WorldWideScience

Sample records for digital phase-contrast mammography

  1. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  2. Application of phase contrast imaging to mammography

    International Nuclear Information System (INIS)

    Tohyama, Keiko; Yamada, Katsuhiko; Katafuchi, Tetsuro; Matsuo, Satoru; Morishita, Junji

    2005-01-01

    Phase contrast images were obtained experimentally by using a customized mammography unit with a nominal focal spot size of 100 μm and variable source-to-image distances of up to 1.5 m. The purpose of this study was to examine the applicability and potential usefulness of phase contrast imaging for mammography. A mammography phantom (ACR156 RMI phantom) was imaged, and its visibility was examined. The optical density of the phantom images was adjusted to approximately 1.3 for both the contact and phase contrast images. Forty-one observers (18 medical doctors and 23 radiological technologists) participated in visual evaluation of the images. Results showed that, in comparison with the images of contact mammography, the phantom images of phase contrast imaging demonstrated statistically significantly superior visibility for fibers, clustered micro-calcifications, and masses. Therefore, phase contrast imaging obtained by using the customized mammography unit would be useful for improving diagnostic accuracy in mammography. (author)

  3. Potential Cost Savings of Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Patel, Bhavika K; Gray, Richard J; Pockaj, Barbara A

    2017-06-01

    The purpose of this article is to discuss whether the sensitivity and specificity of contrast-enhanced digital mammography (CEDM) render it a viable diagnostic alternative to breast MRI. That CEDM couples low-energy images (comparable to the diagnostic quality of standard mammography) and subtracted contrast-enhanced mammograms make it a cost-effective modality and a realistic substitute for the more costly breast MRI.

  4. Dose and diagnostic performance comparison between phase-contrast mammography with synchrotron radiation and digital mammography: a clinical study report.

    Science.gov (United States)

    Fedon, Christian; Rigon, Luigi; Arfelli, Fulvia; Dreossi, Diego; Quai, Elisa; Tonutti, Maura; Tromba, Giuliana; Cova, Maria Assunta; Longo, Renata

    2018-01-01

    Two dosimetric quantities [mean glandular dose (MGD) and entrance surface air kerma (ESAK)] and the diagnostic performance of phase-contrast mammography with synchrotron radiation (MSR) are compared to conventional digital mammography (DM). Seventy-one patients (age range, 41 to 82 years) underwent MSR after a DM examination if questionable or suspicious breast abnormalities were not clarified by ultrasonography. The MGD and the ESAK delivered in both examinations were evaluated and compared. Two on-site radiologists rated the images in consensus according to the Breast Imaging Reporting and Data System assessment categories, which were then correlated with the final diagnoses by means of statistical generalized linear models (GLMs). Receiver operating characteristic curves were also used to assess the diagnostic performance by comparing the area under the curve (AUC). An important MGD and ESAK reduction was observed in MSR due to the monoenergetic beam. In particular, an average 43% reduction was observed for the MGD and a reduction of more than 50% for the ESAK. GLM showed higher diagnostic accuracy, especially in terms of specificity, for MSR, confirmed by AUC analysis ([Formula: see text]). The study design implied that the population was characterized by a high prevalence of disease and that the radiologists, who read the DM images before referring the patient to MSR, could have been influenced in their assessments. Within these limitations, the use of synchrotron radiation with the phase-contrast technique applied to mammography showed an important dose reduction and a higher diagnostic accuracy compared with DM. These results could further encourage research on the translation of x-ray phase-contrast imaging into the clinics.

  5. Use of Iodine-based contrast media in digital full-field mammography - initial experience

    International Nuclear Information System (INIS)

    Diekmann, F.; Diekmann, S.; Taupitz, M.; Bick, U.; Winzer, K.-J.; Huettner, C.; Muller, S.; Jeunehomme, F.; Hamm, B.

    2003-01-01

    Aim: To investigate the use of iodine-based contrast media in digital full-field mammography. Methods: After performing initial phantom studies, seven patients underwent digital mammography (Senographe 2000D, GE Medical Systems, Milwaukee, USA) using a specially filtered beam before as well as 60, 120, and 180 seconds after injection of 80 ml of iodine contrast medium (Ultravist 370, Schering AG, Germany). The precontrast mammograms were then subtracted from the postcontrast mammograms and the resulting images compared with a contrast-enhanced dynamic MRI study, performed on all women. Results: Contrast medium accumulation within the tumors was visualized with a good quality in all cases. The conditions under which successful contrast-enhanced digital mammography can be performed were determined in phantom studies. Conclusions: Contrast-enhanced digital mammography has a potential for improving the visualization of breast tumors in mammography using special beam filtering, adjusted X-ray parameters, proper timing, and suitable subtraction software. (orig.) [de

  6. Bi-directional x-ray phase-contrast mammography.

    Directory of Open Access Journals (Sweden)

    Kai Scherer

    Full Text Available Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.

  7. Dual-energy contrast-enhanced digital mammography: initial clinical results

    International Nuclear Information System (INIS)

    Dromain, Clarisse; Thibault, Fabienne; Tardivon, Anne; Muller, Serge; Rimareix, Francoise; Delaloge, Suzette; Balleyguier, Corinne

    2011-01-01

    To assess the diagnostic accuracy of Dual-Energy Contrast-Enhanced Digital Mammography (CEDM) as an adjunct to mammography (MX) versus MX alone and versus mammography plus ultrasound (US). 120 women with 142 suspect findings on MX and/or US underwent CEDM. A pair of low- and high-energy images was acquired using a modified full-field digital mammography system. Exposures were taken in MLO at 2 min and in CC at 4 min after the injection of 1.5 ml/kg of an iodinated contrast agent. One reader evaluated MX, US and CEDM images during 2 sessions 1 month apart. Sensitivity, specificity, and area under the ROC curve were estimated. The results from pathology and follow-up identified 62 benign and 80 malignant lesions. Areas under the ROC curves were significantly superior for MX+CEDM than it was for MX alone and for MX+US using BI-RADS. Sensitivity was higher for MX+CEDM than it was for MX (93% vs. 78%; p < 0.001) with no loss in specificity. The lesion size was closer to the histological size for CEDM. All 23 multifocal lesions were correctly detected by MX+CEDM vs. 16 and 15 lesions by MX and US respectively. Initial clinical results show that CEDM has better diagnostic accuracy than mammography alone and mammography+ultrasound. (orig.)

  8. Digital mammography

    International Nuclear Information System (INIS)

    Bick, Ulrich; Diekmann, Felix

    2010-01-01

    This state-of-the-art reference book provides in-depth coverage of all aspects of digital mammography, including detector technology, image processing, computer-aided diagnosis, soft-copy reading, digital workflow, and PACS. Specific advantages and disadvantages of digital mammography in comparison to screen-film mammography are thoroughly discussed. By including authors from both North America and Europe, the book is able to outline variations in the use, acceptance, and quality assurance of digital mammography between the different countries and screening programs. Advanced imaging techniques and future developments such as contrast mammography and digital breast tomosynthesis are also covered in detail. All of the chapters are written by internationally recognized experts and contain numerous high-quality illustrations. This book will be of great interest both to clinicians who already use or are transitioning to digital mammography and to basic scientists working in the field. (orig.)

  9. Clinical evaluation of contrast-enhanced digital mammography and contrast enhanced tomosynthesis--Comparison to contrast-enhanced breast MRI.

    Science.gov (United States)

    Chou, Chen-Pin; Lewin, John M; Chiang, Chia-Ling; Hung, Bao-Hui; Yang, Tsung-Lung; Huang, Jer-Shyung; Liao, Jia-Bin; Pan, Huay-Ben

    2015-12-01

    To compare the diagnostic accuracy of contrast-enhanced digital mammography (CEDM) and contrast-enhanced tomosynthesis (CET) to dynamic contrast enhanced breast MRI (DCE-MRI) using a multireader-multicase study. Institutional review board approval and informed consents were obtained. Total 185 patients (mean age 51.3) with BI-RADS 4 or 5 lesions were evaluated before biopsy with mammography, tomosynthesis, CEDM, CET and DCE-MRI. Mediolateral-oblique and cranio-caudal views of the target breast CEDM and CET were acquired at 2 and 4 min after contrast agent injection. A mediolateral-oblique view of the non-target breast was taken at 6 min. Each lesion was scored with forced BI-RADS categories by three readers. Each reader interpreted lesions in the following order: mammography, tomosynthesis, CEDM, CET, and DCE-MRI during a single reading session. Histology showed 81 cancers and 144 benign lesions in the study. Of the 81 malignant lesions, 44% (36/81) were invasive and 56% (45/81) were non-invasive. Areas under the ROC curve, averaged for the 3 readers, were as follows: 0.897 for DCE-MRI, 0.892 for CET, 0.878 for CEDM, 0.784 for tomosynthesis and 0.740 for mammography. Significant differences in AUC were found between the group of contrast enhanced modalities (CEDM, CET, DCE-MRI) and the unenhanced modalities (all p0.05). CET and CEDM may be considered as an alternative modality to MRI for following up women with abnormal mammography. All three contrast modalities were superior in accuracy to conventional digital mammography with or without tomosynthesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Slit-scanning differential phase-contrast mammography: first experimental results

    Science.gov (United States)

    Roessl, Ewald; Daerr, Heiner; Koehler, Thomas; Martens, Gerhard; van Stevendaal, Udo

    2014-03-01

    The demands for a large field-of-view (FOV) and the stringent requirements for a stable acquisition geometry rank among the major obstacles for the translation of grating-based, differential phase-contrast techniques from the laboratory to clinical applications. While for state-of-the-art Full-Field-Digital Mammography (FFDM) FOVs of 24 cm x 30 cm are common practice, the specifications for mechanical stability are naturally derived from the detector pixel size which ranges between 50 and 100 μm. However, in grating-based, phasecontrast imaging, the relative placement of the gratings in the interferometer must be guaranteed to within micro-meter precision. In this work we report on first experimental results on a phase-contrast x-ray imaging system based on the Philips MicroDose L30 mammography unit. With the proposed approach we achieve a FOV of about 65 mm x 175 mm by the use of the slit-scanning technique. The demand for mechanical stability on a micrometer scale was relaxed by the specific interferometer design, i.e., a rigid, actuator-free mount of the phase-grating G1 with respect to the analyzer-grating G2 onto a common steel frame. The image acquisition and formation processes are described and first phase-contrast images of a test object are presented. A brief discussion of the shortcomings of the current approach is given, including the level of remaining image artifacts and the relatively inefficient usage of the total available x-ray source output.

  11. Digital mammography and their developments

    International Nuclear Information System (INIS)

    Wienbeck, Susanne

    2015-01-01

    At the present time digital mammography is a satisfactory breast diagnostic imaging in clinical as well as screening mammography in defined age groups. Nevertheless it shows beside the application of ionizing radiation in women with dense breasts limitations in the detection of non calcification breast cancers. Tomosynthesis, digital contrast-enhanced mammography and breast-CT with or without contrast media lead to better results. Especially the application of contrast media for the visualisation of the tumor angiogenesis is invariably superior to all other non-contrast imaging modalities. However, the excellent results of breast MRI will be probably accessible with none of the new procedures.

  12. Digital mammography; Mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, M.; Torres, R.

    2010-07-01

    Mammography represents one of the most demanding radiographic applications, simultaneously requiring excellent contrast sensitivity, high spatial resolution, and wide dynamic range. Film/screen is the most widely extended image receptor in mammography due to both its high spatial resolution and contrast. The film/screen limitations are related with its narrow latitude, structural noise and that is at the same time the medium for the image acquisition, storage and presentation. Several digital detector made with different technologies can overcome these difficulties. Here, these technologies as well as their main advantages and disadvantages are analyzed. Also it is discussed its impact on the mammography examinations, mainly on the breast screening programs. (Author).

  13. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography.

    Science.gov (United States)

    Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I

    2014-10-01

    Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.

  14. Study of signal-to-noise ratio in digital mammography

    Science.gov (United States)

    Kato, Yuri; Fujita, Naotoshi; Kodera, Yoshie

    2009-02-01

    Mammography techniques have recently advanced from those using analog systems (the screen-film system) to those using digital systems; for example, computed radiography (CR) and flat-panel detectors (FPDs) are nowadays used in mammography. Further, phase contrast mammography (PCM)-a digital technique by which images with a magnification of 1.75× can be obtained-is now available in the market. We studied the effect of the air gap in PCM and evaluated the effectiveness of an antiscatter x-ray grid in conventional mammography (CM) by measuring the scatter fraction ratio (SFR) and relative signal-to-noise ratio (rSNR) and comparing them between PCM and the digital CM. The results indicated that the SFRs for the CM images obtained with a grid were the lowest and that these ratios were almost the same as those for the PCM images. In contrast, the rSNRs for the PCM images were the highest, which means that the scattering of x-rays was sufficiently reduced by the air gap without the loss of primary x-rays.

  15. A comparison of digital mammography detectors and emerging technology

    International Nuclear Information System (INIS)

    Diffey, J.L.

    2015-01-01

    The overall diagnostic accuracy of digital mammography in the context of screening has been shown to be similar or slightly better than screen-film mammography. However, digital mammography encompasses both Computed Radiography (CR) and integrated Digital Radiography (DR) and there is increasing evidence to suggest that differences in detector technology are associated with variations in cancer detection rate, dose and image quality. These differences are examined in detail. Although digital mammography offers many advantages compared to screen-film, there are still some limitations with its use as a screening tool and reduced cancer detection in dense breasts remains an issue. Digital mammography detectors have paved the way for emerging technologies which may offer improvements. Taking the definition of mammography to only include X-ray imaging of the breast, this article focuses on tomosynthesis, contrast-enhanced digital mammography, stereoscopic mammography and dedicated breast computed tomography. Advanced software applications such as Computed Aided Detection (CAD) and quantitative breast density assessment are also presented. The benefits and limitations of each technique are discussed. - Highlights: • Digital detector technology affects cancer detection rate, dose and image quality. • Digital detectors have facilitated new technologies such as tomosynthesis. • 3-D techniques reduce superimposition and increase cancer detection in dense breasts. • Contrast-enhanced mammography demonstrates improved sensitivity and specificity.

  16. Contrast enhanced digital mammography: Is it useful in detecting lesions in edematous breast?

    Directory of Open Access Journals (Sweden)

    Noha Abd ElShafy ElSaid

    2015-09-01

    Conclusion: Dual-energy contrast-enhanced digital mammography is a useful technique in identification of lesions in mammographically dense edematous breasts and proved to be a useful tool in the follow-up of cases presenting by edema after conservative breast surgery and chemotherapy.

  17. Update on new technologies in digital mammography

    Directory of Open Access Journals (Sweden)

    Patterson SK

    2014-08-01

    Full Text Available Stephanie K Patterson, Marilyn A Roubidoux Division of Breast Imaging, Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA Abstract: Despite controversy regarding mammography's efficacy, it continues to be the most commonly used breast cancer-screening modality. With the development of digital mammography, some improved benefit has been shown in women with dense breast tissue. However, the density of breast tissue continues to limit the sensitivity of conventional mammography. We discuss the development of some derivative digital technologies, primarily digital breast tomosynthesis, and their strengths, weaknesses, and potential patient impact. Keywords: screening mammography, breast cancer, contrast media, digital breast tomosynthesis

  18. Radiographic techniques for digital mammography

    International Nuclear Information System (INIS)

    Horita, Katsuhei

    2007-01-01

    Since the differences in X-ray absorption between various breast tissues are small, a dedicated X-ray system for examination of the breast and a high-contrast, high-resolution screen/film system (SFM) (light-receiving system) are employed for X-ray diagnosis. Currently, however, there is a strong trend toward digital imaging in the field of general radiography, and this trend is also reflected in the field of mammographic examination. In fact, approximately 70% of facilities purchasing new mammography systems are now selecting a digital mammography system (DRM). Given this situation, this report reviews the differences between SFM and DRM and discusses the radiographic techniques and quality assurance procedures for digital mammography. (author)

  19. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    International Nuclear Information System (INIS)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung

    2014-01-01

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  20. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung [Yonsei University, Wonju (Korea, Republic of)

    2014-06-15

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  1. Modelling the imaging performance and low contrast detectability in digital mammography

    International Nuclear Information System (INIS)

    Spyropoulou, V; Kalyvas, N; Gaitanis, A; Michail, C; Panayiotakis, G; Kandarakis, I

    2009-01-01

    A digital x-ray mammography is a modern method for the early detection of breast cancer. The quality of a mammography image depends on various factors, the detector structure and performance being of primary importance. The aim of this work was to develop an analytical model simulating the imaging performance of a new commercially available digital mammography detector. This was achieved within the framework of the linear cascaded systems (LCS) theory. System analysis has allowed the estimation of important image quality metrics such as the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE). The detector was an indirect detection system consisting of a large area, 100μm thick, CsI:TI scintillator coupled to an active matrix array of amorphous silicon (a-Si:H) photodiodes combined with thin film transistors (TFT). Pixel size was 100μm, while the active pixel dimension was 70μm. MTF and DQE data were calculated for air kerma conditions of 25, 53, 67 μGy using a 28 kVp Mo-Mo x-ray spectrum. The theoretical results were compared with published experimental data. The deviation between the theoretical and experimental MTF curves was less than 4%, while the DQE differences were found at an acceptable level. The model was also used to estimate system's capability to detect low contrast objects in the breast. It was estimated that, in the breast gland, low contrast structures larger than 1.4mm can be adequately identified by the above system.

  2. The Future of Contrast-Enhanced Mammography.

    Science.gov (United States)

    Covington, Matthew F; Pizzitola, Victor J; Lorans, Roxanne; Pockaj, Barbara A; Northfelt, Donald W; Appleton, Catherine M; Patel, Bhavika K

    2018-02-01

    The purpose of this article is to discuss facilitators of and barriers to future implementation of contrast-enhanced mammography (CEM) in the United States. CEM provides low-energy 2D mammographic images analogous to digital mammography and contrast-enhanced recombined images that allow assessment of neovascularity similar to that offered by MRI. The utilization of CEM in the United States is currently low but could increase rapidly given the many potential indications for its clinical use.

  3. Image quality in conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Bautz, W.; Saebel, M.

    2000-01-01

    Purpose: Comparison of image quality between conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system, two digital storage plate systems and two digital systems in CCD-technique. Additionally, the radiograms of one digital phosphor storage plate system were post-processed emphasizing contrast and included in the comparison. Results: The detectability of details was the best with the digital mammography in CCD-technique in comparison with the conventional film screen technique resp. digital phosphor storage plate in magnification technique. Conclusions: Based on these results there is the possibility to replace the conventional film screen system by further studies - this has to be confirmed. (orig.) [de

  4. Digital mammography in breast cancer screening: Evaluation and innovation

    NARCIS (Netherlands)

    Bluekens, A.M.J.

    2015-01-01

    With all other imaging modalities in radiology being digitised and conventional mammography being ready to phase out the transition to digital mammography was inevitable. This thesis describes the performance of digital screening mammography and the consequences of implementation in a

  5. Digital mammography and their developments; Digitale Mammografie und ihre Weiterentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Wienbeck, Susanne [Universitaetsmedizin Goettingen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Fischer, Uwe [Diagnostisches Brustzentrum Goettingen (Germany)

    2015-09-15

    At the present time digital mammography is a satisfactory breast diagnostic imaging in clinical as well as screening mammography in defined age groups. Nevertheless it shows beside the application of ionizing radiation in women with dense breasts limitations in the detection of non calcification breast cancers. Tomosynthesis, digital contrast-enhanced mammography and breast-CT with or without contrast media lead to better results. Especially the application of contrast media for the visualisation of the tumor angiogenesis is invariably superior to all other non-contrast imaging modalities. However, the excellent results of breast MRI will be probably accessible with none of the new procedures.

  6. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation

    NARCIS (Netherlands)

    Fallenberg, E.M.; Schmitzberger, F.F.; Amer, H.; Ingold-Heppner, B.; Balleyguier, C.; Diekmann, F.; Engelken, F.; Mann, R.M.; Renz, D.M.; Bick, U.; Hamm, B.; Dromain, C.

    2017-01-01

    OBJECTIVES: To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. METHODS: One hundred seventy-eight women (mean age 53 years) with invasive breast

  7. Quality control in digital mammography: the noise components

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, Fernando [Universidade de Tarapaca, Arica (Chile). Centro de Estudios en Ciencias Radiologicas; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Duran, Maria Paz [Clinica Alemana, Santiago (Chile). Dept. de Radiologia; Dantas, Marcelino, E-mail: marcelino@inb.gov.b [Industrias Nucleares do Brasil (INB), Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Ubeda, Carlos, E-mail: cubeda@uta.c [Universidade de Tarapaca, Arica (Chile). Fac. de Ciencias de la Salud

    2011-07-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  8. Quality control in digital mammography: the noise components

    International Nuclear Information System (INIS)

    Leyton, Fernando; Nogueira, Maria do Socorro; Duran, Maria Paz; Dantas, Marcelino; Ubeda, Carlos

    2011-01-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  9. Experience with digital mammography

    Directory of Open Access Journals (Sweden)

    G. P. Korzhenkova

    2011-01-01

    Full Text Available The use of digital techniques in mammography has become a last step for completing the process of digitization in diagnostic imaging. It is assumed that such a spatial decision will be required for digital mammography, as well as for high-resolution intensifying screen-film systems used in conventional mammography and that the digital techniques will be limited by the digitizer pixel size on detecting minor structures, such as microcalcifications. The introduction of digital technologies in mammography involves a tight control over an image and assures its high quality.

  10. Practical digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Beverly E. [Washington Univ., Seattle, WA (United States)]|[Virginia Mason Medical Center, VA (United States)

    2008-07-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques.

  11. Practical digital mammography

    International Nuclear Information System (INIS)

    Hashimoto, Beverly E.

    2008-01-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques

  12. Baseline Screening Mammography: Performance of Full-Field Digital Mammography Versus Digital Breast Tomosynthesis.

    Science.gov (United States)

    McDonald, Elizabeth S; McCarthy, Anne Marie; Akhtar, Amana L; Synnestvedt, Marie B; Schnall, Mitchell; Conant, Emily F

    2015-11-01

    Baseline mammography studies have significantly higher recall rates than mammography studies with available comparison examinations. Digital breast tomosynthesis reduces recalls when compared with digital mammographic screening alone, but many sites operate in a hybrid environment. To maximize the effect of screening digital breast tomosynthesis with limited resources, choosing which patient populations will benefit most is critical. This study evaluates digital breast tomosynthesis in the baseline screening population. Outcomes were compared for 10,728 women who underwent digital mammography screening, including 1204 (11.2%) baseline studies, and 15,571 women who underwent digital breast tomosynthesis screening, including 1859 (11.9%) baseline studies. Recall rates, cancer detection rates, and positive predictive values were calculated. Logistic regression estimated the odds ratios of recall for digital mammography versus digital breast tomosynthesis for patients undergoing baseline screening and previously screened patients, adjusted for age, race, and breast density. In the baseline subgroup, recall rates for digital mammography and digital breast tomosynthesis screening were 20.5% and 16.0%, respectively (p = 0.002); digital breast tomosynthesis screening in the baseline subgroup resulted in a 22% reduction in recall compared with digital mammography, or 45 fewer patients recalled per 1000 patients screened. Digital breast tomosynthesis screening in the previously screened patients resulted in recall reduction of 14.3% (p tomosynthesis than from digital mammography alone.

  13. Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)

    Energy Technology Data Exchange (ETDEWEB)

    Francescone, Mark A., E-mail: maf2184@columbia.edu [Columbia University Medical Center, ColumbiaDoctors Midtown, 51 West 51st Street, Suite 300, New York, NY 10019 (United States); Jochelson, Maxine S., E-mail: jochelsm@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Dershaw, D. David, E-mail: dershawd@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Sung, Janice S., E-mail: sungj@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Hughes, Mary C., E-mail: hughesm@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Zheng, Junting, E-mail: zhengj@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Moskowitz, Chaya, E-mail: moskowc1@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Morris, Elizabeth A., E-mail: morrise@mskcc.org [Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States)

    2014-08-15

    Purpose: Contrast enhanced digital mammography (CEDM) uses low energy and high energy exposures to produce a subtracted contrast image. It is currently performed with a standard full-field digital mammogram (FFDM). The purpose is to determine if the low energy image performed after intravenous iodine injection can replace the standard FFDM. Methods: And Materials: In an IRB approved HIPAA compatible study, low-energy CEDM images of 170 breasts in 88 women (ages 26–75; mean 50.3) undergoing evaluation for elevated risk or newly diagnosed breast cancer were compared to standard digital mammograms performed within 6 months. Technical parameters including posterior nipple line (PNL) distance, compression thickness, and compression force on the MLO projection were compared. Mammographic findings were compared qualitatively and quantitatively. Mixed linear regression using generalized estimating equation (GEE) method was performed. Intraclass correlation coefficients (ICC) with 95% confidence interval (95%CI) were estimated to assess agreement. Results: No statistical difference was found in the technical parameters compression thickness, PNL distance, compression force (p-values: 0.767, 0.947, 0.089). No difference was found in the measured size of mammographic findings (p-values 0.982–0.988). Grouped calcifications had a mean size/extent of 2.1 cm (SD 0.6) in the low-energy contrast images, and a mean size/extent of 2.2 cm (SD 0.6) in the standard digital mammogram images. Masses had a mean size of 1.8 cm (SD 0.2) in both groups. Calcifications were equally visible on both CEDM and FFDM. Conclusion: Low energy CEDM images are equivalent to standard FFDM despite the presence of intravenous iodinated contrast. Low energy CEDM images may be used for interpretation in place of the FFDM, thereby reducing patient dose.

  14. Low energy mammogram obtained in contrast-enhanced digital mammography (CEDM) is comparable to routine full-field digital mammography (FFDM)

    International Nuclear Information System (INIS)

    Francescone, Mark A.; Jochelson, Maxine S.; Dershaw, D. David; Sung, Janice S.; Hughes, Mary C.; Zheng, Junting; Moskowitz, Chaya; Morris, Elizabeth A.

    2014-01-01

    Purpose: Contrast enhanced digital mammography (CEDM) uses low energy and high energy exposures to produce a subtracted contrast image. It is currently performed with a standard full-field digital mammogram (FFDM). The purpose is to determine if the low energy image performed after intravenous iodine injection can replace the standard FFDM. Methods: And Materials: In an IRB approved HIPAA compatible study, low-energy CEDM images of 170 breasts in 88 women (ages 26–75; mean 50.3) undergoing evaluation for elevated risk or newly diagnosed breast cancer were compared to standard digital mammograms performed within 6 months. Technical parameters including posterior nipple line (PNL) distance, compression thickness, and compression force on the MLO projection were compared. Mammographic findings were compared qualitatively and quantitatively. Mixed linear regression using generalized estimating equation (GEE) method was performed. Intraclass correlation coefficients (ICC) with 95% confidence interval (95%CI) were estimated to assess agreement. Results: No statistical difference was found in the technical parameters compression thickness, PNL distance, compression force (p-values: 0.767, 0.947, 0.089). No difference was found in the measured size of mammographic findings (p-values 0.982–0.988). Grouped calcifications had a mean size/extent of 2.1 cm (SD 0.6) in the low-energy contrast images, and a mean size/extent of 2.2 cm (SD 0.6) in the standard digital mammogram images. Masses had a mean size of 1.8 cm (SD 0.2) in both groups. Calcifications were equally visible on both CEDM and FFDM. Conclusion: Low energy CEDM images are equivalent to standard FFDM despite the presence of intravenous iodinated contrast. Low energy CEDM images may be used for interpretation in place of the FFDM, thereby reducing patient dose

  15. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  16. Soft copy digital mammography

    International Nuclear Information System (INIS)

    Kim, Hak Hee

    2005-01-01

    Screen-film mammography (SFM) has been the standard method used for breast cancer screening and making a clinical diagnosis. It is a valuable modality for the detection and differentiation of breast calcifications. The advantages are the high spatital resolution, the convenient display, and inexpensiveness. However, it has some inherent limitations such as its low detective quantum efficiency and difficulty of post-processing after obtaining after an image. Digital mammography (DM) has the potential to overcome the inherent limitations of SFM. DM systems directly qualify x-ray photons and decouple the process of x-ray photon detection from the image display. The digital images can be processed by a computer and displayed in multiple formats. Thus, DM is better than SFM for the detection of mass lesions due to its high contrast resolution

  17. Characterization of microcalcification: can digital monitor zooming replace magnification mammography in full-field digital mammography?

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Kwak, Jin Young; Son, Eun Ju; Youk, Ji Hyun; Choi, Seon Hyeong; Oh, Ki Keun; Han, Mooyoung

    2009-01-01

    The aim of this study was to compare the diagnostic accuracy and image quality of microcalcifications in zoomed digital contact mammography with digital magnification mammography. Three radiologists with different levels of experience in mammography reviewed 120 microcalcification clusters in 111 patients with a full-field digital mammography system relying on digital magnification mammogram (MAG) images and zoomed images from contact mammography (ZOOM) using commercially available zooming systems on monitors. Each radiologist estimated the probability of malignancy and rated the image quality and confidence rate. Performance was evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic (ROC) analysis. All three radiologists rated MAG images higher than ZOOM images for sensitivity with statistical significance (average value, 92% vs. 87%, P<0.05) and performance by ROC analysis improved with MAG imaging. The confidence rate for diagnosis decision and the assessment of lesion characteristics were also better in MAG images than in ZOOM images with statistical significance (P<0.0001). Digital magnification mammography can enhance diagnostic performance when characterizing microcalcifications. Images zoomed from digital contact mammography cannot serve as an alternative to direct magnification digital mammography. (orig.)

  18. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria

    OpenAIRE

    Lalji, U. C.; Jeukens, C. R. L. P. N.; Houben, I.; Nelemans, P. J.; van Engen, R. E.; van Wylick, E.; Beets-Tan, R. G. H.; Wildberger, J. E.; Paulis, L. E.; Lobbes, M. B. I.

    2015-01-01

    Objective Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). Methods A total of 147 cases with both FFDM and LE images were independently scored by two experienced r...

  19. Contrast Enhanced Spectral Mammography: A Review.

    Science.gov (United States)

    Patel, Bhavika K; Lobbes, M B I; Lewin, John

    2018-02-01

    Contrast-enhanced spectral mammography (CESM) provides low-energy 2D mammographic images comparable to standard digital mammography and a post-contrast recombined image to assess tumor neovascularity similar to magnetic resonance imaging (MRI). The utilization of CESM in the United States is currently low but could increase rapidly given many potential indications for clinical use. This article discusses historical background and literature review of indications and diagnostic accuracy of CESM to date. CESM is a growing technique for breast cancer detection and diagnosis that has levels of sensitivity and specificity on par with contrast-enhanced breast MRI. Because of its similar performance and ease of implementation, CESM is being adopted for multiple indications previously reserved for MRI, such as problem-solving, disease extent in newly diagnosed patients, and evaluating the treatment response of neoadjuvant chemotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. CONTRAST ENHANCED SPECTRAL MAMMOGRAPHY (CESM (REVIEW

    Directory of Open Access Journals (Sweden)

    N. I. Rozhkova

    2015-01-01

    Full Text Available The problem of early diagnosis of a breast cancer is extremely actual. Growth of incidence at women from 19 to 39 years increased for 34% over the last 10 years. It defines need of acceleration of development and deployment of the latest technologies of identification of the earliest symptoms of diseases. The x-ray mammography is the conducting method among of all radiological methods of diagnostics. Nevertheless a number of restrictions of method reduces its efficiency. The technologies increasing informational content of x-ray mammography – the leading method of screening – due to use of artificial contrasting and advantages of digital technologies are constantly developed. In this review it is described works, in which the authors having clinical experience of application of CESM – contrastenhanced spectral mammography on representative group of women. Positive sides and restrictions of new technology in comparison with mammography, ultrasonography and MRT are shown in this article.

  1. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Polychromaticity correction

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, Ferrara I-44122 (Italy)

    2015-11-15

    Purpose: Contrast-enhanced digital mammography is an image subtraction technique that is able to improve the detectability of lesions in dense breasts. One of the main sources of error, when the technique is performed by means of commercial mammography devices, is represented by the intrinsic polychromaticity of the x-ray beams. The aim of the work is to propose an iterative procedure, which only assumes the knowledge of a small set of universal quantities, to take into account the polychromaticity and correct the subtraction results accordingly. Methods: In order to verify the procedure, it has been applied to an analytical simulation of a target containing a contrast medium and to actual radiographs of a breast phantom containing cavities filled with a solution of the same medium. Results: The reconstructed densities of contrast medium were compared, showing very good agreement between the theoretical predictions and the experimental results already after the first iteration. Furthermore, the convergence of the iterative procedure was studied, showing that only a small number of iterations is necessary to reach limiting values. Conclusions: The proposed procedure represents an efficient solution to the polychromaticity issue, qualifying therefore as a viable alternative to inverse-map functions.

  2. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening.

    Science.gov (United States)

    Haas, Brian M; Kalra, Vivek; Geisel, Jaime; Raghu, Madhavi; Durand, Melissa; Philpotts, Liane E

    2013-12-01

    To compare screening recall rates and cancer detection rates of tomosynthesis plus conventional digital mammography to those of conventional digital mammography alone. All patients presenting for screening mammography between October 1, 2011, and September 30, 2012, at four clinical sites were reviewed in this HIPAA-compliant retrospective study, for which the institutional review board granted approval and waived the requirement for informed consent. Patients at sites with digital tomosynthesis were offered screening with digital mammography plus tomosynthesis. Patients at sites without tomosynthesis underwent conventional digital mammography. Recall rates were calculated and stratified according to breast density and patient age. Cancer detection rates were calculated and stratified according to the presence of a risk factor for breast cancer. The Fisher exact test was used to compare the two groups. Multivariate logistic regression was used to assess the effect of screening method, breast density, patient age, and cancer risk on the odds of recall from screening. A total of 13 158 patients presented for screening mammography; 6100 received tomosynthesis. The overall recall rate was 8.4% for patients in the tomosynthesis group and 12.0% for those in the conventional mammography group (P tomosynthesis reduced recall rates for all breast density and patient age groups, with significant differences (P tomosynthesis versus 5.2 per 1000 in patients receiving conventional mammography alone (P = .70). Patients undergoing tomosynthesis plus digital mammography had significantly lower screening recall rates. The greatest reductions were for those younger than 50 years and those with dense breasts. A nonsignificant 9.5% increase in cancer detection was observed in the tomosynthesis group. © RSNA, 2013.

  3. Digital mammography: what do we and what don't we know?

    International Nuclear Information System (INIS)

    Bick, Ulrich; Diekmann, Felix

    2007-01-01

    High-quality full-field digital mammography has been available now for several years and is increasingly used for both diagnostic and screening mammography. A number of different detector technologies exist, which all have their specific advantages and disadvantages. Diagnostic accuracy of digital mammography has been shown to be at least equivalent to film-screen mammography in a general screening population. Digital mammography is superior to screen-film mammography in younger women with dense breasts due to its ability to selectively optimize contrast in areas of dense parenchyma. This advantage is especially important in women with a genetic predisposition for breast cancer, where intensified early detection programs may have to start from 25 to 30 years of age. Tailored image processing and computer-aided diagnosis hold the potential to further improve the early detection of breast cancer. However, at present no consensus exists among radiologists on which processing is optimal for digital mammograms. Image processing may also vary significantly among vendors with so far limited interoperability. This review aims to summarize the available information regarding the impact of digital mammography on workflow and breast cancer diagnosis. (orig.)

  4. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  5. Image quality and radiation exposure in digital storage plate mammography with magnification technique

    International Nuclear Information System (INIS)

    Fiedler, E.; Aichinger, U.; Boehner, C.; Schulz-Wendtland, R.; Bautz, W.; Saebel, M.

    1999-01-01

    Purpose: Comparison of image quality between digital phosphor storage plate mammography in magnification technique and a conventional film screen system regarding the special aspect of radiation exposure. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system and two digital storage plate systems. Additionally, the radiograms of one digital system were postprocessed emphasizing contrast and included in the comparison. Results: The detectability of details in storage plate mammographies with magnification technique is almost equal to that of film screen mammographies. Thereby, lower radiation exposures were necessary using the digital systems. Conclusions: Based on these results, storage plate mammography in magnification technique is used in clinical routine at our institution. The correct parameters in image postprocessing are of elementary importance for detail detectability. Future studies must show, whether the lower radiation exposure in digital radiograms of the breast, revealing much higher background noise, will allow the same detail detectability as film screen mammographies. (orig.) [de

  6. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  7. Digital mammography: current state and future aspects

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Baum, F. [Womens Health Care Center Goettingen, Diagnostisches Brustzentrum Goettingen, Goettingen (Germany); Hermann, K.P. [Georg-August-Universitaet Goettingen, Abteilung Diagnostische Radiologie, Goettingen (Germany)

    2006-01-01

    The introduction of digital technique in mammography has been the last step in completing the process of digitalization in diagnostic imaging. Meanwhile, some different digital techniques as well as a couple of different digital mammography systems were developed and have already been available for some years. In this review article, the relevant data of key studies are reported, the current status is defined, and perspectives of digital mammography are described. (orig.)

  8. Contrast-enhanced Spectral Mammography: Technique, Indications, and Clinical Applications.

    Science.gov (United States)

    Bhimani, Chandni; Matta, Danielle; Roth, Robyn G; Liao, Lydia; Tinney, Elizabeth; Brill, Kristin; Germaine, Pauline

    2017-01-01

    Contrast-enhanced spectral mammography (CESM) combines the benefits of full field digital mammography with the concept of tumor angiogenesis. Technique and practical applications of CESM are discussed. An overview of the technique is followed by a demonstration of practical applications of CESM in our practice. We have successfully implemented CESM into our practice as a screening, diagnostic, staging, and treatment response tool. It is important to understand the technique of CESM and how to incorporate it into practice. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  9. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    Science.gov (United States)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  10. Diagnostic accuracy of contrast-enhanced spectral mammography in comparison to conventional full-field digital mammography in a population of women with dense breasts.

    Science.gov (United States)

    Mori, Miki; Akashi-Tanaka, Sadako; Suzuki, Satoko; Daniels, Murasaki Ikeda; Watanabe, Chie; Hirose, Masanori; Nakamura, Seigo

    2017-01-01

    Contrast-enhanced spectral mammography to compare clinical efficacy of contrast-enhanced spectral mammography (CESM) and conventional digital mammography (MMG) with histopathology as gold standard in dense breasts. A total of 143 breasts of 72 women who underwent CESM and MMG between 2011 and 2014 at Showa University Hospital were analyzed. 129 (90.2 %) of 143 breasts revealed dense breasts on MMG. 58 (40.6 %) of 143 breasts were diagnosed with breast cancer at histopathology. The remaining 85 breasts were diagnosed with benign findings after image assessments and/or core needle biopsy. CESM revealed 8 false-negative cases among 58 breast cancer cases (sensitivity 86.2 %) and 5 false-positive cases (specificity 94.1 %). Accuracy was 90.9 %. Conventional MMG was assessed true positive in 31 of 58 breast cancer cases (sensitivity 53.4 %) and false positive in 12 cases (specificity 85.9 %). Accuracy was 72.7 %. Sensitivity (p < 0.001), specificity (p = 0.016) and accuracy (p < 0.001) were significantly higher on CESM compared to MMG. MMG missed malignancy in 27 breasts. Of these, 25 were dense breasts. Of these 25, 20 (80.0 %) breasts were positive on CESM. These findings suggest that CESM offers superior clinical performance compared to MMG. Use of CESM may decrease false negatives especially for women with dense breasts.

  11. The influence of software filtering in digital mammography image quality

    Science.gov (United States)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  12. The influence of software filtering in digital mammography image quality

    International Nuclear Information System (INIS)

    Michail, C; Spyropoulou, V; Valais, I; Panayiotakis, G; Kalyvas, N; Fountos, G; Kandarakis, I; Dimitropoulos, N

    2009-01-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  13. Analysis of medical exposures in digital mammography

    International Nuclear Information System (INIS)

    Oliveira, Sergio R.; Mantuano, Natalia O.; Albrecht, Afonso S.

    2014-01-01

    Currently, the use of digital mammography in the early diagnosis of breast cancer is increasingly common due to the production of high definition image that allows to detect subtle changes in breast images profiles. However it is necessary to be an improvement of the technique used since some devices offer minimization parameters of entrance dose to the skin. Thus, this study seeks to examine how the qualification of technical professionals in radiology interferes with the use of the techniques applied in mammography. For this, survey was carried out in a hospital in the city of Rio de Janeiro, which evaluated the scans of 1190 patients undergoing routine mammography (It is considered routinely the 4 basic exhibitions: with 2 flow skull and 2 medium oblique side, excluding repeats and supplements) in 2013. The medical exposures analyzed obtained from a single full digital equipment, model Senographe DS were compared with three different procedures performed by professionals in mammography techniques. The images were classified according to exposure techniques available in the equipment: Standard (STD), contrast (CNT) and dose (dose), and to be selected as breast density of the patient. Comparing the variation of the radiographic technique in relation to the professional who made the exhibition, what is observed is that the professional B presented the best conduct in relation to radiological protection, because she considered breast density in the choice of technical equipment parameter. The professional A, which is newly formed, and C, which has more service time, almost did not perform variations in the pattern of exposure, even for different breast densities. Thus, we can conclude that there is a need to update the professionals so that the tools available of dose limitation and mamas variability to digital mammography are efficiently employed in the service routine and thus meet the requirements of current legislation

  14. Assessing tumor extent on contrast-enhanced spectral mammography versus full-field digital mammography and ultrasound.

    Science.gov (United States)

    Patel, Bhavika K; Garza, Sandra Alheli; Eversman, Sarah; Lopez-Alvarez, Yania; Kosiorek, Heidi; Pockaj, Barbara A

    To compare breast cancer size measurements on full-field digital mammography (FFDM), contrast-enhanced spectral mammography (CEDM), and ultrasound (US), with histologic tumor size used as the reference standard. Material and methods The HIPAA complaint, IRB approved study comprised 88 women with newly diagnosed breast cancer who underwent FFDM and CEDM;74 also had US. Breast density, histologic subtype, and maximum tumor measurements were recorded. Pearson correlation coefficients for FFDM, US, and CEDM vs histopathology were 0.598, 0.639, and 0.859, respectively (P<0.001). The following correlation coefficients were calculated for dense breasts (n=48): histopathology vs FFDM (0.555), US (0.633), and CEDM (0.843) (P<0.001); for nondense breasts (n=40), they were FFDM (0.618), US (0.512), and CEDM (0.885) (P<0.001). For size difference, the mean (SD) for histopathology vs FFDM, US, and CEDM was -1.3 (11.9) mm, -2.8 (11.1) mm, and 2.9 (9.5) mm, respectively. Limits of agreement were -24.8 to 22.0mm, -24.5 to 18.8mm, and -15.6 to 21.4mm, respectively. In patients with biopsy-proven malignancy, size measurements correlated well with histopathologic size, and were higher on CEDM than those for FFDM and US in patients with dense or nondense breasts. The added value of CEDM as a supplement to FFDM in determining tumor size, however, was greater in patients with dense breasts. CEDM may be a promising alternative preoperative measurement tool for breast cancer patients with dense breasts and/or limited access or contraindications to MRI. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of area x-ray beam equalization on image quality and dose in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jerry; Xu Tong; Husain, Adeel; Le, Huy; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, CA 92697 (United States)

    2004-08-21

    In mammography, thick or dense breast regions persistently suffer from reduced contrast-to-noise ratio (CNR) because of degraded contrast from large scatter intensities and relatively high noise. Area x-ray beam equalization can improve image quality by increasing the x-ray exposure to under-penetrated regions without increasing the exposure to other breast regions. Optimal equalization parameters with respect to image quality and patient dose were determined through computer simulations and validated with experimental observations on a step phantom and an anthropomorphic breast phantom. Three parameters important in equalization digital mammography were considered: attenuator material (Z = 13-92), beam energy (22-34 kVp) and equalization level. A Mo/Mo digital mammography system was used for image acquisition. A prototype 16 x 16 piston driven equalization system was used for preparing patient-specific equalization masks. Simulation studies showed that a molybdenum attenuator and an equalization level of 20 were optimal for improving contrast, CNR and figure of merit (FOM = CNR{sup 2}/dose). Experimental measurements using these parameters showed significant improvements in contrast, CNR and FOM. Moreover, equalized images of a breast phantom showed improved image quality. These results indicate that area beam equalization can improve image quality in digital mammography.

  16. Phosphor plate mammography: contrast studies and clinical experience

    International Nuclear Information System (INIS)

    Chang, C.H.J.; Martin, N.L.; Templeton, A.W.; Cook, L.T.; Harrison, L.A.; McFadden, M.A.; Dwyer, S.J. III; Spicer, J.; Crystal, J.M.

    1992-01-01

    Mammography and accurate microcalcification detection require very good spatial resolution. We have compared the diagnostic capabilities of reduced-exposure, third-generation, 5 cycles/mm computed radiography (CR) phosphor plates with conventional screen-film in 67 patients. No difference in diagnostic accuracy was detected. The digital characteristics of storage phosphor plates erabled us to study the relationship between contrast and spatial resolution. We developed a computer program to identify a single 100 μm pixel in a digital image and assign various gray levels to that pixel. Using this model, we determined that, for our 5 cycles/mm CR system, the imaged contrast of a 100 μm object was 62% of the original contrast. Current 5 cycles/mm phosphor plate systems cannot adequately detect microcalcifications that approximate 100 μm or smaller unless a magnification technique is used. (orig.)

  17. Dual-energy contrast-enhanced mammography.

    Science.gov (United States)

    Travieso Aja, M M; Rodríguez Rodríguez, M; Alayón Hernández, S; Vega Benítez, V; Luzardo, O P

    2014-01-01

    The degree of vascularization in breast lesions is related to their malignancy. For this reason, functional diagnostic imaging techniques have become important in recent years. Dual-energy contrast-enhanced mammography is a new, apparently promising technique in breast cancer that provides information about the degree of vascularization of the lesion in addition to the morphological information provided by conventional mammography. This article describes the state of the art for dual-energy contrast-enhanced mammography. Based on 15 months' clinical experience, we illustrate this review with clinical cases that allow us to discuss the advantages and limitations of this technique. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  18. Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions

    International Nuclear Information System (INIS)

    Obenauer, S.; Luftner-Nagel, S.; Heyden, D. von; Baum, F.; Grabbe, E.; Munzel, U.

    2002-01-01

    The objective of this study was to compare screen-film mammography (SFM) to full-field digital mammography (FFDM) regarding image quality as well as detectability and characterization of lesions using equivalent images of the same patient acquired with both systems. Two mammography units were used, one with a screen-film system (Senographe DMR) and the other with a digital detector (Senographe 2000D, both GEMS). Screen-film and digital mammograms were performed on 55 patients with cytologically or histologically proven tumors on the same day. Together with these, 75 digital mammograms of patients without tumor and the corresponding previous screen-film mammograms not older than 1.5 years were reviewed by three observers in a random order. Contrast, exposure, and the presence of artifacts were evaluated. Different details, such as the skin, the retromamillary region, and the parenchymal structures, were judged according to a three-point ranking scale. Finally, the detectability of microcalcifications and lesions were compared and correlated to histology. Image contrast was judged to be good in 76%, satisfactory in 20%, and unsatisfactory in 4% of screen-film mammograms. Digital mammograms were judged to be good in 99% and unsatisfactory in 1% of cases. Improper exposure of screen-film system occurred in 18% (10% overexposed and 8% underexposed). Digital mammograms were improperly exposed in 4% of all cases but were of acceptable quality after post-processing. Artifacts, most of them of no significance, were found in 78% of screen-film and in none of the digital mammograms. Different anatomical regions, such as the skin, the retromamillary region, and dense parenchymal areas, were better visualized in digital than in screen-film mammography. All malignant tumors were seen by the three radiologists; however, digital mammograms allowed a better characterization of these lesions to the Breast Imaging Reporting and Data System (BI-RADSZZZ;) categories (FFDM better than

  19. A simplified edge illumination set-up for quantitative phase contrast mammography with synchrotron radiation at clinical doses

    International Nuclear Information System (INIS)

    Longo, Mariaconcetta; Rigon, Luigi; Lopez, Frances C M; Longo, Renata; Chen, Rongchang; Dreossi, Diego; Zanconati, Fabrizio

    2015-01-01

    This work presents the first study of x-ray phase contrast imaging based on a simple implementation of the edge illumination method (EIXPCi) in the field of mammography with synchrotron radiation. A simplified EIXPCi set-up was utilized to study a possible application in mammography at clinical doses. Moreover, through a novel algorithm capable of separating and quantifying absorption and phase perturbations of images acquired in EIXPCi modality, it is possible to extract quantitative information on breast images, allowing an accurate tissue identification. The study was carried out at the SYRMEP beamline of Elettra synchrotron radiation facility (Trieste, Italy), where a mastectomy specimen was investigated with the EIXPCi technique. The sample was exposed at three different energies suitable for mammography with synchrotron radiation in order to test the validity of the novel algorithm in extracting values of linear attenuation coefficients integrated over the sample thickness. It is demonstrated that the quantitative data are in good agreement with the theoretical values of linear attenuation coefficients calculated on the hypothesis of the breast with a given composition. The results are promising and encourage the current efforts to apply the method in mammography with synchrotron radiation. (note)

  20. Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications

    International Nuclear Information System (INIS)

    Hermann, K.P.; Obenauer, S.; Funke, M.; Grabbe, E.H.

    2002-01-01

    The objective of this study was a comparison of a full-field digital mammography (FFDM) system and a conventional screen-film mammography (SFM) system with respect to the detectability of simulated small masses and microcalcifications in the magnification mode. All images were obtained using 1.8 times magnification. The FFDM images were obtained at radiation dose levels of 1.39, 1.0, 0.7, 0.49 and 0.24 times that of the SFM images. A contrast-detail phantom was used to compare the detection of simulated lesions using a four alternative forced-choice reader study with three readers. The correct observation ratio (COR) was calculated as the fraction of correctly identified lesions to the total number of simulated lesions. Soft-copy reading was performed for all digital images. Direct magnification images acquired with the digital system showed a lower object contrast threshold than those acquired with the conventional system. For equal radiation dose, the digital system provided a significantly increased COR (0.95) compared with the screen-film system (0.82). For simulated microcalcifications, the corresponding difference was 0.90 to 0.72. The digital system allowed equal detection to screen-film at 40% of the radiation dose used for screen film. Digital magnification images are superior to screen-film magnification images for the detection of simulated small masses and microcalcifications even at a lower radiation dose. (orig.)

  1. Experimental investigations of image quality in X-ray mammography with conventional screen film system (SFS), digital phosphor storage plate in/without magnification technique (CR) and digital CCD-technique (CCD)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Wenkel, E.; Bautz, W.; Saebel, M.

    2001-01-01

    Comparison of image quality in X-ray mammography between conventional film screen film system (SFS), digital phosphor storage plate in and without magnification technique (CR) and digital CCD-technique (CCD). Radiograms of an RMI-mammography phantom were acquired using a conventional screen film system, three digital storage plate systems and two digital systems in CCD-technique. Additionally the radiograms of one digital phosphor storage plate system were post-processed regarding contrast and included in the comparison. The detectability of details was best with the digital mammography in CCD-technique. After confirming these promising results in clinical studies, digital mammography should be able to replace conventional screen film technique. (orig.)

  2. Evaluation of the minimum iodine concentration for contrast-enhanced subtraction mammography

    International Nuclear Information System (INIS)

    Baldelli, P; Bravin, A; Maggio, C Di; Gennaro, G; Sarnelli, A; Taibi, A; Gambaccini, M

    2006-01-01

    Early manifestation of breast cancer is often very subtle and is displayed in a complex and variable pattern of normal anatomy that may obscure the disease. The use of dual-energy techniques, that can remove the structural noise, and contrast media, that enhance the region surrounding the tumour, could help us to improve the detectability of the lesions. The aim of this work is to investigate the use of an iodine-based contrast medium in mammography with two different double exposure techniques: K-edge subtraction mammography and temporal subtraction mammography. Both techniques have been investigated by using an ideal source, like monochromatic beams produced at a synchrotron radiation facility and a clinical digital mammography system. A dedicated three-component phantom containing cavities filled with different iodine concentrations has been developed and used for measurements. For each technique, information about the minimum iodine concentration, which provides a significant enhancement of the detectability of the pathology by minimizing the risk due to high dose and high concentration of contrast medium, has been obtained. In particular, for cavities of 5 and 8 mm in diameter filled with iodine solutions, the minimum concentration needed to obtain a contrast-to-noise ratio of 5 with a mean glandular dose of 2 mGy has been calculated. The minimum concentrations estimated with monochromatic beams and K-edge subtraction mammography are 0.9 mg ml -1 and 1.34 mg ml -1 for the biggest and smallest details, respectively, while for temporal subtraction mammography they are 0.84 mg ml -1 and 1.31 mg ml -1 . With the conventional clinical system the minimum concentrations for the K-edge subtraction mammography are 4.13 mg ml -1 (8 mm diameter) and 5.75 mg ml -1 (5 mm diameter), while for the temporal subtraction mammography they are 1.01 mg ml -1 (8 mm diameter) and 1.57 mg ml -1 (5 mm diameter)

  3. Breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Friedewald, Sarah M; Rafferty, Elizabeth A; Rose, Stephen L; Durand, Melissa A; Plecha, Donna M; Greenberg, Julianne S; Hayes, Mary K; Copit, Debra S; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Miller, Dave P; Conant, Emily F

    2014-06-25

    Mammography plays a key role in early breast cancer detection. Single-institution studies have shown that adding tomosynthesis to mammography increases cancer detection and reduces false-positive results. To determine if mammography combined with tomosynthesis is associated with better performance of breast screening programs in the United States. Retrospective analysis of screening performance metrics from 13 academic and nonacademic breast centers using mixed models adjusting for site as a random effect. Period 1: digital mammography screening examinations 1 year before tomosynthesis implementation (start dates ranged from March 2010 to October 2011 through the date of tomosynthesis implementation); period 2: digital mammography plus tomosynthesis examinations from initiation of tomosynthesis screening (March 2011 to October 2012) through December 31, 2012. Recall rate for additional imaging, cancer detection rate, and positive predictive values for recall and for biopsy. A total of 454,850 examinations (n=281,187 digital mammography; n=173,663 digital mammography + tomosynthesis) were evaluated. With digital mammography, 29,726 patients were recalled and 5056 biopsies resulted in cancer diagnosis in 1207 patients (n=815 invasive; n=392 in situ). With digital mammography + tomosynthesis, 15,541 patients were recalled and 3285 biopsies resulted in cancer diagnosis in 950 patients (n=707 invasive; n=243 in situ). Model-adjusted rates per 1000 screens were as follows: for recall rate, 107 (95% CI, 89-124) with digital mammography vs 91 (95% CI, 73-108) with digital mammography + tomosynthesis; difference, -16 (95% CI, -18 to -14; P tomosynthesis; difference, 1.3 (95% CI, 0.4-2.1; P = .004); for cancer detection, 4.2 (95% CI, 3.8-4.7) with digital mammography vs 5.4 (95% CI, 4.9-6.0) with digital mammography + tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis; difference, 1.2 (95% CI, 0.8-1.6; P tomosynthesis was associated with an increase

  4. MO-E-217A-01: Contrast-Enhanced Spectral Mammography - Physical Aspects and QA.

    Science.gov (United States)

    Yaffe, M; Hill, M

    2012-06-01

    To describe the current state of dual energy contrast-enhanced digital mammography, to discuss those aspects of its operation that require evaluation or monitoring and to propose elements of a program for quality assurance of such systems. The principles of dual-energy contrast imaging will be discussed and tools and techniques for assessment of performance will be described. Many of the elements affecting image quality and dose performance in digital mammography (eg noise, system linearity, consistency of x-ray output and detector performance, artifacts) remain important. In addition, the ability to register images can influence the resultant image quality. The maintenance of breast compression thickness during the imaging procedure and calibration of the system to allow quantification of iodine in the breast represent new challenges to quality assurance. CESM provides a means of acquiring new information regarding tumor angiogenesis and may reveal some cancers that will not be detectable on digital mammography. It may also better demonstrate the extent of disease. The medical physicist must understand the dependence of image quality on physical factors. Implementation of a relevant QA program will be required if the promise of this new modality is to be delivered. © 2012 American Association of Physicists in Medicine.

  5. Investigation of physical image characteristics and phenomenon of edge enhancement by phase contrast using equipment typical for mammography

    International Nuclear Information System (INIS)

    Yamazaki, Asumi; Ichikawa, Katsuhiro; Kodera, Yoshie

    2008-01-01

    A technique called phase contrast mammography (PCM) has only recently been applied in clinical examination. In this application, PCM images are acquired at a 1.75x magnification using an x-ray tube for clinical use, and then reduced to the real size of the object by image processing. The images showed enhanced object edges; reportedly, this enhancement occurred because of the refraction of x rays through a cylindrical object. The authors measured the physical image characteristics of PCM to compare the image characteristics of PCM with those of conventional mammography. More specifically, they measured the object-edge-response characteristics and the noise characteristics in the spatial frequency domain. The results revealed that the edge-response characteristics of PCM outperformed those of conventional mammography. In addition, the characteristics changed with the object-placement conditions and the object shapes. The noise characteristics of PCM were better than those of conventional mammography. Subsequently, to verify why object edges were enhanced in PCM images, the authors simulated image profiles that would be obtained if the x rays were refracted and totally reflected by using not only a cylindrical substance but also a planar substance as the object. So, they confirmed that the object edges in PCM images were enhanced because x rays were refracted irrespective of the object shapes. Further, they found that the edge enhancements depended on the object shapes and positions. It was also proposed that the larger magnification than 1.75 in the commercialized system might be more suitable for PCM. Finally, the authors investigated phase-contrast effects to breast tissues by the simulation and demonstrated that PCM would be helpful in the diagnoses of mammography.

  6. Digital mammography with high-resolution storage plates (CR) versus full-field digital mammography (CCD) (DR) for microcalcifications and focal lesions - a retrospective clinical histologic analysis (n = 102)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Lell, M.; Wenkel, E.; Boehner, C.; Dassel, M.S.; Bautz, W.

