. This model comprises the beam dynamics, the relevant components of the accelerator, and the relevant controllers as well as the communication between those controllers. We discuss the simulation techniques as well as several simplifications we applied in order to be able to simulate the model in an acceptable amount of time and show that these simplifications are justified. Using the model, we conducted several case studies in order to demonstrate the practical feasibility of the control concept, analyze the system's sensitivity towards disturbances and explore opportunities for future extensions. We derive specific suggestions for improvements from our results. Finally, we demonstrate that the model represents the physical reality

  15. ALMA Achieves Major Milestone With Antenna-Link Success

    Science.gov (United States)

    2007-03-01

    sky, and the ability to operate reliably in the harsh, high-altitude environment of the ALMA site. The ALMA Test Facility includes prototype antennas built by VertexRSI in the U.S. and by the AEC Consortium (ALCATEL Space of France and European Industrial Engineering of Italy). These antennas were evaluated individually at the ATF. Both prototypes were fitted with electronic equipment for receiving, digitizing and transmitting signals back to a central facility. At the ATF, a small-scale prototype version of ALMA's giant central, special-purpose computer, called a correlator, has been installed. The correlator combines the signals to make the antennas work together as a single astronomical instrument. The full-scale ALMA correlator is being built at the National Radio Astronomy Observatory's Technology Center in Charlottesville, Virginia, and will be installed at the high-altitude site in Chile when completed. ALMA also will include Japanese antennas built by Mitsubishi. ALMA is an international astronomy facility. It is a partnership of Europe, Japan, and North America in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan, and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National Astronomical Observatory of Japan (NAOJ) and on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI).

  16. Modelling of radio frequency sheath and fast wave coupling on the realistic ion cyclotron resonant antenna surroundings and the outer wall

    Science.gov (United States)

    Lu, L.; Colas, L.; Jacquot, J.; Després, B.; Heuraux, S.; Faudot, E.; Van Eester, D.; Crombé, K.; Křivská, A.; Noterdaeme, J.-M.; Helou, W.; Hillairet, J.

    2018-03-01

    In order to model the sheath rectification in a realistic geometry over the size of ion cyclotron resonant heating (ICRH) antennas, the self-consistent sheaths and waves for ICH (SSWICH) code couples self-consistently the RF wave propagation and the DC SOL biasing via nonlinear RF and DC sheath boundary conditions applied at plasma/wall interfaces. A first version of SSWICH had 2D (toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement magnetic field B 0 and only included the evanescent slow wave (SW) excited parasitically by the ICRH antenna. The main wave for plasma heating, the fast wave (FW) plays no role on the sheath excitation in this version. A new version of the code, 2D SSWICH-full wave, was developed based on the COMSOL software, to accommodate full RF field polarization and shaped walls tilted with respect to B 0 . SSWICH-full wave simulations have shown the mode conversion of FW into SW occurring at the sharp corners where the boundary shape varies rapidly. It has also evidenced ‘far-field’ sheath oscillations appearing at the shaped walls with a relatively long magnetic connection length to the antenna, that are only accessible to the propagating FW. Joint simulation, conducted by SSWICH-full wave within a multi-2D approach excited using the 3D wave coupling code (RAPLICASOL), has recovered the double-hump poloidal structure measured in the experimental temperature and potential maps when only the SW is modelled. The FW contribution on the potential poloidal structure seems to be affected by the 3D effects, which was ignored in the current stage. Finally, SSWICH-full wave simulation revealed the left-right asymmetry that has been observed extensively in the unbalanced strap feeding experiments, suggesting that the spatial proximity effects in RF sheath excitation, studied for SW only previously, is still important in the vicinity of the wave launcher under full wave polarizations.

  17. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  18. Radio morphing - towards a full parametrisation of the radio signal from air showers

    Science.gov (United States)

    Zilles, A.; Charrier, D.; Kotera, K.; Le Coz, S.; Martineau-Huynh, O.; Medina, C.; Niess, V.; Tueros, M.; de Vries, K.

    2017-12-01

    Over the last decades, radio detection of air showers has been established as a detection technique for ultra-high-energy cosmic-rays impinging on the Earth's atmosphere with energies far beyond LHC energies. Today’s second-generation of digital radio-detection experiments, as e.g. AERA or LOFAR, are becoming competitive in comparison to already standard techniques e.g. fluorescence light detection. Thanks to a detailed understanding of the physics of the radio emission in extensive air showers, simulations of the radio signal are already successfully tested and applied in the reconstruction of cosmic rays. However the limits of the computational power resources are easily reached when it comes to computing electric fields at the numerous positions requested by large or dense antenna arrays. In the case of mountainous areas as e.g. for the GRAND array, where 3D shower simulations are necessary, the problem arises with even stronger acuity. Therefore we developed a full parametrisation of the emitted radio signal on the basis of generic shower simulations which will reduce the simulation time by orders of magnitudes. In this talk we will present this concept after a short introduction to the concept of the radio detection of air-shower induced by cosmic rays.

  19. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  20. Non-foster matching of an RFID antenna

    KAUST Repository

    Mohamed Hassan Salem, Nedime Pelin

    2011-07-01

    Novel designs of radio-frequency identification (RFID) tag antennas with better matching characteristics to achieve extended range for passive tags are investigated in ultra-high frequency (UHF) band. A microstrip dipole antenna with or without an integrated negative impedance converter designed to cancel out the antenna\\'s input capacitance at resonance frequency was designed, simulated, constructed and measured for implementation in RFID applications. © 2011 IEEE.

  1. U Patch Antenna for RFID and Wireless Applications

    International Nuclear Information System (INIS)

    Abi Saad, R.; Melhem, Z.; Nader, C.; Zaatar, Y.; Zaouk, D.

    2011-01-01

    in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna. (author)

  2. Modelling of plasma-antenna coupling and non-linear radio frequency wave-plasma-wall interactions in the magnetized plasma device under ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lu, LingFeng

    2016-01-01

    Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr

  3. Application of radio frequency based digital thermometer for real-time monitoring of dairy cattle rectal temperature

    Directory of Open Access Journals (Sweden)

    Tridib Debnath

    2017-09-01

    Full Text Available Aim: Dairy cattle health monitoring program becomes vital for detecting the febrile conditions to prevent the outbreak of the animal diseases as well as ensuring the fitness of the animals that are directly affecting the health of the consumers. The aim of this study was to validate real-time rectal temperature (RT data of radio frequency based digital (RFD thermometer with RT data of mercury bulb (MB thermometer in dairy cattle. Materials and Methods: Two experiments were conducted. In experiment I, six female Jersey crossbred cattle with a mean (±standard error of the mean body weight of 534.83±13.90 kg at the age of 12±0.52 years were used to record RT for 2 h on empty stomach and 2 h after feeding at 0, 30, 60, 90, and 120 min using a RFD thermometer as well as a MB thermometer. In experiment II, six female Jersey crossbred cattle were further used to record RT for 2 h before exercise and 2 h after exercise at 0, 30, 60, 90, and 120 min. Two-way repeated measures analysis of variance with post hoc comparisons by Bonferroni test was done. Results: Real-time RT data recorded by RFD thermometer as well as MB thermometer did not differ (p>0.05 before and after feeding/exercise. An increase (p<0.05 in RT after feeding/exercise in experimental crossbred cattle was recorded by both RFD thermometer and MB thermometer. Conclusion: The results obtained in the present study suggest that the body temperature recordings from RFD thermometer would be acceptable and thus RFD thermometer could work well for monitoring real-time RT in cattle.

  4. Design of an electric power system with incorporation of a phased array antenna for OLFAR

    NARCIS (Netherlands)

    Klein, J.M.; Budianu, A.; Bentum, Marinus Jan; Engelen, S.; Verhoeven, C.J.M.

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project is investigating the feasibility of an orbiting low frequency radio telescope. The radio telescope is formed using a swarm of nano-satellites equipped with astronomical antennas, conceivably orbiting the Moon or the second

  5. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  6. A Review of Antennas for Picosatellite Applications

    Directory of Open Access Journals (Sweden)

    Abdul Halim Lokman

    2017-01-01

    Full Text Available Cube Satellite (CubeSat technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

  7. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  8. Analysis of equivalent antenna based on FDTD method

    Directory of Open Access Journals (Sweden)

    Yun-xing Yang

    2014-09-01

    Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.

  9. Mobile Phone Antenna Performance 2016

    DEFF Research Database (Denmark)

    Pedersen, Gert F.

    This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations....... The study is based on the mobile systems in the Nordic mobile networks and on both speech and data services. The selected phone models are among the most popular new phones at the time of this study....

  10. HF Radio Angle-of-Arrival Measurements and Ionosonde Positioning

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2014-01-01

    Full Text Available Since 2010 a 2nd generation NOAA MF/HF radar, also referred to as the VIPIR ionosonde, has been operated at Hualien, Taiwan (23.8973°N, 121.5503°E. The Hualien VIPIR ionosonde is a modern ionospheric radar, fully digitizing complex signal records and using multiple parallel receiver channels for simultaneous signal measurements from multiple spaced receiving antennas. This paper considers radio direction finding based on interferometric phase measurements from a horizontal antenna array in the Hualien VIPIR ionosonde system. We applied the Hermite normal form method to solve the phase-measurement aliasing and least squares problems and improve the radio angle-of-arrival (AOA measurements. Backward ray-tracing simulation has been proposed to determine radio transmitter position. This paper presents a numerical, step by step ray-tracing method based on the IGRF superimposed onto a phenomenological ionospheric electron density model, the TaiWan Ionospheric Model (TWIM. The proposed methodology is successfully applied to locate two experimental HF radio transmitters at Longquan and Chungli with distance errors within 5 km and less than 5% of the great circle distances.

  11. The B3-VLA CSS sample. VIII. New optical identifications from the Sloan Digital Sky Survey The ultraviolet-optical spectral energy distribution of the young radio sources

    Science.gov (United States)

    Fanti, C.; Fanti, R.; Zanichelli, A.; Dallacasa, D.; Stanghellini, C.

    2011-04-01

    Context. Compact steep-spectrum radio sources and giga-hertz peaked spectrum radio sources (CSS/GPS) are generally considered to be mostly young radio sources. In recent years we studied at many wavelengths a sample of these objects selected from the B3-VLA catalog: the B3-VLA CSS sample. Only ≈60% of the sources were optically identified. Aims: We aim to increase the number of optical identifications and study the properties of the host galaxies of young radio sources. Methods: We cross-correlated the CSS B3-VLA sample with the Sloan Digital Sky Survey (SDSS), DR7, and complemented the SDSS photometry with available GALEX (DR 4/5 and 6) and near-IR data from UKIRT and 2MASS. Results: We obtained new identifications and photometric redshifts for eight faint galaxies and for one quasar and two quasar candidates. Overall we have 27 galaxies with SDSS photometry in five bands, for which we derived the ultraviolet-optical spectral energy distribution (UV-O-SED). We extended our investigation to additional CSS/GPS selected from the literature. Most of the galaxies show an excess of ultra-violet (UV) radiation compared with the UV-O-SED of local radio-quiet ellipticals. We found a strong dependence of the UV excess on redshift and analyzed it assuming that it is generated either from the nucleus (hidden quasar) or from a young stellar population (YSP). We also compare the UV-O-SEDs of our CSS/GPS sources with those of a selection of large size (LSO) powerful radio sources from the literature. Conclusions: If the major process of the UV excess is caused by a YSP, our conclusion is that it is the result of the merger process that also triggered the onset of the radio source with some time delay. We do not see evidence for a major contribution from a YSP triggered by the radio sources itself. Appendices A-G are only available in electronic form at http://www.aanda.org

  12. Integrated Solar-Panel Antenna Array for CubeSats

    Science.gov (United States)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  13. Radio over fiber link with adaptive order n‐QAM optical phase modulated OFDM and digital coherent detection

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Borkowski, Robert; Guerrero Gonzalez, Neil

    2011-01-01

    Successful digital coherent demodulation of asynchronous optical phase‐modulated adaptive order QAM (4, 16, and 64) orthogonal frequency division multiplexing signals is achieved by a single reconfigurable digital receiver after 78 km of optical deployed fiber transmission....

  14. Analogies Between Digital Radio and Chemical Orthogonality as a Method for Enhanced Analysis of Molecular Recognition Events

    Directory of Open Access Journals (Sweden)

    Sang-Hun Lee

    2008-02-01

    Full Text Available Acoustic wave biosensors are a real-time, label-free biosensor technology, which have been exploited for the detection of proteins and cells. One of the conventional biosensor approaches involves the immobilization of a monolayer of antibodies onto the surface of the acoustic wave device for the detection of a specific analyte. The method described within includes at least two immobilizations of two different antibodies onto the surfaces of two separate acoustic wave devices for the detection of several analogous analytes. The chemical specificity of the molecular recognition event is achieved by virtue of the extremely high (nM to pM binding affinity between the antibody and its antigen. In a standard ELISA (Enzyme-Linked ImmunoSorbent Assay test, there are multiple steps and the end result is a measure of what is bound so tightly that it does not wash away easily. The fact that this “gold standard” is very much not real time, masks the dance that is the molecular recognition event. X-Ray Crystallographer, Ian Wilson, demonstrated more than a decade ago that antibodies undergo conformational change during a binding event[1, 2]. Further, it is known in the arena of immunochemistry that some antibodies exhibit significant cross-reactivity and this is widely termed antibody promiscuity. A third piece of the puzzle that we will exploit in our system of acoustic wave biosensors is the notion of chemical orthogonality. These three biochemical constructs, the dance, antibody promiscuity and chemical orthogonality will be combined in this paper with the notions of Int. J. Mol. Sci. 2008, 9 155 in-phase (I and quadrature (Q signals from digital radio to manifest an approach to molecular recognition that allows a level of discrimination and analysis unobtainable without the aggregate. As an example we present experimental data on the detection of TNT, RDX, C4, ammonium nitrate and musk oil from a system of antibody-coated acoustic

  15. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  16. Electronically Steerable Antennas with Panoramic Scan Field of View, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electronically steerable antennas are key to effective radio transmission at millimeter-wave frequencies. To enable communication with rovers, robots, EVA...

  17. The Prophylactic Effect of Vitamin C on Oxidative Stress Indexes Following Exposure to Radio Frequency Wave Generated by a BTS Antenna Model in Rat Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Gholamali Jelodar

    2014-02-01

    Full Text Available Background: Radio frequency wave (RFW generated by base transceiver station (BTS has been reported to make deleterious effects on liver and kidney, possibly through oxidative stress. This study was conducted to evaluate the effect of radiofrequency wave (RFW-induced oxidative stress in the liver and kidney and the prophylactic effect of vitamin C on this organs by measuring the antioxidant enzymes activity including: glutathione peroxidase (GPx, superoxide dismutase (SOD and catalase (CAT, and malondialdehyde (MDA. Materials and Methods: In this experimental study, thirty-two adult male Sprague-Dawley rats were randomly divided into four experimental groups and treated daily for 45 days as follows: control, vitamin C (L-ascorbic acid 200 mg/kg of body weight/day by gavage, test (exposed to 900MHz RFW and the treated group (received vitamin C in addition to exposure to RFW. At the end of the experiment all animals were sacrificed and their liver and kidney were removed and were used for measurement of antioxidant enzymes and MDA activity. Results: The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p<0.05. In the treated group vitamin C improved antioxidant enzymes activity and reduced MDA compared to the test group (p<0.05. Conclusion: It can be concluded that RFW causes oxidative stress in liver and kidney, and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  18. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  19. Digitization

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    what a concept of digital media might add to the understanding of processes of mediatization and what the concept of mediatization might add to the understanding of digital media. It is argued that digital media open an array of new trajectories in human communication, trajectories which were...

  20. Mutual Coupling Effects on Pattern Diversity Antennas for MIMO Femtocells

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2010-01-01

    Full Text Available Diversity antennas play an important role in wireless communications. However, mutual coupling between multiple ports of a diversity antenna has significant effects on wireless radio links and channel capacity. In this paper, dual-port pattern diversity antennas for femtocell applications are proposed to cover GSM1800, UMTS, and WLAN frequency bands. The channel capacities of the proposed antennas and two ideal dipoles with different mutual coupling levels are investigated in an indoor environment. The relation between mutual coupling and channel capacity is observed through investigations of these antennas.

  1. Ham radio for dummies

    CERN Document Server

    Silver, H Ward

    2013-01-01

    An ideal first step for learning about ham radio Beyond operating wirelessly, today's ham radio operators can transmit data and pictures; use the Internet, laser, and microwave transmitters; and travel to places high and low to make contact. This hands-on beginner guide reflects the operational and technical changes to amateur radio over the past decade and provides you with updated licensing requirements and information, changes in digital communication (such as the Internet, social media, and GPS), and how to use e-mail via radio. Addresses the critical use of ham radio for replacing downe

  2. A Design of Double Broadband MIMO Antenna

    Directory of Open Access Journals (Sweden)

    Yanfeng Geng

    2015-01-01

    Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.

  3. Microminiature radio frequency transmitter for communication and tracking applications

    Science.gov (United States)

    Crutcher, Richard I.; Emery, Mike S.; Falter, Kelly G.; Nowlin, C. H.; Rochelle, Jim M.; Clonts, Lloyd G.

    1997-02-01

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests are discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its small size of 2.2 multiplied by 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications are presented.

  4. CPW-fed wearable antenna at 2.4 GHz ISM band

    Science.gov (United States)

    Muhammad, Zuraidah; Shah, S. M.; Abidin, Z. Z.; Asyhap, Adel Y. I.; Mustam, S. M.; Ma, Y.

    2017-09-01

    A wearable antenna working in 2.4 GHz for Industrial, Scientific and Medical (ISM) radio bands is presented in this work. The proposed antenna is a rectangular textile antenna with a coplanar waveguide (CPW) feeding on a cotton jeans as the substrate material. The antenna has a compact size with dimensions of 30 × 30 mm2 which makes it an attractive solution in a wearable antenna construction. The linear characteristics of the antenna are investigated to evaluate the performance of the antenna. The simulation and measurements results are compared and they agree well with each other.

  5. Porous textile antenna designs for improved wearability

    Science.gov (United States)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  6. Superluminal antenna

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2018-04-17

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  7. Computing angle of arrival of radio signals

    Science.gov (United States)

    Borchardt, John J.; Steele, David K.

    2017-11-07

    Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon the measurements.

  8. Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station

    Science.gov (United States)

    Varnavas, Kosta; Sims, Herb

    2015-01-01

    With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.

