WorldWideScience

Sample records for digital pathology imaging

  1. The use of digital images in pathology.

    Science.gov (United States)

    Furness, P N

    1997-11-01

    Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.

  2. Panning artifacts in digital pathology images

    Science.gov (United States)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  3. Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017.

    Science.gov (United States)

    Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron

    2018-01-01

    As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.

  4. Objective and Subjective Assessment of Digital Pathology Image Quality

    Directory of Open Access Journals (Sweden)

    Prarthana Shrestha

    2015-03-01

    Full Text Available The quality of an image produced by the Whole Slide Imaging (WSI scanners is of critical importance for using the image in clinical diagnosis. Therefore, it is very important to monitor and ensure the quality of images. Since subjective image quality assessments by pathologists are very time-consuming, expensive and difficult to reproduce, we propose a method for objective assessment based on clinically relevant and perceptual image parameters: sharpness, contrast, brightness, uniform illumination and color separation; derived from a survey of pathologists. We developed techniques to quantify the parameters based on content-dependent absolute pixel performance and to manipulate the parameters in a predefined range resulting in images with content-independent relative quality measures. The method does not require a prior reference model. A subjective assessment of the image quality is performed involving 69 pathologists and 372 images (including 12 optimal quality images and their distorted versions per parameter at 6 different levels. To address the inter-reader variability, a representative rating is determined as a one-tailed 95% confidence interval of the mean rating. The results of the subjective assessment support the validity of the proposed objective image quality assessment method to model the readers’ perception of image quality. The subjective assessment also provides thresholds for determining the acceptable level of objective quality per parameter. The images for both the subjective and objective quality assessment are based on the HercepTestTM slides scanned by the Philips Ultra Fast Scanners, developed at Philips Digital Pathology Solutions. However, the method is applicable also to other types of slides and scanners.

  5. Whole slide images and digital media in pathology education, testing, and practice: the Oklahoma experience.

    Science.gov (United States)

    Fung, Kar-Ming; Hassell, Lewis A; Talbert, Michael L; Wiechmann, Allan F; Chaser, Brad E; Ramey, Joel

    2012-01-01

    Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.

  6. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    Science.gov (United States)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  7. Digital image analysis in breast pathology-from image processing techniques to artificial intelligence.

    Science.gov (United States)

    Robertson, Stephanie; Azizpour, Hossein; Smith, Kevin; Hartman, Johan

    2018-04-01

    Breast cancer is the most common malignant disease in women worldwide. In recent decades, earlier diagnosis and better adjuvant therapy have substantially improved patient outcome. Diagnosis by histopathology has proven to be instrumental to guide breast cancer treatment, but new challenges have emerged as our increasing understanding of cancer over the years has revealed its complex nature. As patient demand for personalized breast cancer therapy grows, we face an urgent need for more precise biomarker assessment and more accurate histopathologic breast cancer diagnosis to make better therapy decisions. The digitization of pathology data has opened the door to faster, more reproducible, and more precise diagnoses through computerized image analysis. Software to assist diagnostic breast pathology through image processing techniques have been around for years. But recent breakthroughs in artificial intelligence (AI) promise to fundamentally change the way we detect and treat breast cancer in the near future. Machine learning, a subfield of AI that applies statistical methods to learn from data, has seen an explosion of interest in recent years because of its ability to recognize patterns in data with less need for human instruction. One technique in particular, known as deep learning, has produced groundbreaking results in many important problems including image classification and speech recognition. In this review, we will cover the use of AI and deep learning in diagnostic breast pathology, and other recent developments in digital image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Image analysis and machine learning in digital pathology: Challenges and opportunities.

    Science.gov (United States)

    Madabhushi, Anant; Lee, George

    2016-10-01

    With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification

  9. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  10. Digital imaging and electronic patient records in pathology using an integrated department information system with PACS.

    Science.gov (United States)

    Kalinski, Thomas; Hofmann, Harald; Franke, Dagmar-Sybilla; Roessner, Albert

    2002-01-01

    Picture archiving and communication systems have been widely used in radiology thus far. Owing to the progress made in digital photo technology, their use in medicine opens up further opportunities. In the field of pathology, digital imaging offers new possiblities for the documentation of macroscopic and microscopic findings. Digital imaging has the advantage that the data is permanently and readily available, independent of conventional archives. In the past, PACS was a separate entity. Meanwhile, however, PACS has been integrated in DIS, the department information system, which was also run separately in former times. The combination of these two systems makes the administration of patient data, findings and images easier. Moreover, thanks to the introduction of special communication standards, a data exchange between different department information systems and hospital information systems (HIS) is possible. This provides the basis for a communication platform in medicine, constituting an electronic patient record (EPR) that permits an interdisciplinary treatment of patients by providing data of findings and images from clinics treating the same patient. As the pathologic diagnosis represents a central and often therapy-determining component, it is of utmost importance to add pathologic diagnoses to the EPR. Furthermore, the pathologist's work is considerably facilitated when he is able to retrieve additional data from the patient file. In this article, we describe our experience gained with the combined PACS and DIS systems recently installed at the Department of Pathology, University of Magdeburg. Moreover, we evaluate the current situation and future prospects for PACS in pathology.

  11. Integration of digital gross pathology images for enterprise-wide access

    Directory of Open Access Journals (Sweden)

    Milon Amin

    2012-01-01

    Full Text Available Background: Sharing digital pathology images for enterprise- wide use into a picture archiving and communication system (PACS is not yet widely adopted. We share our solution and 3-year experience of transmitting such images to an enterprise image server (EIS. Methods: Gross pathology images acquired by prosectors were integrated with clinical cases into the laboratory information system′s image management module, and stored in JPEG2000 format on a networked image server. Automated daily searches for cases with gross images were used to compile an ASCII text file that was forwarded to a separate institutional Enterprise Digital Imaging and Communications in Medicine (DICOM Wrapper (EDW server. Concurrently, an HL7-based image order for these cases was generated, containing the locations of images and patient data, and forwarded to the EDW, which combined data in these locations to generate images with patient data, as required by DICOM standards. The image and data were then "wrapped" according to DICOM standards, transferred to the PACS servers, and made accessible on an institution-wide basis. Results: In total, 26,966 gross images from 9,733 cases were transmitted over the 3-year period from the laboratory information system to the EIS. The average process time for cases with successful automatic uploads (n=9,688 to the EIS was 98 seconds. Only 45 cases (0.5% failed requiring manual intervention. Uploaded images were immediately available to institution- wide PACS users. Since inception, user feedback has been positive. Conclusions: Enterprise- wide PACS- based sharing of pathology images is feasible, provides useful services to clinical staff, and utilizes existing information system and telecommunications infrastructure. PACS-shared pathology images, however, require a "DICOM wrapper" for multisystem compatibility.

  12. Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis.

    Science.gov (United States)

    Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J

    2012-01-01

    Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. An efficient architecture to support digital pathology in standard medical imaging repositories.

    Science.gov (United States)

    Marques Godinho, Tiago; Lebre, Rui; Silva, Luís Bastião; Costa, Carlos

    2017-07-01

    In the past decade, digital pathology and whole-slide imaging (WSI) have been gaining momentum with the proliferation of digital scanners from different manufacturers. The literature reports significant advantages associated with the adoption of digital images in pathology, namely, improvements in diagnostic accuracy and better support for telepathology. Moreover, it also offers new clinical and research applications. However, numerous barriers have been slowing the adoption of WSI, among which the most important are performance issues associated with storage and distribution of huge volumes of data, and lack of interoperability with other hospital information systems, most notably Picture Archive and Communications Systems (PACS) based on the DICOM standard. This article proposes an architecture of a Web Pathology PACS fully compliant with DICOM standard communications and data formats. The solution includes a PACS Archive responsible for storing whole-slide imaging data in DICOM WSI format and offers a communication interface based on the most recent DICOM Web services. The second component is a zero-footprint viewer that runs in any web-browser. It consumes data using the PACS archive standard web services. Moreover, it features a tiling engine especially suited to deal with the WSI image pyramids. These components were designed with special focus on efficiency and usability. The performance of our system was assessed through a comparative analysis of the state-of-the-art solutions. The results demonstrate that it is possible to have a very competitive solution based on standard workflows. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.

  15. Enterprise Implementation of Digital Pathology: Feasibility, Challenges, and Opportunities.

    Science.gov (United States)

    Hartman, D J; Pantanowitz, L; McHugh, J S; Piccoli, A L; OLeary, M J; Lauro, G R

    2017-10-01

    Digital pathology is becoming technically possible to implement for routine pathology work. At our institution, we have been using digital pathology for second opinion intraoperative consultations for over 10 years. Herein, we describe our experience in converting to a digital pathology platform for primary pathology diagnosis. We implemented an incremental rollout for digital pathology on subspecialty benches, beginning with cases that contained small amounts of tissue (biopsy specimens). We successfully scanned over 40,000 slides through our digital pathology system. Several lessons (both challenges and opportunities) were learned through this implementation. A successful conversion to digital pathology requires pre-imaging adjustments, integrated software and post-imaging evaluations.

  16. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143

  17. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.

    Science.gov (United States)

    Janowczyk, Andrew; Madabhushi, Anant

    2016-01-01

    Deep learning (DL) is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP). The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events), segmentation (e.g., nuclei), and tissue classification (e.g., cancerous vs. non-cancerous). Unfortunately, issues with slide preparation, variations in staining and scanning across sites, and vendor platforms, as well as biological variance, such as the presentation of different grades of disease, make these image analysis tasks particularly challenging. Traditional approaches, wherein domain-specific cues are manually identified and developed into task-specific "handcrafted" features, can require extensive tuning to accommodate these variances. However, DL takes a more domain agnostic approach combining both feature discovery and implementation to maximally discriminate between the classes of interest. While DL approaches have performed well in a few DP related image analysis tasks, such as detection and tissue classification, the currently available open source tools and tutorials do not provide guidance on challenges such as (a) selecting appropriate magnification, (b) managing errors in annotations in the training (or learning) dataset, and (c) identifying a suitable training set containing information rich exemplars. These foundational concepts, which are needed to successfully translate the DL paradigm to DP tasks, are non-trivial for (i) DL experts with minimal digital histology experience, and (ii) DP and image processing experts with minimal DL experience, to derive on their own, thus meriting a dedicated tutorial. This paper investigates these concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches. Specifically, in this tutorial on DL for DP image

  18. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases

    Directory of Open Access Journals (Sweden)

    Andrew Janowczyk

    2016-01-01

    Full Text Available Background: Deep learning (DL is a representation learning approach ideally suited for image analysis challenges in digital pathology (DP. The variety of image analysis tasks in the context of DP includes detection and counting (e.g., mitotic events, segmentation (e.g., nuclei, and tissue classification (e.g., cancerous vs. non-cancerous. Unfortunately, issues with slide preparation, variations in staining and scanning across sites, and vendor platforms, as well as biological variance, such as the presentation of different grades of disease, make these image analysis tasks particularly challenging. Traditional approaches, wherein domain-specific cues are manually identified and developed into task-specific "handcrafted" features, can require extensive tuning to accommodate these variances. However, DL takes a more domain agnostic approach combining both feature discovery and implementation to maximally discriminate between the classes of interest. While DL approaches have performed well in a few DP related image analysis tasks, such as detection and tissue classification, the currently available open source tools and tutorials do not provide guidance on challenges such as (a selecting appropriate magnification, (b managing errors in annotations in the training (or learning dataset, and (c identifying a suitable training set containing information rich exemplars. These foundational concepts, which are needed to successfully translate the DL paradigm to DP tasks, are non-trivial for (i DL experts with minimal digital histology experience, and (ii DP and image processing experts with minimal DL experience, to derive on their own, thus meriting a dedicated tutorial. Aims: This paper investigates these concepts through seven unique DP tasks as use cases to elucidate techniques needed to produce comparable, and in many cases, superior to results from the state-of-the-art hand-crafted feature-based classification approaches. Results : Specifically, in

  19. A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images.

    Science.gov (United States)

    Janowczyk, Andrew; Doyle, Scott; Gilmore, Hannah; Madabhushi, Anant

    2018-01-01

    Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F -score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.

  20. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  1. Routine digital pathology workflow: The Catania experience

    Directory of Open Access Journals (Sweden)

    Filippo Fraggetta

    2017-01-01

    Full Text Available Introduction: Successful implementation of whole slide imaging (WSI for routine clinical practice has been accomplished in only a few pathology laboratories worldwide. We report the transition to an effective and complete digital surgical pathology workflow in the pathology laboratory at Cannizzaro Hospital in Catania, Italy. Methods: All (100% permanent histopathology glass slides were digitized at ×20 using Aperio AT2 scanners. Compatible stain and scanning slide racks were employed to streamline operations. eSlide Manager software was bidirectionally interfaced with the anatomic pathology laboratory information system. Virtual slide trays connected to the two-dimensional (2D barcode tracking system allowed pathologists to confirm that they were correctly assigned slides and that all tissues on these glass slides were scanned. Results: Over 115,000 glass slides were digitized with a scan fail rate of around 1%. Drying glass slides before scanning minimized them sticking to scanner racks. Implementation required introduction of a 2D barcode tracking system and modification of histology workflow processes. Conclusion: Our experience indicates that effective adoption of WSI for primary diagnostic use was more dependent on optimizing preimaging variables and integration with the laboratory information system than on information technology infrastructure and ensuring pathologist buy-in. Implementation of digital pathology for routine practice not only leveraged the benefits of digital imaging but also creates an opportunity for establishing standardization of workflow processes in the pathology laboratory.