    2005-01-01

    Purpose: to determine the diagnostic accuracy of microcalcifications and focal lesions in a retrospective clinical-histological study using high-resolution digital phosphor storage plates (hard copy) and full-field digital mammography (hard copy). Materials and methods: from May 2003 to September 2003, 102 patients underwent digital storage plate mammography (CR), using a mammography unit (Mammomat 3000 N, Siemens) in combination with a high resolution (9 lp/mm) digital storage phosphor plate system (pixel size 50 μm) (Fuji/Siemens). After diagnosis and preoperative wire localization, full-field digital mammography (CCD) (DR) was performed with the same exposure parameters. The full-field digital mammography used a CCD-detector (SenoScan) (fisher imaging) with a resolution of 10 Ip/mm and a pixel size of 50 μm. Five investigators determined the diagnosis (BI-RADS trademark I-V) retrospectively after the operation from randomly distributed mediolateral views (hard copy reading). These results were correlated with the final histology. Results: the diagnostic accuracy of digital storage plate mammography (CR) and full-field digital mammography (CCD) (DR) was 73% and 71% for all findings (n = 102), 73% and 71% for microcalcifications (n = 51), and 72% and 70% for focal lesions (n = 51). The overall results showed no difference. Conclusion: our findings indicate the equivalence of high-resolution digital phosphor storage plate mammography (CR) and full-field digital mammography (CCD) (DR). (orig.)

  7. Dual-energy imaging in full-field digital mammography: a phantom study

    International Nuclear Information System (INIS)

    Taibi, A; Fabbri, S; Baldelli, P; Maggio, C di; Gennaro, G; Marziani, M; Tuffanelli, A; Gambaccini, M

    2003-01-01

    A dual-energy technique which employs the basis decomposition method is being investigated for application to digital mammography. A three-component phantom, made up of plexiglas, polyethylene and water, was doubly exposed with the full-field digital mammography system manufactured by General Electric. The 'low' and 'high' energy images were recorded with a Mo/Mo anode-filter combination and a Rh/Rh combination, respectively. The total dose was kept within the acceptable levels of conventional mammography. The first hybrid images obtained with the dual-energy algorithm are presented in comparison with a conventional radiograph of the phantom. Image-quality characteristics at contrast cancellation angles between plexiglas and water are discussed. Preliminary results show that a combination of a standard Mo-anode 28 kV radiograph with a Rh-anode 49 kV radiograph provides the best compromise between image-quality and dose in the hybrid image

  8. Studies Comparing Screen-Film Mammography and Full-Field Digital Mammography in Breast Cancer Screening: Updated Review

    International Nuclear Information System (INIS)

    Skaane, P.

    2009-01-01

    Full-field digital mammography (FFDM) has several potential benefits as compared with screen-film mammography (SFM) in mammography screening. Digital technology also opens for implementation of advanced applications, including computer-aided detection (CAD) and tomosynthesis. Phantom studies and experimental clinical studies have shown that FFDM is equal or slightly superior to SFM for detection and characterization of mammographic abnormalities. Despite obvious advantages, the conversion to digital mammography has been slower than anticipated, and not only due to higher costs. Until very recently, some countries did not even permit the use of digital mammography in breast cancer screening. The reason for this reluctant attitude was concern about lower spatial resolution and about using soft-copy reading. Furthermore, there was a lack of data supporting improved diagnostic accuracy using FFDM in a screening setting, since two pioneer trials both showed nonsignificantly lower cancer detection rate at FFDM. The 10 studies comparing FFDM and SFM in mammography screening published so far have shown divergent and rather conflicting results. Nevertheless, there is a rapid conversion to digital mammography in breast cancer screening in many western countries. The aim of this article is to give an updated review of these studies, discuss the conflicting findings, and draw some conclusions from the results

  9. Combination of one-view digital breast tomosynthesis with one-view digital mammography versus standard two-view digital mammography: per lesion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, Gisella; Bezzon, Elisabetta; Pescarini, Luigi; Polico, Ilaria; Proietti, Alessandro; Baldan, Enrica; Pomerri, Fabio; Muzzio, Pier Carlo [Veneto Institute of Oncology (IRCCS), Padua (Italy); Hendrick, R.E. [University of Colorado-Denver, Department of Radiology, School of Medicine, Aurora, CO (United States); Toledano, Alicia [Biostatistics Consulting, LLC, Kensington, MD (United States); Paquelet, Jean R. [Advanced Medical Imaging Consultants, Fort Collins, CO (United States); Breast Imaging, McKee Medical Center, Loveland, CO (United States); Chersevani, Roberta [Private Medical Practice, Gorizia (Italy); Di Maggio, Cosimo [Private Medical Practice, Padua (Italy); La Grassa, Manuela [Department of Radiology, Oncological Reference Center (IRCCS), Aviano (Italy)

    2013-08-15

    To evaluate the clinical value of combining one-view mammography (cranio-caudal, CC) with the complementary view tomosynthesis (mediolateral-oblique, MLO) in comparison to standard two-view mammography (MX) in terms of both lesion detection and characterization. A free-response receiver operating characteristic (FROC) experiment was conducted independently by six breast radiologists, obtaining data from 463 breasts of 250 patients. Differences in mean lesion detection fraction (LDF) and mean lesion characterization fraction (LCF) were analysed by analysis of variance (ANOVA) to compare clinical performance of the combination of techniques to standard two-view digital mammography. The 463 cases (breasts) reviewed included 258 with one to three lesions each, and 205 with no lesions. The 258 cases with lesions included 77 cancers in 68 breasts and 271 benign lesions to give a total of 348 proven lesions. The combination, DBT{sub (MLO)}+MX{sub (CC)}, was superior to MX (CC+MLO) in both lesion detection (LDF) and lesion characterization (LCF) overall and for benign lesions. DBT{sub (MLO)}+MX{sub (CC)} was non-inferior to two-view MX for malignant lesions. This study shows that readers' capabilities in detecting and characterizing breast lesions are improved by combining single-view digital breast tomosynthesis and single-view mammography compared to two-view digital mammography. (orig.)

  10. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Michell, M.J.; Iqbal, A.; Wasan, R.K.; Evans, D.R.; Peacock, C.; Lawinski, C.P.; Douiri, A.; Wilson, R.; Whelehan, P.

    2012-01-01

    Aim: To measure the change in diagnostic accuracy of conventional film-screen mammography and full-field digital mammography (FFDM) with the addition of digital breast tomosynthesis (DBT) in women recalled for assessment following routine screening. Materials and methods: Ethics approval for the study was granted. Women recalled for assessment following routine screening with screen-film mammography were invited to participate. Participants underwent bilateral, two-view FFDM and two-view DBT. Readers scored each lesion separately for probability of malignancy on screen-film mammography, FFDM, and then DBT. The scores were compared with the presence or absence of malignancy based on the final histopathology outcome. Results: Seven hundred and thirty-eight women participated (93.2% recruitment rate). Following assessment 204 (26.8%) were diagnosed as malignant (147 invasive and 57 in-situ tumours), 286 (37.68%) as benign, and 269 (35.4%) as normal. The diagnostic accuracy was evaluated by using receiving operating characteristic (ROC) and measurement of area under the curve (AUC). The AUC values demonstrated a significant (p = 0.0001) improvement in the diagnostic accuracy with the addition of DBT combined with FFDM and film-screen mammography (AUC = 0.9671) when compared to FFDM plus film-screen mammography (AUC = 0.8949) and film-screen mammography alone (AUC = 0.7882). The effect was significantly greater for soft-tissue lesions [AUC was 0.9905 with the addition of DBT and AUC was 0.9201 for FFDM with film-screen mammography combined (p = 0.0001)] compared to microcalcification [with the addition of DBT (AUC = 0.7920) and for FFDM with film-screen mammography combined (AUC = 0.7843; p = 0.3182)]. Conclusion: The addition of DBT increases the accuracy of mammography compared to FFDM and film-screen mammography combined and film-screen mammography alone in the assessment of screen-detected soft-tissue mammographic abnormalities.

  11. Diagnostic accuracy and recall rates for digital mammography and digital mammography combined with one-view and two-view tomosynthesis: results of an enriched reader study.

    Science.gov (United States)

    Rafferty, Elizabeth A; Park, Jeong Mi; Philpotts, Liane E; Poplack, Steven P; Sumkin, Jules H; Halpern, Elkan F; Niklason, Loren T

    2014-02-01

    The purpose of this study was to compare two methods of combining tomosynthesis with digital mammography by assessing diagnostic accuracy and recall rates for digital mammography alone and digital mammography combined with one-view tomosynthesis and two-view tomosynthesis. Three hundred ten cases including biopsy-proven malignancies (51), biopsy-proven benign findings (47), recalled screening cases (138), and negative screening cases (74) were reviewed by 15 radiologists sequentially using digital mammography, adding one-view tomosynthesis, and then two-view tomosynthesis. Cases were assessed for recall and assigned a BI-RADS score and probability of malignancy for each imaging method. Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Screening recall rates were compared using pooled logistical regression analysis. A p value of tomosynthesis, and DM plus two-view tomosynthesis was 0.828, 0.864, and 0.895, respectively. Both one-view and two-view tomosynthesis plus DM were significantly better than DM alone (Δ AUCs 0.036 [p = 0.009] and 0.068 [p tomosynthesis, and DM plus two-view tomosynthesis were 44.2%, 27.2%, and 24.0%, respectively. Combined with DM, one-view and two-view tomosynthesis both showed significantly lower noncancer recall rates than digital mammography alone (p tomosynthesis showed a significantly lower recall rate than digital mammography with one-view tomosynthesis (p tomosynthesis compared with digital mammography alone. Compared with digital mammography, diagnostic sensitivity for invasive cancers increased with the addition of both one-view (Δ12.0%, p tomosynthesis. The addition of one-view tomosynthesis to conventional digital mammography improved diagnostic accuracy and reduced the recall rate; however, the addition of two-view tomosynthesis provided twice the performance gain in diagnostic accuracy while further reducing the recall rate.

  12. Digital breast tomosynthesis versus digital mammography: a clinical performance study

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Baldan, Enrica; Bezzon, Elisabetta; Polico, Ilaria; Proietti, Alessandro; Toffoli, Aida; Toledano, Alicia; Di Maggio, Cosimo; La Grassa, Manuela; Pescarini, Luigi; Muzzio, Pier Carlo

    2010-01-01

    To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population. The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores. Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was -4.9%. Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views. (orig.)

  13. Comparative study of dose estimation in the change a conventional mammography to digital mammography

    International Nuclear Information System (INIS)

    Vazquez Vazquez, R.; Otero Martinez, C.; Soto Bua, M.; Santamarina Vazquez, F.; Carril Iglesias, S.; Lobato Busto, R.; Luna Vega, V.; Mosquera Sueiro, J.; Sqanchez Garcia, M.; Pombar Camean, M.

    2011-01-01

    Mammographic studies are now one of the most demanding radiological because of its effectiveness in detecting breast cancer early. The introduction of digital mammography has been a major advance because it has overcome some of the limitations of conventional systems. Due to the nature of the radiosensitive glandular tissue becomes very important control of the dose given to patients. In the present study is to analyze the variations in dosimetry that can exist between a conventional mammography and digital mammography.

  14. Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study.

    Science.gov (United States)

    Skaane, Per; Young, Kari; Skjennald, Arnulf

    2003-12-01

    To compare screen-film and full-field digital mammography with soft-copy reading in a population-based screening program. Full-field digital and screen-film mammography were performed in 3,683 women aged 50-69 years. Two standard views of each breast were acquired with each modality. Images underwent independent double reading with use of a five-point rating scale for probability of cancer. Recall rates and positive predictive values were calculated. Cancer detection rates determined with both modalities were compared by using the McNemar test for paired proportions. Retrospective side-by-side analysis for conspicuity of cancers was performed by an external independent radiologist group with experience in both modalities. In 3,683 cases, 31 cancers were detected. Screen-film mammography depicted 28 (0.76%) malignancies, and full-field digital mammography depicted 23 (0.62%) malignancies. The difference between cancer detection rates was not significant (P =.23). The recall rate for full-field digital mammography (4.6%; 168 of 3,683 cases) was slightly higher than that for screen-film mammography (3.5%; 128 of 3,683 cases). The positive predictive value based on needle biopsy results was 46% for screen-film mammography and 39% for full-field digital mammography. Side-by-side image comparison for cancer conspicuity led to classification of 19 cancers as equal for probability of malignancy, six cancers as slightly better demonstrated at screen-film mammography, and six cancers as slightly better demonstrated at full-field digital mammography. There was no statistically significant difference in cancer detection rate between screen-film and full-field digital mammography. Cancer conspicuity was equal with both modalities. Full-field digital mammography with soft-copy reading is comparable to screen-film mammography in population-based screening.

  15. Analysis of medical exposures in digital mammography; Analise das exposicoes medicas em mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Sergio R., E-mail: oliveirasr@fiocruz.br [Escola Politecnica de Saude Joaquim Venancio (EPSJV/FIOCRUZ), Rio de Janeiro, RJ (Brazil); Mantuano, Natalia O.; Albrecht, Afonso S., E-mail: nataliamantuano@gmail.com, E-mail: afonsofismed@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica; Flor, Leonardo S., E-mail: leonardo.flor@hsvp.org.br [Hospital Sao Vicente de Paulo (HSVP), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Currently, the use of digital mammography in the early diagnosis of breast cancer is increasingly common due to the production of high definition image that allows to detect subtle changes in breast images profiles. However it is necessary to be an improvement of the technique used since some devices offer minimization parameters of entrance dose to the skin. Thus, this study seeks to examine how the qualification of technical professionals in radiology interferes with the use of the techniques applied in mammography. For this, survey was carried out in a hospital in the city of Rio de Janeiro, which evaluated the scans of 1190 patients undergoing routine mammography (It is considered routinely the 4 basic exhibitions: with 2 flow skull and 2 medium oblique side, excluding repeats and supplements) in 2013. The medical exposures analyzed obtained from a single full digital equipment, model Senographe DS were compared with three different procedures performed by professionals in mammography techniques. The images were classified according to exposure techniques available in the equipment: Standard (STD), contrast (CNT) and dose (dose), and to be selected as breast density of the patient. Comparing the variation of the radiographic technique in relation to the professional who made the exhibition, what is observed is that the professional B presented the best conduct in relation to radiological protection, because she considered breast density in the choice of technical equipment parameter. The professional A, which is newly formed, and C, which has more service time, almost did not perform variations in the pattern of exposure, even for different breast densities. Thus, we can conclude that there is a need to update the professionals so that the tools available of dose limitation and mamas variability to digital mammography are efficiently employed in the service routine and thus meet the requirements of current legislation.

  16. Dual-energy contrast-enhanced spectral mammography (CESM).

    Science.gov (United States)

    Daniaux, Martin; De Zordo, Tobias; Santner, Wolfram; Amort, Birgit; Koppelstätter, Florian; Jaschke, Werner; Dromain, Clarisse; Oberaigner, Willi; Hubalek, Michael; Marth, Christian

    2015-10-01

    Dual-energy contrast-enhanced mammography is one of the latest developments in breast care. Imaging with contrast agents in breast cancer was already known from previous magnetic resonance imaging and computed tomography studies. However, high costs, limited availability-or high radiation dose-led to the development of contrast-enhanced spectral mammography (CESM). We reviewed the current literature, present our experience, discuss the advantages and drawbacks of CESM and look at the future of this innovative technique.

  17. Monochromatic x-rays for low-dose digital mammography: preliminary results.

    Science.gov (United States)

    Yoon, Kwon-Ha; Kwon, Young Man; Choi, Byoung-Jung; Son, Hyun Hwa; Ryu, Cheol Woo; Chon, Kwon Su; Park, Seong Hoon; Juhng, Sun Kwan

    2012-12-01

    The feasibility of using monochromatic x-ray imaging generated from an x-ray tube and a multilayer reflector for digital mammography with a low radiation dose was examined. A multilayer mirror was designed to select the x-ray peak with an energy of 21.5 keV generated from an x-ray tube with a tungsten target and was fabricated by the ion-beam sputtering deposition system. Monochromatic x-ray images were obtained from an experimental digital mammography setup with a scanning stage. The performance of the system was evaluated using a breast phantom, a spectrometer, and a radiation dosimeter. We measured the contrast-to-noise ratio and performed the 10% modulation function test to determine image quality and resolution. The monochromatic beam from the multilayer reflector had a full-width-at-half-maximum of 0.9 keV at 21.5 keV, and the reflectivity was 0.70, which was 90% of the designed value. The polychromatic and monochromatic x-rays showed radiation doses of 0.497 and 0.0415 mGy, respectively. The monochromatic x-ray image shows fibers, calcifications, and masses more clearly than the polychromatic x-ray images do. The image contrast of the monochromatic x-rays was 1.85 times higher than that of the polychromatic x-rays. The experimental mammography setup had a spatial resolution of 7 lp/mm with both x-rays. Monochromatic x-rays generated using a multilayer mirror may be a useful diagnostic tool for breast examination by providing high contrast imaging with a low radiation dose.

  18. A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography

    International Nuclear Information System (INIS)

    Pachoud, Marc; Lepori, D; Valley, Jean-Francois; Verdun, Francis R

    2004-01-01

    Our objective is to describe a new test phantom that permits the objective assessment of image quality in conventional and digital mammography for different types of breast tissue. A test phantom, designed to represent a compressed breast, was made from tissue equivalent materials. Three separate regions, with different breast tissue compositions, are used to evaluate low and high contrast resolution, spatial resolution and image noise. The phantom was imaged over a range of kV using a Contour 2000 (Bennett) mammography unit with a Kodak MinR 2190-MinR L screen-film combination and a Senograph 2000D (General Electric) digital mammography unit. Objective image quality assessments for different breast tissue compositions were performed using the phantom for conventional and digital mammography. For a similar mean glandular dose (MGD), the digital system gives a significantly higher contrast-to-noise ratio (CNR) than the screen-film system for 100% glandular tissue. In conclusion, in mammography, a range of exposure conditions is used for imaging because of the different breast tissue compositions encountered clinically. Ideally, the patient dose-image quality relationship should be optimized over the range of exposure conditions. The test phantom presented in this work permits image quality parameters to be evaluated objectively for three different types of breast tissue. Thus, it is a useful tool for optimizing the patient dose-image quality relationship

  19. Hexagonal wavelet processing of digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  20. A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors

    International Nuclear Information System (INIS)

    Baldelli, P.; Phelan, N.; Egan, G.

    2009-01-01

    The purpose of this study was to test a new, simple method of evaluating the contrast-to-noise ratio (CNR) over the entire image field of a digital detector and to compare different mammography systems. Images were taken under clinical exposure conditions for a range of simulated breast thicknesses using poly(methyl methacrylate) (PMMA). At each PMMA thickness, a second image which included an additional 0.2-mm Al sheet was also acquired. Image processing software was used to calculate the CNR in multiple regions of interest (ROI) covering the entire area of the detector in order to obtain a 'CNR image'. Five detector types were evaluated, two CsI-αSi (GE Healthcare) flat panel systems, one αSe (Hologic) flat panel system and a two generations of scanning photon counting digital detectors (Sectra). Flat panel detectors exhibit better CNR uniformity compared with the first-generation scanning photon counting detector in terms of mean pixel value variation. However, significant improvement in CNR uniformity was observed for the next-generation scanning detector. The method proposed produces a map of the CNR and a measurement of uniformity throughout the entire image field of the detector. The application of this method enables quality control measurement of individual detectors and a comparison of detectors using different technologies. (orig.)

  1. Quality control: comparison of images quality with screen film system and digital mammography CR

    International Nuclear Information System (INIS)

    Alvarenga, Frederico L.; Nogueira, Maria do Socorro

    2008-01-01

    The mammography screen film system should be used as part of processing chemicals, revelation process, equipment and this system has have a progressive replacing by the digital technology Full Field Digital Mammography FFDM, Computed Radiography (CR) Mammography and hardcopy. This new acquisition process of medical images has improved radiology section; however it is necessary efficient means for evaluating of the quality parameters. It should be considered taking into account the adaptation of the existent equipment and that procedures adopted for the exam, as well the adaptation of the new mammography films, the radiologist view box constitutes a part of the quality control program. This program aims at obtaining radiography with good quality that allows obtaining more information for the diagnosis and decreases the patient dose. For evaluation the quality image, this article is focused on presenting the differences regarding the acquired images through simulator mammography radiographic PMMA (Poly methyl methacrylate) in CR Mammography system and screen film system. The tests were accomplished at the same equipment of Mammography with the Automatic Exposure Control using a tension of 28 kV for both systems. The quality tests evaluated the spatial resolution, the own structures of the phantom, artifacts, optical density and contrast with conventional and laser films by mammography system. The installation for the accomplishment of the test has a quality control program. The evaluation was based on the pattern developed by the competent organ of the State of Minas Gerais. In this study, it was verified that the suitable Phantom Mama used by the Brazilian School of Radiology for conventional mammography did not obtain satisfactory result for Spatial Resolution in the digital mammography system CR. The final aim of this work is to obtain parameters to characterize the reference phantom quality image in an objective way. These parameters will be used to compare

  2. Phase contrast imaging of the breast. Basic principles and steps towards clinical implementation; Phasenkontrastbildgebung der Brust. Grundlagen und Schritte zur klinischen Implementierbarkeit

    Energy Technology Data Exchange (ETDEWEB)

    Grandl, S.; Sztrokay-Gaul, A.; Auweter, S.D.; Hellerhoff, K. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2014-03-15

    Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. Mammography is the only imaging technique approved for nationwide breast cancer screening. Digital full field mammography has improved mammographic image quality. Nevertheless, mammography has a low positive predictive value and a low sensitivity especially in mammographically dense breasts. One of the major limitations is the inherently low contrast between healthy breast parenchyma and breast cancer. Phase contrast imaging is based on the phase shift that occurs when X-rays encounter a change in refractive index between different materials. The improved soft tissue contrast makes the technology particularly promising for breast diagnostics. The studies presented here suggest that phase contrast imaging provides additional diagnostic information both using phase contrast mammography and phase contrast computed tomography (CT). This paper provides an overview of the basic principles of the phase contrast imaging and describes recent developments towards in vivo and ex vivo phase contrast imaging of the breast. (orig.) [German] Brustkrebs ist weltweit die haeufigste Tumorerkrankung und die haeufigste Krebstodesursache der Frau. Die Mammographie ist die einzige zugelassene bildgebende Methode zur Brustkrebsfrueherkennung im Rahmen flaechendeckender Screeningprogramme. Trotz Verbesserung der Bildqualitaet und der Befundungsperformance durch die Einfuehrung der digitalen Vollfeldmammographie sind der positiv-praediktive Wert und die Sensitivitaet der Mammographie insbesondere bei mammographisch dichtem Druesenkoerper eingeschraenkt. Dies ist u. a. auf die geringen Dichteunterschiede zwischen gesundem Brustdruesengewebe und intramammaeren Malignomen zurueckzufuehren. Die Phasenkontrastbildgebung macht sich die Phasenverschiebung von Roentgenstrahlen zunutze, die an Materialgrenzen mit unterschiedlichen Brechungsindizes entsteht. Die Technik bietet einen potenziell

  3. SU-E-I-45: Feasibility for Using Iodine Quantification to Assist Diagnosis in Dual Energy Contrast-Enhanced Digital Mammography

    International Nuclear Information System (INIS)

    Hwang, Y; Lin, Y; Tsai, C; Cheung, Y

    2015-01-01

    Purpose: The objective of this study is to develop quantitative calibration between image quality indexes and iodine concentration with dual-energy (DE) contrast-enhanced digital mammography (CEDM) techniques and further serve as the assistance for diagnosis. Methods: Custom-made acrylic phantom with dimensions of 24×30 cm 2 simulated breast thickness from 2 to 6 cm was used in the calibration. The phantom contained matrix of four times four holes of 3 mm deep with a diameter of 15 mm for filling contrast agent with area density ranged from 0.1 to 10 mg/cm 2 . All the image acquisitions were performed on a full-field digital mammography system (Senographe Essential, GE) with dual energy acquisitions. Mean pixel value (MPV), and contrast-to-noise ratio (CNR) were used for evaluating the relationship between image quality indexes and iodine concentration. Iodine map and CNR map could further be constructed with these calibration curves applied pixel by pixel utilized MATLAB software. Minimum iodine concentration could also be calculated with the visibility threshold of CNR=5 according the Rose model. Results: When evaluating the DE subtraction images, MPV increased linearly as the iodine concentration increased with all the phantom thickness surveyed (R 2 between 0.989 and 0.992). Lesions with increased iodine uptake could thus be enhanced in the color-encoded iodine maps, and the mean iodine concentration could be obtained through the ROI measurements. As for investigating CNR performance, linear relationships were also shown between the iodine concentration and CNR (R 2 between 0.983 and 0.990). Minimum iodine area density of 1.45, 1.73, 1.80, 1.73 and 1.72 mg/cm 2 for phantom thickness of 2, 3, 4, 5, 6 cm were calculated based on Rose’s visualization criteria. Conclusion: Quantitative calibration between image quality indexes and iodine concentrations may further serving as the assistance for analyzing contrast enhancement for patient participating the dual

  4. Initial Image Quality and Clinical Experience with New CR Digital Mammography System: A Phantom and Clinical Study

    International Nuclear Information System (INIS)

    Gaona, Enrique; Enriquez, Jesus Gabriel Franco; Alfonso, Beatriz Y. Alvarez; Castellanos, Gustavo Casian

    2008-01-01

    The goal of the study was to evaluate the first CR digital mammography system ( registered Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CR Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography

  5. Comparative evaluation of average glandular dose and image of digital mammography and film mammography in Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Nogueira, M.; Leyton, F.; Rodrigue, L. L.C.; Oliveira, M.A.; Joana, G.S.; Silva, S.D.

    2015-01-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. Mammography is the best method for breast-cancer screening and is capable of reducing mortality rates To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. Digital mammography has been proposed as a substitute for film mammography given the benefits inherent to digital technology. The purpose of our study was to compare the technical performance of digital mammographic and screen-film mammography. A PMMA phantom with objects to simulate breast structures. For the screen/film (SF) technique the results showed that 54% mammography units did not achieve the minimum acceptable performance as far the image quality. Besides, 67% services showed inadequate performance in their processing systems, which had significant influence on the image quality. At the mean glandular dose only 44% of digital systems evaluated were compliant in all thicknesses of PMMA. The average glandular dose AGD was 90 % higher than in screen/film systems. (authors)

  6. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    OpenAIRE

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    Objective The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. Materials and Methods The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body...

  7. Comparative study on mammographic findings between conventional mammography and digital mammography

    International Nuclear Information System (INIS)

    Gonzalez Calle, Aurelio; Saldarriaga Jaramillo, Ximena; Zapata Walliser, Luz Estela; Mejia Restrepo, Jorge Hernando; Arango Martinez, Adriana; Velez Arango, Jorge Mario

    2007-01-01

    We performed conventional-film mammograms in 180 patients between 35 and 6 years and additionally, we added 2 digital CR technique images to each patient, either craneocaudal (90 patients) or oblique (90 patients). All images were interpreted independently by four radiologists for a total of 720 evaluations, who compared film versus digital images through a 5 mega pixel monitor (soft-copy), using a score scale using the following parameters: mass visualization, detection of micro-calcifications, architectural distortion, visibility of the skin line, and image sharpness and noise. Additionally the tissue density was classified as well as the BIRADS score. The data was processed with the Teleform program and analyzed by de SPSSS program. Results: 52.6% of the micro-calcifications were equally visualized with both systems, in 13.5% of the cases they were better visualized with digital mammography. Similarly, in 50% of the cases, the skin line was better visualized with the digital CR modality. Conclusion: the sharpness of the image was also better seen with the digital CR technique in 48.2%. On the contrary, more noise was seen in digital CR images (63%). digital mammography is a diagnostic alternative that can improve mammographic findings detection and finally become a useful tool in breast cancer diagnosis

  8. Quantitative contrast-enhanced mammography for contrast medium kinetics studies

    Science.gov (United States)

    Arvanitis, C. D.; Speller, R.

    2009-10-01

    Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.

  9. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program.

    Science.gov (United States)

    Skaane, Per; Bandos, Andriy I; Gullien, Randi; Eben, Ellen B; Ekseth, Ulrika; Haakenaasen, Unni; Izadi, Mina; Jebsen, Ingvild N; Jahr, Gunnar; Krager, Mona; Niklason, Loren T; Hofvind, Solveig; Gur, David

    2013-04-01

    To assess cancer detection rates, false-positive rates before arbitration, positive predictive values for women recalled after arbitration, and the type of cancers detected with use of digital mammography alone and combined with tomosynthesis in a large prospective screening trial. A prospective, reader- and modality-balanced screening study of participants undergoing combined mammography plus tomosynthesis, the results of which were read independently by four different radiologists, is under way. The study was approved by a regional ethics committee, and all participants provided written informed consent. The authors performed a preplanned interim analysis of results from 12,631 examinations interpreted by using mammography alone and mammography plus tomosynthesis from November 22, 2010, to December 31, 2011. Analyses were based on marginal log-linear models for binary data, accounting for correlated interpretations and adjusting for reader-specific performance levels by using a two-sided significance level of .0294. Detection rates, including those for invasive and in situ cancers, were 6.1 per 1000 examinations for mammography alone and 8.0 per 1000 examinations for mammography plus tomosynthesis (27% increase, adjusted for reader; P = .001). False-positive rates before arbitration were 61.1 per 1000 examinations with mammography alone and 53.1 per 1000 examinations with mammography plus tomosynthesis (15% decrease, adjusted for reader; P tomosynthesis; P = .72). Twenty-five additional invasive cancers were detected with mammography plus tomosynthesis (40% increase, adjusted for reader; P tomosynthesis (P tomosynthesis in a screening environment resulted in a significantly higher cancer detection rate and enabled the detection of more invasive cancers. Clinical trial registration no. NCT01248546. RSNA, 2013

  10. Efficacy of storage phosphor-based digital mammography in diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Kitahama, Hiroyuki

    1991-01-01

    The aim of this study is to present efficacy of storage phosphor-based digital mammography (CR-mammography) in diagnosis of breast cancer. Ninety-seven cases with breast cancer including 44 cases less than 2 cm in macroscopic size (t1 cases) were evaluated using storage phosphor-based digital mammography (2000 x 2510 pixels by 10 bits). Abnormal findings on CR-mammography were detected in 86 cases (88.7%) of 97 women with breast cancer. Sensitivity of CR-mammography was 88.7%. It was superior to that of film-screen mammography. On t1 breast cancer cases, sensitivity on CR-mammography was 88.6%. False negative rate in t1 breast cancer cases was reduced by image processing using CR-mammography. To evaluate microcalcifications, CR-mammograms and film-screen mammograms were investigated in 22 cases of breast cancer proven pathologically the existence of microcalcifications and 11 paraffin tissue blocks of breast cancer. CR-mammography was superior to film-screen mammography in recognizing of microcalcifications. As regards the detectability for the number and the shape of microcalcifications, CR-mammography was equivalent to film-screen mammography. Receiver operating characteristic (ROC) analysis by eight observers was performed for CR-mammography and film-screen mammography with 54 breast cancer patients and 54 normal cases. The detectability of abnormal findings of breast cancer on CR-mammography (ROC area=0.91) was better than that on film-screen mammography (ROC area=0.88) (p<0.05). Efficacy of storage phosphor-based digital mammography in diagnosis of breast cancer was discussed and demonstrated in this study. (author)

  11. Addition of tomosynthesis to conventional digital mammography: effect on image interpretation time of screening examinations.

    Science.gov (United States)

    Dang, Pragya A; Freer, Phoebe E; Humphrey, Kathryn L; Halpern, Elkan F; Rafferty, Elizabeth A

    2014-01-01

    To determine the effect of implementing a screening tomosynthesis program on real-world clinical performance by quantifying differences between interpretation times for conventional screening mammography and combined tomosynthesis and mammography for multiple participating radiologists with a wide range of experience in a large academic center. In this HIPAA-compliant, institutional review board-approved study, 10 radiologists prospectively read images from screening digital mammography or screening combined tomosynthesis and mammography examinations for 1-hour-long uninterrupted sessions. Images from 3665 examinations (1502 combined and 2163 digital mammography) from July 2012 to January 2013 were interpreted in at least five sessions per radiologist per modality. The number of cases reported during each session was recorded for each reader. The experience level for each radiologist was also correlated to the average number of cases reported per hour. Analysis of variance was used to assess the number of studies interpreted per hour. A linear regression model was used to evaluate correlation between breast imaging experience and time taken to interpret images from both modalities. The mean number of studies interpreted in hour was 23.8 ± 0.55 (standard deviation) (range, 14.4-40.4) for combined tomosynthesis and mammography and 34.0 ± 0.55 (range, 20.4-54.3) for digital mammography alone. A mean of 10.2 fewer studies were interpreted per hour during combined tomosynthesis and mammography compared with digital mammography sessions (P tomosynthesis and mammography and 1.9 minutes ± 0.6 (range, 1.1-3.0) for digital mammography; interpretation time with combined tomosynthesis and mammography was 0.9 minute longer (47% longer) compared with digital mammography alone (P tomosynthesis and mammography examinations decreased (R(2) = 0.52, P = .03). Addition of tomosynthesis to mammography results in increased time to interpret images from screening examinations compared

  12. Digital Mammography Tomosynthesis

    International Nuclear Information System (INIS)

    Gergov, I.; Alexov, G.; Rusonov, K.

    2017-01-01

    Siemens MAMMOMAT Inspiration with Tomosynthesis enhances the diagnostic precision in mammographic screening. The apparatus has a wide-angle tomosynthesis up to 50 degrees. The Siemens breast augmentation algorithm reconstructs multiple two-dimensional breast images into three-dimensional images at the lowest doses to help detect tumors hidden from the overlapping chest tissue, allowing for a more accurate diagnosis than standard 2-dimensional digital mammography, and reducing the number of false positive results. 3D digital tomosynthesis improves the precision of detecting and diagnosing a larger number of expansive lesions, ensures better morphological mass analysis and architectural distortion, and detecting calcifications by adding digital breast tomosynthesis to the traditional two-dimensional digital mammogram of the patient. In this way, it solves the problem of overlapping parenchyma, reduces the number of unnecessary biopsies from questionable sonomammographic findings, and the need for stressful repeating procedures, which usually contributes to both better patient outcomes and cost saving. [bg

  13. Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography

    International Nuclear Information System (INIS)

    Gennaro, G; Ferro, F; Contento, G; Fornasin, F; Di Maggio, C

    2007-01-01

    The performance of an automatic software package was evaluated with phantom images acquired by a full-field digital mammography unit. After the validation, the software was used, together with a Leeds TORMAS test object, to model the image acquisition process. Process modelling results were used to evaluate the sensitivity of the method in detecting changes of exposure parameters from routine image quality measurements in digital mammography, which is the ultimate purpose of long-term reproducibility tests. Image quality indices measured by the software included the mean pixel value and standard deviation of circular details and surrounding background, contrast-to-noise ratio and relative contrast; detail counts were also collected. The validation procedure demonstrated that the software localizes the phantom details correctly and the difference between automatic and manual measurements was within few grey levels. Quantitative analysis showed sufficient sensitivity to relate fluctuations in exposure parameters (kV p or mAs) to variations in image quality indices. In comparison, detail counts were found less sensitive in detecting image quality changes, even when limitations due to observer subjectivity were overcome by automatic analysis. In conclusion, long-term reproducibility tests provided by the Leeds TORMAS phantom with quantitative analysis of multiple IQ indices have been demonstrated to be effective in predicting causes of deviation from standard operating conditions and can be used to monitor stability in full-field digital mammography

  14. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria.

    Science.gov (United States)

    Lalji, U C; Jeukens, C R L P N; Houben, I; Nelemans, P J; van Engen, R E; van Wylick, E; Beets-Tan, R G H; Wildberger, J E; Paulis, L E; Lobbes, M B I

    2015-10-01

    Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). A total of 147 cases with both FFDM and LE images were independently scored by two experienced radiologists using these (20) EUREF criteria. Contrast detail measurements were performed using a dedicated phantom. Differences in image quality scores, average glandular dose, and contrast detail measurements between LE and FFDM were tested for statistical significance. No significant differences in image quality scores were observed between LE and FFDM images for 17 out of 20 criteria. LE scored significantly lower on one criterion regarding the sharpness of the pectoral muscle (p < 0.001), and significantly better on two criteria on the visualization of micro-calcifications (p = 0.02 and p = 0.034). Dose and contrast detail measurements did not reveal any physical explanation for these observed differences. Low-energy CESM images are non-inferior to FFDM images. From this perspective FFDM can be omitted in patients with an indication for CESM. • Low-energy CESM images are non-inferior to FFDM images. • Micro-calcifications are significantly more visible on LE CESM than on FFDM. • There is no physical explanation for this improved visibility of micro-calcifications. • There is no need for an extra FFDM when CESM is indicated.

  15. Analytical optimization of digital subtraction mammography with contrast medium using a commercial unit.

    Science.gov (United States)

    Rosado-Méndez, I; Palma, B A; Brandan, M E

    2008-12-01

    Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy

  16. Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.

  17. Contrast-enhanced spectral mammography: comparison with conventional mammography and histopathology in 152 women.

    Science.gov (United States)

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an "iodine" image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p mammography.

  18. Film-Screen Mammography versus digital storage plate mammography: Hard copy and monitor display of microcalcifications and focal findings - A retrospective clinical and histologic analysis

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Wenkel, E.; Aichinger, U.; Tartsch, M.; Kuchar, I.; Bautz, W.

    2003-01-01

    Purpose: A retrospective clinical-histological study to determine the diagnostic accuracy of mammography using conventional screen-film cassettes (hard copy), high-resolution digital phosphor storage plates (hard copy) and monitor display (soft copy) for microcalcifications and focal lesions (BI-RADS TM category 4 or 5). Materials and methods: From April to November 2001, 76 patients underwent conventional film-screen mammography and, after diagnosis and preoperative wire localization, digital mammography with the same exposure parameters. Five investigators retrospectively determined the diagnosis after the operation from randomly distributed mediolateral views (hard-copy reading) and from the monitor display (soft-copy reading). These results were correlated with the final histology. Results: The accuracy of conventional screen-film mammography, digital mammography and monitor-displayed mammography was 67%, 65% and 68% for all findings, (n = 76), 59%, 59% and 68% for microcalcifications (n = 44) and 75%, 72% and 63% for focal lesions (n = 32). The overall results showed no difference. Conclusions: Our findings indicate equivalence of conventional screen-film mammography, high-resolution digital phosphor storage plate mammography and monitor-displayed mammography. (orig.) [de

  19. Frequently Asked Questions about Digital Mammography

    Science.gov (United States)

    ... at www.fda.gov/findmammography . Do private insurance companies, Medicare and Medicaid pay for digital mammography exams, ... Map Nondiscrimination Website Policies U.S. Food and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 ...

  20. Implementation of Synthesized Two-dimensional Mammography in a Population-based Digital Breast Tomosynthesis Screening Program

    Science.gov (United States)

    Zuckerman, Samantha P.; Keller, Brad M.; Maidment, Andrew D. A.; Barufaldi, Bruno; Weinstein, Susan P.; Synnestvedt, Marie; McDonald, Elizabeth S.

    2016-01-01

    Purpose To evaluate the early implementation of synthesized two-dimensional (s2D) mammography in a population screened entirely with s2D and digital breast tomosynthesis (DBT) (referred to as s2D/DBT) and compare recall rates and cancer detection rates to historic outcomes of digital mammography combined with DBT (referred to as digital mammography/DBT) screening. Materials and Methods This was an institutional review board–approved and HIPAA-compliant retrospective interpretation of prospectively acquired data with waiver of informed consent. Compared were recall rates, biopsy rates, cancer detection rates, and radiation dose for 15 571 women screened with digital mammography/DBT from October 1, 2011, to February 28, 2013, and 5366 women screened with s2D/DBT from January 7, 2015, to June 30, 2015. Two-sample z tests of equal proportions were used to determine statistical significance. Results Recall rate for s2D/DBT versus digital mammography/DBT was 7.1% versus 8.8%, respectively (P < .001). Biopsy rate for s2D/DBT versus digital mammography/DBT decreased (1.3% vs 2.0%, respectively; P = .001). There was no significant difference in cancer detection rate for s2D/DBT versus digital mammography/DBT (5.03 of 1000 vs 5.45 of 1000, respectively; P = .72). The average glandular dose was 39% lower in s2D/DBT versus digital mammography/DBT (4.88 mGy vs 7.97 mGy, respectively; P < .001). Conclusion Screening with s2D/DBT in a large urban practice resulted in similar outcomes compared with digital mammography/DBT imaging. Screening with s2D/DBT allowed for the benefits of DBT with a decrease in radiation dose compared with digital mammography/DBT. © RSNA, 2016 An earlier incorrect version of this article appeared online. This article was corrected on August 11, 2016. PMID:27467468

  1. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    Energy Technology Data Exchange (ETDEWEB)

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia [Department of Radiology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland); Blecharz, Pawel [Department of Gynecologic Oncology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland); Rys, Janusz [Department of Tumour Pathology, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland); Reinfuss, Marian [Department of Radiotherapy, Centre of Oncology, Maria Sklodowska-Curie Memorial Institute, Krakow 31-115 (Poland)

    2014-07-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an 'iodine' image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p < 0.001). CESM may provide higher sensitivity for breast cancer detection and greater diagnostic accuracy than conventional mammography.

  2. Contrast-Enhanced Spectral Mammography: Comparison with Conventional Mammography and Histopathology in 152 Women

    International Nuclear Information System (INIS)

    Luczyńska, Elzbieta; Heinze-Paluchowska, Sylwia; Dyczek, Sonia; Blecharz, Pawel; Rys, Janusz; Reinfuss, Marian

    2014-01-01

    The goal of the study was to compare conventional mammography (MG) and contrast-enhanced spectral mammography (CESM) in preoperative women. The study was approved by the local Ethics Committee and all participants provided informed consent. The study included 152 consecutive patients with 173 breast lesions diagnosed on MG or CESM. All MG examinations and consults were conducted in one oncology centre. Non-ionic contrast agent, at a total dose of 1.5 mL/kg body weight, was injected intravenous. Subsequently, CESM exams were performed with a mammography device, allowing dual-energy acquisitions. The entire procedure was done within the oncology centre. Images from low and high energy exposures were processed together and the combination provided an 'iodine' image which outlined contrast up-take in the breast. MG detected 157 lesions in 150 patients, including 92 infiltrating cancers, 12 non-infiltrating cancers, and 53 benign lesions. CESM detected 149 lesions in 128 patients, including 101 infiltrating cancers, 13 non-infiltrating cancers, and 35 benign lesions. CESM sensitivity was 100% (vs. 91% for MG), specificity was 41% (vs. 15% for MG), area under the receiver operating characteristic curve was 0.86 (vs. 0.67 for MG), and accuracy was 80% (vs. 65% for MG) for the diagnosis of breast cancer. Both MG and CESM overestimated lesion sizes compared to histopathology (p < 0.001). CESM may provide higher sensitivity for breast cancer detection and greater diagnostic accuracy than conventional mammography

  3. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  4. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  5. Should processed or raw image data be used in mammographic image quality analyses? A comparative study of three full-field digital mammography systems

    International Nuclear Information System (INIS)

    Borg, Mark; Badr, Ishmail; Royle, Gary

    2015-01-01

    The purpose of this study is to compare a number of measured image quality parameters using processed and unprocessed or raw images in two full-field direct digital units and one computed radiography mammography system. This study shows that the difference between raw and processed image data is system specific. The results have shown that there are no significant differences between raw and processed data in the mean threshold contrast values using the contrast-detail mammography phantom in all the systems investigated; however, these results cannot be generalised to all available systems. Notable differences were noted in contrast-to-noise ratios and in other tests including: response function, modulation transfer function, noise equivalent quanta, normalised noise power spectra and detective quantum efficiency as specified in IEC 62220-1-2. Consequently, the authors strongly recommend the use of raw data for all image quality analyses in digital mammography. (authors)

  6. Quality control for digital mammography: Part II recommendations from the ACRIN DMIST trial

    International Nuclear Information System (INIS)

    Yaffe, Martin J.; Bloomquist, Aili K.; Mawdsley, Gordon E.

    2006-01-01

    The Digital Mammography Imaging Screening Trial (DMIST), conducted under the auspices of the American College of Radiology Imaging Network (ACRIN), is a clinical trial designed to compare the accuracy of digital versus screen-film mammography in a screening population [E. Pisano et al., ACRIN 6652--Digital vs. Screen-Film Mammography, ACRIN (2001)]. Part I of this work described the Quality Control program developed to ensure consistency and optimal operation of the digital equipment. For many of the tests, there were no failures during the 24 months imaging was performed in DMIST. When systems failed, they generally did so suddenly rather than through gradual deterioration of performance. In this part, the utility and effectiveness of those tests are considered. This suggests that after verification of proper operation, routine extensive testing would be of minimal value. A recommended set of tests is presented including additional and improved tests, which we believe meet the intent and spirit of the Mammography Quality Standards Act regulations to ensure that full-field digital mammography systems are functioning correctly, and consistently producing mammograms of excellent image quality

  7. Dose reduction through gridless technique in digital full-field mammography

    International Nuclear Information System (INIS)

    Diekmann, F.; Diekmann, S.; Berzeg, S.; Blick, U.; Fischer, T.; Hamm, B.

    2003-01-01

    Purpose: To determine the role of the scatter grid in digital full-field mammography with respect to image quality and dose and to compare the experimental results with initial clinical experience. Materials and Methods: A phantom consisting of 205 fields that enclose gold dots of different thickness and size (CD-Mam phantom, Medical Department, Nijmegen, Netherlands) was used for digital full-field mammography with the conventional grid module and a special gridless module. Four different breast thicknesses were simulated using Plexiglas as scatter material. First, the phantom was exposed at the parameter and dose settings automatically selected in each experimental setup (with and without grid). Subsequently, the phantom was exposed at the different simulated breast thicknesses using the gridless module in combination with the parameters automatically selected for the grid module. This was followed by a series of phantom mammograms obtained with the experimental setup reversed. The 16 mammograms were evaluated by 3 readers and the results compared considering breast thickness, radiation dose, and quality. The gridless module was used for preoperative labeling in 16 patients for comparison of mammograms obtained with and without a grid. Results: For the same entrance dose used in routine mammography, digital mammography without grid is superior to digital mammography with grid when performed on simulated thin breasts (Plexiglas less than 3 cm), with no difference found when performed on simulated large breasts. The advantages of gridless mammography are more pronounced at a markedly reduced entrance dose (identical parenchymal dose without and with grid using the dose automatically selected for the gridless module). This tendency is confirmed by the initial clinical comparison. (orig.) [de

  8. Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques for mammography and tomosynthesis

    Science.gov (United States)

    Ikejimba, Lynda C.; Kiarashi, Nooshin; Ghate, Sujata V.; Samei, Ehsan; Lo, Joseph Y.

    2014-01-01

    Purpose: The use of contrast agents in breast imaging has the capability of enhancing nodule detectability and providing physiological information. Accordingly, there has been a growing trend toward using iodine as a contrast medium in digital mammography (DM) and digital breast tomosynthesis (DBT). Widespread use raises concerns about the best way to use iodine in DM and DBT, and thus a comparison is necessary to evaluate typical iodine-enhanced imaging methods. This study used a task-based observer model to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: unsubtracted mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Methods: Imaging performance was characterized using a detectability index d′, derived from the system task transfer function (TTF), an imaging task, iodine signal difference, and the noise power spectrum (NPS). The task modeled a 10 mm diameter lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d′ was generated as a function of dose and iodine concentration. Results: For all iodine concentrations and dose, temporal subtraction techniques for mammography and tomosynthesis yielded the highest d′, while dual energy techniques for both modalities demonstrated the next best performance. Unsubtracted imaging resulted in the lowest d′ values for both modalities, with unsubtracted mammography performing the worst out of all six paradigms. Conclusions: At any dose, temporal subtraction imaging provides the greatest detectability, with temporally subtracted DBT performing the highest. The authors attribute the successful performance to excellent cancellation of inplane structures and

  9. Are phantoms useful for predicting the potential of dose reduction in full-field digital mammography?

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Katz, Luc; Souchay, Henri; Alberelli, Claudio; Maggio, Cosimo di

    2005-01-01

    A phantom study was performed in full-field digital mammography to investigate the opportunity and the magnitude of a possible dose reduction that would leave the image quality above the accepted thresholds associated with some classical phantoms. This preliminary work is intended to lay the groundwork for a future clinical study on the impact of dose reduction on clinical results. Three different mammography phantoms (ACR RMI 156, CIRS 11A and CDMAM 3.4) were imaged by a full-field digital mammography unit (GE Senographe 2000D) at different dose levels. Images were rated by three observers with softcopy reading and scoring methods specific to each phantom. Different types of data analysis were applied to the ACR (American College of Radiology) and the other two phantoms, respectively. With reference to the minimum acceptance score in screen/film accreditation programmes, the ACR phantom showed that about 45% dose reduction could be applied, while keeping the phantom scores above that threshold. A relative comparison was done for CIRS and CDMAM, for which no threshold is defined. CIRS scoring remained close to the reference level down to 40% dose reduction, the inter- and intra-observer variability being the main source of uncertainty. Contrast-detail curves provided by CDMAM overlapped down to 50% dose reduction, at least for object contrast values ranging between 30% and 3%. This multi-phantom study shows the potential of further reducing the dose in full-field digital mammography beyond the current values. A common dose reduction factor around 50% seems acceptable for all phantoms. However, caution is required before extrapolating the results for clinical use, given the limitations of these widely used phantoms, mainly related to their limited dynamic range and uniform background

  10. Technical quality control - constancy controls for digital mammography systems

    International Nuclear Information System (INIS)

    Pedersen, K.; Landmark, I.D.; Bredholt, K.; Hauge, I.H.R.

    2009-04-01

    To ensure the quality of mammographic images, so-called constancy control tests are performed frequently. The report contains a programme for constancy control of digital mammography systems, encompassing the mammography unit, computed radiography (CR) systems, viewing conditions and displays, printers, and procedures for data collection for patient dose calculations. (Author)

  11. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  12. Contrast-enhanced Spectral Mammography: Modality-Specific Artifacts and Other Factors Which May Interfere with Image Quality.

    Science.gov (United States)

    Bhimani, Chandni; Li, Luna; Liao, Lydia; Roth, Robyn G; Tinney, Elizabeth; Germaine, Pauline

    2017-01-01

    Contrast-enhanced spectral mammography (CESM) uses full field digital mammography with the added benefit of intravenous contrast administration to significantly reduce false-positive and false-negative results and improve specificity while maintaining high sensitivity. For CESM to fulfill its purpose, one should be aware of possible artifacts and other factors which may interfere with image quality, and attention should be taken to minimize these factors. This pictorial demonstration will depict types of artifacts detected and other factors that interfere with image acquisition in our practice since CESM implementation. Many of the artifacts and other factors we have encountered while using CESM have simple solutions to resolve them. The illustrated artifacts and other factors interfering with image quality will serve as a useful reference to anyone using CESM. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. CMOS cassette for digital upgrade of film-based mammography systems

    Science.gov (United States)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  14. Comparison of average glandular dose in screen-film and digital mammography using breast tissue-equivalent phantom

    International Nuclear Information System (INIS)

    Shin, Gwi Soon; Kim, Jung Min; Kim, You Hyun; Choi, Jong Hak; Kim, Chang Kyun

    2007-01-01

    In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate (IP). We measured average glandular doses (ADG) in screen-film mammography (SFM) system with slow screen-film combination, computed mammography (CM) system, indirect digital mammography (IDM) system and direct digital mammography (DDM) system using breast tissue-equivalent phantom (glandularity 30%, 50% and 70%). The results were shown as follows: AGD values for DDM system were highest than those for other systems. Although automatic exposure control (AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter (Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in order to estimate a patient radiation dose

  15. Comparative effectiveness of combined digital mammography and tomosynthesis screening for women with dense breasts.

    Science.gov (United States)

    Lee, Christoph I; Cevik, Mucahit; Alagoz, Oguzhan; Sprague, Brian L; Tosteson, Anna N A; Miglioretti, Diana L; Kerlikowske, Karla; Stout, Natasha K; Jarvik, Jeffrey G; Ramsey, Scott D; Lehman, Constance D

    2015-03-01

    To evaluate the effectiveness of combined biennial digital mammography and tomosynthesis screening, compared with biennial digital mammography screening alone, among women with dense breasts. An established, discrete-event breast cancer simulation model was used to estimate the comparative clinical effectiveness and cost-effectiveness of biennial screening with both digital mammography and tomosynthesis versus digital mammography alone among U.S. women aged 50-74 years with dense breasts from a federal payer perspective and a lifetime horizon. Input values were estimated for test performance, costs, and health state utilities from the National Cancer Institute Breast Cancer Surveillance Consortium, Medicare reimbursement rates, and medical literature. Sensitivity analyses were performed to determine the implications of varying key model parameters, including combined screening sensitivity and specificity, transient utility decrement of diagnostic work-up, and additional cost of tomosynthesis. For the base-case analysis, the incremental cost per quality-adjusted life year gained by adding tomosynthesis to digital mammography screening was $53 893. An additional 0.5 deaths were averted and 405 false-positive findings avoided per 1000 women after 12 rounds of screening. Combined screening remained cost-effective (less than $100 000 per quality-adjusted life year gained) over a wide range of incremental improvements in test performance. Overall, cost-effectiveness was most sensitive to the additional cost of tomosynthesis. Biennial combined digital mammography and tomosynthesis screening for U.S. women aged 50-74 years with dense breasts is likely to be cost-effective if priced appropriately (up to $226 for combined examinations vs $139 for digital mammography alone) and if reported interpretive performance metrics of improved specificity with tomosynthesis are met in routine practice.

  16. Digital information management: a progress report on the National Digital Mammography Archive

    Science.gov (United States)

    Beckerman, Barbara G.; Schnall, Mitchell D.

    2002-05-01

    Digital mammography creates very large images, which require new approaches to storage, retrieval, management, and security. The National Digital Mammography Archive (NDMA) project, funded by the National Library of Medicine (NLM), is developing a limited testbed that demonstrates the feasibility of a national breast imaging archive, with access to prior exams; patient information; computer aids for image processing, teaching, and testing tools; and security components to ensure confidentiality of patient information. There will be significant benefits to patients and clinicians in terms of accessible data with which to make a diagnosis and to researchers performing studies on breast cancer. Mammography was chosen for the project, because standards were already available for digital images, report formats, and structures. New standards have been created for communications protocols between devices, front- end portal and archive. NDMA is a distributed computing concept that provides for sharing and access across corporate entities. Privacy, auditing, and patient consent are all integrated into the system. Five sites, Universities of Pennsylvania, Chicago, North Carolina and Toronto, and BWXT Y12, are connected through high-speed networks to demonstrate functionality. We will review progress, including technical challenges, innovative research and development activities, standards and protocols being implemented, and potential benefits to healthcare systems.

  17. A comparison of digital and screen-film mammography using quality control phantoms

    International Nuclear Information System (INIS)

    Undrill, Peter E.; O'Kane, Arlene D.; Gilbert, Fiona J.

    2000-01-01

    AIM: To compare the performance of a direct digital mammography system with normal-view and magnified-view conventional screen-film methods using quality control phantoms. MATERIALS AND METHODS: Using a Siemens Mammomat [reg] 3000 and an Opdima [reg] digital spot imaging and biopsy attachment, film and direct digital images of two phantoms [DuPont and TOR (MAM)] were obtained under normal operating conditions. These were assessed by three groups of observers with differing expertise -- radiologists, radiographers and medical physicists. Each observer was asked to compare the direct digital image with films taken in standard view and magnified view, providing scores for object visibility and confidence. For the digital images, observers were allowed to vary the image presentation parameters. RESULTS: Both phantoms showed that overall the direct digital view and the magnified view film performed significantly better (P < 0.05) than standard view film. For certain small or low contrast objects the differences became very highly significant (P < 0.001). CONCLUSION: Only the TOR (MAM) phantom showed any significant difference between digital and magnified modalities, with magnified views performing better for fine, faint filaments and digital acquisition better for low contrast objects. Almost no difference existed between the three observer groups. Undrill, P.E. (2000). Clinical Radiology 53, 782-790

  18. A comparison of the performance of modern screen-film and digital mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Monnin, P [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Gutierrez, D [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Bulling, S [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Lepori, D [Department of Radiology, University Hospital Center (CHUV), CH-1011 Lausanne (Switzerland); Valley, J-F [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland); Verdun, F R [Institut Universitaire de Radiophysique Appliquee (IRA), CH-1007 Lausanne (Switzerland)

    2005-06-07

    This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.

  19. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    Science.gov (United States)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  20. Quantitative evaluation of dual-energy digital mammography for calcification imaging

    International Nuclear Information System (INIS)

    Kappadath, S Cheenu; Shaw, Chris C

    2004-01-01

    Dual-energy digital mammography (DEDM), where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Under ideal imaging conditions, when the mammography image data are free of scatter and other biases, DEDM could be used to determine the thicknesses of the imaged calcifications. We present quantitative evaluation of a DEDM technique for calcification imaging. The phantoms used in the evaluation were constructed by placing aluminium strips of known thicknesses (to simulate calcifications) across breast-tissue-equivalent materials of different glandular-tissue compositions. The images were acquired under narrow-beam geometry and high exposures to suppress the detrimental effects of scatter and random noise. The measured aluminium thicknesses were found to be approximately linear with the true aluminium thicknesses and independent of the underlying glandular-tissue composition. However, the dual-energy images underestimated the true aluminium thickness due to the presence of scatter from adjacent regions. Regions in the DEDM image that contained no aluminium yielded very low aluminium thicknesses (<0.07 mm). The aluminium contrast-to-noise ratio in the dual-energy images increased with the aluminium thickness and decreased with the glandular-tissue composition. The changes to the aluminium contrast-to-noise ratio and the contrast of the tissue structures between the low-energy and DEDM images are also presented

  1. Adding the power of iodinated contrast media to the credibility of mammography in breast cancer diagnosis.

    Science.gov (United States)

    Tsigginou, Alexandra; Gkali, Christina; Chalazonitis, Athanasios; Feida, Eleni; Vlachos, Dimitrios Efthymios; Zagouri, Flora; Rellias, Ioannis; Dimitrakakis, Constantine

    2016-11-01

    Dual-energy contrast-enhanced spectral mammography (CESM) represents a relatively new diagnostic tool adjunct to mammography. The aim of this study was to strengthen the breast imaging-reporting and data system (BIRADS) classification score in order to improve early breast cancer diagnosis. For this reason, we propose a sum score, termed malignancy potential score (MPS), incorporating the standard BIRADS score and our proposed CESM score. From September 2014 to September 2015, 216 females (age range, 26-85 years; mean age 54.6 years) underwent CESM evaluation of mammographic findings that were primarily assessed as BIRADS 2-5. 10 of these patients had bilateral findings; a total of 226 lesions were examined. High-energy image evaluation was based on the intensity of contrast enhancement of the lesion compared with background enhancement, categorized as Type -1, 0, 1 or 2 enhancement. Histopathology reports were compared with imaging assessment. 98 of 226 lesions were malignant and 128 of 226 lesions were benign. The area under the curve was 0.843, 0.888 and 0.917 for mammographic BIRADS score, CESM score and MPS, respectively, with p-value mammography or CESM alone. MPS empowers the credibility of the digital mammography BIRADS score and our proposed type of enhancement in dual-energy CESM and is a diagnostic tool that increases the accuracy rate in early breast cancer diagnosis.