  9. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  10. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar

    2010-10-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  11. A scalable-low cost architecture for high gain beamforming antennas

    KAUST Repository

    Bakr, Omar; Johnson, Mark; Jungdong Park,; Adabi, Ehsan; Jones, Kevin; Niknejad, Ali

    2010-01-01

    Many state-of-the-art wireless systems, such as long distance mesh networks and high bandwidth networks using mm-wave frequencies, require high gain antennas to overcome adverse channel conditions. These networks could be greatly aided by adaptive beamforming antenna arrays, which can significantly simplify the installation and maintenance costs (e.g., by enabling automatic beam alignment). However, building large, low cost beamforming arrays is very complicated. In this paper, we examine the main challenges presented by large arrays, starting from electromagnetic and antenna design and proceeding to the signal processing and algorithms domain. We propose 3-dimensional antenna structures and hybrid RF/digital radio architectures that can significantly reduce the complexity and improve the power efficiency of adaptive array systems. We also present signal processing techniques based on adaptive filtering methods that enhance the robustness of these architectures. Finally, we present computationally efficient vector quantization techniques that significantly improve the interference cancellation capabilities of analog beamforming architectures. © 2010 IEEE.

  12. Contradictions in the digitalization of the structure of the Spanish public radio and television (RTVE: between the subsidiaries and the promotion of territorial cohesion

    Directory of Open Access Journals (Sweden)

    Lic. Eduardo Gandolfo Mollá; edganmol@doctor.upv.es

    2009-01-01

    Full Text Available The aim of this paper is to study the regional structure of the Spanish Public Broadcasting Corporation (Radio Televisión Española, RTVE for short, a largely unresearched subject. The RTVE structure is comprised of various radio and television centers, but this research will be limited to the local production centers of TVE (Spanish public television. These centers were set up in the final years of the Franco dictatorship, but their objectives were not defined until the Radio and Television Act of 1980 was passed. The entire broadcast network was created during the decade of the 1980s, so that by 1989 all the provincial capitals of the Spanish Autonomous Regions had a regional TVE center with capacity to produce news and local content for the regional news or to meet the needs of national programming. During the 1990s, the increase in the number of regional channels and the hesitant decentralization of the private television channels caused RTVE to raise serious questions about the regional system’s necessity and functions. These doubts did not disappear until the Spanish parliament approved the Public Radio and Television Act (17/2006 and later the Framework Agreement (Mandato Marco, December 2007. Although the regional system’s existence was guaranteed, a number of major contradictions have arisen which impact on the model of local television represented by territorial centres of the new SME TVE. These contradictions are especially evident in the digitalization process of the centers and in the lack of preparation for the “analogical blackout” in April 2010.Esta comunicación tiene por objeto de estudio la estructura territorial de la Corporación Radio Televisión Española (RTVE, sobre la que existen pocas investigaciones. Dentro de una estructura que comprende los centros de radio y televisión, limitaremos la investigación a los centros territoriales de Televisión Española (TVE. Nacidos en las postrimerías del franquismo, no

  13. DIGITAL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  14. Optimization and test of a digital radio-frequency control system and developments for the EPICS-based accelerator control system at the S-DALINAC

    International Nuclear Information System (INIS)

    Burandt, Christoph Warwick

    2017-01-01

    The first part of this thesis covers multiple extensions of the digital low-level radio-frequency control system of the electron accelerator S-DALINAC. This comprises bringing into regular operation the piezoelectrically driven fine tuners of the superconducting cavities. For this a power supply series has been developed, which is compatible with the existing electronics and can power the piezo elements. Furthermore the flexibility of the radio-frequency control system has been demonstrated on superconducting quarter-wave-resonators of the ion accelerator ALPI. These 160 MHz cavities are quite different to the S-DALINAC's acceleration structures but could be operated successfully with low residual errors in phase and amplitude nevertheless. The second part describes the migration of the accelerator control system to an EPICS-based system. A multitude of devices with a diversity of interfaces and protocols have been integrated and higher-level functionality has been unified. Within the framework of the construction of the third recirculation beam-line, the beam-path-length adjustment mechanism was motorized.

  15. Antenna development for astroparticle and radioastronomy experiments

    International Nuclear Information System (INIS)

    Charrier, Didier

    2012-01-01

    An active dipole antenna is in operation since five years at the Nançay radio Observatory (France) in the CODALEMA experiment. A new version of this active antenna has been developed, whose shape gave its name of “Butterfly” antenna. Compared to the previous version, this new antenna has been designed to be more efficient at low frequencies, which could permit the detection of atmospheric showers at large distances. Despite a size of only 2 m×1 m in each polarization, its sensitivity is excellent in the 30-80 MHz bandwidth. Three antennas in dual polarization were installed on the CODALEMA experiment, and four other have been recently installed on the Auger area in the scope of the AERA project. The main characteristics of the Butterfly antenna are detailed with an emphasis on its key features which make it a good candidate for the low frequency radioastronomy and the radio detection of transients induced by high energy cosmic rays.

  16. Antennas in inhomogeneous media

    CERN Document Server

    Galejs, Janis; Fock, V A; Wait, J R

    2013-01-01

    Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil

  17. A 5bit 1GS/s 2.7mW 0.05mm^2 asynchronous digital slope ADC in 90nm CMOS for IR UWB radio

    NARCIS (Netherlands)

    Ding, M.; Harpe, P.J.A.; Hegt, J.A.; Philips, K.J.P.; Groot, de H.W.H.; Roermund, van A.H.M.

    2012-01-01

    A 5bit 1GS/s 0.05mm2 4× time-interleaved asynchronous digital slope ADC in 90nm CMOS for IR UWB radio is presented. New delay cells are introduced to double the speed over prior art, yielding the 250MS/s single-channel slope converter. A self-disabled comparator eliminates static leakage and

  18. 47 CFR 101.115 - Directional antennas.

    Science.gov (United States)

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE... The minimum front-to-back ratio shall be 38 dBi. 13 Mobile, except aeronautical mobile, stations need... cases of potential interference, an antenna will not be considered to meet Standard A unless the...

  19. 3-D analysis on arbitrarily-shaped ICRF antennas and Faraday shields

    International Nuclear Information System (INIS)

    Chen, G.L.; Whealton, J.H.; Baity, F.W.; Hoffman, D.J.; Owens, T.L.

    1986-01-01

    Cavity antennas with Faraday shields are proposed to couple ion cyclotron radio frequency power for heating fusion plasmas. This application requires small, high-power, low-frequency antennas. The results are presented of a theoretical study of the ICRF antennas being developed for this purpose at the Radio Frequency Test Facility (RFTF). The objectives of this work are to optimize experimental designs and to confirm test results

  20. PROSPECTS FOR THE DEVELOPMENT OF PHASED ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    A. P. Dzuba

    2013-01-01

    Full Text Available This article describes the main achievements in the development of phased antenna arrays (par in the past decade. Provides an overview of the most famous systems based on the PAR and PAR based on MMIC technology - PAR in radar stations, PAR to control the laser and optical beams. The existing options for the design of the PAR:ferroelectric antenna array; plasma antenna with electronic scanning; reflective grating on 100-mm semiconductor wafers; wideband antenna arrays with aperture; antenna arrays with digital beam forming.

  1. Multiband Photonic Phased-Array Antenna

    Science.gov (United States)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  2. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  3. The Giant Radio Array for Neutrino Detection

    DEFF Research Database (Denmark)

    Martineau-Huynh, Olivier; Bustamante, Mauricio; Carvalho, Washington

    2017-01-01

    The Giant Radio Array for Neutrino Detection (GRAND) is a planned array of ~200 000 radio antennas deployed over ~200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus...

  4. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  5. Reconfigurable digital receiver for 8PSK subcarrier multiplexed and 16QAM single carrier phase‐modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2011-01-01

    A reconfigurable digital receiver based on the k‐means algorithm is proposed for phase‐modulated subcarrier multiplexed (SCM) and quadrature amplitude‐modulated single carrier, phase‐modulated radio‐over‐fiber links. We report successful demodulation after 40 km single mode fiber transmission wit...... with three 50 Mbaud 8PSK SCM signals and a 312.5 Mbaud 16QAM single carrier. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1015–1018, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25905...

  6. Plasma antennas: dynamically configurable antennas for communications

    International Nuclear Information System (INIS)

    Borg, G.; Harris, J.

    1999-01-01

    In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results

  7. A Compact Flexible and Frequency Reconfigurable Antenna for Quintuple Applications

    Directory of Open Access Journals (Sweden)

    M. U. Hassan

    2017-09-01

    Full Text Available A novel, compact coplanar waveguide fed flexible antenna is presented. The proposed design uses flexible Rogers RT/duroid 5880 (0.508mm thickness as a substrate with small size of 30×28.4 mm^2. Two switches are integrated on the antenna surface to change the current distribution which consequently changes the resonance frequency under different conditions of switches, thereby making it a frequency reconfigurable antenna. The antenna design is simulated on CST®MWS®. The proposed antenna exhibits VSWR less than 2 and appreciable radiation patterns with positive gain over desired frequency bands. Good agreement exists between simulated and measured results. On the basis of results, the proposed antenna is envisioned to be deployed for the following applications; aeronautical radio navigation [4.3 GHz], AMT fixed services [4.5 GHz], WLAN [5.2 GHz], Unlicensed WiMAX [5.8 GHz] and X-band [7.5 GHz].

  8. Changes of radio-technological studies in the field of medical imaging. From analogous studies to digital ones

    International Nuclear Information System (INIS)

    Shiraishi, Junji; Uchiyama, Yoshikazu; Honda, Michitaka; Ogura, Toshihiro; Kunitomo, Hiroshi; Kishimoto, Kenji; Ishii, Rie; Hara, Takeshi; Tanaka, Rie

    2014-01-01

    Eight authors briefly describe practical reviews of domestic changes in the title of their expertized field for the purpose of enlightenment. Reviews concern following studies: on the construction of medical images, on characteristics of input/output, of resolution, of noise, on whole assessment of images with noise-equivalent number of quanta/detective quantum efficiency (NEQ/DQE), with subjectivity, on computer-aided diagnosis (CAD), and on image displaying system assessment. X-ray image subtraction along with the development of CT is the origin of real-time digitalized image construction. Studies on the input/output affects the quality of images and exposure dose to patients, which have contributed to works of investigators at manufacturing and technologists on site. Then described are changes in the assessment of image by digital radiography (DR), of which basis was originally established at analogous sensitizer/film (S/F) era, of image resolution and of noise characteristic assessment, during the period from S/F to DR systems. Assessment of images with NEQ/DQE has been essentially based on the description in the 'Image Science' published in 1974 and its derived domestic educational researches; and the assessment with subjectivity involves the receiver operating characteristic (ROC), which leads to computer-aided diagnosis (CAD). Studies on image display are now changing responding to clinical and social needs. (T.T.)

  9. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    Science.gov (United States)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  10. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  11. La radio en la era digital. Estudio de caso: programas de COPE creados para ser consumidos exclusivamente ‘online’

    Directory of Open Access Journals (Sweden)

    Rafael Galán Arribas

    2015-12-01

    Full Text Available El avance tecnológico ha traído dispositivos móviles más desarrollados, ágiles y potentes que junto con la aparición del 4G y el cable óptico han sido el perfecto cultivo para que se desarrollara el podcasting. Esto ha generado nuevas formas de consumo radiofónico y consumidores proactivos y, como consecuencia, las emisoras han creado un tipo de programas que no han sido emitidos a través de las ondas y que ahora se alojan en las webs de las principales cadenas españolas. La que más apuesta por esta novedosa forma de emisión es COPE y es la que se somete a estudio. Se analizan, a través de métodos cuantitativos y cualitativos, 2 emisiones de cada uno de los 16 programas. Los resultados indican que son descargables y que sólo se emiten a través de Internet, que su duración es variable y que los géneros más usados son los de información y opinión, el contenido es diferente al de la radio tradicional (analógica, cuentan con publicidad aunque en su mayoría es autopromoción y, por último, todos cuentan con páginas en Facebook y Twitter que por otra parte son las preferidas por los oyentes, las más usadas, en las que comparten enlaces a los programas y opinan sobre estos.

  12. Visualization of electromagnetic exposure near LTE antennae

    Science.gov (United States)

    Zvezdina, M. Yu; Shokova, Yu A.; Nazarova, O. Yu; Al-Ali, H. T. A.; Al-Farhan, G. H. A.

    2018-01-01

    Technical progress in wireless data transfer has given an opportunity to apply information and communication technologies in various areas of economics. Digital economy is linked to the 4th and 5th generation mobile network deployment. The peculiarities of the abovementioned standards decrease BTS antenna range three times in dense developed areas and worsen electromagnetic background in big cities. In the paper the comparative assessment results for rooftop electromagnetic exposure near BTS LTE and BTS GSM antennae are given. It is shown, that at the same level of transmitter power, energy flux density for LTE standard is three times less than the one for GSM. Moreover, the conclusion is made that the rooftop could be considered safe for people for indefinite time if antenna is placed more than 5 meters above the rooftop. The value of antenna height is taken to be on the safe side, as it is required by an application of “preventive principle”.

  13. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  14. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  15. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  16. Equipment: Antenna systems

    Science.gov (United States)

    Petrie, L. E.

    1986-03-01

    Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.

  17. Physical Hypermedia: Organising Collections of Mixed Physical and Digital Material

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kristensen, Jannie Friis; Ørbæk, Peter

    2003-01-01

    This paper introduces the notion of physical hypermedia, addressing the problem of organizing material in mixed digital and physical environments. Based on empirical studies, we propose concepts for collectional actions and meta-data actions, and present prototypes combining principles from...... augmented reality and hypermedia to support organization of mixtures of digital and physical materials. Our prototype of a physical hypermedia system is running on an augmented architect's desk and digital walls utilizing Radio Frequency Identifier (RFID) tags as well as visual tags tracked by cameras....... It allows users to tag physical materials, and have these tracked by readers (antennas) that may become pervasive in our work environments. In the physical hypermedia system, we work with three categories of RFID tags: simple object tags, collectional tags, and tooltags invoking operations such as grouping...

  18. Recent developments in ICRF antenna modelling

    International Nuclear Information System (INIS)

    Lamalle, P.U.; Messiaen, A.M.; Dumortier, P.; Louche, F.

    2005-01-01

    The antennas presently developed for ICRF heating of the ITER plasma consist of a tightly packed array of a large number of radiating straps, in order to deliver a high power density without exceeding radio-frequency voltage standoffs. Recently developed commercial software has enabled important progress in the coupling analysis and optimisation of such demanding systems. Approximations allowing to convincingly include a realistic plasma description in these codes are discussed. Application of the resulting numerical tools is illustrated by simulation of the existing JET A2 ICRF array, with the goal to validate simulations for future antennas. Advances in the design of realistic test bed conditions, using salted water as a means of creating plasma-relevant antenna loading, and the appropriate scaling of a mockup are also presented. (author)

  19. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  20. Using the SLAC VHF and UHF radio systems

    International Nuclear Information System (INIS)

    Struven, W.

    1987-02-01

    The use of the SLAC VHF and UHF Radio Systems and the Tunnel Antenna Systems as they are presently configured is described. The original radio system was built in 1966 and has grown in scope over the years. The Tunnel Antenna Systems were developed for, and first installed in, the PEP ring, and later added to other tunnels and redesigned to cover the UHF range, as well as VHF. The UHF radio system was designed and built for SLC use, and was first used in the SLC Arcs. The three radio systems will be described and the capabilities of each system will be defined

  1. Optimum Antenna Downtilt Angles for Macrocellular WCDMA Network

    Directory of Open Access Journals (Sweden)

    Niemelä Jarno

    2005-01-01

    Full Text Available The impact of antenna downtilt on the performance of cellular WCDMA network has been studied by using a radio network planning tool. An optimum downtilt angle has been evaluated for numerous practical macrocellular site and antenna configurations for electrical and mechanical antenna downtilt concepts. The aim of this massive simulation campaign was expected to provide an answer to two questions: firstly, how to select the downtilt angle of a macrocellular base station antenna? Secondly, what is the impact of antenna downtilt on system capacity and network coverage? Optimum downtilt angles were observed to vary between – depending on the network configuration. Moreover, the corresponding downlink capacity gains varied between – . Antenna vertical beamwidth affects clearly the required optimum downtilt angle the most. On the other hand, with wider antenna vertical beamwidth, the impact of downtilt on system performance is not such imposing. In addition, antenna height together with the size of the dominance area affect the required downtilt angle. Finally, the simulation results revealed how the importance of the antenna downtilt becomes more significant in dense networks, where the capacity requirements are typically also higher.

  2. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-01-01

    All high-power ion cyclotron range of frequency (ICRF) heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time dependent on timescales as rapid as 10 -1 s, while the radio frequency (RF) generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the RF source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In 'lossy passive schemes', reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array. (author)

  3. The Millimeter Wave Observatory antenna now at INAOE-Mexico

    Science.gov (United States)

    Luna, A.

    2017-07-01

    The antenna of 5 meters in diameter of the legendary "Millimeter Wave Observatory" is now installed in the INAOE-Mexico. This historic antenna was reinstalled and was equipped with a control system and basic primary focus receivers that enabled it in teaching activities. We work on the characterization of its surface and on the development of receivers and spectrometers to allow it to do research Solar and astronomical masers. The historical contributions of this antenna to science and technology in radio astronomy, serve as the guiding force and the inspiration of the students and technicians of our postgrade in Astrophysics. It is enough to remember that it was with this antenna, that the first molecular outflow was discovered, several lines of molecular emission were discovered and it was the first antenna whose surface was characterized by holography; among many other technological and scientific contributions.

  4. Antenna theory: Analysis and design

    Science.gov (United States)

    Balanis, C. A.

    The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.

  5. Propagation engineering in radio links design

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2013-01-01

    Propagation Engineering in Radio Link Design covers the basic principles of radiowaves propagation in a practical manner.  This fundamental understanding enables the readers to design radio links efficiently. This book elaborates on new achievements as well as recently developed propagation models.  This is in addition to a comprehensive overview of fundamentals of propagation in various scenarios. It examines theoretical calculations, approaches and applied procedures needed for radio links design. The authors study and analysis of the main propagation phenomena and its mechanisms based on the recommendations of International Telecommunications Union, (ITU). The book has been organized in 9 chapters and examines the role of antennas and passive reflectors in radio services, propagation mechanisms related to radar, satellite, short distance, broadcasting and trans-horizon radio links, with two chapters devoted to radio noise and main  parameters of radio link design. The book presents some 278 illustration...

  6. Some considerations regarding the choice of a matching network for electrically small loop antennas

    CSIR Research Space (South Africa)

    Bowles, BA

    1978-11-01

    Full Text Available with the antennas is analysed by means of a desk-top calculator. Graphical plots of the important parameters indicate the simple series tuned circuit to have important advantages. Furthermore, narrowband radio frequency modulation techniques are shown...

  7. Radio telescope control

    CERN Document Server

    Schraml, J

    1972-01-01

    An on-line computer control process developed for the 100-m radio telescope of the Max-Planck-Institut fur Radioastronomie in Bonn is described. The instrument is the largest fully steerable antenna in the world. Its operation started on May 31st 1972. It is controlled by a Ferranti Argus 500 on-line computer. The first part of the paper deals with the process itself, the radio telescope and its operation, and the demands resulting for the control program. The second part briefly describes the computer and its hardware. The final part introduces the architecture of the executive program in general, which has been tailored to meet the demands of the process and the hardware. The communication between the observer and the system, the format of data on magnetic tape and an on-line reduction of position measurements are considered. (0 refs).