  2. Standardization efforts of digital pathology in Europe.

    Science.gov (United States)

    Rojo, Marcial García; Daniel, Christel; Schrader, Thomas

    2012-01-01

    EURO-TELEPATH is a European COST Action IC0604. It started in 2007 and will end in November 2011. Its main objectives are evaluating and validating the common technological framework and communication standards required to access, transmit, and manage digital medical records by pathologists and other medical specialties in a networked environment. Working Group 1, "Business Modelling in Pathology," has designed main pathology processes - Frozen Study, Formalin Fixed Specimen Study, Telepathology, Cytology, and Autopsy - using Business Process Modelling Notation (BPMN). Working Group 2 has been dedicated to promoting the application of informatics standards in pathology, collaborating with Integrating Healthcare Enterprise (IHE), Digital Imaging and Communications in Medicine (DICOM), Health Level Seven (HL7), and other standardization bodies. Health terminology standardization research has become a topic of great interest. Future research work should focus on standardizing automatic image analysis and tissue microarrays imaging.

  3. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

    Science.gov (United States)

    Ertosun, Mehmet Günhan; Rubin, Daniel L

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.

  4. [Quantitative image analysis in pulmonary pathology - digitalization of preneoplastic lesions in human bronchial epithelium (author's transl)].

    Science.gov (United States)

    Steinbach, T; Müller, K M; Kämper, H

    1979-01-01

    The report concerns the first phase of a quantitative study of normal and abnormal bronchial epithelium with the objective of establishing the digitalization of histologic patterns. Preparative methods, data collecting and handling, and further mathematical analysis are described. In cluster and discriminatory analysis the digitalized histologic features can be used to separate and classify the individual cases into the respective diagnostic groups.

  5. Development of a networked four-million-pixel pathological and radiological digital image presentation system and its application to medical conferences

    Science.gov (United States)

    Sakano, Toshikazu; Furukawa, Isao; Okumura, Akira; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu; Suzuki, Junji; Matsuya, Shoji; Ishihara, Teruo

    2001-08-01

    The wide spread of digital technology in the medical field has led to a demand for the high-quality, high-speed, and user-friendly digital image presentation system in the daily medical conferences. To fulfill this demand, we developed a presentation system for radiological and pathological images. It is composed of a super-high-definition (SHD) imaging system, a radiological image database (R-DB), a pathological image database (P-DB), and the network interconnecting these three. The R-DB consists of a 270GB RAID, a database server workstation, and a film digitizer. The P-DB includes an optical microscope, a four-million-pixel digital camera, a 90GB RAID, and a database server workstation. A 100Mbps Ethernet LAN interconnects all the sub-systems. The Web-based system operation software was developed for easy operation. We installed the whole system in NTT East Kanto Hospital to evaluate it in the weekly case conferences. The SHD system could display digital full-color images of 2048 x 2048 pixels on a 28-inch CRT monitor. The doctors evaluated the image quality and size, and found them applicable to the actual medical diagnosis. They also appreciated short image switching time that contributed to smooth presentation. Thus, we confirmed that its characteristics met the requirements.

  6. Towards better digital pathology workflows: programming libraries for high-speed sharpness assessment of Whole Slide Images.

    Science.gov (United States)

    Ameisen, David; Deroulers, Christophe; Perrier, Valérie; Bouhidel, Fatiha; Battistella, Maxime; Legrès, Luc; Janin, Anne; Bertheau, Philippe; Yunès, Jean-Baptiste

    2014-01-01

    Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools. Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries. We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format. Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow.

  7. Towards better digital pathology workflows: programming libraries for high-speed sharpness assessment of Whole Slide Images

    Science.gov (United States)

    2014-01-01

    Background Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools. Methods Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries. Results We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format. Conclusions Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics

  8. Summary of 2 nd Nordic symposium on digital pathology

    Directory of Open Access Journals (Sweden)

    Claes Lundström

    2015-01-01

    Full Text Available Techniques for digital pathology are envisioned to provide great benefits in clinical practice, but experiences also show that solutions must be carefully crafted. The Nordic countries are far along the path toward the use of whole-slide imaging in clinical routine. The Nordic Symposium on Digital Pathology (NDP was created to promote knowledge exchange in this area, between stakeholders in health care, industry, and academia. This article is a summary of the NDP 2014 symposium, including conclusions from a workshop on clinical adoption of digital pathology among the 144 attendees.

  9. Summary of 2nd Nordic symposium on digital pathology

    Science.gov (United States)

    Lundström, Claes; Thorstenson, Sten; Waltersson, Marie; Persson, Anders; Treanor, Darren

    2015-01-01

    Techniques for digital pathology are envisioned to provide great benefits in clinical practice, but experiences also show that solutions must be carefully crafted. The Nordic countries are far along the path toward the use of whole-slide imaging in clinical routine. The Nordic Symposium on Digital Pathology (NDP) was created to promote knowledge exchange in this area, between stakeholders in health care, industry, and academia. This article is a summary of the NDP 2014 symposium, including conclusions from a workshop on clinical adoption of digital pathology among the 144 attendees. PMID:25774316

  10. Summary of 2(nd) Nordic symposium on digital pathology.

    Science.gov (United States)

    Lundström, Claes; Thorstenson, Sten; Waltersson, Marie; Persson, Anders; Treanor, Darren

    2015-01-01

    Techniques for digital pathology are envisioned to provide great benefits in clinical practice, but experiences also show that solutions must be carefully crafted. The Nordic countries are far along the path toward the use of whole-slide imaging in clinical routine. The Nordic Symposium on Digital Pathology (NDP) was created to promote knowledge exchange in this area, between stakeholders in health care, industry, and academia. This article is a summary of the NDP 2014 symposium, including conclusions from a workshop on clinical adoption of digital pathology among the 144 attendees.

  11. State of the art and trends for digital pathology.

    Science.gov (United States)

    García Rojo, Marcial

    2012-01-01

    Anatomic pathology is a medical specialty where both information management systems and digital images systems paly a most important role. Digital pathology is a new concept that considers all uses of this information, including diagnosis, biomedical research and education. Virtual microscopy or whole slide imaging, resulting in digital slides, is an outreaching technology in anatomic pathology. Limiting factors in the expansion of virtual microscopy are formidable storage dimension, scanning speed, quality of image and cultural change. Anatomic pathology data and images should be an important part of the patient electronic health records as well as of clinical data warehouse, epidemiological or biomedical research databases, and platforms dedicated to translational medicine. Integrating anatomic pathology to the "healthcare enterprise" can only be achieved using existing and emerging medical informatics standards like Digital Imaging and Communications in Medicine (DICOM®1), Health Level Seven (HL7®), and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT®), following the recommendations of Integrating the Healthcare Enterprise (IHE®). The consequences of the full digitalization of pathology departments are hard to foresee, but short term issues have arisen that imply interesting challenges for health care standards bodies.

  12. Recent advances in standards for collaborative Digital Anatomic Pathology

    Science.gov (United States)

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  13. Digital pathology: DICOM-conform draft, testbed, and first results.

    Science.gov (United States)

    Zwönitzer, Ralf; Kalinski, Thomas; Hofmann, Harald; Roessner, Albert; Bernarding, Johannes

    2007-09-01

    Hospital information systems are state of the art nowadays. Therefore, Digital Pathology, also labelled as Virtual Microscopy, has gained increased attention. Triggered by radiology, standardized information models and workflows were world-wide defined based on DICOM. However, DICOM-conform integration of Digital Pathology into existing clinical information systems imposes new problems requiring specific solutions concerning the huge amount of data as well as the special structure of the data to be managed, transferred, and stored. We implemented a testbed to realize and evaluate the workflow of digitized slides from acquisition to archiving. The experiences led to the draft of a DICOM-conform information model that accounted for extensions, definitions, and technical requirements necessary to integrate digital pathology in a hospital-wide DICOM environment. Slides were digitized, compressed, and could be viewed remotely. Real-time transfer of the huge amount of data was optimized using streaming techniques. Compared to a recent discussion in the DICOM Working Group for Digital Pathology (WG26) our experiences led to a preference of a JPEG2000/JPIP-based streaming of the whole slide image. The results showed that digital pathology is feasible but strong efforts by users and vendors are still necessary to integrate Digital Pathology into existing information systems.

  14. Teaching digital pathology: The international school of digital pathology and proposed syllabus

    Directory of Open Access Journals (Sweden)

    Vincenzo Della Mea

    2017-01-01

    Full Text Available Digital pathology is an interdisciplinary field where competency in pathology, laboratory techniques, informatics, computer science, information systems, engineering, and even biology converge. This implies that teaching students about digital pathology requires coverage, expertise, and hands-on experience in all these disciplines. With this in mind, a syllabus was developed for a digital pathology summer school aimed at professionals in the aforementioned fields, as well as trainees and doctoral students. The aim of this communication is to share the context, rationale, and syllabus for this school of digital pathology.

  15. Digital pathology in nephrology clinical trials, research, and pathology practice.

    Science.gov (United States)

    Barisoni, Laura; Hodgin, Jeffrey B

    2017-11-01

    In this review, we will discuss (i) how the recent advancements in digital technology and computational engineering are currently applied to nephropathology in the setting of clinical research, trials, and practice; (ii) the benefits of the new digital environment; (iii) how recognizing its challenges provides opportunities for transformation; and (iv) nephropathology in the upcoming era of kidney precision and predictive medicine. Recent studies highlighted how new standardized protocols facilitate the harmonization of digital pathology database infrastructure and morphologic, morphometric, and computer-aided quantitative analyses. Digital pathology enables robust protocols for clinical trials and research, with the potential to identify previously underused or unrecognized clinically useful parameters. The integration of digital pathology with molecular signatures is leading the way to establishing clinically relevant morpho-omic taxonomies of renal diseases. The introduction of digital pathology in clinical research and trials, and the progressive implementation of the modern software ecosystem, opens opportunities for the development of new predictive diagnostic paradigms and computer-aided algorithms, transforming the practice of renal disease into a modern computational science.

  16. SDOCT imaging to identify macular pathology in patients diagnosed with diabetic maculopathy by a digital photographic retinal screening programme.

    Directory of Open Access Journals (Sweden)

    Sarah Mackenzie

    Full Text Available INTRODUCTION: Diabetic macular edema (DME is an important cause of vision loss. England has a national systematic photographic retinal screening programme to identify patients with diabetic eye disease. Grading retinal photographs according to this national protocol identifies surrogate markers for DME. We audited a care pathway using a spectral-domain optical coherence tomography (SDOCT clinic to identify macular pathology in this subset of patients. METHODS: A prospective audit was performed of patients referred from screening with mild to moderate non-proliferative diabetic retinopathy (R1 and surrogate markers for diabetic macular edema (M1 attending an SDOCT clinic. The SDOCT images were graded by an ophthalmologist as SDOCT positive, borderline or negative. SDOCT positive patients were referred to the medical retina clinic. SDOCT negative and borderline patients were further reviewed in the SDOCT clinic in 6 months. RESULTS: From a registered screening population of 17 551 patients with diabetes mellitus, 311 patients met the inclusion criteria between (March 2008 and September 2009. We analyzed images from 311 patients' SDOCT clinic episodes. There were 131 SDOCT negative and 12 borderline patients booked for revisit in the OCT clinic. Twenty-four were referred back to photographic screening for a variety of reasons. A total of 144 were referred to ophthalmology with OCT evidence of definite macular pathology requiring review by an ophthalmologist. DISCUSSION: This analysis shows that patients with diabetes, mild to moderate non-proliferative diabetic retinopathy (R1 and evidence of diabetic maculopathy on non-stereoscopic retinal photographs (M1 have a 42.1% chance of having no macular edema on SDOCT imaging as defined by standard OCT definitions of DME when graded by a retinal specialist. SDOCT imaging is a useful adjunct to colour fundus photography in screening for referable diabetic maculopathy in our screening population.

  17. Diagnostic Efficiency in Digital Pathology: A Comparison of Optical Versus Digital Assessment in 510 Surgical Pathology Cases.

    Science.gov (United States)

    Mills, Anne M; Gradecki, Sarah E; Horton, Bethany J; Blackwell, Rebecca; Moskaluk, Christopher A; Mandell, James W; Mills, Stacey E; Cathro, Helen P

    2018-01-01

    Prior work has shown that digital images and microscopic slides can be interpreted with comparable diagnostic accuracy. Although accuracy has been well-validated, the interpretative time for digital images has scarcely been studied and concerns about efficiency remain a major barrier to adoption. We investigated the efficiency of digital pathology when compared with glass slide interpretation in the diagnosis of surgical pathology biopsy and resection specimens. Slides were pulled from 510 surgical pathology cases from 5 organ systems (gastrointestinal, gynecologic, liver, bladder, and brain). Original diagnoses were independently confirmed by 2 validating pathologists. Diagnostic slides were scanned using the Philips IntelliSite Pathology Solution. Each case was assessed independently on digital and optical by 3 reading pathologists, with a ≥6 week washout period between modalities. Reading pathologists recorded assessment times for each modality; digital times included time to load the case. Diagnostic accuracy was determined based on whether a rendered diagnosis differed significantly from the original diagnosis. Statistical analysis was performed to assess for differences in interpretative times across modalities. All 3 reading pathologists showed comparable diagnostic accuracy across optical and digital modalities (mean major discordance rates with original diagnosis: 4.8% vs. 4.4%, respectively). Mean assessment times ranged from 1.2 to 9.1 seconds slower on digital versus optical. The slowest reader showed a significant learning effect during the course of the study so that digital assessment times decreased over time and were comparable with optical times by the end of the series. Organ site and specimen type did not significantly influence differences in interpretative times. In summary, digital image reading times compare favorably relative to glass slides across a variety of organ systems and specimen types. Mean increase in assessment time is 4

  18. NMR imaging of osteoarticular pathology

    International Nuclear Information System (INIS)

    Frocrain, L.; Duvauferrier, R.; Gagey, N.