  2. Quantification of breast arterial calcification using full field digital mammography

    International Nuclear Information System (INIS)

    Molloi, Sabee; Xu Tong; Ducote, Justin; Iribarren, Carlos

    2008-01-01

    Breast arterial calcification is commonly detected on some mammograms. Previous studies indicate that breast arterial calcification is evidence of general atherosclerotic vascular disease and it may be a useful marker of coronary artery disease. It can potentially be a useful tool for assessment of coronary artery disease in women since mammography is widely used as a screening tool for early detection of breast cancer. However, there are currently no available techniques for quantification of calcium mass using mammography. The purpose of this study was to determine whether it is possible to quantify breast arterial calcium mass using standard digital mammography. An anthropomorphic breast phantom along with a vessel calcification phantom was imaged using a full field digital mammography system. Densitometry was used to quantify calcium mass. A calcium calibration measurement was performed at each phantom thickness and beam energy. The known (K) and measured (M) calcium mass on 5 and 9 cm thickness phantoms were related by M=0.964K-0.288 mg (r=0.997 and SEE=0.878 mg) and M=1.004K+0.324 mg (r=0.994 and SEE=1.32 mg), respectively. The results indicate that accurate calcium mass measurements can be made without correction for scatter glare as long as careful calcium calibration is made for each breast thickness. The results also indicate that composition variations and differences of approximately 1 cm between calibration phantom and breast thickness introduce only minimal error in calcium measurement. The uncertainty in magnification is expected to cause up to 5% and 15% error in calcium mass for 5 and 9 cm breast thicknesses, respectively. In conclusion, a densitometry technique for quantification of breast arterial calcium mass was validated using standard full field digital mammography. The results demonstrated the feasibility and potential utility of the densitometry technique for accurate quantification of breast arterial calcium mass using standard digital

  3. Development of a methodology for automated assessment of the quality of digitized images in mammography

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2010-01-01

    The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. The purpose of this study is to develop a computational methodology to automate the process of assessing the quality of mammography images through techniques of digital imaging processing (PDI), using an existing image processing environment (ImageJ). With the application of PDI techniques was possible to extract geometric and radiometric characteristics of the images evaluated. The evaluated parameters include spatial resolution, high-contrast detail, low contrast threshold, linear detail of low contrast, tumor masses, contrast ratio and background optical density. The results obtained by this method were compared with the results presented in the visual evaluations performed by the Health Surveillance of Minas Gerais. Through this comparison was possible to demonstrate that the automated methodology is presented as a promising alternative for the reduction or elimination of existing subjectivity in the visual assessment methodology currently in use. (author)

  4. Evidence on Synthesized Two-dimensional Mammography Versus Digital Mammography When Using Tomosynthesis (Three-dimensional Mammography) for Population Breast Cancer Screening.

    Science.gov (United States)

    Houssami, Nehmat

    2017-09-28

    One limitation of using digital breast tomosynthesis (3-dimensional [3D] mammography) technology with conventional (2-dimensional [2D]) mammography for breast cancer (BC) screening is the increased radiation dose from dual acquisitions. To resolve this problem, synthesized 2D (s2D) reconstruction images similar to 2D mammography were developed using tomosynthesis acquisitions. The present review summarizes the evidence for s2D versus digital mammography (2D) when using tomosynthesis (3D) for BC screening to address whether using s2D instead of 2D (alongside 3D) will yield similar detection measures. Comparative population screening studies have provided consistent evidence that cancer detection rates do not differ between integrated 2D/3D (range, 5.45-8.5/1000 screens) and s2D/3D (range, 5.03-8.8/1000 screens). Also, although the recall measures were relatively heterogeneous across included studies, little difference was found between the 2 modalities. The mean glandular dose for s2D/3D was 55% to 58% of that for 2D/3D. In the context of BC screening, s2D/3D involves substantially less radiation than 2D/3D and provides similar detection measures. Thus, consideration of transitioning to tomosynthesis screening should aim to use s2D/3D to minimize harm. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The effects of gray scale image processing on digital mammography interpretation performance.

    Science.gov (United States)

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  6. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fallenberg, Eva M.; Schmitzberger, Florian F.; Amer, Heba; Engelken, Florian; Bick, Ulrich; Hamm, Bernd [Charite Universitaetsmedizin Berlin, Clinic of Radiology, Campus Virchow-Klinikum, Berlin (Germany); Ingold-Heppner, Barbara [Charite - Universitaetsmedizin Berlin, Institut of Pathology, Berlin (Germany); Balleyguier, Corinne; Dromain, Clarisse [Gustave Roussy Cancer Campus, Department of Radiology, Villejuif (France); Diekmann, Felix [St. Joseph-Stift Bremen, Department of Medical Imaging, Bremen (Germany); Mann, Ritse M. [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Renz, Diane M. [Universitaetsklinikum Jena, Department of Radiology, Jena (Germany)

    2017-07-15

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. (orig.)

  7. Organisational aspects of mammography screening in digital settings: First experiences of Luxembourg

    International Nuclear Information System (INIS)

    Shannoun, F.; Schanck, J. M.; Scharpantgen, A.; Wagnon, M. C.; Ben Daoud, M.; Back, C.

    2008-01-01

    Luxembourg has been conducting a breast cancer screening programme since 1992, like a large number of other European countries, as early detection and treatment of breast cancer have been proven to reduce mortality. The majority of these screening programmes are based on analogue X-ray technology and have optimised their organisation of transporting, archiving and reading with respect to films. Last decade is marked by enormous developments in digital mammography. Different technologies such as flat panel-, computed radiography- and scanning systems became available. Digital mammography is expected to have a major impact on quality and organisation of breast cancer screening programmes. Screening programmes are now faced with a huge challenge of incorporating the digital technology, including implementation of electronic image exchange, conception of new electronic work-flow, establishing adapted quality assurance programmes and training of radiologists and technical personnel. Initial experiences of the Luxembourg approach in organising digital mammography screening and its quality assurance are reported. (authors)

  8. FDA & digital mammography: why has FDA required full field digital mammography systems to be regulated as potentially dangerous devices for more than 10 years?

    Science.gov (United States)

    Nields, Morgan W

    2010-05-01

    Digital mammography is routinely used in the US to screen asymptomatic women for breast cancer and currently over 50% of US screening centers employ the technology. In spite of FDAs knowledge that digital mammography requires less radiation than film mammography and that its equivalence has been proven in a prospective randomized trial, the agency has failed to allow the technology market access via the 510(k) pre market clearance pathway. As a result of the restrictive Pre Market Approval process, only four suppliers have received FDA approval. The resulting lack of a competitive market has kept costs high, restricted technological innovation, and impeded product improvements as a result of PMA requirements. Meanwhile, at least twelve companies are on the market in the EU and the resulting competitive market has lowered costs and provided increased technological choice. A cultural change with new leadership occurred in the early 90's at FDA. The historical culture at the Center for Devices and Radiological Health of collaboration and education gave way to one characterized by a lack of reliance on outside scientific expertise, tolerance of decision making by unqualified reviewers, and an emphasis on enforcement and punishment. Digital mammography fell victim to this cultural change and as a result major innovations like breast CT and computer aided detection technologies are also withheld from the market. The medical device law, currently under review by the Institute of Medicine, should be amended by the Congress so that new technologies can be appropriately classified in accordance with the risk based assessment classification system detailed in Chapter V of the Federal Food, Drug, and Cosmetic Act. A panel of scientific experts chartered by the NIH or IOM should determine the classification appropriate for new technologies that have no historical regulatory framework. This would be binding on FDA. Unless the law is changed we will likely again experience

  9. Performances of different digital mammography imaging systems: Evaluation and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)]. E-mail: giuseppina.bisogni@pi.infn.it; Bulajic, D. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); International Centre for Theoretical Physics, Trieste (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)

    2005-07-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems.

  10. Performances of different digital mammography imaging systems: Evaluation and comparison

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Bulajic, D.; Delogu, P.; Fantacci, M.E.; Novelli, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2005-01-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems

  11. Digital versus screen-film mammography: impact of mammographic density and hormone therapy on breast cancer detection.

    Science.gov (United States)

    Chiarelli, Anna M; Prummel, Maegan V; Muradali, Derek; Shumak, Rene S; Majpruz, Vicky; Brown, Patrick; Jiang, Hedy; Done, Susan J; Yaffe, Martin J

    2015-11-01

    Most studies that have examined the effects of mammographic density and hormone therapy use on breast cancer detection have included screen-film mammography. This study further examines this association in post-menopausal women screened by digital mammography. Approved by the University of Toronto Research Ethics Board, this study identified 688,418 women of age 50-74 years screened with digital or screen-film mammography from 2008 to 2009 within the Ontario Breast Screening Program. Of 2993 eligible women with invasive breast cancer, 2450 were contacted and 1421 participated (847 screen-film mammography, 574 digital direct radiography). Mammographic density was measured by study radiologists using the standard BI-RADS classification system and by a computer-assisted method. Information on hormone therapy use was collected by a telephone-administered questionnaire. Logistic regression and two-tailed tests for significance evaluated associations between factors and detection method by mammography type. Women with >75 % radiologist-measured mammographic density compared to those with diagnosed with an interval than screen-detected cancer, with the difference being greater for those screened with screen-film (OR = 6.40, 95 % CI 2.30-17.85) than digital mammography (OR = 2.41, 95 % CI 0.67-8.58) and aged 50-64 years screened with screen-film mammography (OR = 10.86, 95 % CI 2.96-39.57). Recent former hormone therapy users were also at an increased risk of having an interval cancer with the association being significant for women screened with digital mammography (OR = 2.08, 95 % CI 1.17-3.71). Breast screening using digital mammography lowers the risk of having an interval cancer for post-menopausal women aged 50-64 with greater mammographic density.

  12. Control and monitoring of doses to patients in a team of digital mammography

    International Nuclear Information System (INIS)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-01-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  13. Dose to population as a metric in the design of optimised exposure control in digital mammography

    International Nuclear Information System (INIS)

    Klausz, R.; Shramchenko, N.

    2005-01-01

    This paper describes a methods for automatic optimisation of parameter (AOP) in digital mammography systems. Using a model of the image chain, contrast to noise ratio (CNR) and average glandular dose (AGD) are computed for possible X-ray parameters and breast types. The optimisation process consists of the determination of the operating points providing the lowest possible AGD for each CNR level and breast type. The proposed metric for the dose used in the design of an AOP mode is the resulting dose to the population, computed by averaging the AGD values over the distribution of breast types in the population. This method has been applied to the automatic exposure control of new digital mammography equipment. Breast thickness and composition are estimated from a low dose pre-exposure and used to index tables containing sets of optimised operating points. The resulting average dose to the population ranges from a level comparable to state-of-the-art screen/film mammography to a reduction by a factor of two. Using this method, both CNR and dose are kept under control for all breast types, taking into consideration both individual and collective risk. (authors)

  14. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    Science.gov (United States)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  15. Diagnostic reference levels in digital mammography: a systematic review

    International Nuclear Information System (INIS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2015-01-01

    This study aims to review the literature on existing diagnostic reference levels (DRLs) in digital mammography and methodologies for establishing them. To this end, a systematic search through Medline, Cinahl, Web of Science, Scopus and Google scholar was conducted using search terms extracted from three terms: DRLs, digital mammography and breast screen. The search resulted in 1539 articles of which 22 were included after a screening process. Relevant data from the included studies were summarised and analysed. Differences were found in the methods utilised to establish DRLs including test subjects types, protocols followed, conversion factors employed, breast compressed thicknesses and percentile values adopted. These differences complicate comparison of DRLs among countries; hence, an internationally accepted protocol would be valuable so that international comparisons can be made. (authors)

  16. Variability of breast density assessment in short-term reimaging with digital mammography

    International Nuclear Information System (INIS)

    Kim, Won Hwa; Moon, Woo Kyung; Kim, Sun Mi; Yi, Ann; Chang, Jung Min; Koo, Hye Ryoung; Lee, Su Hyun; Cho, Nariya

    2013-01-01

    Objective: To evaluate the variability of breast density assessments in short-term reimaging with digital mammography. Materials and methods: In 186 women, short term (mean interval, 27.6 days) serial digital mammograms including CC and MLO views were obtained without any treatment. Mammographic density assessments were performed by three blinded radiologists for Breast Imaging Report and Data System (BI-RADS, grades 1–4) and visual percentage density (PD) estimation, and by one radiologist for computer-aided PD estimation. The variability of assessments was analyzed according to the age, breast density, and mammography types by multivariate logistic regression. Results: In BI-RADS assessments, 29% (161 of 558) of breast density categories were assessed differently after short-term reimaging and the mean absolute difference in PD for CC and MLO view was 7.6% and 8.1% for visual assessments, and 7.4% and 6.4% for computer-aided assessments, respectively. Among all computer-aided assessments, 29% (54 of 186) of CC view and 22% (41 of 186) of MLO view assessments had discrepancy over 10% in PD. Younger age (<50), greater breast density (grades 3 and 4), and different mammography types were significantly associated with the variability. Conclusion: Considerable variability in breast density assessments occurred in short-term reimaging with digital mammography, particularly in women with younger age and greater breast density and when examined using different types of mammography

  17. Variability of breast density assessment in short-term reimaging with digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Hwa [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Sun Mi [Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Yi, Ann [Department of Radiology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, Seoul (Korea, Republic of); Chang, Jung Min; Koo, Hye Ryoung; Lee, Su Hyun; Cho, Nariya [Department of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2013-10-01

    Objective: To evaluate the variability of breast density assessments in short-term reimaging with digital mammography. Materials and methods: In 186 women, short term (mean interval, 27.6 days) serial digital mammograms including CC and MLO views were obtained without any treatment. Mammographic density assessments were performed by three blinded radiologists for Breast Imaging Report and Data System (BI-RADS, grades 1–4) and visual percentage density (PD) estimation, and by one radiologist for computer-aided PD estimation. The variability of assessments was analyzed according to the age, breast density, and mammography types by multivariate logistic regression. Results: In BI-RADS assessments, 29% (161 of 558) of breast density categories were assessed differently after short-term reimaging and the mean absolute difference in PD for CC and MLO view was 7.6% and 8.1% for visual assessments, and 7.4% and 6.4% for computer-aided assessments, respectively. Among all computer-aided assessments, 29% (54 of 186) of CC view and 22% (41 of 186) of MLO view assessments had discrepancy over 10% in PD. Younger age (<50), greater breast density (grades 3 and 4), and different mammography types were significantly associated with the variability. Conclusion: Considerable variability in breast density assessments occurred in short-term reimaging with digital mammography, particularly in women with younger age and greater breast density and when examined using different types of mammography.

  18. Digital mammography screening: average glandular dose and first performance parameters

    International Nuclear Information System (INIS)

    Weigel, S.; Girnus, R.; Czwoydzinski, J.; Heindel, W.; Decker, T.; Spital, S.

    2007-01-01

    Purpose: The Radiation Protection Commission demanded structured implementation of digital mammography screening in Germany. The main requirements were the installation of digital reference centers and separate evaluation of the fully digitized screening units. Digital mammography screening must meet the quality standards of the European guidelines and must be compared to analog screening results. We analyzed early surrogate indicators of effective screening and dosage levels for the first German digital screening unit in a routine setting after the first half of the initial screening round. Materials and Methods: We used three digital mammography screening units (one full-field digital scanner [DR] and two computed radiography systems [CR]). Each system has been proven to fulfill the requirements of the National and European guidelines. The radiation exposure levels, the medical workflow and the histological results were documented in a central electronic screening record. Results: In the first year 11,413 women were screened (participation rate 57.5 %). The parenchymal dosages for the three mammographic X-ray systems, averaged for the different breast sizes, were 0.7 (DR), 1.3 (CR), 1.5 (CR) mGy. 7 % of the screened women needed to undergo further examinations. The total number of screen-detected cancers was 129 (detection rate 1.1 %). 21 % of the carcinomas were classified as ductal carcinomas in situ, 40 % of the invasive carcinomas had a histological size ≤ 10 mm and 61 % < 15 mm. The frequency distribution of pT-categories of screen-detected cancer was as follows: pTis 20.9 %, pT1 61.2 %, pT2 14.7 %, pT3 2.3 %, pT4 0.8 %. 73 % of the invasive carcinomas were node-negative. (orig.)

  19. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    OpenAIRE

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the d...

  20. Latin American image quality survey in digital mammography studies

    International Nuclear Information System (INIS)

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Garcia Aguilar, Juan; Gamarra, Mirtha; Ubeda, Carlos

    2017-01-01

    Under International Atomic Energy Agency regional programme TSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs. (authors)

  1. Diagnostic performance of dual-energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone: interobserver blind-reading analysis.

    Science.gov (United States)

    Cheung, Yun-Chung; Lin, Yu-Ching; Wan, Yung-Liang; Yeow, Kee-Min; Huang, Pei-Chin; Lo, Yung-Feng; Tsai, Hsiu-Pei; Ueng, Shir-Hwa; Chang, Chee-Jen

    2014-10-01

    To analyse the accuracy of dual-energy contrast-enhanced spectral mammography in dense breasts in comparison with contrast-enhanced subtracted mammography (CESM) and conventional mammography (Mx). CESM cases of dense breasts with histological proof were evaluated in the present study. Four radiologists with varying experience in mammography interpretation blindly read Mx first, followed by CESM. The diagnostic profiles, consistency and learning curve were analysed statistically. One hundred lesions (28 benign and 72 breast malignancies) in 89 females were analysed. Use of CESM improved the cancer diagnosis by 21.2 % in sensitivity (71.5 % to 92.7 %), by 16.1 % in specificity (51.8 % to 67.9 %) and by 19.8 % in accuracy (65.9 % to 85.8 %) compared with Mx. The interobserver diagnostic consistency was markedly higher using CESM than using Mx alone (0.6235 vs. 0.3869 using the kappa ratio). The probability of a correct prediction was elevated from 80 % to 90 % after 75 consecutive case readings. CESM provided additional information with consistent improvement of the cancer diagnosis in dense breasts compared to Mx alone. The prediction of the diagnosis could be improved by the interpretation of a significant number of cases in the presence of 6 % benign contrast enhancement in this study. • DE-CESM improves the cancer diagnosis in dense breasts compared with mammography. • DE-CESM shows greater consistency than mammography alone by interobserver blind reading. • Diagnostic improvement of DE-CESM is independent of the mammographic reading experience.

  2. Prognostic value of contrast-enhanced MR mammography in patients with breast cancer.

    Science.gov (United States)

    Fischer, U; Kopka, L; Brinck, U; Korabiowska, M; Schauer, A; Grabbe, E

    1997-01-01

    The objective of this study was to evaluate the prognostic value of contrast-enhanced MR mammography in patients with breast cancer. A total of 190 patients with breast cancer (37 noninvasive carcinomas, 153 invasive carcinomas) underwent dynamic contrast-enhanced MR mammography preoperatively. Using 1.5-T unit, T1-weighted sequences (2D FLASH) were obtained repeatedly one time before and five times after IV administration of 0.1 mmol gadopentetate-dimeglumine per kilogram body weight. The findings on MR imaging were correlated with histopathologically defined prognostic factors (histological type, tumor size, tumor grading, metastasis in lymph nodes). In addition, immunohistochemically defined prognostic factors (c-erbB-1, c-erbB-2, p53, Ki-67) were correlated with the signal increase on MR mammogram in 40 patients. There was no significant correlation between the findings on MR mammography and the histopathological type of carcinoma, the grading, and the lymphonodular status. Noninvasive carcinomas showed a higher rate of moderate (38 %) or low (27 %) enhancement on MR imaging than invasive carcinomas (6 and 3 %). The results on MR mammography and the results of immunohistochemical stainings did not correlate significantly. Noninvasive carcinomas showed significantly lower enhancement than invasive carcinomas. However, the signal behavior of contrast-enhanced MR mammography is not related to established histopathological prognostic parameters as subtyping, grading, nodal status, and the expression of certain oncogenes/tumor suppressor genes.

  3. Digital Mammography in Young Women: Is a Single View Sufficient?

    Science.gov (United States)

    Gossner, Johannes

    2016-03-01

    Single view mammography may be a less time consuming, more comfortable and radiation reduced alternative for young women, but there are no studies examining this approach after the implementation of digital mammography into clinical practice. Retrospective analysis of all mammographies performed in women younger than 40 years during a 24 month period. The sample consisted of 109 women with 212 examined breasts. All patients initially received standard two- view mammography. In the study setting the MLO- views were read by a single viewer and compared to a composite reference standard. In this sample 7 malignant findings were present and the review of the MLO-view detected 6 of them (85%). In patients with dense breasts 4 out of 5 malignant findings were found on the single-view (sensitivity 80%) and all 2 malignant findings were detected in patients with low breast density (sensitivity 100%). There were 7 false positive findings (3.3%). i.e. in total 8 out of 212 examined breasts were therefore misinterpreted (3.8%). Single view digital mammography detects the vast majority of malignant findings, especially in low density breast tissue and the rate of false-positive findings is within acceptable limits. Therefore this approach may be used in different scenarios (for example in increasing patient throughout in resource poor settings, reducing radiation burden in the young or in combination with ultrasound to use the strengths of both methods). More research on this topic is needed to establish its potential role in breast imaging.

  4. Digital mammography. Why hasn't it been approved for U.S. hospitals?

    Science.gov (United States)

    2000-01-01

    Mammography is the only major imaging technique still unavailable in the United States in digital form. This is because the Food and Drug Administration (FDA) has been unable to devise an effective method for manufacturers to demonstrate the safety and efficacy of digital mammography systems. As a result, the agency has been unable to approve any of those systems for marketing in the United States. In this Regulatory Update, we describe FDA's recent efforts to help manufacturers obtain approval and the reasons those efforts have so far proved ineffective.

  5. Prognostic value of contrast-enhanced MR mammography in patients with breast cancer

    International Nuclear Information System (INIS)

    Fischer, U.; Kopka, L.; Brinck, U.; Korabiowska, M.; Schauer, A.; Grabbe, E.

    1997-01-01

    The objective of this study was to evaluate the prognostic value of contrast-enhanced MR mammography in patients with breast cancer. A total of 190 patients with breast cancer (37 noninvasive carcinomas, 153 invasive carcinomas) underwent dynamic contrast-enhanced MR mammography preoperatively. Using 1.5-T unit, T1-weighted sequences (2D FLASH) were obtained repeatedly one time before and five times after IV administration of 0.1 mmol gadopentetate-dimeglumine per kilogram body weight. The findings on MR imaging were correlated with histopathologically defined prognostic factors (histological type, tumor size, tumor grading, metastasis in lymph nodes). In addition, immunohistochemically defined prognostic factors (c-erbB-1,c-erbB-2, p53, Ki-67) were correlated with the signal increase on MR mammogram in 40 patients. There was no significant correlation between the findings on MR mammography and the histopathological type of carcinoma, the grading, and the lymphonodular status. Noninvasive carcinomas showed a higher rate of moderate (38 %) or low (27 %) enhancement on MR imaging than invasive carcinomas (6 and 3 %). The results on MR mammography and the results of immunohistochemical stainings did not correlate significantly. Noninvasive carcinomas showed significantly lower enhancement than invasive carcinomas. However, the signal behavior of contrast-enhanced MR mammography is not related to established histopathological prognostic parameters as subtyping, grading, nodal status, and the expression of certain oncogenes/tumor suppressor genes. (orig.). With 5 tabs

  6. Impact on breast cancer diagnosis in a multidisciplinary unit after the incorporation of mammography digitalization and computer-aided detection systems.

    Science.gov (United States)

    Romero, Cristina; Varela, Celia; Muñoz, Enriqueta; Almenar, Asunción; Pinto, Jose María; Botella, Miguel

    2011-12-01

    The purpose of this article is to evaluate the impact on the diagnosis of breast cancer of implementing full-field digital mammography (FFDM) in a multidisciplinary breast pathology unit and, 1 year later, the addition of a computer-aided detection (CAD) system. A total of 13,453 mammograms performed between January and July of the years 2004, 2006, and 2007 were retrospectively reviewed using conventional mammography, digital mammography, and digital mammography plus CAD techniques. Mammograms were classified into two subsets: screening and diagnosis. Variables analyzed included cancer detection rate, rate of in situ carcinoma, tumor size at detection, biopsy rate, and positive predictive value of biopsy. FFDM increased the cancer detection rate, albeit not statistically significantly. The detection rate of in situ carcinoma increased significantly using FFDM plus CAD compared with conventional technique (36.8% vs 6.7%; p = 0.05 without Bonferroni statistical correction) for the screening dataset. Relative to conventional mammography, tumor size at detection decreased with digital mammography (T1, 61.5% vs 88%; p = 0.018) and with digital mammography plus CAD (T1, 79.7%; p = 0.03 without Bonferroni statistical correction). Biopsy rates in the general population increased significantly using CAD (10.6/1000 for conventional mammography, 14.7/1000 for digital mammography, and 17.9/1000 for digital mammography plus CAD; p = 0.02). The positive predictive value of biopsy decreased slightly, but not significantly, for both subsets. The incorporation of new techniques has improved the performance of the breast unit by increasing the overall detection rates and earlier detection (smaller tumors), both leading to an increase in interventionism.

  7. Quantitative breast density analysis using tomosynthesis and comparison with MRI and digital mammography.

    Science.gov (United States)

    Moon, Woo Kyung; Chang, Jie-Fan; Lo, Chung-Ming; Chang, Jung Min; Lee, Su Hyun; Shin, Sung Ui; Huang, Chiun-Sheng; Chang, Ruey-Feng

    2018-02-01

    Breast density at mammography has been used as markers of breast cancer risk. However, newly introduced tomosynthesis and computer-aided quantitative method could provide more reliable breast density evaluation. In the experiment, 98 tomosynthesis image volumes were obtained from 98 women. For each case, an automatic skin removal was used and followed by a fuzzy c-mean (FCM) classifier which separated the fibroglandular tissues from other tissues in breast area. Finally, percent of breast density and breast volume were calculated and the results were compared with MRI. In addition, the percent of breast density and breast area of digital mammography calculated using the software Cumulus (University of Toronto, Toronto, ON, Canada.) were also compared with 3-D modalities. Percent of breast density and breast volume, which were computed from tomosynthesis, MRI and digital mammography were 17.37% ± 4.39% and 607.12 cm 3  ± 323.01 cm 3 , 20.3% ± 8.6% and 537.59 cm 3  ± 287.74 cm 3 , and 12.03% ± 4.08%, respectively. There were significant correlations on breast density as well as volume between tomosynthesis and MRI (R = 0.482 and R = 0.805), tomosynthesis and breast density with breast area of digital mammography (R = 0.789 and R = 0.877), and MRI and breast density with breast area of digital mammography (R = 0.482 and R = 0.857) (all P values density and breast volume evaluated from tomosynthesis, MRI and breast density and breast area of digital mammographic images have significant correlations and indicate that tomosynthesis could provide useful 3-D information on breast density through proposed method. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NARCIS (Netherlands)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last

  9. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    Science.gov (United States)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  10. Screen-film mammography versus full-field digital mammography in a population-based screening program: The Sogn and Fjordane study

    International Nuclear Information System (INIS)

    Juel, Inger-Marie; Johannessen, Gunnar; Skaane, Per; Roth Hoff, Solveig; Hofvind, Solveig

    2010-01-01

    Background: Studies comparing analog and digital mammography in breast cancer screening have shown conflicting results. Little is known about the use of digital photon-counting detectors. Purpose: To retrospectively compare performance indicators in screen-film (SFM) and full-field digital mammography (FFDM) using a photon-counting detector in a population-based screening program. Material and Methods: The Norwegian Social Science Data Services approved the study, which was part of the Norwegian Breast Cancer Screening Program. The program invites women aged 50-69 years to two-view mammography biannually. The study period was January 2005 to June 2006 for SFM and August 2006 to December 2007 for FFDM. Independent double reading was performed using a five-point rating scale for probability of cancer. Recalls due to abnormal mammography were retrospectively reviewed by an expert panel. Performance indicators for the two techniques were compared. Attendance rate was 83.6% (7442/8901) for SFM and 82.0% (6932/8451) for FFDM. Results: The recall rate due to abnormal mammography, cancer detection rate and positive predictive value did not differ significantly between SFM and FFDM: recall 2.3% (174/7442) versus 2.4% (168/6932), cancer detection 0.39% (29/7442) versus 0.48% (33/6932), positive predictive value 16.7% (29/174) versus 19.6% (33/168), respectively (P>0.05 for all). The recall rate due to technically inadequate mammograms was 0.3% (19/7442) for SFM and 0.01% (1/6932) for FFDM. In the retrospective review, a significantly higher proportion of calcifications and asymmetric density were categorized as normal or definitively benign in FFDM compared with SFM. The average glandular dose was 2.17 mGy for SFM and 1.25 mGy for FFDM. Conclusion: Performance indicators show that FFDM using photon-counting detector is suitable for breast cancer screening. The lower radiation dose and lower recalls due to technically inadequate mammograms are of importance in mammography

  11. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer.

    Science.gov (United States)

    Roganovic, Dragana; Djilas, Dragana; Vujnovic, Sasa; Pavic, Dag; Stojanov, Dragan

    2015-11-16

    Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI), digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities. We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS) was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC) curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p tomosynthesis and breast MRI was not significant (p=0.20).

  12. MR mammography: influence of menstrual cycle on the dynamic contrast enhancement of fibrocystic disease

    International Nuclear Information System (INIS)

    Rieber, A.; Nuessle, K.; Merkle, E.; Tomczak, R.; Brambs, H.J.; Kreienberg, R.

    1999-01-01

    Magnetic resonance mammography (MRM) provides data regarding the nature of tumours based on contrast medium dynamics; fibrocystic changes in the breast, however, may lead to false-positive results. This study investigated whether the contrast medium dynamics of fibrocystic changes are dependent on the menstrual cycle. Twenty-four patients with palpable lumps but normal mammographies and ultrasound studies were examined. The MRM technique was performed during the first and second part of the menstrual cycle using a FLASH 3D sequence, both native and at 1, 2, 3 and 8 min after intravenous application of 0.15 mmol/kg body weight of gadodiamide. The calculated time-intensity curves were evaluated based on the following criteria: early percentage of contrast medium uptake in relation to the native value; formation of a plateau phenomenon after the second minute; the point of maximal contrast medium uptake; and calculation of the contrast enhancing index. During the second half of the menstrual cycle, a generally greater contrast medium uptake was observed. Nevertheless, when further diagnostic criteria, such as continuous contrast medium increase as a function of time, were considered, there was no increased rate of false-positive findings. The phase of the menstrual cycle may affect the specificity of the examination, if only the quantitative contrast medium uptake and the percentage of contrast medium uptake in the first 2 min are considered. A control MRM during the other half of the cycle may then be indicated and additional diagnostic criteria may improve specificity. (orig.)

  13. MR mammography: influence of menstrual cycle on the dynamic contrast enhancement of fibrocystic disease

    Energy Technology Data Exchange (ETDEWEB)

    Rieber, A.; Nuessle, K.; Merkle, E.; Tomczak, R.; Brambs, H.J. [Ulm Univ. (Germany). Abt. Radiologie 1 (Roentgendiagnostik); Kreienberg, R. [Ulm Univ. (Germany). Dept. of Gynecology

    1999-08-01

    Magnetic resonance mammography (MRM) provides data regarding the nature of tumours based on contrast medium dynamics; fibrocystic changes in the breast, however, may lead to false-positive results. This study investigated whether the contrast medium dynamics of fibrocystic changes are dependent on the menstrual cycle. Twenty-four patients with palpable lumps but normal mammographies and ultrasound studies were examined. The MRM technique was performed during the first and second part of the menstrual cycle using a FLASH 3D sequence, both native and at 1, 2, 3 and 8 min after intravenous application of 0.15 mmol/kg body weight of gadodiamide. The calculated time-intensity curves were evaluated based on the following criteria: early percentage of contrast medium uptake in relation to the native value; formation of a plateau phenomenon after the second minute; the point of maximal contrast medium uptake; and calculation of the contrast enhancing index. During the second half of the menstrual cycle, a generally greater contrast medium uptake was observed. Nevertheless, when further diagnostic criteria, such as continuous contrast medium increase as a function of time, were considered, there was no increased rate of false-positive findings. The phase of the menstrual cycle may affect the specificity of the examination, if only the quantitative contrast medium uptake and the percentage of contrast medium uptake in the first 2 min are considered. A control MRM during the other half of the cycle may then be indicated and additional diagnostic criteria may improve specificity. (orig.) With 2 figs., 2 tabs., 24 refs.

  14. The added value of contrast enhanced spectral mammography in identification of multiplicity of suspicious lesions in dense breast

    Directory of Open Access Journals (Sweden)

    Amr Farouk Ibrahim Moustafa

    2018-03-01

    Full Text Available Objective: To evaluate the additive value of Contrast Enhanced Spectral Mammography (CESM in the preoperative assessment of malignant lesions in dense breast parenchyma regarding multiplicity. Material and methods: The study included 160 women having heterogeneous dense breast parenchyma (ACR c and d with suspicious lesions identified on sono mammography examination. All patients performed contrast enhanced spectral mammography to confirm or exclude lesion multiplicity. The number of lesions was calculated in the contrast high energy subtraction images with the reference standard being histopathological analysis. Results: Adding CESM to sono-mammography the accuracy in identifying multiple malignant lesion increased from 81.8% accuracy of sono-mammography up to 100% accuracy after adding CESM. Conclusion: Contrast enhanced spectral mammogram showed an added value in the preoperative assessment of breast masses increasing the accuracy of detection of lesions and multiplicity (multifocality and multi-centricity. Keywords: Breast cancer, Contrast enhanced spectral mammogram

  15. Adaptive discrete cosine transform coding algorithm for digital mammography

    Science.gov (United States)

    Baskurt, Atilla M.; Magnin, Isabelle E.; Goutte, Robert

    1992-09-01

    The need for storage, transmission, and archiving of medical images has led researchers to develop adaptive and efficient data compression techniques. Among medical images, x-ray radiographs of the breast are especially difficult to process because of their particularly low contrast and very fine structures. A block adaptive coding algorithm based on the discrete cosine transform to compress digitized mammograms is described. A homogeneous repartition of the degradation in the decoded images is obtained using a spatially adaptive threshold. This threshold depends on the coding error associated with each block of the image. The proposed method is tested on a limited number of pathological mammograms including opacities and microcalcifications. A comparative visual analysis is performed between the original and the decoded images. Finally, it is shown that data compression with rather high compression rates (11 to 26) is possible in the mammography field.

  16. Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Dragana Roganovic

    2015-11-01

    Full Text Available Breast cancer is the most common malignancy in women and early detection is important for its successful treatment. The aim of this study was to investigate the sensitivity and specificity of three methods for early detection of breast cancer: breast magnetic resonance imaging (MRI, digital mammography, and breast tomosynthesis in comparison to histopathology, as well as to investigate the intraindividual variability between these modalities.  We included 57 breast lesions, each detected by three diagnostic modalities: digital mammography, breast MRI, and breast tomosynthesis, and subsequently confirmed by histopathology. Breast Imaging-Reporting and Data System (BI-RADS was used for characterizing the lesions. One experienced radiologist interpreted all three diagnostic modalities. Twenty-nine of the breast lesions were malignant while 28 were benign. The sensitivity for digital mammography, breast MRI, and breast tomosynthesis, was 72.4%, 93.1%, and 100%, respectively; while the specificity was 46.4%, 60.7%, and 75%, respectively. Receiver operating characteristics (ROC curve analysis showed an overall diagnostic advantage of breast tomosynthesis over both breast MRI and digital mammography. The difference in performance between breast tomosynthesis and digital mammography was significant (p < 0.001, while the difference between breast tomosynthesis and breast MRI was not significant (p = 0.20. 

  17. Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.

    Science.gov (United States)

    Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco

    2015-04-20

    Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

  18. Effect of age on breast cancer screening using tomosynthesis in combination with digital mammography.

    Science.gov (United States)

    Rafferty, Elizabeth A; Rose, Stephen L; Miller, Dave P; Durand, Melissa A; Conant, Emily F; Copit, Debra S; Friedewald, Sarah M; Plecha, Donna M; Ott, Ingrid L; Hayes, Mary K; Carlson, Kara L; Cink, Thomas M; Barke, Lora D; Greer, Linda N; Niklason, Loren T

    2017-08-01

    To determine the effect of tomosynthesis imaging as a function of age for breast cancer screening. Screening performance metrics from 13 institutions were examined for 12 months prior to introduction of tomosynthesis (period 1) and compared to those after introduction of tomosynthesis (period 2, range 3-22 months). Screening metrics for women ages 40-49, 50-59, 60-69, and 70+ , included rates per 1000 screens for recalls, biopsies, cancers, and invasive cancers detected. Performance parameters were compared for women screened with digital mammography alone (n = 278,908) and digital mammography + tomosynthesis (n = 173,414). Addition of tomosynthesis to digital mammography produced significant reductions in recall rates for all age groups and significant increases in cancer detection rates for women 40-69. Largest recall rate reduction with tomosynthesis was for women 40-49, decreasing from 137 (95% CI 117-156) to 115 (95% CI 95-135); difference, -22 (95% CI -26 to -18; P cancer detection rate for women 40-49 from 1.6 (95% CI 1.2-1.9) to 2.7 (95% CI 2.2-3.1) with tomosynthesis (difference, 1.1; 95% CI 0.6-1.6; P cancer detection rates for women 40-69 and decreased recall rates for all age groups with largest performance gains seen in women 40-49. The similar performance seen with tomosynthesis screening for women in their 40s compared to digital mammography for women in their 50s argues strongly for commencement of mammography screening at age 40 using tomosynthesis.

  19. Optimization of x-ray spectra in digital mammography through Monte Carlo simulations.

    Science.gov (United States)

    Cunha, D M; Tomal, A; Poletti, M E

    2012-04-07

    In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR²/(¯)D(g), with CNR being the contrast-to-noise ratio in image and [Formula: see text] being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm ≤ t ≤ 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t ≥ 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 μm of the Mo filter at 24-25 kVp, while 60 μm of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.

  20. Evaluation of average glandular dose in digital and conventional systems of the mammography

    International Nuclear Information System (INIS)

    Xavier, Aline C.S.; Barros, Vinicius S.M.; Khoury, Hellen J.

    2014-01-01

    Mammography is currently the most effective method of diagnosis and detection of breast pathologies. The main interest in this kid of exam comes from the high incidence rate of breast cancer and necessity of high quality images for accurate diagnosis. Digital mammography systems have several advantages compared to conventional systems, however the use of digital imaging systems is not always integrated to an image acquisition protocol. Therefore, it is questionable if digital systems truly reduce the dose received by the patient, because many times is introduced in the clinics without optimization of the image acquisition protocols. The aim of this study is to estimate the value of incident air Kerma and average glandular dose (AGD) in patients undergoing conventional and digital mammography systems in Recife. This study was conducted with 650 patients in three hospitals. The value of incident air Kerma was estimated from the measurement of the yield of equipment and irradiation parameters used for each patient. From these results and using the methodology proposed by Dance et al. the value of the average glandular dose was calculated. The results obtained show that the lowest value of AGD was found with conventional screen-film system, indicating that the parameters for image acquisition with digital systems are not optimized. It was also observed that the institutions with digital systems use lower breast compression values than the conventional. (author)

  1. Contrast to Noise Ratio and Contrast Detail Analysis in Mammography:A Monte Carlo Study

    International Nuclear Information System (INIS)

    Metaxas, V; Delis, H; Panayiotakis, G; Kalogeropoulou, C; Zampakis, P

    2015-01-01

    The mammographic spectrum is one of the major factors affecting image quality in mammography. In this study, a Monte Carlo (MC) simulation model was used to evaluate image quality characteristics of various mammographic spectra. The anode/filter combinations evaluated, were those traditionally used in mammography, for tube voltages between 26 and 30 kVp. The imaging performance was investigated in terms of Contrast to Noise Ratio (CNR) and Contrast Detail (CD) analysis, by involving human observers, utilizing a mathematical CD phantom. Soft spectra provided the best characteristics in terms of both CNR and CD scores, while tube voltage had a limited effect. W-anode spectra filtered with k-edge filters demonstrated an improved performance, that sometimes was better compared to softer x-ray spectra, produced by Mo or Rh anode. Regarding the filter material, k-edge filters showed superior performance compared to Al filters. (paper)

  2. Position paper: recommendations for a digital mammography quality assurance program V4.0.

    Science.gov (United States)

    Heggie, J C P; Barnes, P; Cartwright, L; Diffey, J; Tse, J; Herley, J; McLean, I D; Thomson, F J; Grewal, R K; Collins, L T

    2017-09-01

    In 2001 the ACPSEM published a position paper on quality assurance in screen film mammography which was subsequently adopted as a basis for the quality assurance programs of both the Royal Australian and New Zealand College of Radiologists (RANZCR) and of BreastScreen Australia. Since then the clinical implementation of digital mammography has been realised and it has become evident that existing screen-film protocols were not appropriate to assure the required image quality needed for reliable diagnosis or to address the new dose implications resulting from digital technology. In addition, the advantages and responsibilities inherent in teleradiology are most critical in mammography and also need to be addressed. The current document is the result of a review of current overseas practice and local experience in these areas. At this time the technology of digital imaging is undergoing significant development and there is still a lack of full international consensus about some of the detailed quality control (QC) tests that should be included in quality assurance (QA) programs. This document describes the current status in digital mammography QA and recommends test procedures that may be suitable in the Australasian environment. For completeness, this document also includes a review of the QA programs required for the various types of digital biopsy units used in mammography. In the future, international harmonisation of digital quality assurance in mammography and changes in the technology may require a review of this document. Version 2.0 represented the first of these updates and key changes related to image quality evaluation, ghost image evaluation and interpretation of signal to noise ratio measurements. In Version 3.0 some significant changes, made in light of further experience gained in testing digital mammography equipment were introduced. In Version 4.0, further changes have been made, most notably digital breast tomosynthesis (DBT) testing and QC have

  3. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    Gaona, E.; Rivera, T.; Arreola, M.; Franco, J.; Molina, N.; Alvarez, B.; Azorín, C.G.; Casian, G.

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  4. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.; Geiser, William R.; Shen Youtao; Yi Ying; Shaw, Chris C. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2011-12-15

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factors were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement

  5. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.; Geiser, William R.; Shen Youtao; Yi Ying; Shaw, Chris C.

    2011-01-01

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factors were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement factor was 1.89 for

  6. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  7. Abbreviated Breast MRI and Digital Tomosynthesis Mammography in Screening Women With Dense Breasts | Division of Cancer Prevention

    Science.gov (United States)

    This randomized phase II trial studies how well abbreviated breast magnetic resonance imaging (MRI) and digital tomosynthesis mammography work in detecting cancer in women with dense breasts. Abbreviated breast MRI is a low cost procedure in which radio waves and a powerful magnet linked to a computer and used to create detailed pictures of the breast in less than 10 minutes.

  8. The accuracy of digital breast tomosynthesis compared with coned compression magnification mammography in the assessment of abnormalities found on mammography

    International Nuclear Information System (INIS)

    Morel, J.C.; Iqbal, A.; Wasan, R.K.; Peacock, C.; Evans, D.R.; Rahim, R.; Goligher, J.; Michell, M.J.

    2014-01-01

    Aim: To compare the diagnostic accuracy of the digital breast tomosynthesis (DBT) with coned compression magnification mammography (CCMM). Materials and methods: The study design included two reading sessions completed by seven experienced radiologists. In the first session, all readers read bilateral standard two-view mammograms and a CCMM view of the lesion before giving a combined score for assessment. In the second session, readers read bilateral standard two-view mammograms plus one-view DBT. The two reading sessions of the experiment were separated by at least 2 weeks to reduce the chance of reader memory of the images read in the previous session from influencing the performance in the subsequent session. Results: Three hundred and fifty-four lesions were assessed and receiver-operative characteristic (ROC) analysis was used to evaluate the difference between the two modes. For standard two-view mammography plus CCMM, the area under the curve (AUC) was 0.87 [95% confidence interval (CI): 0.83–0.91] and for standard two-view mammography plus DBT the AUC was 0.93 (95% CI: 0.91–0.95). The difference between the AUCs was 0.06 with p-value of 0.0014. Conclusion: Two-view mammography with one-view DBT showed significantly improved accuracy compared to two-view mammography and CCMM in the assessment of mammographic abnormalities. These results show that DBT can be used effectively in the further evaluation of mammographic abnormalities found at screening and in symptomatic diagnostic practice. - Highlights: • Diagnostic accuracy of magnification mammography and digital breast tomosynthesis. • There is statistical difference between CCMM and DBT. • DBT has a role in evaluating mammographic abnormalities

  9. Stability of the CAE of a digital mammography machine; Estabilidad del CAE de un mamografo digital

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Lara, A. A.; Ruiz Morales, C.; Buades Forner, M. J.; Tobarra, B. M.

    2013-07-01

    We analyzed the long-term reproducibility automatic exposure control (CAE) of a digital mammography machine for possible drifts and the factors that have led to changes in its baseline are discussed. (Author)

  10. Image quality, threshold contrast and mean glandular dose in CR mammography

    International Nuclear Information System (INIS)

    Jakubiak, R R; Gamba, H R; Neves, E B; Peixoto, J E

    2013-01-01

    In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both

  11. Guideline for determining the mean glandular dose according to DIN 6868-162 and threshold contrast visibility according to the quality assurance guideline for digital mammography systems.

    Science.gov (United States)

    Sommer, A; Schopphoven, S; Land, I; Blaser, D; Sobczak, T

    2014-05-01

    As part of the physico-technical quality assurance of the German breast cancer screening program, the threshold contrast visibility and the average glandular dose of every digital mammography system have to fulfill the requirements of the "European guidelines for quality assurance in breast cancer screening and diagnosis" (4th Edition). To accomplish uniform measurements in all federal states of Germany, the physical board of the reference centers developed a special guideline in 2009. Due to recent changes in the guidelines and standards, a second version of the guideline was developed by the reference centers. This guideline describes the determination of the average glandular dose as well as the CDMAM image acquisition and the CDMAM image evaluation. The determination of the threshold contrast visibility can be performed visually or automatically. The determination of the average glandular dose is based on DIN 6868 - 162 and the threshold contrast visibility test is based on the German "Quality Assurance Guideline". © Georg Thieme Verlag KG Stuttgart · New York.

  12. The implementation of CMOS sensors within a real time digital mammography intelligent imaging system: The I-ImaS System

    Science.gov (United States)

    Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.

    2009-07-01

    The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.

  13. Mammography: an update of the EUSOBI recommendations on information for women.

    Science.gov (United States)

    Sardanelli, Francesco; Fallenberg, Eva M; Clauser, Paola; Trimboli, Rubina M; Camps-Herrero, Julia; Helbich, Thomas H; Forrai, Gabor

    2017-02-01

    This article summarises the information to be offered to women about mammography. After a delineation of the aim of early diagnosis of breast cancer, the difference between screening mammography and diagnostic mammography is explained. The need to bring images and reports from the previous mammogram (and from other recent breast imaging examinations) is highlighted. Mammography technique and procedure are described with particular attention to discomfort and pain experienced by a small number of women who undergo the test. Information is given on the recall during a screening programme and on the request for further work-up after a diagnostic mammography. The logic of the mammography report and of classification systems such as R1-R5 and BI-RADS is illustrated, and brief but clear information is given about the diagnostic performance of the test, with particular reference to interval cancers, i.e., those cancers that are missed at screening mammography. Moreover, the breast cancer risk due to radiation exposure from mammography is compared to the reduction in mortality obtained with the test, and the concept of overdiagnosis is presented with a reliable estimation of its extent. Information about new mammographic technologies (tomosynthesis and contrast-enhanced spectral mammography) is also given. Finally, frequently asked questions are answered. • Direct digital mammography should be preferred to film-screen or phosphor plates. • Screening (in asymptomatic women) should be distinguished from diagnosis (in symptomatic women). • A breast symptom has to be considered even after a negative mammogram. • Digital breast tomosynthesis increases cancer detection and decreases the recall rate. • Contrast-enhanced spectral mammography can help in cancer detection and lesion characterisation.

  14. Selective photon counter for digital x-ray mammography tomosynthesis

    Science.gov (United States)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  15. Semiconductor pixel detectors for digital mammography

    International Nuclear Information System (INIS)

    Novelli, M.; Amendolia, S.R.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Venturelli, L.; Zucca, S.

    2003-01-01

    We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown

  16. Semiconductor pixel detectors for digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, M. E-mail: marzia.novelli@pi.infn.it; Amendolia, S.R.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Venturelli, L.; Zucca, S

    2003-08-21

    We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown.

  17. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    Science.gov (United States)

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  18. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    International Nuclear Information System (INIS)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume

    2014-01-01

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast

  19. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.

    Science.gov (United States)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume; Zanette, Irene; Rack, Alexander; Weitkamp, Timm; Pfeiffer, Franz

    2014-03-01

    Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures

  20. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation.

    Science.gov (United States)

    Fallenberg, Eva M; Schmitzberger, Florian F; Amer, Heba; Ingold-Heppner, Barbara; Balleyguier, Corinne; Diekmann, Felix; Engelken, Florian; Mann, Ritse M; Renz, Diane M; Bick, Ulrich; Hamm, Bernd; Dromain, Clarisse

    2017-07-01

    To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. One hundred seventy-eight women (mean age 53 years) with invasive breast cancer and/or DCIS were included after ethics board approval. MG, CESM and CESM + MG were evaluated by three blinded radiologists based on amended ACR BI-RADS criteria. MRI was assessed by another group of three readers. Receiver-operating characteristic (ROC) curves were compared. Size measurements for the 70 lesions detected by all readers in each modality were correlated with pathology. Reading results for 604 lesions were available (273 malignant, 4 high-risk, 327 benign). The area under the ROC curve was significantly larger for CESM alone (0.84) and CESM + MG (0.83) compared to MG (0.76) (largest advantage in dense breasts) while it was not significantly different from MRI (0.85). Pearson correlation coefficients for size comparison were 0.61 for MG, 0.69 for CESM, 0.70 for CESM + MG and 0.79 for MRI. This study showed that CESM, alone and in combination with MG, is as accurate as MRI but is superior to MG for lesion detection. Patients with dense breasts benefitted most from CESM with the smallest additional dose compared to MG. • CESM has comparable diagnostic performance (ROC-AUC) to MRI for breast cancer diagnostics. • CESM in combination with MG does not improve diagnostic performance. • CESM has lower sensitivity but higher specificity than MRI. • Sensitivity differences are more pronounced in dense and not significant in non-dense breasts. • CESM and MRI are significantly superior to MG, particularly in dense breasts.

  1. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme

    Energy Technology Data Exchange (ETDEWEB)

    Lobbes, Marc B.I.; Wildberger, Joachim E. [Maastricht University Medical Center, Department of Radiology, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C. [Maastricht University Medical Center, Department of Radiology, Maastricht (Netherlands); Nelemans, Patty J. [Maastricht University, Department of Epidemiology, Maastricht (Netherlands); Roozendaal, Lori van; Heuts, Esther [Maastricht University Medical Center, Department of Surgical Oncology, Maastricht (Netherlands); Smidt, Marjolein L. [Maastricht University Medical Center, Department of Surgical Oncology, Maastricht (Netherlands); GROW School for Oncology and Developmental Biology, Maastricht (Netherlands)

    2014-07-15

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0 % (+3.1 %), specificity to 87.7 % (+45.7 %), PPV to 76.2 % (+36.5 %) and NPV to 100.0 % (+2.9 %) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p < 0.0001). A similar trend was observed in the ROC curve. For conventional mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p < 0.0001). In addition, good agreement between tumour diameters measured using CESM, breast MRI and histopathology was observed. CESM increases diagnostic performance of conventional mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. (orig.)

  2. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme

    International Nuclear Information System (INIS)

    Lobbes, Marc B.I.; Wildberger, Joachim E.; Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C.; Nelemans, Patty J.; Roozendaal, Lori van; Heuts, Esther; Smidt, Marjolein L.

    2014-01-01

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0 % (+3.1 %), specificity to 87.7 % (+45.7 %), PPV to 76.2 % (+36.5 %) and NPV to 100.0 % (+2.9 %) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p < 0.0001). A similar trend was observed in the ROC curve. For conventional mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p < 0.0001). In addition, good agreement between tumour diameters measured using CESM, breast MRI and histopathology was observed. CESM increases diagnostic performance of conventional mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. (orig.)

  3. Newly Diagnosed Breast Cancer: Comparison of Contrast-enhanced Spectral Mammography and Breast MR Imaging in the Evaluation of Extent of Disease.

    Science.gov (United States)

    Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita

    2017-11-01

    Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed

  4. X-ray Phase Contrast analysis - Digital wavefront development

    International Nuclear Information System (INIS)

    Idir, Mourad; Potier, Jonathan; Fricker, Sebastien; Snigirev, Anatoly; Snigireva, Irina; Modi, M. H.

    2010-01-01

    Optical schemes that enable imaging of the phase shift produced by an object have become popular in the x-ray region, where phase can be the dominant contrast mechanism. The propagation-based technique consists of recording the interference pattern produced by choosing one or several sample-to-detector distances. Pioneering studies, carried out making use of synchrotron radiation, demonstrated that this technique results in a dramatic increase of image contrast and detail visibility, allowing the detection of structures invisible with conventional techniques. An experimental and theoretical study of in-line hard x-ray phase-contrast imaging had been performed. The theoretical description of the technique is based on Fresnel diffraction. As an illustration of the potential of this quantitative imaging technique, high-resolution x-ray phase contrast images of simple objects will be presented.

  5. Description and dosimetry estimation of spectral mammography with enhancement of contrast-Hospital Universitario Virgen de Valme; Descripcion y estimacion dosimetrica de la mamografia espectral con realce de contraste-Hospital Universitario Virge de Valme

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Castillo, M.; Almansa Lopez, J.; Roman Collado, J. R.; Rubio Rubio, F.; Escobar Casas, P.; Aznar Mendez, R.

    2013-07-01

    It has been implanted a complementary technique to conventional detection of breast cancer (digital mammography, ultrasound, magnetic resonance) with only an increase of 1.2 times the dose given in a standard digital mammography and with undeniable advantages: -Immediate implementation, without added time a standard digital mammography (in less than 10 minutes are made standard mammographic projections ). -With the ability to discover hidden injuries (by heterogeneities, density,...) in a conventional mammogram. -Being possible in those cases where the RM in unfeasible (in addition to more face time and money). (Author)

  6. Do shorter wavelengths improve contrast in optical mammography?

    International Nuclear Information System (INIS)

    Taroni, P; Pifferi, A; Torricelli, A; Spinelli, L; Danesini, G M; Cubeddu, R

    2004-01-01

    The detection of tumours with time-resolved transmittance imaging relies essentially on blood absorption. Previous theoretical and phantom studies have shown that both contrast and spatial resolution of optical images are affected by the optical properties of the background medium, and high absorption and scattering are generally beneficial. Based on these observations, wavelengths shorter than presently used (680-780 nm) could be profitable for optical mammography. A study was thus performed analysing time-resolved transmittance images at 637, 656, 683 and 785 nm obtained from 26 patients bearing 16 tumours and 15 cysts. The optical contrast proved to increase upon decreasing wavelengths for the detection of cancers in late-gated intensity images, with higher gain in contrast for lesions of smaller size (<1.5 cm diameter). For cysts either a progressive increase or decrease in contrast with wavelength was observed in scattering images

  7. Performance evaluation of contrast-detail in full field digital mammography systems using ideal (Hotelling) observer vs. conventional automated analysis of CDMAM images for quality control of contrast-detail characteristics.

    Science.gov (United States)

    Delakis, Ioannis; Wise, Robert; Morris, Lauren; Kulama, Eugenia

    2015-11-01

    The purpose of this work was to evaluate the contrast-detail performance of full field digital mammography (FFDM) systems using ideal (Hotelling) observer Signal-to-Noise Ratio (SNR) methodology and ascertain whether it can be considered an alternative to the conventional, automated analysis of CDMAM phantom images. Five FFDM units currently used in the national breast screening programme were evaluated, which differed with respect to age, detector, Automatic Exposure Control (AEC) and target/filter combination. Contrast-detail performance was analysed using CDMAM and ideal observer SNR methodology. The ideal observer SNR was calculated for input signal originating from gold discs of varying thicknesses and diameters, and then used to estimate the threshold gold thickness for each diameter as per CDMAM analysis. The variability of both methods and the dependence of CDMAM analysis on phantom manufacturing discrepancies also investigated. Results from both CDMAM and ideal observer methodologies were informative differentiators of FFDM systems' contrast-detail performance, displaying comparable patterns with respect to the FFDM systems' type and age. CDMAM results suggested higher threshold gold thickness values compared with the ideal observer methodology, especially for small-diameter details, which can be attributed to the behaviour of the CDMAM phantom used in this study. In addition, ideal observer methodology results showed lower variability than CDMAM results. The Ideal observer SNR methodology can provide a useful metric of the FFDM systems' contrast detail characteristics and could be considered a surrogate for conventional, automated analysis of CDMAM images. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Contrast-enhanced spectral mammography in patients referred from the breast cancer screening programme.