  8. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  9. Pulsed energy storage antennas for ionospheric modification

    Directory of Open Access Journals (Sweden)

    R. F. Wuerker

    2005-01-01

    Full Text Available Interesting, "new", very high peak-power pulsed radio frequency (RF antennas have been assembled at the HIPAS Observatory (Alaska, USA and also at the University of California at Los Angeles (UCLA, USA; namely, a pair of quarter wavelength (λ/4 long cylindrical conductors separated by a high voltage spark gap. Such a combination can radiate multi-megawatt RF pulses whenever the spark gap fires. The antenna at HIPAS is 53m long (λ/2 with a central pressurized SF6 spark gap. It is mounted 5 meters (λ/21 above a ground plane. It radiates at 2.85MHz. The two antenna halves are charged to ± high voltages by a Tesla coil. Spark gap voltages of 0.4 MV (at the instant of spark gap closure give peak RF currents of ~1200A which correspond to ~14 MW peak total radiated power, or ~56 MW of Effective Radiated Power (ERP. The RF pulse train is initially square, decaying exponentially in time with Qs of ~50. Two similar but smaller 80-MHz antennas were assembled at UCLA to demonstrate their synchronization with a pulsed laser which fired the spark gaps in the two antennas simultanoeously. These experiments show that one can anticipate a pulsed array of laser synchronized antennas having a coherent Effective Radiated Power (ERP>10GW. One can even reconsider a pulse array radiating at 1.43MHz which corresponds to the electron gyrofrequency in the Earth's magnetic field at ~200km altitude. These "new" pulsed high power antennas are hauntingly similar to the ones used originally by Hertz (1857-1894 during his (1886-1889 seminal verifications of Maxwell's (1864 theory of electrodynamics.

  10. Utilization of antenna arrays in HF systems

    Directory of Open Access Journals (Sweden)

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  11. Deep Space Network Antenna Logic Controller

    Science.gov (United States)

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  12. Zero-Power Radio Device.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed at Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].

  13. Tunable Platform Tolerant Antenna Design for RFID and IoT Applications Using Characteristic Mode Analysis

    OpenAIRE

    Sharif, Abubakar; Ouyang, Jun; Yang, Feng; Long, Rui; Ishfaq, Muhammad Kamran

    2018-01-01

    Radio frequency identification (RFID) is a key technology to realize IoT (Internet of Things) dreams. RFID technology has been emerging in sensing, identification, tracking, and localization of goods. In order to tag a huge number of things, it is cost-effective to use one RFID antenna for tagging different things. Therefore, in this paper a platform tolerant RFID tag antenna with tunable capability is proposed. The proposed tag antenna is designed and optimized using characteristic mode anal...

  14. An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.; Shamim, Atif

    2017-01-01

    This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.

  15. An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms

    KAUST Repository

    Hussain, Rifaqat

    2017-12-08

    This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.

  16. Radio quite site qualification for the Brasilian Southern Space Observatory by monitoring the low frequency 10-240 MHz Eletromagnetic Spectrum

    Science.gov (United States)

    da Rosa, Guilherme Simon; Schuch, Nelson Jorge; Espindola Antunes, Cassio; Gomes, Natanael

    The monitoring of the level of the radio interference in the Site of the Brazilian Southern Space Observatory - SSO/CRS/CIE/INPE - MCT, (29S, 53W), São Martinho da Serra, RS, in south a of Brazil, aims to gather spectral data for the Observatory's Site qualification as a radio quite site for installation of Radio Astronomy instrumentation, free of radio noise. The determination of the radio interference level is being conducted by using a spectrum analyzer and Omni directional antennas remotely controlled through a GPIB interface, via IEEE 488 bus, and programs written in C language. That procedure allows the scanning of the Electromagnetic Spectrum power over the examined frequency range from 10 - 240MHz. The methodology for these tests was to amplify the radio signal from the antenna by a block amplifier. Subsequently, the received signals are evaluated by the spectrum analyzer. A dedicated PC computer is used for the control and data acquisition, with the developed software. The data are instantly stored in digital format and remotely transferred via VNC software from the SSO-Observatory Site to the Radio Frequency and Telecommunication Laboratory at the Southern Regional Space Research Center - CRS/CIE/INPE - MCT, in Santa Maria, RS, for analysis and storage on the radio interference data base for long period. It is compared the SSO's Electromagnetic Spectrum data obtained since the beginning of the 1990's decade, before the Site constructions, with the current observed data. Some radio transmissions were found in the observed frequency range due to some local FMs, mostly between 93.5 MHz to 105.7 MHz, which were observed in previous monitoring. A good evidence of the site quality is the fact that the power of the Electromagnetic Spectrum is much lower than that measured at the Radio Frequency and Telecommunication Laboratory, in Santa Maria, RS, where the signals do not exceed -60 dB. On the Site of the SSO, due to the low power observed, weak radio signals

  17. Synthesis imaging in radio astronomy

    International Nuclear Information System (INIS)

    Perley, R.A.; Schwab, F.R.; Bridle, A.H.

    1989-01-01

    Recent advances in techniques and instrumentation for radio synthesis imaging in astronomy are discussed in a collection of review essays. Topics addressed include coherence in radio astronomy, the interferometer in practice, primary antenna elements, cross correlators, calibration and editing, sensitivity, deconvolution, self-calibration, error recognition, and image analysis. Consideration is given to wide-field imaging (bandwidth and time-average smearing, noncoplanar arrays, and mosaicking), high-dynamic-range imaging, spectral-line imaging, VLBI, solar imaging with a synthesis telescope, synthesis imaging of spatially coherent objects, noise in images of very bright sources, synthesis observing strategies, and the design of aperture-synthesis arrays

  18. Hybrid precoding based on matrix-adaptive method for multiuser large-scale antenna arrays.

    Directory of Open Access Journals (Sweden)

    Yongpan Feng

    Full Text Available Massive multiple-input multiple-output (MIMO is envisioned to offer a considerable improvement in capacity, but it has a high cost and the radio frequency (RF chain components have a high power consumption at high frequency. To address this problem, a hybrid analog and digital precoding scheme has been studied recently, which restricts the number of RF chains to far less than the number of antenna elements. In this paper, we consider the downlink communication of a massive multiuser multiple-input single-output (MU-MISO system and propose an iterative hybrid precoding algorithm to approach the capacity performance of the traditional full digital precoding scheme. We aim to attain a large baseband gain by zero-forcing (ZF digital precoding on the equivalent channel and then minimize the total power to obtain the optimal RF precoder. Simulation results show that the proposed method can approach the performance of the conventional fully digital precoding with a low computational complexity.

  19. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  20. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  1. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    Science.gov (United States)

    1998-12-01

    . 15. Nobel Laureate Robert Wilson is in the background. The added antennas are part of a comprehensive plan that the NRAO has developed for upgrading the VLA. The existing array of antennas was authorized by Congress in 1972 and built from 1974 to 1980. The upgrade plan also includes replacing the original electronic and digital equipment from the 1970s with modern technology. Such refurbishment will improve the VLA's scientific capabilities from tenfold to a hundredfold in all research areas, and for a modest investment would provide an enhanced facility many times more powerful than the original VLA. "Though the VLA today is hundreds of times more capable than its original design, some of the technologies of the 1970s that still are in use threaten the instrument with premature obsolescence," said Miller Goss, NRAO's director of VLA/VLBA operations. "Replacing those with today's technology will assure the VLA's continued role as one of the world's premier astronomical research facilities. The success of the Pie Town-VLA link shows one way this can happen." "We are enthusiastic and excited about this development, not only because of the scientific value of the Pie Town link itself, but more importantly because it proves the concept of expanding the VLA," said Robert Dickman, of the NSF's Division of Astronomical Sciences. "The AUI Board of Trustees, in providing 30 percent of the support for the optical fiber link from its corporate reserves, recognizes the scientific importance of making this connection between the VLA and the VLBA," said Martha P. Haynes, AUI's Interim President. Referring to the scientific phenomenon of forming images using the arrays to produce "interferometric fringes," Haynes, a radio astronomer herself, remarked that "We view the provision of corporate matching funds for this project as a 'fringe benefit' for NRAO." Work on the Pie Town-VLA link began in late 1997. Project engineer Ron Beresford, who came from the Australia Telescope National

  2. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  3. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  4. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  5. A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES

    Directory of Open Access Journals (Sweden)

    W.D. Apel

    2016-12-01

    Full Text Available The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10% – limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.

  6. First Colombian Solar Radio Interferometer: current stage

    Science.gov (United States)

    Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.

    2017-10-01

    Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.

  7. Expanding radio astronomy in Africa

    International Nuclear Information System (INIS)

    Gaylard, M J

    2013-01-01

    The Square Kilometre Array (SKA) Organisation announced in May 2012 that its members had agreed on a dual site solution for the SKA [1]. South Africa's bid for hosting the SKA has caused a ramp up of radio astronomy in Africa. To develop technology towards the SKA, the South African SKA Project (SKA SA) built a protoype radio telescope in 2007, followed in 2010 the seven antenna Karoo Array Telescope (KAT-7). Next is the 64 antenna MeerKAT, which will merge into SKA Phase 1 in Africa. As SKA Phase 2 is intended to add a high resolution capability with baselines out to 3000 km, the SKA SA brought in partner countries in Africa to host outstations. South Africa has been working with the partners to build capacity to operate the SKA and to benefit from it. The SA Department of Science and Technology (DST) developed a proposal to establish radio telescopes in the partner countries to provide hands-on learning and a capability for Very Long Baseline Interferometry (VLBI) research. Redundant 30 m class satellite antennas are being incorporated in this project.

  8. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    International Nuclear Information System (INIS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-01-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  9. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)

    2016-03-09

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  10. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    Science.gov (United States)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  11. Directional borehole antenna - Theory

    International Nuclear Information System (INIS)

    Falk, L.

    1992-02-01

    A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)

  12. The photovoltaic planar antenna - high-tech with multifunctional utilisation of the physical properties of solar cells. Paper; Die photovoltaische Planarantenne - High-Tec durch multifunktionale Nutzung der physikalischen Eigenschaften von Solarzellen. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Kirchhof, J.; Henze, N. [Institut fuer Solare Energieversorgungstechnik (ISET), Kassel (Germany)

    2001-07-01

    The use of the photovoltaic energy conversion for power supply has been practised successfully in communication technological facilities for years. Problems often arise regarding the optimal installation locations and orientations of the components Solar-Cell/-module and antenna, because they mutually visually or electromagnetically often disturb themselves. The partly very high direct costs also cause difficulties at the simultaneous use of both components. The vision arising at the ISET, was to use this unintentional effect of the parasitical irradiation as new multifunctional quality of solar cells. The ''Solar Planar Antenna'' could take both radio and energy supply functions of electric equipment or systems and make completely new equipment design and system concepts possible. After some finally promising tests the ''Solar Planar Antenna'' was applied as German, European, US-American and Japanese patent. The name SOLPLANT became a registered trademark. The ''Solar Planar Antenna'' shall be used in products where the simultaneous use of photovoltaic and Radio Frequency facilities are still incompatible. Some of the possible applications are compact measurement stations with RF-based communication, GPS-based navigation systems, communication base stations, antenna and battery charger at mobile telephone handsets, ''Bluetooth'' based computer devices and accessories like keyboards, trackballs or organisers. Together with a digital signal conditioning in combination with an array of ''Solar Planar Antennas'' a digital coil forming is possible. With this feature the antenna can be used as high gain antenna and it is possible to blind out noise and distortions. [German] Die Nutzung der photovoltaischen Energiewandlung zur Stromversorgung wird in kommunikationstechnischen Einrichtungen seit Jahren erfolgreich praktiziert. Probleme bereiten oft die optimalen

  13. Digital Simulation in the Geosciences

    Directory of Open Access Journals (Sweden)

    Alexandr A. Lobanov

    2014-09-01

    Full Text Available This article provides an analysis of methods for digital modeling in the area of Earth Sciences. The author illustrates the difference between digital modeling in radio communication and that in the area of Earth Sciences. The article examines the integration aspect of digital models, demonstrates the advantages of digital over analog models, and illustrates that digital models are discrete. The author outlines the characteristics of digital modeling and illustrates the logical structure of digital models.

  14. Handbook of antenna technologies

    CERN Document Server

    Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas

    2016-01-01

    The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.

  15. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  16. 78 FR 32165 - Commercial Radio Operators; Correction

    Science.gov (United States)

    2013-05-29

    ...) Grants emergency exemption requests, extensions or waivers of inspection to ships in accordance with..., marking and lighting of antenna structures (part 17 of this chapter), and the Commission's privatized ship radio inspection program (part 80 of this chapter). * * * * * (s)(1) Extends the Communications Act...

  17. Reflectivity level of radio anechoic chambers

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    A comparison between the antenna-pattern comparison technique and the free-space voltage standing-wave ratio technique for evaluating the reflectivity level of radio anechoic chambers is presented. Based on an analysis of the two techniques, it is pointed out which parameters influence the measured...

  18. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    Science.gov (United States)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  19. Design of 5.8 GHz Integrated Antenna on 180nm Complementary Metal Oxide Semiconductor (CMOS) Technology

    Science.gov (United States)

    Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2018-03-01

    This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.

  20. Wideband and UWB Antennas for Wireless Applications: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Renato Cicchetti

    2017-01-01

    Full Text Available A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible, and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc. and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems.

  1. ICH antenna development on the ORNL RF Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Bigelow, T.S.; Haste, G.R.; Hoffman, D.J.; Livesey, R.L.

    1987-01-01

    A compact resonant loop antenna is installed on the ORNL Radio Frequency Test Facility (RFTF). Facility characteristics include a steady-state magnetic field of ∼ 0.5 T at the antenna, microwave-generated plasmas with n e ∼ 10 12 cm -3 and T e ∼ 8 eV, and 100 kW of 25-MHz rf power. The antenna is tunable from ∼22--75 MHz, is designed to handle ≥1 MW of rf power, and can be moved 5 cm with respect to the port flange. Antenna characteristics reported and discussed include the effect of magnetic field on rf voltage breakdown at the capacitor, the effects of magnetic field and plasma on rf voltage breakdown between the radiating element and the Faraday shield, the effects of graphite on Faraday shield losses, and the efficiency of coupling to the plasma. 2 refs., 4 figs

  2. Design and Measurement of a 2.45 Ghz On-Body Antenna Optimized for Hearing Instrument Applications

    DEFF Research Database (Denmark)

    Kvist, Søren Helstrup; Jakobsen, Kaj Bjarne; Thaysen, Jesper

    2012-01-01

    A balanced PIFA-inspired antenna design is presented for use with the 2:45 GHz ear-to-ear radio channel. The antenna is designed such that the radiated electric fields are primarily polarized normal to the surface of the head, in order to obtain a high on-body path gain (jS21 j). The antenna...... structure can be made conformal to the outer surface of a hearing instrument, such that the bandwidth of the antenna is optimized given the available volume. The radiation patterns, ear-to-ear path gain and available bandwidth is measured and compared to the simulated results. It is found that the antenna...

  3. Computer simulation and implementation of defected ground structure on a microstrip antenna

    Science.gov (United States)

    Adrian, H.; Rambe, A. H.; Suherman

    2018-03-01

    Defected Ground Structure (DGS) is a method reducing etching area on antenna ground to form desirable antenna’s ground field. This paper reports the method impact on microstrip antennas working on 1800 and 2400 MHz. These frequencies are important as many radio network applications such mobile phones and wireless devices working on these channels. The assessments were performed by simulating and fabricating the evaluated antennas. Both simulation data and implementation measurements show that DGS successfully improves antenna performances by increasing bandwidth up to 19%, reducing return loss up to 109% and increasing gain up to 33%.

  4. Four Decades of Space-Borne Radio Sounding

    Science.gov (United States)

    Benson, Robert F.

    2010-01-01

    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.

  5. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  6. AMELIORATE OF BANDWIDTH AND RETURN LOSS OF RECTANGULAR PATCH ANTENNA USING METAMATERIAL STRUCTURE FOR RFID TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    RAJESH SAHA

    2016-09-01

    Full Text Available Radio Frequency Identification is an emerging research topic to identify any object automatically and it has applications in many fields like manufacture industry, business, animal tracking, vehicle tracking etc. In automatic identification system, the main role of radio frequency identification system is radiation and detection. The reader and the tag are the important components in radio frequency identification technology. In radio frequency identification system, antenna plays very significant role to transmit and receive data in both direction (i.e., from reader to tag and vice versa. An antenna with high gain, high directivity, high bandwidth and more down in negative S11 (dB value works as an effective antenna. So design and optimization of an effective antenna is very necessary for any application. In this paper, firstly itdesigned a rectangular patch antenna and simulated through High Frequency Structure Simulator. In next step, it designed a metamaterial structure having U shape Split Ring Resonator with both one and two port, on the rectangular patch antenna to improve the return loss and bandwidth of patch antenna; so that the performance of the tag can be increased for the radio frequency identification system. By simulation it has been seen that, two port antenna provides maximum return loss and bandwidth of - 41.2dB and 870MHz respectively. Finally, the output parameters such as return loss, gain, directivity that are obtained from simulation of the metamaterial Split Ring Resonator structure antenna are compared with the network output of Artificial Neural Network to find the Mean Square Error between the simulated output and Artificial Neural Network output.

  7. An Implantable Cardiovascular Pressure Monitoring System with On-Chip Antenna and RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Yu-Chun Liu

    2015-08-01

    Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.

  8. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  9. Optical phase-modulated radio-over-fiber links with k-means algorithm for digital demodulation of 8PSK subcarrier multiplexed signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2010-01-01

    A k-means algorithm for phase recovery of three, 50 Mbaud, 8PSK subcarrier multiplexed signals at 5 GHz for optical phase-modulated radio-over-fiber is proposed and experimentally demonstrated after 40 km of single mode fiber transmission......A k-means algorithm for phase recovery of three, 50 Mbaud, 8PSK subcarrier multiplexed signals at 5 GHz for optical phase-modulated radio-over-fiber is proposed and experimentally demonstrated after 40 km of single mode fiber transmission...