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states [fr

  19. Digital pathology: A systematic evaluation of the patent landscape

    Directory of Open Access Journals (Sweden)

    Ioan C. Cucoranu

    2014-01-01

    Full Text Available Introduction: Digital pathology is a relatively new field. Inventors of technology in this field typically file for patents to protect their intellectual property. An understanding of the patent landscape is crucial for companies wishing to secure patent protection and market dominance for their products. To our knowledge, there has been no prior systematic review of patents related to digital pathology. Therefore, the aim of this study was to systematically identify and evaluate United States patents and patent applications related to digital pathology. Materials and Methods: Issued patents and patent applications related to digital pathology published in the United States Patent and Trademark Office (USPTO database (www.uspto.gov (through January 2014 were searched using the Google Patents search engine (Google Inc., Mountain View, California, USA. Keywords and phrases related to digital pathology, whole-slide imaging (WSI, image analysis, and telepathology were used to query the USPTO database. Data were downloaded and analyzed using the Papers application (Mekentosj BV, Aalsmeer, Netherlands. Results: A total of 588 United States patents that pertain to digital pathology were identified. In addition, 228 patent applications were identified, including 155 that were pending, 65 abandoned, and eight rejected. Of the 588 patents granted, 348 (59.18% were specific to pathology, while 240 (40.82% included more general patents also usable outside of pathology. There were 70 (21.12% patents specific to pathology and 57 (23.75% more general patents that had expired. Over 120 unique entities (individual inventors, academic institutions, and private companies applied for pathology specific patents. Patents dealt largely with telepathology and image analysis. WSI related patents addressed image acquisition (scanning and focus, quality (z-stacks, management (storage, retrieval, and transmission of WSI files, and viewing (graphical user interface (GUI

  20. Digital pathology: A systematic evaluation of the patent landscape.

    Science.gov (United States)

    Cucoranu, Ioan C; Parwani, Anil V; Vepa, Suryanarayana; Weinstein, Ronald S; Pantanowitz, Liron

    2014-01-01

    Digital pathology is a relatively new field. Inventors of technology in this field typically file for patents to protect their intellectual property. An understanding of the patent landscape is crucial for companies wishing to secure patent protection and market dominance for their products. To our knowledge, there has been no prior systematic review of patents related to digital pathology. Therefore, the aim of this study was to systematically identify and evaluate United States patents and patent applications related to digital pathology. Issued patents and patent applications related to digital pathology published in the United States Patent and Trademark Office (USPTO) database (www.uspto.gov) (through January 2014) were searched using the Google Patents search engine (Google Inc., Mountain View, California, USA). Keywords and phrases related to digital pathology, whole-slide imaging (WSI), image analysis, and telepathology were used to query the USPTO database. Data were downloaded and analyzed using the Papers application (Mekentosj BV, Aalsmeer, Netherlands). A total of 588 United States patents that pertain to digital pathology were identified. In addition, 228 patent applications were identified, including 155 that were pending, 65 abandoned, and eight rejected. Of the 588 patents granted, 348 (59.18%) were specific to pathology, while 240 (40.82%) included more general patents also usable outside of pathology. There were 70 (21.12%) patents specific to pathology and 57 (23.75%) more general patents that had expired. Over 120 unique entities (individual inventors, academic institutions, and private companies) applied for pathology specific patents. Patents dealt largely with telepathology and image analysis. WSI related patents addressed image acquisition (scanning and focus), quality (z-stacks), management (storage, retrieval, and transmission of WSI files), and viewing (graphical user interface (GUI), workflow, slide navigation and remote control). An

  1. Digital Imaging. Chapter 16

    Energy Technology Data Exchange (ETDEWEB)

    Clunie, D. [CoreLab Partners, Princeton (United States)

    2014-09-15

    The original means of recording X ray images was a photographic plate. Nowadays, all medical imaging modalities provide for digital acquisition, though globally, the use of radiographic film is still widespread. Many modalities are fundamentally digital in that they require image reconstruction from quantified digital signals, such as computed tomography (CT) and magnetic resonance imaging (MRI)

  2. The effectiveness of annotated (vs. non-annotated) digital pathology slides as a teaching tool during dermatology and pathology residencies.

    Science.gov (United States)

    Marsch, Amanda F; Espiritu, Baltazar; Groth, John; Hutchens, Kelli A

    2014-06-01

    With today's technology, paraffin-embedded, hematoxylin & eosin-stained pathology slides can be scanned to generate high quality virtual slides. Using proprietary software, digital images can also be annotated with arrows, circles and boxes to highlight certain diagnostic features. Previous studies assessing digital microscopy as a teaching tool did not involve the annotation of digital images. The objective of this study was to compare the effectiveness of annotated digital pathology slides versus non-annotated digital pathology slides as a teaching tool during dermatology and pathology residencies. A study group composed of 31 dermatology and pathology residents was asked to complete an online pre-quiz consisting of 20 multiple choice style questions, each associated with a static digital pathology image. After completion, participants were given access to an online tutorial composed of digitally annotated pathology slides and subsequently asked to complete a post-quiz. A control group of 12 residents completed a non-annotated version of the tutorial. Nearly all participants in the study group improved their quiz score, with an average improvement of 17%, versus only 3% (P = 0.005) in the control group. These results support the notion that annotated digital pathology slides are superior to non-annotated slides for the purpose of resident education. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Summary of third Nordic symposium on digital pathology.

    Science.gov (United States)

    Lundström, Claes; Waltersson, Marie; Persson, Anders; Treanor, Darren

    2016-01-01

    Cross-disciplinary and cross-sectorial collaboration is a key success factor for turning the promise of digital pathology into actual clinical benefits. The Nordic symposium on digital pathology (NDP) was created to promote knowledge exchange in this area, among stakeholders in health care, industry, and academia. This article is a summary of the third NDP symposium in Linkφping, Sweden. The Nordic experiences, including several hospitals using whole-slide imaging for substantial parts of their primary reviews, formed a fertile base for discussions among the 190 NDP attendees originating from 15 different countries. This summary also contains results from a survey on adoption and validation aspects of clinical digital pathology use.

  4. Summary of third Nordic symposium on digital pathology

    Directory of Open Access Journals (Sweden)

    Claes Lundstrom

    2016-01-01

    Full Text Available Cross-disciplinary and cross-sectorial collaboration is a key success factor for turning the promise of digital pathology into actual clinical benefits. The Nordic symposium on digital pathology (NDP was created to promote knowledge exchange in this area, among stakeholders in health care, industry, and academia. This article is a summary of the third NDP symposium in Linkφping, Sweden. The Nordic experiences, including several hospitals using whole-slide imaging for substantial parts of their primary reviews, formed a fertile base for discussions among the 190 NDP attendees originating from 15 different countries. This summary also contains results from a survey on adoption and validation aspects of clinical digital pathology use.

  5. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    International Nuclear Information System (INIS)

    Tam, Allison; Barker, Jocelyn; Rubin, Daniel

    2016-01-01

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline

  6. A method for normalizing pathology images to improve feature extraction for quantitative pathology

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Allison [Stanford Institutes of Medical Research Program, Stanford University School of Medicine, Stanford, California 94305 (United States); Barker, Jocelyn [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 (United States); Rubin, Daniel [Department of Radiology, Stanford University School of Medicine, Stanford, California 94305 and Department of Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, California 94305 (United States)

    2016-01-15

    Purpose: With the advent of digital slide scanning technologies and the potential proliferation of large repositories of digital pathology images, many research studies can leverage these data for biomedical discovery and to develop clinical applications. However, quantitative analysis of digital pathology images is impeded by batch effects generated by varied staining protocols and staining conditions of pathological slides. Methods: To overcome this problem, this paper proposes a novel, fully automated stain normalization method to reduce batch effects and thus aid research in digital pathology applications. Their method, intensity centering and histogram equalization (ICHE), normalizes a diverse set of pathology images by first scaling the centroids of the intensity histograms to a common point and then applying a modified version of contrast-limited adaptive histogram equalization. Normalization was performed on two datasets of digitized hematoxylin and eosin (H&E) slides of different tissue slices from the same lung tumor, and one immunohistochemistry dataset of digitized slides created by restaining one of the H&E datasets. Results: The ICHE method was evaluated based on image intensity values, quantitative features, and the effect on downstream applications, such as a computer aided diagnosis. For comparison, three methods from the literature were reimplemented and evaluated using the same criteria. The authors found that ICHE not only improved performance compared with un-normalized images, but in most cases showed improvement compared with previous methods for correcting batch effects in the literature. Conclusions: ICHE may be a useful preprocessing step a digital pathology image processing pipeline.

  7. SurfaceSlide: a multitouch digital pathology platform.

    Directory of Open Access Journals (Sweden)

    Yinhai Wang

    Full Text Available BACKGROUND: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. METHODOLOGY: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. CONCLUSION: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human-digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.

  8. Digital cine-imaging

    International Nuclear Information System (INIS)

    Masuda, Kazuhiro

    1992-01-01

    Digitization of fluoroscopic images has been developed for the digital cine imaging system as a result of the computer technology, television technology, and popularization of interventional radiology. Present digital cine imaging system is able to offer images similar to cine film because of the higher operatability and better image quality with the development of interventional radiology. As a result, its higher usefulness for catheter diagnosis examination except for interventional radiology was reported, and the possibility of having filmless cine is close to becoming a reality. However several problems have been pointed out, such as spatial resolution, time resolution, storage and exchangeability of data, disconsolidated viewing functions, etc. Anyhow, digital cine imaging system has some unresolved points and lots the needs to be discussed. The tendency of digitization is the passage of the time and we have to promote a study for more useful digital cine imaging system in team medical treatment which centers on the patients. (author)

  9. Virtual microscopy and digital pathology in training and education.

    Science.gov (United States)

    Hamilton, Peter W; Wang, Yinhai; McCullough, Stephen J

    2012-04-01

    Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human-computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eye-tracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered. © 2012 The Authors APMIS © 2012 APMIS.

  10. Distance reporting in digital pathology: A study on 950 cases

    Directory of Open Access Journals (Sweden)

    Aleksandar Vodovnik

    2015-01-01

    Full Text Available Background: Increased workload, case complexity, financial constraints, and staffing shortages justify wider implementations of digital pathology. One of its main advantages is distance reporting. Aim: A feasibility study was conducted at our institution in order to achieve comprehensive pathology services available by distance. Methods: One senior pathologist reported 950 cases (3,650 slides by distance during 19 weeks. Slides were scanned by ScanScope AT Turbo (Aperio and digital images accessed through SymPathy (Tieto on a 14" laptop. Mobile phone, mobile broadband, broadband over Wi-Fi and broadband were used for internet connections along with a virtual private network technology (VPN. Lync (Microsoft was tested for one case consultation and resident′s teaching session. Larger displays were accessed when available. Effects of ergonomics and working flexibility on the user experience were observed. Details on network speed, frequency of technical issues, data usage, scanning, and turnaround, were collected and evaluated. Turnaround was compared to in-office microscopic reporting, measured from the registration to sign off. Results: Network speeds varied 1-80 Mbps (median download speed 8-65 Mbps. 20 Mbps were satisfactory for the instant upload of digital images. VPN, image viewer, and laptop failed on two occasions each. An estimated data usage per digital image was 10 MB (1-50 MB. Two cases (15 slides were deferred to microscopic slides (0.21/0.41% due to scanty material and suboptimal slide quality. Additional nine cases (15 slides needed to be rescanned for various reasons (0.95/0.41%. Average turnaround was shorter, and the percentage of cases reported up to 3 days higher (3.13 days/72.25% comparing with in-office microscopic reporting (3.90 days/40.56%. Larger displays improved the most user experience at magnifications over Χ20. Conclusions: Existing IT solutions at our institution allow efficient and reliable distance reporting

  11. Digital cardiovascular imaging

    International Nuclear Information System (INIS)

    Myerowitz, P.D.; Mistretta, C.A.; Shaw, C.-G.; Van Lysel, M.S.; Swanson, D.K.; Lasser, T.A.; Dhanani, S.P.; Zarnstorff, W.C.; Vander Ark, C.R.; Dobbins, J.T.; Peppler, W.W.; Crummy, A.B.

    1982-01-01

    The authors have previously reported on real time digital fluoroscopic subtraction techniques developed in the laboratory during the past 10 years. This paper outlines basic apparatus configuration and imaging modes used for preliminary studies involving visualization of the canine and human heart. All of the techniques involve the use of real time digital subtraction processing of data from an image intensified television fluoroscopy system. Based on the configuration of the digital processing equipment a number of different imaging modalities are possible. A brief description of the apparatus and these imaging modes is given. (Auth.)