    Science.gov (United States)

    Lobbes, Marc B I; Lalji, Ulrich; Houwers, Janneke; Nijssen, Estelle C; Nelemans, Patty J; van Roozendaal, Lori; Smidt, Marjolein L; Heuts, Esther; Wildberger, Joachim E

    2014-07-01

    Feasibility studies have shown that contrast-enhanced spectral mammography (CESM) increases diagnostic accuracy of mammography. We studied diagnostic accuracy of CESM in patients referred from the breast cancer screening programme, who have a lower disease prevalence than previously published papers on CESM. During 6 months, all women referred to our hospital were eligible for CESM. Two radiologists blinded to the final diagnosis provided BI-RADS classifications for conventional mammography and CESM. Statistical significance of differences between mammography and CESM was calculated using McNemar's test. Receiver operating characteristic (ROC) curves were constructed for both imaging modalities. Of the 116 eligible women, 113 underwent CESM. CESM increased sensitivity to 100.0% (+3.1%), specificity to 87.7% (+45.7%), PPV to 76.2% (+36.5%) and NPV to 100.0% (+2.9%) as compared to mammography. Differences between conventional mammography and CESM were statistically significant (p mammography, AUC was 0.779. With CESM, AUC increased to 0.976 (p mammography, even in lower prevalence patient populations such as referrals from breast cancer screening. • CESM is feasible in the workflow of referrals from routine breast screening. • CESM is superior to mammography, even in low disease prevalence populations. • CESM has an extremely high negative predictive value for breast cancer. • CESM is comparable to MRI in assessment of breast cancer extent. • CESM is comparable to histopathology in assessment of breast cancer extent.

  9. The effect of breast compression on mass conspicuity in digital mammography

    International Nuclear Information System (INIS)

    Saunders, Robert S. Jr; Samei, Ehsan

    2008-01-01

    This study analyzed how the inherent quality of diagnostic information in digital mammography could be affected by breast compression. A digital mammography system was modeled using a Monte Carlo algorithm based on the Penelope program, which has been successfully used to model several medical imaging systems. First, the Monte Carlo program was validated against previous measurements and simulations. Once validated, the Monte Carlo software modeled a digital mammography system by tracking photons through a voxelized software breast phantom, containing anatomical structures and breast masses, and following photons until they were absorbed by a selenium-based flat-panel detector. Simulations were performed for two compression conditions (standard compression and 12.5% reduced compression) and three photon flux conditions (constant flux, constant detector signal, and constant glandular dose). The results showed that reduced compression led to higher scatter fractions, as expected. For the constant photon flux condition, decreased compression also reduced glandular dose. For constant glandular dose, the SdNR for a 4 cm breast was 0.60±0.11 and 0.62±0.11 under standard and reduced compressions, respectively. For the 6 cm case with constant glandular dose, the SdNR was 0.50±0.11 and 0.49±0.10 under standard and reduced compressions, respectively. The results suggest that if a particular imaging system can handle an approximately 10% increase in total tube output and 10% decrease in detector signal, breast compression can be reduced by about 12% in terms of breast thickness with little impact on image quality or dose.

  10. Mobile measurement setup according to IEC 62220-1-2 for DQE determination on digital mammography systems

    Science.gov (United States)

    Greiter, Matthias B.; Hoeschen, Christoph

    2010-04-01

    The international standard IEC 62220-1-2 defines the measurement procedure for determination of the detective quantum efficiency (DQE) of digital x-ray imaging devices used in mammography. A mobile setup complying to this standard and adaptable to most current systems was constructed in the Helmholtz Zentrum München to allow for an objective technical comparison of current full field digital mammography units employed in mammography screening in Germany. This article demonstrates the setup's capabilities with a focus on the measurement uncertainties of all quantities contributing to DQE measurements. Evaluation of uncertainties encompasses results from measurements on a Sectra Microdose Mammography in clinical use, as well as on a prototype of a Fujifilm Amulet system at various radiation qualities. Both systems have a high spatial resolution of 50 μm × 50 μm. The modulation transfer function (MTF), noise power spectrum (NPS) and DQE of the Sectra MDM are presented in comparison to results previously published by other authors.

  11. Can Breast Compression Be Reduced in Digital Mammography and Breast Tomosynthesis?

    NARCIS (Netherlands)

    Agasthya, G.A.; D'Orsi, E.; Kim, Y. J.; Handa, P.; Ho, C.P.; D'Orsi, C.J.; Sechopoulos, I.

    2017-01-01

    OBJECTIVE: The objective of this study was to investigate the impact of decreasing breast compression during digital mammography and breast tomosynthesis (DBT) on perceived pain and image quality. MATERIALS AND METHODS: In this two-part study, two groups of women with prior mammograms were

  12. Digital mammography in a screening programme and its implications for pathology: a comparative study.

    LENUS (Irish Health Repository)

    Feeley, Linda

    2011-03-01

    Most studies comparing full-field digital mammography (FFDM) with conventional screen-film mammography (SFM) have been radiology-based. The pathological implications of FFDM have received little attention in the literature, especially in the context of screening programmes. The primary objective of this retrospective study is to compare FFDM with SFM in a population-based screening programme with regard to a number of pathological parameters.

  13. Volumetric breast density affects performance of digital screening mammography

    OpenAIRE

    Wanders, JO; Holland, K; Veldhuis, WB; Mann, RM; Pijnappel, RM; Peeters, PH; Van Gils, CH; Karssemeijer, N

    2016-01-01

    PURPOSE: To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). METHODS: We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the Ameri...

  14. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco

    2012-01-01

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  15. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  16. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  17. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Hwa; Chang, Jung Min; Moon, Woo Kyung [Seoul National University Hospital, Department of Radiology, 101 Daehangno, Jongno-gu, Seoul (Korea, Republic of); Moon, Hyeong-Gon [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Yi, Ann [Seoul National University Hospital, Department of Radiology, Gangnan Healthcare Center, Seoul (Korea, Republic of); Koo, Hye Ryoung [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Gweon, Hye Mi [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2016-06-15

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  18. Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers

    International Nuclear Information System (INIS)

    Kim, Won Hwa; Chang, Jung Min; Moon, Woo Kyung; Moon, Hyeong-Gon; Yi, Ann; Koo, Hye Ryoung; Gweon, Hye Mi

    2016-01-01

    To compare the diagnostic performance of digital breast tomosynthesis (DBT) and magnetic resonance imaging (MRI) added to mammography in women with known breast cancers. Three radiologists independently reviewed image sets of 172 patients with 184 cancers; mammography alone, DBT plus mammography and MRI plus mammography, and scored for cancer probability using the Breast Imaging Reporting and Data System (BI-RADS). Jack-knife alternative free-response receiver-operating characteristic (JAFROC), which allows diagnostic performance estimation using single lesion as a statistical unit in a cancer-only population, was used. Sensitivity and positive predictive value (PPV) were compared using the McNemar and Fisher-exact tests. The JAFROC figures of merit (FOMs) was lower in DBT plus mammography (0.937) than MRI plus mammography (0.978, P = 0.0006) but higher than mammography alone (0.900, P = 0.0013). The sensitivity was lower in DBT plus mammography (88.2 %) than MRI plus mammography (97.8 %) but higher than mammography alone (78.3 %, both P < 0.0001). The PPV was significantly higher in DBT plus mammography (93.3 %) than MRI plus mammography (89.6 %, P = 0.0282). DBT provided lower diagnostic performance than MRI as an adjunctive imaging to mammography. However, DBT had higher diagnostic performance than mammography and higher PPV than MRI. (orig.)

  19. Dose and risk evaluation in digital mammography using computer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Samanda Cristine Arruda; Souza, Edmilson Monteiro de, E-mail: scorrea@nuclear.ufrj.b, E-mail: emonteiro@nuclear.ufrj.b [Centro Universitario Estadual da Zona Oeste (CCMAT/UEZO), Rio de Janeiro, RJ (Brazil); Silva, Humberto de Oliveira, E-mail: hbetorj@gmail.co [Universidade Federal do Rio de Janeiro IF/UFRJ, RJ (Brazil). Inst. de Fisica; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu; Magalhaes, Sarah Braga, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b, E-mail: smagalhaes@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2010-07-01

    Digital mammography has been introduced in several countries in the last years. The new technology requires new optimising methods considering for instance the increased possibility of changing the absorbed dose, mainly in modern mammographic systems that allow the operator to choose the beam quality by varying the tube voltage, and filter and target materials. In this work, the Monte Carlo code MCNPX is used in order to investigate how the average glandular dose vary with tube voltage (23-32 kV) and anode-filter combination (Mo-Mo,Mo-Rh and Rh-Rh) in digital mammographic examinations. Furthermore, the risk of breast cancer incidence attributable to mammography exams was estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The results show that the risk of breast cancer incidence in women younger than 30 years of age tends to decrease significantly using Rh-Rh anode-filter combination and higher tube voltage. For women older than 50 years of age the variation of tube voltage, and anode-filter combination did not influence the risk values considerably. (author)

  20. Dose and risk evaluation in digital mammography using computer modeling

    International Nuclear Information System (INIS)

    Correa, Samanda Cristine Arruda; Souza, Edmilson Monteiro de; Silva, Humberto de Oliveira; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu; Magalhaes, Sarah Braga

    2010-01-01

    Digital mammography has been introduced in several countries in the last years. The new technology requires new optimising methods considering for instance the increased possibility of changing the absorbed dose, mainly in modern mammographic systems that allow the operator to choose the beam quality by varying the tube voltage, and filter and target materials. In this work, the Monte Carlo code MCNPX is used in order to investigate how the average glandular dose vary with tube voltage (23-32 kV) and anode-filter combination (Mo-Mo,Mo-Rh and Rh-Rh) in digital mammographic examinations. Furthermore, the risk of breast cancer incidence attributable to mammography exams was estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The results show that the risk of breast cancer incidence in women younger than 30 years of age tends to decrease significantly using Rh-Rh anode-filter combination and higher tube voltage. For women older than 50 years of age the variation of tube voltage, and anode-filter combination did not influence the risk values considerably. (author)

  1. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    Science.gov (United States)

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  2. Lag and ghosting in a clinical flat-panel selenium digital mammography system

    International Nuclear Information System (INIS)

    Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.

    2006-01-01

    We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems

  3. Control and monitoring of doses to patients in a team of digital mammography; Control y seguimiento de las dosis a pacientes en un equipo de mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-07-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  4. st Tomosynthesis Plus Full Field Digital Mammography or Full Field Digital Mammography Alone in the Screening Environment

    Directory of Open Access Journals (Sweden)

    Stamatia Destounis

    2014-01-01

    Full Text Available Objectives: Initial review of patients undergoing screening mammography imaged with a combination of digital breast tomosynthesis (DBT plus full field digital mammography (FFDM compared with FFDM alone. Materials and Methods: From June 2011 to December 2011, all patients presenting for routine screening mammography were offered a combination DBT plus FFDM exam. Under institutional review board approval, we reviewed 524 patients who opted for combination DBT plus FFDM and selected a sample group of 524 FFDM screening exams from the same time period for a comparative analysis. The χ2 (Chi-square test was used to compare recall rates, breast density, personal history of breast cancer, and family history of breast cancer between the two groups. Results: Recall rate for FFDM, 11.45%, was significantly higher (P < 0001 than in the combination DBT plus FFDM group (4.20%. The biopsy rate in the FFDM group was 2.29% (12/524, with a cancer detection rate of 0.38% (2/524, or 3.8 per 1000 and positive predictive value (PPV of 16.7% (2/12. The biopsy rate for the DBT plus FFDM group was 1.14% (n = 6/524, with a cancer detection rate 0.57% (n = 3/524, or 5.7 per 1000 and PPV of 50.0% (n = 3/6. Personal history of breast cancer in the FFDM group was significantly lower (P < 0.0001 than in the combination DBT plus FFDM group; 2.5% and 5.7%, respectively. A significant difference in family history of breast cancer (P < 0.0001 was found, with a higher rate in the combination DBT plus FFDM group (36.0% vs. 53.8%. There was a significant difference between the combination DBT plus FFDM group and FFDM alone group, when comparing breast density (P < 0.0147, 61.64% vs. 54.20% dense breasts, respectively with a higher rate of dense breasts in the DBT plus FFDM group. In follow-up, one cancer was detected within one year of normal screening mammogram in the combination DBT plus FFDM group. Conclusion: Our initial experience found the recall rate in the combination DBT

  5. Comparison of low contrast detectability of computed tomography and screen/film mammography systems

    International Nuclear Information System (INIS)

    Noriah Jamal; Kwan Hoong Ng; McLean, D.

    2006-01-01

    The objective of this study was to compare low contrast detectability of computed radiography (CR) and screen/film (SF) mammography systems. The Nijimegen contrast detail test object (CDMAM type 3.4) was imaged at 28 kV, in automatic exposure control mode separately. Six medical imaging physicists read each CDMAM phantom image. Contrast detail curves were plotted to compare low contrast detectability of CR (soft copy and hard copy) and SF mammography systems. Effect of varying exposure parameters, namely kV, object position inside the breast phantom, and entrance surface exposure (ESE) on the contrast detail curve were also investigated using soft copy CR. The significant of the difference of contrast between CR and SF, and for each exposure parameter was tested using non-parametric Kruskal-Wallis test. We found that the low contrast detectability of CR (soft copy and hard copy) system is not significantly different to that of SF system (p>0.05, Kruskal-Wallis test). For CR soft copy, no significant relationship (p>0.05, Kruskal-Wallis test) was seen for variation of kV, object position inside the breast phantom and ESE. This indicates that CR is comparable with SF for useful detection and visualization of low contrast objects such as small low contrast areas corresponding to breast pathology

  6. Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography

    International Nuclear Information System (INIS)

    Choi, Seok Yoon; Kim, Chang Soo

    2009-01-01

    Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  7. Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis.

    Science.gov (United States)

    Gennaro, Gisella; Bernardi, D; Houssami, N

    2018-02-01

    To compare radiation dose delivered by digital mammography (FFDM) and breast tomosynthesis (DBT) for a single view. 4,780 FFDM and 4,798 DBT images from 1,208 women enrolled in a screening trial were used to ground dose comparison. Raw images were processed by an automatic software to determine volumetric breast density (VBD) and were used together with exposure data to compute the mean glandular dose (MGD) according to Dance's model. DBT and FFDM were compared in terms of operation of the automatic exposure control (AEC) and MGD level. Statistically significant differences were found between FFDM and DBT MGDs for all views (CC: MGD FFDM =1.366 mGy, MGD DBT =1.858 mGy; ptomosynthesis compared to FFDM. Given the emerging role of DBT, its use in conjunction with synthetic 2D images should not be deterred by concerns regarding radiation burden, and should draw on evidence of potential clinical benefit. • Most studies compared tomosynthesis in combination with mammography vs. mammography alone. • There is some concern about the dose increase with tomosynthesis. • Clinical data show a small increase in radiation dose with tomosynthesis. • Synthetic 2D images from tomosynthesis at zero dose reduce potential harm. • The small dose increase should not be a barrier to use of tomosynthesis.

  8. Satellite teleradiology test bed for digital mammography

    Science.gov (United States)

    Barnett, Bruce G.; Dudding, Kathryn E.; Abdel-Malek, Aiman A.; Mitchell, Robert J.

    1996-05-01

    Teleradiology offers significant improvement in efficiency and patient compliance over current practices in traditional film/screen-based diagnosis. The increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper will describe a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology and National Electrical Manufacturers Association. The testbed uses several Sun workstations running SunOS, which emulate a rural examination facility connected to a central diagnostic facility, and uses a TCP-based DICOM application to transfer images over a satellite link. Network performance depends on the product of the bandwidth times the round- trip time. A satellite link has a round trip of 513 milliseconds, making the bandwidth-delay a significant problem. This type of high bandwidth, high delay network is called a Long Fat Network, or LFN. The goal of this project was to quantify the performance of the satellite link, and evaluate the effectiveness of TCP over an LFN. Four workstations have Sun's HSI/S (High Speed Interface) option. Two are connected by a cable, and two are connected through a satellite link. Both interfaces have the same T1 bandwidth (1.544 Megabits per second). The only difference was the round trip time. Even with large window buffers, the time to transfer a file over the satellite link was significantly longer, due to the bandwidth-delay. To

  9. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  10. Contrast-enhanced dual energy mammography with a novel anode/filter combination and artifact reduction: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Knogler, Thomas; Pinker-Domenig, Katja; Leitner, Sabine; Helbich, Thomas H. [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Molecular and Gender Imaging, Vienna (Austria); Homolka, Peter; Leithner, Robert [Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna (Austria); Hoernig, Mathias [Siemens AG, Healthcare, X-Ray Products, Erlangen (Germany); Langs, Georg; Waitzbauer, Martin [Medical University of Vienna, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Medical University of Vienna, Computational Imaging Research Laboratory, Vienna (Austria)

    2016-06-15

    To demonstrate the feasibility of contrast-enhanced dual-energy mammography (CEDEM) using titanium (Ti) filtering at 49 kVp for high-energy images and a novel artefact reducing image-subtraction post-processing algorithm. Fifteen patients with suspicious findings (ACR BI-RADS 4 and 5) detected with digital mammography (MG) that required biopsy were included. CEDEM examinations were performed on a modified prototype machine. Acquired HE and low-energy raw data images were registered non-rigidly to compensate for possible subtle tissue motion. Subtracted CEDEM images were generated via weighted subtraction, using a fully automatic, locally adjusted tissue thickness-dependent subtraction factor to avoid over-subtraction at the breast border. Two observers evaluated the MG and CEDEM images according to ACR BI-RADS in two reading sessions. Results were correlated with histopathology. Seven patients with benign and eight with malignant findings were included. All malignant lesions showed a strong contrast enhancement. BI-RADS assessment was altered in 66.6 % through the addition of CEDEM, resulting in increased overall accuracy. With CEDEM, additional lesions were depicted and false-positive rate was reduced compared to MG. CEDEM using Ti filtering with 49 kVp for HE exposures is feasible in a clinical setting. The proposed image-processing algorithm has the potential to reduce artefacts and improve CEDEM images. (orig.)

  11. Automatic Detection of Microcalcifications in a Digital Mammography Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Carlos A. Madrigal-González

    2013-11-01

    Full Text Available Breast cancer is one of the cancers that has a higher mortality rate among women and early detection increases the possibilities of cure, so its early detection is one of the best treatments for this serious disease. Microcalcifications are a type of lesion in the breast and its presence is highly correlated with the presence of cancer. In this paper we present a method for automatic detection of microcalcifications using digital image processing using a Gaussian filtering approach, which can enhance the contrast between microcalcifications and normal tissue present in a mammography, then apply a local thresholding algorithm witch allow the identification of suspicious microcalcifications. The classifier used to determine the degree of benign or malignant microcalcifications is the K-Nearest Neighbours (KNN and the validation of the results was done using ROC curves.

  12. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, M-J; Brandan, M-E [Instituto de Fisica, Universidad Nacional Autonom de Mexico, Mexico, Distrito Federal (Mexico); Gastelum, A; Marquez, J [Centro de Ciencias Aplicadas y Desarrollo Tecnologico Universidad Nacional Autonoma de Mexico, Mexico, Distrito Federal (Mexico)

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  13. Comparison of low-contrast detectability of computed radiography and screen/ film mammography systems

    International Nuclear Information System (INIS)

    Noriah Jamal; Kwan-Hoong Ng; McLean, D.; McLean, D.

    2008-01-01

    The objective of this study is to compare low-contrast detectability of computed radiography (CR) and screen/ film (SF) mammography systems. The Nijimegen contrast detail test object (CDMAM type 3.4) was imaged at 28 kV, in automatic exposure control mode separately. Six medical imaging physicists read each CDMAM phantom image. Contrast detail curves were plotted to compare low-contrast detectability of CR (soft copy and hard copy) and SF mammography systems. Effect of varying exposure parameters, namely kV, object position inside the breast phantom, and entrance surface exposure (ESE) on the contrast detail curve were also investigated using soft copy CR. The significance of the difference in contrast between CR and SF, and for each exposure parameter, was tested using non-parametric Kruskal-Wallis test. The low-contrast detectability of the CR (soft copy and hard copy) system was found to be not significantly different to that of the SF system (p> 0.05, Kruskal-Wallis test).For CR soft copy, no significant relationship (p>0.05, Kruskal-Wallis test) was seen for variation of kV, object position inside the breast phantom and ESE. This indicates that CR is comparable with SF for useful detection and visualization of low-contrast objects such as small low-contrast areas corresponding to breast pathology. (Author)

  14. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  15. Development of test objects for image quality evaluation of digital mammography

    International Nuclear Information System (INIS)

    Pinto, Vitor Nascimento de Carvalho

    2013-01-01

    Mammography is the image exam called 'gold standard' for early detection of breast cancer. 111 Brazil, more than eight million mammograms are carried out per year. With the advancement of technology, the digital systems CR and DR for this diagnostic modality have been increasingly implemented, replacing the conventional screen-film system, which brought environmental problems, like the disposal of chemical waste, and is also responsible for the rejection of radiographic films with processing artifacts. Digital systems, besides not experiencing the problem of environmental pollution, are still capable of image processing, allowing a much lower rejection rate when compared to the conventional system. Moreover, the determination of an accurate diagnosis is highly dependent on the image quality of the examination. To ensure the reliability of the images produced by these systems, it is necessary to evaluate them on a regular basis. Unfortunately, there is no regulation in Brazil about the Quality Assurance of these systems. The aim of this study was to develop a set of test objects that allow the evaluation of some parameters of image quality of these systems, such as field image uniformity, the linearity between the air Kerma incident on detector and the mean pixel value (MPV) of the image, the spatial resolution of the system through the modulation transfer function (MTF) and also to suggest an object to be applied in the evaluation of contrast-to-noise ratio (CNR) and signal-difference-to-noise ratio (SDNR). In order to test the objects. 10 mammography centers were evaluated, seven with CR systems and three with the DR systems. To evaluate the linearity, besides the test objects high sensitivity dosimeters were necessary to be used, namely LiF:Mg,Cu,P TL dosimeters. The use of these dosimeters was recommended in order to minimize the time required to perform the tests and to decrease the number of exposures needed. For evaluation of digital images in DICOM format

  16. Evaluation of patient dose saving in grid-less x-ray mammography acquisition compared with full field digital mammography (FFDMG) acquisition

    DEFF Research Database (Denmark)

    Abdi, Ahmed Jibril; Mussmann, Bo Redder

    2017-01-01

    to investigate the dose saving in grid-less acquisition compared with conventional full-field digital mammography (FFDMG) acquisitions. A Piranha 657 was used to measure the entrance exposure. The entrance exposure was directly measured on different PMMA thicknesses of 20-70mm in steps of 10mm. The PMMA block...

  17. Direct conversion Si and CdZnTe detectors for digital mammography

    CERN Document Server

    Yin Shi Shi; Maeding, D; Mainprize, J; Mawdsley, G; Yaffe, M J; Gordon, E E; Hamilton, W J

    2000-01-01

    Hybrid pixel detector arrays that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. This technology also has wide application possibilities in other fields of radiology or in industrial imaging, nondestructive evaluation (NDE) and nondestructive inspection (NDI). These detectors have potentially superior properties compared to either emulsion-based film-screen systems which has nonlinear response to X-rays, or phosphor-based detectors in which there is an intermediate step of X-ray to light photon conversion (Feig and Yaffe, Radiol. Clinics North America 33 (1995) 1205-1230). Potential advantages of direct conversion detectors are high quantum efficiencies (QE) of 98% or higher (for 0.3 mm thick CdZnTe detector with 20 keV X-rays), improved contrast, high sensitivity and low intrinsic noise. These factors are expected to contribute to high detective quantum efficiency (DQE). The prototype hybrid pixel detector developed has 50x50 mu m pixel size,...

  18. The use of ultrasonography and digital mammography in women under 40 years with symptomatic breast cancer: a 7-year Irish experience.

    Science.gov (United States)

    Redmond, C E; Healy, G M; Murphy, C F; O'Doherty, A; Foster, A

    2017-02-01

    Breast cancer in women under 40 years of age is rare and typically presents symptomatically. The optimal imaging modality for this patient group is controversial. Most women undergo ultrasonography with/without mammography. Young women typically have dense breasts, which can obscure the features of malignancy on film mammography, however, initial studies have suggested that digital mammography may have a more accurate diagnostic performance in younger women. Ultrasound generally performs well in this age group, although it is poor at detecting carcinoma in situ (DCIS). To evaluate the comparative diagnostic performance of ultrasonography and digital mammography in the initial diagnostic evaluation of women under 40 years of age with symptomatic breast cancer. Retrospective review of all women under the age of 40 years managed at our symptomatic breast cancer unit from January 2009 to December 2015. There were 120 patients that met the inclusion criteria for this study. The sensitivity of ultrasonography and digital mammography for breast cancer in this patient group was 95.8 and 87.5 %, respectively. The patients with a false negative mammographic examination were more likely to have dense breasts (p breast cancer in women under the age of 40 years, however, the results show that digital mammography has an important complimentary role in the comprehensive assessment of these patients, particularly in the diagnosis of DCIS.

  19. Clinical implementation of x-ray phase-contrast imaging: Theoretical foundations and design considerations

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong

    2003-01-01

    Theoretical foundation and design considerations of a clinical feasible x-ray phase contrast imaging technique were presented in this paper. Different from the analysis of imaging phase object with weak absorption in literature, we proposed a new formalism for in-line phase-contrast imaging to analyze the effects of four clinically important factors on the phase contrast. These are the body parts attenuation, the spatial coherence of spherical waves from a finite-size focal spot, and polychromatic x-ray and radiation doses to patients for clinical applications. The theory presented in this paper can be applied widely in diagnostic x-ray imaging procedures. As an example, computer simulations were conducted and optimal design parameters were derived for clinical mammography. The results of phantom experiments were also presented which validated the theoretical analysis and computer simulations

  20. Mammography - recent technical developments and their clinical potential

    Energy Technology Data Exchange (ETDEWEB)

    Hemdal, Bengt; Mattsson, Soeren [Malmoe Univ. Hospital (Sweden). Dept. of Radiation Physics; Andersson, Ingvar [Malmoe Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Thilander Klang, Anne [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Medical Physics and Biomedical Engineering; Bengtsson, Gert; Jarlman, O. [Lund Univ. Hospital (Sweden). Dept. of Diagnostic Radiology; Leitz, Wolfram [Swedish Radiation Protection Authority, Stockholm (Sweden); Bjurstam, Nils [Univ. of North Norway, Troms (Norway). Dept. of Radiology

    2002-05-01

    The recent technical developments in digital as well as screen-film X-ray mammography have been reviewed in order to evaluate their clinical potential and to analyse possible lines for future development. Material and methods: The scientific literature has been reviewed, conferences covered and contacts with colleagues developed. Companies in the field have been inquired and invited for presentations. Own experience has been gathered from different screen-film and digital mammography systems. Results and conclusions: Although there are important complementary techniques such as ultrasound and magnetic resonance imaging (MRI), X-ray mammography is still the golden standard for breast imaging. It is relatively simple and cost-effective, and it is presently the only realistic technique for screening in a large scale. It is still largely the only technique that can detect breast cancer in a pre invasive stage. Equipment for digital mammography is commercially available both with small area and full field technique (FFDM). The development of FFDM systems is now intense, as well as the development of dedicated workstations and computer-aided detection (CAD). In spite of this, the introduction of digital mammography has been very slow compared to most other X-ray examinations due to high costs and technical challenges to meet the high demands on image quality and dose in mammography as well as the demands on specialised workflow support for screening mammography and suitable display techniques. Film reading of digital mammograms has been the most common display mode so far, but to take full advantage of the digital concept, diagnostic as well as logistic, monitor reading must be applied. There is a potential of FFDM systems for significantly higher image quality or significantly lower dose than screen-film mammography (SFM), or both. Further research is necessary to fully use this potential. The investment costs are much higher for digital than screen-film mammography

  1. Mammography - recent technical developments and their clinical potential

    International Nuclear Information System (INIS)

    Hemdal, Bengt; Mattsson, Soeren; Bjurstam, Nils

    2002-05-01

    The recent technical developments in digital as well as screen-film X-ray mammography have been reviewed in order to evaluate their clinical potential and to analyse possible lines for future development. Material and methods: The scientific literature has been reviewed, conferences covered and contacts with colleagues developed. Companies in the field have been inquired and invited for presentations. Own experience has been gathered from different screen-film and digital mammography systems. Results and conclusions: Although there are important complementary techniques such as ultrasound and magnetic resonance imaging (MRI), X-ray mammography is still the golden standard for breast imaging. It is relatively simple and cost-effective, and it is presently the only realistic technique for screening in a large scale. It is still largely the only technique that can detect breast cancer in a pre invasive stage. Equipment for digital mammography is commercially available both with small area and full field technique (FFDM). The development of FFDM systems is now intense, as well as the development of dedicated workstations and computer-aided detection (CAD). In spite of this, the introduction of digital mammography has been very slow compared to most other X-ray examinations due to high costs and technical challenges to meet the high demands on image quality and dose in mammography as well as the demands on specialised workflow support for screening mammography and suitable display techniques. Film reading of digital mammograms has been the most common display mode so far, but to take full advantage of the digital concept, diagnostic as well as logistic, monitor reading must be applied. There is a potential of FFDM systems for significantly higher image quality or significantly lower dose than screen-film mammography (SFM), or both. Further research is necessary to fully use this potential. The investment costs are much higher for digital than screen-film mammography

  2. Contrast-enhanced spectral mammography: Impact of the qualitative morphology descriptors on the diagnosis of breast lesions.

    Science.gov (United States)

    Mohamed Kamal, Rasha; Hussien Helal, Maha; Wessam, Rasha; Mahmoud Mansour, Sahar; Godda, Iman; Alieldin, Nelly

    2015-06-01

    To analyze the morphology and enhancement characteristics of breast lesions on contrast-enhanced spectral mammography (CESM) and to assess their impact on the differentiation between benign and malignant lesions. This ethics committee approved study included 168 consecutive patients with 211 breast lesions over 18 months. Lesions classified as non-enhancing and enhancing and then the latter group was subdivided into mass and non-mass. Mass lesions descriptors included: shape, margins, pattern and degree of internal enhancement. Non-mass lesions descriptors included: distribution, pattern and degree of internal enhancement. The impact of each descriptor on diagnosis individually assessed using Chi test and the validity compared in both benign and malignant lesions. The overall performance of CESM were also calculated. The study included 102 benign (48.3%) and 109 malignant (51.7%) lesions. Enhancement was encountered in 145/211 (68.7%) lesions. They further classified into enhancing mass (99/145, 68.3%) and non-mass lesions (46/145, 31.7%). Contrast uptake was significantly more frequent in malignant breast lesions (p value ≤ 0.001). Irregular mass lesions with intense and heterogeneous enhancement patterns correlated with a malignant pathology (p value ≤ 0.001). CESM showed an overall sensitivity of 88.99% and specificity of 83.33%. The positive and negative likelihood ratios were 5.34 and 0.13 respectively. The assessment of the morphology and enhancement characteristics of breast lesions on CESM enhances the performance of digital mammography in the differentiation between benign and malignant breast lesions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Optimization of tungsten x-ray spectra for digital mammography: a comparison of model to experiment

    Science.gov (United States)

    Andre, Michael P.; Spivey, Brett A.

    1997-05-01

    Tungsten (W) target x-rays tubes are being studied for use in digital mammography to improve x-ray flux, reduce noise and increase tube heat capacity. A parametric model was developed for digital mammography to evaluate optimization of x-ray spectra for a particular sensor. The model computes spectra and mean glandular doses (MGD) for combinations of W target, beam filters, kVp, breast type and thickness. Two figures of merit were defined: (signal/noise)2/MGD and spectral quantum efficiency; these were computed as a means to approach optimization of object contrast. The model is derived from a combination of classic equations, XCOM from NBS, and published data. X-ray spectra were calculated and measured for filters of Al, Sn, Rh, Mo and Ag on a Eureka tube. (Signal/noise)2/MGD was measured for a filtered W target tube and a digital camera employing CsI scintillator optically coupled to a CCD for which the detective quantum efficiency (DQE) was known. A 3-mm thick acrylic disk was imaged on thickness of 3-8 cm of acrylic and the results were compared to the predictions of the model. The relative error between predicted and measured spectra was +/- 2 percent from 24 to 34 kVp. Calculated MGD as a function of breast thickness, half-value layer and beam filter compares very well to published data. Best performance was found for the following combinations: Mo filter with 30 mm breast, Ag filter with 45 mm, Sn filter for 60 mm, and Al filter for 75 mm thick breast. The parametric model agrees well with measurement and provides a means to explore optimum combinations of kVp and beam filter. For a particular detector, this data may be used with the DQE to estimate total system signal-to-noise ratio for a particular imaging task.

  4. Comparison of Diagnostic Accuracy of Breast Masses Using Digitized Images Versus Screen-Film Mammography

    International Nuclear Information System (INIS)

    Zhigang Liang; Xiangying Du; Jiabin Liu; Xinyu Yao; Yanhui Yang; Kuncheng Li

    2008-01-01

    Background: Medical film digitizers play an important transitory role as digital-analogue bridges in radiology. Digitized mammograms require evaluation of performance to assure medical image quality. Purpose: To compare the diagnostic accuracy in the interpretation of breast masses using original screen-film mammograms versus digitized images. Material and Methods: A total of 72 female patients between 55 and 81 years of age suspected of having breast cancer were selected by two non-observing radiologists. Of these, 31 cases were benign lesions and 41 cases were cancer. The mammography films were digitized using a laser film digitizer. Three radiologists, each with more than 10 years of experience in mammography, interpreted the screen-film mammograms and digitized images respectively. The time interval was 4 weeks. A four-point malignancy scale was used, with 1 defined as definitely not malignant, 2 as probably not malignant, 3 as probably malignant, and 4 as definitely malignant. Receiver operating characteristic (Roc) curves, sensitivity, and specificity were compared. Results: The average area-under-the-curve (Az) value of the original screen-film mammograms was 0.921, and the average Az value of the digitized images was 0.859. This difference was not statistically significant (P=0.131). The detection specificity of extremely dense breasts was lower than that for other breast compositions for both digitized images and screen-film mammograms. No statistical significance in sensitivity and specificity was observed between digitized images and mammograms for each breast composition. Original screen-film mammograms were observed to perform better than digitized images. Conclusion: Digitized images with a spatial resolution of 175 μm can be used instead of screen-film mammograms in the diagnosis of breast cancer

  5. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  6. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    International Nuclear Information System (INIS)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  7. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  8. Detection and optimization of image quality and dose in digital mammography systems

    International Nuclear Information System (INIS)

    Semturs, F.

    2015-01-01

    Background and purpose: During the last few years, mammography institutes have replaced their conventional mammography systems (FSM) with digital mammography systems (FFDM). This happened mainly in direction to digital computed radiography systems (FFDM-CR), where the mammography device could be kept in operation. Consequently also the AEC-parameters have not been changed and therefore the same dose as for FFM was used. Following the main theme of the thesis "Optimization of image quality and dose", also measurements with such CR-Systems have been performed in relation to image quality and dose behavior. Optimization in this context means - in following the ALARA principle - the reduction of dose while ensuring required clinical image quality. With other words - image quality is of higher value compared to dose. Considering this, it has been found out through measurements during this thesis, that FFDM-CR Systems need considerable more dose for achieving image quality comparable with FFM. On the other hand, it has been shown with measurements during this thesis, that the newest FFDM-CR technology (needle structure) supports dose reduction (optimization) to a certain degree without compromising image quality. Dose increase, as recommended in this thesis, could also increase the danger of more radiation induced carcinoma. There are several studies (which are also discussed in this thesis), which show that the benefit of not missing cancers because of higher dose dramatically overrides any health concerns. Such an optimization of image quality and dose is now described in more detail by comparing the new CR needle technology with the older power based CR technology. Material and Methods: The image quality and dose behavior for multiple breast thicknesses (simulated with PMMA slabs) of a CR needle crystal detector system is optimized by considering also different beam qualities. Technical image quality is determined with a low contrast phantom (CDMAM phantom) and from

  9. Comparing the visualization of microcalcifications with direct magnification in digital full-field mammography vs. film-screen mammography

    International Nuclear Information System (INIS)

    Diekmann, F.; Diekmann, S.; Rogalla, P.; Hamm, B.; Bick, U.; Blohmer, J.U.; Winzer, K.J.

    2002-01-01

    Purpose: To evaluate the conspicuity of microcalcifications in magnified mammographic views of preparations obtained with full field digital mammography (FFDM), film-screen mammography (FSM), and the DIMA technique. Material and Methods: Twelve preparations were examined by FFDM and FSM using 1.8 x magnification and DIMA using 7 x magnification. Parameter settings were identical for all three techniques. The number of visible microcalcifications was then determined for each modality by three radiologists. As far as possible, all preparations were X-rayed at 22 kV and 10 mAS. Results: Altogether 9705 calcifications were counted (DIMA: 1609/1542/1534; FFDM: 1020/753/881; FSM: 901/643/822). The total number of microcalcifications identified with the DIMA technique was 4685 as compared to 2654 with FFDM and 2366 with FSM. The calcifications counted with FFDM and FSM thus corresponded to 56.6% and 50.5%, respectively, of those identified with DIMA. The differences between the groups were statistically significant (F-Test, p [de

  10. Comparative study between breast tomosynthesis and classic digital mammography in the evaluation of different breast lesions

    Directory of Open Access Journals (Sweden)

    Sahar Mansour

    2014-09-01

    Conclusion: Three-dimensional tomosynthesis significantly enhanced the detection and characterization of breast lesions on digital mammography especially in the context of dense breast parenchyma (ACR 3&4.

  11. Validation of a modified PENELOPE Monte Carlo code for applications in digital and dual-energy mammography

    Science.gov (United States)

    Del Lama, L. S.; Cunha, D. M.; Poletti, M. E.

    2017-08-01

    The presence and morphology of microcalcification clusters are the main point to provide early indications of breast carcinomas. However, the visualization of those structures may be jeopardized due to overlapping tissues even for digital mammography systems. Although digital mammography is the current standard for breast cancer diagnosis, further improvements should be achieved in order to address some of those physical limitations. One possible solution for such issues is the application of the dual-energy technique (DE), which is able to highlight specific lesions or cancel out the tissue background. In this sense, this work aimed to evaluate several quantities of interest in radiation applications and compare those values with works present in the literature to validate a modified PENELOPE code for digital mammography applications. For instance, the scatter-to-primary ratio (SPR), the scatter fraction (SF) and the normalized mean glandular dose (DgN) were evaluated by simulations and the resulting values were compared to those found in earlier studies. Our results present a good correlation for the evaluated quantities, showing agreement equal or better than 5% for the scatter and dosimetric-related quantities when compared to the literature. Finally, a DE imaging chain was simulated and the visualization of microcalcifications was investigated.

  12. Cost-effectiveness of increasing access to mammography through mobile mammography for older women.

    Science.gov (United States)

    Naeim, Arash; Keeler, Emmett; Bassett, Lawrence W; Parikh, Jay; Bastani, Roshan; Reuben, David B

    2009-02-01

    To compare the costs of mobile and stationary mammography and examine the incremental cost-effectiveness of using mobile mammography to increase screening rates. A cost-effectiveness analysis was performed using effectiveness data from a randomized clinical trial and modeling of costs associated with the mobile mammography intervention. The trial involved 60 community-based meal sites, senior centers, and clubs. Four hundred ninety-nine individuals were enrolled in the study, of whom 463 had outcome data available for analysis. Costs were calculated for stationary and mobile mammography, as well as costs due to differences in technology and film versus digital. Incremental cost-effectiveness (cost per additional screen) was modeled, and sensitivity analysis was performed by altering efficiency (throughput) and effectiveness based on subgroup data from the randomized trial. The estimated annual costs were $435,162 for a stationary unit, $539,052 for a mobile film unit, and $456, 392 for a mobile digital unit. Assuming mobile units are less efficient (50% annual volume), the cost per screen was $41 for a stationary unit, $86 for a mobile film unit, and $102 for a mobile digital unit. The incremental cost per additional screen were $207 for a mobile film unit and $264 for a mobile digital unit over a stationary unit. Although mobile mammography is a more effective way to screen older women, the absolute cost per screen of mobile units is higher, whereas the reimbursement is no different. Financial barriers may impede the widespread use of this approach.

  13. Comparing the diagnostic efficacy of full field digital mammography with digital breast tomosynthesis using BIRADS score in a tertiary cancer care hospital.

    Science.gov (United States)

    Singla, Divya; Chaturvedi, Arvind K; Aggarwal, Abhinav; Rao, S A; Hazarika, Dibyamohan; Mahawar, Vivek

    2018-01-01

    Breast cancer is one of the leading cancers in females worldwide, and its incidence has been rising at an exponential pace in the last 10 years even in India. Mammography has been the mainstay for detection of breast cancer over decades and has gradually advanced from screen film to full-field digital mammography. Recently, tomosynthesis has evolved as an advanced imaging investigation for early diagnosis of breast lesions in both diagnostic and screening settings. To compare and evaluate the impact of digital breast tomosynthesis (DBT) compared to full-field digital mammography (FFDM) in the interpretation of BIRADS score in both diagnostic and screening settings. A 1-year prospective longitudinal study was conducted in the Department of Radio-diagnosis in our institute using Hologic Selenia Dimensions for mammography as well as tomosynthesis. One hundred women known or suspected (opportunistic screening) for breast cancer were evaluated either with FFDM alone or both FFDM and DBT. Sensitivity, specificity, positive predictive value, negative predictive value, and P value were used to assess the various diagnostic criteria in our study. Addition of DBT to FFDM results in a statistically significant increase in the sensitivity, specificity, and positive predictive value, and a statistically significant decrease in the false positive rates. Similar results were noted in both diagnostic and screening cases. It was observed that, in most cases, i.e. a total of 47, DBT did not change the BIRADS scoring; however, its addition increased the diagnostic confidence. BIRADS was upgraded and downgraded in 14 and 31 cases, respectively, with the addition of DBT to FFDM. New lesions were seen with addition of DBT to FFDM in 8 cases. Addition of DBT to FFDM results in increase in sensitivity, specificity, positive predictive value, and a statistically significant decrease in false positive rates in both diagnostic and screening cases. As addition of tomosynthesis results in a

  14. Comparing the diagnostic efficacy of full field digital mammography with digital breast tomosynthesis using BIRADS score in a tertiary cancer care hospital

    Directory of Open Access Journals (Sweden)

    Divya Singla

    2018-01-01

    Full Text Available Introduction: Breast cancer is one of the leading cancers in females worldwide, and its incidence has been rising at an exponential pace in the last 10 years even in India. Mammography has been the mainstay for detection of breast cancer over decades and has gradually advanced from screen film to full-field digital mammography. Recently, tomosynthesis has evolved as an advanced imaging investigation for early diagnosis of breast lesions in both diagnostic and screening settings. Aim of Study: To compare and evaluate the impact of digital breast tomosynthesis (DBT compared to full-field digital mammography (FFDM in the interpretation of BIRADS score in both diagnostic and screening settings. Settings and Design: A 1-year prospective longitudinal study was conducted in the Department of Radio-diagnosis in our institute using Hologic Selenia Dimensions for mammography as well as tomosynthesis. Materials and Methods: One hundred women known or suspected (opportunistic screening for breast cancer were evaluated either with FFDM alone or both FFDM and DBT. Sensitivity, specificity, positive predictive value, negative predictive value, and P value were used to assess the various diagnostic criteria in our study. Results: Addition of DBT to FFDM results in a statistically significant increase in the sensitivity, specificity, and positive predictive value, and a statistically significant decrease in the false positive rates. Similar results were noted in both diagnostic and screening cases. It was observed that, in most cases, i.e. a total of 47, DBT did not change the BIRADS scoring; however, its addition increased the diagnostic confidence. BIRADS was upgraded and downgraded in 14 and 31 cases, respectively, with the addition of DBT to FFDM. New lesions were seen with addition of DBT to FFDM in 8 cases. Conclusion: Addition of DBT to FFDM results in increase in sensitivity, specificity, positive predictive value, and a statistically significant

  15. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  16. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S. [University of California (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  17. TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors

    International Nuclear Information System (INIS)

    Molloi, S.

    2015-01-01

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  18. Visualization of Breast Microcalcifications on Digital Breast Tomosynthesis and 2-Dimensional Digital Mammography Using Specimens

    Directory of Open Access Journals (Sweden)

    Jieun Byun

    2017-04-01

    Full Text Available Purpose: The purpose of this study is to compare the visibility of microcalcifications of digital breast tomosynthesis (DBT and full-field digital mammography (FFDM using breast specimens. Materials And Methods: Thirty-one specimens’ DBT and FFDM were retrospectively reviewed by four readers. Results: The image quality of microcalcifications of DBT was rated as superior or equivalent in 71.0% by reader 1, 67.8% by reader 2, 64.5% by reader 3, and 80.6% by reader 4. The Fleiss kappa statistic for agreement among readers was 0.31. Conclusions: We suggest that image quality of DBT appears to be comparable with or better than FFDM in terms of revealing microcalcifications.

  19. Mammography combined with breast dynamic contrast-enhanced-magnetic resonance imaging for the diagnosis of early breast cancer

    Institute of Scientific and Technical Information of China (English)

    Yakun He; Guohui Xu; Jin Ren; Bin Feng; Xiaolei Dong; Hao Lu; Changjiu He

    2016-01-01

    Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer (malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal (VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.

  20. Contrast-enhanced spectral mammography with a photon-counting detector.

    Science.gov (United States)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  1. Contrast-enhanced spectral mammography with a photon-counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden)

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  2. Quality Imaging - Comparison of CR Mammography with Screen-Film Mammography

    International Nuclear Information System (INIS)

    Gaona, E.; Azorin Nieto, J.; Iran Diaz Gongora, J. A.; Arreola, M.; Casian Castellanos, G.; Perdigon Castaneda, G. M.; Franco Enriquez, J. G.

    2006-01-01

    The aim of this work is a quality imaging comparison of CR mammography images printed to film by a laser printer with screen-film mammography. A Giotto and Elscintec dedicated mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in screen-film mammography. Four CR mammography units from two different manufacturers and three dedicated x-ray mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in CR mammography. The tests quality image included an assessment of system resolution, scoring phantom images, Artifacts, mean optical density and density difference (contrast). In this study, screen-film mammography with a quality control program offers a significantly greater level of quality image relative to CR mammography images printed on film

  3. Correlation study of effect of additional filter on radiation dose and image quality in digital mammography

    International Nuclear Information System (INIS)

    Liu Jie; Liu Peifang; Wang Hongbin; Zhang Shuping; Liu Xueou

    2012-01-01

    Objective: To explore the effect of different additional filters on radiation dose and image quality in digital mammography. Methods: Hologic company's Selenia digital mammography machine and the post-processing workstations and 5 M high resolution medical monitor were used in this study. Mammography phantoms with the thickness from 1.6 cm to 8.6 cm were used to simulate human breast tissue. The same exposure conditions, pressure, compression thickness, the anode were employed with the additional filters of Mo and Rh under the automatic and manual exposure mode. The image kV, mAs, pressure, filter, average glandular dose (AGD), entrance surface dose (ESD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image score according to ACR criteria were recorded for the two additional filters. Paired sample t test was performed to compare the indices of Mo and Rh groups by using SPSS 17.0. Results: AGD and ESD of Rh and Mo group were both higher with the increase of the thickness of all the phantoms. AGD, ESD and their increased value of Rh filter(1.484 ± 1.041, 7.969 ± 7.633, 0.423 ± 0.190 and 3.057 ± 2.139) were lower than those of Mo filter (1.915 ± 1.301, 12.516 ± 11.632, 0.539 ±0.246 and 4.731 ± 3.294), in all the phantoms with different thickness (t values were 4.614, 3.209, 3.396 and 3.605, P<0.05). SNR, CNR, and image score of Rh and Mo group both decreased with the increase of the thickness of all the phantoms. There were no statistical difference (P>0.05). Conclusions: Compared with Mo filter, Rh filter could reduce the radiation dose, and this advantage is more obvious in the thicker phantom when the same image quality is required. (authors)

  4. Comparison of screen-film and full-field digital mammography in Japanese population-based screening

    International Nuclear Information System (INIS)

    Yamada, Takayuki; Saito, Mioko; Ishibashi, Tadashi

    2004-01-01

    The purpose of this study was to investigate how the greater contrast of full-field digital mammography (FFDM) affects the detection of suspicious lesions in Japanese population-based screening. Screen-film mammography (SFM) and FFDM were performed in 480 women aged 50 years or more. A set of mediolateral oblique views was obtained with each modality. All mammograms were independently double-read. The five-scale category assessment and type of finding using the Breast Imaging Reporting and Data System (BIRADS) nomenclature were given. Intraobserver variance, recall rates, and positive predictive value were calculated. The findings between the two modalities were discordant. κ-values for each reader were 0.619 and 0.385, respectively. Almost half of the microcalcifications were called with both modalities. The detection of masses was less concordant between the readers (27%). The masses were detected more frequently with FFDM (73%). Other findings were only detected with one modality. The recall rate was not significantly different (2.9% with SFM vs. 4.2% with FFDM; p=0.253). The positive predictive value was not significantly different (14% with SFM vs. 10% with FFDM; p=0.69), either. Two patients with breast cancer were detected with both modalities. Recall rates and positive predictive value were not significantly different between SFM and FFDM. Cancers were detected with both modalities. (author)

  5. Assessment of mean glandular dose to patients from digital mammography systems

    International Nuclear Information System (INIS)

    Pwamang, Caroline K.

    2016-07-01

    Mean glandular dose assessment of patients undergoing digital mammography examination has been done. A total of 297 patient data was used for the study. Basic Quality Control tests were done to ascertain the performance of the equipment used. The results of Quality Control tests indicated that the three Mammography units used for this study were functioning within the internationally acceptable performance criteria. Patients with a breast thickness of 30 mm within the two age groups of 40-49 yrs and 50-64 yrs received doses slightly higher than the acceptable dose levels. A patient in the category 40-49 yrs with breast thickness of 30 mm received 1.83 mGy as calculated Mean Glandular Dose, 2.10 mGy was the recorded dose and 1.58 mGy was recorded under the age group 50-64 yrs. These values have deviated by -22%, -40%, and -5.33% respectively from 1.5 mGy which is the recommended dose for a breast thickness of 30 mm. Also patients with breast thickness of 70 mm under the age group 40–49 yrs had a recorded dose of 6.58 mGy, which deviated by -1.21% from the recommended value of 6.5 mGy for that breast thickness. Aside these values, all the other values were within the recommended dose values. The percentage deviation between the recommended values and the calculated values was within ±25% which was a working limit that was set for this work. Doses delivered by the Full-field Digital mammography equipment were higher than doses delivered by the Computered Radiography equipment. The calculated Mean Glandular Doses for the three facilities were within recommended dose values. (author)

  6. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  7. The potential use of ultra-low radiation dose images in digital mammography-a clinical proof-of-concept study in craniocaudal views

    NARCIS (Netherlands)

    Bluekens, A. M. J.; Veldkamp, W. J. H.; Schuur, K. H.; Karssemeijer, N.; Broeders, M. J. M.; den Heeten, G. J.

    2015-01-01

    Objective: To estimate the potential of low-dose images in digital mammography by analysing the effect of substantial dose reduction in craniocaudal (CC) views on clinical performance. Methods: At routine mammography, additional CC views were obtained with about 10% of the standard dose. Five

  8. The potential use of ultra-low radiation dose images in digital mammography--a clinical proof-of-concept study in craniocaudal views

    NARCIS (Netherlands)

    Bluekens, A.M.; Veldkamp, W.J.H.; Schuur, K.H.; Karssemeijer, N.; Broeders, M.J.; Heeten, GJ. den

    2015-01-01

    OBJECTIVE: To estimate the potential of low-dose images in digital mammography by analysing the effect of substantial dose reduction in craniocaudal (CC) views on clinical performance. METHODS: At routine mammography, additional CC views were obtained with about 10% of the standard dose. Five

  9. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    Science.gov (United States)

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm 2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm 2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However

  10. Optimization of exposure parameters in full field digital mammography

    International Nuclear Information System (INIS)

    Williams, Mark B.; Raghunathan, Priya; More, Mitali J.; Seibert, J. Anthony; Kwan, Alexander; Lo, Joseph Y.; Samei, Ehsan; Ranger, Nicole T.; Fajardo, Laurie L.; McGruder, Allen; McGruder, Sandra M.; Maidment, Andrew D. A.; Yaffe, Martin J.; Bloomquist, Aili; Mawdsley, Gordon E.

    2008-01-01

    Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and

  11. Evaluation of glandular dose in conventional and digital mammography systems

    International Nuclear Information System (INIS)

    Coutinho, Celia Maria Campos

    2009-01-01

    A survey was conducted to estimate the average glandular dose (D g ) for patients undergoing mammography and to report the distribution of incident air kerma (K i ), patient age, compressed breast thickness and glandular tissue content. From 1183 cranio caudal mammograms clinical data were collected and doses were measured. The survey data included mammograms from six mammography equipment: two screen/film units (SFM), two computed radiography units (CR) and two full-field digital (DR). Mean value for patient age and compressed breast thickness were 57 +-12 y and 5.4 +-1.4 cm, respectively. To investigate the importance of technical characteristics of three different mammography systems and breast glandularity, K i and D g were measured for individual breast of 392 patients from the original sample with compressed breast thickness in the range of 5.5 cm to 6.5 cm using tissue-equivalent phantoms of different glandularities manufactured in this study to mimic both the attenuation and the density of breast tissues. Mean K i value was 10.0 +-3.6 mGy for SFM systems, 12.0 +-3.6 mGy for CR systems and 4.9 +-1.3 mGy for DR systems. Mean D g value was 1.4 +-0.5 mGy for S/F systems, 1.7 +-0.5 mGy for CR systems and 0.9 +-0.2 mGy for D R systems. Statistical analysis for differences in mean values of K i and D g between mammography systems showed significant effect of their technical characteristics (p i and D g , it was observed statistically significant differences between the group of patients with 0 to 50% glandularity and the group of patients with 50 to 100% glandularity. (author)

  12. Staging of breast cancer and the advanced applications of digital mammogram: what the physician needs to know?

    Science.gov (United States)

    Helal, Maha H; Mansour, Sahar M; Zaglol, Mai; Salaleldin, Lamia A; Nada, Omniya M; Haggag, Marwa A

    2017-03-01

    To study the role of advanced applications of digital mammogram, whether contrast-enhanced spectral mammography (CESM) or digital breast tomosynthesis (DBT), in the "T" staging of histologically proven breast cancer before planning for treatment management. In this prospective analysis, we evaluated 98 proved malignant breast masses regarding their size, multiplicity and the presence of associated clusters of microcalcifications. Evaluation methods included digital mammography (DM), 3D tomosynthesis and CESM. Traditional DM was first performed then in a period of 10-14-day interval; breast tomosynthesis and contrast-based mammography were performed for the involved breast only. Views at tomosynthesis were acquired in a "step-and-shoot" tube motion mode to produce multiple (11-15), low-dose images and in contrast-enhanced study, low-energy (22-33 kVp) and high-energy (44-49 kVp) exposures were taken after the i.v. injection of the contrast agent. Operative data were the gold standard reference. Breast tomosynthesis showed the highest accuracy in size assessment (n = 69, 70.4%) than contrast-enhanced (n = 49, 50%) and regular mammography (n = 59, 60.2%). Contrast-enhanced mammography presented the least performance in assessing calcifications, yet it was most sensitive in the detection of multiplicity (92.3%), followed by tomosynthesis (77%) and regular mammography (53.8%). The combined analysis of the three modalities provided an accuracy of 74% in the "T" staging of breast cancer. The combined application of tomosynthesis and contrast-enhanced digital mammogram enhanced the performance of the traditional DM and presented an informative method in the staging of breast cancer. Advances in knowledge: Staging and management planning of breast cancer can divert according to tumour size, multiplicity and the presence of microcalcifications. DBT shows sharp outlines of the tumour with no overlap tissue and spots microcalcifications. Contrast

  13. High-contrast mammography with a moving grid: assessment of clinical utility

    International Nuclear Information System (INIS)

    Sickles, E.A.; Weber, W.N.

    1986-01-01

    Mammography techniques using moving grids produce superior breast images in many patients but result in increased radiation dose. This prospective controlled study of 1000 unselected screen-film mammography patients identifies a subset of women who are most likely to benefit from higher-dose grid-assisted techniques. In approximately 60% of the patients, the increased contrast of grid films produced a noticeable improvement in overall image quality. In only 20% of cases did this translate into clinically useful information, however, usually resulting in an increased level of confidence in interpretation. In virtually all the cases in which grid images aided mammographic diagnosis, the patients were women having more than 50% dense fibroglandular tissue or compressed breast thickness greater than 6 cm (only 37% of the study population). We suggest that the use of grid techniques be restricted to patients with such dense or thick breasts, because only in these women can the increase in radiation dose be justified

  14. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; Bazelaire, Cedric de

    2015-01-01

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  15. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle, E-mail: isabelle.thomassin@tnn.aphp.fr [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); INSERM, UMR970, Equipe 2, Imagerie de l’angiogenèse, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Perrot, Nicolas [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Centre Pyramides, Paris (France); Dechoux, Sophie [Sorbonne Universités, UPMC Univ Paris 06, IUC, 75005 Paris (France); AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Ribeiro, Carine [Centre Pyramides, Paris (France); Chopier, Jocelyne [AP-HP, Hôpital Tenon, Department of Radiology, 4 rue de la Chine, 75020 Paris (France); Bazelaire, Cedric de [APHP, Department of Radiology, Hôpital Saint Louis, 75010 Paris (France)

    2015-02-15

    Highlights: • Breast tomosynthesis improves diagnostic performance especially for radiologists with lower experience in mammography. • Adding only one-view digital breast tomosynthesis to mammography improves the cancer detection rate. • Breast tomosynthesis is mainly useful for helping radiologists to detect architectural distortion. - Abstract: Purpose: To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Materials and methods: Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24–92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. Results: There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4

  16. Evaluation of mean glandular dose in a full-field digital mammography unit in Tabriz (IR)

    International Nuclear Information System (INIS)

    Riabi, H. A.; Mehnati, P.; Mesbahi, A.