  10. Technologies for low radio frequency observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  11. The Comparison of Propagation Model for Terrestrial Trunked Radio (TETRA

    Directory of Open Access Journals (Sweden)

    Ayu Kartika R

    2013-12-01

    Full Text Available A system of digital radio Terrestrial Trunked Radio (TETRA is designed for communication which need specialility, better privacy, better quality of audio with speed transmission data and access capacity to the internet and telephone network. TETRA system of TMO and DMO operation mode which has wide coverage and reliable than the interference so that the TETRA planning needs a propagation model which corresponding with environment. Therefore, this research compare a pathloss value of calculation of propagation model such as Free Space Loss, Wickson, Bacon, CEPT SE21, Ericsson (9999, ITU-R SM 2028 and Okumura Hata based on the environment are clutter urban, sub urban dan rural. The calculation of pathloss provide that Bacon propagation model is an corresponding model for DMO operation mode with a frequency of 380 MHz, height handhelds 1.5 m and 2 m with pathloss value of 76.82 dB at a distance of 100 m and 113.63 dB at a distance of 1 km while the 400 MHz frequency pathloss value of 77.08 dB at a distance of 100 m and 113.6 dB at a distance of 1 km. The propagation model which corresponding to the TMO operation mode with a frequency of 400 MHz distance of 1 km, the transmitter antenna height (hb 30 m and receiver antenna height (hm 1.5 m is a model of Ericsson (9999 on urban clutter with pathloss value of 96.4 dB, the model ITU-R SM2028 in suburban clutter with a pathloss value of 101.13 dB, and the model ITU-R SM2028 on rural clutter with pathloss value of 83.59 dB. Keywords: TETRA, propagation model, urban, suburban, rural

  12. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  13. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    International Nuclear Information System (INIS)

    Yi, Xiaohua; Cho, Chunhee; Wang, Yang; Cooper, James; Tentzeris, Manos M; Leon, Roberto T

    2013-01-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack. (paper)

  14. Buoyant Cable Antenna System

    National Research Council Canada - National Science Library

    Gerhard, Erich M

    2008-01-01

    .... For instance, in one embodiment two oppositely extending curves each float and each are pressed by the water in a balanced manner to provide a stable platform for one or more antennas which can be...

  15. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    2000-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element with the goal of being able to remove the phase shifting devices from the antenna and replace...

  16. Micropatch Antenna Phase Shifting

    National Research Council Canada - National Science Library

    Thursby, Michael

    1999-01-01

    .... We have been looking at the ability of embedded element to adjust the phase shift seen by the element wit the goal of being able to remove the phase shifting devices from the antenna and replace...

  17. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  18. Experimental 2.5 Gbit/s QPSK WDM coherent phase modulated radio-over-fibre link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Amaya Fernández, Ferney Orlando

    2009-01-01

    Highest reported bit rate of 2.5 Gbit/s for optically phase modulated radio-over-fibre link employing coherent detection is demonstrated. Demodulation of 3·2.5 Gbit/s QPSK modulated WDM channels, is achieved after 79km of transmission through deployed fiber....

  19. Effective use of multibeam antenna and space-time multiple access technology in modern mobile communication systems

    OpenAIRE

    Moskalets, N. V.

    2015-01-01

    A possibility for efficient use of radio-frequency spectrum and of corresponding increase in productivity of mobile communication system with space-time multiple access obtained by use of multibeam antenna of base station is considered.

  20. Shoestring Budget Radio Astronomy (Abstract)

    Science.gov (United States)

    Hoot, J. E.

    2017-12-01

    (Abstract only) The commercial exploitation of microwave frequencies for cellular, WiFi, Bluetooth, HDTV, and satellite digital media transmission has brought down the cost of the components required to build an effective radio telescope to the point where, for the cost of a good eyepiece, you can construct and operate a radio telescope. This paper sets forth a family of designs for 1421 MHz telescopes. It also proposes a method by which operators of such instruments can aggregate and archive data via the Internet. With 90 or so instruments it will be possible to survey the entire radio sky for transients with a 24 hour cadence.

  1. Antenna Fabrication using 3D printing techniques

    OpenAIRE

    Elibiary, Ahmed

    2017-01-01

    This thesis focuses to explore the use of additive manufacturing (AM) techniques to fabricate various radio frequency (RF) devices. 3D printing, a term used for AM has evolved to the point where it is being introduced into various industries, one of these, discussed in this thesis is the fabrication of antennas for the aim to reduce manufacturing costs and time.\\ud The aim is to investigate the performance and reliability of a modified low-cost 3D printer to print plastic and metal simultaneo...

  2. RAE-B antenna aspect system

    Science.gov (United States)

    1972-01-01

    The development of a facsimile camera to serve as the antenna aspect system for the second generation Radio Astronomy Explorer Satellite designated RAE-B is summarized. The camera system consists of two cameras and a data encoder. The program deliverables were two flight cameras, a flight encoder and one spare flight encoder. The RAE-B satellite was originally intended for an earth orbit mission and the facsimile subsystem characteristics were specified with this in mind. Subsequently the flight mission was changed to orbit the moon; however the change occurred too late to significantly influence the facsimile system design. Therefore, this report considers only compliance of the system to earth orbit requirements.

  3. Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave

    International Nuclear Information System (INIS)

    Duanmu Gang; Zhao Changming; Liang Chao; Xu Yuemin

    2014-01-01

    This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time-domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication. (plasma technology)

  4. Essential Characteristics of Plasma Antennas Filled with He-Ar Penning Gases

    International Nuclear Information System (INIS)

    Sun Naifeng; Li Wenzhong; Wang Shiqing; Li Jian; Ci Jiaxiang

    2012-01-01

    Based on the essential theory of Penning gases, the discharge characteristics of He-Ar Penning gases in insulating tubes were analyzed qualitatively. The relation between the effective length of an antenna column filled with He-Ar Penning gases and the applied radio frequency (RF) power was investigated both theoretically and experimentally. The distribution of the plasma density along the antenna column in different conditions was studied. The receiving characteristics of local frequency modulated (FM) electromagnetic waves by the plasma antenna filled with He-Ar Penning gases were compared with those by an aluminum antenna with the same dimensions. Results show that it is feasible to take plasma antennas filled with He-Ar Penning gases as receiving antennas.

  5. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    Science.gov (United States)

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  6. Outdoor Urban Propagation Experiment of a Handset MIMO Antenna with a Human Phantom located in a Browsing Stance

    DEFF Research Database (Denmark)

    Yamamoto, Atsushi; Hayashi, Toshiteru; Ogawa, Koichi

    2007-01-01

    Outdoor radio propagation experiments are presented at 2.4 GHz, using a handset MIMO antenna with two monopoles and two planar inverted-F antennas (PIFAs), adjacent to a human phantom in browsing stance. The propagation test was performed in an urban area of a city, which resulted in non lineof...

  7. Radio Frequency Interference Site Survey for Thai Radio Telescopes

    Science.gov (United States)

    Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.

    2017-09-01

    Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.

  8. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    Science.gov (United States)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  9. The prophylactic effect of vitamin C on induced oxidative stress in rat testis following exposure to 900 MHz radio frequency wave generated by a BTS antenna model.

    Science.gov (United States)

    Jelodar, Gholamali; Nazifi, Saeed; Akbari, Abolfazl

    2013-09-01

    Radio frequency wave (RFW) generated by base transceiver station (BTS) has been reported to make deleterious effects on reproduction, possibly through oxidative stress. This study was conducted to evaluate the effect of RFW generated by BTS on oxidative stress in testis and the prophylactic effect of vitamin C by measuring the antioxidant enzymes activity, including glutathione peroxidase, superoxide dismutase (SOD) and catalase, and malondialdehyde (MDA). Thirty-two adult male Sprague-Dawley rats were randomly divided into four experimental groups and treated daily for 45 days as follows: sham, sham+vitamin C (l-ascorbic acid 200 mg/kg of body weight/day by gavage), RFW (exposed to 900 MHz RFW) 'sham' and 'RFW' animals were given the vehicle, i.e., distilled water and the RFW+vitamin C group (received vitamin C in addition to exposure to RFW). At the end of the experiment, all the rats were sacrificed and their testes were removed and used for measurement of antioxidant enzymes and MDA activity. The results indicate that exposure to RFW in the test group decreased antioxidant enzymes activity and increased MDA compared with the control groups (p < 0.05). In the treated group, vitamin C improved antioxidant enzymes activity and reduced MDA compared with the test group (p < 0.05). It can be concluded that RFW causes oxidative stress in testis and vitamin C improves the antioxidant enzymes activity and decreases MDA.

  10. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  11. Antenna for Ultrawideband Channel Sounding

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Pedersen, Gert F.

    2016-01-01

    A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact on the a......A novel compact antenna for ultrawideband channel sounding is presented. The antenna is composed of a symmetrical biconical antenna modified by adding a cylinder and a ring to each cone. A feeding coaxial cable is employed during the simulations in order to evaluate and reduce its impact...

  12. Wide Field Radio Transient Surveys

    Science.gov (United States)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  13. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  14. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    Directory of Open Access Journals (Sweden)

    Mohammad Habib Ullah

    2013-11-01

    Full Text Available A new meta-surface structure (MSS with a near-zero refractive index (NZRI is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS, a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  15. The first radio astronomy from space - RAE

    Science.gov (United States)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  16. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  17. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  18. An Efficient Beam Steerable Antenna Array Concept for Airborne Applications

    Directory of Open Access Journals (Sweden)

    H. Aliakbarian

    2014-04-01

    Full Text Available Deployment of a satellite borne, steerable antenna array with higher directivity and gain in Low Earth Orbit makes sense to reduce ground station complexity and cost, while still maintaining a reasonable link budget. The implementation comprises a digitally beam steerable phased array antenna integrated with a complete system, comprising the antenna, hosting platform, ground station, and aircraft based satellite emulator to facilitate convenient aircraft based testing of the antenna array and ground-space communication link. This paper describes the design, development and initial successful interim testing of the various subsystems. A two element prototype used in this increases the signal-to-noise ratio (SNR by 3 dB which is corresponding to more than 10 times better bit error rate (BER.

  19. An Optimal Electric Dipole Antenna Model and Its Field Propagation

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2016-01-01

    Full Text Available An optimal electric dipole antennas model is presented and analyzed, based on the hemispherical grounding equivalent model and the superposition principle. The paper also presents a full-wave electromagnetic simulation for the electromagnetic field propagation in layered conducting medium, which is excited by the horizontal electric dipole antennas. Optimum frequency for field transmission in different depth is carried out and verified by the experimental results in comparison with previously reported simulation over a digital wireless Through-The-Earth communication system. The experimental results demonstrate that the dipole antenna grounding impedance and the output power can be efficiently reduced by using the optimal electric dipole antenna model and operating at the optimum frequency in a vertical transmission depth up to 300 m beneath the surface of the earth.

  20. AIS Algorithm for Smart Antenna Application in WLAN

    Directory of Open Access Journals (Sweden)

    Evizal Abdul Kadir

    2015-07-01

    Full Text Available Increasing numbers of wireless local area networks (WLAN replacing wired networks have an impact on wireless network systems, causing issues such as interference. The smart antenna system is a method to overcome interference issues in WLANs. This paper proposes an artificial immune system (AIS for a switch beam smart antenna system. A directional antenna is introduced to aim the beam at the desired user. The antenna consists of 8 directional antennas, each of which covers 45 degrees, thus creating an omnidirectional configuration of which the beams cover 360 degrees. To control the beam switching, an inexpensive PIC 16F877 microchip was used. An AIS algorithm was implemented in the microcontroller, which uses the received radio signal strength of the mobile device as reference. This is compared for each of the eight beams, after which the AIS algorithm selects the strongest signal received by the system and the microcontroller will then lock to the desired beam. In the experiment a frequency of 2.4 GHz (ISM band was used for transmitting and receiving. A test of the system was conducted in an outdoor environment. The results show that the switch beam smart antenna worked fine based on locating the mobile device.

  1. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  2. Radio astronomy

    International Nuclear Information System (INIS)

    Parijskij, Y.N.; Gossachinskij, I.V.; Zuckerman, B.; Khersonsky, V.K.; Pustilnik, S.; Robinson, B.J.

    1976-01-01

    A critical review of major developments and discoveries in the field of radioastronomy during the period 1973-1975 is presented. The report is presented under the following headings:(1) Continuum radiation from the Galaxy; (2) Neutral hydrogen, 21 cm (galactic and extragalactic) and recombination lines; (3) Radioastronomy investigations of interstellar molecules; (4) Extragalactic radio astronomy and (6) Development in radio astronomy instruments. (B.R.H.)

  3. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  4. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Hussain, Aftab Mustansir; Shamim, Atif; Ghaffar, Farhan Abdul

    2017-01-01

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal

  5. Dynamic Flaps Electronic Scan Antenna

    National Research Council Canada - National Science Library

    Gonzalez, Daniel

    2000-01-01

    A dynamic FLAPS(TM) electronic scan antenna was the focus of this research. The novelty S of this SBIR resides in the use of plasma as the main component of this dynamic X-Band phased S array antenna...

  6. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  7. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  8. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  9. Simultaneous wireless information and power transfer for spectrum sharing in cognitive radio communication systems

    KAUST Repository

    Benkhelifa, Fatma; Tourki, Kamel; Alouini, Mohamed-Slim

    2016-01-01

    (AS) technique that assigns a subset of the PR's antennas to harvest the energy from the radio frequency (RF) signals sent by the secondary transmitter (ST), and assigns the rest of the PR's antennas to decode the information data. In this context

  10. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2009-01-01

    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  11. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  12. Optical response of bowtie antennas

    Science.gov (United States)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  13. Precision Geodesy via Radio Interferometry.

    Science.gov (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  14. The design and simulation of UHF RFID microstrip antenna

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Liu, Liping; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China has delineated UHF RFID communicating frequency range which is 840 ∼ 845 MHz and 920 ∼ 925 MHz, but most UHF microstrip antenna don’t carry out this standard, that leads to radio frequency pollution. In order to solve the problems above, a method combining theory and simulation is adopted. Combining with a new ceramic material, a 925.5 MHz RFID microstrip antenna is designed, which is optimized and simulated by HFSS software. The results show that the VSWR of this RFID microstrip antenna is relatively small in the vicinity of 922.5 MHz, the gain is 2.1 dBi, which can be widely used in China’s UHF RFID communicating equipments.

  15. Slotted Circularly Polarized Microstrip Antenna for RFID Application

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2017-12-01

    Full Text Available A single layer coaxial fed rectangular microstrip slotted antenna for circular polarization (CP is proposed for radio frequency identification (RFID application. Two triangular shaped slots and one rectangular slot along the diagonal axis of a square patch have been embedded. Due to slotted structure along the diagonal axis and less surface area, good quality of circular polarization has been obtained with the reduction in the size of microstrip antenna by 4.04 %. Circular polarization radiation performance has been studied by size and angle variation of diagonally slotted structures. The experimental result found for 10-dB return loss is 44 MHz with 10MHz of 3dB Axial Ratio (AR bandwidth respectively at the resonant frequency 910 MHz. The overall proposed antenna size including the ground plane is 80 mm x 80 mm x 4.572 mm.

  16. FTTA System Demo Using Optical Fiber-Coupled Active Antennas

    Directory of Open Access Journals (Sweden)

    Niels Neumann

    2014-08-01

    Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.

  17. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    Science.gov (United States)

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.

  18. Method of steering the gain of a multiple antenna global positioning system receiver

    Science.gov (United States)

    Evans, Alan G.; Hermann, Bruce R.

    1992-06-01

    A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.

  19. 24 GHz cmWave Radio Propagation Through Vegetation

    DEFF Research Database (Denmark)

    Rodriguez, Ignacio; Abreu, Renato Barbosa; Portela Lopes de Almeida, Erika

    2016-01-01

    This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth was exam......This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth...

  20. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  1. An Examination of Application of Artificial Neural Network in Cognitive Radios

    Science.gov (United States)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  2. An Examination of Application of Artificial Neural Network in Cognitive Radios

    International Nuclear Information System (INIS)

    Salau, H Bello; Onwuka, E N; Aibinu, A M

    2013-01-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined

  3. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  4. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  5. Transition of RF internal antenna plasma by gas control

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori [Advanced Institute of Industrial Technology, 1-10-40 HigashiOhi, Shinagawa-ku, Tokyo, 140-0011 (Japan); Japan Atomic Energy Agency, 2-4 Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  6. Development of a Log-Periodic antenna system | Tyona | Nigerian ...

    African Journals Online (AJOL)

    ... with a standard deviation of 2.6. A gain of 20.33 ± 0.69 dB was achieved at a signal-to-noise ratio of 104.77 ± 1.04dB. The efficiency at frequencies above 500MHz is 97% and drops to 65% at frequencies below 200MHz. Keywords: Dipole antenna, radio communication and space loss. Nigerian Journal of Physics Vol.

  7. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    Science.gov (United States)

    Schröder, Frank G.; Pierre Auger Collaboration

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  8. Cognitive Radio RF: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Van Tam Nguyen

    2012-01-01

    Full Text Available Cognitive radio system (CRS is a radio system which is aware of its operational and geographical environment, established policies, and its internal state. It is able to dynamically and autonomously adapt its operational parameters and protocols and to learn from its previous experience. Based on software-defined radio (SDR, CRS provides additional flexibility and offers improved efficiency to overall spectrum use. CRS is a disruptive technology targeting very high spectral efficiency. This paper presents an overview and challenges of CRS with focus on radio frequency (RF section. We summarize the status of the related regulation and standardization activities which are very important for the success of any emerging technology. We point out some key research challenges, especially implementation challenges of cognitive radio (CR. A particular focus is on RF front-end, transceiver, and analog-to-digital and digital-to-analog interfaces which are still a key bottleneck in CRS development.

  9. Latest results of the Tunka Radio Extension

    Directory of Open Access Journals (Sweden)

    Kostunin D.

    2017-01-01

    Full Text Available The Tunka Radio Extension (Tunka-Rex is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.

  10. The Impact of Radio Interference on Future Radio Telescopes

    Science.gov (United States)

    Mitchell, Daniel A.; Robertson, Gordon J.; Sault, Robert J.

    While future radio telescopes will require technological advances from the communications industry interference from sources such as satellites and mobile phones is a serious concern. In addition to the fact that the level of interference is growing constantly the increased capabilities of next generation instruments make them more prone to harmful interference. These facilities must have mechanisms to allow operation in a crowded spectrum. In this report some of the factors which may limit the effectiveness of these mechanisms are investigated. Radio astronomy is unique among other observing wavelengths in that the radiation can be fully sampled at a rate which completely specifies the electromagnetic environment. Knowledge of phases and antennae gain factors affords one the opportunity to attempt to mitigate interference from the astronomical data. At present several interference mitigation techniques have been demonstrated to be extremely effective. However the observational scales of the new facilities will push the techniques to their limits. Processes such as signal decorrelation varying antenna gain and instabilities in the primary beam will have a serious effect on some of the algorithms. In addition the sheer volume of data produced will render some techniques computationally and financially impossible.

  11. Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340 m above sea level

    Science.gov (United States)

    Beisenova, A.; Boos, E.; Haungs, A.; Sadykov, T.; Salihov, N.; Shepetov, A.; Tautayev, Y.; Vildanova, L.; Zhukov, V.