  12. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives

    Directory of Open Access Journals (Sweden)

    Farahani N

    2015-06-01

    Full Text Available Navid Farahani,1 Anil V Parwani,2 Liron Pantanowitz2 1Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 2Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Abstract: Significant technologic gains have led to the adoption of innovative digital imaging solutions in pathology. Whole slide imaging (WSI, which refers to scanning of conventional glass slides in order to produce digital slides, is the most recent imaging modality being employed by pathology departments worldwide. WSI continues to gain traction among pathologists for diagnostic, educational, and research purposes. This article provides a technologic review of WSI platforms and covers clinical and nonclinical pathology applications of these imaging systems. Barriers to adoption of WSI include limiting technology, image quality, problems with scanning all materials (eg, cytology slides, cost, digital slide storage, inability to handle high-throughput routine work, regulatory barriers, ergonomics, and pathologists' reluctance. Emerging issues related to clinical validation, standardization, and forthcoming advances in the field are also addressed. Keywords: digital, imaging, microscopy, pathology, validation, whole slide image, telepathology

  13. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first...

  14. Digital imaging primer

    CERN Document Server

    Parkin, Alan

    2016-01-01

    Digital Imaging targets everyyone with an interest in digital imaging, be they professional or private, who uses even quite modest equipment such as a PC, digital camera and scanner, a graphics editor such as Paint, and an inkjet printer. Uniquely, it is intended to fill the gap between highly technical texts for academics (with access to expensive equipment) and superficial introductions for amateurs. The four-part treatment spans theory, technology, programs and practice. Theory covers integer arithmetic, additive and subtractive color, greyscales, computational geometry, and a new presentation of discrete Fourier analysis; Technology considers bitmap file structures, scanners, digital cameras, graphic editors, and inkjet printers; Programs develops several processing tools for use in conjunction with a standard Paint graphics editor and supplementary processing tools; Practice discusses 1-bit, greyscale, 4-bit, 8-bit, and 24-bit images for the practice section. Relevant QBASIC code is supplied an accompa...

  15. Digital imaging in health care

    International Nuclear Information System (INIS)

    1987-01-01

    This volume describes equipment for the generation and processing of digital images in medicine. Separate chapters deal with international trade i this equipment, with economic and social considerations of digital imaging, with experiences in the use and production of digital imaging equipment and with the current status and likely trends in applications of digital imaging. 84 refs, figs and tabs

  16. New developments in digital pathology: from telepathology to virtual pathology laboratory.

    Science.gov (United States)

    Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander

    2004-01-01

    To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under

  17. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  18. Digital vascular imaging

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Engels, B.C.H.

    1981-01-01

    Digitalizing videosignals from an image intensifying TV-chain, followed by subtraction, contrast intensifying, and reformation to analogous signal deliver angiography pictures of high quality after intravenous injection of the contrast medium. As the examination is only little invasive it can be carried out on outdoor patients or in the polyclinics. The possibilities of the digital vessel imagination (DVI) are shown at vessel images of different parts of the body; a 36 cm image intensifyer which can be switched to 3 different sorts of operation and has a plumbicon-TV recording tube is used as receiver. (orig.) [de

  19. Pathology Gross Photography: The Beginning of Digital Pathology.

    Science.gov (United States)

    Rampy, B Alan; Glassy, Eric F

    2015-06-01

    The underutilized practice of photographing anatomic pathology specimens from surgical pathology and autopsies is an invaluable benefit to patients, clinicians, pathologists, and students. Photographic documentation of clinical specimens is essential for the effective practice of pathology. When considering what specimens to photograph, all grossly evident pathology, absent yet expected pathologic features, and gross-only specimens should be thoroughly documented. Specimen preparation prior to photography includes proper lighting and background, wiping surfaces of blood, removing material such as tubes or bandages, orienting the specimen in a logical fashion, framing the specimen to fill the screen, positioning of probes, and using the right-sized scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  1. Summary of the 4th Nordic Symposium on Digital Pathology.

    Science.gov (United States)

    Lundström, Claes; Waltersson, Marie; Persson, Anders; Treanor, Darren

    2017-01-01

    The Nordic symposium on digital pathology (NDP) was created to promote knowledge exchange across stakeholders in health care, industry, and academia. In 2016, the 4 th NDP installment took place in Linköping, Sweden, promoting development and collaboration in digital pathology for the benefit of routine care advances. This article summarizes the symposium, gathering 170 attendees from 13 countries. This summary also contains results from a survey on integrated diagnostics aspects, in particular radiology-pathology collaboration.

  2. Summary of the 4th nordic symposium on digital pathology

    Directory of Open Access Journals (Sweden)

    Claes Lundström

    2017-01-01

    Full Text Available The Nordic symposium on digital pathology (NDP was created to promote knowledge exchange across stakeholders in health care, industry, and academia. In 2016, the 4th NDP installment took place in Linköping, Sweden, promoting development and collaboration in digital pathology for the benefit of routine care advances. This article summarizes the symposium, gathering 170 attendees from 13 countries. This summary also contains results from a survey on integrated diagnostics aspects, in particular radiology-pathology collaboration.

  3. Digital image analysis

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Vainer, Ben; Steiniche, Torben

    2012-01-01

    Digital image analysis (DIA) is increasingly implemented in histopathological research to facilitate truly quantitative measurements, decrease inter-observer variation and reduce hands-on time. Originally, efforts were made to enable DIA to reproduce manually obtained results on histological slides...... reproducibility, application of stereology-based quantitative measurements, time consumption, optimization of histological slides, regions of interest selection and recent developments in staining and imaging techniques....

  4. The impact of digital imaging in the field of cytopathology.

    Science.gov (United States)

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2009-03-06

    With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.

  5. Digital stereoscopic imaging

    Science.gov (United States)

    Rao, A. Ravishankar; Jaimes, Alejandro

    1999-05-01

    The convergence of inexpensive digital cameras and cheap hardware for displaying stereoscopic images has created the right conditions for the proliferation of stereoscopic imagin applications. One application, which is of growing importance to museums and cultural institutions, consists of capturing and displaying 3D images of objects at multiple orientations. In this paper, we present our stereoscopic imaging system and methodology for semi-automatically capturing multiple orientation stereo views of objects in a studio setting, and demonstrate the superiority of using a high resolution, high fidelity digital color camera for stereoscopic object photography. We show the superior performance achieved with the IBM TDI-Pro 3000 digital camera developed at IBM Research. We examine various choices related to the camera parameters, image capture geometry, and suggest a range of optimum values that work well in practice. We also examine the effect of scene composition and background selection on the quality of the stereoscopic image display. We will demonstrate our technique with turntable views of objects from the IBM Corporate Archive.

  6. Digital imaging in dentistry.

    Science.gov (United States)

    Essen, S Donovan

    2011-01-01

    Information technology is vital to operations, marketing, accounting, finance and administration. One of the most exciting and quickly evolving technologies in the modern dental office is digital applications. The dentist is often the business manager, information technology officer and strategic planning chief for his small business. The information systems triangle applies directly to this critical manager supported by properly trained ancillary staff and good equipment. With emerging technology driving all medical disciplines and the rapid pace at which it emerges, it is vital for the contemporary practitioner to keep abreast of the newest information technology developments. This article compares the strategic and operational advantages of digital applications, specifically imaging. The focus of this paper will be on digital radiography (DR), 3D computerized tomography, digital photography and digitally-driven CAD/CAM to what are now considered obsolescing modalities and contemplates what may arrive in the future. It is the purpose of this essay to succinctly evaluate the decisions involved in the role, application and implications of employing this tool in the dental environment

  7. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.

    2013-06-13

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  8. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.; Schneider, J.; Hansen, A.; Lee, M.; Turney, S. G.; Faulkner-Jones, B. E.; Hecht, J. L.; Najarian, R.; Yee, E.; Lichtman, J. W.; Pfister, H.

    2013-01-01

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  9. Future-proofing pathology: the case for clinical adoption of digital pathology.

    Science.gov (United States)

    Williams, Bethany Jill; Bottoms, David; Treanor, Darren

    2017-12-01

    This document clarifies the strategic context of digital pathology adoption, defines the different use cases a healthcare provider may wish to consider as part of a digital adoption and summarises existing reasons for digital adoption and its potential benefits. The reader is provided with references to the relevant literature, and illustrative case studies. The authors hope this report will be of interest to healthcare providers, pathology managers, departmental heads, pathologists and biomedical scientists that are considering digital pathology, deployments or preparing business cases for digital pathology adoption in clinical settings. The information contained in this document can be shared and used in any documentation the reader wishes to present for their own institutional case for adoption report or business case. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides.

    Science.gov (United States)

    Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J; Krinchai, Teppituk; Monaco, Sara E; Fine, Jeffrey L; Hartman, Douglas J; Pantanowitz, Liron

    2016-01-01

    Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s), compared to 62 s with the Oculus Rift (range 15-270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology.

  11. Magnetic resonance imaging of popliteal artery pathologies

    International Nuclear Information System (INIS)

    Holden, Andrew; Merrilees, Stephen; Mitchell, Nicola; Hill, Andrew

    2008-01-01

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions

  12. Magnetic resonance imaging of popliteal artery pathologies

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Andrew [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: andrewh@adhb.govt.nz; Merrilees, Stephen [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: smerrilees@adhb.govt.nz; Mitchell, Nicola [Department of Radiology, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: nmit010@ec.auckland.ac.nz; Hill, Andrew [Department of Vascular Surgery, Auckland City Hospital, Park Road, Grafton, Auckland 9 (New Zealand)], E-mail: ahill@adhb.govt.nz

    2008-07-15

    This paper illustrates examples of popliteal artery pathologies imaged with contrast enhanced magnetic resonance angiography (CE-MRA) and magnetic resonance imaging (MRI) at a single tertiary referral centre. Popliteal artery pathologies were identified in 1710 patients referred over a 6-year period with symptoms suggesting lower limb arterial occlusive disease. Common pathologies such as atherosclerotic occlusive disease, thromboemboli and aneurysm disease are discussed as well as unusual pathologies such as cystic adventitial disease, mycotic aneurysm and arterial entrapment. The combination of CE-MRA and the excellent soft tissue resolution of MRI allow detailed evaluation of arterial and peri-arterial pathologies, and facilitate appropriate management decisions.

  13. Analog and digital image quality:

    OpenAIRE

    Sardo, Alberto

    2004-01-01

    Background. Lastly the X ray facilities are moving to a slow, but continuous process of digitalization. The dry laser printers allow hardcopy images with optimum resolution and contrast for all the modalities. In breast imaging, thedelay of digitalization depends to the high cost of digital systems and, attimes, to the doubts of the diagnostic accuracy of reading the breast digital images. Conclusions. The Screen film mammography (SFM) is the most efficient diagnostic modality to detect the b...

  14. The untapped potential of digital pathology in prostate cancer ...

    African Journals Online (AJOL)

    Xavier Farré

    2018-02-07

    Feb 7, 2018 ... prostate cancer diagnosis and medical education ... Discussion: Digital pathology platforms could offer new solutions to the diagnostic and ... Peer review under responsibility of Pan African Urological Surgeons' Association.

  15. Carnegie Mellon University bioimaging day 2014: Challenges and opportunities in digital pathology.

    Science.gov (United States)

    Rohde, Gustavo K; Ozolek, John A; Parwani, Anil V; Pantanowitz, Liron

    2014-01-01

    Recent advances in digital imaging is impacting the practice of pathology. One of the key enabling technologies that is leading the way towards this transformation is the use of whole slide imaging (WSI) which allows glass slides to be converted into large image files that can be shared, stored, and analyzed rapidly. Many applications around this novel technology have evolved in the last decade including education, research and clinical applications. This publication highlights a collection of abstracts, each corresponding to a talk given at Carnegie Mellon University's (CMU) Bioimaging Day 2014 co-sponsored by the Biomedical Engineering and Lane Center for Computational Biology Departments at CMU. Topics related specifically to digital pathology are presented in this collection of abstracts. These include topics related to digital workflow implementation, imaging and artifacts, storage demands, and automated image analysis algorithms.

  16. Carnegie Mellon University bioimaging day 2014: Challenges and opportunities in digital pathology

    Directory of Open Access Journals (Sweden)

    Gustavo K Rohde

    2014-01-01

    Full Text Available Recent advances in digital imaging is impacting the practice of pathology. One of the key enabling technologies that is leading the way towards this transformation is the use of whole slide imaging (WSI which allows glass slides to be converted into large image files that can be shared, stored, and analyzed rapidly. Many applications around this novel technology have evolved in the last decade including education, research and clinical applications. This publication highlights a collection of abstracts, each corresponding to a talk given at Carnegie Mellon University′s (CMU Bioimaging Day 2014 co-sponsored by the Biomedical Engineering and Lane Center for Computational Biology Departments at CMU. Topics related specifically to digital pathology are presented in this collection of abstracts. These include topics related to digital workflow implementation, imaging and artifacts, storage demands, and automated image analysis algorithms.

  17. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  18. The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine.