    2010-01-01

    This study was aimed at evaluating the mean glandular dose (MGD) and affecting factors during mammography examinations by a full-field digital mammography unit. An extensive quality control program was performed to assure that the unit is properly working. Required information including compressed breast thickness (CBT), breast parenchymal pattern and technical factors used for imaging were recorded. An entrance skin exposure measurement was also performed using slabs of polymethylmethacrylate with 2-8 cm thickness. On the basis of recorded information and measured data, the MGD was estimated for 1145 mammography examinations obtained from 298 patients. Mean CBTs of 4.9 and 5.8 cm and MGDs of 2 and 2.4 mGy were observed for cranio-caudal and medio-lateral oblique views, respectively. Significant correlation was seen between MGD and CBT, breast parenchymal pattern and applied kVp and mAs. (authors)

  17. Contrast-enhanced spectral mammography: Impact of the qualitative morphology descriptors on the diagnosis of breast lesions

    International Nuclear Information System (INIS)

    Mohamed Kamal, Rasha; Hussien Helal, Maha; Wessam, Rasha; Mahmoud Mansour, Sahar; Godda, Iman; Alieldin, Nelly

    2015-01-01

    Highlights: • We studied interpretation criteria for enhancing lesions on CESM. • We evaluated the enhancement patterns of 211 breast lesions. • Our results proved that CESM minimized positive and negative falsies in DM. • The proposed CESM lexicon helped in characterization and categorization. - Abstract: Objective: To analyze the morphology and enhancement characteristics of breast lesions on contrast-enhanced spectral mammography (CESM) and to assess their impact on the differentiation between benign and malignant lesions. Materials and method: This ethics committee approved study included 168 consecutive patients with 211 breast lesions over 18 months. Lesions classified as non-enhancing and enhancing and then the latter group was subdivided into mass and non-mass. Mass lesions descriptors included: shape, margins, pattern and degree of internal enhancement. Non-mass lesions descriptors included: distribution, pattern and degree of internal enhancement. The impact of each descriptor on diagnosis individually assessed using Chi test and the validity compared in both benign and malignant lesions. The overall performance of CESM were also calculated. Results: The study included 102 benign (48.3%) and 109 malignant (51.7%) lesions. Enhancement was encountered in 145/211 (68.7%) lesions. They further classified into enhancing mass (99/145, 68.3%) and non-mass lesions (46/145, 31.7%). Contrast uptake was significantly more frequent in malignant breast lesions (p value ≤0.001). Irregular mass lesions with intense and heterogeneous enhancement patterns correlated with a malignant pathology (p value ≤0.001). CESM showed an overall sensitivity of 88.99% and specificity of 83.33%. The positive and negative likelihood ratios were 5.34 and 0.13 respectively. Conclusion: The assessment of the morphology and enhancement characteristics of breast lesions on CESM enhances the performance of digital mammography in the differentiation between benign and malignant

  18. Contrast-enhanced spectral mammography: Impact of the qualitative morphology descriptors on the diagnosis of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Kamal, Rasha [Radiology Department (Women' s Imaging unit), Kasr ElAiny Hospital, Cairo University (Egypt); Hussien Helal, Maha [Radiology Department (Breast Imaging unit), National Cancer Institute, Cairo University (Egypt); Wessam, Rasha [Radiology Department (Women' s Imaging unit), Kasr ElAiny Hospital, Cairo University (Egypt); Mahmoud Mansour, Sahar, E-mail: sahar_mnsr@yahoo.com [Radiology Department (Breast Imaging unit), National Cancer Institute, Cairo University (Egypt); Godda, Iman [Pathology Department, National Cancer Institute, Cairo University (Egypt); Alieldin, Nelly [Statistics Department, National Cancer Institute, Cairo University (Egypt)

    2015-06-15

    Highlights: • We studied interpretation criteria for enhancing lesions on CESM. • We evaluated the enhancement patterns of 211 breast lesions. • Our results proved that CESM minimized positive and negative falsies in DM. • The proposed CESM lexicon helped in characterization and categorization. - Abstract: Objective: To analyze the morphology and enhancement characteristics of breast lesions on contrast-enhanced spectral mammography (CESM) and to assess their impact on the differentiation between benign and malignant lesions. Materials and method: This ethics committee approved study included 168 consecutive patients with 211 breast lesions over 18 months. Lesions classified as non-enhancing and enhancing and then the latter group was subdivided into mass and non-mass. Mass lesions descriptors included: shape, margins, pattern and degree of internal enhancement. Non-mass lesions descriptors included: distribution, pattern and degree of internal enhancement. The impact of each descriptor on diagnosis individually assessed using Chi test and the validity compared in both benign and malignant lesions. The overall performance of CESM were also calculated. Results: The study included 102 benign (48.3%) and 109 malignant (51.7%) lesions. Enhancement was encountered in 145/211 (68.7%) lesions. They further classified into enhancing mass (99/145, 68.3%) and non-mass lesions (46/145, 31.7%). Contrast uptake was significantly more frequent in malignant breast lesions (p value ≤0.001). Irregular mass lesions with intense and heterogeneous enhancement patterns correlated with a malignant pathology (p value ≤0.001). CESM showed an overall sensitivity of 88.99% and specificity of 83.33%. The positive and negative likelihood ratios were 5.34 and 0.13 respectively. Conclusion: The assessment of the morphology and enhancement characteristics of breast lesions on CESM enhances the performance of digital mammography in the differentiation between benign and malignant

  19. Screen-film mammography

    International Nuclear Information System (INIS)

    Logan, W.W.; Janus, J.A.

    1987-01-01

    The development of screen-film mammography has resulted in the re-emergence of confidence, rather than fear, in mammography. When screen-film mammography is performed with state-of-the-art dedicated equipment utilizing vigorous breast compression and a ''soft'' x-ray beam for improved contrast, screen-film images are equivalent or superior to those of reduced-dose xeromammography and superior to those of nonscreen film mammography. Technological aids for conversion from xeromammographic or nonscreen film mammographic techniques to screen-film techniques have been described. Screen-film mammography should not be attempted until dedicated equipment has been obtained and the importance of vigorous compression has been understood

  20. Benefits, harms, and costs for breast cancer screening after US implementation of digital mammography.

    Science.gov (United States)

    Stout, Natasha K; Lee, Sandra J; Schechter, Clyde B; Kerlikowske, Karla; Alagoz, Oguzhan; Berry, Donald; Buist, Diana S M; Cevik, Mucahit; Chisholm, Gary; de Koning, Harry J; Huang, Hui; Hubbard, Rebecca A; Miglioretti, Diana L; Munsell, Mark F; Trentham-Dietz, Amy; van Ravesteyn, Nicolien T; Tosteson, Anna N A; Mandelblatt, Jeanne S

    2014-06-01

    Compared with film, digital mammography has superior sensitivity but lower specificity for women aged 40 to 49 years and women with dense breasts. Digital has replaced film in virtually all US facilities, but overall population health and cost from use of this technology are unclear. Using five independent models, we compared digital screening strategies starting at age 40 or 50 years applied annually, biennially, or based on density with biennial film screening from ages 50 to 74 years and with no screening. Common data elements included cancer incidence and test performance, both modified by breast density. Lifetime outcomes included mortality, quality-adjusted life-years, and screening and treatment costs. For every 1000 women screened biennially from age 50 to 74 years, switching to digital from film yielded a median within-model improvement of 2 life-years, 0.27 additional deaths averted, 220 additional false-positive results, and $0.35 million more in costs. For an individual woman, this translates to a health gain of 0.73 days. Extending biennial digital screening to women ages 40 to 49 years was cost-effective, although results were sensitive to quality-of-life decrements related to screening and false positives. Targeting annual screening by density yielded similar outcomes to targeting by age. Annual screening approaches could increase costs to $5.26 million per 1000 women, in part because of higher numbers of screens and false positives, and were not efficient or cost-effective. The transition to digital breast cancer screening in the United States increased total costs for small added health benefits. The value of digital mammography screening among women aged 40 to 49 years depends on women's preferences regarding false positives. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P spectral mammographic and MR images. © RSNA, 2016.

  2. On the noise variance of a digital mammography system

    International Nuclear Information System (INIS)

    Burgess, Arthur

    2004-01-01

    A recent paper by Cooper et al. [Med. Phys. 30, 2614-2621 (2003)] contains some apparently anomalous results concerning the relationship between pixel variance and x-ray exposure for a digital mammography system. They found an unexpected peak in a display domain pixel variance plot as a function of 1/mAs (their Fig. 5) with a decrease in the range corresponding to high display data values, corresponding to low x-ray exposures. As they pointed out, if the detector response is linear in exposure and the transformation from raw to display data scales is logarithmic, then pixel variance should be a monotonically increasing function in the figure. They concluded that the total system transfer curve, between input exposure and display image data values, is not logarithmic over the full exposure range. They separated data analysis into two regions and plotted the logarithm of display image pixel variance as a function of the logarithm of the mAs used to produce the phantom images. They found a slope of minus one for high mAs values and concluded that the transfer function is logarithmic in this region. They found a slope of 0.6 for the low mAs region and concluded that the transfer curve was neither linear nor logarithmic for low exposure values. It is known that the digital mammography system investigated by Cooper et al. has a linear relationship between exposure and raw data values [Vedantham et al., Med. Phys. 27, 558-567 (2000)]. The purpose of this paper is to show that the variance effect found by Cooper et al. (their Fig. 5) arises because the transformation from the raw data scale (14 bits) to the display scale (12 bits), for the digital mammography system they investigated, is not logarithmic for raw data values less than about 300 (display data values greater than about 3300). At low raw data values the transformation is linear and prevents over-ranging of the display data scale. Parametric models for the two transformations will be presented. Results of pixel

  3. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size.

    Science.gov (United States)

    Fallenberg, E M; Dromain, C; Diekmann, F; Engelken, F; Krohn, M; Singh, J M; Ingold-Heppner, B; Winzer, K J; Bick, U; Renz, D M

    2014-01-01

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. • Contrast-enhanced spectral mammography (CESM) is slowly being introduced into clinical practice. • Access to breast MRI is limited by availability and lack of reimbursement. • Initial results show a better sensitivity of CESM and MRI than conventional mammography. • CESM showed a good correlation with postoperative histology in size assessment. • Contrast-enhanced spectral mammography offers promise, seemingly providing information comparable to MRI.

  4. Comparative performance of modern digital mammography systems in a large breast screening program

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Martin J., E-mail: martin.yaffe@sri.utoronto.ca; Bloomquist, Aili K.; Hunter, David M.; Mawdsley, Gordon E. [Physical Sciences Division, Sunnybrook Research Institute, Departments of Medical Biophysics and Medical Imaging, University of Toronto, Ontario M4N 3M5 (Canada); Chiarelli, Anna M. [Prevention and Cancer Control, Cancer Care Ontario, Dalla Lana School of Public Health, University of Toronto, Ontario M4N 3M5, Canada and Ontario Breast Screening Program, Cancer Care Ontario, Toronto, Ontario M5G 1X3 (Canada); Muradali, Derek [Ontario Breast Screening Program, Cancer Care Ontario, Toronto, Ontario M5G 1X3 (Canada); Mainprize, James G. [Physical Sciences Division, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5 (Canada)

    2013-12-15

    Purpose: To compare physical measures pertaining to image quality among digital mammography systems utilized in a large breast screening program. To examine qualitatively differences in these measures and differences in clinical cancer detection rates between CR and DR among sites within that program. Methods: As part of the routine quality assurance program for screening, field measurements are made of several variables considered to correlate with the diagnostic quality of medical images including: modulation transfer function, noise equivalent quanta, d′ (an index of lesion detectability) and air kerma to allow estimation of mean glandular dose. In addition, images of the mammography accreditation phantom are evaluated. Results: It was found that overall there were marked differences between the performance measures of DR and CR mammography systems. In particular, the modulation transfer functions obtained with the DR systems were found to be higher, even for larger detector element sizes. Similarly, the noise equivalent quanta, d′, and the phantom scores were higher, while the failure rates associated with low signal-to-noise ratio and high dose were lower with DR. These results were consistent with previous findings in the authors’ program that the breast cancer detection rates at sites employing CR technology were, on average, 30.6% lower than those that used DR mammography. Conclusions: While the clinical study was not large enough to allow a statistically powered system-by-system assessment of cancer detection accuracy, the physical measures expressing spatial resolution, and signal-to-noise ratio are consistent with the published finding that sites employing CR systems had lower cancer detection rates than those using DR systems for screening mammography.

  5. Screening mammography-detected cancers: the sensitivity of the computer-aided detection system as applied to full-field digital mammography

    International Nuclear Information System (INIS)

    Yang, Sang Kyu; Cho, Nariya; Ko, Eun Sook; Kim, Do Yeon; Moon, Woo Kyung

    2006-01-01

    We wanted to evaluate the sensitivity of the computer-aided detection (CAD) system for performing full-field digital mammography (FFDM) on the breast cancers that were originally detected by screening mammography. The CAD system (Image Checker v3.1, R2 Technology, Los Altos, Calif.) together with a full-field digital mammography system (Senographe 2000D, GE Medical Systems, Buc, France) was prospectively applied to the mammograms of 70 mammographically detected breast cancer patients (age range, 37-69; median age, 51 years) who had negative findings on their clinical examinations. The sensitivity of the CAD system, according to histopathologic findings and radiologic primary features (i.e, mass, microcalcifications or mass with microcalcifications) and also the false-positive marking rate were then determined. The CAD system correctly depicted 67 of 70 breast cancer lesions (97.5%). The CAD system marked 29 of 30 breast cancers that presented with microcalcifications only (sensitivity 96.7%) and all 18 breast cancers the presented with mass together with microcalcifications (sensitivity 100%). Twenty of the 22 lesions that appeared as a mass only were marked correctly by the CAD system (sensitivity 90.9%). The CAD system correctly depicted all 22 lesions of ductal carcinoma in situ (sensitivity: 100%), all 13 lesions of invasive ductal carcinoma with ductal carcinoma in situ (sensitivity: 100%) and the 1 lesion of invasive lobular carcinoma (sensitivity: 100%). Thirty one of the 34 lesions of invasive ductal carcinoma were marked correctly by the CAD system (sensitivity: 91.8%). The rate of false-positive marks was 0.21 mass marks per image and 0.16 microcalcification marks per image. The overall rate of false-positive marks was 0.37 per image. The CAD system using FFDM is useful for the detection of asymptomatic breast cancers, and it has a high overall tumor detection rate. The false negative cases were found in relatively small invasive ductal carcinoma

  6. Screening mammography-detected cancers: the sensitivity of the computer-aided detection system as applied to full-field digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sang Kyu; Cho, Nariya; Ko, Eun Sook; Kim, Do Yeon; Moon, Woo Kyung [College of Medicine Seoul National University and The Insititute of Radiation Medicine, Seoul National University Research Center, Seoul (Korea, Republic of)

    2006-04-15

    We wanted to evaluate the sensitivity of the computer-aided detection (CAD) system for performing full-field digital mammography (FFDM) on the breast cancers that were originally detected by screening mammography. The CAD system (Image Checker v3.1, R2 Technology, Los Altos, Calif.) together with a full-field digital mammography system (Senographe 2000D, GE Medical Systems, Buc, France) was prospectively applied to the mammograms of 70 mammographically detected breast cancer patients (age range, 37-69; median age, 51 years) who had negative findings on their clinical examinations. The sensitivity of the CAD system, according to histopathologic findings and radiologic primary features (i.e, mass, microcalcifications or mass with microcalcifications) and also the false-positive marking rate were then determined. The CAD system correctly depicted 67 of 70 breast cancer lesions (97.5%). The CAD system marked 29 of 30 breast cancers that presented with microcalcifications only (sensitivity 96.7%) and all 18 breast cancers the presented with mass together with microcalcifications (sensitivity 100%). Twenty of the 22 lesions that appeared as a mass only were marked correctly by the CAD system (sensitivity 90.9%). The CAD system correctly depicted all 22 lesions of ductal carcinoma in situ (sensitivity: 100%), all 13 lesions of invasive ductal carcinoma with ductal carcinoma in situ (sensitivity: 100%) and the 1 lesion of invasive lobular carcinoma (sensitivity: 100%). Thirty one of the 34 lesions of invasive ductal carcinoma were marked correctly by the CAD system (sensitivity: 91.8%). The rate of false-positive marks was 0.21 mass marks per image and 0.16 microcalcification marks per image. The overall rate of false-positive marks was 0.37 per image. The CAD system using FFDM is useful for the detection of asymptomatic breast cancers, and it has a high overall tumor detection rate. The false negative cases were found in relatively small invasive ductal carcinoma.

  7. Contrast-enhanced spectral mammography in patients with MRI contraindications.

    Science.gov (United States)

    Richter, Vivien; Hatterman, Valerie; Preibsch, Heike; Bahrs, Sonja D; Hahn, Markus; Nikolaou, Konstantin; Wiesinger, Benjamin

    2017-01-01

    Background Contrast-enhanced spectral mammography (CESM) is a novel breast imaging technique providing comparable diagnostic accuracy to breast magnetic resonance imaging (MRI). Purpose To show that CESM in patients with MRI contraindications is feasible, accurate, and useful as a problem-solving tool, and to highlight its limitations. Material and Methods A total of 118 patients with MRI contraindications were examined by CESM. Histology was obtained in 94 lesions and used as gold standard for diagnostic accuracy calculations. Imaging data were reviewed retrospectively for feasibility, accuracy, and technical problems. The diagnostic yield of CESM as a problem-solving tool and for therapy response evaluation was reviewed separately. Results CESM was more accurate than mammography (MG) for lesion categorization (r = 0.731, P < 0.0001 vs. r = 0.279, P = 0.006) and for lesion size estimation (r = 0.738 vs. r = 0.689, P < 0.0001). Negative predictive value of CESM was significantly higher than of MG (85.71% vs. 30.77%, P < 0.0001). When used for problem-solving, CESM changed patient management in 2/8 (25%) cases. Superposition artifacts and timing problems affected diagnostic utility in 3/118 (2.5%) patients. Conclusion CESM is a feasible and accurate alternative for patients with MRI contraindications, but it is necessary to be aware of the method's technical limitations.

  8. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The quality of digital mammograms. Development and use of a phantom for optimal certainty

    International Nuclear Information System (INIS)

    Schoefer, H.; Kotsianos, D.; Wirth, S.; Britsch, S.; Reiser, M.

    2005-01-01

    Digital imaging in mammography is becoming more and more accepted using both computed (CR) and direct radiography (DR). These techniques will soon be used in screening programs. Therefore, quality assurance for this technique is indispensable. The relevance of the current regulations, such as EPOC and the German QS-RL was investigated. For the investigation, a breast phantom and appropriate software were developed. Both were tested using digital mammography systems from six manufactures. Quality assurance parameters (such as contrast to noise ratio and contrast resolution) were calculated from these data sets. The results should be considered in future standards for mammography (IEC respectively DIN). In addition, this type of test procedure is time saving and enables a reduction in test devices, i. e. in costs. (orig.) [de

  10. Analog and digital image quality:

    OpenAIRE

    Sardo, Alberto

    2004-01-01

    Background. Lastly the X ray facilities are moving to a slow, but continuous process of digitalization. The dry laser printers allow hardcopy images with optimum resolution and contrast for all the modalities. In breast imaging, thedelay of digitalization depends to the high cost of digital systems and, attimes, to the doubts of the diagnostic accuracy of reading the breast digital images. Conclusions. The Screen film mammography (SFM) is the most efficient diagnostic modality to detect the b...

  11. FROST: an ASIC for digital mammography with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergamaschi, A.; Prest, M.; Vallazza, E.; Arfelli, F.; Dreossi, D.; Longo, R.; Olivo, A.; Pani, S.; Castelli, E.

    2003-01-01

    The FRONTier RADiography (FRONTRAD) collaboration is developing a digital system for mammography at the Elettra Synchrotron Light Source in Trieste. The system is based on a silicon microstrip detector array. The ASIC FROST (FRONTRAD Read Out sySTem) was developed as a collaboration between INFN Trieste and Aurelia Microelettronica and is designed to operate in single photon counting mode. FROST provides low-noise and high-gain performances and is able to work at incident photon rates higher than 100 kHz with almost 100% efficiency. The ASIC has been tested and the first images of mammographic test objects will be shown. The acquisition time per breast image should be of about 10 s

  12. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems

    International Nuclear Information System (INIS)

    Bouwman, R; Broeders, M; Van Engen, R; Young, K; Lazzari, B; Ravaglia, V

    2009-01-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does not discriminate sufficiently between systems with and without additional noise besides quantum noise. This paper attempts to give an alternative and relatively simple method for noise analysis which can divide noise into electronic noise, structured noise and quantum noise. Quantum noise needs to be the dominant noise source in clinical images for optimal performance of a digital mammography system, and therefore the amount of electronic and structured noise should be minimal. For several digital mammography systems, the noise was separated into components based on the measured pixel value, standard deviation (SD) of the image and the detector entrance dose. The results showed that differences between systems exist. Our findings confirm that the proposed method is able to discriminate systems based on their noise performance and is able to detect possible quality problems. Therefore, we suggest to replace the current method for noise analysis as described in the European Guidelines by the alternative method described in this paper.

  13. Comparison of synthetic mammography, reconstructed from digital breast tomosynthesis, and digital mammography: evaluation of lesion conspicuity and BI-RADS assessment categories.

    Science.gov (United States)

    Mariscotti, Giovanna; Durando, Manuela; Houssami, Nehmat; Fasciano, Mirella; Tagliafico, Alberto; Bosco, Davide; Casella, Cristina; Bogetti, Camilla; Bergamasco, Laura; Fonio, Paolo; Gandini, Giovanni

    2017-12-01

    To compare the interpretive performance of synthetic mammography (SM), reconstructed from digital breast tomosynthesis (DBT), and full-field digital mammography (FFDM) in a diagnostic setting, covering different conditions of breast density and mammographic signs. A retrospective analysis was conducted on 231 patients, who underwent FFDM and DBT (from which SM images were reconstructed) between September 2014-September 2015. The study included 250 suspicious breast lesions, all biopsy proven: 148 (59.2%) malignant and 13 (5.2%) high-risk lesions were confirmed by surgery, 89 (35.6%) benign lesions had radiological follow-up. Two breast radiologists, blinded to histology, independently reviewed all cases. Readings were performed with SM alone, then with FFDM, collecting data on: probability of malignancy for each finding, lesion conspicuity, mammographic features and dimensions of detected lesions. Agreement between readers was good for BI-RADS classification (Cohen's k-coefficient = 0.93 ± 0.02) and for lesion dimension (Wilcoxon's p = 0.76). Visibility scores assigned to SM and FFDM for each lesion were similar for non-dense and dense breasts, however, there were significant differences (p = 0.0009) in distribution of mammographic features subgroups. SM and FFDM had similar sensitivities in non-dense (respectively 94 vs. 91%) and dense breasts (88 vs. 80%) and for all mammographic signs (93 vs. 87% for asymmetric densities, 96 vs. 75% for distortion, 92 vs. 85% for microcalcifications, and both 94% for masses). Based on all data, there was a significant difference in sensitivity for SM (92%) vs. FFDM (87%), p = 0.02, whereas the two modalities yielded similar results for specificity (SM: 60%, FFDM: 62%, p = 0.21). SM alone showed similar interpretive performance to FFDM, confirming its potential role as an alternative to FFDM in women having tomosynthesis, with the added advantage of halving the patient's dose exposure.

  14. Macromolecular contrast agents for MR mammography: current status

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Brasch, Robert C.

    2003-01-01

    Macromolecular contrast media (MMCM) encompass a new class of diagnostic drugs that can be applied with dynamic MRI to extract both physiologic and morphologic information in breast lesions. Kinetic analysis of dynamic MMCM-enhanced MR data in breast tumor patients provides useful estimates of tumor blood volume and microvascular permeability, typically increased in cancer. These tumor characteristics can be applied to differentiate benign from malignant lesions, to define the angiogenesis status of cancers, and to monitor tumor response to therapy. The most immediate challenge to the development of MMCM-enhanced mammography is the identification of those candidate compounds that demonstrate the requisite long intravascular distribution and have the high tolerance necessary for clinical use. Potential mammographic applications and limitations of various MMCM, defined by either experimental animal testing or clinical testing in patients, are reviewed in this article. (orig.)

  15. Optimization of contrast-enhanced spectral mammography depending on clinical indication.

    Science.gov (United States)

    Dromain, Clarisse; Canale, Sandra; Saab-Puong, Sylvie; Carton, Ann-Katherine; Muller, Serge; Fallenberg, Eva Maria

    2014-10-01

    The objective is to optimize low-energy (LE) and high-energy (HE) exposure parameters of contrast-enhanced spectral mammography (CESM) examinations in four different clinical applications for which different levels of average glandular dose (AGD) and ratios between LE and total doses are required. The optimization was performed on a Senographe DS with a SenoBright® upgrade. Simulations were performed to find the optima by maximizing the contrast-to-noise ratio (CNR) on the recombined CESM image using different targeted doses and LE image quality. The linearity between iodine concentration and CNR as well as the minimal detectable iodine concentration was assessed. The image quality of the LE image was assessed on the CDMAM contrast-detail phantom. Experiments confirmed the optima found on simulation. The CNR was higher for each clinical indication than for SenoBright®, including the screening indication for which the total AGD was 22% lower. Minimal iodine concentrations detectable in the case of a 3-mm-diameter round tumor were 12.5% lower than those obtained for the same dose in the clinical routine. LE image quality satisfied EUREF acceptable limits for threshold contrast. This newly optimized set of acquisition parameters allows increased contrast detectability compared to parameters currently used without a significant loss in LE image quality.

  16. Evaluation of the 1Shot Phantom dedicated to the mammography system using FCR

    International Nuclear Information System (INIS)

    Nagashima, Chieko; Uchiyama, Nachiko; Moriyama, Noriyuki; Nagata, Mio; Kobayashi, Hiroyuki; Sankoda, Katsuhiro; Saotome, Shigeru; Tagi, Masahiro; Kusunoki, Tetsurou

    2009-01-01

    Currently daily quality control (QC) tests for mammography systems are generally evaluated by using visual analysis phantoms, which of course means subjective measurement. In our study, however, we evaluated a novel digital phantom, the 1Shot Phantom M plus (1Shot Phantom), together with automatic analysis software dedicated for mammography systems using Fuji computed radiography (FCR). The digital phantom enables objective evaluation by providing for actual physical measurement rather than subjective visual assessment. We measured contrast to noise ratio (CNR), image receptor homogeneity, missed tissue at chest wall side, modulation transfer function (MTF), and geometric distortion utilizing the 1Shot Phantom. We then compared the values obtained using the 1Shot Phantom with values obtained from the European guidelines and International Electrotechnical Commission (IEC) standards. In addition, we evaluated the convenience of using the digital phantom. The values utilizing the 1Shot Phantom and those from the European guidelines and IEC standards were consistent, but the QC tests for the European guidelines and IEC standards methods took about six hours while the same QC tests using the 1Shot Phantom took 10 minutes or less including exposure of the phantom image, measurement, and analysis. In conclusion, the digital phantom and dedicated software proved very useful and produced improved analysis for mammography systems using FCR in clinical daily QC testing because of their objectivity and substantial time-saving convenience. (author)

  17. Breast Glandularity in Malaysian Women from a Full-Field Digital Mammography System

    International Nuclear Information System (INIS)

    Noriah Jamal; Humairah Samad Cheung; Siti Selina Abdul Hamid; Juliana Mahamad Napiah

    2014-01-01

    This study is undertaken to estimate breast glandularity in Malaysian women from a Full-Field Digital mammography System. This study involved 223 women (Malay=100;Chinese=101 and Indian=22) underwent voluntary screening mammography at Breast Centre, International Islamic University Malaysia (IIUM Breast Centre) for the first quarter of year 2009. Those are women aged between 31 to 69 years old (median age, 49 years). Data on miliampere-seconds, kilo voltage and compressed breast thickness for each cranio caudal view are used to estimate breast glandularity for an individual breast. Breast glandularity is calculated using the fitted equation reported earlier. The difference in breast glandularity among ethnic groups was tested for significance using the nonparametric Kruskal-Wallis test. The average breast glandularity estimated in our study, using FFDM system is 52.94±27.63 %. No significant difference was seen in breast glandularity among the ethnic groups (p>0.05, Kruskan Wallis test). Breast glandularity decrease as age increases, up to 60 years old. (author)

  18. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium.

    Science.gov (United States)

    Lehman, Constance D; Arao, Robert F; Sprague, Brian L; Lee, Janie M; Buist, Diana S M; Kerlikowske, Karla; Henderson, Louise M; Onega, Tracy; Tosteson, Anna N A; Rauscher, Garth H; Miglioretti, Diana L

    2017-04-01

    Purpose To establish performance benchmarks for modern screening digital mammography and assess performance trends over time in U.S. community practice. Materials and Methods This HIPAA-compliant, institutional review board-approved study measured the performance of digital screening mammography interpreted by 359 radiologists across 95 facilities in six Breast Cancer Surveillance Consortium (BCSC) registries. The study included 1 682 504 digital screening mammograms performed between 2007 and 2013 in 792 808 women. Performance measures were calculated according to the American College of Radiology Breast Imaging Reporting and Data System, 5th edition, and were compared with published benchmarks by the BCSC, the National Mammography Database, and performance recommendations by expert opinion. Benchmarks were derived from the distribution of performance metrics across radiologists and were presented as 50th (median), 10th, 25th, 75th, and 90th percentiles, with graphic presentations using smoothed curves. Results Mean screening performance measures were as follows: abnormal interpretation rate (AIR), 11.6 (95% confidence interval [CI]: 11.5, 11.6); cancers detected per 1000 screens, or cancer detection rate (CDR), 5.1 (95% CI: 5.0, 5.2); sensitivity, 86.9% (95% CI: 86.3%, 87.6%); specificity, 88.9% (95% CI: 88.8%, 88.9%); false-negative rate per 1000 screens, 0.8 (95% CI: 0.7, 0.8); positive predictive value (PPV) 1, 4.4% (95% CI: 4.3%, 4.5%); PPV2, 25.6% (95% CI: 25.1%, 26.1%); PPV3, 28.6% (95% CI: 28.0%, 29.3%); cancers stage 0 or 1, 76.9%; minimal cancers, 57.7%; and node-negative invasive cancers, 79.4%. Recommended CDRs were achieved by 92.1% of radiologists in community practice, and 97.1% achieved recommended ranges for sensitivity. Only 59.0% of radiologists achieved recommended AIRs, and only 63.0% achieved recommended levels of specificity. Conclusion The majority of radiologists in the BCSC surpass cancer detection recommendations for screening

  19. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  20. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    Science.gov (United States)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  1. Study of optimization in CR and DR digital mammography systems; Estudo da otimização em sistemas de mamografia digital CR e DR

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Alessandra M.M.M.; Poletti, Martin E. [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Departamento de Física; Tomal, Alessandra [Universidade de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Física Gleb Wataghin; Correia, Paula D. [MP Radioproteção, Uberlândia, MG (Brazil); Paciência, Renato D. [BrasilRad, Florianópolis, SC (Brazil); Silva, Marcia C. [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2017-07-01

    The advance of digital mammography in Brazil require revisiting optimization conditions. This work aimed to determine optimized radiographic technique for two detection systems (Computerized Radiography and Digital Radiography) in use in three mammography units: Mammomat 3000 Nova (Siemens), Senographe DMR (GE) and Senographe 2000D (GE). Optimization was conducted for different technique factors and breast phantom configurations, such as tube voltage settings (26 to 32 kV), target and filter combinations (Mo/Mo, Mo/Rh and Rh/Rh) and breast equivalent material in various thicknesses (2 to 8 cm), using a figure of merit (FOM) as a parameter. The target and filter combinations that provided the highest FOM values were Mo/Rh for Siemens equipment and Rh/Rh for both GE equipment, corresponding to the higher energy spectra in each unity. It was also observed an increasing tendency of tube voltage which maximizes FOM with the increase of thickness. (author)

  2. Comparison of the automated evaluation of phantom mama in digital and digitalized images

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2011-01-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  3. Radiologists' preferences for digital mammographic display. The International Digital Mammography Development Group.

    Science.gov (United States)

    Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R

    2000-09-01

    To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.

  4. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  5. Image Quality and Radiation Dose Assessment of a Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, N. M.; Hassan, W. M. S. W.; Abdullah, W. A. K. W.; Othman, F.; Ramli, A. A. M.

    2010-01-01

    Image quality and radiation dose of a direct amorphous selenium digital mammography system were considered in terms of contrast to noise ratio (CNR) and average glandular dose (AGD). They were measured for various qualities and breast phantom thicknesses with different types of breast tissue composition to determine optimal radiation quality and dose. Three sets of breast tissue equivalent slabs (30%:70%, 50%:50% and 70%:30% glandular-adipose) with thickness of 2 cm to 7 cm and 0.2 mm aluminum foil were used to provide certain CNR. Two different combinations of anode/ilter material and a wide range of tube voltages were employed for each phantom thickness. Phantom images with grid were acquired using automatic exposure control (AEC) mode for each thickness. Phantom images without grid were also obtained in manual exposure mode by selecting the same anode/filter combination and kVp as the image obtained with grid at the same thickness, but varying mAs of 10 to 200 mAs. Optimization indicated that relatively high energy beam qualities should be used with a greater dose to compensate for lower energy x-rays. The results also indicate that current AEC setting for a fixed detector is not optimal.

  6. Interval breast cancer characteristics before, during and after the transition from screen-film to full-field digital screening mammography.

    Science.gov (United States)

    van Bommel, Rob M G; Weber, Roy; Voogd, Adri C; Nederend, Joost; Louwman, Marieke W J; Venderink, Dick; Strobbe, Luc J A; Rutten, Matthieu J C; Plaisier, Menno L; Lohle, Paul N; Hooijen, Marianne J H; Tjan-Heijnen, Vivianne C G; Duijm, Lucien E M

    2017-05-05

    To determine the proportion of "true" interval cancers and tumor characteristics of interval breast cancers prior to, during and after the transition from screen-film mammography screening (SFM) to full-field digital mammography screening (FFDM). We included all women with interval cancers detected between January 2006 and January 2014. Breast imaging reports, biopsy results and breast surgery reports of all women recalled at screening mammography and of all women with interval breast cancers were collected. Two experienced screening radiologists reviewed the diagnostic mammograms, on which the interval cancers were diagnosed, as well as the prior screening mammograms and determined whether or not the interval cancer had been missed on the most recent screening mammogram. If not missed, the cancer was considered an occult ("true") interval cancer. A total of 442 interval cancers had been diagnosed, of which 144 at SFM with a prior SFM (SFM-SFM), 159 at FFDM with a prior SFM (FFDM-SFM) and 139 at FFDM with a prior FFDM (FFDM-FFDM). The transition from SFM to FFDM screening resulted in the diagnosis of more occult ("true") interval cancers at FFDM-SFM than at SFM-SFM (65.4% (104/159) versus 49.3% (71/144), P screened digitally for the second time (57.6% (80/139) at FFDM-FFDM versus 49.3% (71/144) at SFM-SFM). Tumor characteristics were comparable for the three interval cancer cohorts, except of a lower porportion (75.7 and 78.0% versus 67.2% af FFDM-FFDM, P cancers at FFDM with prior FFDM. An increase in the proportion of occult interval cancers is observed during the transition from SFM to FFDM screening mammography. However, this increase seems temporary and is no longer detectable after the second round of digital screening. Tumor characteristics and type of surgery are comparable for interval cancers detected prior to, during and after the transition from SFM to FFDM screening mammography, except of a lower proportion of invasive ductal cancers after the

  7. Comparison between breast MRI and contrast-enhanced spectral mammography.

    Science.gov (United States)

    Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy

    2015-05-12

    The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1-5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI.

  8. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    Science.gov (United States)

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  9. Contrast-enhanced spectral mammography: Does mammography provide additional clinical benefits or can some radiation exposure be avoided?

    Science.gov (United States)

    Fallenberg, Eva Maria; Dromain, Clarisse; Diekmann, Felix; Renz, Diane M; Amer, Heba; Ingold-Heppner, Barbara; Neumann, Avidan U; Winzer, Klaus J; Bick, Ulrich; Hamm, Bernd; Engelken, Florian

    2014-07-01

    The purpose of this study was to compare contrast-enhanced spectral mammography (CESM) with mammography (MG) and combined CESM + MG in terms of detection and size estimation of histologically proven breast cancers in order to assess the potential to reduce radiation exposure. A total of 118 patients underwent MG and CESM and had final histological results. CESM was performed as a bilateral examination starting 2 min after injection of iodinated contrast medium. Three independent blinded radiologists read the CESM, MG, and CESM + MG images with an interval of at least 4 weeks to avoid case memorization. Sensitivity and size measurement correlation and differences were calculated, average glandular dose (AGD) levels were compared, and breast densities were reported. Fisher's exact and Wilcoxon tests were performed. A total of 107 imaging pairs were available for analysis. Densities were ACR1: 2, ACR2: 45, ACR3: 42, and ACR4: 18. Mean AGD was 1.89 mGy for CESM alone, 1.78 mGy for MG, and 3.67 mGy for the combination. In very dense breasts, AGD of CESM was significantly lower than MG. Sensitivity across readers was 77.9 % for MG alone, 94.7 % for CESM, and 95 % for CESM + MG. Average tumor size measurement error compared to postsurgical pathology was -0.6 mm for MG, +0.6 mm for CESM, and +4.5 mm for CESM + MG (p < 0.001 for CESM + MG vs. both modalities). CESM alone has the same sensitivity and better size assessment as CESM + MG and was significantly better than MG with only 6.2 % increase in AGD. The combination of CESM + MG led to systematic size overestimation. When a CESM examination is planned, additional MG can be avoided, with the possibility of saving up to 61 % of radiation dose, especially in patients with dense breasts.

  10. Descriptive study of the quality control in mammography

    International Nuclear Information System (INIS)

    Gaona, E.; Perdigon C, G.M.; Casian C, G.A.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2005-01-01

    The goal of mammography is to provide contrast between a lesion that is possible residing within the breast and normal surrounding tissue. Quality control is essential for maintaining the contrast imaging performance of a mammography system and incorporate tests that are relevant in that they are predictive of future degradation of contrast imaging performance. These tests will also be done at frequency that is high enough to intercept most drifts in quality imaging or performance before they become diagnostically significant. The quality control study has as objective to describe the results of the assessment of quality imaging elements (film optical density, contrast (density difference), uniformity, resolution and noise) of 62 mammography departments without quality control program and comparison these results with a mammography reference department with a quality control program. When comparing the results they allow seeing the clinical utility of to have a quality control program to reduce the errors of mammography interpretation. (Author)

  11. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.

    Science.gov (United States)

    Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B

    2018-01-01

    To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p .90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.

  12. Teaching syllabus for radiological aspects of breast cancer screening with digital mammography

    International Nuclear Information System (INIS)

    Van Ongeval, C.; Van Steen, A.; Bosmans, H.

    2008-01-01

    The purpose of this study is to discuss the content of our new accreditation programme for radiologists' reading digital mammograms in a screening setting and to report our first experience with the new course. The course consisted of a theoretical part, given by the medical physicist, and a practical part given by the radiologist. The practical session is closely linked with the theoretical part and a reading session. The material is fully digital and can be presented on different platforms. In practice, the need for parallel soft-copy reading sessions on high-end workstations limits the number of participants. A high level of interactivity was noted between teacher and participant, with a thorough discussion of different digital mammography systems during a single teaching course. The main challenge for the teacher turned out to be the collection of representative material and the continuous updating of the material: new systems, processing techniques and artefacts need to be included regularly. (authors)

  13. Added Value of Contrast-Enhanced Spectral Mammography in Postscreening Assessment.

    Science.gov (United States)

    Tardivel, Anne-Marie; Balleyguier, Corinne; Dunant, Ariane; Delaloge, Suzette; Mazouni, Chafika; Mathieu, Marie-Christine; Dromain, Clarisse

    2016-09-01

    To assess the value on diagnostic and treatment management of contrast-enhanced spectral mammography (CESM), as adjunct to mammography (MG) and ultrasound (US) in postscreening in a breast cancer unit for patients with newly diagnosed breast cancer or with suspicious findings on conventional imaging. Retrospective review of routine use of bilateral CESM performed between September 2012 and September 2013 in 195 women with suspicious or undetermined findings on MG and/or US. CESM images were blindly reviewed by two radiologists for BI-RADS(®) assessment and probability of malignancy. Each lesion was definitely confirmed either with histopathology or follow-up. Two hundred and ninety-nine lesions were detected (221 malignant). CESM sensitivity, specificity, positive-predictive value and negative-predictive value were 94% (CI: 89-96%), 74% (CI: 63-83%), 91% (CI: 86-94%) and 81% (CI: 70-89%), respectively, with 18 false positive and 14 false negative. CESM changed diagnostic and treatment strategy in 41 (21%) patients either after detection of additional malignant lesions in 38 patients (19%)-with a more extensive surgery (n = 21) or neo-adjuvant chemotherapy (n = 1)-or avoiding further biopsy for 20 patients with negative CESM. CESM can be performed easily in a clinical assessment after positive breast cancer screening and may change significantly the diagnostic and treatment strategy through breast cancer staging. © 2016 Wiley Periodicals, Inc.

  14. Analysis of the imaging performance in indirect digital mammography detectors by linear systems and signal detection models

    International Nuclear Information System (INIS)

    Liaparinos, P.; Kalyvas, N.; Kandarakis, I.; Cavouras, D.

    2013-01-01

    Purpose: The purpose of this study was to provide an analysis of imaging performance in digital mammography, using indirect detector instrumentation, by combining the Linear Cascaded Systems (LCS) theory and the Signal Detection Theory (SDT). Observer performance was assessed, by examining frequently employed detectors, consisting of phosphor-based X-ray converters (granular Gd 2 O 2 S:Tb and structural CsI:Tl), coupled with the recently introduced complementary metal-oxide-semiconductor (CMOS) sensor. By applying combinations of various irradiation conditions (filter-target and exposure levels at 28 kV) on imaging detectors, our study aimed to find the optimum system set-up for digital mammography. For this purpose, the signal to noise transfer properties of the medical imaging detectors were examined for breast carcinoma detectability. Methods: An analytical model was applied to calculate X-ray interactions within software breast phantoms and detective media. Modeling involved: (a) three X-ray spectra used in digital mammography: 28 kV Mo/Mo (Mo: 0.030 mm), 28 kV Rh/Rh (Rh: 0.025 mm) and 28 kV W/Rh (Rh: 0.060 mm) at different entrance surface air kerma (ESAK) of 3 mGy and 5 mGy, (b) a 5 cm thick Perspex software phantom incorporating a small Ca lesion of varying size (0.1–1 cm), and (c) two 200 μm thick phosphor-based X-ray converters (Gd2O2S:Tb, CsI:Tl), coupled to a CMOS based detector of 22.5 μm pixel size. Results: Best (lowest) contrast threshold (CT) values were obtained with the combination: (i) W/Rh target-filter, (ii) 5 mGy (ESAK), and (iii) CsI:Tl-CMOS detector. For lesion diameter 0.5 cm the CT was found improved, in comparison to other anode/filter combinations, approximately 42% than Rh/Rh and 55% than Mo/Mo, for small sized carcinoma (0.1 cm) and approximately 50% than Rh/Rh and 125% than Mo/Mo, for big sized carcinoma (1 cm), considering 5 mGy X-ray beam. By decreasing lesion diameter and thickness, a limiting CT (100%) was occurred for size

  15. Image processing can cause some malignant soft-tissue lesions to be missed in digital mammography images.

    Science.gov (United States)

    Warren, L M; Halling-Brown, M D; Looney, P T; Dance, D R; Wallis, M G; Given-Wilson, R M; Wilkinson, L; McAvinchey, R; Young, K C

    2017-09-01

    To investigate the effect of image processing on cancer detection in mammography. An observer study was performed using 349 digital mammography images of women with normal breasts, calcification clusters, or soft-tissue lesions including 191 subtle cancers. Images underwent two types of processing: FlavourA (standard) and FlavourB (added enhancement). Six observers located features in the breast they suspected to be cancerous (4,188 observations). Data were analysed using jackknife alternative free-response receiver operating characteristic (JAFROC) analysis. Characteristics of the cancers detected with each image processing type were investigated. For calcifications, the JAFROC figure of merit (FOM) was equal to 0.86 for both types of image processing. For soft-tissue lesions, the JAFROC FOM were better for FlavourA (0.81) than FlavourB (0.78); this difference was significant (p=0.001). Using FlavourA a greater number of cancers of all grades and sizes were detected than with FlavourB. FlavourA improved soft-tissue lesion detection in denser breasts (p=0.04 when volumetric density was over 7.5%) CONCLUSIONS: The detection of malignant soft-tissue lesions (which were primarily invasive) was significantly better with FlavourA than FlavourB image processing. This is despite FlavourB having a higher contrast appearance often preferred by radiologists. It is important that clinical choice of image processing is based on objective measures. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  16. Digital breast tomosynthesis plus synthesised images versus standard full-field digital mammography in population-based screening (TOSYMA): protocol of a randomised controlled trial.

    Science.gov (United States)

    Weigel, Stefanie; Gerss, Joachim; Hense, Hans-Werner; Krischke, Miriam; Sommer, Alexander; Czwoydzinski, Jörg; Lenzen, Horst; Kerschke, Laura; Spieker, Karin; Dickmaenken, Stefanie; Baier, Sonja; Urban, Marc; Hecht, Gerold; Heidinger, Oliver; Kieschke, Joachim; Heindel, Walter

    2018-05-14

    Development of digital breast tomosynthesis (DBT) provides a technology that generates three-dimensional data sets, thus reducing the pitfalls of overlapping breast tissue. Observational studies suggest that the combination of two-dimensional (2D) digital mammography and DBT increases diagnostic accuracy. However, because of duplicate exposure, this comes at the cost of an augmented radiation dose. This undesired adverse impact can be avoided by using synthesised 2D images reconstructed from the DBT data (s2D).We designed a diagnostic superiority trial on a high level of evidence with the aim of providing a comparison of screening efficacy parameters resulting from DBT+s2D versus the current screening standard 2D full-field digital mammography (FFDM) in a multicentre and multivendor setting on the basis of the quality-controlled, population-based, biennial mammography screening programme in Germany. 80 000 women in the eligible age 50-69 years attending the routine mammography screening programme and willing to participate in the TOSYMA trial will be assigned by 1:1 randomisation to either the intervention arm (DBT+s2D) or the control arm (FFDM) during a 12-month recruitment period in screening units of North Rhine-Westphalia and Lower Saxony. State cancer registries will provide the follow-up of interval cancers.Primary endpoints are the detection rate of invasive breast cancers at screening examination and the cumulative incidence of interval cancers in the 2 years after a negative examination. Secondary endpoints are the detection rate of ductal carcinoma in situ and of tumour size T1, the recall rate for assessment, the positive predictive value of recall and the cumulative 12-month incidence of interval cancers. An adaptive statistical design with one interim analysis provides the option to modify the design. This protocol has been approved by the local medical ethical committee (2016-132-f-S). Results will be submitted to international peer

  17. Quantitative dynamic MR-mammography for diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Klengel, S.; Hietschold, V.; Koehler, K.

    1997-01-01

    Problems of screening X-mammography are mainly the so-called 'dense breast', the postoperative status and suspect focal densities. Contrast enhanced MRI was hoped to further improve diagnostic specificity. Unfortunately, contrast enhancement appears in an overlapping manner in both malignant and benign lesions. A restrospective parameter analysis of dynamic early and late phase contrast enhancement showed a threshold based on a linear combination of early and late phase parameters best suited for lesion characterisation. In a prospective study this threshold offered a high specificity without loss of sensitivity in classification of suspect densities. A reduction of unnecessary operations should be possible in future relevant exclusion criteria. (orig.)

  18. Normalized Noise Power Spectrum of Full Field Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan

    2010-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.

  19. X-ray imaging using amorphous selenium: a photoinduced discharge readout method for digital mammography.

    Science.gov (United States)

    Rowlands, J A; Hunter, D M; Araj, N

    1991-01-01

    A new digital image readout method for electrostatic charge images on photoconductive plates is described. The method can be used to read out images on selenium plates similar to those used in xeromammography. The readout method, called the air-gap photoinduced discharge method (PID), discharges the latent image pixel by pixel and measures the charge. The PID readout method, like electrometer methods, is linear. However, the PID method permits much better resolution than scanning electrometers while maintaining quantum limited performance at high radiation exposure levels. Thus the air-gap PID method appears to be uniquely superior for high-resolution digital imaging tasks such as mammography.

  20. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  1. Experimental test of a new technique of background suppression in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G.; Bottari, S.; Ciocci, M.A.; Fantacci, M.E.; Maestro, P.; Malakhov, N.; Marrocchesi, P.S. E-mail: marrocchesi@pi.infn.it; Novelli, M.; Quattrocchi, M.; Pilo, F.; Rosso, V.; Turini, N.; Zucca, S

    2002-02-01

    A multiple-exposure technique in digital mammography has been developed to suppress the physical background in the image due to Compton scattering in the body. A pair of X-ray masks, shaped in a projective geometry and positioned upstream and downstream the patient, are coupled mechanically and moved in four steps along a square pattern in order to irradiate the full area in four consecutive short exposures. A proof-of-principle apparatus is under test with a breast phantom and a standard mammographic X-ray unit. Results are reported.

  2. Experimental test of a new technique of background suppression in digital mammography

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Bottari, S.; Ciocci, M.A.; Fantacci, M.E.; Maestro, P.; Malakhov, N.; Marrocchesi, P.S.; Novelli, M.; Quattrocchi, M.; Pilo, F.; Rosso, V.; Turini, N.; Zucca, S.

    2002-01-01

    A multiple-exposure technique in digital mammography has been developed to suppress the physical background in the image due to Compton scattering in the body. A pair of X-ray masks, shaped in a projective geometry and positioned upstream and downstream the patient, are coupled mechanically and moved in four steps along a square pattern in order to irradiate the full area in four consecutive short exposures. A proof-of-principle apparatus is under test with a breast phantom and a standard mammographic X-ray unit. Results are reported

  3. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Franco E, J.G. [UAM-Xochimilco, 04960 Mexico D.F. (Mexico); Azorin N, J. [UAM-Iztapalapa, 09340 Mexico D.F. (Mexico); Diaz G, J.A.I. [CICATA, Unidad Legaria, Av. Legaria 694, 11599 mexico D.F. (Mexico); Arreola, M. [Department of Radiology, Shands Hospital at UF, PO Box 100374, Gainesville, FL 32610-0374 (United States)

    2006-07-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  4. Thermoluminescence dosimetry in quality imaging in CR mammography systems

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2006-01-01

    The aim of this work is to estimate the average glandular dose with Thermoluminescence Dosimetry (TLD) and comparison with quality imaging in CR mammography. For measuring dose, FDA and ACR use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, Full Field Digital Mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one CR mammography system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium fluoro halide. We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated x-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose that overcomes 3.0 mGy and it doesn't improve the image quality and dose to the breast will be excessive. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement. (Author)

  5. Digital mammography: Signal-extraction strategies for computer-aided detection of microcalcifications

    International Nuclear Information System (INIS)

    Chan, H.P.; Doi, K.; Metz, C.E.; Vyborny, C.J.; Lam, K.L.; Schmidt, R.A.

    1987-01-01

    The authors found that the structured background of a mammogram can be removed effectively by either a difference-image technique (using a matched filter in combination with a median filter, a contrast-reversal filter, or a box-rim filter) or a visual response filter alone. Locally adaptive gray-level thresholding and region-growing techniques can then be employed to extract microcalcifications from the processed image. Signals are further distinguished from noise or artifacts by their size, contrast, and clustering properties. The authors studied the dependence of the detectability of microcalcifications on the various signal-extraction strategies. Potential application of the computer-aided system to mammography is assessed by its performance on clinical mammograms

  6. Consequences of digital mammography in population-based breast cancer screening: initial changes and long-term impact on referral rates

    Energy Technology Data Exchange (ETDEWEB)

    Bluekens, Adriana M.J. [National Expert and Training Centre for Breast Cancer Screening, Nijmegen (Netherlands); St. Elisabeth Hospital, Department of Radiology, Tilburg (Netherlands); Karssemeijer, Nico [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Beijerinck, David; Deurenberg, Jan J.M. [Preventicon Screening Centre/Mid-West, Utrecht (Netherlands); Engen, Ruben E. van [National Expert and Training Centre for Breast Cancer Screening, Nijmegen (Netherlands); Broeders, Mireille J.M. [National Expert and Training Centre for Breast Cancer Screening, Nijmegen (Netherlands); Radboud University Nijmegen Medical Centre, Department of Epidemiology, Biostatistics and HTA, Nijmegen (Netherlands); Heeten, Gerard J. den [National Expert and Training Centre for Breast Cancer Screening, Nijmegen (Netherlands); Academic Medical Centre (AMC), Department of Radiology, Amsterdam (Netherlands)

    2010-09-15

    To investigate the referral pattern after the transition to full-field digital mammography (FFDM) in a population-based breast cancer screening programme. Preceding the nationwide digitalisation of the Dutch screening programme, an FFDM feasibility study was conducted. Detection and referral rates for FFDM and screen-film mammography (SFM) were compared for first and subsequent screens. Furthermore, radiological characteristics of referrals in digital screening were assessed. A total of 312,414 screening mammograms were performed (43,913 digital and 268,501 conventional), with 4,473 consecutive referrals (966 following FFDM). Initially the FFDM referral rate peaked, and many false-positive results were noted as a consequence of pseudolesions and increased detection of (benign) microcalcifications. A higher overall referral rate was observed in FFDM screening in both first and subsequent examinations (p <.001), with a significant increase in cancer detection (p =.010). As a result of initial inexperience with digital screening images implementing FFDM in a population-based breast cancer screening programme may lead to a strong, but temporary increase in referral. Dedicated training in digital screening for radiographers and screening radiologists is therefore recommended. Referral rates decrease and stabilise (learning curve effect) at a higher level than in conventional screening, yet with significantly enhanced cancer detection. (orig.)

  7. Consequences of digital mammography in population-based breast cancer screening: initial changes and long-term impact on referral rates.

    Science.gov (United States)

    Bluekens, Adriana M J; Karssemeijer, Nico; Beijerinck, David; Deurenberg, Jan J M; van Engen, Ruben E; Broeders, Mireille J M; den Heeten, Gerard J

    2010-09-01

    To investigate the referral pattern after the transition to full-field digital mammography (FFDM) in a population-based breast cancer screening programme. Preceding the nationwide digitalisation of the Dutch screening programme, an FFDM feasibility study was conducted. Detection and referral rates for FFDM and screen-film mammography (SFM) were compared for first and subsequent screens. Furthermore, radiological characteristics of referrals in digital screening were assessed. A total of 312,414 screening mammograms were performed (43,913 digital and 268,501 conventional), with 4,473 consecutive referrals (966 following FFDM). Initially the FFDM referral rate peaked, and many false-positive results were noted as a consequence of pseudolesions and increased detection of (benign) microcalcifications. A higher overall referral rate was observed in FFDM screening in both first and subsequent examinations (p < .001), with a significant increase in cancer detection (p = .010). As a result of initial inexperience with digital screening images implementing FFDM in a population-based breast cancer screening programme may lead to a strong, but temporary increase in referral. Dedicated training in digital screening for radiographers and screening radiologists is therefore recommended. Referral rates decrease and stabilise (learning curve effect) at a higher level than in conventional screening, yet with significantly enhanced cancer detection.

  8. Consequences of digital mammography in population-based breast cancer screening: initial changes and long-term impact on referral rates

    International Nuclear Information System (INIS)

    Bluekens, Adriana M.J.; Karssemeijer, Nico; Beijerinck, David; Deurenberg, Jan J.M.; Engen, Ruben E. van; Broeders, Mireille J.M.; Heeten, Gerard J. den

    2010-01-01

    To investigate the referral pattern after the transition to full-field digital mammography (FFDM) in a population-based breast cancer screening programme. Preceding the nationwide digitalisation of the Dutch screening programme, an FFDM feasibility study was conducted. Detection and referral rates for FFDM and screen-film mammography (SFM) were compared for first and subsequent screens. Furthermore, radiological characteristics of referrals in digital screening were assessed. A total of 312,414 screening mammograms were performed (43,913 digital and 268,501 conventional), with 4,473 consecutive referrals (966 following FFDM). Initially the FFDM referral rate peaked, and many false-positive results were noted as a consequence of pseudolesions and increased detection of (benign) microcalcifications. A higher overall referral rate was observed in FFDM screening in both first and subsequent examinations (p <.001), with a significant increase in cancer detection (p =.010). As a result of initial inexperience with digital screening images implementing FFDM in a population-based breast cancer screening programme may lead to a strong, but temporary increase in referral. Dedicated training in digital screening for radiographers and screening radiologists is therefore recommended. Referral rates decrease and stabilise (learning curve effect) at a higher level than in conventional screening, yet with significantly enhanced cancer detection. (orig.)

  9. MO-FG-CAMPUS-IeP1-02: Dose Reduction in Contrast-Enhanced Digital Mammography Using a Photon-Counting Detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Kang, S; Eom, J [Konyang University, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions included in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.