    2017-06-01

    The complex EAS installation of the Tien Shan mountain cosmic ray station which is situated at a height of 3340 m above sea level includes the scintillation and Cherenkov detectors of charged shower particles, an ionization calorimeter and a set of neutron detectors for registering the hadronic component of the shower, and a number of underground detectors of the penetrative EAS component. Now it is intended to expand this installation with a promising method for detecting the radio-emission generated by the particles of the developing shower. The facility for radio-emission detection consists of a three crossed dipole antennae, one being set vertically, and another two - mutually perpendicularly in a horizontal plane, all of them being connected to a three-channel radio-frequency amplifier of German production. By the passage of an extensive air shower, which is defined by a scintillation shower detector system, the output signal of antenna amplifier is digitized by a fast multichannel DT5720 ADC of Italian production, and kept within computer memory. The further analysis of the detected signal anticipates its operation according to a special algorithm and a search for the pulse of radio-emission from the shower. A functional test of the radio-installation is made with artificial signals which imitate those of the shower, and with the use of a N1996A type wave analyzer of Agilent Technologies production. We present preliminary results on the registration of extensive air shower emission at the Tien Shan installation which were collected during test measurements held in Summer 2016.

  12. Investigating Equations Used to Design a Very Small Normal-Mode Helical Antenna in Free Space

    Directory of Open Access Journals (Sweden)

    Dang Tien Dung

    2018-01-01

    Full Text Available A normal-mode helical antenna (NMHA has been applied in some small devices such as tire pressure monitoring systems (TPMS and radio frequency identification (RFID tags. Previously, electrical characteristics of NMHA were obtained through electromagnetic simulations. In practical design of NMHA, equational expressions for the main electrical characteristics are more convenient. Electrical performances of NMHA can be expressed by a combination of a short dipole and small loops. Applicability of equations for a short dipole and a small loop to very small normal-mode helical antennas such as antennas around 1/100 wavelengths was not clear. In this paper, accuracies of equations for input resistances, antenna efficiency, and axial ratios are verified by comparisons with electromagnetic simulation results by FEKO software at 402 MHz. In addition, the structure of the antenna equal to 0.021 λ is fabricated, and measurements are performed to confirm the design accuracy.

  13. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  14. Characterization of polymer silver pastes for screen printed flexible RFID antennas

    Science.gov (United States)

    Janeczek, Kamil; Jakubowska, Małgorzata; Futera, Konrad; MłoŻniak, Anna; Kozioł, GraŻyna; Araźna, Aneta

    Radio Frequency Identification (RFID) systems have become more and more popular in the last few years because of their wide application fields, such as supply chain management and logistics. To continue their development further investigations of new conductive materials for fabrication of RFID transponders' antennas are necessary to be carried out. These materials should provide high flexibility and good radiation performance of printed antennas. In this paper, two polymer silver pastes based on silver flakes were characterized with regard to manufacturing of flexible RFID antennas with screen printing technique. Foil and paper were used as a substrate materials. Surface profile of the printed antennas was measured using an optical profilometer and their resistance was measured with a four-point-probe method. Antenna flexibility was evaluated in cyclic bending tests and its performance with reflection coefficient measurements with the use of differential probe connected to a vector network analyzer. In addition, a maximum read distance of a fabricated RFID transponder was measured.

  15. Tracking Solar Type II Bursts with Space Based Radio Interferometers

    Science.gov (United States)

    Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.

    2018-06-01

    The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year

  16. Tunka-Rex: energy reconstruction with a single antenna station

    Science.gov (United States)

    Hiller, R.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2017-03-01

    The Tunka-Radio extension (Tunka-Rex) is a radio detector for air showers in Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its host experiment, the air-Cherenkov array Tunka-133, which provided trigger, data acquisition, and an independent air-shower reconstruction. It was shown that the air-shower energy can be reconstructed by Tunka-Rex with a precision of 15% for events with signal in at least 3 antennas, using the radio amplitude at a distance of 120 m from the shower axis as an energy estimator. Using the reconstruction from the host experiment Tunka-133 for the air-shower geometry (shower core and direction), the energy estimator can in principle already be obtained with measurements from a single antenna, close to the reference distance. We present a method for event selection and energy reconstruction, requiring only one antenna, and achieving a precision of about 20%. This method increases the effective detector area and lowers thresholds for zenith angle and energy, resulting in three times more events than in the standard reconstruction.

  17. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became

  18. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed

    2017-01-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz. PMID:28763043

  19. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit

    Directory of Open Access Journals (Sweden)

    Yuharu Shinki

    2017-08-01

    Full Text Available This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for −4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  20. Impedance Matching Antenna-Integrated High-Efficiency Energy Harvesting Circuit.

    Science.gov (United States)

    Shinki, Yuharu; Shibata, Kyohei; Mansour, Mohamed; Kanaya, Haruichi

    2017-08-01

    This paper describes the design of a high-efficiency energy harvesting circuit with an integrated antenna. The circuit is composed of series resonance and boost rectifier circuits for converting radio frequency power into boosted direct current (DC) voltage. The measured output DC voltage is 5.67 V for an input of 100 mV at 900 MHz. Antenna input impedance matching is optimized for greater efficiency and miniaturization. The measured efficiency of this antenna-integrated energy harvester is 60% for -4.85 dBm input power and a load resistance equal to 20 kΩ at 905 MHz.

  1. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  2. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    Science.gov (United States)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  3. Feedback information transmission and scheduling in a radio access network

    OpenAIRE

    Wunder, Gerhard; Schreck, Jan

    2012-01-01

    A concept for a mobile transceiver apparatus 100 for communicating with a base station transceiver in a mobile communication system, the base station transceiver 200 using multiple antennas for transmitting radio signals to the mobile transceiver apparatus 100. The mobile transceiver apparatus 100 comprises means for estimating 120 a radio channel between the base station transceiver 200 and the mobile transceiver apparatus 100 based on a reference signal to obtain a channel estimate. The mob...

  4. A Minkowski Fractal Circularly Polarized Antenna for RFID Reader

    Directory of Open Access Journals (Sweden)

    Yanzhong Yu

    2014-11-01

    Full Text Available A design of fractal-like antenna with circular polarization for radio frequency identification (RFID reader applications is presented in this article. The modified Minkowski fractal structure is adopted as radiating patch for size reduction and broadband operation. A corner-truncated technology and a slot-opened method are employed to realize circular polarization and improve the gain of the proposed antenna, respectively. The proposed antenna is analyzed and optimized by HFSS. Return loss and maximum gain of the optimized antenna achieve to -22.2 dB and 1.12 dB at 920 MHz, respectively. The optimized design has an axial ratio (AR of 1.2 dB at central frequency of 920 MHz and impedance bandwidth (S11<=-10 dB of 40 MHz (4.3 %. Its input impedance is (57.9-j2.6 W that is close to input impedance of coaxial line (50 W. Numerical results demonstrate that the optimized antenna exhibits acceptable performances and may satisfy requirements of RFID reader applications.

  5. Efficiency Improvements of Antenna Optimization Using Orthogonal Fractional Experiments

    Directory of Open Access Journals (Sweden)

    Yen-Sheng Chen

    2015-01-01

    Full Text Available This paper presents an extremely efficient method for antenna design and optimization. Traditionally, antenna optimization relies on nature-inspired heuristic algorithms, which are time-consuming due to their blind-search nature. In contrast, design of experiments (DOE uses a completely different framework from heuristic algorithms, reducing the design cycle by formulating the surrogates of a design problem. However, the number of required simulations grows exponentially if a full factorial design is used. In this paper, a much more efficient technique is presented to achieve substantial time savings. By using orthogonal fractional experiments, only a small subset of the full factorial design is required, yet the resultant response surface models are still effective. The capability of orthogonal fractional experiments is demonstrated through three examples, including two tag antennas for radio-frequency identification (RFID applications and one internal antenna for long-term-evolution (LTE handheld devices. In these examples, orthogonal fractional experiments greatly improve the efficiency of DOE, thereby facilitating the antenna design with less simulation runs.

  6. A Fully Inkjet Printed 3D Honeycomb Inspired Patch Antenna

    KAUST Repository

    McKerricher, Garret

    2015-07-16

    The ability to inkjet print three-dimensional objects with integrated conductive metal provides many opportunities for fabrication of radio frequency electronics and electronics in general. Both a plastic material and silver conductor are deposited by inkjet printing in this work. This is the first demonstration of a fully 3D Multijet printing process with integrated polymer and metal. A 2.4 GHz patch antenna is successfully fabricated with good performance proving the viability of the process. The inkjet printed plastic surface is very smooth, with less than 100 nm root mean square roughness. The printed silver nanoparticles are laser sintered to achieve adequate conductivity of 1e6 S/m while keeping the process below 80oC and avoiding damage to the polymer. The antenna is designed with a honeycomb substrate which minimizes material consumption. This reduces the weight, dielectric constant and dielectric loss which are all around beneficial. The antenna is entirely inkjet printed including the ground plane conductor and achieves an impressive 81% efficiency. The honeycomb substrate weighs twenty times less than a solid substrate. For comparison the honeycomb antenna provides an efficiency nearly 15% greater than a similarly fabricated antenna with a solid substrate.

  7. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  8. Nasu 1.4 GHz Interferometer Transient Radio Source Survey and Improvement in Detection of Radio Sources

    International Nuclear Information System (INIS)

    Matsumura, Nobuo; Kuniyoshi, Masaya; Takefuji, Kazuhiro; Niinuma, Kotaro; Kida, Sumiko; Takeuchi, Akihiko; Asuma, Kuniyuki; Daishido, Tsuneaki

    2006-01-01

    We have surveyed 1.4GHz transient radio sources in Nasu Pulsar Observatory. To investigate such sources, both immediacy and accuracy are severely maintained. We have developed Data Transfer System and improved antenna control system. Now we have received the fringe data from transient radio source candidates. To get reliable information, we carefully analyze with Fringe Band Pass Filter software and Fringe Fitting method

  9. Broadband Monopole Antenna

    Science.gov (United States)

    2017-09-14

    December 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] United States Patent Application Ser. No. 15/220,692 filed on July 27, 2016 is incorporated by...antenna operating near 2.5 GHz to obtain an octave of bandwidth. One solution for this is given by Werner et al. in United States Patent

  10. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  11. Antenna conditioning with insulating antenna tiles in Phaedrus-T

    International Nuclear Information System (INIS)

    Intrator, T.; Probert, P.; Doczy, M.; Diebold, D.; Brouchous, D.

    1994-01-01

    In the course of our Alfven wave heating and current drive experiments several different two and four strap antennas have been installed in Phaedrus-T. The motivation focusing the redesign of the antenna into a four strap design was to enable traveling wave phasing, and to reduce the k parallel ∼0 component of the wavenumber spectrum, and consequent edge power deposition. The latest modifications to the 4 strap antenna have dramatically improved its behavior, and enabled us to suppress its RF power induced impurity generation. The remaining gas reflux fueling is significant and is not local to the antenna

  12. RF bandwidth capacity and SCM in a radio-over-fibre link employing optical frequency multiplication

    NARCIS (Netherlands)

    Garcia Larrode, M.; Koonen, A.M.J.; Vegas Olmos, J.J.; Tafur Monroy, I.; Schenk, T.C.W.

    2005-01-01

    We demonstrate the feasibility of generating two 24Mbps 64-QAM radio signals simultaneously at 17.3GHz and 17.8GHz after 4.4km of multimode fibre in an OFM radio-over-fibre link for wireless multistandard support at the antenna site.

  13. Experimental confirmation and physical understanding of ultra-high bit rate impulse radio in the THz digital communication channels of the atmosphere

    Science.gov (United States)

    Mandehgar, Mahboubeh; Yang, Yihong; Grischkowsky, D.

    2014-09-01

    We have performed highly accurate numerical calculations of high bit rate impulse propagation through the seven digital communication channels of the atmosphere at RH 58% (10 g m-3). These calculations maximized bit rates for pathlengths equal to or longer than 100 m. We have experimentally verified our calculations for three channels with a propagation pathlength of 137 m and RH 65% (11.2 g m-3). Excellent agreement between measurement and theory was obtained for Channel 3 at 252 GHz, bit rate 84 Gb s-1, FWHM bandwidth (BW) 180 GHz; Channel 6 at 672 GHz, 45 Gb s-1, BW 84 GHz; and Channel 7 at 852 GHz, 56.8 Gb s-1, BW 108 GHz.

  14. Experimental confirmation and physical understanding of ultra-high bit rate impulse radio in the THz digital communication channels of the atmosphere

    International Nuclear Information System (INIS)

    Mandehgar, Mahboubeh; Yang, Yihong; Grischkowsky, D

    2014-01-01

    We have performed highly accurate numerical calculations of high bit rate impulse propagation through the seven digital communication channels of the atmosphere at RH 58% (10 g m −3 ). These calculations maximized bit rates for pathlengths equal to or longer than 100 m. We have experimentally verified our calculations for three channels with a propagation pathlength of 137 m and RH 65% (11.2 g m −3 ). Excellent agreement between measurement and theory was obtained for Channel 3 at 252 GHz, bit rate 84 Gb s −1 , FWHM bandwidth (BW) 180 GHz; Channel 6 at 672 GHz, 45 Gb s −1 , BW 84 GHz; and Channel 7 at 852 GHz, 56.8 Gb s −1 , BW 108 GHz. (special issue article)

  15. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  16. A Compact UWB Diversity Antenna

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available A compact printed ultrawideband (UWB diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.

  17. Efficient Placement of Directional Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  18. The use of Twitter´s Bio in radio programmes. From the profile´s presentation to the transmedia radio

    Directory of Open Access Journals (Sweden)

    Teresa PIÑEIRO OTERO

    2014-06-01

    Full Text Available The jump of conventional radio programs into social media has evolved in new spaces and interaction forms between radio broadcasters and radio listeners. Particularly, twitter community acquires a new dimension due to its public (non privacy status and shareability. From a transmedia perspective, this microblogging platform makes possible to the radio programs offering rich content (access to the tweets of radio show hosts or / and main collaborators, radio channel’s info... to the radio listeners. Although radio listeners can access those profiles on their own, or following real-time references of the program, it’s getting bigger the way radio show hosts use their profiles on twitter to improve synergies between multiple digital channels in order to increase the community engagement. Present article aims to analyze profile twitter bios of the bigger audience Spanish radio programs, in order to determine flow synergies between channels of the radio (brands and radio show hosts on twitter

  19. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  20. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  1. Minimum Q Electrically Small Antennas

    DEFF Research Database (Denmark)

    Kim, O. S.

    2012-01-01

    Theoretically, the minimum radiation quality factor Q of an isolated resonance can be achieved in a spherical electrically small antenna by combining TM1m and TE1m spherical modes, provided that the stored energy in the antenna spherical volume is totally suppressed. Using closed-form expressions...... for a multiarm spherical helix antenna confirm the theoretical predictions. For example, a 4-arm spherical helix antenna with a magnetic-coated perfectly electrically conducting core (ka=0.254) exhibits the Q of 0.66 times the Chu lower bound, or 1.25 times the minimum Q....

  2. Rectifier analysis for radio frequency energy harvesting and power transport

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.; Tijhuis, A.G.

    2012-01-01

    Wireless Power Transmission (WPT) is an attractive powering method for wireless sensor nodes, battery-less sensors, and Radio-Frequency Identification (RFID) tags. The key element on the receiving side of a WPT system is the rectifying antenna (rectenna) which captures the electromagnetic power and

  3. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  4. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  5. Design of a rectenna system for GSM-900 band using novel broadside 2 × 1 array antenna

    Directory of Open Access Journals (Sweden)

    Manish Singh

    2017-05-01

    Full Text Available In this study, a rectenna operating at the GSM-900 frequency band has been fabricated and tested. This rectenna composed of a 2 × 1 T-shaped monopole array antenna and an energy processing circuit. In order to reduce the gap between adjacent antenna elements in the array structure, the proposed array antenna uses a ground stub. Compared with other array antennas, the proposed array antenna with the ground stub reduces the size up to 50% without affecting the gain and bandwidth. An antenna prototype is fabricated and experimentally tested. The measured antenna's gain and bandwidth are 3.2 and 152 MHz, respectively, hence showing its suitability for radio-frequency (RF energy harvesting application. For this to be feasible, the developed array antenna is matched with the rectifier at GSM-900 using a single stub matching network. The measured result demonstrates that the proposed rectifier circuit offers the conversion efficiency of 21.2 and 63.6% for an input power of −20 and 0 dBm, respectively. Finally, the rectifier performance is attested experimentally with the developed array antenna. The rectenna's measured RF-to-dc conversion efficiency was found to be 60% at the far-field distance from the transmitting antenna.

  6. Metering instrument of quality factor Q of gravitational wave antenna

    International Nuclear Information System (INIS)

    Jia-yan, C.; Tong-ren, G.

    1982-01-01

    The quality factor, Q, of gravitational wave antenna depends on the material property as well as external conditions, such as temperature, residual pressure in vacuum tank, support type, additional loss from transducer on antenna, etc. In order to find out the relationship between the antenna Q and external conditions automatical operating in succession is required. The authors have designed and made a metering instrument for quality factor Q. The metering instrument of Q can measure Q of the metal cylinder and other bar of higher Q. It can give data of the measurement at regular intervals as desired. It can measure accurately the longitudinal fundamental mode frequency of the cylinder with a digital frequency meter record oscillating signal from metering instrument. Because the metering instrument excites free-vibration of the cylinder with free-running type and keep up the stationary amplitude for a long time. (Auth.)

  7. Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy

    Science.gov (United States)

    2016-03-05

    398, 1994. [21] A. Nehorai, K. C. Ho, and B. T. G. Tan , “Minimum- 14 noise-variance beamformer with an electromagnetic vector sensor,” IEEE...G. Eslinger, A. Nicholas , and C. Pong, “The MicroMAS CubeSat Mission,” AGU Fall Meet. Abstr., vol. -1, p. 2162, Dec. 2012. [39] W. Blackwell, G

  8. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  9. Antenna concepts for interstellar search systems

    International Nuclear Information System (INIS)

    Basler, R.P.; Johnson, G.L.; Vondrak, R.R.

    1977-01-01

    An evaluation is made of microwave receiving systems designed to search for signals from extraterrestrial intelligence. Specific design concepts are analyzed parametrically to determine whether the optimum antenna system location is on earth, in space, or on the moon. Parameters considered include the hypothesized number of transmitting civilizations, the number of stars that must be searched to give any desired probability of receiving a signal, the antenna collecting area, the search time, the search range, and the cost. This analysis suggests that search systems based on the moon are not cost-competitive, if the search is extended only a few hundred light years from the earth, a Cyclops-type array on earth may be the most cost-effective system, for a search extending to 500 light years or more, a substantial cost and search-time advantage can be achieved with a large spherical reflector in space with multiple feeds, radio frequency interference shields can be provided for space systems, and cost can range from a few hundred million to tens of billions of dollars, depending on the parameter values assumed

  10. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  11. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  12. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  13. Indoor Positioning with Radio Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    . A promising indoor positioning technique is radio-based location ngerprinting, having the major advantage of exploiting already existing radio infrastructures, like IEEE 802.11 or GSM, which avoids extra deployment costs and eort. The research goal of this thesis is to address the limitations of current...... indoor location ngerprinting systems. In particular the aim is to advance location ngerprinting techniques for the challenges of handling heterogeneous clients, scalability to many clients, and interference between communication and positioning. The wireless clients used for location ngerprinting...... are heterogeneous even when only considering clients for the same technology. The heterogeneity is due to dierent radios, antennas, and rmwares causing measurements for location ngerprinting not to be directly comparable among clients. Heterogeneity is a challenge for location ngerprinting because it severely...