    Science.gov (United States)

    Bertram, Christof A; Klopfleisch, Robert

    2017-09-01

    Using light microscopy to describe the microarchitecture of normal and diseased tissues has changed very little since the middle of the 19th century. While the premise of histologic analysis remains intact, our relationship with the microscope is changing dramatically. Digital pathology offers new forms of visualization, and delivery of images is facilitated in unprecedented ways. This new technology can untether us entirely from our light microscopes, with many pathologists already performing their jobs using virtual microscopy. Several veterinary colleges have integrated virtual microscopy in their curriculum, and some diagnostic histopathology labs are switching to virtual microscopy as their main tool for the assessment of histologic specimens. Considering recent technical advancements of slide scanner and viewing software, digital pathology should now be considered a serious alternative to traditional light microscopy. This review therefore intends to give an overview of the current digital pathology technologies and their potential in all fields of veterinary pathology (ie, research, diagnostic service, and education). A future integration of digital pathology in the veterinary pathologist's workflow seems to be inevitable, and therefore it is proposed that trainees should be taught in digital pathology to keep up with the unavoidable digitization of the profession.

  19. Digital imaging in cardiovascular radiology

    International Nuclear Information System (INIS)

    Heintzen, P.H.; Brennecke, R.

    1983-01-01

    The present book contains 27 papers presented at an international symposium on digital imaging in cardiovascular radiology held in Kiel in 1982. The main themes were as follows. Introductory reviews, digital systems for X-ray video imaging, quantitative X-ray image analysis, and clinical applications. (MG)

  20. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... of conflict-related images raise issues of knowledge production and research....

  1. Pathfinder: multiresolution region-based searching of pathology images using IRM.

    OpenAIRE

    Wang, J. Z.

    2000-01-01

    The fast growth of digitized pathology slides has created great challenges in research on image database retrieval. The prevalent retrieval technique involves human-supplied text annotations to describe slide contents. These pathology images typically have very high resolution, making it difficult to search based on image content. In this paper, we present Pathfinder, an efficient multiresolution region-based searching system for high-resolution pathology image libraries. The system uses wave...

  2. Magnetic resonance imaging assessment of labyrinthine pathology

    International Nuclear Information System (INIS)

    Marsot-Dupuch, K.; Vignaud, J.; Mehdi, M.; Pharaboz, C.; Meyer, B.

    1996-01-01

    Membranous labyrinth pathologies are quite rare. They were until recently difficult to demonstrate by imaging technics, CT being the modality of choice. Our purpose was to stress the interest of MR examination for investigating patients complaining of vertigo, tinnitus, and profound sensorineural hearing loss. Normal anatomy as well as the main pathologically encountered changes are illustrated. (orig.)

  3. Magnetic resonance imaging assessment of labyrinthine pathology

    Energy Technology Data Exchange (ETDEWEB)

    Marsot-Dupuch, K [Hopital Saint-Antoine, Service de Radiologie, 75 - Paris (France); Vignaud, J [Val de Grace, Hopital d` Instruction du Service de Sante des Armees, 75 - Paris (France); Mehdi, M [Hopital Saint-Antoine, Service de Radiologie, 75 - Paris (France); Pharaboz, C [Hopital Begin, Hopital d` Instruction des Armees, 94 - Saint-Mande (France); Meyer, B [Hopital Saint-Antoine, Service d` ORL, 75 - Paris (France)

    1996-10-01

    Membranous labyrinth pathologies are quite rare. They were until recently difficult to demonstrate by imaging technics, CT being the modality of choice. Our purpose was to stress the interest of MR examination for investigating patients complaining of vertigo, tinnitus, and profound sensorineural hearing loss. Normal anatomy as well as the main pathologically encountered changes are illustrated. (orig.)

  4. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  5. Carnegie Mellon University bioimaging day 2014: Challenges and opportunities in digital pathology

    OpenAIRE

    Gustavo K Rohde; John A Ozolek; Anil V Parwani; Liron Pantanowitz

    2014-01-01

    Recent advances in digital imaging is impacting the practice of pathology. One of the key enabling technologies that is leading the way towards this transformation is the use of whole slide imaging (WSI) which allows glass slides to be converted into large image files that can be shared, stored, and analyzed rapidly. Many applications around this novel technology have evolved in the last decade including education, research and clinical applications. This publication highlights a collection o...

  6. Image quality in digital radiography

    International Nuclear Information System (INIS)

    Kuhn, H.

    1986-01-01

    The contribution deals with the potentials of digital radiography and critically evaluates the advantages of drawbacks of the image intensifier-tv-digital system; digitalisation of the X-ray film and scanning of luminescent storage foils. The evaluation is done in comparison with the image quality of the traditional, large-size X-ray picture. (orig.) [de

  7. Future-proofing pathology part 2: building a business case for digital pathology.

    Science.gov (United States)

    Williams, Bethany Jill; Bottoms, David; Clark, David; Treanor, Darren

    2018-03-16

    Diagnostic histopathology departments are experiencing unprecedented economic and service pressures, and many institutions are now considering digital pathology as part of the solution. In this document, a follow on to our case for adoption report, we provide information and advice to help departments create their own clear, succinct, individualised business case for the clinical deployment of digital pathology. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. The untapped potential of digital pathology in prostate cancer ...

    African Journals Online (AJOL)

    Discussion: Digital pathology platforms could offer new solutions to the diagnostic and educational challenges facing pathologists practicing in Africa. For prostate cancer, they could provide several advantages including the assessment of biopsy cores, measurement of tumor volumes and second opinion consultation of ...

  9. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  10. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... and distance, and the multiplicity of images. It engages critically with these interlinking themes as they are addressed in the contributing articles to the Special Issue as well as beyond, asking how genres and tropes are reproduced, how power plays a role in access to images, and how the sheer quantity...... of conflict-related images raise issues of knowledge production and research....

  11. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides

    Directory of Open Access Journals (Sweden)

    Navid Farahani

    2016-01-01

    Full Text Available Background: Digital slides obtained from whole slide imaging (WSI platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world′s first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. Methods: An Oculus Rift Development Kit 2 (DK2 was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. Results: There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s, compared to 62 s with the Oculus Rift (range 15-270 s. All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Conclusion: Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are

  12. Muscular pathology: echographic and NMR imaging aspects

    International Nuclear Information System (INIS)

    Pascal-Suisse, P.; Beaurain, P.; Mougniot, C.

    1995-01-01

    A comparison of echographic techniques and NMR imaging has been done for the diagnosis of muscular trauma and tumor pathologies. In traumatic pathology, the echographic analysis allows to determine the complete assessment of recent muscular injuries. NMR imaging can be used in granuloma or fibrous callosity appreciation and for the analysis of deep injury (muscles and muscles-tendon junctions) and of muscular aponeurosis. Echography must be used together with color coding Doppler technique in the diagnosis of tumor pathology and for the study of slow fluxes. The recently available energy Doppler technique seems to be powerful in the study of vascularization of small expansive formations, but their extension to adjacent bone or tissue can only be appreciated using NMR imaging. (J.S.)

  13. Imaging of orbital and visual pathway pathology

    International Nuclear Information System (INIS)

    Mueller-Forell, W.S.

    2006-01-01

    This is one of the first books to deal with imaging of pathology of the entire visual system. It is divided into two parts, general and special. In the general part, the most important basics of modern imaging methods are discussed, but with less emphasis on the physical background than in purely neuro-/radiological textbooks. Chapters are devoted to the meticulous presentation of imaging anatomy of the orbit and intracranial visual pathway. The latest knowledge on the indication, technique, and results of functional MR imaging is presented. Visual system impairment in the pediatric age group is also discussed. The special part of the book provides detailed descriptions of the symptoms and clinical and imaging findings in individual patients with orbital and intracranial pathologies. This book is specifically designed to be of value not only to neuroradiologists but also to ophthalmologists, neurosurgeons, oto-/rhino-laryngologists, and neurologists who require more detailed information on these special diseases. (orig.)

  14. Imaging of orbital and visual pathway pathology

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Forell, W.S. (ed.) [Medical School Univ. of Mainz (Germany). Inst. of Neuroradiology

    2006-07-01

    This is one of the first books to deal with imaging of pathology of the entire visual system. It is divided into two parts, general and special. In the general part, the most important basics of modern imaging methods are discussed, but with less emphasis on the physical background than in purely neuro-/radiological textbooks. Chapters are devoted to the meticulous presentation of imaging anatomy of the orbit and intracranial visual pathway. The latest knowledge on the indication, technique, and results of functional MR imaging is presented. Visual system impairment in the pediatric age group is also discussed. The special part of the book provides detailed descriptions of the symptoms and clinical and imaging findings in individual patients with orbital and intracranial pathologies. This book is specifically designed to be of value not only to neuroradiologists but also to ophthalmologists, neurosurgeons, oto-/rhino-laryngologists, and neurologists who require more detailed information on these special diseases. (orig.)

  15. Implementing digital technology to enhance student learning of pathology.

    Science.gov (United States)

    Farah, C S; Maybury, T

    2009-08-01

    The introduction of digital technologies into the dental curriculum is an ongoing feature of broader changes going on in tertiary education. This report examines the introduction of digital virtual microscopy technology into the curriculum of the School of Dentistry at the University of Queensland (UQ) in Brisbane, Australia. Sixty students studying a course in pathology in 2005 were introduced to virtual microscopy technology alongside the more traditional light microscope and then asked to evaluate their own learning outcomes from this technology via a structured 5-point LIKART survey. A wide variety of questions dealing the pedagogic implications of the introduction of virtual microscopy into pathology were asked of students with the overall result being that it positively enhanced their learning of pathology via digital microscopic means. The success of virtual microscopy in dentistry at UQ is then discussed in the larger context of changes going on in tertiary education. In particular, the change from the print-literate tradition to the electronic one, that is from 'literacy to electracy'. Virtual microscopy is designated as a component of this transformation to electracy. Whilst traditional microscopic skills may still be valued in dental curricula, the move to virtual microscopy and computer-assisted, student-centred learning of pathology appears to enhance the learning experience in relation to its effectiveness in helping students engage and interact with the course material.

  16. Imagers for digital still photography

    Science.gov (United States)

    Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge

    2006-04-01

    This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.

  17. Internet images of the speech pathology profession.

    Science.gov (United States)

    Byrne, Nicole

    2017-06-05

    Objective The Internet provides the general public with information about speech pathology services, including client groups and service delivery models, as well as the professionals providing the services. Although this information assists the general public and other professionals to both access and understand speech pathology services, it also potentially provides information about speech pathology as a prospective career, including the types of people who are speech pathologists (i.e. demographics). The aim of the present study was to collect baseline data on how the speech pathology profession was presented via images on the Internet. Methods A pilot prospective observational study using content analysis methodology was conducted to analyse publicly available Internet images related to the speech pathology profession. The terms 'Speech Pathology' and 'speech pathologist' to represent both the profession and the professional were used, resulting in the identification of 200 images. These images were considered across a range of areas, including who was in the image (e.g. professional, client, significant other), the technology used and the types of intervention. Results The majority of images showed both a client and a professional (i.e. speech pathologist). While the professional was predominantly presented as female, the gender of the client was more evenly distributed. The clients were more likely to be preschool or school aged, however male speech pathologists were presented as providing therapy to selected age groups (i.e. school aged and younger adults). Images were predominantly of individual therapy and the few group images that were presented were all paediatric. Conclusion Current images of speech pathology continue to portray narrow professional demographics and client groups (e.g. paediatrics). Promoting images of wider scope to fully represent the depth and breadth of speech pathology professional practice may assist in attracting a more diverse

  18. High-definition hematoxylin and eosin staining in a transition to digital pathology

    Directory of Open Access Journals (Sweden)

    Jamie D Martina

    2011-01-01

    Full Text Available Introduction: A lot of attention has been generated in recent years by digital pathology and telepathology. Multiple reasons for and barriers to effective adoption are discussed in the current literature. Digital slides are the most promising medium at this time. The goal of our study was to evaluate whether the change in the methodology, particularly utilizing the so-called high-definition hematoxylin and eosin (H and E slides, enhanced the quality of the final digital slide, and whether pathologists who tested the results perceived this as a difference in quality. Methods: The study was a blinded comparison of digital slides prepared using two methods: standard H&E batch staining and automated individual "high definition" HD HE staining. Four pathologists have compared 80 cases stained with each method. Results: The results discussed in this study show potential promise that the utilization of protocol(s adapted for tissue and for imaging might be preferable for digital pathology in at least some of the pathology subspecialties. In particular, the protocol evaluated here was capable of turning out digital slides that had more contrast and detail, and therefore were perceived to provide enhanced diagnostically significant information for the pathologist.

  19. Teaching pathology via online digital microscopy: positive learning outcomes for rurally based medical students.

    Science.gov (United States)

    Sivamalai, Sundram; Murthy, Shashidhar Venkatesh; Gupta, Tarun Sen; Woolley, Torres

    2011-02-01

    Technology has revolutionised teaching. Teaching pathology via digital microscopy (DM) is needed to overcome increasing student numbers, a shortage of pathology academics in regional medical schools, and difficulties with teaching students on rural clinical placement. To identify whether an online DM approach, combining digital pathology software, Web-based slides and classroom management software, delivers effective, practical pathology teaching sessions to medical students located both on campus and on rural placement. An online survey collected feedback from fourth and fifth year undergraduate James Cook University medical students on the importance of 16 listed benefits and challenges of using online DM to teach pathology, via a structured five-point Likert survey. Fifty-three students returned the survey (response rate = 33%). Benefits of online DM to teach pathology rated as 'very important' or 'extremely important' by over 50% of students included: higher quality images; faster learning; more convenient; better technology; everyone sees the same image; greater accessibility; helpful annotations on slides; cost savings; and more opportunity for self-paced learning out-of-hours and for collaborative learning in class. Challenges of online DM rated as 'very important' or 'extremely important' by over 50% of students included: Internet availability in more remote locations and potential problems using online technology during class. Nearly all medical students welcomed learning pathology via online digital technology. DM should improve the quantity, quality, cost and accessibility of pathology teaching by regional medical schools, and has significant implications for the growing emphasis in Australia for decentralised medical education and rural clinical placements. © 2011 The Authors. Australian Journal of Rural Health © National Rural Health Alliance Inc.