  10. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  11. A calibration approach to glandular tissue composition estimation in digital mammography

    International Nuclear Information System (INIS)

    Kaufhold, J.; Thomas, J.A.; Eberhard, J.W.; Galbo, C.E.; Trotter, D.E. Gonzalez

    2002-01-01

    The healthy breast is almost entirely composed of a mixture of fatty, epithelial, and stromal tissues which can be grouped into two distinctly attenuating tissue types: fatty and glandular. Further, the amount of glandular tissue is linked to breast cancer risk, so an objective quantitative analysis of glandular tissue can aid in risk estimation. Highnam and Brady have measured glandular tissue composition objectively. However, they argue that their work should only be used for 'relative' tissue measurements unless a careful calibration has been performed. In this work, we perform such a 'careful calibration' on a digital mammography system and use it to estimate breast tissue composition of patient breasts. We imaged 0%, 50%, and 100% glandular-equivalent phantoms of varying thicknesses for a number of clinically relevant x-ray techniques on a digital mammography system. From these images, we extracted mean signal and noise levels and computed calibration curves that can be used for quantitative tissue composition estimation. In this way, we calculate the percent glandular composition of a patient breast on a pixelwise basis. This tissue composition estimation method was applied to 23 digital mammograms. We estimated the quantitative impact of different error sources on the estimates of tissue composition. These error sources include compressed breast height estimation error, residual scattered radiation, quantum noise, and beam hardening. Errors in the compressed breast height estimate contribute the most error in tissue composition--on the order of ±7% for a 4 cm compressed breast height. The spatially varying scattered radiation will contribute quantitatively less error overall, but may be significant in regions near the skinline. It is calculated that for a 4 cm compressed breast height, a residual scatter signal error is mitigated by approximately sixfold in the composition estimate. The error in composition due to the quantum noise, which is the limiting

  12. Evaluation of average glandular dose in digital and conventional systems of the mammography; Avaliacao da dose glandular media em sistemas digitais e convencionais de mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Aline C.S.; Barros, Vinicius S.M.; Khoury, Hellen J., E-mail: alinecx90@gmail.com, E-mail: vsmdbarros@gmail.com, E-mail: hjkhoury@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Mello, Francisca A. de, E-mail: francissamello@yahoo.com.br [Hospital das Clinicas do Recife (HCR/UFPE), PE (Brazil)

    2014-07-01

    Mammography is currently the most effective method of diagnosis and detection of breast pathologies. The main interest in this kid of exam comes from the high incidence rate of breast cancer and necessity of high quality images for accurate diagnosis. Digital mammography systems have several advantages compared to conventional systems, however the use of digital imaging systems is not always integrated to an image acquisition protocol. Therefore, it is questionable if digital systems truly reduce the dose received by the patient, because many times is introduced in the clinics without optimization of the image acquisition protocols. The aim of this study is to estimate the value of incident air Kerma and average glandular dose (AGD) in patients undergoing conventional and digital mammography systems in Recife. This study was conducted with 650 patients in three hospitals. The value of incident air Kerma was estimated from the measurement of the yield of equipment and irradiation parameters used for each patient. From these results and using the methodology proposed by Dance et al. the value of the average glandular dose was calculated. The results obtained show that the lowest value of AGD was found with conventional screen-film system, indicating that the parameters for image acquisition with digital systems are not optimized. It was also observed that the institutions with digital systems use lower breast compression values than the conventional. (author)

  13. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging

    International Nuclear Information System (INIS)

    Gong Xing; Glick, Stephen J.; Liu, Bob; Vedula, Aruna A.; Thacker, Samta

    2006-01-01

    Although conventional mammography is currently the best modality to detect early breast cancer, it is limited in that the recorded image represents the superposition of a three-dimensional (3D) object onto a 2D plane. Recently, two promising approaches for 3D volumetric breast imaging have been proposed, breast tomosynthesis (BT) and CT breast imaging (CTBI). To investigate possible improvements in lesion detection accuracy with either breast tomosynthesis or CT breast imaging as compared to digital mammography (DM), a computer simulation study was conducted using simulated lesions embedded into a structured 3D breast model. The computer simulation realistically modeled x-ray transport through a breast model, as well as the signal and noise propagation through a CsI based flat-panel imager. Polyenergetic x-ray spectra of Mo/Mo 28 kVp for digital mammography, Mo/Rh 28 kVp for BT, and W/Ce 50 kVp for CTBI were modeled. For the CTBI simulation, the intensity of the x-ray spectra for each projection view was determined so as to provide a total average glandular dose of 4 mGy, which is approximately equivalent to that given in conventional two-view screening mammography. The same total dose was modeled for both the DM and BT simulations. Irregular lesions were simulated by using a stochastic growth algorithm providing lesions with an effective diameter of 5 mm. Breast tissue was simulated by generating an ensemble of backgrounds with a power law spectrum, with the composition of 50% fibroglandular and 50% adipose tissue. To evaluate lesion detection accuracy, a receiver operating characteristic (ROC) study was performed with five observers reading an ensemble of images for each case. The average area under the ROC curves (A z ) was 0.76 for DM, 0.93 for BT, and 0.94 for CTBI. Results indicated that for the same dose, a 5 mm lesion embedded in a structured breast phantom was detected by the two volumetric breast imaging systems, BT and CTBI, with statistically

  14. Generalized phase contrast:

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast...

  15. WE-DE-207B-01: Optimization for Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of optimizing the imaging parameters for contrast-enhanced spectral mammography based on Si strip photon-counting detectors. Methods: A computer simulation model using polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector was evaluated for contrast-enhanced spectral mammography. The simulation traces the emission of photons from the x-ray source, attenuation through the breast and subsequent absorption in the detector. The breast was modeled as a mixture of adipose and mammary gland tissues with a breast density of 30%. A 4 mm iodine signal with a concentration of 4 mg/ml was used to simulate the enhancement of a lesion. Quantum efficiency of the detector was calculated based on the effective attenuation length in the Si strips. The figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and pre-filtrations for breast of various thicknesses and densities. Results: The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy of 45 kVp with a splitting energy at 34 keV for an averaged breast thickness of 4 cm with a standard 0.75 mm Al pre-filtration. The optimal tube voltage varied slightly from 46 to 44 kVp as the breast thickness increases from 2 to 8 cm. The optimal tube voltage decreased to 42 kVp when the Al pre-filtration was increased to 3 mm. Conclusion: This simulation study predicted the optimal imaging parameters for application of photon-counting spectral mammography to contrast-enhanced imaging. The simulation results laid the ground work for future phantom and clinical studies. Grant funding from Philips Medical Systems.

  16. Digital spot mammography using an add-on upright unit: diagnostic application in daily practice

    International Nuclear Information System (INIS)

    Mesurolle, Benoit; Mignon, Francois; Ariche-Cohen, Michele; Kao, Ellen; Gagnon, Jean H.; Goumot, Pierre-Alain

    2004-01-01

    Introduction: To present the use of digital spot mammography (DSM) in a diagnostic practice. Methods and patients: Digital spot images of 779 women requiring a spot compression or a spot magnification view were collected. The digital images were acquired on a digital spot upright unit using a 61 mmx61 mm field of view. Lesions reported included masses, calcifications, and areas of distortions. Results: 1065 lesions required additional views with DSM. Lesions reported included masses (n=113), masses and microcalcifications (n=53), spiculated masses (n=34), architectural distortions (n=16), and microcalcifications (n=849). DSMs were considered to be adequate in 97.7% of patients. Unsatisfactory exams resulted from difficulties encountered in targeting the area of interest at the beginning of our experience. Conclusion: DSM, most commonly used to perform interventional procedures, can also be used in a diagnostic practice taking advantage of post-processing of images not available with conventional spot compression and magnification

  17. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element.

    Science.gov (United States)

    Zhang, Yuchao; Xie, Changqing

    2015-11-01

    Both digital in-line holography (DIH) and zone plate-based microscopy have received considerable interest as powerful imaging tools. However, the former suffers from a twin-image noise problem. The latter suffers from low efficiency and difficulty in fabrication. Here, we present an effective and efficient phase-contrast imaging approach, named differential-interference-contrast digital in-line holography (DIC-DIH), by using a single optical element to split the incident light into a plane wave and a converging spherical wave and generate a two-dimensional (2D) DIC effect simultaneously. Specifically, to improve image contrast, we present a new single optical element, termed 2D DIC compound photon sieves, by combining two overlaid binary gratings and a compound photon sieve through two logical XOR operations. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem and improve image contrast with high efficiency. Additionally, we present an example of the phase-contrast imaging nonuniform thick photoresist development process.

  18. Normalized noise power spectrum of full field digital mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (Author)

  19. Suitability of new anode materials in mammography: Dose and subject contrast considerations using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2006-01-01

    Mammography is the technique with the highest sensitivity and specificity, for the early detection of nonpalpable lesions associated with breast cancer. As screening mammography refers to asymptomatic women, the task of optimization between the image quality and the radiation dose is critical. A way toward optimization could be the introduction of new anode materials. A method for producing the x-ray spectra of different anode/filter combinations is proposed. The performance of several mammographic spectra, produced by both existing and theoretical anode materials, is evaluated, with respect to their dose and subject contrast characteristics, using a Monte Carlo simulation.The mammographic performance is evaluated utilizing a properly designed mathematical phantom with embedded inhomogeneities, irradiated with different spectra, based on combinations of conventional and new (Ru, Ag) anode materials, with several filters (Mo, Rh, Ru, Ag, Nb, Al). An earlier developed and validated Monte Carlo model, for deriving both image and dose characteristics in mammography, was utilized and overall performance results were derived in terms of subject contrast to dose ratio and squared subject contrast to dose ratio. Results demonstrate that soft spectra, mainly produced from Mo, Rh, and Ru anodes and filtered with k-edge filters, provide increased subject contrast for inhomogeneities of both small size, simulating microcalcifications and low density, simulating masses. The harder spectra (W and Ag anode) come short in the discrimination task but demonstrate improved performance when considering the dose delivered to the breast tissue. As far as the overall performance is concerned, new theoretical spectra demonstrate a noticeable good performance that is similar, and in some cases better compared to commonly used systems, stressing the possibility of introducing new materials in mammographic practice as a possible contribution to its optimization task. In the overall

  20. Computer-aided classification of breast masses using contrast-enhanced digital mammograms

    Science.gov (United States)

    Danala, Gopichandh; Aghaei, Faranak; Heidari, Morteza; Wu, Teresa; Patel, Bhavika; Zheng, Bin

    2018-02-01

    By taking advantages of both mammography and breast MRI, contrast-enhanced digital mammography (CEDM) has emerged as a new promising imaging modality to improve efficacy of breast cancer screening and diagnosis. The primary objective of study is to develop and evaluate a new computer-aided detection and diagnosis (CAD) scheme of CEDM images to classify between malignant and benign breast masses. A CEDM dataset consisting of 111 patients (33 benign and 78 malignant) was retrospectively assembled. Each case includes two types of images namely, low-energy (LE) and dual-energy subtracted (DES) images. First, CAD scheme applied a hybrid segmentation method to automatically segment masses depicting on LE and DES images separately. Optimal segmentation results from DES images were also mapped to LE images and vice versa. Next, a set of 109 quantitative image features related to mass shape and density heterogeneity was initially computed. Last, four multilayer perceptron-based machine learning classifiers integrated with correlationbased feature subset evaluator and leave-one-case-out cross-validation method was built to classify mass regions depicting on LE and DES images, respectively. Initially, when CAD scheme was applied to original segmentation of DES and LE images, the areas under ROC curves were 0.7585+/-0.0526 and 0.7534+/-0.0470, respectively. After optimal segmentation mapping from DES to LE images, AUC value of CAD scheme significantly increased to 0.8477+/-0.0376 (pbreast tissue on lesions, segmentation accuracy was significantly improved as compared to regular mammograms, the study demonstrated that computer-aided classification of breast masses using CEDM images yielded higher performance.

  1. Use of prior mammograms in the transition to digital mammography: A performance and cost analysis

    International Nuclear Information System (INIS)

    Taylor-Phillips, S.; Wallis, M.G.; Duncan, A.; Gale, A.G.

    2012-01-01

    Breast screening in Europe is gradually changing from film to digital imaging and reporting of cases. In the transition period prior mammograms (from the preceding screening round) are films thereby potentially causing difficulties in comparison to current digital mammograms. To examine this breast screening performance was measured at a digital mammography workstation with prior mammograms displayed in different formats, and the associated costs calculated. 160 selected difficult cases (41% malignant) were read by eight UK qualified mammography readers in three conditions: with film prior mammograms; with digitised prior mammograms; or without prior mammograms. Lesion location and probability of malignancy were recorded, alongside a decision of whether to recall each case for further tests. JAFROC analysis showed a difference between conditions (p = .006); performance with prior mammograms in either film or digitised formats was superior to that without prior mammograms (p < .05). There was no difference in the performance when the prior mammograms were presented in film or digitised form. The number of benign or normal cases recalled was 26% higher without prior mammograms than with digitised or film prior mammograms (p < .05). This would correspond to an increase in recall rate at the study hospital from 4.3% to 5.5% with no associated increase in cancer detection rate. The cost of this increase was estimated to be £11,581 (€13,666) per 10,000 women screened, which is higher than the cost of digitised (£11,114/€13,115), or film display (£6451/€7612) of the prior mammograms. It is recommended that, where available, prior mammograms are used in the transition to digital breast screening.

  2. Quality control for the mammography screening program in Serbia: Physical and technical aspects

    International Nuclear Information System (INIS)

    Ciraj-Bjelac, O.; Bozovic, P.; Lazarevic, D.; Arandjic, D.; Kosutic, D.

    2012-01-01

    Breast cancer is the major cause of mortality among female population in Serbia. It is presumed that the introduction of screening programme will reduce mortality and therefore, 47 new mammography units were installed for the purpose of population-based screening program in 2011. In parallel, Quality assurance and Quality control (QC) in mammography has received increasing attention as an essential element of the successful breast cancer campaign that is for the first time initialed in Serbia. The purpose of this study is to investigate the need for and the possible implementation of the comprehensive QC programme for the mammography screening in Serbia, with special focus on physical and technical aspect. In the first phase, a QC protocols containing list of parameters, methodology, frequency of tests and reference values for screen-film, computed radiography and full-filed digital mammography) units, were developed. The second phase is focused on the initial implementation of these protocols. The paper presents results of tests of the selected parameters in 35 mammography units, with special emphasis on patient dose and image quality descriptors. After initial implementation at the beginning of the population based breast cancer screening campaign, it is essential to establish system of regular and periodic QC equipment monitoring and to ensure high quality mammograms with minimal possible radiation dose to population included in the screening. (authors)

  3. Surveillance of Women with the BRCA1 or BRCA2 Mutation by Using Biannual Automated Breast US, MR Imaging, and Mammography

    NARCIS (Netherlands)

    Zelst, J.C.M. van; Mus, R.D.M.; Woldringh, G.H.; Rutten, M.; Bult, P.; Vreemann, S.; Jong, M de; Karssemeijer, N.; Hoogerbrugge, N.; Mann, R.M.

    2017-01-01

    Purpose To evaluate a multimodal surveillance regimen including yearly full-field digital (FFD) mammography, dynamic contrast agent-enhanced (DCE) magnetic resonance (MR) imaging, and biannual automated breast (AB) ultrasonography (US) in women with BRCA1 and BRCA2 mutations. Materials and Methods

  4. Development of techniques and methods for evaluation of quality of scanned image in mammography

    International Nuclear Information System (INIS)

    Carmo Santana, P. do; Nogueira, M.S.

    2008-01-01

    Cancer is the second cause of death in the Brazilian female population and breast cancer is the most frequent neoplasm amongst women. Mammography is an essential tool for diagnosis and early detection of this disease. In order to be effective, the mammography must be of good quality. The Brazilian College of Radiology (CBR), the National Agency for Health Surveillance (ANVISA) and international bodies recommend standards of practice for mammography. Due to the risk of ionizing radiation, techniques that minimize dose and optimize image quality are essential to ensure that all women are submitted to mammography procedures of high quality for the detection of breast cancer. In this research were analyzed components of the image treatment via digital and developed methods and techniques of analysis aiming the detection of structures for medical diagnosis, decreasing variations due to subjectivity. It used free software Image J, to make the evaluations of the information contained in the scanned images. We use the scanned images of calibration of a simulated breast to calibrate the program Image J. Thus, it was able to correctly convert the values of the scale of shades of gray in optical density values of presenting the standard deviation for each measure held. Applying the test t-student noticed that the values obtained with the digital system to the level of contrast and spatial resolution are consistent with the results obtained so subjective, since there was no significant difference (p <0.05) for all comparisons evaluated. Since then, this methodology is recommended in routine evaluations of services of mammography. (author)

  5. Influence of different anode/filter combination on radiation dose and image quality in digital mammography

    International Nuclear Information System (INIS)

    Liu Jie; Liu Peifang; Zhang Lianlian; Ma Wenjuan

    2013-01-01

    Objective: To explore the effect of different anode/filter combination on radiation dose and image quality in digital mammography, so as to choose optimal anode/filter combination to reduce radiation injury without scarifying image quality. Methods: Mammography accredition phantoms with the thickness from 1.6 cm to 8.6 cm were used to simulate human breast tissue. The same exposure conditions, pressure, compression thickness. and different anode/filter combination were employed under the automatic and manual exposure modes. The image kV, mAs, pressure, filter, average glandular dose (ACD), contrast to noise ratio (CNR) were recorded and the figure of merit (FOM) was calculated. SPSS 17.0 and one-way analysis of variance were used in the statistical analysis. Results: As the phantom thickness increase, the ACD values which were acquired with Mo/Mo, Mo/Rh, and W/Ag three different anode/filter combinations were increased, but CNR and FOM values were decreased, ACD, CNR, and FOM values which were acquired in the phantom with different thickness, and three different anode/filter combinations were statistically different (P=0.000, respectively). The ACD values of Mo/Mo were lowest. For 1.6 cm-2.6 cm phantom thicknesses, the FOMs of Mo/Rh were lowest, and for 3.6 cm-8.6 cm phantom thicknesses, the FOMs of W/Ag were lowest. Conclusion: Phantom thickness in 1.6 cm-2.6 cm and 3.6 cm-8.6 cm. Mo/Rh combination and W/Ag combination respectively can achieve the highest FOM, and can provide the best imaging quality with low radiation dose. (authors)

  6. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems.

    NARCIS (Netherlands)

    Bouwman, R.; Young, K.; Lazzari, B.; Ravaglia, V.; Broeders, M.J.M.; Engen, R. van

    2009-01-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does

  7. [Comparison of dignity determination of mammographic microcalcification with two systems for digital full-field mammography with different detector resolution: a retrospective clinical study].

    Science.gov (United States)

    Schulz-Wendtland, R; Hermann, K-P; Adamietz, B; Meier-Meitinger, M; Wenkel, E; Lell, M; Anders, K; Uder, M

    2011-02-01

    The aim of this retrospective clinical study was to compare the diagnostic accuracy of the novel 50 µm FFDM (full-field digital mammography) system (DR) with an established 70 µm system (DR) in the differential diagnosis between benign and malignant clusters of microcalcification (n=50) (BI-RADS™ classification 4/5) and to assess the possible incremental value of the 50 µm pixel-pitch on specificity. From March 2009 to September 2009, 50 patients underwent full-field digital mammography (FFDM) (detector resolution 70 µm) (Novation, Siemens, Erlangen, Germany). As there were suspicious signs of microcalcification classified with BI-RADS™ 4/5 after diagnosis and preoperative wire localization, control images were made with the new FFDM system (detector: resolution 50 µm) (Amulet, Fujifilm, Tokyo, Japan) with the same exposure parameters. The diagnosis was determined after the operation by five radiologists with different experience in digital mammography from randomly distributed mediolateral views (monitor reading) whose results were correlated with the final histology of all lesions. Histopathology revealed 19 benign and 31 malignant lesions in 50 patients after open biopsy. The results of the five readers showed a higher sensitivity of the new FFDM system (80.0%) in the ability to recognize malignant microcalcification in comparison to the established system (74.8%). The specificity (75.8 versus 71.6%) was slightly higher for the new system but these results were not statistically significant (pdetector: resolution 50 µm) was also slightly superior to the well-known system (detector: resolution 70 µm) (80.1% versus 76.4%). Our study has shown that the new full-field digital mammography system using the novel detector compared with the already established FFDM system with respect to the assessment of microcalcification is at least equivalent.

  8. Correlation between blood and lymphatic vessel density and results of contrast-enhanced spectral mammography.

    Science.gov (United States)

    Luczynska, Elzbieta; Niemiec, Joanna; Ambicka, Aleksandra; Adamczyk, Agnieszka; Walasek, Tomasz; Ryś, Janusz; Sas-Korczyńska, Beata

    2015-09-01

    Contrast-enhanced spectral mammography (CESM) is a novel technique used for detection of tumour vascularity by imaging the moment in which contrast, delivered to the lesion by blood vessels, leaks out of them, and flows out through lymphatic vessels. In our study, we included 174 women for whom spectral mammography was performed for diagnostic purposes. The relationship between enhancement in CESM and blood vessel density (BVD), lymphatic vessel density (LVD) or the percentage of fields with at least one lymphatic vessel (distribution of podoplanin-positive vessels - DPV) and other related parameters was assessed in 55 cases. BVD, LVD and DPV were assessed immunohistochemically, applying podoplanin and CD31/CD34 as markers of lymphatic and blood vessels, respectively. The sensitivity (in detection of malignant lesions) of CESM was 100%, while its specificity - 39%. We found a significant positive correlation between the intensity of enhancement in CESM and BVD (p = 0.007, r = 0.357) and a negative correlation between the intensity of enhancement in CESM and DPV (p = 0.003, r = -0.390). Lesions with the highest enhancement in CESM showed a high number of blood vessels and a low number of lymphatics. 1) CESM is a method characterized by high sensitivity and acceptable specificity; 2) the correlation between CESM results and blood/lymphatic vessel density confirms its utility in detection of tissue angiogenesis and/or lymphangiogenesis.

  9. Does digital mammography suppose an advance in early diagnosis? Trends in performance indicators 6 years after digitalization.

    Science.gov (United States)

    Sala, Maria; Domingo, Laia; Macià, Francesc; Comas, Mercè; Burón, Andrea; Castells, Xavier

    2015-03-01

    To provide a complete evaluation of the long-term impact of full-field digital mammography (FFDM) on the improvement of early diagnosis in a population-based screening program. We included 82,961 screen-film mammograms (SFM) and 79,031 FFDM from women aged 50-69 screened biennially from 1995-2010 in Spain and followed-up to 2012. The first screening round of the program was excluded. Rates of cancer detection, interval cancer, tumoral characteristics and other quality indicators were compared between SFM and FFDM periods using the Chi-square test. Multivariate logistic regression models were fitted. Detection of ductal carcinoma in situ (DCIS) significantly increased with FFDM (0.05 % vs 0.09 %; p = 0.010), along with the proportion of small invasive cancers (Digitalization has supposed an improvement in early diagnosis because DCIS and small invasive cancers increased without a change in detection rate. Moreover, false-positive reduction without an increase in the interval cancer rate was confirmed.

  10. Development of test objects for image quality evaluation of digital mammography; Desenvolvimento de objetos de teste para avaliacao da qualidade da imagem em mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Vitor Nascimento de Carvalho

    2013-07-01

    Mammography is the image exam called 'gold standard' for early detection of breast cancer. 111 Brazil, more than eight million mammograms are carried out per year. With the advancement of technology, the digital systems CR and DR for this diagnostic modality have been increasingly implemented, replacing the conventional screen-film system, which brought environmental problems, like the disposal of chemical waste, and is also responsible for the rejection of radiographic films with processing artifacts. Digital systems, besides not experiencing the problem of environmental pollution, are still capable of image processing, allowing a much lower rejection rate when compared to the conventional system. Moreover, the determination of an accurate diagnosis is highly dependent on the image quality of the examination. To ensure the reliability of the images produced by these systems, it is necessary to evaluate them on a regular basis. Unfortunately, there is no regulation in Brazil about the Quality Assurance of these systems. The aim of this study was to develop a set of test objects that allow the evaluation of some parameters of image quality of these systems, such as field image uniformity, the linearity between the air Kerma incident on detector and the mean pixel value (MPV) of the image, the spatial resolution of the system through the modulation transfer function (MTF) and also to suggest an object to be applied in the evaluation of contrast-to-noise ratio (CNR) and signal-difference-to-noise ratio (SDNR). In order to test the objects. 10 mammography centers were evaluated, seven with CR systems and three with the DR systems. To evaluate the linearity, besides the test objects high sensitivity dosimeters were necessary to be used, namely LiF:Mg,Cu,P TL dosimeters. The use of these dosimeters was recommended in order to minimize the time required to perform the tests and to decrease the number of exposures needed. For evaluation of digital images in DICOM

  11. TL dosimetry for quality control of CR mammography imaging systems

    Science.gov (United States)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  12. Contrast-enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): Patient preferences and tolerance.

    Science.gov (United States)

    Hobbs, Max M; Taylor, Donna B; Buzynski, Sebastian; Peake, Rachel E

    2015-06-01

    Contrast-enhanced spectral mammography (CESM) may have similar diagnostic performance to Contrast-enhanced MRI (CEMRI) in the diagnosis and staging of breast cancer. To date, research has focused exclusively on diagnostic performance when comparing these two techniques. Patient experience is also an important factor when comparing and deciding on which of these modalities is preferable. The aim of this study is to compare patient experience of CESM against CEMRI during preoperative breast cancer staging. Forty-nine participants who underwent both CESM and CEMRI, as part of a larger trial, completed a Likert questionnaire about their preference for each modality according to the following criteria: comfort of breast compression, comfort of intravenous (IV) contrast injection, anxiety and overall preference. Participants also reported reasons for preferring one modality to the other. Quantitative data were analysed using a Wilcoxon sign-rank test and chi-squared test. Qualitative data are reported descriptively. A significantly higher overall preference towards CESM was demonstrated (n = 49, P < 0.001), with faster procedure time, greater comfort and lower noise level cited as the commonest reasons. Participants also reported significantly lower rates of anxiety during CESM compared with CEMRI (n = 36, P = 0.009). A significantly higher rate of comfort was reported during CEMRI for measures of breast compression (n = 49, P = 0.001) and the sensation of IV contrast injection (n = 49, P = 0.003). Our data suggest that overall, patients prefer the experience of CESM to CEMRI, adding support for the role of CESM as a possible alternative to CEMRI for breast cancer staging. © 2015 The Royal Australian and New Zealand College of Radiologists.

  13. Contrast-enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): Patient preferences and tolerance

    International Nuclear Information System (INIS)

    Hobbs, Max; Buzynski, Sebastian; Taylor, Donna B.; Peake, Rachel E.

    2015-01-01

    Contrast-enhanced spectral mammography (CESM) may have similar diagnostic performance to Contrast-enhanced MRI (CEMRI) in the diagnosis and staging of breast cancer. To date, research has focused exclusively on diagnostic performance when comparing these two techniques. Patient experience is also an important factor when comparing and deciding on which of these modalities is preferable. The aim of this study is to compare patient experience of CESM against CEMRI during preoperative breast cancer staging. Forty-nine participants who underwent both CESM and CEMRI, as part of a larger trial, completed a Likert questionnaire about their preference for each modality according to the following criteria: comfort of breast compression, comfort of intravenous (IV) contrast injection, anxiety and overall preference. Participants also reported reasons for preferring one modality to the other. Quantitative data were analysed using a Wilcoxon sign-rank test and chi-squared test. Qualitative data are reported descriptively. A significantly higher overall preference towards CESM was demonstrated (n = 49, P < 0.001), with faster procedure time, greater comfort and lower noise level cited as the commonest reasons. Participants also reported significantly lower rates of anxiety during CESM compared with CEMRI (n = 36, P = 0.009). A significantly higher rate of comfort was reported during CEMRI for measures of breast compression (n = 49, P = 0.001) and the sensation of IV contrast injection (n = 49, P = 0.003). Our data suggest that overall, patients prefer the experience of CESM to CEMRI, adding support for the role of CESM as a possible alternative to CEMRI for breast cancer staging.

  14. Fusion of dynamic contrast-enhanced magnetic resonance mammography at 3.0 T with X-ray mammograms: Pilot study evaluation using dedicated semi-automatic registration software

    Energy Technology Data Exchange (ETDEWEB)

    Dietzel, Matthias, E-mail: dietzelmatthias2@hotmail.com [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07740 Jena (Germany); Hopp, Torsten; Ruiter, Nicole [Karlsruhe Institute of Technology (KIT), Institute for Data Processing and Electronics, Postfach 3640, D-76021 Karlsruhe (Germany); Zoubi, Ramy [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07740 Jena (Germany); Runnebaum, Ingo B. [Clinic of Gynecology and Obstetrics, Friedrich-Schiller-University Jena, Bachstrasse 18, D-07743 Jena (Germany); Kaiser, Werner A. [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07740 Jena (Germany); Medical School, University of Harvard, 25 Shattuck Street, Boston, MA 02115 (United States); Baltzer, Pascal A.T. [Institute of Diagnostic and Interventional Radiology, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07740 Jena (Germany)

    2011-08-15

    Rationale and objectives: To evaluate the semi-automatic image registration accuracy of X-ray-mammography (XR-M) with high-resolution high-field (3.0 T) MR-mammography (MR-M) in an initial pilot study. Material and methods: MR-M was acquired on a high-field clinical scanner at 3.0 T (T1-weighted 3D VIBE {+-} Gd). XR-M was obtained with state-of-the-art full-field digital systems. Seven patients with clearly delineable mass lesions >10 mm both in XR-M and MR-M were enrolled (exclusion criteria: previous breast surgery; surgical intervention between XR-M and MR-M). XR-M and MR-M were matched using a dedicated image-registration algorithm allowing semi-automatic non-linear deformation of MR-M based on finite-element modeling. To identify registration errors (RE) a virtual craniocaudal 2D mammogram was calculated by the software from MR-M (with and w/o Gadodiamide/Gd) and matched with corresponding XR-M. To quantify REs the geometric center of the lesions in the virtual vs. conventional mammogram were subtracted. The robustness of registration was quantified by registration of X-MRs to both MR-Ms with and w/o Gadodiamide. Results: Image registration was performed successfully for all patients. Overall RE was 8.2 mm (1 min after Gd; confidence interval/CI: 2.0-14.4 mm, standard deviation/SD: 6.7 mm) vs. 8.9 mm (no Gd; CI: 4.0-13.9 mm, SD: 5.4 mm). The mean difference between pre- vs. post-contrast was 0.7 mm (SD: 1.9 mm). Conclusion: Image registration of high-field 3.0 T MR-mammography with X-ray-mammography is feasible. For this study applying a high-resolution protocol at 3.0 T, the registration was robust and the overall registration error was sufficient for clinical application.

  15. Fusion of dynamic contrast-enhanced magnetic resonance mammography at 3.0 T with X-ray mammograms: Pilot study evaluation using dedicated semi-automatic registration software

    International Nuclear Information System (INIS)

    Dietzel, Matthias; Hopp, Torsten; Ruiter, Nicole; Zoubi, Ramy; Runnebaum, Ingo B.; Kaiser, Werner A.; Baltzer, Pascal A.T.

    2011-01-01

    Rationale and objectives: To evaluate the semi-automatic image registration accuracy of X-ray-mammography (XR-M) with high-resolution high-field (3.0 T) MR-mammography (MR-M) in an initial pilot study. Material and methods: MR-M was acquired on a high-field clinical scanner at 3.0 T (T1-weighted 3D VIBE ± Gd). XR-M was obtained with state-of-the-art full-field digital systems. Seven patients with clearly delineable mass lesions >10 mm both in XR-M and MR-M were enrolled (exclusion criteria: previous breast surgery; surgical intervention between XR-M and MR-M). XR-M and MR-M were matched using a dedicated image-registration algorithm allowing semi-automatic non-linear deformation of MR-M based on finite-element modeling. To identify registration errors (RE) a virtual craniocaudal 2D mammogram was calculated by the software from MR-M (with and w/o Gadodiamide/Gd) and matched with corresponding XR-M. To quantify REs the geometric center of the lesions in the virtual vs. conventional mammogram were subtracted. The robustness of registration was quantified by registration of X-MRs to both MR-Ms with and w/o Gadodiamide. Results: Image registration was performed successfully for all patients. Overall RE was 8.2 mm (1 min after Gd; confidence interval/CI: 2.0-14.4 mm, standard deviation/SD: 6.7 mm) vs. 8.9 mm (no Gd; CI: 4.0-13.9 mm, SD: 5.4 mm). The mean difference between pre- vs. post-contrast was 0.7 mm (SD: 1.9 mm). Conclusion: Image registration of high-field 3.0 T MR-mammography with X-ray-mammography is feasible. For this study applying a high-resolution protocol at 3.0 T, the registration was robust and the overall registration error was sufficient for clinical application.

  16. Wavelet processing techniques for digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  17. Correlation between the physical performances measured from detectors and the diagnostic image quality in digital mammography

    International Nuclear Information System (INIS)

    Perez-Ponce, H.

    2009-05-01

    In digital mammography two approaches exist to estimate image quality. In the first approach, human observer assesses the lesion detection in mammograms. Unfortunately, such quality assessment is subject to interobserver variability, and requires a large amount of time and human resources. In the second approach, objective and human-independent parameters relating to image spatial resolution and noise (MTF and NPS) are used to evaluate digital detector performance; even if these parameters are objective, they are not directly related to lesion detection. A method leading to image quality assessment which is both human independent, and directly related to lesion detection is very important for the optimal use of mammographic units. This Ph.D thesis presents the steps towards such a method: the computation of realistic virtual images using an 'X ray source/digital detector' model taking into account the physical parameters of the detector (spatial resolution and noise measurements) measured under clinical conditions. From results obtained in this work, we have contributed to establish the link between the physical characteristics of detectors and the clinical quality of the image for usual exposition conditions. Furthermore, we suggest the use of our model for the creation of virtual images, in order to rapidly determine the optimal conditions in mammography, which usually is a long and tedious experimental process. This is an essential aspect to be taken into account for radioprotection of patients, especially in the context of organized mass screening of breast cancer. (author)

  18. Full-field digital mammography versus computed radiology mammography: comparison in image quality and radiation dose

    International Nuclear Information System (INIS)

    Zhao Yongxia; Song Shaojuan; Liu Chuanya; Qi Hengtao; Qin Weichang

    2008-01-01

    Objective: To investigate the differences in image quality and radiation dose between full- field digital mammography (FFDM) system and compute radiology mammography (CRM) system. Methods: The ALVIM mammographic phantom was exposed by FFDM system with automatic exposure control (AEC) and then exposed by CRM system with the unique imaging plank on the same condition. The FFDM system applied the same kV value and the different mAs values (14, 16, 18, 22 and 24 mAs), and the emission skin dose (ESD) and the average gland dose (AGD) were recorded for the above-mentioned exposure factors. All images were read by five experienced radiologists under the same condition and judged based on 5-point scales. And then receive operating characteristic (ROC) curve was drawn and the probability (P det ) values were calculated. The data were statistically processed with ANOVA. Results: The P det values of calcifications and lesion lump were higher with FFDM system than with CRM system at the same dose (1.36 mGy). Especially, for microcalcifications and lesion lump, the largest difference of the P det value was 0.215, and that of lesion lump was 0.245. In comparison with CRM system, the radiation dose of FFDM system could be reduced at the same P det value. The ESD value was reduced by 26%, and the ACD value was reduced by 41%. When the mAs value exceed AEC value, the P det value almost had no change, though the radiation dose was increased. Conclusions: The detection rates of microcalcifications and lesion lump with FFDM system are proven to be superior to CRM system at the same dose. The radiation dose of FFDM system was less than CRM system for the same image quality. (authors)

  19. Generalized Phase Contrast

    CERN Document Server

    Glückstad, Jesper

    2009-01-01

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, ...

  20. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    Science.gov (United States)

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  1. Evaluation of the weekly quality control of a digital mammography machine; Evaluacion del control de calidad semanal de un mamografo digital

    Energy Technology Data Exchange (ETDEWEB)

    Angulo Pain, E.; Ramos Caballero, L. J.; Urena Llinares, A.; Iborra Oquendo, M. A.; Quinones Rodriguez, L. A.; Castro Ramirez, I.; Gonzalez Aquino, P.; Aguirre Huelga, M. J.

    2013-07-01

    In the new edition of the PCCRD (2011) has been established as weekly quality control testing for digital mammography equipment the analysis of artifacts from the team and defective items in the DR, the constancy of the functioning of the CAE, the accuracy of the thickness determined by the compression system, constancy in the uniformity and quality of the image. The objective of the study is to evaluate data collected during the first year of operation of the equipment. (Author)

  2. Comparison of dry laser printer versus paper printer in full-field digital mammography.

    Science.gov (United States)

    Liang, Zhigang; Du, Xiangying; Guo, Xiaojuan; Rong, Dongdong; Kang, Ruiying; Mao, Guangyun; Liu, Jiabin; Li, Kuncheng

    2010-04-01

    Paper printers have been used to document radiological findings in some hospitals. It is critical to establish whether paper printers can achieve the same efficacy and quality as dry laser printers for full-field digital mammography (FFDM). To compare the image quality and detection rate of dry laser printers and paper printers for FFDM. Fifty-five cases (25 with single clustered microcalcifications and 30 controls) were selected by a radiologist not participating in the image review. All images were printed on film and paper by one experienced mammography technologist using the processing algorithm routinely used for our mammograms. Two radiologists evaluated hard copies from dry laser printers and paper printers for image quality and detectability of clustered microcalcifications. For the image quality comparisons, agreement between the reviewers was evaluated by means of kappa statistics. The significance of differences between both of the printers was determined using Wilcoxon's signed-rank test. The detection rate of two printing systems was evaluated using receiver operating characteristic (ROC) analysis. From 110 scores (55 patients, two readers) per printer system, the following quality results were achieved for dry laser printer images: 70 (63.6%) were rated as good and 40 (36.4%) as moderate. By contrast, for the paper printer images, 25 scores (22.7%) were rated as good and 85 (77.3%) as moderate. Therefore, the image quality of the dry laser printer was superior to that achieved by the paper printer (P=0.00). The average area-under-the-curve (Az) values for the dry laser printer and the paper printer were 0.991 and 0.805, respectively. The difference was 0.186. Results of ROC analysis showed significant difference in observer performance between the dry laser printer and paper printer (P=0.0015). The performance of dry laser printers is superior to that of paper printers. Paper printers should not be used in FFDM.

  3. Trimodel Mammography with Perfect Coregistration

    Science.gov (United States)

    2017-02-01

    background, the major confounding factor in reading mammography; the imaging characteristics suggest that this contrast mechanism would be preferable...image with enhanced edges and reduced anatomical background, the major confounding factor in reading mammography; the imaging characteristics suggest...subjects, vertebrate animals , biohazards, and/or select agents Describe significant deviations, unexpected outcomes, or changes in approved protocols

  4. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  5. Optimization of technique factors for a silicon diode array full-field digital mammography system and comparison to screen-film mammography with matched average glandular dose

    International Nuclear Information System (INIS)

    Berns, Eric A.; Hendrick, R. Edward; Cutter, Gary R.

    2003-01-01

    Contrast-detail experiments were performed to optimize technique factors for the detection of low-contrast lesions using a silicon diode array full-field digital mammography (FFDM) system under the conditions of a matched average glandular dose (AGD) for different techniques. Optimization was performed for compressed breast thickness from 2 to 8 cm. FFDM results were compared to screen-film mammography (SFM) at each breast thickness. Four contrast-detail (CD) images were acquired on a SFM unit with optimal techniques at 2, 4, 6, and 8 cm breast thicknesses. The AGD for each breast thickness was calculated based on half-value layer (HVL) and entrance exposure measurements on the SFM unit. A computer algorithm was developed and used to determine FFDM beam current (mAs) that matched AGD between FFDM and SFM at each thickness, while varying target, filter, and peak kilovoltage (kVp) across the full range available for the FFDM unit. CD images were then acquired on FFDM for kVp values from 23-35 for a molybdenum-molybdenum (Mo-Mo), 23-40 for a molybdenum-rhodium (Mo-Rh), and 25-49 for a rhodium-rhodium (Rh-Rh) target-filter under the constraint of matching the AGD from screen-film for each breast thickness (2, 4, 6, and 8 cm). CD images were scored independently for SFM and each FFDM technique by six readers. CD scores were analyzed to assess trends as a function of target-filter and kVp and were compared to SFM at each breast thickness. For 2 cm thick breasts, optimal FFDM CD scores occurred at the lowest possible kVp setting for each target-filter, with significant decreases in FFDM CD scores as kVp was increased under the constraint of matched AGD. For 2 cm breasts, optimal FFDM CD scores were not significantly different from SFM CD scores. For 4-8 cm breasts, optimum FFDM CD scores were superior to SFM CD scores. For 4 cm breasts, FFDM CD scores decreased as kVp increased for each target-filter combination. For 6 cm breasts, CD scores decreased slightly as k

  6. Normalized noise power spectrum of full field digital mammography detector system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    Full text: A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through de trending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (author)

  7. Pipeline for effective denoising of digital mammography and digital breast tomosynthesis

    Science.gov (United States)

    Borges, Lucas R.; Bakic, Predrag R.; Foi, Alessandro; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Denoising can be used as a tool to enhance image quality and enforce low radiation doses in X-ray medical imaging. The effectiveness of denoising techniques relies on the validity of the underlying noise model. In full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT), calibration steps like the detector offset and flat-fielding can affect some assumptions made by most denoising techniques. Furthermore, quantum noise found in X-ray images is signal-dependent and can only be treated by specific filters. In this work we propose a pipeline for FFDM and DBT image denoising that considers the calibration steps and simplifies the modeling of the noise statistics through variance-stabilizing transformations (VST). The performance of a state-of-the-art denoising method was tested with and without the proposed pipeline. To evaluate the method, objective metrics such as the normalized root mean square error (N-RMSE), noise power spectrum, modulation transfer function (MTF) and the frequency signal-to-noise ratio (SNR) were analyzed. Preliminary tests show that the pipeline improves denoising. When the pipeline is not used, bright pixels of the denoised image are under-filtered and dark pixels are over-smoothed due to the assumption of a signal-independent Gaussian model. The pipeline improved denoising up to 20% in terms of spatial N-RMSE and up to 15% in terms of frequency SNR. Besides improving the denoising, the pipeline does not increase signal smoothing significantly, as shown by the MTF. Thus, the proposed pipeline can be used with state-of-the-art denoising techniques to improve the quality of DBT and FFDM images.

  8. Estimation of percentage breast tissue density: comparison between digital mammography (2D full field digital mammography) and digital breast tomosynthesis according to different BI-RADS categories.

    Science.gov (United States)

    Tagliafico, A S; Tagliafico, G; Cavagnetto, F; Calabrese, M; Houssami, N

    2013-11-01

    To compare breast density estimated from two-dimensional full-field digital mammography (2D FFDM) and from digital breast tomosynthesis (DBT) according to different Breast Imaging-Reporting and Data System (BI-RADS) categories, using automated software. Institutional review board approval and written informed patient consent were obtained. DBT and 2D FFDM were performed in the same patients to allow within-patient comparison. A total of 160 consecutive patients (mean age: 50±14 years; mean body mass index: 22±3) were included to create paired data sets of 40 patients for each BI-RADS category. Automatic software (MedDensity(©), developed by Giulio Tagliafico) was used to compare the percentage breast density between DBT and 2D FFDM. The estimated breast percentage density obtained using DBT and 2D FFDM was examined for correlation with the radiologists' visual BI-RADS density classification. The 2D FFDM differed from DBT by 16.0% in BI-RADS Category 1, by 11.9% in Category 2, by 3.5% in Category 3 and by 18.1% in Category 4. These differences were highly significant (pBI-RADS categories and the density evaluated using 2D FFDM and DBT (r=0.56, pBI-RADS categories. These data are relevant for clinical practice and research studies using density in determining the risk. On DBT, breast density values were lower than with 2D FFDM, with a non-linear relationship across the classical BI-RADS categories.

  9. Comparison of the Mammography, Contrast-Enhanced Spectral Mammography and Ultrasonography in a Group of 116 patients.

    Science.gov (United States)

    Luczyńska, Elzbieta; Heinze, Sylwia; Adamczyk, Agnieszka; Rys, Janusz; Mitus, Jerzy W; Hendrick, Edward

    2016-08-01

    Mammography (MG) is the gold-standard in breast cancer detection - the only method documented to reduce breast cancer mortality. Breast ultrasound (US) has been shown to increase sensitivity to breast cancers in screening women with dense breasts. Contrast-enhanced spectral mammography (CESM) is a novel technique intensively developed in the last few years. The goal of this study was to compare the sensitivity, specificity and accuracy of MG, US and CESM in detecting malignant breast lesions. The study included 116 patients. All patients were symptomatic and underwent MG, US and CESM. A radiologist with 20 years of experience in US and MG breast imaging and 1 year of experience in CESM reviewed images acquired in each of the three modalities separately, within an interval of 14-30 days. All identified lesions were confirmed at core biopsy. BI-RADS classifications on US, MG and CESM were compared to histopathology. MG, CESM and US were compared among 116 patients with 137 lesions encountered. Sensitivity of CESM was 100%, significantly higher than that of MG (90%, p<0.004) or US (92%, p<0.01). CESM accuracy was 78%, also higher than MG (69%, p<0.004) and US (70%, p=0.03). There was no statistically significant difference between AUCs for CESM and US (both 0.83). The AUCs of both US and CESM, however, were significantly larger than that of MG (p<0.0004 for each). CESM permitted better detection of malignant lesions than both MG and US, read individually. CESM found lesion enhancement in some benign lesions, as well, yielding a rate of false-positive diagnoses similar to that of MG and US. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  11. Macromolecular contrast media. A new approach for characterising breast tumors with MR-mammography

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Gossmann, A.; Koeln Univ.; Wendland, M.; Brasch, R.C.; Rosenau, W.

    1997-01-01

    The value of macromolecular contrast agents (MMCM) for the characterization of benign and malignant breast tumors will be demonstrated in this review. Animal studies suggest a high potential of MMCM to increase the specificity of MR-mammography. The concept of tumor differentiation is based on the pathological hyperpermeability of microvessels in malignant tumors. MMCM show a leak into the interstitium of carcinomas, whereas they are confined to the intravascular space in benign tumors. Capabilities and limitations of the MMCM-prototype. Albumin-Gd-DTPA, for breast tumor characterization will be summarized and compared to the standard low molecular weight contrast agent Gd-DTPA. Initial experience with new MMCM, such as Dendrimers, Gd-DTPA-Polylysine and MS-325 will be outlined. The potential of 'blood-pool'-iron oxides, such as AMI-227 for the evaluation of tumor microvascular permeabilities will be discussed. (orig.) [de

  12. Digital imaging system in mammography with X-ray of two different energies

    International Nuclear Information System (INIS)

    Swientek, K.; Dabrowski, W.; Grybos, P.; Wiacek, P.; Cabal Rodrigez, A. E.; Sanchez, C.C.; Gambaccini, M.; Gaitan, J.L.; Prino, F.; Ramello, L.

    2005-01-01

    The progress in nuclear medicine stimulates the higher quality of image processing at diminished radiation dose. In the presented apparatus system Si-microstrip detector with two-thresholds multichannel amplitude analyzer have been applied. Data acquisition system evaluates simultaneously images for two X-ray beams of different energies following the Bragg reflection of the primary beam from the mosaic crystal. The contrast cancellation technique has been tested using the simple mammography phantom. An efficacy of this method suitable for medical imaging could be significantly increased using an intensive X-ray source and sensitive detectors

  13. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    Science.gov (United States)

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  14. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Mark, E-mail: marktknox@gmail.com; O’Brien, Angela, E-mail: angelaobrien@doctors.org.uk; Szabó, Endre, E-mail: endrebacsi@freemail.hu; Smith, Clare S., E-mail: csmith@mater.ie; Fenlon, Helen M., E-mail: helen.fenlon@cancerscreening.ie; McNicholas, Michelle M., E-mail: michelle.mcnicholas@cancerscreening.ie; Flanagan, Fidelma L., E-mail: fidelma.flanagan@cancerscreening.ie

    2015-06-15

    Highlights: • Digital mammography has changed the presentation of interval breast cancer. • Less interval breast cancers are associated with microcalcifications following FFDM. • Interval breast cancer audit remains a key feature of any breast screening program. - Abstract: Objective: Full field digital mammography (FFDM) is increasingly replacing screen film mammography (SFM) in breast screening programs. Interval breast cancers are an issue in all screening programs and the purpose of our study is to assess the impact of FFDM on the classification of interval breast cancers at independent blind review and to compare the mammographic features of interval cancers at FFDM and SFM. Materials and methods: This study included 138 cases of interval breast cancer, 76 following an FFDM screening examination and 62 following screening with SFM. The prior screening mammogram was assessed by each of five consultant breast radiologists who were blinded to the site of subsequent cancer. Subsequent review of the diagnostic mammogram was performed and cases were classified as missed, minimal signs, occult or true interval. Mammographic features of the interval cancer at diagnosis and any abnormality identified on the prior screening mammogram were recorded. Results: The percentages of cancers classified as missed at FFDM and SFM did not differ significantly, 10.5% (8 of 76) at FFDM and 8.1% (5 of 62) at SFM (p = .77). There were significantly less interval cancers presenting as microcalcifications (alone or in association with another abnormality) following screening with FFDM, 16% (12 of 76) than following a SFM examination, 32% (20 of 62) (p = .02). Conclusion: Interval breast cancers continue to pose a problem at FFDM. The switch to FFDM has changed the mammographic presentation of interval breast cancer, with less interval cancers presenting in association with microcalcifications.

  15. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers

    International Nuclear Information System (INIS)

    Knox, Mark; O’Brien, Angela; Szabó, Endre; Smith, Clare S.; Fenlon, Helen M.; McNicholas, Michelle M.; Flanagan, Fidelma L.

    2015-01-01

    Highlights: • Digital mammography has changed the presentation of interval breast cancer. • Less interval breast cancers are associated with microcalcifications following FFDM. • Interval breast cancer audit remains a key feature of any breast screening program. - Abstract: Objective: Full field digital mammography (FFDM) is increasingly replacing screen film mammography (SFM) in breast screening programs. Interval breast cancers are an issue in all screening programs and the purpose of our study is to assess the impact of FFDM on the classification of interval breast cancers at independent blind review and to compare the mammographic features of interval cancers at FFDM and SFM. Materials and methods: This study included 138 cases of interval breast cancer, 76 following an FFDM screening examination and 62 following screening with SFM. The prior screening mammogram was assessed by each of five consultant breast radiologists who were blinded to the site of subsequent cancer. Subsequent review of the diagnostic mammogram was performed and cases were classified as missed, minimal signs, occult or true interval. Mammographic features of the interval cancer at diagnosis and any abnormality identified on the prior screening mammogram were recorded. Results: The percentages of cancers classified as missed at FFDM and SFM did not differ significantly, 10.5% (8 of 76) at FFDM and 8.1% (5 of 62) at SFM (p = .77). There were significantly less interval cancers presenting as microcalcifications (alone or in association with another abnormality) following screening with FFDM, 16% (12 of 76) than following a SFM examination, 32% (20 of 62) (p = .02). Conclusion: Interval breast cancers continue to pose a problem at FFDM. The switch to FFDM has changed the mammographic presentation of interval breast cancer, with less interval cancers presenting in association with microcalcifications

  16. The threshold contrast thickness evaluated with different CDMAM phantoms and software

    Directory of Open Access Journals (Sweden)

    Fabiszewska Ewa

    2016-03-01

    Full Text Available The image quality in digital mammography is described by specifying the thickness and diameter of disks with threshold visibility. The European Commission recommends the CDMAM phantom as a tool to evaluate threshold contrast visibility in digital mammography [1, 2]. Inaccuracy of the manufacturing process of CDMAM 3.4 phantoms (Artinis Medical System BV, as well as differences between software used to analyze the images, may lead to discrepancies in the evaluation of threshold contrast visibility. The authors of this work used three CDMAM 3.4 phantoms with serial numbers 1669, 1840, and 1841 and two mammography systems of the same manufacturer with an identical types of detectors. The images were analyzed with EUREF software (version 1.5.5 with CDCOM 1.6. exe file and Artinis software (version 1.2 with CDCOM 1.6. exe file. The differences between the observed thicknesses of the threshold contrast structures, which were caused by differences between the CDMAM 3.4 phantoms, were not reproduced in the same way on two mammography units of the same type. The thickness reported by the Artinis software (version 1.2 with CDCOM 1.6. exe file was generally greater than the one determined by the EUREF software (version 1.5.5 with CDCOM 1.6. exe file, but the ratio of the results depended on the phantom and diameter of the structure. It was not possible to establish correction factors, which would allow correction of the differences between the results obtained for different CDMAM 3.4 phantoms, or to correct the differences between software. Great care must be taken when results of the tests performed with different CDMAM 3.4 phantoms and with different software application are interpreted.

  17. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    Science.gov (United States)

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  18. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography

    Directory of Open Access Journals (Sweden)

    Lucas Paixão

    2015-12-01

    Full Text Available Abstract Objective: Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods: Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results: Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion: The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  19. Could parenchymal enhancement on contrast-enhanced spectral mammography (CESM) represent a new breast cancer risk factor? Correlation with known radiology risk factors.

    Science.gov (United States)

    Savaridas, S L; Taylor, D B; Gunawardana, D; Phillips, M

    2017-12-01

    To compare background parenchymal enhancement (BPE) on contrast-enhanced (CE) spectral mammography (CESM) with CE magnetic resonance imaging (MRI), and evaluate how these relate to hormonal status, mammographic breast density (MBD) and MRI fibroglandular tissue volume (FGTV). Between June 2012 to October 2015, participants in a cancer staging study underwent full-field digital mammography (FFDM), CEMRI, and CESM. Two readers independently rated FGTV, MBD, and BPE using the Breast Imaging-Reporting and Data System (BI-RADS) criteria. Inter-reader reliability was estimated using weighted kappa (k) and correlations between BPE, MBD, and FGTV calculated using Spearman's correlation coefficient. Associations with hormonal status were evaluated using multilevel ordinal regression analysis. Of the 96 eligible participants, 66 women (35-77 years) underwent CESM and CEMRI. Reasons for exclusion were declined or withdrawn consent (n=18), inadequate renal function (n=2), claustrophobia (n=2), previous reaction to contrast medium (n=2), mild reaction to contrast medium following CESM (n=2), lack of vascular access (n=1), neoadjuvant chemotherapy (n=1), CESM equipment failure (n=1), and unclear in one case. Inter-reader agreement was substantial (k=0.67) for CESM BPE, slight (k=0.19) for CEMRI BPE, moderate (k=0.57) for MRI FGTV and fair (k=0.35) for MBD. CESM BPE showed significant correlation with MBD (rho=0.36, p<0.0001), FGTV (rho=0.52, p<0.0001), and MRI BPE (rho=0.49, p<0.0001). BPE was significantly reduced in the post-menopausal group for CEMRI and CESM (p<0.05). CESM BPE did not significantly fluctuate during the menstrual cycle. CESM BPE is correlated with MBD, FGTV, and CEMRI BPE, has better inter-reader reliability than CEMRI, and is not influenced by the menstrual cycle. Grading the degree of BPE on CESM could be a useful addition to breast cancer risk assessment tools. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights

  20. Seamless lesion insertion in digital mammography: methodology and reader study

    Science.gov (United States)

    Pezeshk, Aria; Petrick, Nicholas; Sahiner, Berkman

    2016-03-01

    Collection of large repositories of clinical images containing verified cancer locations is costly and time consuming due to difficulties associated with both the accumulation of data and establishment of the ground truth. This problem poses a significant challenge to the development of machine learning algorithms that require large amounts of data to properly train and avoid overfitting. In this paper we expand the methods in our previous publications by making several modifications that significantly increase the speed of our insertion algorithms, thereby allowing them to be used for inserting lesions that are much larger in size. These algorithms have been incorporated into an image composition tool that we have made publicly available. This tool allows users to modify or supplement existing datasets by seamlessly inserting a real breast mass or micro-calcification cluster extracted from a source digital mammogram into a different location on another mammogram. We demonstrate examples of the performance of this tool on clinical cases taken from the University of South Florida Digital Database for Screening Mammography (DDSM). Finally, we report the results of a reader study evaluating the realism of inserted lesions compared to clinical lesions. Analysis of the radiologist scores in the study using receiver operating characteristic (ROC) methodology indicates that inserted lesions cannot be reliably distinguished from clinical lesions.

  1. Does digital mammography in a decentralized breast cancer screening program lead to screening performance parameters comparable with film-screen mammography?

    International Nuclear Information System (INIS)

    Ongeval, Chantal van; Steen, Andre van; Zanca, Federica; Bosmans, Hilde; Marchal, Guy; Putte, Gretel vande; Limbergen, Erik van

    2010-01-01

    To evaluate if the screening performance parameters of digital mammography (DM) in a decentralized screening organization were comparable with film-screen mammography (FSM). A nationwide screening program was launched in 2001, and since 2005 screening with DM has been allowed. Firstly, the parameters of the three regional screening units (RSUs) that first switched to DM (11,355 women) were compared with the FSM period of the same three RSUs (23,325 women). Secondly, they were compared with the results of the whole central breast unit (CBU). The recall rate (RR) of the DM group in the initial round was 2.64% [2.40% for FSM (p = 0.43)] and in the subsequent round 1.20% [1.58% for FSM (p = 0.03)]. The cancer detection rate (CDR) was 0.59% for DM and 0.64% for FSM (p = 0.56). The percentage of ductal carcinoma in situ was 0.07% for DM and 0.16% for FSM (p = 0.02). The positive predictive value was high in the subsequent rounds (DM 48.00%, FSM 45.93%) and lower in the initial round (DM 24.05%, FSM 24.86%). Compared with the results of the whole CBU, DM showed no significant difference. DM can be introduced in a decentralized screening organization with a high CDR without increasing the RR. (orig.)

  2. Comparison between the implementation of quality criteria of radiographic image in conventional and digital mammography equipments

    International Nuclear Information System (INIS)

    Alcantara, M.C.; Sordi, G.M.A.A.; Caldas, L.V.E.; Furquim, T.A.C.

    2008-01-01

    The mammographic examination needs a strict quality control. A publication of the European Commission provides guidelines on quality criteria for the images of the breast, quantifying the quality obtained in the image. Following the recommendations of the European Commission, two kinds of mammographic equipments, at a same institution, were evaluated to compare the quality of the conventional and digital images. Besides of that, the Average Glandular Dose (AGD) and the Entrance Surface Dose (ESD) were measured by using an ionization chamber (Radcal, 6M) in the radiation beams of each equipment. The digital equipment fulfills more quality criteria than the conventional equipment, provided ESD values, AGD values and a rejection index lower than the conventional equipment. Therefore, the digital mammography can be considered more adequate than the conventional one, both for criteria analyses and for dose optimization. (author)

  3. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  4. A comparison of two digital mammography systems: are there any differences?