  14. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  15. Optimization of the FAST ICRF antenna using TOPICA code

    International Nuclear Information System (INIS)

    Sorba, M.; Milanesio, D.; Maggiora, R.; Tuccillo, A.

    2010-01-01

    Ion Cyclotron Resonance Heating is one of the most important auxiliary heating systems in most plasma confinement experiments. Because of this, the need for very accurate design of ion cyclotron (IC) launchers has dramatically grown in recent years. Furthermore, a reliable simulation tool is a crucial request in the successful design of these antennas, since full testing is impossible outside experiments. One of the most advanced and validated simulation codes is TOPICA, which offers the possibility to handle the geometrical level of detail of a real antenna in front of an accurately described plasma scenario. Adopting this essential tool made possible to reach a refined design of ion cyclotron radio frequency antenna for the FAST (Fusion Advanced Studies Torus) experiment . Starting from a streamlined antenna model and then following well-defined refinement procedures, an optimized launcher design in terms of power delivered to plasma has been finally achieved. The computer-assisted geometry refinements allowed an increase in the performances of the antenna and notably in power handling: the extent of the gained improvements were not experienced in the past, essentially due to the absence of predictive tools capable of analyzing the detailed effects of antenna geometry in plasma facing conditions. Thus, with the help of TOPICA code, it has been possible to comply with the FAST experiment requirements in terms of vacuum chamber constraints and power delivered to plasma. Once an antenna geometry was optimized with a reference plasma profile, the analysis of the performances of the launcher has been extended with respect to two plasma scenarios. Exploiting all TOPICA features, it has been possible to predict the behavior of the launcher in real operating conditions, for instance varying the position of the separatrix surface. In order to fulfil the analysis of the FAST IC antenna, the study of the RF potentials, which depend on the parallel electric field computation

  16. Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Le The Dung

    2017-03-01

    Full Text Available This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs. Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA and uniform circular array (UCA antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs.

  17. Long-Range Channel Measurements on Small Terminal Antennas Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan; Nielsen, Jesper Ødum; Christensen, Morten

    2012-01-01

    In this paper, details are given on a novel measurement device for radio propagation-channel measurements. To avoid measurement errors due to the conductive cables on small terminal antennas, as well as to improve the handling of the prototypes under investigation, an optical measurement device has...

  18. Potential Improvements to VLBA UV-Coverages by the Addition of a 32-m Peruvian Antenna

    Science.gov (United States)

    Horiuchi, S.; Murphy, D. W.; Ishitsuka, J. K.; Ishitsuka, M.

    2005-12-01

    A plan is being currently developed to convert a 32-m telecomunications antenna in the Peruvian Andes into a radio astronomy facility. Significant improvements to stand-alone VLBA UV-coverages can be obtained with the addition of this southern hemisphere telescope to VLBA observations.

  19. The Ultrawideband Leaky Lens Antenna

    NARCIS (Netherlands)

    Bruni, S.; Neto, A.; Marliani, F.

    2007-01-01

    A novel directive and nondispersive antenna is presented: the ultrawideband (UWB) leaky lens. It is based on the broad band Cherenkov radiation occurring at a slot printed between different infinite homogeneous dielectrics. The first part of the paper presents the antenna concept and the UWB design.

  20. Optically Controlled Phased Array Antenna

    National Research Council Canada - National Science Library

    Garafalo, David

    1998-01-01

    .... The antenna is a 3-foot by 9 foot phased array capable of a scan angle of 120 degrees. The antenna was designed to be conformal to the cargo door of a large aircraft and is designed to operate in the frequency range of 830 - 1400 MHz with a 30...

  1. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  2. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  3. Direction of Arrival Estimation with a Novel Single-Port Smart Antenna

    Directory of Open Access Journals (Sweden)

    Chen Sun

    2004-08-01

    Full Text Available A novel direction of arrival (DOA estimation technique that uses the conventional multiple-signal classification (MUSIC algorithm with periodic signals is applied to a single-port smart antenna. Results show that the proposed method gives a high-resolution (1 degree DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only 1 analogue-to-digital converter (ADC is used in this antenna, which features low power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling among antenna elements. Therefore, it offers an economical way to extensively implement smart antennas into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals such as laptops in wireless networks.

  4. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  5. An improved broadband E patch microstrip antenna for wireless communications

    Science.gov (United States)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  6. Quantitative thermographic imagery in the evaluation of antenna heating patterns

    International Nuclear Information System (INIS)

    Pearce, J.A.; Baughman, R.R.

    1984-01-01

    In quantitative thermographic imaging the temperature distribution of a surface is inferred from measurement of the radiant energy leaving the surface. Digital image processing and calibration methods allow the subtraction of preexisting temperature gradients so that precise heating patterns can be obtained. The primary limitation of quantitative thermography is that noise in the photodetector limits minimum resolvable temperature difference to around 0.5 0 C since frame integration cannot be used on the transient temperature distributions expected. The authors have developed and evaluated nonlinear smoothing operators which reduce the noise variance so that temperature differences of 0.1 0 C can be measured. They have applied digital thermographic imaging in the measurement of heating patterns obtained from two roughly orthogonal microwave antennas: a spiral antenna and a bow-tie antenna. These two antenna types are orthogonal in that the spiral has an H-field essentially normal to the phantom surface and the bow-tie has an E-field essentially normal to the surface. The resulting heating patterns clearly show the effect of non-uniform phantom electrical properties on the heating profiles obtained

  7. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  8. The ICRF antennas for TFTR

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Colestock, P.L.; Gardner, W.L.; Hosea, J.C.; Nagy, A.; Stevens, J.; Swain, D.W.; Wilson, J.R.

    1988-01-01

    Two compact loop antennas have been designed to provide ion cyclotron resonant frequency (ICRF) heating for TFTR. The antennas can convey a total of 10 MW to accomplish core heating in either high-density or high-temperature plasmas. The near-term goal of heating TFTR plasmas and the longer-term goals of ease in handling (for remote maintenance) and high reliability (in an inaccessible tritium tokamak environment) were major considerations in the antenna designs. The compact loop configuration facilitates handling because the antennas fit completely through their ports. Conservative design and extensive testing were used to attain the reliability required for TFTR. This paper summarizes how these antennas will accomplish these goals. 5 figs, 1 tab

  9. Mobile applications of photovoltaic planar antennas - SOLPLANT {sup registered}; Mobile Anwendungen von Solaren Planarantennen - SOLPLANT {sup registered}

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, C.; Kirchhof, J. [Institut fuer Solare Energieversorgungstechnik (ISET), Kassel (Germany); Henze, N. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Hochfrequenztechnik

    2005-07-01

    This paper describes the application of photovoltaic (PV) Solar Planar Antennas in mobile applications. The radiating patch element of a planar antenna is replaced by a solar cell. Furthermore radiating slots can be built due to the cell spacing in a solar cell array. The original feature of a solar cell (DC current generation) remains, but additionally the solar cell is now able to receive and transmit electromagnetic waves. Both single solar cells as well as solar cell arrays can be used as antennas. This new approach, the ''Solar Planar Antenna - SOLPLANT {sup registered} '', avoids disadvantages of conventional applications, when solar cells and antennas are used in combination. Based on these considerations, a product development concept was originated at whose basic idea has been registered as a patent in Germany, Europe, Japan and USA. Four applications are presented: a solar cell GPS antenna for vehicular applications, a solar cell slot antenna for mobile communications (GSM), an environmental metering station with GSM function and a Worldspace Satellite Radio, equipped with a SOLPLANT {sup registered} antenna. The aim of the first two products is to integrate these antennas into vehicular glass roofs which are covered with photovoltaic solar cells in order to deliver the electric power for the indoor ventilation of the car. The GPS antenna provides circular polarisation and a main lobe in zenith direction whereas the GSM antenna is vertically polarized and has a monopole-like radiation pattern. Both antennas are built up with commonly used solar cells. The comparison of measured and simulated antenna properties shows a good agreement. At last, some applications on high altitude platforms for wireless communication services and remote sensing are depicted. (ORIG.)

  10. Copper thin film for RFID UHF antenna on flexible substrate

    International Nuclear Information System (INIS)

    Tran, Nhan Ai; Tran, Huy Nam; Dang, Mau Chien; Fribourg-Blanc, Eric

    2010-01-01

    A process flow using photolithography and sputtering was studied for copper antenna fabrication on thin poly(ethylene terephthalate) (PET) substrate. The lift-off route was chosen for its flexibility at laboratory scale. It was clarified that the cleaning of PET is an important step that necessitates mild oxygen plasma etching. Then copper is sputter deposited after photolithographic definition of the antenna. Care is necessary since PET, as a very flexible substrate, is temperature sensitive. The temperature increase generated by the impact of deposited copper should be maintained below the glass transition temperature of the polymer to avoid detrimental deformation. dc power of 40 to 50 W was found to be the maximum possible sputtering power for commercial PET. It was found that the resistivity of the thin film is below two times the bulk resistivity of copper for a deposition pressure below 4×10 −3  mbar and thickness above 450 nm. These results enable the reliable fabrication of copper RFID UHF antennae on a PET substrate for further testing of new tag designs. The present paper summarizes the effort to test new designs of antennae for RadioFrequency IDentification (RFID) Ultra High Frequency (UHF) tags, for use in various applications (e.g. object tracking and environment monitoring) in Vietnam

  11. Wearable Inset-Fed FR4 Microstrip Patch Antenna Design

    Science.gov (United States)

    Zaini, S. R. Mohd; Rani, K. N. Abdul

    2018-03-01

    This project proposes the design of a wireless body area network (WBAN) microstrip patch antenna covered by the jeans fabric as the outer layer operating at the center frequency, fc of 2.40 GHz. Precisely, the microstrip patch antenna with the inset-fed edge technique is designed and simulated systematically by using the Keysight Advanced Design System (ADS) software where the FR4 board with the dielectric constant, ɛr of 4.70, dissipation factor or loss tangent, tan δ of 0.02 and height, h of 1.60 mm is the chosen dielectric substrate. The wearable microstrip patch antenna design is then fabricated using the FR4 printed circuit board (PCB) material, hidden inside the jeans fabric, and attached to clothing, such as a jacket accordingly. Simulation and fabrication measurement results show that the designed microstrip patch antenna characteristics can be applied significantly within the industrial, scientific, and medical (ISM) radio band, which is at fc = 2.40 GHz.

  12. Satellite Antenna Pointing Procedure Driven by the Ground Service Quality

    Science.gov (United States)

    Yasui, Yoshitsugu

    A satellite antenna alignment technique is proposed to ensure terrestrial service quality for users. The antenna bore sight orientation is calculated directly from measured data acquired from general ground receivers, which intercept the communication radio waves from any position on the earth's surface. The method coordinates the satellite pointing parameters with signal strength at the receivers while considering location-specific geographical and antenna radiation characteristics and control accuracy. The theoretical development and its validity are examined in the course of equation derivation. Actual measured data of an existing satellite at the maneuver was applied to the method, and the capability was demonstrated and verified. With the wide diversity of satellite usage, such as for mobile communications, temporary network deployment or post-launch positioning accommodations, the proposed method provides a direct evaluation of satellite communication performance at the service level, in conjunction with using high frequency spot beam antennas, which are highly susceptible to pointing gain. This can facilitate swift and flexible satellite service planning and deployment for operators.

  13. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    Science.gov (United States)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  14. Proceedings of the 2010 Antenna Applications Symposium Held in Monticello, Illinois on 21-23 September 2010. Volume 2

    Science.gov (United States)

    2010-12-01

    layers that are between outer Thermal Micro Meteoroid Garment ( TMG ) layer (Ortho-Fabric) and scrim reinforced aluminized Mylar plies. Figure 2...materials, Nomex pads, Velcro hook and pile attachment methods. The white TMG garment shell covers the entire assembly. Since these materials are...Mylar layers of the PLSS TMG . The antenna is connector to the EVA UHF radio which is located directly beneath the antenna by a coaxial cable with SMA

  15. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...... to a FPA feeding a torus reflector antenna (designed under the contract with the European Space Agency) and tested for multiple beams. The results demonstrate an improved performance in terms of the optimized beam characteristics, yielding much higher spatial and radiometric resolution as well as much...

  16. A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Directory of Open Access Journals (Sweden)

    Lai Xiao zheng

    2013-01-01

    Full Text Available A compact loop antenna is presented for mobile ultrahigh frequency (UHF radio frequency identification (RFID application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz. The proposed loop configuration, with a split-ring resonator (SRR coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

  17. CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

    Directory of Open Access Journals (Sweden)

    Sun-Woong Kim

    2017-01-01

    Full Text Available We propose a wide bandwidth antenna with a circular polarization for universal Ultra High Frequency (UHF radio-frequency identification (RFID reader applications. To achieve a wide 3 dB axial ratio (AR bandwidth, three T-shaped microstrip lines are inserted into the ground plane. The measured impedance bandwidth of the proposed antenna is 480 MHz and extends from 660 to 1080 MHz, and the 3 dB AR bandwidth is 350 MHz and extends from 800 to 1155 MHz. The radiation pattern is a bidirectional pattern with a maximum antenna gain of 3.67 dBi. The overall size of the proposed antenna is 114 × 114 × 0.8 mm3.

  18. The radio universe

    International Nuclear Information System (INIS)

    Worvill, R.

    1977-01-01

    Elementary description of the development of radioastronomy, radio waves from the sun and planets, the use of radio telescopes and the detection of nebulae, supernova, radio galaxies and quasars is presented. A brief glossary of terms is included. (UK)

  19. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    Science.gov (United States)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the

  20. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase......-shift. Experimental results inX-band, in good agreement with the theory, show that it is possible to scan the main lobe an angle ofpm30degby a variation of the frequencypm300MHz, and where the 3 dB beamwidth is less than10deg. The directivity was 14.7 dB, while the gain was 8.1 dB. The efficiency might be improved...

  1. Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project

    Science.gov (United States)

    Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.

    2016-12-01

    The Radio JOVE project has long been a hands-on inquiry-based educational project that allows students, teachers and the general public to learn and practice radio astronomy by building their own radio antenna and receiver system from an inexpensive kit that operates at 20.1 MHz and/or using remote radio telescopes through the Internet. Radio JOVE participants observe and analyze natural radio emissions from Jupiter and the Sun. Within the last few years, several Radio JOVE amateurs have upgraded their equipment to make semi-professional spectrographic observations in the frequency band of 15-30 MHz. Due to the widely distributed Radio JOVE observing stations across the US, the Radio JOVE observations can uniquely augment observations by professional telescopes, such as the Long Wavelength Array (LWA) . The Radio JOVE project has recently partnered with the NASA Heliophysics Education Consortium (HEC) to work with students and interested amateur radio astronomers to establish additional spectrograph and single-frequency Radio JOVE stations. These additional Radio JOVE stations will help build a larger amateur radio science network and increase the spatial coverage of long-wavelength radio observations across the US. Our presentation will describe the Radio JOVE project within the context of the HEC. We will discuss the potential for citizen scientists to make and use Radio JOVE observations to study solar radio bursts (particularly during the upcoming solar eclipse in August 2017) and Jovian radio emissions. Radio JOVE observations will also be used to study ionospheric radio scintillation, promoting appreciation and understanding of this important space weather effect.

  2. Compact Agile Antenna Concept Utilizing Reconfigurable Front End for Wireless Communications

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2014-01-01

    The conventional full-duplex radio communication systems require that the radio transmitter (Tx) is active at the same time as the radio receiver (Rx). The Tx and the Rx are using separate dedicated frequency bands and the Tx-Rx isolation is ensured by duplex filters. However, increasing number...... of frequency bands crave for multiband and multimode operation, which either require agile duplexers or a bank of narrow-band filters with a switch. While practical agile duplexers are not available, a bank of narrow-band filters with a switch is bulky and incurs switching loss. This paper proposes an approach....... For this purpose, very small narrow-band antennas are designed, which can cover 1710–2170 MHz by using tunable capacitors. Simulations and measurements of the antenna concept are carried out in the proposed FE architecture, serving as a proof of concept....

  3. Influence of magnetic window for mitigating on antenna performance in plasma

    International Nuclear Information System (INIS)

    Xing Xiaojun; Zhao Qing; Zheng Ling; Tang Jianming; Chen Yuxu; Liu Shuzhang

    2013-01-01

    The communication blackout caused by the plasma sheath around a hypersonic vehicle flying in atmosphere is a problem to aerospace vehicles. When a vehicle enters the communication blackout phase, it loses all communication including GPS signals, data telemetry, and voice communication. The communication blackout becomes an even more critical issue with development of re-entry vehicles missions. During such missions, the communication loss caused by radio blackout introduces significant problems related to the vehicle's safety. This paper analyzes the interaction of electromagnetic waves with plasma in an external magnetic field in theory. The external magnetic field can improve the transmission of electromagnetic waves in plasma from the theoretical analysis. The magnetic window antenna which is designed by integrating the permanent magnet and the helical antenna is proposed. The performance of the helical antenna and magnetic window antenna in plasma is studied. The simulation results show that using the magnetic window antenna can weaken the influence on the antenna performance in plasma. The magnetic window antenna makes it possible for electromagnetic waves to spread in plasma. This provides another way to solve the problem of spacecraft re-entry blackout. (authors)

  4. Analysis of 4-strap ICRF Antenna Performance in Alcator C-Mod

    International Nuclear Information System (INIS)

    Schilling, G.; Wukitch, S.J.; Boivin, R.L.; Goetz, J.A.; Hosea, J.C.; Irby, J.H.; Lin, Y.; Parisot, A.; Porkolab, M.; Wilson, J.R.