  20. Diagnostic time in digital pathology: A comparative study on 400 cases

    Directory of Open Access Journals (Sweden)

    Aleksandar Vodovnik

    2016-01-01

    Full Text Available Background: Numerous validation studies in digital pathology confirmed its value as a diagnostic tool. However, a longer time to diagnosis than traditional microscopy has been seen as a significant barrier to the routine use of digital pathology. As a part of our validation study, we compared a digital and microscopic diagnostic time in the routine diagnostic setting. Materials and Methods: One senior staff pathologist reported 400 consecutive cases in histology, nongynecological, and fine needle aspiration cytology (20 sessions, 20 cases/session, over 4 weeks. Complex, difficult, and rare cases were excluded from the study to reduce the bias. A primary diagnosis was digital, followed by traditional microscopy, 6 months later, with only request forms available for both. Microscopic slides were scanned at ×20, digital images accessed through the fully integrated laboratory information management system (LIMS and viewed in the image viewer on double 23” displays. A median broadband speed was 299 Mbps. A diagnostic time was measured from the point slides were made available to the point diagnosis was made or additional investigations were deemed necessary, recorded independently in minutes/session and compared. Results: A digital diagnostic time was 1841 and microscopic 1956 min; digital being shorter than microscopic in 13 sessions. Four sessions with shorter microscopic diagnostic time included more cases requiring extensive use of magnifications over ×20. Diagnostic time was similar in three sessions. Conclusions: A diagnostic time in digital pathology can be shorter than traditional microscopy in the routine diagnostic setting, with adequate and stable network speeds, fully integrated LIMS and double displays as default parameters. This also related to better ergonomics, larger viewing field, and absence of physical slide handling, with effects on both diagnostic and nondiagnostic time. Differences with previous studies included a design

  1. Digital Data Processing of Images

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  2. MRI for transformation of preserved organs and their pathologies into digital formats for medical education and creation of a virtual pathology museum. A pilot study.

    Science.gov (United States)

    Venkatesh, S K; Wang, G; Seet, J E; Teo, L L S; Chong, V F H

    2013-03-01

    To evaluate the feasibility of magnetic resonance imaging (MRI) for the transformation of preserved organs and their disease entities into digital formats for medical education and creation of a virtual museum. MRI of selected 114 pathology specimen jars representing different organs and their diseases was performed using a 3 T MRI machine with two or more MRI sequences including three-dimensional (3D) T1-weighted (T1W), 3D-T2W, 3D-FLAIR (fluid attenuated inversion recovery), fat-water separation (DIXON), and gradient-recalled echo (GRE) sequences. Qualitative assessment of MRI for depiction of disease and internal anatomy was performed. Volume rendering was performed on commercially available workstations. The digital images, 3D models, and photographs of specimens were archived into a workstation serving as a virtual pathology museum. MRI was successfully performed on all specimens. The 3D-T1W and 3D-T2W sequences demonstrated the best contrast between normal and pathological tissues. The digital material is a useful aid for understanding disease by giving insights into internal structural changes not apparent on visual inspection alone. Volume rendering produced vivid 3D models with better contrast between normal tissue and diseased tissue compared to real specimens or their photographs in some cases. The digital library provides good illustration material for radiological-pathological correlation by enhancing pathological anatomy and information on nature and signal characteristics of tissues. In some specimens, the MRI appearance may be different from corresponding organ and disease in vivo due to dead tissue and changes induced by prolonged contact with preservative fluid. MRI of pathology specimens is feasible and provides excellent images for education and creating a virtual pathology museum that can serve as permanent record of digital material for self-directed learning, improving teaching aids, and radiological-pathological correlation. Copyright © 2012

  3. MRI for transformation of preserved organs and their pathologies into digital formats for medical education and creation of a virtual pathology museum. A pilot study

    International Nuclear Information System (INIS)

    Venkatesh, S.K.; Wang, G.; Seet, J.E.; Teo, L.L.S.; Chong, V.F.H.

    2013-01-01

    Aim: To evaluate the feasibility of magnetic resonance imaging (MRI) for the transformation of preserved organs and their disease entities into digital formats for medical education and creation of a virtual museum. Materials and methods: MRI of selected 114 pathology specimen jars representing different organs and their diseases was performed using a 3 T MRI machine with two or more MRI sequences including three-dimensional (3D) T1-weighted (T1W), 3D-T2W, 3D-FLAIR (fluid attenuated inversion recovery), fat–water separation (DIXON), and gradient-recalled echo (GRE) sequences. Qualitative assessment of MRI for depiction of disease and internal anatomy was performed. Volume rendering was performed on commercially available workstations. The digital images, 3D models, and photographs of specimens were archived into a workstation serving as a virtual pathology museum. Results: MRI was successfully performed on all specimens. The 3D-T1W and 3D-T2W sequences demonstrated the best contrast between normal and pathological tissues. The digital material is a useful aid for understanding disease by giving insights into internal structural changes not apparent on visual inspection alone. Volume rendering produced vivid 3D models with better contrast between normal tissue and diseased tissue compared to real specimens or their photographs in some cases. The digital library provides good illustration material for radiological–pathological correlation by enhancing pathological anatomy and information on nature and signal characteristics of tissues. In some specimens, the MRI appearance may be different from corresponding organ and disease in vivo due to dead tissue and changes induced by prolonged contact with preservative fluid. Conclusions: MRI of pathology specimens is feasible and provides excellent images for education and creating a virtual pathology museum that can serve as permanent record of digital material for self-directed learning, improving teaching aids, and

  4. Digital imaging - future visions

    International Nuclear Information System (INIS)

    Sanford, L.

    1993-01-01

    The reality of a filmless future in medicine is closer in the UK than in the US. The initiative with digital data processing, however, is not. Despite the glowing promises in the literature of such visionware', there is as yet no filmless system anywhere in the World. This article examines research in this field. (Author)

  5. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Aliu, R. Azir

    2011-01-01

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  6. Principles of digital image synthesis

    CERN Document Server

    Glassner, Andrew S

    1995-01-01

    Image synthesis, or rendering, is a field of transformation: it changesgeometry and physics into meaningful images. Because the most popularalgorithms frequently change, it is increasingly important for researchersand implementors to have a basic understanding of the principles of imagesynthesis. Focusing on theory, Andrew Glassner provides a comprehensiveexplanation of the three core fields of study that come together to formdigital image synthesis: the human visual system, digital signalprocessing, and the interaction of matter and light. Assuming no more thana basic background in calculus,

  7. Pediatric digital chest imaging.

    Science.gov (United States)

    Tarver, R D; Cohen, M; Broderick, N J; Conces, D J

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  8. Pediatric digital chest imaging

    International Nuclear Information System (INIS)

    Tarver, R.D.; Cohen, M.; Broderick, N.J.; Conces, D.J. Jr.

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology

  9. Mapping stain distribution in pathology slides using whole slide imaging

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2014-01-01

    Full Text Available Background: Whole slide imaging (WSI offers a novel approach to digitize and review pathology slides, but the voluminous data generated by this technology demand new computational methods for image analysis. Materials and Methods: In this study, we report a method that recognizes stains in WSI data and uses kernel density estimator to calculate the stain density across the digitized pathology slides. The validation study was conducted using a rat model of acute cardiac allograft rejection and another rat model of heart ischemia/reperfusion injury. Immunohistochemistry (IHC was conducted to label ED1 + macrophages in the tissue sections and the stained slides were digitized by a whole slide scanner. The whole slide images were tessellated to enable parallel processing. Pixel-wise stain classification was conducted to classify the IHC stains from those of the background and the density distribution of the identified IHC stains was then calculated by the kernel density estimator. Results: The regression analysis showed a correlation coefficient of 0.8961 between the number of IHC stains counted by our stain recognition algorithm and that by the manual counting, suggesting that our stain recognition algorithm was in good agreement with the manual counting. The density distribution of the IHC stains showed a consistent pattern with those of the cellular magnetic resonance (MR images that detected macrophages labeled by ultrasmall superparamagnetic iron-oxide or micron-sized iron-oxide particles. Conclusions: Our method provides a new imaging modality to facilitate clinical diagnosis. It also provides a way to validate/correlate cellular MRI data used for tracking immune-cell infiltration in cardiac transplant rejection and cardiac ischemic injury.

  10. Integrated Pathology Informatics Enables High-Quality Personalized and Precision Medicine: Digital Pathology and Beyond.

    Science.gov (United States)

    Volynskaya, Zoya; Chow, Hung; Evans, Andrew; Wolff, Alan; Lagmay-Traya, Cecilia; Asa, Sylvia L

    2018-03-01

    - The critical role of pathology in diagnosis, prognosis, and prediction demands high-quality subspecialty diagnostics that integrates information from multiple laboratories. - To identify key requirements and to establish a systematic approach to providing high-quality pathology in a health care system that is responsible for services across a large geographic area. - This report focuses on the development of a multisite pathology informatics platform to support high-quality surgical pathology and hematopathology using a sophisticated laboratory information system and whole slide imaging for histology and immunohistochemistry, integrated with ancillary tools, including electron microscopy, flow cytometry, cytogenetics, and molecular diagnostics. - These tools enable patients in numerous geographic locations access to a model of subspecialty pathology that allows reporting of every specimen by the right pathologist at the right time. The use of whole slide imaging for multidisciplinary case conferences enables better communication among members of patient care teams. The system encourages data collection using a discrete data synoptic reporting module, has implemented documentation of quality assurance activities, and allows workload measurement, providing examples of additional benefits that can be gained by this electronic approach to pathology. - This approach builds the foundation for accurate big data collection and high-quality personalized and precision medicine.

  11. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    ...-year graduate students in almost any technical discipline. The leading textbook in its field for more than twenty years, it continues its cutting-edge focus on contemporary developments in all mainstream areas of image processing-e.g...

  12. Development and use of a genitourinary pathology digital teaching set for trainee education

    Directory of Open Access Journals (Sweden)

    Li Li

    2010-01-01

    Full Text Available Background : Automated, high-speed, high-resolution whole slide imaging (WSI robots are becoming increasingly robust and capable. This technology has started to have a significant impact on pathology practice in various aspects including resident education. To be sufficient and adequate, training in pathology requires gaining broad exposure to various diagnostic patterns through teaching sets, which are traditionally composed of glass slides. Methods: A teaching set of over 295 glass slides has been used for resident training at the Division of Genitourinary Pathology, Department of Pathology, University of Pittsburgh Medical Center. Whole slide images were prepared from these slides using an Aperio ScanScope CS scanner. These images and case-related information were uploaded on a web-based digital teaching model. Results: The web site is available at: https://www.secure.opi.upmc.edu/genitourinary/index.cfm. Once logged in, users can view the list of cases, or search cases with or without diagnoses shown. Each case can be accessed through an option button, where the clinical history, gross findings are initially shown. Whole slide images can be accessed through the links on the page, which allows users to make diagnoses on their own. More information including final diagnosis will display when the diagnosis-button is clicked. Conclusion: The web-based digital study set provides additional educational benefits to using glass slides. Residents or other users can remotely access whole slide images and related information at their convenience. Searching and sorting functions and self-testing mode allow a more targeted study. It would also prepare residents with competence to work with whole slide images. Further, the model can be expanded to include pre-rotation and post-rotation exams, and/or a virtual rotation system, which may potentially make standardization of pathology resident training possible in the future.

  13. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  14. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  15. Digital Radiology Image Learning Library

    International Nuclear Information System (INIS)

    Arenson, R.L.; Greenes, R.; Allman, R.; Swett, H.

    1989-01-01

    The Digital Radiology Image Learning Library (DRILL) is designed as an interactive teaching tool targeted to the radiologic community. The DRILL pilot comprises a comprehensive mammographic information base consisting of factual data in a relational database, an extensive knowledge base in semantic nets and high-resolution images. A flexible query module permits the user to browse and retrieve examination data, case discussions, and related images. Other applications, including expert systems, instructional programs, and skill building exercises, can be accessed through well-defined software constructs

  16. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    Cox, G.G.; Dwyer, S.J. III; Templeton, A.W.