    International Nuclear Information System (INIS)

    Evans, T.; Burlton, B.; Devenish, G.; Stevens, G.; Lewis, M.; Gower Thomas, K.

    2016-01-01

    Aim: To compare the performance of two newly introduced digital mammography technologies (Sectra and Hologic) to the Welsh breast-screening service; specifically, whether there are differences in the number, type, size, and grade of tumour identified. Materials and methods: This was a retrospective study of a prospectively collected database of 50,000 consecutive screening episodes from 2012; clients were aged 49–88 years (mean 61.9 years). All studies were double-blind read by two readers. All tumours identified in the two arms of the study were detailed and compared specifically with regards to type (ductal or lobular) size, grade, and whether invasive or non-invasive. Performance was analysed for any statistically significant differences. Results: Twenty-five thousand consecutive women were screened with Hologic (recall rate 5.9% of which 18% were cancer) and 25,000 were screened with Sectra digital mammography (recall rate 4.3% and 22% were cancer). Five hundred tumours were found with no significant difference in invasive cancer detection or between ductal or lobular subtypes. The Hologic system detected 267 tumours; of which 81 (30.33%) were non-invasive (3.24 per 1000), compared to the Sectra system with 233 cancers overall including 36 non-invasive (15.45%, 1.44 per 1000). The difference in non-invasive lesions (mainly ductal carcinoma in situ [DCIS]) detection was significant (p<0.001); 38% of which were high nuclear grade (HNG) using Hologic and 50% HNG lesions using Sectra. There was no significant difference in non-invasive size between the two technologies. The mean glandular dose received using the Sectra system was significantly less (0.7 mGy) compared to the Hologic system (1.6 mGy) for a 50–60 mm breast thickness. Conclusions: Population breast screening is frequently criticised for identifying lesions irrelevant to long-term outcomes or life expectancy and although the two systems seem comparable in terms of invasive cancer detection, a

  5. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    Science.gov (United States)

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption profiles, a 44.1% +/- 11.3% greater absorption increase was seen in tumor tissue compared with normal tissue. The laser wavelength lambda1 of the prototype laser mammography device was not situated at maximum absorption of the contrast agent NIR96010 but on the descending shoulder of the absorption spectrum. This implies a 20

  6. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  7. Compositional breast imaging using a dual-energy mammography protocol

    International Nuclear Information System (INIS)

    Laidevant, Aurelie D.; Malkov, Serghei; Flowers, Chris I.; Kerlikowske, Karla; Shepherd, John A.

    2010-01-01

    Purpose: Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein. Methods: Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach. Results: Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional

  8. Accuracy of contrast-enhanced spectral mammography for estimating residual tumor size after neoadjuvant chemotherapy in patients with breast cancer: a feasibility study.

    Science.gov (United States)

    Barra, Filipe Ramos; de Souza, Fernanda Freire; Camelo, Rosimara Eva Ferreira Almeida; Ribeiro, Andrea Campos de Oliveira; Farage, Luciano

    2017-01-01

    To assess the feasibility of contrast-enhanced spectral mammography (CESM) of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC). In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM). We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively). The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886). The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598). Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88). CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent.

  9. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  10. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    International Nuclear Information System (INIS)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  11. Comparison of the automated evaluation of phantom mama in digital and digitalized images; Comparacao da avaliacao automatizada do phantom mama em imagens digitais e digitalizadas

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Priscila do Carmo, E-mail: pcs@cdtn.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Propedeutica Complementar; Gomes, Danielle Soares; Oliveira, Marcio Alves; Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  12. Comparison of dignity determination of mammographic microcalcification with two systems for digital full-field mammography with different detector resolution. A retrospective clinical study

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Adamietz, B.; Meier-Meitinger, M.; Wenkel, E.; Lell, M.; Anders, K.; Uder, M.; Hermann, K.P.

    2011-01-01

    The aim of this retrospective clinical study was to compare the diagnostic accuracy of the novel 50 μm FFDM (full-field digital mammography) system (DR) with an established 70 μm system (DR) in the differential diagnosis between benign and malignant clusters of microcalcification (n=50) (BI-RADS trademark classification 4/5) and to assess the possible incremental value of the 50 μm pixel-pitch on specificity. From March 2009 to September 2009, 50 patients underwent full-field digital mammography (FFDM) (detector resolution 70 μm) (Novation, Siemens, Erlangen, Germany). As there were suspicious signs of microcalcification classified with BI-RADS trademark 4/5 after diagnosis and preoperative wire localization, control images were made with the new FFDM system (detector: resolution 50 μm) (Amulet, Fujifilm, Tokyo, Japan) with the same exposure parameters. The diagnosis was determined after the operation by five radiologists with different experience in digital mammography from randomly distributed mediolateral views (monitor reading) whose results were correlated with the final histology of all lesions. Histopathology revealed 19 benign and 31 malignant lesions in 50 patients after open biopsy. The results of the five readers showed a higher sensitivity of the new FFDM system (80.0%) in the ability to recognize malignant microcalcification in comparison to the established system (74.8%). The specificity (75.8 versus 71.6%) was slightly higher for the new system but hese results were not statistically significant (p [de

  13. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    International Nuclear Information System (INIS)

    Zhao Bo; Zhao Wei

    2008-01-01

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of ±25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 μm. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to

  14. False-negative contrast-enhanced spectral mammography: use of more than one imaging modality and application of the triple test avoids misdiagnosis.

    Science.gov (United States)

    Taylor, Donna; O'Hanlon, Susan; Latham, Bruce

    2017-03-31

    A 50-year-old woman presented with chest tenderness. On examination, both breasts were lumpy. Bilateral mammography showed heterogeneously dense parenchyma, with possible stromal distortion laterally on the right at the 0900 position. On ultrasound (US), a corresponding 13×9×10 mm irregular hypoechoic mass with internal vascularity was noted and both breasts had a complex heterogeneous fibroglandular background pattern. US-guided core biopsy with marker clip insertion was performed with the diagnosis of a grade 2 invasive ductal carcinoma (IDC). In view of the parenchymal pattern on mammography and US, contrast-enhanced spectral mammography (CESM) was performed for local staging. Mild background enhancement was noted, but there was no enhancement at the lesion site. The patient elected to have bilateral mastectomies and sentinel node biopsies. Final histopathology showed a node negative 11 mm grade 2 oestrogen and progesterone receptor positive, IDC. 2017 BMJ Publishing Group Ltd.

  15. Visibility of microcalcification clusters and masses in breast tomosynthesis image volumes and digital mammography: A 4AFC human observer study

    International Nuclear Information System (INIS)

    Timberg, P.; Baath, M.; Andersson, I.; Mattsson, S.; Tingberg, A.; Ruschin, M.

    2012-01-01

    Purpose: To investigate the visibility of simulated lesions in digital breast tomosynthesis (BT) image volumes compared with 2D digital mammography (DM). Methods: Simulated lesions (masses and microcalcifications) were added to images of the same women acquired on a DM system (Mammomat Novation, Siemens) and a BT prototype. The same beam quality was used for the DM and BT acquisitions. The total absorbed dose resulting from a 25-projection BT acquisition and reconstruction (BT 25 ) was approximately twice that of a single DM view. By excluding every other projection image from the reconstruction (BT 13 ), approximately the same dose as in DM was effected. Simulated microcalcifications were digitally added with varying contrast to the DM and BT images. Simulated masses with 8 mm diameter were also added to BT images. A series of 4-alternative forced choice (4AFC) human observer experiments were conducted. Four medical physicists participated in all experiments, each consisting of 60 trials per experimental condition. The observers interpreted the BT image volumes in cine-mode at a fixed image sequence speed. The required threshold contrast (S t ) to achieve a detectability index (d') of 2.5 (i.e., 92.5% correct decisions) was determined. Results: The S t for mass detection in DM was approximately a factor of 2 higher than required in BT indicating that the detection of masses was improved under BT conditions compared to DM. S t for microcalcification detection was higher for BT than for DM at both BT dose levels (BT 25 and BT 13 ), with a statistically significant difference in S t between DM and BT 13 . These results indicate a dose-dependent decrease in detection performance in BT for detection of microcalcifications. Conclusions: In agreement with previous investigations, masses of size 8 mm can be detected with less contrast in BT than in DM indicating improved detection performance for BT. However, for the investigated microcalcifications, the results of this

  16. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    Science.gov (United States)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  17. Effective x-ray attenuation measurements with full field digital mammography

    International Nuclear Information System (INIS)

    Heine, John J.; Behera, Madhusmita

    2006-01-01

    This work shows that effective x-ray attenuation coefficients may be estimated by applying Beer's Law to phantom image data acquired with the General Electric Senographe 2000D full field digital mammography system. Theoretical developments are provided indicating that an approximate form of the Beer's relation holds for polychromatic x-ray beams. The theoretical values were compared with experimentally determined measured values, which were estimated at various detector locations. The measured effective attenuation coefficients are in agreement with those estimated with theoretical developments and numerical integration. The work shows that the measured quantities show little spatial variation. The main ideas are demonstrated with polymethylmethacrylate and breast tissue equivalent phantom imaging experiments. The work suggests that the effective attenuation coefficients may be used as known values for radiometric standardization applications that compensate for the image acquisition influences. The work indicates that it is possible to make quantitative attenuation coefficient measurements from a system designed for clinical purposes

  18. Blurred digital mammography images: an analysis of technical recall and observer detection performance.

    Science.gov (United States)

    Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-03-01

    Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.

  19. WE-DE-207B-08: Towards Standardization of X-Ray Filters in Digital Mammography-Enabled Breast Tomosynthesis Systems

    International Nuclear Information System (INIS)

    Shrestha, S; Vedantham, S; Karellas, A

    2016-01-01

    Purpose: In digital breast tomosynthesis (DBT) systems capable of digital mammography (DM), Al filters are used during DBT and K-edge filters during DM. The potential for standardizing the x-ray filters with Al, instead of K-edge filters, was investigated with intent to reduce exposure duration and to promote a simpler system design. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for K-edge filters (50µm Rh; 50µm Ag) were compared with Al filters of varying thickness. Two strategies for matching the HVT from K-edge and Al filtered spectra were investigated: varying the kVp for fixed Al thickness, or varying the Al thickness at matched kVp. For both strategies, Al filters were an order of magnitude thicker than K-edge filters. Hence, Monte Carlo simulations were conducted with the GEANT4 toolkit to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Al and K-edge filters. Results: Results show the potential for replacing currently used Kedge filters with Al. For fixed Al thickness (700µm), ±1 kVp and +(1–3) kVp change, matched HVT of Rh and Ag filtered spectra. At matched kVp, Al thickness range (650,750)µm and (750,860)µm matched the HVT from Rh and Ag filtered spectra. Photon fluence/mAs with Al filters were 1.5–2.5 times higher, depending on kVp and Al thickness, compared to K-edge filters. Although Al thickness was an order higher than K-edge filters, neither the SPR nor the scatter PSF differed from K-edge filters. Conclusion: The use of Al filters for digital mammography is potentially feasible. The increased fluence/mAs with Al could decrease exposure duration for the combined DBT+DM exam and simplify system design. Effect of x-ray spectrum change due to Al filtration on radiation dose, signal, noise, contrast and related metrics are being investigated. Funding support: Supported in part by NIH R21CA176470 and R01

  20. WE-DE-207B-08: Towards Standardization of X-Ray Filters in Digital Mammography-Enabled Breast Tomosynthesis Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, S; Vedantham, S; Karellas, A [University of Massachusetts Medical School, Worcester, MA (United States)

    2016-06-15

    Purpose: In digital breast tomosynthesis (DBT) systems capable of digital mammography (DM), Al filters are used during DBT and K-edge filters during DM. The potential for standardizing the x-ray filters with Al, instead of K-edge filters, was investigated with intent to reduce exposure duration and to promote a simpler system design. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for K-edge filters (50µm Rh; 50µm Ag) were compared with Al filters of varying thickness. Two strategies for matching the HVT from K-edge and Al filtered spectra were investigated: varying the kVp for fixed Al thickness, or varying the Al thickness at matched kVp. For both strategies, Al filters were an order of magnitude thicker than K-edge filters. Hence, Monte Carlo simulations were conducted with the GEANT4 toolkit to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Al and K-edge filters. Results: Results show the potential for replacing currently used Kedge filters with Al. For fixed Al thickness (700µm), ±1 kVp and +(1–3) kVp change, matched HVT of Rh and Ag filtered spectra. At matched kVp, Al thickness range (650,750)µm and (750,860)µm matched the HVT from Rh and Ag filtered spectra. Photon fluence/mAs with Al filters were 1.5–2.5 times higher, depending on kVp and Al thickness, compared to K-edge filters. Although Al thickness was an order higher than K-edge filters, neither the SPR nor the scatter PSF differed from K-edge filters. Conclusion: The use of Al filters for digital mammography is potentially feasible. The increased fluence/mAs with Al could decrease exposure duration for the combined DBT+DM exam and simplify system design. Effect of x-ray spectrum change due to Al filtration on radiation dose, signal, noise, contrast and related metrics are being investigated. Funding support: Supported in part by NIH R21CA176470 and R01

  1. X-ray induced formation of γ-H2AX foci after full-field digital mammography and digital breast-tomosynthesis.

    Directory of Open Access Journals (Sweden)

    Siegfried A Schwab

    Full Text Available PURPOSE: To determine in-vivo formation of x-ray induced γ-H2AX foci in systemic blood lymphocytes of patients undergoing full-field digital mammography (FFDM and to estimate foci after FFDM and digital breast-tomosynthesis (DBT using a biological phantom model. MATERIALS AND METHODS: The study complies with the Declaration of Helsinki and was performed following approval by the ethic committee of the University of Erlangen-Nuremberg. Written informed consent was obtained from every patient. For in-vivo tests, systemic blood lymphocytes were obtained from 20 patients before and after FFDM. In order to compare in-vivo post-exposure with pre-exposure foci levels, the Wilcoxon matched pairs test was used. For in-vitro experiments, isolated blood lymphocytes from healthy volunteers were irradiated at skin and glandular level of a porcine breast using FFDM and DBT. Cells were stained against the phosphorylated histone variant γ-H2AX, and foci representing distinct DNA damages were quantified. RESULTS: Median in-vivo foci level/cell was 0.086 (range 0.067-0.116 before and 0.094 (0.076-0.126 after FFDM (p = 0.0004. In the in-vitro model, the median x-ray induced foci level/cell after FFDM was 0.120 (range 0.086-0.140 at skin level and 0.035 (range 0.030-0.050 at glandular level. After DBT, the median x-ray induced foci level/cell was 0.061 (range 0.040-0.081 at skin level and 0.015 (range 0.006-0.020 at glandular level. CONCLUSION: In patients, mammography induces a slight but significant increase of γ-H2AX foci in systemic blood lymphocytes. The introduced biological phantom model is suitable for the estimation of x-ray induced DNA damages in breast tissue in different breast imaging techniques.

  2. Self-organizing neural networks for automatic detection and classification of contrast-enhancing lesions in dynamic MR-mammography

    International Nuclear Information System (INIS)

    Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M.

    2005-01-01

    Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)

  3. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: spectral optimization and preliminary phantom measurement.

    Science.gov (United States)

    Saito, Masatoshi

    2007-11-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  4. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2007-01-01

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm 2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues

  5. Estimation of mean glandular dose for patients who undergo mammography and studying the factors affecting it

    Science.gov (United States)

    Barzanje, Sana L. N. H.; Harki, Edrees M. Tahir Nury

    2017-09-01

    The objective of this study was to determine mean glandular dose (MGD) during diagnostic mammography. This study was done in two hospitals in Hawler city in Kurdistan -region /Iraq, the exposure parameters kVp and mAs was recorded for 40 patients under go mammography. The MGD estimated by multiplied ESD with normalized glandular dose (Dn). The ESD measured indirectly by measuring output radiation mGy/mAs by using PalmRAD 907 as a suitable detector (Gigger detector).the results; shown that the mean and its standard deviation of MGD for Screen Film Mammography and Digital Mammography are (0.95±0.18)mGy and (0.99±0.26)mGy, respectively. And there is a significant difference between MGD for Screen Film Mammography and Digital Mammography views (p≤0. 05). Also the mean value and its standard deviation of MGD for screen film mammography is (0.96±0.21) for CC projection and (1.03±0.3) mGy for MLO projection, but mean value and its standard deviation evaluated of MGD for digital mammography is (0.92±0.17) mGy for CC projection and (0.98±0.2) mGy for MLO projection. As well as, the effect of kVp and mAs in MGD were studied, shows that in general as kVp and mAs increased the MGD increased accordingly in both of mammography systems.

  6. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    International Nuclear Information System (INIS)

    Ding, H; Zhou, B; Beidokhti, D; Molloi, S

    2016-01-01

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodine signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.

  7. WE-DE-207B-04: Quantitative Contrast-Enhanced Spectral Mammography Based On Photon-Counting Detectors: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ding, H; Zhou, B; Beidokhti, D; Molloi, S [University of California, Irvine, CA (United States)

    2016-06-15

    Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodine signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.

  8. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.; Vieira, Marcelo A. C. [Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590 (Brazil); Bakic, Predrag R.; Maidment, Andrew D. A. [Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104 (United States)

    2016-06-15

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  9. Method for simulating dose reduction in digital mammography using the Anscombe transformation.

    Science.gov (United States)

    Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C

    2016-06-01

    This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise

  10. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    International Nuclear Information System (INIS)

    Borges, Lucas R.; Oliveira, Helder C. R. de; Nunes, Polyana F.; Vieira, Marcelo A. C.; Bakic, Predrag R.; Maidment, Andrew D. A.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  11. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  12. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  13. Digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Haegele, Julian; Barkhausen, Joerg; Pursche, Telja; Schaefer, Fritz K.W.

    2015-01-01

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  14. Comparison of anode/filter combinations in digital mammography with respect to the average glandular dose

    International Nuclear Information System (INIS)

    Uhlenbrock, D.F.; Mertelmeier, Thomas

    2009-01-01

    To investigate the average glandular dose (AGD) applied for clinical digital mammograms acquired with the anode/filter combinations molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh), and tungsten/rhodium (W/Rh). Using the method of Dance, the AGD was evaluated from the exposure data of 4867 digital mammograms at two sites equipped with a full-field digital mammography (FFDM) system based on an amorphous selenium detector. 1793 images were acquired and analyzed with Mo/Mo, 643 with Mo/Rh, and 2431 with W/Rh. In the Mo/Mo cases the mean compressed breast thickness was 46 ± 10 mm with an average AGD of 2.29 ± 1.31 mGy. For the Mo/Rh cases with a mean compressed thickness of 64 ± 9 mm, we obtained 2.76 ± 1.31 mGy. The W/Rh cases with a mean compressed thickness of 52 ± 13 mm resulted in 1.26 ± 0.44 mGy. The image quality was assessed as normal and adequate for diagnostic purposes in all cases. (orig.)

  15. Investigation of actual conditions of mammography in Kagoshima prefecture

    International Nuclear Information System (INIS)

    Baba, Natsuki; Tanimoto, Eriko; Kobayashi, Yasuhiro; Kuma, Kouji

    2009-01-01

    We surveyed the actual conditions of mammography with regard to image quality and radiation dose at 44 facilities in Kagoshima prefecture in 1999. In April 2004, guidelines for mammography newly included the standard of digital mammography. From September to October 2005, the survey was conducted at 48 facilities, and the results of the survey were compared with that in 1999. We visited 44 of the 48 facilities, and visually evaluated the image quality of mammograms for RMI156 and clinical mammograms. In addition, we measured average mammary gland dose at each facility. The number of the mammography device that satisfied the specified guideline criterion was larger than that in 1999. Image quality for the RMI156 mammograms improved. However, the results of the present survey revealed several problems. First, the number of facilities that had quality control instruments for mammography are few. Second, radiological technologists, medical doctors, and nurses did not share knowledge or information regarding mammography. Finally, there were differences in devices and image quality for mammography among the facilities. We achieved an understanding of the actual conditions of mammography in Kagoshima prefecture by visiting many facilities, evaluating image quality, and communicating with many staff members. Our results may be useful for the development of mammography examinations. (author)

  16. Accuracy of contrast-enhanced spectral mammography for estimating residual tumor size after neoadjuvant chemotherapy in patients with breast cancer: a feasibility study

    Directory of Open Access Journals (Sweden)

    Filipe Ramos Barra

    Full Text Available Abstract Objective: To assess the feasibility of contrast-enhanced spectral mammography (CESM of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC. Materials and methods: In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM. We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. Results: The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively. The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886. The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598. Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88. Conclusion: CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent.

  17. Anomaly depth detection in trans-admittance mammography: a formula independent of anomaly size or admittivity contrast

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lee, Eunjung; Seo, Jin Keun

    2014-01-01

    Trans-admittance mammography (TAM) is a bioimpedance technique for breast cancer detection. It is based on the comparison of tissue conductivity: cancerous tissue is identified by its higher conductivity in comparison with the surrounding normal tissue. In TAM, the breast is compressed between two electrical plates (in a similar architecture to x-ray mammography). The bottom plate has many sensing point electrodes that provide two-dimensional images (trans-admittance maps) that are induced by voltage differences between the two plates. Multi-frequency admittance data (Neumann data) are measured over the range 50 Hz–500 kHz. TAM aims to determine the location and size of any anomaly from the multi-frequency admittance data. Various anomaly detection algorithms can be used to process TAM data to determine the transverse positions of anomalies. However, existing methods cannot reliably determine the depth or size of an anomaly. Breast cancer detection using TAM would be improved if the depth or size of an anomaly could also be estimated, properties that are independent of the admittivity contrast. A formula is proposed here that can estimate the depth of an anomaly independent of its size and the admittivity contrast. This depth estimation can also be used to derive an estimation of the size of the anomaly. The proposed estimations are verified rigorously under a simplified model. Numerical simulation shows that the proposed method also works well in general settings. (paper)

  18. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program : validation of results in a large multireader, multicase study

    NARCIS (Netherlands)

    Lalji, U C; Houben, I P L; Prevos, R; Gommers, S; van Goethem, M; Vanwetswinkel, S; Pijnappel, R; Steeman, R; Frotscher, C; Mok, W; Nelemans, P; Smidt, M L; Beets-Tan, R G; Wildberger, J E; Lobbes, M B I

    2016-01-01

    OBJECTIVES: Contrast-enhanced spectral mammography (CESM) is a promising problem-solving tool in women referred from a breast cancer screening program. We aimed to study the validity of preliminary results of CESM using a larger panel of radiologists with different levels of CESM experience.

  19. Breast Cancer Screening, Mammography, and Other Modalities.

    Science.gov (United States)

    Fiorica, James V

    2016-12-01

    This article is an overview of the modalities available for breast cancer screening. The modalities discussed include digital mammography, digital breast tomosynthesis, breast ultrasonography, magnetic resonance imaging, and clinical breast examination. There is a review of pertinent randomized controlled trials, studies and meta-analyses which contributed to the evolution of screening guidelines. Ultimately, 5 major medical organizations formulated the current screening guidelines in the United States. The lack of consensus in these guidelines represents an ongoing controversy about the optimal timing and method for breast cancer screening in women. For mammography screening, the Breast Imaging Reporting and Data System lexicon is explained which corresponds with recommended clinical management. The presentation and discussion of the data in this article are designed to help the clinician individualize breast cancer screening for each patient.

  20. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  1. Quality assurance and quality control in mammography: a review of available guidance worldwide.

    Science.gov (United States)

    Reis, Cláudia; Pascoal, Ana; Sakellaris, Taxiarchis; Koutalonis, Manthos

    2013-10-01

    Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources. •An effective QA program should be practical to implement in a clinical setting. •QA should address the various stages of the imaging chain: acquisition, processing and display. •AEC system QC testing is simple to implement and provides information on equipment performance.

  2. Should previous mammograms be digitised in the transition to digital mammography?

    International Nuclear Information System (INIS)

    Taylor-Phillips, S.; Gale, A.G.; Wallis, M.G.

    2009-01-01

    Breast screening specificity is improved if previous mammograms are available, which presents a challenge when converting to digital mammography. Two display options were investigated: mounting previous film mammograms on a multiviewer adjacent to the workstation, or digitising them for soft copy display. Eight qualified screen readers were videotaped undertaking routine screen reading for two 45-min sessions in each scenario. Analysis of gross eye and head movements showed that when digitised, previous mammograms were examined a greater number of times per case (p=0.03), due to a combination of being used in 19% more cases (p=0.04) and where used, looked at a greater number of times (28% increase, p=0.04). Digitising previous mammograms reduced both the average time taken per case by 18% (p=0.04) and the participants' perceptions of workload (p < 0.05). Digitising previous analogue mammograms may be advantageous, in particular in increasing their level of use. (orig.)

  3. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  4. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-01-01

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  5. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  6. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    Science.gov (United States)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  7. Physical characteristics of GE Senographe Essential and DS digital mammography detectors

    International Nuclear Information System (INIS)

    Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordonez, Pedro L.

    2008-01-01

    The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) a-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 μm) but a different field of view: a conventional size 23x19.2 cm 2 and a large field 24x30.7 cm 2 , specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, a-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 μGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems

  8. Comparison of Breast Density Between Synthesized Versus Standard Digital Mammography.

    Science.gov (United States)

    Haider, Irfanullah; Morgan, Matthew; McGow, Anna; Stein, Matthew; Rezvani, Maryam; Freer, Phoebe; Hu, Nan; Fajardo, Laurie; Winkler, Nicole

    2018-06-12

    To evaluate perceptual difference in breast density classification using synthesized mammography (SM) compared with standard or full-field digital mammography (FFDM) for screening. This institutional review board-approved, retrospective, multireader study evaluated breast density on 200 patients who underwent baseline screening mammogram during which both SM and FFDM were obtained contemporaneously from June 1, 2016, through November 30, 2016. Qualitative breast density was independently assigned by seven readers initially evaluating FFDM alone. Then, in a separate session, these same readers assigned breast density using synthetic views alone on the same 200 patients. The readers were again blinded to each other's assignment. Qualitative density assessment was based on BI-RADS fifth edition. Interreader agreement was evaluated with κ statistic using 95% confidence intervals. Testing for homogeneity in paired proportions was performed using McNemar's test with a level of significance of .05. For patients across the SM and standard 2-D data set, diagnostic testing with McNemar's test with P = 0.32 demonstrates that the minimal density transitions across FFDM and SM are not statistically significant density shifts. Taking clinical significance into account, only 8 of 200 (4%) patients had clinically significant transition (dense versus not dense). There was substantial interreader agreement with overall κ in FFDM of 0.71 (minimum 0.53, maximum 0.81) and overall SM κ average of 0.63 (minimum 0.56, maximum 0.87). Overall subjective breast density assignment by radiologists on SM is similar to density assignment on standard 2-D mammogram. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely

  10. Added value of one-view breast tomosynthesis combined with digital mammography according to reader experience.

    Science.gov (United States)

    Thomassin-Naggara, Isabelle; Perrot, Nicolas; Dechoux, Sophie; Ribeiro, Carine; Chopier, Jocelyne; de Bazelaire, Cedric

    2015-02-01

    To retrospectively evaluate the added value of one-view breast tomosynthesis in adjunct with mammography to characterize breast lesions. Our institutional ethics committees approved the study and granted a waiver of informed consent. One hundred fifty-five women (mean age, 51.3 years, range: 24-92 years) who systematically underwent mammography and breast tomosynthesis with subsequent percutaneous biopsy were analyzed. Four radiologists (two seniors, R1 and R2, and two juniors, R3 and R4 with 30, 10, 3 and 1 years of experience in breast imaging, respectively) independently reviewed exams in two steps: mammography alone and tomosynthesis in adjunct with mammography. The lesions in the cohort included 39.3% (61/155) cancers, 2.5% (4/155) high-risk lesions and 58.1% (90/155) benign lesions. A receiver operating characteristic (ROC) curve analysis was performed to compare the results of the two readings. There was almost perfect agreement irrespective of reader experience for the reading of the mammography in adjunct with tomosynthesis, whereas agreement was poor between junior and senior readers for the reading of mammography alone. Area under the ROC (Az) values for the tomosynthesis in adjunct with mammography were significantly better than Az values for mammography alone for all readers except the most experienced, for whom only a tendency was noted. The proportion of cancers undiagnosed by mammography alone that were well diagnosed by tomosynthesis in adjunct with mammography was 6.5% (4/61), 13.1% (8/61), 27.8% (17/61) and 26.2% (16/61) for Readers 1, 2, 3 and 4, respectively. The proportion of false positive cases induced by the addition of breast tomosynthesis to mammography was 2.1% (2/94), 2.1% (2/94), 9.5% (9/94) and 12.7% (12/94) for Readers 1, 2, 3 and 4, respectively. Adding breast tomosynthesis to mammography improved sensitivity and negative predictive value for all readers except for the most experienced one, in whom only a tendency for improvement

  11. Quantitative 2- and 3-dimensional analysis of pharmacokinetic model-derived variables for breast lesions in dynamic, contrast-enhanced MR mammography

    International Nuclear Information System (INIS)

    Hauth, E.A.M.; Jaeger, H.J.; Maderwald, S.; Muehler, A.; Kimmig, R.; Forsting, M.

    2008-01-01

    Purpose: 2- and 3-dimensional evaluation of quantitative pharmacokinetic parameters derived from the Tofts model modeling dynamic contrast enhancement of lesions in MR mammography. Materials and methods: In 95 patients, MR mammography revealed 127 suspicious lesions. The initial rate of enhancement was coded by color intensity, the post-initial enhancement change is coded by color hue. 2D and 3D analysis of distribution of color hue and intensity, vascular permeability and extracellular volume were performed. Results: In 2D, malignant lesions showed significant higher number of bright red, medium red, dark red, bright green, medium green, dark green and bright blue pixels than benign lesions. In 3D, statistical significant differences between malignant and benign lesions was found for all this parameters. Vascular permeability was significant higher in malignant lesions than in benign lesions. Regression model using the 3D data found that the best discriminator between malignant and benign lesions was combined number of voxels and medium green pixels, with a sensitivity of 79.4% and a specificity of 83.1%. Conclusions: Quantitative analysis of pharmacokinetic variables of contrast kinetics showed significant differences between malignant and benign lesions. 3D analysis showed superior diagnostic differentiation between malignant and benign lesions than 2D analysis. The parametric analysis using a pharmacokinetic model allows objective analysis of contrast enhancement in breast lesions

  12. Digital contrast subtraction radiography for proximal caries diagnosis

    International Nuclear Information System (INIS)

    Kang, Byung Cheol; Yoon, Suk Ja

    2002-01-01

    To determine whether subtraction images utilizing contrast media can improve the diagnostic performance of proximal caries diagnosis compared to conventional periapical radiographic images. Thirty-six teeth with 57 proximal surfaces were radiographied using a size no.2 RVG-ui sensor (Trophy Radiology, Marne-la-Vallee, France). The teeth immersed in water-soluble contrast media and subtraction images were taken. Each tooth was then sectioned for histologic examination. The digital radiographic images and subtraction images were examined and interpreted by three dentists for proximal caries. The results of the proximal caries diagnosis were then verified with the results of the histologic examination. The proximal caries sensitivity using digital subtraction radiography was significantly higher than simply examining a single digital radiograph. The sensitivity of the proximal dentinal carious lesion when analyzed with the subtraction radiograph and the radiograph together was higher than with the subtraction radiograph or the radiograph alone. The use of subtraction radiography with contrast media may be useful for detecting proximal dentinal carious lesions.

  13. Computer-aided detection of breast carcinoma in standard mammographic projections with digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Destounis, Stamatia [Elizabeth Wende Breast Care, LLC, Rochester, NY (United States); University of Rochester, School of Medicine and Dentistry, Rochester, NY (United States); Hanson, Sarah; Morgan, Renee; Murphy, Philip; Somerville, Patricia; Seifert, Posy; Andolina, Valerie; Arieno, Andrea; Skolny, Melissa; Logan-Young, Wende [Elizabeth Wende Breast Care, LLC, Rochester, NY (United States)

    2009-06-15

    A retrospective evaluation of the ability of computer-aided detection (CAD) ability to identify breast carcinoma in standard mammographic projections. Forty-five biopsy proven lesions in 44 patients imaged digitally with CAD applied at examination were reviewed. Forty-four screening BIRADS {sup registered} category 1 digital mammography examinations were randomly identified to serve as a comparative normal/control population. Data included patient age; BIRADS {sup registered} breast density; lesion type, size, and visibility; number, type, and location of CAD marks per image; CAD ability to mark lesions; needle core and surgical pathologic correlation. The CAD lesion/case sensitivity of 87% (n=39), image sensitivity of 69% (n=31) for mediolateral oblique view and 78% (n=35) for the craniocaudal view was found. The average false positive rate in 44 normal screening cases was 2.0 (range 1-8). The 2.0 figure is based on 88 reported false positive CAD marks in 44 normal screening exams: 98% (n=44) lesions proceeded to excision; initial pathology upgraded at surgical excision from in situ to invasive disease in 24% (n=9) lesions. CAD demonstrated potential to detect mammographically visible cancers in standard projections for all lesion types. (orig.)

  14. Dose surveys in two digital mammography units using DICOM headers

    International Nuclear Information System (INIS)

    Tsalafoutas, I.; Michalaki, C.; Papagiannopoulou, C.; Efstathopoulos, E.

    2012-01-01

    Background and objective: Digital mammography units store images in DICOM format. Thus, data regarding the acquisition parameters are available within DICOM headers, including among others, the anode/filter combination, tube potential and tube current exposure time product, compressed breast thickness, entrance surface air kerma (ESAK) and mean glandular dose (MGD). However, manual extraction of these data for the verification of the displayed values' accuracy and for dose survey purposes is time consuming. Our objective was to develop a method that enables the automation of such procedures. Materials and methods: Two hundred mammographic examinations (800 mammograms) performed in two digital units (GE, Essential) were recorded on CD-roms. Using appropriate software (DICOM Info Extractor) all dose related DICOM headers were extracted into a Microsoft Excel based spreadsheet, containing embedded algorithms for the calculation of ESAK and MGD according to Dance et al (Phys. Med. Biol. 45, 2000) methodology. Results: The ESAK and MGD values stored in the DICOM headers were compared with those calculated and in most cases were within ±10%. The basic difference among the two mammographic units is that, the older one calculates MGD assuming a breast composition 50% glandular-50% adipose tissue, while the newer one calculates the actual breast glandularity and stores this value in a DICOM header. The average MGD values were 1.21 mGy and 1.38 mGy, respectively. Conclusion: For the units studied, the ESAK and MGD values stored in DICOM headers are reliable. Utilizing tools for their automatic extraction provides an easy way to perform dose surveys. (authors)

  15. Descriptive study of the quality control in mammography; Estudio descriptivo del control de calidad en mamografia

    Energy Technology Data Exchange (ETDEWEB)

    Gaona, E.; Perdigon C, G.M.; Casian C, G.A.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M. [UAM, Xochimilco 14000 Mexico D.F. (Mexico)

    2005-07-01

    The goal of mammography is to provide contrast between a lesion that is possible residing within the breast and normal surrounding tissue. Quality control is essential for maintaining the contrast imaging performance of a mammography system and incorporate tests that are relevant in that they are predictive of future degradation of contrast imaging performance. These tests will also be done at frequency that is high enough to intercept most drifts in quality imaging or performance before they become diagnostically significant. The quality control study has as objective to describe the results of the assessment of quality imaging elements (film optical density, contrast (density difference), uniformity, resolution and noise) of 62 mammography departments without quality control program and comparison these results with a mammography reference department with a quality control program. When comparing the results they allow seeing the clinical utility of to have a quality control program to reduce the errors of mammography interpretation. (Author)

  16. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allec, N; Abbaszadeh, S; Karim, K S, E-mail: nallec@uwaterloo.ca [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1 (Canada)

    2011-09-21

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml{sup -1} in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  17. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    Science.gov (United States)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  18. Spectral analysis of full field digital mammography data

    International Nuclear Information System (INIS)

    Heine, John J.; Velthuizen, Robert P.

    2002-01-01

    The spectral content of mammograms acquired from using a full field digital mammography (FFDM) system are analyzed. Fourier methods are used to show that the FFDM image power spectra obey an inverse power law; in an average sense, the images may be considered as 1/f fields. Two data representations are analyzed and compared (1) the raw data, and (2) the logarithm of the raw data. Two methods are employed to analyze the power spectra (1) a technique based on integrating the Fourier plane with octave ring sectioning developed previously, and (2) an approach based on integrating the Fourier plane using rings of constant width developed for this work. Both methods allow theoretical modeling. Numerical analysis indicates that the effects due to the transformation influence the power spectra measurements in a statistically significant manner in the high frequency range. However, this effect has little influence on the inverse power law estimation for a given image regardless of the data representation or the theoretical analysis approach. The analysis is presented from two points of view (1) each image is treated independently with the results presented as distributions, and (2) for a given representation, the entire image collection is treated as an ensemble with the results presented as expected values. In general, the constant ring width analysis forms the foundation for a spectral comparison method for finding spectral differences, from an image distribution sense, after applying a nonlinear transformation to the data. The work also shows that power law estimation may be influenced due to the presence of noise in the higher frequency range, which is consistent with the known attributes of the detector efficiency. The spectral modeling and inverse power law determinations obtained here are in agreement with that obtained from the analysis of digitized film-screen images presented previously. The form of the power spectrum for a given image is approximately 1/f 2

  19. Differences in radiological patterns, tumour characteristics and diagnostic precision between digital mammography and screen-film mammography in four breast cancer screening programmes in Spain

    International Nuclear Information System (INIS)

    Domingo, Laia; Sala, Maria; Romero, Anabel; Belvis, Francesc; Macia, Francesc; Castells, Xavier; Sanchez, Mar; Ferrer, Joana; Salas, Dolores; Ibanez, Josefa; Vega, Alfonso; Ferrer, Francesc; Laso, M.S.

    2011-01-01

    To compare tumour characteristics between cancers detected with screen-film mammography (SFM) and digital mammography (DM) and to evaluate changes in positive predictive values (PPVs) for further assessments, for invasive procedures and for distinct radiological patterns in recalled women. 242,838 screening mammograms (171,191 SFM and 71,647 DM) from 103,613 women aged 45-69 years, performed in four population-based breast cancer screening programmes in Spain, were included. The tumour characteristics and PPVs of each group were compared. Radiological patterns (masses, calcifications, distortions and asymmetries) among recalled women were described and PPVs were evaluated. The percentages of ductal carcinoma in situ (DCIS) were higher in DM than in SFM both in the first [18.5% vs. 15.8%(p = 0.580)] and in successive screenings [23.2% vs. 15.7%(p = 0.115)]. PPVs for masses, asymmetries and calcifications were higher in DM, being statistically significant in masses (5.3% vs. 3.9%; proportion ratio: 1.37 95%CI: 1.08-1.72). Among cancers detected by calcifications, the percentage of DCIS was higher in DM (60.3% vs. 46.4%, p = 0.060). PPVs were higher when DM was used, both for further assessments and for invasive procedures, with similar cancer detection rates and no statistically significant differences in tumour characteristics. The greatest improvements in PPVs were found for masses. (orig.)

  20. Differences in radiological patterns, tumour characteristics and diagnostic precision between digital mammography and screen-film mammography in four breast cancer screening programmes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, Laia; Sala, Maria [IMIM-Hospital del Mar, Department of Epidemiology and Evaluation, Barcelona (Spain); CIBER de Epidemiologia y Salud Publica (CIBERESP), Barcelona (Spain); Universitat Autonoma de Barcelona (UAB), EHEA Doctoral Program in Public Health. Department of Pediatrics, Obstetrics and Gynecology, Preventive Medicine and Public Health, Barcelona (Spain); Romero, Anabel; Belvis, Francesc; Macia, Francesc; Castells, Xavier [IMIM-Hospital del Mar, Department of Epidemiology and Evaluation, Barcelona (Spain); CIBER de Epidemiologia y Salud Publica (CIBERESP), Barcelona (Spain); Sanchez, Mar [Government of Cantabria, General Directorate of Public Health, Department of Health, Santander (Spain); Ferrer, Joana [Radiology Unit. Hospital Santa Caterina, Girona (Spain); Salas, Dolores; Ibanez, Josefa [General Directorate Public Health and Centre for Public Health Research (CSISP), Valencia (Spain); Vega, Alfonso [Hospital Universitario Marques de Valdecilla, Radiology Unit, Santander (Spain); Ferrer, Francesc [Hospital del Mar, Radiology and Nuclear Medicine Service, Barcelona (Spain); Laso, M.S. [Breast Cancer Screening Unit Burjassot, Valencia (Spain)

    2011-09-15

    To compare tumour characteristics between cancers detected with screen-film mammography (SFM) and digital mammography (DM) and to evaluate changes in positive predictive values (PPVs) for further assessments, for invasive procedures and for distinct radiological patterns in recalled women. 242,838 screening mammograms (171,191 SFM and 71,647 DM) from 103,613 women aged 45-69 years, performed in four population-based breast cancer screening programmes in Spain, were included. The tumour characteristics and PPVs of each group were compared. Radiological patterns (masses, calcifications, distortions and asymmetries) among recalled women were described and PPVs were evaluated. The percentages of ductal carcinoma in situ (DCIS) were higher in DM than in SFM both in the first [18.5% vs. 15.8%(p = 0.580)] and in successive screenings [23.2% vs. 15.7%(p = 0.115)]. PPVs for masses, asymmetries and calcifications were higher in DM, being statistically significant in masses (5.3% vs. 3.9%; proportion ratio: 1.37 95%CI: 1.08-1.72). Among cancers detected by calcifications, the percentage of DCIS was higher in DM (60.3% vs. 46.4%, p = 0.060). PPVs were higher when DM was used, both for further assessments and for invasive procedures, with similar cancer detection rates and no statistically significant differences in tumour characteristics. The greatest improvements in PPVs were found for masses. (orig.)

  1. Challenges in contrast-enhanced spectral mammography interpretation: artefacts lexicon.

    Science.gov (United States)

    Yagil, Y; Shalmon, A; Rundstein, A; Servadio, Y; Halshtok, O; Gotlieb, M; Sklair-Levy, M

    2016-05-01

    To review and describe commonly encountered artefacts in contrast-enhanced spectral mammography (CESM). This retrospective study included 200 women who underwent CESM examinations for screening and diagnostic purposes. Analysis was performed on the image data sets of these women, comprising of a total of 774 subtracted images. Images were reviewed with focus on the presence of four artefacts: rim ("breast within breast"), ripple (black and white lines), axillary line, and skin-line enhancement (skin-line highlighting). Statistical cross-correlation and association with acquisition parameters (tube current, tube voltage, compression force, breast thickness, paddle size) was compared using Fisher's exact test and t-test. The rim artefact was highly common (97-99%) in every projection. The ripple artefact was increasingly more common on the oblique projections (80-82%) and found to be associated with higher breast thickness values. The axillary line artefact was detected only on oblique projections (63%) and associated with the use of a small compression paddle. The skin-line enhancement artefact was seen in 19-46% of projections. None of the artefacts interfered with image interpretation. Two main artefacts commonly seen on CESM are rim and ripple artefacts. They do not hamper with image interpretation. It is important to be aware of them and prevent misinterpretation of these artefacts as real breast pathology. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Physical image quality of computed radiography in mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Muhammad Jamal Isa; Wan Muhamad Saridan Wan Hassan; Fatimah Othman

    2013-01-01

    Full-text: Mammography is a screening procedure that mostly used for early detection of breast cancer. In digital imaging system, Computed Radiography is a cost-effective technology that applied indirect conversion detector. The paper presents physical image quality parameter measurements namely modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) of Computed Radiography in mammography system. MTF was calculated from two different orientations of slanted images of an edge test device and NNPS was estimated using flat-field image. Both images were acquired using a standard mammography beam quality. DQE was determined by applying the MTF and NNPS values into our developed software program. Both orientations have similar DQE characteristics. (author)

  3. Performance evaluation of a digital mammography unit using a contrast-detail phantom

    Science.gov (United States)

    Elizalde-Cabrera, J.; Brandan, M.-E.

    2015-01-01

    The relation between image quality and mean glandular dose (MGD) has been studied for a Senographe 2000D mammographic unit used for research in our laboratory. The magnitudes were evaluated for a clinically relevant range of acrylic thicknesses and radiological techniques. The CDMAM phantom was used to determine the contrast-detail curve. Also, an alternative method based on the analysis of signal-to-noise (SNR) and contrast-to-noise (CNR) ratios from the CDMAM image was proposed and applied. A simple numerical model was utilized to successfully interpret the results. Optimum radiological techniques were determined using the figures-of-merit FOMSNR=SNR2/MGD and FOMCNR=CNR2/MGD. Main results were: the evaluation of the detector response flattening process (it reduces by about one half the spatial non-homogeneities due to the X- ray field), MGD measurements (the values comply with standards), and verification of the automatic exposure control performance (it is sensitive to fluence attenuation, not to contrast). For 4-5 cm phantom thicknesses, the optimum radiological techniques were Rh/Rh 34 kV to optimize SNR, and Rh/Rh 28 kV to optimize CNR.

  4. Hardware for mammography

    International Nuclear Information System (INIS)

    Rozhkova, N.I.; Chikirdin, Eh.G.; Ryudiger, Yu.G.; Kochetova, G.P.; Lisachenko, I.V.; Yakobs, O.Eh.

    2000-01-01

    The comparative studies on various visualization means, in particular, the intensifying screens and films with application of quantitative methods for determining small details on photographs, including measurements of corresponding exposures, absorbed doses and verification of conclusions through the analysis of clinical observations are carried out. It is shown, that technical equipment of the modern mammography room should include the X-ray mammographic apparatus, providing for the image high-quality by low dose loads with special film holders, meeting the mammography requirements, the corresponding X-ray film and the automatic photolaboratory process, provided by one and the same company. The quality of photographs under such conditions is guarantied, the defects and errors by the image interpretation are excluded. The modern computerized information technologies for work with medical images on the basic of creating new generations of diagnostic instrumentation with digital video channels and computerized working places dispose of many medical, technological, organizational and financial problems [ru

  5. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    International Nuclear Information System (INIS)

    Contillo, Adriano; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2016-01-01

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  6. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Noise minimization

    Energy Technology Data Exchange (ETDEWEB)

    Contillo, Adriano, E-mail: contillo@fe.infn.it; Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2016-06-15

    Purpose: Dual-energy image subtraction represents a useful tool to improve the detectability of small lesions, especially in dense breasts. A feature it shares with all x-ray imaging techniques is the appearance of fluctuations in the texture of the background, which can obscure the visibility of interesting details. The aim of the work is to investigate the main noise sources, in order to create a better performing subtraction mechanism. In particular, the structural noise cancellation was achieved by means of a suitable extension of the dual-energy algorithm. Methods: The effect of the cancellation procedure was tested on an analytical simulation of a target with varying structural composition. Subsequently, the subtraction algorithm was also applied to a set of actual radiographs of a breast phantom exhibiting a nonuniform background pattern. The background power spectra of the outcomes were computed and compared to the ones obtained from a standard subtraction algorithm. Results: The comparison between the standard and the proposed cancellations showed an overall suppression of the magnitudes of the spectra, as well as a flattening of the frequency dependence of the structural component of the noise. Conclusions: The proposed subtraction procedure provides an effective cancellation of the residual background fluctuations. When combined with the polychromatic correction already described in a companion publication, it results in a high performing dual-energy subtraction scheme for commercial mammography units.

  7. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  8. Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation.

    Science.gov (United States)

    Alshafeiy, Taghreed I; Wadih, Antoine; Nicholson, Brandi T; Rochman, Carrie M; Peppard, Heather R; Patrie, James T; Harvey, Jennifer A

    2017-07-01

    The purpose of this study was to compare assessments of breast density on synthetic 2D images as compared with digital 2D mammograms. This retrospective study included consecutive women undergoing screening with digital 2D mammography and tomosynthesis during May 2015 with a negative or benign outcome. In separate reading sessions, three radiologists with 5-25 years of clinical experience and 1 year of experience with synthetic 2D mammography read digital 2D and synthetic 2D images and assigned breast density categories according to the 5th edition of BI-RADS. Inter- and intrareader agreement was assessed for each BI-RADS density assessment and combined dense and nondense categories using percent agreement and Cohen kappa coefficient for consensus and all reads. A total of 309 patients met study inclusion criteria. Agreement between consensus BI-RADS density categories assigned for digital and synthetic 2D mammography was 80.3% (95% CI, 75.4-84.5%) with κ = 0.73 (95% CI, 0.66-0.79). For combined dense and nondense categories, agreement reached 91.9% (95% CI, 88.2-94.7%). For consensus readings, similar numbers of patients were shifted between nondense and dense categories (11 and 14, respectively) with the synthetic 2D compared with digital 2D mammography. Interreader differences were apparent; assignment to dense categories was greater with digital 2D mammography for reader 1 (odds ratio [OR], 1.26; p = 0.002), the same for reader 2 (OR, 0.91; p = 0.262), and greater with synthetic 2D mammography for reader 3 (OR, 0.86; p = 0.033). Overall, synthetic 2D mammography is comparable with digital 2D mammography in assessment of breast density, though there is some variability by reader. Practices can readily adopt synthetic 2D mammography without concern that it will affect density assessment and subsequent recommendations for supplemental screening.

  9. Evaluation of the quality of CR mammography images in Chugoku Rosai Hospital. Visual evaluation and digital evaluation

    International Nuclear Information System (INIS)

    Makihata, Hiroshi; Fukuda, Tomoya; Aomori, Masaji; Hara, Shinji

    2005-01-01

    New mammography system (50-micrometer system) composed of Fuji computed tomography (FCR) both sides IP, 5000MA and dry imager was introduced in the Department of Physical Checkup of Chugoku Rosai Hospital in 2003. We performed visual evaluation and digital evaluation using 50-micrometer system in accordance with (the quality control guidance of) Non-Profit Organization the Central Committee on Quality Control of Mammographic Screening. In visual evaluation using RMI156 phantom the system cleared the quality control guidance about a fiber, calcification, and masses. On step phantom, it passed about 10 steps, masses, and calcifications. Since a success standard was not announced officially, the performance in digital evaluation cannot be judged and only the result is presented. In digital evaluation, signal-to-noise ratio (SNR) is 14.9, root of mean squares (RMS) is 32.9, SNRC is 16.4, SNRT is 3.65. This system image has high sharpness and is considered from the result in visual evaluation to have the ability of offering images with a high degree of information. (author)

  10. Experience with the european quality assurance guidelines for digital mammography systems in a national screening programme

    International Nuclear Information System (INIS)

    McCullagh, J.; Keavey, E.; Egan, G.; Phelan, N.

    2013-01-01

    The transition to a fully digital breast screening programme, utilising three different full-field digital mammography (FFDM) systems has presented many challenges to the implementation of the European guidelines for physico-technical quality assurance (QA) testing. An analysis of the QA results collected from the FFDM systems in the screening programme over a 2-y period indicates that the three different systems have similar QA performances. Generally, the same tests were failed by all systems and failure rates were low. The findings provide some assurance that the QA guidelines are being correctly implemented. They also suggest that there is more scope for the development of the relevance of the guidelines with respect to modern FFDM systems. This study has also shown that a summary review of the QA data can be achieved by simple organisation of the QA data storage and by automation of data query and retrieval using commonly available software. (authors)

  11. Radiation dose with digital breast tomosynthesis compared to digital mammography. Per-view analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, Gisella [Veneto Institute of Oncology IOV- IRCCS, Radiology Unit, Padua (Italy); Bernardi, D. [Azienda Provinciale Servizi Sanitari (APSS), U.O. Senologia Clinica e Screening Mammografico, Department of Diagnostics, Trento (Italy); Houssami, N. [University of Sydney, Screening and Test Evaluation Program (STEP), School of Public Health, Sydney Medical School, Sydney (Australia)

    2018-02-15

    To compare radiation dose delivered by digital mammography (FFDM) and breast tomosynthesis (DBT) for a single view. 4,780 FFDM and 4,798 DBT images from 1,208 women enrolled in a screening trial were used to ground dose comparison. Raw images were processed by an automatic software to determine volumetric breast density (VBD) and were used together with exposure data to compute the mean glandular dose (MGD) according to Dance's model. DBT and FFDM were compared in terms of operation of the automatic exposure control (AEC) and MGD level. Statistically significant differences were found between FFDM and DBT MGDs for all views (CC: MGD{sub FFDM}=1.366 mGy, MGD{sub DBT}=1.858 mGy; p<0.0001; MLO: MGD{sub FFDM}=1.374 mGy, MGD{sub DBT}=1.877 mGy; p<0.0001). Considering the 4,768 paired views, Bland-Altman analysis showed that the average increase of DBT dose compared to FFDM is 38 %, and a range between 0 % and 75 %. Our findings show a modest increase of radiation dose to the breast by tomosynthesis compared to FFDM. Given the emerging role of DBT, its use in conjunction with synthetic 2D images should not be deterred by concerns regarding radiation burden, and should draw on evidence of potential clinical benefit. (orig.)

  12. Use of different simulators to quality evaluation of image quality in digital mammography; Utilizacao de diferentes simuladores na avaliacao da qualidade da imagem em mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Leslie S.; Coutinho, Celia M.C., E-mail: leslie@ird.gov.br, E-mail: celia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Magalhaes, Luis A.G.; Almeida, Carlos Eduardo de, E-mail: luisalexandregm@hotmail.com, E-mail: cea71@yahoo.com.br [Universidade do Estado do Rio de Janeiro (LCR/UERJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Ciencias Radiologicas

    2013-11-01

    In this study, the digital images were acquired with different exposure simulators to evaluate the quality of the image, noting the tumor mass detection, microcalcification fiber and representing regions of interest during mammography. The technical parameters of exposure depends on the thickness and composition of the breast, thus affecting the dose and image quality. The simulators were used: ACR, SBP 1054, BREAST PHANTOM CIRS and for evaluation of image quality, as well as measures kerma incident on the entrance surface (Ki) and calculating the mean glandular dose (MGD)

  13. Replacing single-view mediolateral oblique (MLO) digital mammography (DM) with synthesized mammography (SM) with digital breast tomosynthesis (DBT) images: Comparison of the diagnostic performance and radiation dose with two-view DM with or without MLO-DBT

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyo-Jin [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Chang, Jung Min, E-mail: imchangjm@gmail.com [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, 03080 (Korea, Republic of); Lee, Joongyub [Medical Research Collaborating Center, Biomedical Research Institution, Seoul National University Hospital, 03080 (Korea, Republic of); Song, Sung Eun; Shin, Sung Ui [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Kim, Won Hwa [Department of Radiology, Kyungpook National University Hospital, 41944 (Korea, Republic of); Bae, Min Sun [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University Hospital, 03080 (Korea, Republic of); Department of Radiology, Seoul National University College of Medicine, 03080 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University College Medical Research Center, 03080 (Korea, Republic of)

    2016-11-15

    Objectives: To evaluate the diagnostic performance and radiation dose of single view cranio-caudal (CC) digital mammography (DM) plus mediolateral oblique (MLO) digital breast tomosynthesis (DBT) combined with synthesized mammography (SM) in comparison with two-view DM with or without DBT. Material and methods: This study was approved by our institutional review board, and informed consent was obtained from 130 women. Paired two-view DM and single MLO-DBT with SM images were acquired, and four independent retrospective reading sessions of different combinations of DM, SM and DBT were performed for the presence of malignant tumors using jackknife alternative free-response receiver operator curve (JAFROC) methods. The diagnostic performances and average glandular dose (AGD) were compared between different combinations of DM, SM and DBT. Results: Of 159 lesions in 130 patients, 27 were malignant. When using MLO-DBT with SM instead of MLO-DM, a significantly higher sensitivity (P = 0.016) and specificity (P = 0.012) were noted than with two-view DM, and comparable figure of merit (FOM), sensitivity, and specificity to two-view DM with DBT were noted. The mean AGD of CC-DM plus MLO-DBT with SM was 5.78mGy ± 1.06 per patient, which was significantly lower than that with two-view DM with MLO-DBT (8.45mGy ± 1.32; P <0.001) and slightly higher than that with two-view DM (5.30mGy ± 0.63). Conclusions: The combined use of CC-DM plus MLO-DBT with SM showed higher sensitivity and specificity to two-view DM with a smaller AGD increment and comparable diagnostic performance to that of two-view DM with MLO-DBT with a significantly lower mean AGD.

  14. Computer-aided detection of masses in full-field digital mammography using screen-film mammograms for training

    International Nuclear Information System (INIS)

    Kallenberg, Michiel; Karssemeijer, Nico

    2008-01-01

    It would be of great value when available databases of screen-film mammography (SFM) images can be used to train full-field digital mammography (FFDM) computer-aided detection (CAD) systems, as compilation of new databases is costly. In this paper, we investigate this possibility. Firstly, we develop a method that converts an FFDM image into an SFM-like representation. In this conversion method, we establish a relation between exposure and optical density by simulation of an automatic exposure control unit. Secondly, we investigate the effects of using the SFM images as training samples compared to training with FFDM images. Our FFDM database consisted of 266 cases, of which 102 were biopsy-proven malignant masses and 164 normals. The images were acquired with systems of two different manufacturers. We found that, when we trained our FFDM CAD system with a small number of images, training with FFDM images, using a five-fold crossvalidation procedure, outperformed training with SFM images. However, when the full SFM database, consisting of 348 abnormal cases (including 204 priors) and 810 normal cases, was used for training, SFM training outperformed FFDMA training. These results show that an existing CAD system for detection of masses in SFM can be used for FFDM images without retraining.

  15. Effectiveness and cost-effectiveness of double reading in digital mammography screening: A systematic review and meta-analysis.