    2003-01-01

    A 4-strap ICRF antenna was designed and fabricated for plasma heating and current drive in the Alcator C-Mod tokamak. Initial upgrades were carried out in 2000 and 2001, which eliminated surface arcing between the metallic protection tiles and reduced plasma-wall interactions at the antenna front surface. A boron nitride septum was added at the antenna midplane to intersect electric fields resulting from radio-frequency sheath rectification, which eliminated antenna corner heating at high power levels. The current feeds to the radiating straps were reoriented from an E||B to E parallel B geometry, avoiding the empirically observed ∼15 kV/cm field limit and raising antenna voltage holding capability. Further modifications were carried out in 2002 and 2003. These included changes to the antenna current strap, the boron nitride tile mounting geometry, and shielding the BN-metal interface from the plasma. The antenna heating efficiency, power, and voltage characteristics under these various configurations will be presented

  5. The design of RFID convey or belt gate systems using an antenna control unit.

    Science.gov (United States)

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  6. The Design of RFID Conveyor Belt Gate Systems Using an Antenna Control Unit

    Directory of Open Access Journals (Sweden)

    Ki Hwan Eom

    2011-09-01

    Full Text Available This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPCglobal for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  7. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  8. Electromagnetic simulations of JET ICRF ITER-like antenna with TOPICA and SSWICH asymptotic codes

    Directory of Open Access Journals (Sweden)

    Křivská Alena

    2017-01-01

    Full Text Available Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF heating is routinely used in the JET tokamak. To increase the ICRF heating power available from the A2 antennas, the ICRF ITER-Like Antenna (ILA was reinstalled for the 2015 JET ITER-like wall experimental campaign. The application of high levels of ICRF power typically results in increased plasma wall interaction which leads to the observation of enhanced influx of metallic impurities in the plasma edge. It is assumed that the impurity production is mainly driven by the parallel component of the Radio-Frequency (RF antenna electric near-field, E// (parallel to the confinement magnetic field of the tokamak, that is rectified in a thin boundary layer (RF sheath. Torino Polytechnic Ion Cyclotron Antenna (TOPICA code was used to compute E// field maps in front of the ILA and between its poloidal limiters in the presence of plasma using measured density profiles and various antenna feedings. E// field maps calculated between the poloidal limiters were used to estimate the poloidal distribution of RF-sheath Direct Current (DC potential in this private region of the ILA and make relative comparison of various antenna electrical settings. For this purpose we used the asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating Slow-Wave (SSWICH-SW code. These estimations can help to study the formation of RF sheaths around the antenna and even at distant locations (∼3m away.

  9. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  10. 47 CFR 73.510 - Antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...

  11. Time Delay Mechanical-noise Cancellation (TDMC) to Provide Order of Magnitude Improvements in Radio Science Observations

    Science.gov (United States)

    Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.

    2017-12-01

    Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.

  12. Reconfigurable antenna using plasma reflector

    Science.gov (United States)

    Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan

    2018-02-01

    This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.

  13. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  14. Reconfigurable Antenna for Medical Applications

    Directory of Open Access Journals (Sweden)

    Elizabeth RUFUS

    2009-12-01

    Full Text Available Microwave imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration, non invasive and non ionizing nature and low cost. The resolution is one of the major problems faced in such systems, which can be improved by applying signal processing techniques. The key element for the microwave imaging system is the antenna. This paper present a fractal antenna which has low profile, light weight and is easy to be fabricated. It has been successfully demonstrated to have multiband characteristics. The simulated results show that the proposed antenna has very good radiation characteristics suitable for imaging applications.

  15. Large inflated-antenna system

    Science.gov (United States)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  16. CPW-fed Circularly Polarized Slot Antenna with Small Gap and Stick-shaped Shorted Strip for UHF FRID Readers

    Science.gov (United States)

    Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin

    2018-04-01

    A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.

  17. Investigations of Relatively Easy To Construct Antennas With Efficiency in Receiving Schumann Resonances: Preparations for a Miniaturized Reconfigurable ELF Receiver

    Science.gov (United States)

    Farmer, Brian W.; Hannan, Robert C.

    2003-01-01

    Relatively little is known about the cavity between the Earth and the ionosphere, which opens opportunities for technological advances and unique ideas. One effective means to study this cavity is with extremely low frequency (ELF) antennas. Possible applications of these antennas are global weather prediction, earthquake prediction, planetary exploration, communication, wireless transmission of power, or even a free energy source. The superconducting quantum interference device SQUID) and the coil antenna are the two most acceptable receivers discovered for picking up ELF magnetic fields. Both antennas have the potential for size reduction, allowing them to be portable enough for access to space and even for personal ware. With improvements of these antennas and signal processing, insightful analysis of Schumann resonance (SR) can give the science community a band of radio frequency (RF) signals for improving life here on Earth and exploring beyond.

  18. An efficient feedback calibration algorithm for direct imaging radio telescopes

    Science.gov (United States)

    Beardsley, Adam P.; Thyagarajan, Nithyanandan; Bowman, Judd D.; Morales, Miguel F.

    2017-10-01

    We present the E-field Parallel Imaging Calibration (EPICal) algorithm, which addresses the need for a fast calibration method for direct imaging radio astronomy correlators. Direct imaging involves a spatial fast Fourier transform of antenna signals, alleviating an O(Na ^2) computational bottleneck typical in radio correlators, and yielding a more gentle O(Ng log _2 Ng) scaling, where Na is the number of antennas in the array and Ng is the number of gridpoints in the imaging analysis. This can save orders of magnitude in computation cost for next generation arrays consisting of hundreds or thousands of antennas. However, because antenna signals are mixed in the imaging correlator without creating visibilities, gain correction must be applied prior to imaging, rather than on visibilities post-correlation. We develop the EPICal algorithm to form gain solutions quickly and without ever forming visibilities. This method scales as the number of antennas, and produces results comparable to those from visibilities. We use simulations to demonstrate the EPICal technique and study the noise properties of our gain solutions, showing they are similar to visibility-based solutions in realistic situations. By applying EPICal to 2 s of Long Wavelength Array data, we achieve a 65 per cent dynamic range improvement compared to uncalibrated images, showing this algorithm is a promising solution for next generation instruments.

  19. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F. [J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nishida, K.; Mochizuki, S.; Hatayama, A. [Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Mattei, S.; Lettry, J. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  20. Distributed cloud association in downlink multicloud radio access networks

    KAUST Repository

    Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    This paper considers a multicloud radio access network (M-CRAN), wherein each cloud serves a cluster of base-stations (BS's) which are connected to the clouds through high capacity digital links. The network comprises several remote users, where

  1. H- radio frequency source development at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  2. First radio astronomy from space - RAE

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed. 11 references

  3. The road to OLFAR - a roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems

    NARCIS (Netherlands)

    Engelen, Steven; Quillien, Kevin A.; Verhoeven, Chris; Noroozi, Arash; Sundaramoorthy, Prem; van der Veen, Alle-Jan; Rajan, Raj; Rajan, Raj Thilak; Boonstra, Albert Jan; Bentum, Marinus Jan; Meijerink, Arjan; Budianu, A.

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a space-based low frequency radio telescope that will explore the universe's so-called dark ages, map the interstellar medium, and discover planetary and solar bursts in other solar systems. The telescope,

  4. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  5. U.S., European ALMA Partners Award Prototype Antenna Contracts

    Science.gov (United States)

    2000-03-01

    The U.S. and European partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to U.S. and Italian firms, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. On February 22, 2000, Associated Universities Inc. (AUI) signed an approximately $6.2 million contract with Vertex Antenna Systems, of Santa Clara, Calif., for construction of one prototype ALMA antenna. AUI operates the U.S. National Radio Astronomy Observatory (NRAO) for the National Science Foundation under a cooperative agreement. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga, of Mestre, Italy, on February 21, 2000, for the production of another prototype. (Mestre is located on the inland side of Venice.) The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Only one of the designs will be selected for final production. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 micrometers, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas, and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 16,500 feet (5000 meters

  6. Inflatable Antennas Support Emergency Communication

    Science.gov (United States)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  7. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  8. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  9. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    Science.gov (United States)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal

  10. Low-Power Architectures for Large Radio Astronomy Correlators

    Science.gov (United States)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  11. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  12. Antenna design for mobile devices

    CERN Document Server

    Zhang, Zhijun

    2017-01-01

    - Integrates state-of-the-art technologies with a special section for step-by-step antenna design - Features up-to-date bio-safety and electromagnetic compatibility regulation compliance and latest standards - Newly updated with MIMO antenna design, measurements and requirements - Accessible to readers of many levels, from introductory to specialist - Written by a practicing expert who has hired and trained numerous engineers

  13. Antennas for mobile satellite communications

    Science.gov (United States)

    Huang, John

    1991-12-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  14. Testing of the BipiColombo Antenna Pointing Mechanism

    Science.gov (United States)

    Campo, Pablo; Barrio, Aingeru; Martin, Fernando

    2015-09-01

    BepiColombo is an ESA mission to Mercury, its planetary orbiter (MPO) has two antenna pointing mechanism, High gain antenna (HGA) pointing mechanism steers and points a large reflector which is integrated at system level by TAS-I Rome. Medium gain antenna (MGA) APM points a 1.5 m boom with a horn antenna. Both radiating elements are exposed to sun fluxes as high as 10 solar constants without protections.A previous paper [1] described the design and development process to solve the challenges of performing in harsh environment.. Current paper is focused on the testing process of the qualification units. Testing performance of antenna pointing mechanism in its specific environmental conditions has required special set-up and techniques. The process has provided valuable feedback on the design and the testing methods which have been included in the PFM design and tests.Some of the technologies and components were developed on dedicated items priort to EQM, but once integrated, test behaviour had relevant differences.Some of the major concerns for the APM testing are:- Create during the thermal vacuum testing the qualification temperature map with gradients along the APM. From of 200oC to 70oC.- Test in that conditions the radio frequency and pointing performances adding also high RF power to check the power handling and self-heating of the rotary joint.- Test in life up to 12000 equivalent APM revolutions, that is 14.3 million motor revolutions in different thermal conditions.- Measure low thermal distortion of the mechanical chain, being at the same time insulated from external environment and interfaces (55 arcsec pointing error)- Perform deployment of large items guaranteeing during the process low humidity, below 5% to protect dry lubrication- Verify stability with representative inertia of large boom or reflector 20 Kgm2.

  15. Introduction to digital mobile communication

    CERN Document Server

    Akaiwa, Yoshihiko

    2015-01-01

    Introduces digital mobile communications with an emphasis on digital transmission methods This book presents mathematical analyses of signals, mobile radio channels, and digital modulation methods. The new edition covers the evolution of wireless communications technologies and systems. The major new topics are OFDM (orthogonal frequency domain multiplexing), MIMO (multi-input multi-output) systems, frequency-domain equalization, the turbo codes, LDPC (low density parity check code), ACELP (algebraic code excited linear predictive) voice coding, dynamic scheduling for wireless packet data t

  16. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    Science.gov (United States)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  17. A Study on the Radio Coverage in Underground Stations of the New Copenhagen Metro System

    DEFF Research Database (Denmark)

    Millan, Maria del Carmen de la O; Sørensen, Troels Bundgaard; Mikkelsen, Niels Michael

    2013-01-01

    In connection with the extension of the Copenhagen Metro system, architects and wireless operators met early in the design phase to plan the radio coverage inside the public areas of the metro transport system. Based on common best practice, an initial design for the antenna installations......, and hence radio coverage, was proposed for a distributed antenna system in each of two distinctly different types of underground stations. In this paper, we describe the considerations for the design, and specifically the modelling and analysis of the underground stations by way of a commercial ray......-tracing tool. Radio coverage results are given for different designs, including different number and types of antennas, their configuration and placement, as well as the dependency on frequency and construction materials and presence of trains on the station platforms. In a practical case like this...

  18. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    International Nuclear Information System (INIS)

    Harris, J.H.; Hutter, T.; Hogan, J.T.; Basiuk, V.; Beaumont, B.; Becoulet, A.; Bremond, S.; Carter, M.D.; Goniche, M.; Goulding, R.H.; Guilhem, D.; Haste, G.R.; Hoffman, D.J.; Litaudon, X.; Nguyen, F.

    1997-01-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra ion-cyclotron range of frequencies (ICRF) antennas and lower-hybrid (LH) grills are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900 C are observed by the end of 2 s power pulses of 2 MW per antenna. The steady-state temperature distribution is determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90 (current drive) phasing. Transient heat fluxes of 1-20 MW/m 2 are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m 2 over areas of several cm 2 to plasma-facing components. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented. (orig.)

  19. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Science.gov (United States)

    2010-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations. [69 FR 69331, Nov. 29, 2004] ...

  20. Fine structure of 25 extragalactic radio sources

    International Nuclear Information System (INIS)

    Wittels, J.J.; Knight, C.A.; Shapiro, I.I.; Hinteregger, H.F.; Rogers, A.E.E.; Whitney, A.R.; Clark, T.A.; Hutton, L.K.; Marandino, G.E.; Neill, A.E.; Ronnang, B.G.; Rydbeck, O.E.H.; Klemperer, W.K.; Warnock, W.W.

    1975-01-01

    Between 1972 April and 1973 May, 25 extragalactic radio sources were observed interferometrically at 7.8 GHz(lambdaapprox. =3.8 cm) with five pairings of antennas. These sources exhibit a broad variety of fine structures from very simple to complex. Although the structure and the total power of some of these sources have remained unchanged within the sensitivity of our measurements during the year of observations, both the total flux and the correlated flux of others have undergone large changes in a few weeks

  1. Development of film antenna for diversity reception; Diversity taio film antenna no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, K; Taniguchi, T; Kubota, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Based on the principle of capacitance-loaded window antennas, a new film antenna construction pasting an antenna element on a defogger element printed on a rear window was found. The film antennas show high reception performance, and can be used as television diversity antennas or a VICS-FM multiplex antenna. This paper describes the antenna design concept, the antenna construction and the application to a recreational vehicle which styling is 1.3-Box wagon for the electric accessory. 2 refs., 11 figs.

  2. Some Recent Developments of Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2012-01-01

    Full Text Available Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB, high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.

  3. More of the Same - On Spotify Radio

    Directory of Open Access Journals (Sweden)

    Pelle Snickars

    2017-10-01

    Full Text Available Spotify Radio allows users to find new music within Spotify's vast back-catalogue, offering a potential infinite avenue of discovery. Nevertheless, the radio service has also been disliked and accused of playing the same artists over and over. We decided to set up an experiment with the purpose to explore the possible limitations found within 'infinite archives' of music streaming services. Our hypothesis was that Spotify Radio appears to consist of an infinite series of songs. It claims to be personalised and never-ending, yet music seems to be delivered in limited loop patterns. What would such loop patterns look like? Are Spotify Radio's music loops finite or infinite? How many tracks (or steps does a normal loop consist of? To answer these research questions, at Umeå University's digital humanities hub, Humlab, we set up an intervention using 160 bot listeners. Our bots were all Spotify Free users. They literally had no track record and were programmed to listen to different Swedish music from the 1970s. All bots were to document all subsequent tracks played in the radio loop and (interact within the Spotify Web client as an obedient bot listener, a liker, a disliker, and a skipper. The article describes different research strategies when dealing with proprietary data. Foremost, however, it empirically recounts the radio looping interventions set up at Humlab. Essentially, the article suggests a set of methodologies for performing humanist inquiry on big data and black-boxed media services that increasingly provide key delivery mechanisms for cultural materials. Spotify serves as a case in point, yet principally any other platform or service could be studied in similar ways. Using bots as research informants can be deployed within a range of different digital scholarship, so this article appeals not only to media or software studies scholars, but also to digitally inclined cultural studies such as the digital humanities.

  4. Development and evaluation of a boat-mounted RFID antenna for monitoring freshwater mussels

    Science.gov (United States)

    Fischer, Jesse R.; Neebling, Travis E.; Quist, Michael C.

    2012-01-01

    Development of radio frequency identification (RFID) technology and passive integrated transponder (PIT) tags has substantially increased the ability of researchers and managers to monitor populations of aquatic organisms. However, use of transportable RFID antenna systems (i.e., backpack-mounted) is currently limited to wadeable aquatic environments (system regardless of tag orientation. However, burrowed mussels may require multiple passes to increase detection that would be influenced by depth, tag orientation, and tag size. Construction of the boat-mounted antenna was relatively low in cost (traditional mussel sampling techniques (diving, snorkeling) in nonwadeable habitats.

  5. Compact broadband circularly polarised slot antenna for universal UHF RFID readers

    DEFF Research Database (Denmark)

    Xu, Bo; Zhang, Shuai; Liu, Yusha

    2015-01-01

    A compact broadband circularly polarised (CP) slot antenna is designed for universal ultra-high-frequency (UHF) radio frequency identification (RFID) readers. The antenna consists of an L-shaped metal strip and a square-slot-loaded ground plane with four tuning stubs. The total size is 100 mm×100mm......×1.6 mm. The measured –10 dB impedance bandwidth is 40.7% (772–1166 MHz) and the measured 3 dB axial ratio (AR) bandwidth is 13.9% (840–965 MHz). Both the impedance and AR bandwidth cover the worldwide UHF RFID band....

  6. Major technological innovations introduced in the large antennas of the Deep Space Network

    Science.gov (United States)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  7. Antenna for passive RFID tags

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  8. Removing the Impact of Baluns from Measurements of a Novel Antenna for Cosmological HI Measurements

    Science.gov (United States)

    Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna; Garza, Sierra; HERA Collaboration

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a low-frequency radio interferometer aiming to detect redshifted 21 cm emission from neutral hydrogen during the Epoch of Reionization at frequencies between 100 and 200 MHz. Extending HERA’s performance to lower frequencies will enable detection of radio waves at higher redshifts, when models predict that gas between galaxies was heated by X-rays from the first stellar-mass black holes. The isolation of foregrounds that are four orders of magnitude brighter than the faint cosmological signal presents and unprecedented set of design specifications for our antennas, including sensitivity and spectral smoothness over a large bandwidth. We are developing a broadband sinuous antenna feed for HERA, extending the bandwidth from 50 to 220 MHz, and we are verifying antenna performance with field measurements and simulations. Electromagnetic simulations compute the differential S-parameters of the antenna. We measure these S-parameters through a lossy balun attached to an unbalanced vector network analyzer. Removing the impact of this balun is critical in obtaining an accurate comparison between our simulations and measurements. I describe measurements to characterize the baluns and how they are used to remove the balun’s impact on the antenna S-parameter measurements. Field measurements of the broadband sinuous antenna dish at MIT and Green Bank Observatory are used to verify our electromagnetic simulations of the broadband sinuous antenna design. After applying our balun corrections, we find that our field measurements are in good agreement with the simulation, giving us confidence that our feeds will perform as designed.