    1987-01-01

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  17. Magnetic resonance imaging of intracavernous pathology

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Masaki; Yasui, Toshihiro; Yagura, Hisatsugu; Fu, Yoshihiko; Baba, Mitsuru [Baba Memorial Hospital, Sakai, Osaka (Japan); Hakuba, Akira; Nishimura, Shuro

    1989-07-01

    To evaluate the usefulness of magnetic resonance (MR) imaging of intracavernous pathology, T{sub 1}-weighted spin echo images of four vascular lesions and 10 neoplastic lesions with surgically confirmed cavernous sinus (CS) invasion were reviewed retrospectively. In one case of traumatic carotid-cavernous fistula (CCF) and one of dural arteriovenous malformation (AVM), the internal carotid artery (ICA) and rapid shunted flow were depicted as signal voids, and the relationship between the ICA and shunted flow was clearly shown. Normal venous flow appeared as a low-intensity area and was observed even in the presence of the CCF and dural AVM. In two cases of thrombosed aneurysms, the thrombosis was clearly demonstrated, along with patent arterial flow in one case; in the other case, however, it was impossible to differentiate patent arterial flow from calcification. The intensity of all neoplastic lesions was similar to that of the cerebral cortex. The relationship between the ICA and the tumors was clearly demonstrated. The visual pathways were also plainly shown unless they were involved, or markedly compressed, by tumor. CS invasion was strongly associated with four findings: (1) encasement of the ICA by the tumor; (2) marked displacement of the ICA; (3) absence of low intensity, which reflects normal venous flow, in the CS; and (4) extension of extrasellar tumors to the medial wall or of intrasellar tumors to the lateral wall. MR imaging was judged promising in the evaluation of intracavernous pathology. (author).

  18. Idiopathic interstitial pneumonias: imaging-pathology correlation

    International Nuclear Information System (INIS)

    Ellis, Stephen M.; Hansell, David M.

    2002-01-01

    The terminology related to idiopathic interstitial pneumonia (IIP) remains confusing and in some cases wholly inaccurate. In addition, a greater understanding of the correlation between high-resolution computed tomography (HRCT) appearances and the corresponding histopathological changes found in the interstitial pneumonias has resulted in a crucial role for HRCT in the investigation of IIPs. The role of the radiologist is becoming increasingly important with a strong emphasis on establishing a diagnosis without resorting to lung biopsy. We aim to clarify the current classification of the IIPs highlighting their clinical, pathological and imaging characteristics in order to assist the radiologist in performing their increasingly important diagnostic role. (orig.)

  19. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  20. Digital image analyser for autoradiography

    International Nuclear Information System (INIS)

    Muth, R.A.; Plotnick, J.

    1985-01-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis

  1. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  2. Digital processing of radiographic images

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  3. New directions in pediatric digital imaging

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Adams, R.B.; Blackham, W.C.

    1985-01-01

    In this chapter the authors describe several simple experiments performed utilizing digital equipment which apply to clinical situations in pediatrics and which suggest future directions for research in digital imaging. They also discuss experimental systems which they believe will overcome certain limitations of current equipment and might be applicable to pediatric digital imaging in the future

  4. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  5. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.c [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Shao Jun [Shanghai EENT Hospital of Fudan University, Shanghai (China); Krausert, Christopher R. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhang Sai [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Shanghai EENT Hospital of Fudan University, Shanghai (China); Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-01-15

    Research highlights: Low-dimensional human glottal area data. Evidence of chaos in human laryngeal activity from high-speed digital imaging. Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of

  6. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    International Nuclear Information System (INIS)

    Zhang Yu; Shao Jun; Krausert, Christopher R.; Zhang Sai; Jiang, Jack J.

    2011-01-01

    Research highlights: → Low-dimensional human glottal area data. → Evidence of chaos in human laryngeal activity from high-speed digital imaging. → Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. → Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic

  7. Image Acquisition and Quality in Digital Radiography.

    Science.gov (United States)

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.

  8. MDA-image: an environment of networked desktop computers for teleradiology/pathology.

    Science.gov (United States)

    Moffitt, M E; Richli, W R; Carrasco, C H; Wallace, S; Zimmerman, S O; Ayala, A G; Benjamin, R S; Chee, S; Wood, P; Daniels, P

    1991-04-01

    MDA-Image, a project of The University of Texas M. D. Anderson Cancer Center, is an environment of networked desktop computers for teleradiology/pathology. Radiographic film is digitized with a film scanner and histopathologic slides are digitized using a red, green, and blue (RGB) video camera connected to a microscope. Digitized images are stored on a data server connected to the institution's computer communication network (Ethernet) and can be displayed from authorized desktop computers connected to Ethernet. Images are digitized for cases presented at the Bone Tumor Management Conference, a multidisciplinary conference in which treatment options are discussed among clinicians, surgeons, radiologists, pathologists, radiotherapists, and medical oncologists. These radiographic and histologic images are shown on a large screen computer monitor during the conference. They are available for later review for follow-up or representation.

  9. Three-dimensional imaging and scanning: Current and future applications for pathology

    Directory of Open Access Journals (Sweden)

    Navid Farahani

    2017-01-01

    Full Text Available Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology.

  10. Digital image analysis of NDT radiographs

    International Nuclear Information System (INIS)

    Graeme, W.A. Jr.; Eizember, A.C.; Douglass, J.

    1989-01-01

    Prior to the introduction of Charge Coupled Device (CCD) detectors the majority of image analysis performed on NDT radiographic images was done visually in the analog domain. While some film digitization was being performed, the process was often unable to capture all the usable information on the radiograph or was too time consuming. CCD technology now provides a method to digitize radiographic film images without losing the useful information captured in the original radiograph in a timely process. Incorporating that technology into a complete digital radiographic workstation allows analog radiographic information to be processed, providing additional information to the radiographer. Once in the digital domain, that data can be stored, and fused with radioscopic and other forms of digital data. The result is more productive analysis and management of radiographic inspection data. The principal function of the NDT Scan IV digital radiography system is the digitization, enhancement and storage of radiographic images

  11. Digital X-ray imager

    International Nuclear Information System (INIS)

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying source voltage and filtering (predicting the required dynamic range for the detector); evaluating CsI:Tl, CdWO4 and scintillating glass as image converters; recommending image enhancement algorithms. The LLNL modeling results guided the design and experimental elements of the project. The Laboratory's unique array of sources and detectors was employed to resolve specific technical questions. Our image processing expertise was applied to the selection of enhancement tools for image display

  12. Whole-slide imaging in pathology: the potential impact on PACS

    Science.gov (United States)

    Horii, Steven C.

    2007-03-01

    Pathology, the medical specialty charged with the evaluation of macroscopic and microscopic aspects of disease, is increasingly turning to digital imaging. While the conventional tissue blocks and glass slides form an "archive" that pathology departments must maintain, digital images acquired from microscopes or digital slide scanners are increasingly used for telepathology, consultation, and intra-facility communication. Since many healthcare facilities are moving to "enterprise PACS" with departments in addition to radiology using the infrastructure of such systems, some understanding of the potential of whole-slide digital images is important. Network and storage designers, in particular, are very likely to be impacted if a significant number of such images are to be moved on, or stored (even temporarily) in, enterprise PACS. As an example, a typical commercial whole-slide imaging system typically generates 15 gigabytes per slide scanned (per focal plane). Many of these whole-slide scanners have a throughput of 1000 slides per day. If that full capacity is used and all the resulting digital data is moved to the enterprise PACS, it amounts to 15 terabytes per day; the amount of data a large radiology department might generate in a year or two. This paper will review both the clinical scenarios of whole-slide imaging as well as the resulting data volumes. The author will emphasize the potential PACS infrastructure impact of such huge data volumes.

  13. Gastrointestinal digital fluoroscopy: Comparison of digital pulsed progressive readout images with 100-mm spot films

    International Nuclear Information System (INIS)

    Steiner, E.; Ferrucci, J.T.; Mueller, P.R.; Hahn, P.F.

    1987-01-01

    New developments in pulsed progressive readout (PPR) techniques allow short, extremely intense pulses of radiation to be used to produce a latent image which is then progressively read off the video camera and placed in 1,024 x 1,024-pixel digital storage. The resulting image is produced by a 10-20-msec pulse, reducing motion artifact to below that achievable with conventional spot film techniques, with a potential for 50%-95% dose reduction. This technique of reducing motion artifact is ideal for digital applications in gastrointestinal radiology. The authors compared 10-mm spot films and PPR digital radiographs of 86 anatomic regions in 43 patients undergoing routine barium enema and cholangiographic examinations. Parameters evaluated included display of normal and pathologic features, image contrast, and resolution. The benefits of the PPR technique include postprocessing to evaluate low contrast region and the potential for significant dose reduction

  14. Digital X-ray Imaging in Dentistry

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    1999-01-01

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  15. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  16. Digital image analysis of X-ray television with an image digitizer

    International Nuclear Information System (INIS)

    Mochizuki, Yasuo; Akaike, Hisahiko; Ogawa, Hitoshi; Kyuma, Yukishige

    1995-01-01

    When video signals of X-ray fluoroscopy were transformed from analog-to-digital ones with an image digitizer, their digital characteristic curves, pre-sampling MTF's and digital Wiener spectral could be measured. This method was advant ageous in that it was able to carry out data sampling because the pixel values inputted could be verified on a CRT. The system of image analysis by this method is inexpensive and effective in evaluating the image quality of digital system. Also, it is expected that this method can be used as a tool for learning the measurement techniques and physical characteristics of digital image quality effectively. (author)

  17. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  18. Ethical Implications of Digital Imaging in Photojournalism.

    Science.gov (United States)

    Terry, Danal; Lasorsa, Dominic L.

    Arguing that the news media are about to adopt digital imaging systems that will have far-reaching implications for the practice of journalism, this paper discusses how the news media is expected to adopt the new technology and explains why the marriage of journalism and digital imaging will create ethical issues with respect to photo manipulation…

  19. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  20. Digital Imaging: An Adobe Photoshop Course

    Science.gov (United States)

    Cobb, Kristine

    2007-01-01

    This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…

  1. Digital pathology for the primary diagnosis of breast histopathological specimens: an innovative validation and concordance study on digital pathology validation and training.

    Science.gov (United States)

    Williams, Bethany Jill; Hanby, Andrew; Millican-Slater, Rebecca; Nijhawan, Anju; Verghese, Eldo; Treanor, Darren

    2018-03-01

    To train and individually validate a group of breast pathologists in specialty-specific digital primary diagnosis by using a novel protocol endorsed by the Royal College of Pathologists' new guideline for digital pathology. The protocol allows early exposure to live digital reporting, in a risk-mitigated environment, and focuses on patient safety and professional development. Three specialty breast pathologists completed training in the use of a digital microscopy system, and were exposed to a training set of 20 challenging cases, designed to help them identify personal digital diagnostic pitfalls. Following this, the three pathologists viewed a total of 694 live, entire breast cases. All primary diagnoses were made on digital slides, with immediate glass slide review and reconciliation before final case sign-out. There was complete clinical concordance between the glass and digital impression of the case in 98.8% of cases. Only 1.2% of cases had a clinically significant difference in diagnosis/prognosis on glass and digital slide reads. All pathologists elected to continue using the digital microscope as the standard for breast histopathology specimens, with deferral to glass for a limited number of clinical/histological scenarios as a safety net. Individual training and validation for digital primary diagnosis allows pathologists to develop competence and confidence in their digital diagnostic skills, and aids safe and responsible transition from the light microscope to the digital microscope. © 2017 John Wiley & Sons Ltd.

  2. Quantitative Imaging In Pathology (QUIP) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    This site hosts web accessible applications, tools and data designed to support analysis, management, and exploration of whole slide tissue images for cancer research. The following tools are included: caMicroscope: A digital pathology data management and visualization plaform that enables interactive viewing of whole slide tissue images and segmentation results. caMicroscope can be also used independently of QUIP. FeatureExplorer: An interactive tool to allow patient-level feature exploration across multiple dimensions.

  3. Integration Of Externalized Decision Models In The Definition Of Workflows For Digital Pathology

    Directory of Open Access Journals (Sweden)

    J. van Leeuwen

    2016-06-01

    We proposed a workflow solution enabling the representation of decision models as externalized executable tasks in the process definition. Our approach separates the task implementations from the workflow model, ensuring scalability and allowing for the inclusion of complex decision logic in the workflow execution. In we depict a simplified model of a pathology diagnosis workflow (starting with the digitization of the slides, represented according to the BPMN modeling conventions. The example shows a workflow sequence that automatically orders a HER2 FISH when IHC is borderline according to defined customizable thresholds. The process model integrates an image analysis algorithm that scores images. Based on the score and the thresholds the decision model evaluates the condition and recommends the pre-ordering of an additional test when the score falls between the two thresholds. This leads to faster diagnosis and allows balancing the costs of an additional test versus the overhead of the pathologist by choosing the values of the thresholds.  

  4. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Directory of Open Access Journals (Sweden)

    Joel Saltz

    2018-04-01

    Full Text Available Summary: Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. : Tumor-infiltrating lymphocytes (TILs were identified from standard pathology cancer images by a deep-learning-derived “computational stain” developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles. Keywords: digital pathology, immuno-oncology, machine learning, lymphocytes, tumor microenvironment, deep learning, tumor-infiltrating lymphocytes, artificial intelligence, bioinformatics, computer vision

  5. Improving the creation and reporting of structured findings during digital pathology review

    Directory of Open Access Journals (Sweden)

    Ida Cervin

    2016-01-01

    Full Text Available Background: Today, pathology reporting consists of many separate tasks, carried out by multiple people. Common tasks include dictation during case review, transcription, verification of the transcription, report distribution, and report the key findings to follow-up registries. Introduction of digital workstations makes it possible to remove some of these tasks and simplify others. This study describes the work presented at the Nordic Symposium on Digital Pathology 2015, in Linköping, Sweden. Methods: We explored the possibility to have a digital tool that simplifies image review by assisting note-taking, and with minimal extra effort, populates a structured report. Thus, our prototype sees reporting as an activity interleaved with image review rather than a separate final step. We created an interface to collect, sort, and display findings for the most common reporting needs, such as tumor size, grading, and scoring. Results: The interface was designed to reduce the need to retain partial findings in the head or on paper, while at the same time be structured enough to support automatic extraction of key findings for follow-up registry reporting. The final prototype was evaluated with two pathologists, diagnosing complicated partial mastectomy cases. The pathologists experienced that the prototype aided them during the review and that it created a better overall workflow. Conclusions: These results show that it is feasible to simplify the reporting tasks in a way that is not distracting, while at the same time being able to automatically extract the key findings. This simplification is possible due to the realization that the structured format needed for automatic extraction of data can be used to offload the pathologists′ working memory during the diagnostic review.