    Science.gov (United States)

    Posso, Margarita; Puig, Teresa; Carles, Misericòrdia; Rué, Montserrat; Canelo-Aybar, Carlos; Bonfill, Xavier

    2017-11-01

    Double reading is the strategy of choice for mammogram interpretation in screening programmes. It remains, however, unknown whether double reading is still the strategy of choice in the context of digital mammography. Our aim was to determine the effectiveness and cost-effectiveness of double reading versus single reading of digital mammograms in screening programmes. We performed a systematic review by searching the PubMed, Embase, and Cochrane Library databases up to April 2017. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool and CHEERS (Consolidated Health Economic Evaluation Reporting Standards) checklist to assess the methodological quality of the diagnostic studies and economic evaluations, respectively. A proportion's meta-analysis approach, 95% Confidence Intervals (95% CI) and test of heterogeneity (P values) were used for pooled results. Costs are expressed US$ PPP (United States Dollar purchasing power parities). The PROSPERO ID of this Systematic Review's protocol is CRD42014013804. Of 1473 potentially relevant hits, four high-quality studies were included. The pooled cancer detection rate of double reading was 6.01 per 1000 screens (CI: 4.47‰-7.77‰), and it was 5.65 per 1000 screens (CI: 3.95‰-7.65‰) for single reading (P=0.76). The pooled proportion of false-positives of double reading was 47.03 per 1000 screens (CI: 39.13‰-55.62‰) and it was 40.60 per 1000 screens (CI: 38.58‰-42.67‰) for single reading (P=0.12). One study reported, for double reading, an ICER (Incremental Cost-Effectiveness Ratio) of 16,684 Euros (24,717 US$ PPP; 2015 value) per detected cancer. Single reading+CAD (computer-aided-detection) was cost-effective in Japan. The evidence of benefit for double reading compared to single reading for digital mammography interpretation is scarce. Double reading seems to increase operational costs, have a not significantly higher false-positive rate, and a similar cancer detection rate. Copyright

  16. Macromolecular contrast media. A new approach for characterising breast tumors with MR-mammography; Makromolekulare Kontrastmittel fuer die MR-Mammographie. Ein neuer Ansatz fuer die Charakterisierung von Mammatumoren

    Energy Technology Data Exchange (ETDEWEB)

    Daldrup, H.E. [Contrast Media Lab., Dept. of Radiology, California Univ., San Francisco, CA (United States)]|[Muenster Univ. (Germany). Inst. fuer Klinische Radiologie; Roberts, T.P.L.; Roberts, H.C. [Contrast Media Lab., Dept. of Radiology, California Univ., San Francisco, CA (United States)]|[Mainz Univ. (Germany). Klinik und Poliklinik fuer Radiologie; Muehler, A. [Contrast Media Lab., Dept. of Radiology, California Univ., San Francisco, CA (United States)]|[Berlex Laboratories, Wayne, NJ (United States); Gossmann, A. [Contrast Media Lab., Dept. of Radiology, California Univ., San Francisco, CA (United States)]|[Koeln Univ. (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Wendland, M.; Brasch, R.C. [Muenster Univ. (Germany). Inst. fuer Klinische Radiologie; Rosenau, W. [California Univ., San Francisco, CA (United States). Dept. of Pathology

    1997-09-01

    The value of macromolecular contrast agents (MMCM) for the characterization of benign and malignant breast tumors will be demonstrated in this review. Animal studies suggest a high potential of MMCM to increase the specificity of MR-mammography. The concept of tumor differentiation is based on the pathological hyperpermeability of microvessels in malignant tumors. MMCM show a leak into the interstitium of carcinomas, whereas they are confined to the intravascular space in benign tumors. Capabilities and limitations of the MMCM-prototype. Albumin-Gd-DTPA, for breast tumor characterization will be summarized and compared to the standard low molecular weight contrast agent Gd-DTPA. Initial experience with new MMCM, such as Dendrimers, Gd-DTPA-Polylysine and MS-325 will be outlined. The potential of `blood-pool`-iron oxides, such as AMI-227 for the evaluation of tumor microvascular permeabilities will be discussed. (orig.) [Deutsch] Diese Uebersicht stellt den Stellenwert makromolekularer Kontrastmittel (MMKM) fuer die MR-tomographische Charakterisierung von benignen und malignen Mammatumoren dar. Aufgrund experimenteller Studien lassen MMKM eine signifikante Verbesserung der Spezifitaet der dynamischen kontrastmittelunterstuetzten MR-Mammographie erwarten. Das differentialdiagnostische Konzept beruht auf der pathologischen Hyperpermeabilitaet von Kapillaren in Karzinomen, die einen MMKM-Austritt in das Tumorinterstitium bedingt, waehrend die intakten Kapillaren benigner Tumoren nicht permeabel fuer MMKM sind. Diagnostische Moeglichkeiten und Grenzen des MMKM-Prototyps, Albumin-Gd-DTPA (92 kD), werden dargestellt und mit dem niedermolekularen Standard-Kontrastmittel Gd-DTPA (500 D) verglichen. Erste Erfahrungen mit neuen, fuer die klinische Anwendung optimierten MMKM-Praeparaten, wie das Kaskadenpolymer, Gd-DTPA-Polylysine und das MS-325 werden vorgestellt. Das Potential von Blood-pool-Eisenoxidpraeparaten, z.B. AMI-227, fuer die Bestimmung von

  17. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    International Nuclear Information System (INIS)

    Bouwman, R W; Van Engen, R E; Den Heeten, G J; Broeders, M J M; Veldkamp, W J H; Young, K C; Dance, D R; Schopphoven, S; Jeukens, C R L P N

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83–1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms. (paper)

  18. Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease

    International Nuclear Information System (INIS)

    Trokhanova, O V; Okhapkin, M B; Korjenevsky, A V

    2008-01-01

    Electrical impedance tomography (EIT) enables one to determine and visualize non-invasively the spatial distribution of the electrical properties of the tissues inside the body, thus providing valuable diagnostic information. The electrical impedance mammography (EIM) system is a specialized EIT system for diagnostics and imaging of the breast. While breast cancer is the main target for any investigation conducted in this area, the diagnosis of non-cancerous diseases is also very important because it opens the way to improve the quality of life for many women and it may also reduce the incidence of breast cancer through effective treatment of mastopathy. This paper presents the main results of a comprehensive examination of 166 women using four methods: multifrequency electrical impedance mammography, ultrasonic investigation, x-ray mammography and puncture biopsy. The objective of the investigation is to estimate the usefulness of multifrequency electrical impedance mammography for diagnosing dyshormonal mammary gland diseases. The results demonstrate the advantages of the multifrequency EIM method. In particular, dual-frequency electrical impedance mammography in contrast with the single-frequency variant enables one not only to diagnose mastopathy, but also allows accurate detection of its cystless form based on observation of the absence of any difference between average conductivity in both phases of the menstrual cycle. Because the cystless form of mastopathy is associated with a higher risk of cancer development, this method allows identification of a higher risk group of patients for more frequent investigations

  19. Validation of image quality in full-field digital mammography: Is the replacement of wet by dry laser printers justified?

    International Nuclear Information System (INIS)

    Schueller, Gerd; Kaindl, Elisabeth; Langenberger, Herbert; Stadler, Alfred; Schueller-Weidekamm, Claudia; Semturs, Friedrich; Helbich, Thomas H.

    2007-01-01

    Objective: Dry laser printers have replaced wet laser printers to produce hard copies of high-resolution digital images, primarily because of environmental concerns. However, no scientific research data have been published that compare the image quality of dry and wet laser printers in full-field digital mammography (FFDM). This study questions the image quality of these printers. Materials and methods: Objective image quality parameters of both printers were evaluated using a standardized printer test image, i.e., optical density and detectability of specific image elements (lines, curves, and shapes). Furthermore, mammograms of 129 patients with different breast tissue composition patterns were imaged with both printers. A total of 1806 subjective image quality parameters (brightness, contrast, and detail detection of anatomic structures), the detectability of breast lesions, as well as diagnostic performance according to the BI-RADS classification were evaluated. In addition, the presence of film artifacts was investigated. Results: Optical density values were equal for the dry and the wet laser printer. Detection of specific image elements on the printer test image was not different. Ratings of subjective image quality parameters were equal, as were the detectability of breast lesions and the diagnostic performance. Dry laser printer images showed more artifacts (164 versus 27). However, these artifacts did not influence image quality. Conclusion: Based on the evidence of objective and subjective parameters, a dry laser printer equals the image quality of a wet laser printer in FFDM. Therefore, not only for reasons of environmental preference, the replacement of wet laser printers by dry laser printers in FFDM is justified

  20. Compressive Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Maia, Filipe; MacDowell, Alastair; Marchesini, Stefano; Padmore, Howard A.; Parkinson, Dula Y.; Pien, Jack; Schirotzek, Andre; Yang, Chao

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. Interference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher contrast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  1. Average glandular dose in digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Olgar, T. [Ankara Univ. (Turkey). Dept. of Engineering Physics; Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Kahn, T.; Gosch, D. [Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2012-10-15

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  2. Average glandular dose in digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Olgar, T.; Universitaetsklinikum Leipzig AoeR; Kahn, T.; Gosch, D.

    2012-01-01

    Purpose: To determine the average glandular dose (AGD) in digital full-field mammography (2 D imaging mode) and in breast tomosynthesis (3 D imaging mode). Materials and Methods: Using the method described by Boone, the AGD was calculated from the exposure parameters of 2247 conventional 2 D mammograms and 984 mammograms in 3 D imaging mode of 641 patients examined with the digital mammographic system Hologic Selenia Dimensions. The breast glandular tissue content was estimated by the Hologic R2 Quantra automated volumetric breast density measurement tool for each patient from right craniocaudal (RCC) and left craniocaudal (LCC) images in 2 D imaging mode. Results: The mean compressed breast thickness (CBT) was 52.7 mm for craniocaudal (CC) and 56.0 mm for mediolateral oblique (MLO) views. The mean percentage of breast glandular tissue content was 18.0 % and 17.4 % for RCC and LCC projections, respectively. The mean AGD values in 2 D imaging mode per exposure for the standard breast were 1.57 mGy and 1.66 mGy, while the mean AGD values after correction for real breast composition were 1.82 mGy and 1.94 mGy for CC and MLO views, respectively. The mean AGD values in 3 D imaging mode per exposure for the standard breast were 2.19 mGy and 2.29 mGy, while the mean AGD values after correction for the real breast composition were 2.53 mGy and 2.63 mGy for CC and MLO views, respectively. No significant relationship was found between the AGD and CBT in 2 D imaging mode and a good correlation coefficient of 0.98 in 3 D imaging mode. Conclusion: In this study the mean calculated AGD per exposure in 3 D imaging mode was on average 34 % higher than for 2 D imaging mode for patients examined with the same CBT.

  3. The quality of tumor size assessment by contrast-enhanced spectral mammography and the benefit of additional breast MRI.

    Science.gov (United States)

    Lobbes, Marc B I; Lalji, Ulrich C; Nelemans, Patty J; Houben, Ivo; Smidt, Marjolein L; Heuts, Esther; de Vries, Bart; Wildberger, Joachim E; Beets-Tan, Regina G

    2015-01-01

    Background - Contrast-enhanced spectral mammography (CESM) is a promising new breast imaging modality that is superior to conventional mammography for breast cancer detection. We aimed to evaluate correlation and agreement of tumor size measurements using CESM. As additional analysis, we evaluated whether measurements using an additional breast MRI exam would yield more accurate results. Methods - Between January 1(st) 2013 and April 1(st) 2014, 87 consecutive breast cancer cases that underwent CESM were collected and data on maximum tumor size measurements were gathered. In 57 cases, tumor size measurements were also available for breast MRI. Histopathological results of the surgical specimen served as gold standard in all cases. Results - The Pearson's correlation coefficients (PCC) of CESM versus histopathology and breast MRI versus histopathology were all >0.9, p1 cm between the two imaging modalities and histopathological results, we did not observe any advantage of performing an additional breast MRI after CESM in any of the cases. Conclusion - Quality of tumor size measurement using CESM is good and matches the quality of these measurement assessed by breast MRI. Additional measurements using breast MRI did not improve the quality of tumor size measurements.

  4. Evaluation of the equine digital flexor tendon sheath using diagnostic ultrasound and contrast radiography

    International Nuclear Information System (INIS)

    Redding, W.R.

    1994-01-01

    This study was designed to evaluate the normal anatomy of the digital flexor tendon sheath using contrast radiography and diagnostic ultrasound. Iodinated contrast medium was injected into eight cadaver limbs and the limbs immediately frozen. Lateromedial and dorsopalmar/plantar radiographs were made. These limps were then cut transversely and proximal to distal radiographs of each slab were made. This cross sectional contrast methodology allowed the visualization of the relative size and shape of the superficial and deep digital flexor tendons as well as the potential space taken by effusions of the digital flexor tendon sheath. The second part of the study used twelve live animals with normal digital flexor tendon sheaths. Ultrasonographic measurement of the structures of the digital flexor tendon sheath at each level were compiled. This documented the ability of diagnostic ultrasound to image: 1) the superficial and deep digital flexor tendons, 2) the proximal and distal ring of the manica flexoria, 3) the straight and oblique sesamoidean ligaments, and 4) the mesotendinous attachments to the superficial and deep flexor tendons. Iodinated contrast medium was then injected into the digital flexor tendon sheath and the ultrasonography repeated. These images were compared with those obtained from contrast radiography and prosections of twenty normal limbs. The iodinated contrast medium enhanced sonographic imaging of the structures of the digital tendon sheath, particularly the abaxial borders of the superficial digital flexor tendon branches and the mesotendinous attachments to the superficial and deep digital flexor tendons

  5. Digital breast tomosynthesis; Digitale Tomosynthese der Brust

    Energy Technology Data Exchange (ETDEWEB)

    Haegele, Julian; Barkhausen, Joerg [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Pursche, Telja [Universtiaetsklinikum Schleswig-Holstein, Luebeck (Germany). Brustzentrum; Schaefer, Fritz K.W. [Universtiaetsklinikum Schleswig-Holstein, Kiel (Germany). Bereich Mammadiagnostik und Intervention

    2015-09-15

    In digital breast tomosynthesis a digital tomographic data set with a very high spatial resolution is reconstructed from low-dose projections collected over a limited rotation angle. This allows a very detailed assessment of e. g. masses and architectural distortions. The average glandular dose is comparable to 2 D mammography. First clinical studies demonstrated that tomosynthesis is able to supply important additional information in suspicious mammographic findings. In comparison to projection mammography, tomosynthesis shows an at least comparable diagnostic accuracy. In everyday practice, tomosynthesis is currently mostly used for further evaluation of suspicious findings in mammography.

  6. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  7. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  8. Situational quality evaluation of mammography services at state of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Joana, Georgia S.; Oliveira, Mauricio de; Andrade, Mauricio C. de; Cesar, Adriana C.Z.; Peixoto, Joao E.

    2011-01-01

    Breast cancer is the leading cause of cancer deaths in women. Currently, the most effective method for early detection of this cancer is the mammography, and to achieve the standard definition and contrast, the whole system of imaging must operate under optimal conditions. This paper presents the results of the assessment of mammography centers in the state of Minas Gerais, which was held with the aim of supporting the actions of the State Program of Quality Control in Mammography. These results indicated that less than half of mammography achieved the minimum standard of image quality, endorsing the need of a monitoring more efficient and effective, which led to the establishment, in Minas Gerais, of the monthly monitoring of image quality in mammography. (author)

  9. Indicators of image quality and doses in mammography

    International Nuclear Information System (INIS)

    Gaona, E.; Franco E, J.G.; Azorin N, J.; Diaz G, J.A.I.; Arreola, M.

    2007-01-01

    Full text: The purpose of the study was to determine the values of the image quality indicators and their relationship with the dose in mammography of screen-film that they allowed the detection of a bigger number of objects in the images obtained with the mannequin (phantom) authorized of the ACR/FDA. The study was carried out in four mammography services in a period of 12 months. The indicators of the image quality are the half optic density (DOM), contrast (differences of densities), the number of observed objects in the images and the dose for image. The minimum acceptable values by the ACR/FDA are a half optical density of 1.4, contrast of 0.4 and the one numbers minimum of objects observed in the image of the mannequin of mammography of 10 (4 fibers, 3 groups of calcifications and 3 masses), with a maximum dose by image of 3 mGy. The found results are half optical density of 1.9, contrast of 0.56 and the average number of objects observed in the images of 12, with a dose in the interval of 1.6 mGy to 2.4 mGy. The doses were measured by thermoluminescent dosimetry and ionization chamber. Once carried out the analysis of the tendencies of the indicators of image quality and their distributions is found that for a p < 0.05, the bigger number of objects observed in the images is in the interval from 1.8 to 1.9 of DOM. When comparing both mammography system, the system screen-film has a lower variability in the distribution of objects associated to a DOM. (Author)

  10. Self-organizing neural networks for automatic detection and classification of contrast-enhancing lesions in dynamic MR-mammography; Selbstorganisierende neuronale Netze zur automatischen Detektion und Klassifikation von Kontrast(mittel)-verstaerkten Laesionen in der dynamischen MR-Mammographie

    Energy Technology Data Exchange (ETDEWEB)

    Vomweg, T.W.; Teifke, A.; Kauczor, H.U.; Achenbach, T.; Rieker, O.; Schreiber, W.G.; Heitmann, K.R.; Beier, T.; Thelen, M. [Klinik und Poliklinik fuer Radiologie, Klinikum der Univ. Mainz (Germany)

    2005-05-01

    Purpose: Investigation and statistical evaluation of 'Self-Organizing Maps', a special type of neural networks in the field of artificial intelligence, classifying contrast enhancing lesions in dynamic MR-mammography. Material and Methods: 176 investigations with proven histology after core biopsy or operation were randomly divided into two groups. Several Self-Organizing Maps were trained by investigations of the first group to detect and classify contrast enhancing lesions in dynamic MR-mammography. Each single pixel's signal/time curve of all patients within the second group was analyzed by the Self-Organizing Maps. The likelihood of malignancy was visualized by color overlays on the MR-images. At last assessment of contrast-enhancing lesions by each different network was rated visually and evaluated statistically. Results: A well balanced neural network achieved a sensitivity of 90.5% and a specificity of 72.2% in predicting malignancy of 88 enhancing lesions. Detailed analysis of false-positive results revealed that every second fibroadenoma showed a 'typical malignant' signal/time curve without any chance to differentiate between fibroadenomas and malignant tissue regarding contrast enhancement alone; but this special group of lesions was represented by a well-defined area of the Self-Organizing Map. Discussion: Self-Organizing Maps are capable of classifying a dynamic signal/time curve as 'typical benign' or 'typical malignant'. Therefore, they can be used as second opinion. In view of the now known localization of fibroadenomas enhancing like malignant tumors at the Self-Organizing Map, these lesions could be passed to further analysis by additional post-processing elements (e.g., based on T2-weighted series or morphology analysis) in the future. (orig.)

  11. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  12. Evaluation of average glandular dose in mammography services in 10 cities of Colombia

    International Nuclear Information System (INIS)

    Alejo-Martinez, H.; Salazar-Hurtado, E.; Puerto-Jimenez, D.

    2016-01-01

    The objective of this study was to conduct an assessment of dose in 60 mammography services that have screening programs for breast cancer in 10 cities of Colombia. The third quartile of the average glandular dose was 2,29 mGy, range between 1,0 and 5,6 mGy, for the phantom equivalent to a standard breast. This study included mammography units with conventional and digital technology. (author)

  13. The diagnostic accuracy of dual-view digital mammography, single-view breast tomo-synthesis and a dual-view combination of breast tomo-synthesis and digital mammography in a free-response observer performance study

    International Nuclear Information System (INIS)

    Svahn, T.; Andersson, I.; Chakraborty, D.; Svensson, S.; Ikeda, D.; Foernvik, D.; Mattsson, S.; Tingberg, A.; Zackrisson, S.

    2010-01-01

    The purpose of the present study was to compare the diagnostic accuracy of dual-view digital mammography (DM), single view breast tomo-synthesis (BT) and BT combined with the opposite DM view. Patients with subtle lesions were selected to undergo BT examinations. Two radiologists who are non-participants in the study and have experience in using DM and BT determined the locations and extents of lesions in the images. Five expert mammographers interpreted the cases using the free-response paradigm. The task was to mark and rate clinically reportable findings suspicious for malignancy and clinically relevant benign findings. The marks were scored with reference to the outlined regions into lesion localization or non-lesion localization, and analysed by the jackknife alternative free-response receiver operating characteristic method. The analysis yielded statistically significant differences between the combined modality and dual-view DM (p < 0.05). No differences were found between single-view BT and dual-view DM or between single-view BT and the combined modality. (authors)

  14. Quality Control in Mammography: Image Quality and Patient Doses

    International Nuclear Information System (INIS)

    Ciraj Bjelac, O.; Arandjic, D.; Boris Loncar, B.; Kosutic, D.

    2008-01-01

    Mammography is method of choice for early detection of breast cancer. The purpose of this paper is preliminary evaluation the mammography practice in Serbia, in terms of both quality control indicators, i.e. image quality and patient doses. The survey demonstrated considerable variations in technical parameters that affect image quality and patients doses. Mean glandular doses ranged from 0.12 to 2.8 mGy, while reference optical density ranged from 1.2 to 2.8. Correlation between image contrast and mean glandular doses was demonstrated. Systematic implementation of quality control protocol should provide satisfactory performance of mammography units and maintain satisfactory image quality and keep patient doses as low as reasonably practicable. (author)

  15. Synthesized Mammography: Clinical Evidence, Appearance, and Implementation.

    Science.gov (United States)

    Durand, Melissa A

    2018-04-04

    Digital breast tomosynthesis (DBT) has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D) has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.

  16. The utility of breast cone-beam computed tomography, ultrasound, and digital mammography for detecting malignant breast tumors: A prospective study with 212 patients.

    Science.gov (United States)

    He, Ni; Wu, Yao-Pan; Kong, Yanan; Lv, Ning; Huang, Zhi-Mei; Li, Sheng; Wang, Yue; Geng, Zhi-Jun; Wu, Pei-Hong; Wei, Wei-Dong

    2016-02-01

    Breast cone-beam computed tomography (BCBCT) is a flat-panel detector (FPD)-based X-ray imaging system that provides high-quality images of the breast. The purpose of this study was to investigate the ability to detect breast abnormalities using non-contrast BCBCT and contrast-enhanced BCBCT (BCBCT and CE-BCBCT) compared to ultrasound (US) and digital mammography (MG). A prospective study was performed from May 2012 to August 2014. Ninety-two patients (172 lesions) underwent BCBCT alone, and 120 patients (270 lesions) underwent BCBCT and CE-BCBCT, all the patients underwent US and MG. Cancer diagnosis was confirmed pathologically in 102 patients (110 lesions). BCBCT identified 97 of 110 malignant lesions, whereas 93 malignant lesions were identified using MG and US. The areas under the receiver operating curves (AUCs) for breast cancer diagnosis were 0.861 (BCBCT), 0.856 (US), and 0.829 (MG). CE-BCBCT improved cancer diagnostic sensitivity by 20.3% (78.4-98.7%). The AUC values were 0.869 (CE-BCBCT), 0.846 (BCBCT), 0.834 (US), and 0.782 (MG). In this preliminary study, BCBCT was found to accurately identify malignant breast lesions in a diagnostic setting. CE-BCBCT provided additional information and improved cancer diagnosis in style c or d breasts compared to the use of BCBCT, US, or MG alone. Copyright © 2015. Published by Elsevier Ireland Ltd.

  17. Do pre-trained deep learning models improve computer-aided classification of digital mammograms?

    Science.gov (United States)

    Aboutalib, Sarah S.; Mohamed, Aly A.; Zuley, Margarita L.; Berg, Wendie A.; Luo, Yahong; Wu, Shandong

    2018-02-01

    Digital mammography screening is an important exam for the early detection of breast cancer and reduction in mortality. False positives leading to high recall rates, however, results in unnecessary negative consequences to patients and health care systems. In order to better aid radiologists, computer-aided tools can be utilized to improve distinction between image classifications and thus potentially reduce false recalls. The emergence of deep learning has shown promising results in the area of biomedical imaging data analysis. This study aimed to investigate deep learning and transfer learning methods that can improve digital mammography classification performance. In particular, we evaluated the effect of pre-training deep learning models with other imaging datasets in order to boost classification performance on a digital mammography dataset. Two types of datasets were used for pre-training: (1) a digitized film mammography dataset, and (2) a very large non-medical imaging dataset. By using either of these datasets to pre-train the network initially, and then fine-tuning with the digital mammography dataset, we found an increase in overall classification performance in comparison to a model without pre-training, with the very large non-medical dataset performing the best in improving the classification accuracy.

  18. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    Science.gov (United States)

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  19. Patient exposure during plain radiography and mammography in Japan in 1974-2014

    International Nuclear Information System (INIS)

    Matsunaga, Yuta; Kawaguchi, Ai; Kobayashi, Kenichi; Kobayashi, Masanao; Asada, Yasuki; Minami, Kazuyuki; Suzuki, Shoichi; Chida, Koichi

    2017-01-01

    We investigated changes in the entrance skin dose (ESD) and the mean glandular dose (MGD) during plain radiography or mammography in Japan from 1974 to 2014. Surveys regarding the conditions used for plain radiography and mammography were performed throughout Japan in 1974, 1979, 1989, 1993, 1997, 2001, 2003, 2007, 2011 and 2014. The anatomical regions considered were categorised as follows: skull anteroposterior (AP), lumbar AP, lumbar lateral (LAT), pelvis (AP), ankle, chest posteroanterior (PA), Guthmann (lateral pelviography for pregnant women), infant hip joint and mammography. The doses for all anatomical regions decreased from 1974 to 1993. The MGD for mammography remained low from 1993 to 2014, and the ESDs for chest (PA) radiography trended upward. After the 2000's, the use of digital imaging increased in Japan. This is the first long-term study to examine changes in ESDs and MGDs in Japan. (authors)

  20. Improved specimen reconstruction by Hilbert phase contrast tomography.

    Science.gov (United States)

    Barton, Bastian; Joos, Friederike; Schröder, Rasmus R

    2008-11-01

    The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.

  1. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program : validation of results in a large multireader, multicase study

    OpenAIRE

    Lalji, U C; Houben, I P L; Prevos, R; Gommers, S; van Goethem, M; Vanwetswinkel, S; Pijnappel, R; Steeman, R; Frotscher, C; Mok, W; Nelemans, P; Smidt, M L; Beets-Tan, R G; Wildberger, J E; Lobbes, M B I

    2016-01-01

    OBJECTIVES: Contrast-enhanced spectral mammography (CESM) is a promising problem-solving tool in women referred from a breast cancer screening program. We aimed to study the validity of preliminary results of CESM using a larger panel of radiologists with different levels of CESM experience. METHODS: All women referred from the Dutch breast cancer screening program were eligible for CESM. 199 consecutive cases were viewed by ten radiologists. Four had extensive CESM experience, three had no C...

  2. Introduction of organised mammography screening in tyrol: results of a one-year pilot phase

    Directory of Open Access Journals (Sweden)

    Daniaux Martin

    2011-02-01

    Full Text Available Abstract Background Efficiency and efficacy of organised mammography screening programs have been proven in large randomised trials. But every local implementation of mammography screening has to check whether the well established quality standards are met. Therefore it was the aim of this study to analyse the most common quality indices after introducing organised mammography screening in Tyrol, Austria, in a smooth transition from the existing system of opportunistic screening. Methods In June 2007, the system of opportunistic mammography screening in Tyrol was changed to an organised system by introducing a personal invitation system, a training program, a quality assurance program and by setting up a screening database. All procedures are noted in a written protocol. Most EU recommendations for organised mammography screening were followed, except double reading. All women living in Tyrol and covered by social insurance are now invited for a mammography, in age group 40-59 annually and in age group 60-69 biannually. Screening mammography is offered mainly by radiologists in private practice. We report on the results of the first year of piloting organised mammography screening in two counties in Tyrol. Results 56,432 women were invited. Estimated participation rate was 34.5% at one year of follow-up (and 55.5% at the second year of follow-up; 3.4% of screened women were recalled for further assessment or intermediate screening within six months. Per 1000 mammograms nine biopsies were performed and four breast cancer cases detected (N = 68. Of invasive breast cancer cases 34.4% were ≤ 10 mm in size and 65.6% were node-negative. In total, six interval cancer cases were detected during one year of follow-up; this is 19% of the background incidence rate. Conclusions In the Tyrolean breast cancer screening program, a smooth transition from a spontaneous to an organised mammography screening system was achieved in a short time and with minimal

  3. Synthesized Mammography: Clinical Evidence, Appearance, and Implementation

    Directory of Open Access Journals (Sweden)

    Melissa A. Durand

    2018-04-01

    Full Text Available Digital breast tomosynthesis (DBT has improved conventional mammography by increasing cancer detection while reducing recall rates. However, these benefits come at the cost of increased radiation dose. Synthesized mammography (s2D has been developed to provide the advantages of DBT with nearly half the radiation dose. Since its F.D.A. approval, multiple studies have evaluated the clinical performance of s2D. In clinical practice, s2D images are not identical to conventional 2D images and are designed for interpretation with DBT as a complement. This article reviews the present literature to assess whether s2D is a practical alternative to conventional 2D, addresses the differences in mammographic appearance of findings, and provides suggestions for implementation into clinical practice.

  4. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    International Nuclear Information System (INIS)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-01-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed

  5. Biological applications of phase-contrast electron microscopy.

    Science.gov (United States)

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  6. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...... phasors attain predetermined values for predetermined spatial frequencies, and the phasor value of the specific resolution element of the spatial phase mask corresponds to a distinct intensity level of the image of the resolution element in the intensity pattern, and a spatial phase filter for phase...... shifting of a part of the electromagntic radiation, in combination with an imaging system for generation of the intensity pattern by interference in the image plane of the imaging system between the part of the electromagnetic raidation that has been phase shifted by the phase filter and the remaining part...

  7. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  8. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  9. Ultrasonic mammography

    International Nuclear Information System (INIS)

    Hueneke, B.

    1982-01-01

    608 women are examined by means of ultrasonic mammography during the period of 1 year. 432 patients were examined with the compound method with the U.I. Octoson, a water tank scanner, and 176 patients with the real time method with a directly connected linear-array-scanner. The following results were obtained at the end of the examination period: In the ultrasonic and also in the X-ray mammogram tumour diameters can be determined with an error rate of +- 30%. In the diagnosing of carcinomas, a significant dependence of the exactness on the sice of the tumour is found for the combination of the five methods tested (clinical examination, X-ray mammography, ultrasonic mammography, thermography, cytology). Classifying the individual methods with regard to their exactness, X-ray mammography ranks in front of ultrasonic mammography. Mastopathic changes in the breast can be screened by means of ultrasonic mammography. The structure of the changes can be determined more exactly than with an X-ray picture which is due to the possibility of differentiating solid and cystic structures. In diagnosing fibro-adenomas and establishing diagnoses on young women with dense gland bodies, ultrasonic mammography is superior to radiology both in the ability of screening a finding of a fibro-adenoma (US=88%, X-ray=75%) and in the possibility of classifying it as ''more benign than malignant''. (orig./MG) [de

  10. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  11. Digital breast tomosynthesis (3D-mammography) screening: A pictorial review of screen-detected cancers and false recalls attributed to tomosynthesis in prospective screening trials.

    Science.gov (United States)

    Houssami, Nehmat; Lång, Kristina; Bernardi, Daniela; Tagliafico, Alberto; Zackrisson, Sophia; Skaane, Per

    2016-04-01

    This pictorial review highlights cancers detected only at tomosynthesis screening and screens falsely recalled in the course of breast tomosynthesis screening, illustrating both true-positive (TP) and false-positive (FP) detection attributed to tomosynthesis. Images and descriptive data were used to characterise cases of screen-detection with tomosynthesis, sourced from prospective screening trials that performed standard (2D) digital mammography (DM) and tomosynthesis (3D-mammography) in the same screening participants. Exemplar cases from four trials highlight common themes of relevance to screening practice including: the type of lesions frequently made more conspicuous or perceptible by tomosynthesis (spiculated masses, and architectural distortions); the histologic findings (both TP and FP) of tomosynthesis-only detection; and the need to extend breast work-up protocols (additional imaging including ultrasound and MRI, and tomosynthesis-guided biopsy) if tomosynthesis is adopted for primary screening. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Breast cancer screening: the underuse of mammography

    International Nuclear Information System (INIS)

    Fox, S.; Baum, J.K.; Klos, D.S.; Tsou, C.V.

    1985-01-01

    The early detection of breast cancer is promoted by the American Cancer Society (ACS) and the American College of Radiology (ACR) by encouraging the regular use of three types of screening: breast self-examination (BSE), the clinical breast examination, and mammography. In August 1983, the ACS publicized seven recommendations pertaining to screening, including a revised statement about the routine use of mammography for women between the ages of 40 and 49 years. In response to the ACS statement, the present study assessed compliance with the updated recommendations for all three types of screening. The results show reasonable rates of compliance for the BSE (53%-69%) and clinical examination (70%-78%). In contrast, only 19% of the women between the ages of 35 and 49 and 25% of the women older than 50 reported complying with the recommendation to undergo one baseline screening mammogram. Some implications for health education by physicians and the professional education of physicians in the use of mammography are discussed

  13. Glandular dose and image quality control in mammography facilities with computerized radiography systems

    International Nuclear Information System (INIS)

    Dantas, Marcelino Vicente de Almeida

    2010-01-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. However, even though SF combinations have been improved and optimized over the years for breast imaging, there are some critical limitations, including a narrow exposure range, image artifacts, film processing problems, and inflexibility in image processing and film management. In recent years, digital mammography has been introduced in cancer screening programmes with the screen/film techniques gradually being phased out. Computed radiography (CR), also commonly known as photostimulable phosphor (PSP) imaging or storage phosphor, employs reusable imaging plates and associated hardware and software to acquire and to display digital projection radiographs. In this work, a protocol model was tested for performing image quality control and average glandular dose (AGD) evaluation in 19 institutions with computed radiography systems for mammography. The protocol was validated through tests at the Laboratorio de Radioprotecao Aplicada a Mamografia (LARAM) from the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). The image quality visual evaluation of CDMAM phantom showed that 53% of the facilities were able to produce images of excellent quality. Furthermore, the automated evaluation of image quality, using the analyze software cdcom.exe, showed that 57% of the images were considered to be of good quality. The detector linearity test showed that the CR response is very linear, where 95% of facilities evaluated were considered to be compliant. For the image noise was found that only 20% of facilities are in agreement with the parameters established for this test. The average glandular doses, which patients may be getting to perform an examination, were below the action levels

  14. Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus Full-Field Digital Mammography for Population Screening: Outcomes from the Verona Screening Program.

    Science.gov (United States)

    Caumo, Francesca; Zorzi, Manuel; Brunelli, Silvia; Romanucci, Giovanna; Rella, Rossella; Cugola, Loredana; Bricolo, Paola; Fedato, Chiara; Montemezzi, Stefania; Houssami, Nehmat

    2018-04-01

    Purpose To examine the outcomes of a breast cancer screening program based on digital breast tomosynthesis (DBT) plus synthesized two-dimensional (2D) mammography compared with those after full-field digital mammography (FFDM). Materials and Methods This prospective study included 16 666 asymptomatic women aged 50-69 years who were recruited in April 2015 through March 2016 for DBT plus synthetic 2D screening in the Verona screening program. A comparison cohort of women screened with FFDM (n = 14 423) in the previous year was included. Screening detection measures for the two groups were compared by calculating the proportions associated with each outcome, and the relative rates (RRs) were estimated with multivariate logistic regression. Results Cancer detection rate (CDR) for DBT plus synthetic 2D imaging was 9.30 per 1000 screening examinations versus 5.41 per 1000 screening examinations with FFDM (RR, 1.72; 95% confidence interval [CI]: 1.30, 2.29). CDR was significantly higher in patients screened with DBT plus synthetic 2D imaging than in those screened with FFDM among women classified as having low breast density (RR, 1.53; 95% CI: 1.13, 2.10) or high breast density (RR, 2.86; 95% CI: 1.42, 6.25). The positive predictive value (PPV) for recall was almost doubled with DBT plus synthetic 2D imaging: 23.3% versus 12.9% of recalled patients who were screened with FFDM (RR, 1.81; 95% CI: 1.34, 2.47). The recall rate was similar between groups (RR, 0.95; 95% CI: 0.84, 1.06), whereas the recall rate with invasive assessment was higher for DBT plus synthetic 2D imaging than for FFDM (RR, 1.93; 95% CI: 1.31, 2.03). The mean number of screening studies interpreted per hour was significantly lower for screening examinations performed with DBT plus synthetic 2D imaging (38.5 screens per hour) than with FFDM (60 screens per hour) (P < .001). Conclusion DBT plus synthetic 2D imaging increases CDRs with recall rates comparable to those of FFDM. DBT plus synthetic 2D imaging

  15. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size

    International Nuclear Information System (INIS)

    Fallenberg, E.M.; Renz, D.M.; Dromain, C.; Diekmann, F.; Engelken, F.; Krohn, M.; Singh, J.M.; Bick, U.; Ingold-Heppner, B.; Winzer, K.J.

    2014-01-01

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. (orig.)

  16. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumour size

    Energy Technology Data Exchange (ETDEWEB)

    Fallenberg, E.M.; Renz, D.M. [Charite - Universitaetsmedizin Berlin, Clinic of Radiology, Berlin (Germany); Dromain, C. [Institut Gustave Roussy, Department of Radiology, Villejuif cedex (France); Diekmann, F. [St. Joseph-Stift Bremen, Department of Medical Imaging, Bremen (Germany); Engelken, F.; Krohn, M.; Singh, J.M.; Bick, U. [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ingold-Heppner, B. [Charite - Universitaetsmedizin Berlin, Institute of Pathology, Berlin (Germany); Winzer, K.J. [Charite - Universitaetsmedizin Berlin, Breast Center, Department of Gynecology, Berlin (Germany)

    2014-01-15

    To compare mammography (MG), contrast-enhanced spectral mammography (CESM), and magnetic resonance imaging (MRI) in the detection and size estimation of histologically proven breast cancers using postoperative histology as the gold standard. After ethical approval, 80 women with newly diagnosed breast cancer underwent MG, CESM, and MRI examinations. CESM was reviewed by an independent experienced radiologist, and the maximum dimension of suspicious lesions was measured. For MG and MRI, routine clinical reports of breast specialists, with judgment based on the BI-RADS lexicon, were used. Results of each imaging technique were correlated to define the index cancer. Fifty-nine cases could be compared to postoperative histology for size estimation. Breast cancer was visible in 66/80 MG, 80/80 CESM, and 77/79 MRI examinations. Average lesion largest dimension was 27.31 mm (SD 22.18) in MG, 31.62 mm (SD 24.41) in CESM, and 27.72 mm (SD 21.51) in MRI versus 32.51 mm (SD 29.03) in postoperative histology. No significant difference was found between lesion size measurement on MRI and CESM compared with histopathology. Our initial results show a better sensitivity of CESM and MRI in breast cancer detection than MG and a good correlation with postoperative histology in size assessment. (orig.)

  17. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    Science.gov (United States)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  18. Beyond the mammography debate: a moderate perspective.

    Science.gov (United States)

    Kaniklidis, C

    2015-06-01

    After some decades of contention, one can almost despair and conclude that (paraphrasing) "the mammography debate you will have with you always." Against that sentiment, in this review I argue, after reflecting on some of the major themes of this long-standing debate, that we must begin to move beyond the narrow borders of claim and counterclaim to seek consensus on what the balance of methodologically sound and critically appraised evidence demonstrates, and also to find overlooked underlying convergences; after acknowledging the reality of some residual and non-trivial harms from mammography, to promote effective strategies for harm mitigation; and to encourage deployment of new screening modalities that will render many of the issues and concerns in the debate obsolete. To these ends, I provide a sketch of what this looking forward and beyond the current debate might look like, leveraging advantages from abbreviated breast magnetic resonance imaging technologies (such as the ultrafast and twist protocols) and from digital breast tomosynthesis-also known as three-dimensional mammography. I also locate the debate within the broader context of mammography in the real world as it plays out not for the disputants, but for the stakeholders themselves: the screening-eligible patients and the physicians in the front lines who are charged with enabling both the acts of screening and the facts of screening at their maximally objective and patient-accessible levels to facilitate informed decisions.

  19. Sixty women a day examined with world-unique mammography system from Sectra. Breast disease centre in Sweden offers lowest radiation dose in the world

    CERN Multimedia

    2003-01-01

    "Sectra's digital mammography system, Sectra MicroDose Mammography(TM), has been used to examine more than 1,500 women in the Helsingborg Hospital mammography screening program. This was accomplished in the record time of two months in clinical operation. The system is now being used to examine more than sixty women every day" (1 page).

  20. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program: validation of results in a large multireader, multicase study.

    Science.gov (United States)

    Lalji, U C; Houben, I P L; Prevos, R; Gommers, S; van Goethem, M; Vanwetswinkel, S; Pijnappel, R; Steeman, R; Frotscher, C; Mok, W; Nelemans, P; Smidt, M L; Beets-Tan, R G; Wildberger, J E; Lobbes, M B I

    2016-12-01

    Contrast-enhanced spectral mammography (CESM) is a promising problem-solving tool in women referred from a breast cancer screening program. We aimed to study the validity of preliminary results of CESM using a larger panel of radiologists with different levels of CESM experience. All women referred from the Dutch breast cancer screening program were eligible for CESM. 199 consecutive cases were viewed by ten radiologists. Four had extensive CESM experience, three had no CESM experience but were experienced breast radiologists, and three were residents. All readers provided a BI-RADS score for the low-energy CESM images first, after which the score could be adjusted when viewing the entire CESM exam. BI-RADS 1-3 were considered benign and BI-RADS 4-5 malignant. With this cutoff, we calculated sensitivity, specificity and area under the ROC curve. CESM increased diagnostic accuracy in all readers. The performance for all readers using CESM was: sensitivity 96.9 % (+3.9 %), specificity 69.7 % (+33.8 %) and area under the ROC curve 0.833 (+0.188). CESM is superior to conventional mammography, with excellent problem-solving capabilities in women referred from the breast cancer screening program. Previous results were confirmed even in a larger panel of readers with varying CESM experience. • CESM is consistently superior to conventional mammography • CESM increases diagnostic accuracy regardless of a reader's experience • CESM is an excellent problem-solving tool in recalls from screening programs.

  1. Effect of the Availability of Prior Full-Field Digital Mammography and Digital Breast Tomosynthesis Images on the Interpretation of Mammograms

    Science.gov (United States)

    Catullo, Victor J.; Chough, Denise M.; Ganott, Marie A.; Kelly, Amy E.; Shinde, Dilip D.; Sumkin, Jules H.; Wallace, Luisa P.; Bandos, Andriy I.; Gur, David

    2015-01-01

    Purpose To assess the effect of and interaction between the availability of prior images and digital breast tomosynthesis (DBT) images in decisions to recall women during mammogram interpretation. Materials and Methods Verbal informed consent was obtained for this HIPAA-compliant institutional review board–approved protocol. Eight radiologists independently interpreted twice deidentified mammograms obtained in 153 women (age range, 37–83 years; mean age, 53.7 years ± 9.3 [standard deviation]) in a mode by reader by case-balanced fully crossed study. Each study consisted of current and prior full-field digital mammography (FFDM) images and DBT images that were acquired in our facility between June 2009 and January 2013. For one reading, sequential ratings were provided by using (a) current FFDM images only, (b) current FFDM and DBT images, and (c) current FFDM, DBT, and prior FFDM images. The other reading consisted of (a) current FFDM images only, (b) current and prior FFDM images, and (c) current FFDM, prior FFDM, and DBT images. Fifty verified cancer cases, 60 negative and benign cases (clinically not recalled), and 43 benign cases (clinically recalled) were included. Recall recommendations and interaction between the effect of prior FFDM and DBT images were assessed by using a generalized linear model accounting for case and reader variability. Results Average recall rates in noncancer cases were significantly reduced with the addition of prior FFDM images by 34% (145 of 421) and 32% (106 of 333) without and with DBT images, respectively (P < .001). However, this recall reduction was achieved at the cost of a corresponding 7% (23 of 345) and 4% (14 of 353) reduction in sensitivity (P = .006). In contrast, availability of DBT images resulted in a smaller reduction in recall rates (false-positive interpretations) of 19% (76 of 409) and 26% (71 of 276) without and with prior FFDM images, respectively (P = .001). Availability of DBT images resulted in 4% (15 of

  2. [Follow-up of surgical biopsies in microcalcifications of the breast. Comparative analysis of patients submitted to mammography and digitalization of mammographic images].

    Science.gov (United States)

    Rulli, A; Cirocchi, R; Vento, A R; Naninato, P; Zanetti, A; Carli, L

    1997-01-01

    Improvements in the techniques of preoperative needle localization of nonpalpable breast lesions that have been detected at mammography, coupled with surgical biopsy of smaller volumes of breast tissue and the use of local anesthesia have produced a more aggressive attitude toward early biopsy of lesions that are suspected of malignancy. The authors report the follow-up in 92 cases, who underwent breast biopsy for microcalcifications with no palpable lesions. In 46 women the presence of microcalcifications was evaluated through a computerized instrument which allows digitalization of the image.

  3. Free software for performing physical analysis of systems for digital radiography and mammography

    Energy Technology Data Exchange (ETDEWEB)

    Donini, Bruno; Lanconelli, Nico, E-mail: nico.lanconelli@unibo.it [Alma Mater Studiorum, Department of Physics and Astronomy, University of Bologna, Bologna 40127 (Italy); Rivetti, Stefano [Fisica Medica, Ospedale di Sassuolo S.p.A., Sassuolo 41049 (Italy); Bertolini, Marco [Medical Physics Unit, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia 42123 (Italy)

    2014-05-15

    Purpose: In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. Methods: The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. Results: The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. Conclusions: This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online ( http://www.medphys.it/downloads.htm ). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement.

  4. Free software for performing physical analysis of systems for digital radiography and mammography.

    Science.gov (United States)

    Donini, Bruno; Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco

    2014-05-01

    In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online (www.medphys.it/downloads.htm). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement.

  5. State-wide provision of a digital mammography physics service : challenges and learning experiences

    International Nuclear Information System (INIS)

    Diffey, J.L.; Cartwright, L.E.; Collins, L.T.; Grewal, R.K.

    2010-01-01

    Full text: Breast Screen NSW is a fully digital screening programme with 70 mammographic units from eight vendors. We present the challenges and learning experiences associated with providing the physics service to this extensive screening programme. The EPA requires an annual check of Mean Glandular Dose and registration renewal every 2 years. Additionally, BreastScreen NSW requires annual compliance testing to RANZCR standards. To ensure that testing is carried out to a consistently high level, the contract specifies that only five physicists in the state are eligible to test the equipment. An equipment database has been developed to enable us to meet these deadlines. We have also created a radiog rapher QC manual. Two physicists take responsibility for the overall co-ordination of the service, reviewing reports and test methodology of other physics providers. The database has greatly improved the system for meeting deadlines; visits to all sites revealed that many were overdue. The radiographer QC manual has been accompanied by practical tutorials and has been successful in improving understanding of digital mam mography and ensuring consistency in testing. This has been a particular challenge because equipment has been supplied by a number of vendors, with a range of detector technology. The number of mammography units, combined with the range of vendor technology and frequency of testing has presented a challenge to both physicists and radiographers. It has been extremely beneficial to have two dedicated physicists in place to co-ordinate the service and ensure that the demands of the contract are met.

  6. Free software for performing physical analysis of systems for digital radiography and mammography

    International Nuclear Information System (INIS)

    Donini, Bruno; Lanconelli, Nico; Rivetti, Stefano; Bertolini, Marco

    2014-01-01

    Purpose: In this paper, the authors present a free software for assisting users in achieving the physical characterization of x-ray digital systems and image quality checks. Methods: The program was developed as a plugin of a well-known public-domain suite ImageJ. The software can assist users in calculating various physical parameters such as the response curve (also termed signal transfer property), modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE). It also includes the computation of some image quality checks: defective pixel analysis, uniformity, dark analysis, and lag. Results: The software was made available in 2009 and has been used during the last couple of years by many users who gave us valuable feedback for improving its usability. It was tested for achieving the physical characterization of several clinical systems for digital radiography and mammography. Various published papers made use of the outcomes of the plugin. Conclusions: This software is potentially beneficial to a variety of users: physicists working in hospitals, staff working in radiological departments, such as medical physicists, physicians, engineers. The plugin, together with a brief user manual, are freely available and can be found online ( http://www.medphys.it/downloads.htm ). With our plugin users can estimate all three most important parameters used for physical characterization (MTF, NPS, and also DQE). The plugin can run on any operating system equipped with ImageJ suite. The authors validated the software by comparing MTF and NPS curves on a common set of images with those obtained with other dedicated programs, achieving a very good agreement

  7. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    International Nuclear Information System (INIS)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  8. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    Science.gov (United States)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  9. Adaptive multiscale processing for contrast enhancement

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  10. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    International Nuclear Information System (INIS)

    Sztrókay, A; Schlossbauer, T; Bamberg, F; Reiser, M F; Coan, P; Diemoz, P C; Brun, E; Bravin, A; Mayr, D

    2012-01-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm 2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation. (paper)

  11. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    Science.gov (United States)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  12. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, L.; Oliveira, B. B.; Nogueira, M. do S. [Centro de Desenvolvimento da Tecnologia Nuclear, Post-graduation in Science and Technology of Radiations, Minerals and Materials, Pte. Antonio Carlos 6.627, Pampulha, 31270-901 Belo Horizonte (Brazil); Viloria, C. [UFMG, Departamento de Engenharia Nuclear, Post-graduation in Nuclear Sciences and Techniques, Pte. Antonio Carlos 6.627, Pampulha, 31270-901 Belo Horizonte (Brazil); Alves de O, M. [UFMG, Department of Anatomy and Imaging, Prof. Alfredo Balena 190, 30130-100 Belo Horizonte (Brazil); Araujo T, M. H., E-mail: lpr@cdtn.br [Dr Maria Helena Araujo Teixeira Clinic, Guajajaras 40, 30180-100 Belo Horizonte (Brazil)

    2014-08-15

    It is widely accepted that the mean glandular dose (D{sub G}) for the glandular tissue is the more useful magnitude for characterizing the breast cancer risk. The procedure to estimate the D{sub G}, for being difficult to measure it directly in the breast, it is to make the use of conversion factors that relate incident air kerma (K{sub i}) at this dose. Generally, the conversion factors vary with the x-ray spectrum half-value layer and the breast composition and thickness. Several authors through computer simulations have calculated such factors by the Monte Carlo (Mc) method. Many spectral models for D{sub G} computer simulations purposes are available in the diagnostic range. One of the models available generates unfiltered spectra. In this work, the Monte Carlo EGSnrc code package with the C++ class library (eg spp) was employed to derive filtered tungsten x-ray spectra used in digital mammography systems. Filtered spectra for rhodium and aluminium filters were obtained for tube potentials between 26 and 32 kV. The half-value layer of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F and Mam Detector Platinum and 8201023-C Xi Base unit Platinum Plus w m As in a Hologic Selenia Dimensions system using a Direct Radiography mode. Calculated half-value layer values showed good agreement compared to those obtained experimentally. These results show that the filtered tungsten anode x-ray spectra and the EGSnrc Mc code can be used for D{sub G} determination in mammography. (Author)

  13. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography

    International Nuclear Information System (INIS)

    Paixao, L.; Oliveira, B. B.; Nogueira, M. do S.; Viloria, C.; Alves de O, M.; Araujo T, M. H.

    2014-08-01

    It is widely accepted that the mean glandular dose (D G ) for the glandular tissue is the more useful magnitude for characterizing the breast cancer risk. The procedure to estimate the D G , for being difficult to measure it directly in the breast, it is to make the use of conversion factors that relate incident air kerma (K i ) at this dose. Generally, the conversion factors vary with the x-ray spectrum half-value layer and the breast composition and thickness. Several authors through computer simulations have calculated such factors by the Monte Carlo (Mc) method. Many spectral models for D G computer simulations purposes are available in the diagnostic range. One of the models available generates unfiltered spectra. In this work, the Monte Carlo EGSnrc code package with the C++ class library (eg spp) was employed to derive filtered tungsten x-ray spectra used in digital mammography systems. Filtered spectra for rhodium and aluminium filters were obtained for tube potentials between 26 and 32 kV. The half-value layer of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F and Mam Detector Platinum and 8201023-C Xi Base unit Platinum Plus w m As in a Hologic Selenia Dimensions system using a Direct Radiography mode. Calculated half-value layer values showed good agreement compared to those obtained experimentally. These results show that the filtered tungsten anode x-ray spectra and the EGSnrc Mc code can be used for D G determination in mammography. (Author)

  14. Radiology workstation for mammography: preliminary observations, eyetracker studies, and design

    Science.gov (United States)

    Beard, David V.; Johnston, Richard E.; Pisano, Etta D.; Hemminger, Bradley M.; Pizer, Stephen M.

    1991-07-01

    For the last four years, the UNC FilmPlane project has focused on constructing a radiology workstation facilitating CT interpretations equivalent to those with film and viewbox. Interpretation of multiple CT studies was originally chosen because handling such large numbers of images was considered to be one of the most difficult tasks that could be performed with a workstation. The authors extend the FilmPlane design to address mammography. The high resolution and contrast demands coupled with the number of images often cross- compared make mammography a difficult challenge for the workstation designer. This paper presents the results of preliminary work with workstation interpretation of mammography. Background material is presented to justify why the authors believe electronic mammographic workstations could improve health care delivery. The results of several observation sessions and a preliminary eyetracker study of multiple-study mammography interpretations are described. Finally, tentative conclusions of what a mammographic workstation might look like and how it would meet clinical demand to be effective are presented.

  15. XERG-mammography system: a solution to the dose-quality problem

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, M

    1981-05-01

    The XERG (Xonics-Electron-Radio-Graphy) system is the first ionographic system (High-Pressure-Gas-Iono-graphy) suitable for clinical application which became available for testing. The basic principle, the function and imaging qualities of the XERG system are described and first clinical experiences reported. The XERG mammogram is a transparent X-ray negative image, the image quality of which is characterized by good general image contrast, a moderate edge-effect and a high quantum-noise level but giving an extremely low dose rate (4.5% compared to screenless mammography film). Although the XERG quality is not satisfactory in contact technique, it yields results which are equal in quality, when using a 1.5-fold magnification technique, to the results obtained with screenless film mammography at one-tenth of the dose, and is superior to any commercially available film-screen system. Hence, in our opinion, the XERG mammography system is a step forward towards high-quality low-dose mammography.

  16. Laser projection using generalized phase contrast

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Rodrigo, Peter John

    2007-01-01

    is introduced. An arbitrary phase shift filter eliminates the need for high-frequency modulation and conjugate phase encoding. This lowers device performance requirements and allows practical implementation with currently available dynamic spatial light modulators. (c) 2007 Optical Society of America.......We demonstrate experimental laser projection of a gray-level photographic image with 74% light efficiency using the generalized phase contrast (GPC) method. In contrast with a previously proposed technique [Alonzo et al., New J. Phys. 9, 132 (2007)], a new approach to image construction via GPC...

  17. Contrast-enhanced spectral mammography improves diagnostic accuracy in the symptomatic setting.

    Science.gov (United States)

    Tennant, S L; James, J J; Cornford, E J; Chen, Y; Burrell, H C; Hamilton, L J; Girio-Fragkoulakis, C

    2016-11-01

    To assess the diagnostic accuracy of contrast-enhanced spectral mammography (CESM), and gauge its "added value" in the symptomatic setting. A retrospective multi-reader review of 100 consecutive CESM examinations was performed. Anonymised low-energy (LE) images were reviewed and given a score for malignancy. At least 3 weeks later, the entire examination (LE and recombined images) was reviewed. Histopathology data were obtained for all cases. Differences in performance were assessed using receiver operator characteristic (ROC) analysis. Sensitivity, specificity, and lesion size (versus MRI or histopathology) differences were calculated. Seventy-three percent of cases were malignant at final histology, 27% were benign following standard triple assessment. ROC analysis showed improved overall performance of CESM over LE alone, with area under the curve of 0.93 versus 0.83 (p<0.025). CESM showed increased sensitivity (95% versus 84%, p<0.025) and specificity (81% versus 63%, p<0.025) compared to LE alone, with all five readers showing improved accuracy. Tumour size estimation at CESM was significantly more accurate than LE alone, the latter tending to undersize lesions. In 75% of cases, CESM was deemed a useful or significant aid to diagnosis. CESM provides immediately available, clinically useful information in the symptomatic clinic in patients with suspicious palpable abnormalities. Radiologist sensitivity, specificity, and size accuracy for breast cancer detection and staging are all improved using CESM as the primary mammographic investigation. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  19. Phase alteration compensation in reflection digital holography

    International Nuclear Information System (INIS)

    Rincon, O; Amezquita, R; Monroy, F

    2011-01-01

    The phase maps obtained from digital holographic microscopy techniques carry information about the axial lengths of the object under study. Additionally, these phase maps have information of tilt and curvatures with origin in the off-axis geometry and the magnification lenses system, respectively. Only a complete compensation of these extra phases allows a correct interpretation of the phase information. In this article a numerical strategy to compensate for these alterations is designed, using a phase mask located in different planes. This strategy is applied in the measurement of a phase steps plate using a digital holography setup.

  20. Valorization procedure of x-ray equipment in the mammography equipment

    International Nuclear Information System (INIS)

    Ruiz, M. A.; Ordonez, J.; Antolin, E.; Andres, J. C. de; Gonzalez, I.; Arranz, L.; Sastre, J. M.; Ferrer, N.

    2006-01-01

    The Ramon y Cajal Hospital mammography service has three X-rays units, two of them with high resolution computed radiography (CR) system and one with flat-panel (FP)-based full-field digital mammography system. Periodic control dose tests in patients have shown lower glandular dose levels (DGM) than references provided by European Protocol for de Quality Control of de Physical and Technical Aspects of Mammography Screening. In this work, we have tried to establish an easy method for DGM calculation which is representative of the three equipment results. For this aim, we have defined an index which is measured along the time like a reference point. This index is defined as the relation between the blind test punctuations of a standard phantom image given by at least three radiologists in the Unit, and the average DGM values obtained in 20 patients in each Unit (using random thickness and random mama composition). (Author)