  9. Radio emission in peculiar galaxies

    Science.gov (United States)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  10. History of Antenna Technology for Mobile Communications in Korea

    Science.gov (United States)

    Min, Kyeong-Sik; Park, Chul-Keun; Kang, Suk-Youb

    In this paper, we discuss the development of wireless and mobile communications in Korea, current technological trends, and the future outlook on technological developments. Since the introduction of the telegraph and the telephone in September 1885, Korea's wired and wireless communications industry has consistently developed for over 100 years. Since 1984, upon the provision of the mobile telecommunications service, the industry has seen drastic qualitative and quantitative growth in terms of both technical and economic aspects, which played a crucial role in the rapid growth of the digital industry in Korea. After the era of the analog cellular service based on the Advanced Mobile Phone System (AMPS), a precursor to the modern mobile service, Korea became the world's first country to commercialize Code Division Multiple Access (CDMA) in 1996 and succeeded in commercializing CDMA 2000 lx (IMT 2000) in 2001. With further developments in the mobile communication technology, the technology for antennas also saw drastic advancements. As the mobile antennas moved from the second to the third generation, they grew from external models to very small internal models. At the same time, they evolved into highly functional and high performance multiple band and wide band antennas. Furthermore, Korea was the first country to commercialize and offer the Wireless Broadband Internet (WiBro) service in 2006. By leading the wireless communications standardization and exerting remarkable efforts in research and development, Korea is consolidating its status as an Information Technology (IT) leader in the global market. The antenna's inherent importance will be further emphasized in the near future as it satisfies the performance and structural needs of portable terminals necessary for realizing the projected establishment of the ubiquitous world. It is thought that antenna technologies will not be limited to simple concepts as previously experienced but will utilize various kinds

  11. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  12. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  13. First results of the TIANSHAN radio experiment for neutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Martineau-Huynh, O., E-mail: omartino@in2p3.fr [Laboratoire de Physique Nucleaire et de Physique des Hautes Energies, CNRS/IN2P3 and Universite Pierre et Marie Curie, Paris Cedex (France); National Astronomical Observatories, Chinese Academy of Science, Beijing (China); Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Ardouin, D. [SUBATECH, Ecole des Mines, CNRS/IN2P3 and Universite de Nantes, Nantes (France); Carloganu, C. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermond-Ferrand (France); Charrier, D. [SUBATECH, Ecole des Mines, CNRS/IN2P3 and Universite de Nantes, Nantes (France); Gou, Q.; Hu, H. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Kai, L. [Graduate University of Chinese Academy of Science, Beijing 100049 (China); Lautridou, P. [SUBATECH, Ecole des Mines, CNRS/IN2P3 and Universite de Nantes, Nantes (France); Niess, V. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermond-Ferrand (France); Ravel, O. [SUBATECH, Ecole des Mines, CNRS/IN2P3 and Universite de Nantes, Nantes (France); Saugrin, T.; Wu, X. [National Astronomical Observatories, Chinese Academy of Science, Beijing (China); Zhang, J.; Zhang, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Zhao, M. [National Astronomical Observatories, Chinese Academy of Science, Beijing (China); Zheng, Y. [Graduate University of Chinese Academy of Science, Beijing 100049 (China)

    2012-01-11

    We present the first results of a set-up called TIANSHAN radio experiment for neutrino detection (TREND) being presently deployed on the site of the 21 cm array (21CMA) radio telescope, in XinJiang, China. We describe here its detection performances as well as the analysis method we applied to the data recorded with a small scale prototype. We demonstrate the ability of the TREND set-up for an autonomous radio-detection of extended air showers induced by cosmic rays. The full set-up will consist of 80 antennas deployed over a 4 km{sup 2} area, and could result in a very attractive and unequalled radio-detection facility for the characterization of showers induced by ultra-high energy neutrinos with energies around 10{sup 17} eV.

  14. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  15. Low-cost low-power UHF RFID tag with on-chip antenna

    Energy Technology Data Exchange (ETDEWEB)

    Xi Jingtian; Yan Na; Che Wenyi; Xu Conghui; Wang Xiao; Yang Yuqing; Jian Hongyan; Min Hao, E-mail: jtxi@fudan.edu.c [State Key Laboratory of ASIC and System, Auto-ID Laboratory, Fudan University, Shanghai 201203 (China)

    2009-07-15

    This paper presents an EPC Class 1 Generation 2 compatible tag with on-chip antenna implemented in the SMIC 0.18 {mu}m standard CMOS process. The UHF tag chip includes an RF/analog front-end, a digital baseband, and a 640-bit EEPROM memory. The on-chip antenna is optimized based on a novel parasitic-aware model. The rectifier is optimized to achieve a power conversion efficiency up to 40% by applying a self-bias feedback and threshold compensation techniques. A good match between the tag circuits and the on-chip antenna is realized by adjusting the rectifier input impedance. Measurements show that the presented tag can achieve a communication range of 1 cm with 1 W reader output power using a 1 x 1 cm{sup 2} single-turn loop reader antenna.

  16. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  17. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  18. RF-sheath assessment of ICRF antenna geometry for long pulses

    International Nuclear Information System (INIS)

    Colas, L.; Bremond, S.

    2003-01-01

    Monitoring powered ion cyclotron resonance frequency (ICRF) antennas in magnetic fusion devices has revealed localized modifications of the plasma edge in the antenna shadow, most of them probably related to an enhanced polarization of the scrape-off layer (SOL) through radio-frequency (RF) sheath rectification. Although tolerable on present short RF pulses, sheaths should be minimized, as they may hinder proper operation of steady-state antennas and other subsystems connected magnetically to them, such as lower hybrid grills. As a first step towards mitigating RF sheaths in the design of future antennas, the present paper analyses the spatial structure of sheath potential maps in their vicinity, in relation with the 3D topology of RF near fields and the geometry of antenna front faces. Various combinations of poloidal radiating straps are first considered, and results are confronted to those inferred from transmission line theory. The dependence of sheath potentials on RF voltages or RF currents is studied. The role of RF near-field symmetries along tilted field lines is stressed to interpret such effects as that of strap phasing. A generalization of the 'dipole effect' is proposed. With similar arguments, the behavior of Faraday screen corners, where hot spots concentrate on Tore-Supra (TS), is then studied. The merits of aligning the antenna structure with the tilted magnetic field are thus discussed. The effect of switching from TS (high RF voltage near corners) to ITER-like electrical configurations of the straps (high voltage near equatorial plane) is also analyzed. (authors)

  19. Power injection performance of the LH antenna tipped with carbon grills in JT-60U

    International Nuclear Information System (INIS)

    Ishii, Kazuhiro; Seki, Masami; Shinozaki, Shinichi; Hasegawa, Koichi; Hiranai, Shinichi; Suzuki, Sadaaki; Sato, Fumiaki; Moriyama, Shinichi; Yokokura, Kenji

    2007-07-01

    The lower hybrid (LH) antenna in JT-60U has interaction with plasmas because it should be close to them in order to inject effectively radio frequency (RF) power into them. As a result, it has been a serious problem that the antenna mouth made of stainless steels was damaged due to excessive heat loads of plasmas and RF breakdowns. To solve the problem, a heat-resistant LH antenna was developed tipping carbon grills with fairly high heat resistance on the antenna mouth, and therefore reduction in damages on the mouth was expected. Power injection into plasmas was firstly performed with the heat-resistant antenna. RF conditioning was done carefully in the initial phase because RF breakdown due to outgassing from the grills might be occurred. After sufficient degassing was done through RF conditioning, RF power of about 1.6 MW x 10 sec injection was successfully injected to plasmas. Moreover it was demonstrated that it had comparably high plasma current drive capability (about 1.6 x 10 19 A/W/m 2 ), required as a current drive LH antenna. (author)

  20. Design and development of a lower-hybrid antenna for the MST reversed field pinch

    International Nuclear Information System (INIS)

    Thomas, M.; Cekic, M.; Lovell, T.W.; Prager, S.C.; Sarff, J.S.; Uchimoto, E.

    1995-01-01

    Recent theoretical studies strongly motivated the development of a radio-frequency current drive scheme for current density gradient reduction in the outer region of a reversed field pinch. The preliminary experiments using inductive current drive indicate that such current density profile modification reduces the magnetic fluctuation amplitude and related energy and particle losses. To test the theoretical predictions and to further improve confinement in the MST, the authors are planning a series of lower-hybrid wave experiments. The initial phase is the design and optimization of a low-power antenna to study slow wave propagation in a frequency range 2--3 f LH (200--300 MHz) with parallel index of refraction n parallel ∼10. Ray-tracing calculations, for typical MST plasma parameters, indicate that such a wave will spiral radially into a target zone inside the reversal layer. The antenna consists of an array of tunable loops arranged in the poloidal direction. The design is compatible with the existing box-port openings in the MST conductive shell to prevent additional magnetic field errors associated with large portholes. Antenna vacuum characteristics are studied on a test-stand designed to approximate the geometry of the MST shell. For the initial measurements of plasma response and antenna loading, the authors designed a reduced, easily insertable, vacuum antenna structure. The results of plasma impedance measurements will be compared with the numerical modeling results and incorporated in the optimized design of the antenna for wave propagation experiments

  1. Development of a Semielliptical Partial Ground Plane Antenna for RFID and GSM-900

    Directory of Open Access Journals (Sweden)

    M. R. Zaman

    2014-01-01

    Full Text Available A novel compact broadband patch antenna for UHF (ultrahigh frequency, RFID (radio frequency identification, and GSM-900 (global system for mobile communications band is shown in this paper. The antenna is composed of an ellipse shape annular ring at the patch. The ground plane of the planar antenna is modified with a semiellipse shape slot. The structure can generate substantial amount of current at the feed-line. The geometry of the antenna is evaluated by using HFSS simulation software and deliberated across the paper. Parametric study is exhibited to delineate the response change of the antenna. The antenna has a physical width of 0.24 λ and length of 0.3 λ. It covers a frequency starting from 0.9 GHz to 1.08 GHz. A fractional bandwidth of 18.2% has been achieved from 0.9 GHz till 1.08 GHz. An average gain of 5.5 dBi is achieved at the resonance frequency. The simulated and measured results have good agreement.

  2. Nanometers to centimeters: novel optical nano-antennas, with an eye to scaled production

    Science.gov (United States)

    James, Timothy D.; Cadusch, Jasper J.; Earl, Stuart K.; Panchenko, Evgeniy; Mulvaney, Paul; Davis, Timothy J.; Roberts, Ann

    2016-03-01

    Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.

  3. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  4. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-09-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array has been designed for the first time on Low Temperature Co-fired Ceramic (LTCC) based substrate. LTCC provides a suitable platform for the development of these antennas due to its properties of vertical stack up and embedded passives. The complete antenna concept involves integration of this fractal antenna array with a Fresnel lens antenna providing a total gain of 15dB which is appropriate for medium range radar applications. The thesis also presents a comparison between the designed fractal antenna and a conventional patch antenna outlining the advantages of fractal antenna over the later one. The fractal antenna has a bandwidth of 1.8 GHz which is 7.5% of the centre frequency (24GHz) as compared to 1.9% of the conventional patch antenna. Furthermore the fractal design exhibits a size reduction of 53% as compared to the patch antenna. In the end a sensitivity analysis is carried out for the fractal antenna design depicting the robustness of the proposed design against the typical LTCC fabrication tolerances.

  5. Novel method to control antenna currents based on theory of characteristic modes

    Science.gov (United States)

    Elghannai, Ezdeen Ahmed

    achieved using the developed technique. In addition, the technique was applied to multi band wire less Universal Serial Bus (USB) dongle antenna that serves for WLAN IEEE 802.11 a/b/g/n band applications and Radio Frequency Identification (RFID) tag antenna for 915MHz band applications with superior performance compared to previous published results. This dissertation also discusses the total Q of an antenna from the CM standpoint. A new expression as well as additional physical information about each mode's individual contribution to the total antenna Q are provided. Finally, the theory is used to an analyze the antenna in both radiation and/or scattering modes. In the antenna scattering mode, the field scattered by an antenna contains a component that is the short circuit scattered field, and a second component that is proportional to the radiation field. In this dissertation, an analytical study of this phenomena from the CM standpoint is performed aiming to shed some light on antenna scattering phenomenon where additional physical insight is obtained and thus used to reach desire results.

  6. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    The observation of high-energy cosmic rays is carried out by indirect measurements. Thereby the primary cosmic particle enters into the earth's atmosphere and generates a cosmic ray air shower by interactions with the air molecules. The secondary particles arriving at ground level are detected with particle detector arrays. The fluorescence light from the exited nitrogen molecules along the shower axis is observed with reflector telescopes in the near-ultraviolet range. In addition to these well-established detection methods, the radio observation of the geosynchrotron emission from cosmic ray air showers is investigated at present as a new observation method. Geosynchrotron emission is generated by the acceleration of the relativistic electron-positron-pairs contained in the air shower by Lorentz forces in the earth's magnetic field. At ground level this causes a single pulse of the electric field strength with a continuous frequency spectrum ranging from a few MHz to above 100 MHz. In this work, a suitable receiver concept is developed based on the signal properties of the geosynchrotron emission and the analysis of the superposed noise and radio frequency interferences. As the required receiver system was not commercially available, it was designed in the framework of this work and realised as system including the antenna, the receiver electronics and suitable data acquisition equipment. In this concept considerations for a large scale radio detector array have already been taken into account, like low power consumption to enable solar power supply and cost effectiveness. The result is a calibrated, multi-channel, digital wideband receiver for the complete range from 40 MHz to 80 MHz. Its inherent noise and RFI suppression essentially results from the antenna directional characteristic and frequency selectivity and allows effective radio observation of cosmic ray air showers also in populated environment. Several units of this receiver station have been deployed

  7. Characterisation of mobile radio channels for small multiantenna terminals

    DEFF Research Database (Denmark)

    Kotterman, Wim Anton Theo

    The Ph.D. thesis "Characterisation of mobile radio channels for small multiantenna terminals" discusses the work on and presents the results of the Ph.D. project "Smart antennas for small terminals". The scope of the project was to determine whether the use of multiple antennas on small handheld...... mobile terminals could improve the transmission quality and throughput of mobile communication links under typical usage conditions. That is, using multiple antennas of typical design, handled by users in typical ways in typical environments as handling by users has a strong influence on channel...... for multiantenna operation, and user influences. Additionally, the reduction of rank of narrow band channels on small observation intervals is discussed. One of the consequences is that fading prediction is limited to about less than a wavelength ahead in practical circumstances....

  8. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  9. Towards the Realization of Graphene Based Flexible Radio Frequency Receiver

    Directory of Open Access Journals (Sweden)

    Maruthi N. Yogeesh

    2015-11-01

    Full Text Available We report on our progress and development of high speed flexible graphene field effect transistors (GFETs with high electron and hole mobilities (~3000 cm2/V·s, and intrinsic transit frequency in the microwave GHz regime. We also describe the design and fabrication of flexible graphene based radio frequency system. This RF communication system consists of graphite patch antenna at 2.4 GHz, graphene based frequency translation block (frequency doubler and AM demodulator and graphene speaker. The communication blocks are utilized to demonstrate graphene based amplitude modulated (AM radio receiver operating at 2.4 GHz.

  10. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  11. Antenna Parts and Waveguide Transmission Line of Short Pulse Radar System Design

    Directory of Open Access Journals (Sweden)

    M. E. Golubcov

    2014-01-01

    Full Text Available The main point of this research was работы являлось to create a stand to explore the application of short pulse radio signals in radar. The stand consists of antenna and waveguide elements. Each element out to guarantee operation in X-band with 10 percent working bank and 5 percent instantaneous bandwidth and the power output gotta be 1.5 kW. The form of the antenna beam patten need to be similar to cosecant pattern Side-lobe level need to be less than -25 dB. Background level got to be at least -30 dB. Wave friction, which is radiated from the antenna aperture, got to simultaneous formed in a space.As the most easily realizing variant of such antenna cutting parabolic mirror antenna with offset irradiator was chosen. The irradiator phase centre is shifted from the focal point of the paraboloid to form a cosecant pattern. Method of physical optics is used for the analysis of antennas. Calculating pattern of horn irradiator and mirror antenna which were met the requirements was received. The construction choice was limited by the preproduction possibilities, mass and dimensions. Mirror antenna consists of skeleton framing with mirroring elements which are fixing on it. Mirroring plane is multiplex and consists off rectangular planes made by hydroforming method. Antenna was tested and adjusted at the antenna darkroom after fabricating. The results were meted requirements.Besides the mirror antenna and the horn antenna waveguide elements, waveguide bends and rotating joints were calculated, manufactured and researched. All calculations included the manufacturers tolerances, technological corner R etc. As the construction base of rotating joint coaxial waveguide was chosen. The decision on the one hand: let keep the axial symmetry of excited wave at rotating part of the waveguide, on the other hand there’s no necessary to apply resonant rings, which are plug into dielectric beads for the transition from rotating ring part to

  12. Design of LTCC Based Fractal Antenna

    KAUST Repository

    AdbulGhaffar, Farhan

    2010-01-01

    The thesis presents a Sierpinski Carpet fractal antenna array designed at 24 GHz for automotive radar applications. Miniaturized, high performance and low cost antennas are required for this application. To meet these specifications a fractal array

  13. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  14. Statistical monitoring of linear antenna arrays

    KAUST Repository

    Harrou, Fouzi; Sun, Ying

    2016-01-01

    The paper concerns the problem of monitoring linear antenna arrays using the generalized likelihood ratio (GLR) test. When an abnormal event (fault) affects an array of antenna elements, the radiation pattern changes and significant deviation from

  15. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception

  16. Performance Analysis of Blind Beamforming Algorithms in Adaptive Antenna Array in Rayleigh Fading Channel Model

    International Nuclear Information System (INIS)

    Yasin, M; Akhtar, Pervez; Pathan, Amir Hassan

    2013-01-01

    In this paper, we analyze the performance of adaptive blind algorithms – i.e. Kaiser Constant Modulus Algorithm (KCMA), Hamming CMA (HAMCMA) – with CMA in a wireless cellular communication system using digital modulation technique. These blind algorithms are used in digital signal processor of adaptive antenna to make it smart and change weights of the antenna array system dynamically. The simulation results revealed that KCMA and HAMCMA provide minimum mean square error (MSE) with 1.247 dB and 1.077 dB antenna gain enhancement, 75% reduction in bit error rate (BER) respectively over that of CMA. Therefore, KCMA and HAMCMA algorithms give a cost effective solution for a communication system

  17. Scanning for PIT-tagged flatfish in a coastal area using a sledge equipped with an RFID antenna

    DEFF Research Database (Denmark)

    Sparrevohn, Claus Reedtz; Aarestrup, Kim; Stenberg, Claus

    2014-01-01

    A radio frequency identification (RFID) antenna system, build into a sledge that can be towed behind a vessel like a trawl and thereby has the potential to detect the position of a passive inductor technology (PIT)-tagged fish in a wide variety of habitats, is presented. By scanning for hatchery...

  18. Accurate determination of antenna directivity

    DEFF Research Database (Denmark)

    Dich, Mikael

    1997-01-01

    The derivation of a formula for accurate estimation of the total radiated power from a transmitting antenna for which the radiated power density is known in a finite number of points on the far-field sphere is presented. The main application of the formula is determination of directivity from power......-pattern measurements. The derivation is based on the theory of spherical wave expansion of electromagnetic fields, which also establishes a simple criterion for the required number of samples of the power density. An array antenna consisting of Hertzian dipoles is used to test the accuracy and rate of convergence...

  19. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  20. A Wideband Autonomous Cognitive Radio Development and Prototyping System

    Science.gov (United States)

    2017-11-14

    three infrastructure modules (a Network Spectrum Analyzer, a Vector Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a...Antennas for Mobile Platforms”, 02/01/17-12/31/17 ($100K), Honeywell FM&T. 3. S. K. Jayaweera (Principal Investigator) and C. G. Christodoulou “Wideband...Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a Software Defined Radio (SDR) testbed made of several USRP SDR