  6. How Digital Image Processing Became Really Easy

    Science.gov (United States)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  7. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  8. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Directory of Open Access Journals (Sweden)

    Qingjiao Sun

    2016-01-01

    Full Text Available Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR pathological image enhancement method based on improved bias field correction and guided image filter (GIF. Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.

  9. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  10. Eliminating "Hotspots" in Digital Image Processing

    Science.gov (United States)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  11. Compression and archiving of digital images

    International Nuclear Information System (INIS)

    Huang, H.K.

    1988-01-01

    This paper describes the application of a full-frame bit-allocation image compression technique to a hierarchical digital image archiving system consisting of magnetic disks, optical disks and an optical disk library. The digital archiving system without the compression has been in clinical operation in the Pediatric Radiology for more than half a year. The database in the system consists of all pediatric inpatients including all images from computed radiography, digitized x-ray films, CT, MR, and US. The rate of image accumulation is approximately 1,900 megabytes per week. The hardware design of the compression module is based on a Motorola 68020 microprocessor, A VME bus, a 16 megabyte image buffer memory board, and three Motorola digital signal processing 56001 chips on a VME board for performing the two-dimensional cosine transform and the quantization. The clinical evaluation of the compression module with the image archiving system is expected to be in February 1988

  12. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  13. Image rejects in general direct digital radiography.

    Science.gov (United States)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-10-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality.

  14. The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies.

    Directory of Open Access Journals (Sweden)

    Avi Z Rosenberg

    Full Text Available In renal biopsy reporting, quantitative measurements, such as glomerular number and percentage of globally sclerotic glomeruli, is central to diagnostic accuracy and prognosis. The aim of this study is to determine the number of glomeruli and percent globally sclerotic in renal biopsies by means of registration of serial tissue sections and manual enumeration, compared to the numbers in pathology reports from routine light microscopic assessment.We reviewed 277 biopsies from the Nephrotic Syndrome Study Network (NEPTUNE digital pathology repository, enumerating 9,379 glomeruli by means of whole slide imaging. Glomerular number and the percentage of globally sclerotic glomeruli are values routinely recorded in the official renal biopsy pathology report from the 25 participating centers. Two general trends in reporting were noted: total number per biopsy or average number per level/section. Both of these approaches were assessed for their accuracy in comparison to the analogous numbers of annotated glomeruli on WSI.The number of glomeruli annotated was consistently higher than those reported (p<0.001; this difference was proportional to the number of glomeruli. In contrast, percent globally sclerotic were similar when calculated on total glomeruli, but greater in FSGS when calculated on average number of glomeruli (p<0.01. The difference in percent globally sclerotic between annotated and those recorded in pathology reports was significant when global sclerosis is greater than 40%.Although glass slides were not available for direct comparison to whole slide image annotation, this study indicates that routine manual light microscopy assessment of number of glomeruli is inaccurate, and the magnitude of this error is proportional to the total number of glomeruli.

  15. Could digital imaging be an alternative for digital colorimeters?

    Science.gov (United States)

    Caglar, Alper; Yamanel, Kivanc; Gulsahi, Kamran; Bagis, Bora; Ozcan, Mutlu

    2010-12-01

    This study evaluated the colour parameters of composite and ceramic shade guides determined using a colorimeter and digital imaging method with illuminants at different colour temperatures. Two different resin composite shade guides, namely Charisma (Heraeus Kulzer) and Premise (Kerr Corporation), and two different ceramic shade guides, Vita Lumin Vacuum (VITA Zahnfabrik) and Noritake (Noritake Co.), were evaluated at three different colour temperatures (2,700 K, 2,700-6,500 K, and 6500 K) of illuminants. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2 and C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc.). The data were analysed using two-way ANOVA, and Pearson's correlation. While mean L* values of both composite and ceramic shade guides were not affected from the colour temperature, L* values obtained with the colorimeter showed significantly lower values than those of the digital imaging (p colorimeter and digital imaging did not show significant differences (p > 0.05). For both composite and ceramic shade guides, L* and b* values obtained from colorimeter and digital imaging method presented a high level of correlation. High-level correlations were also acquired for a* values in all shade guides except for the Charisma composite shade guide. Digital imaging method could be an alternative for the colorimeters unless the proper object-camera distance, digital camera settings and suitable illumination conditions could be supplied. However, variations in shade guides, especially for composites, may affect the correlation.

  16. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    Science.gov (United States)

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  17. Image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Lehtovirta, J.; Matsi, P.; Soimakallio, S.

    1992-01-01

    The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512x512 image format) viewed on a 625 line monitor were processed in 3 different ways: 1.standard display; 2.digital edge enhancement for the standard display; 3.inverse intensity display. The radiographs were interpreted independently by 3 radiologists. Diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease, 17 with pneumonia /atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases respectively. Sensitivity of conventional radiography when averaged overall findings was better than that of digital techniques (P<0.001). Differences in diagnostic accuracy measured by sensitivity and specificity between the 3 digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P<0.05) but poorer specificity for pulmonary emphysema (0.85 vs 0.93; P<0.05) compared with inverse intensity display. It is concluded that when using 512x512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted. (author). 12 refs.; 4 figs.; 2 tabs

  18. DHM (Digital Holography Microscope) for imaging cells

    International Nuclear Information System (INIS)

    Emery, Yves; Cuche, Etienne; Colomb, Tristan; Depeursinge, Christian; Rappaz, Benjamin; Marquet, Pierre; Magistretti, Pierre

    2007-01-01

    Light interaction with a sample modifies both intensity and phase of the illuminating wave. Any available supports for image recording are only sensitive to intensity, but Denis Gabor [P. Marquet, B. Rappaz, P. Magistretti, et. al. Digital Holography for quantitative phase-contrast imaging, Optics Letters, 30, 5, pp 291-93 (2005)] invented in 1948 a way to encode the phase as an intensity variation: the h ologram . Digital Holographic Microscopy (DHM) [D. Gabor, A new microscopic principle, Nature, 1948] implements digitally this powerful hologram. Characterization of various pollen grains and of morphology changes of neurones associated with hypotonic shock demonstrates the potential of DHM for imaging cells

  19. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    Science.gov (United States)

    2011-04-01

    Clinical Pathology, Chicago 3. Partin AW, Mangold LA, Lamm DM , Walsh PC, Epstein JI, Pearson JD (2001) Urology 58:843–848 4. De La Taille A, Viellefond...are used to seeing only in optical microscopy,” he recalls. “The crispness , the details were comparable.” In fact, the pixel size is only a half

  20. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  1. Assessment of blood supply to intracranial pathologies in children using MR digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Chooi, Weng Kong; Coley, Stuart C. [Royal Hallamshire Hospital, Department of Radiology, Sheffield (United Kingdom); Connolly, Dan J.A. [Royal Hallamshire Hospital, Department of Radiology, Sheffield (United Kingdom); Sheffield Children' s Hospital, Department of Radiology, Sheffield (United Kingdom); Griffiths, Paul D. [Royal Hallamshire Hospital, Department of Radiology, Sheffield (United Kingdom); Sheffield Children' s Hospital, Department of Radiology, Sheffield (United Kingdom); University of Sheffield, Academic Unit of Radiology, Sheffield (United Kingdom); Floor C, Royal Hallamshire Hospital, Section of Academic Radiology, Sheffield (United Kingdom)

    2006-10-15

    MR digital subtraction angiography (MR-DSA) is a contrast-enhanced MR angiographic sequence that enables time-resolved evaluation of the cerebral circulation. We describe the feasibility and technical success of our attempts at MR-DSA for the assessment of intracranial pathology in children. We performed MR-DSA in 15 children (age range 5 days to 16 years) referred for MR imaging because of known or suspected intracranial pathology that required a dynamic assessment of the cerebral vasculature. MR-DSA consisted of a thick (6-10 mm) slice-selective RF-spoiled fast gradient-echo sequence (RF-FAST) acquired before and during passage of an intravenously administered bolus of Gd-DTPA. The images were subtracted and viewed as a cine loop. MR-DSA was performed successfully in all patients. High-flow lesions were shown in four patients; these included vein of Galen aneurysmal malformation, dural fistula, and two partially treated arteriovenous malformations (AVMs). Low-flow lesions were seen in three patients, all of which were tumours. Normal flow was confirmed in eight patients including two with successfully treated AVMs, and in three patients with cavernomas. Our early experience suggests that MR-DSA is a realistic, non-invasive alternative to catheter angiography in certain clinical settings. (orig.)

  2. Assessment of blood supply to intracranial pathologies in children using MR digital subtraction angiography

    International Nuclear Information System (INIS)

    Chooi, Weng Kong; Coley, Stuart C.; Connolly, Dan J.A.; Griffiths, Paul D.

    2006-01-01

    MR digital subtraction angiography (MR-DSA) is a contrast-enhanced MR angiographic sequence that enables time-resolved evaluation of the cerebral circulation. We describe the feasibility and technical success of our attempts at MR-DSA for the assessment of intracranial pathology in children. We performed MR-DSA in 15 children (age range 5 days to 16 years) referred for MR imaging because of known or suspected intracranial pathology that required a dynamic assessment of the cerebral vasculature. MR-DSA consisted of a thick (6-10 mm) slice-selective RF-spoiled fast gradient-echo sequence (RF-FAST) acquired before and during passage of an intravenously administered bolus of Gd-DTPA. The images were subtracted and viewed as a cine loop. MR-DSA was performed successfully in all patients. High-flow lesions were shown in four patients; these included vein of Galen aneurysmal malformation, dural fistula, and two partially treated arteriovenous malformations (AVMs). Low-flow lesions were seen in three patients, all of which were tumours. Normal flow was confirmed in eight patients including two with successfully treated AVMs, and in three patients with cavernomas. Our early experience suggests that MR-DSA is a realistic, non-invasive alternative to catheter angiography in certain clinical settings. (orig.)

  3. Assessment of blood supply to intracranial pathologies in children using MR digital subtraction angiography.

    Science.gov (United States)

    Chooi, Weng Kong; Connolly, Dan J A; Coley, Stuart C; Griffiths, Paul D

    2006-10-01

    MR digital subtraction angiography (MR-DSA) is a contrast-enhanced MR angiographic sequence that enables time-resolved evaluation of the cerebral circulation. We describe the feasibility and technical success of our attempts at MR-DSA for the assessment of intracranial pathology in children. We performed MR-DSA in 15 children (age range 5 days to 16 years) referred for MR imaging because of known or suspected intracranial pathology that required a dynamic assessment of the cerebral vasculature. MR-DSA consisted of a thick (6-10 mm) slice-selective RF-spoiled fast gradient-echo sequence (RF-FAST) acquired before and during passage of an intravenously administered bolus of Gd-DTPA. The images were subtracted and viewed as a cine loop. MR-DSA was performed successfully in all patients. High-flow lesions were shown in four patients; these included vein of Galen aneurysmal malformation, dural fistula, and two partially treated arteriovenous malformations (AVMs). Low-flow lesions were seen in three patients, all of which were tumours. Normal flow was confirmed in eight patients including two with successfully treated AVMs, and in three patients with cavernomas. Our early experience suggests that MR-DSA is a realistic, non-invasive alternative to catheter angiography in certain clinical settings.

  4. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  5. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    van der Stelt, P.F.

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because

  6. Evaluating the benefits of digital pathology implementation: Time savings in laboratory logistics.

    Science.gov (United States)

    Baidoshvili, Alexi; Bucur, Anca; van Leeuwen, Jasper; van der Laak, Jeroen; Kluin, Philip; van Diest, Paul J

    2018-06-20

    The benefits of digital pathology for workflow improvement and thereby cost savings in pathology, at least partly outweighing investment costs, are increasingly recognized. Successful implementations in a variety of scenarios start to demonstrate cost benefits of digital pathology for both research and routine diagnostics, contributing to a sound business case encouraging further adoption. To further support new adopters, there is still a need for detailed assessment of the impact this technology has on the relevant pathology workflows with emphasis on time saving. To assess the impact of digital pathology adoption on logistic laboratory tasks (i.e. not including pathologists' time for diagnosis making) in LabPON, a large regional pathology laboratory in The Netherlands. To quantify the benefits of digitization we analyzed the differences between the traditional analog and new digital workflows, carried out detailed measurements of all relevant steps in key analog and digital processes, and compared time spent. We modeled and assessed the logistic savings in five workflows: (1) Routine diagnosis, (2) Multi-disciplinary meeting, (3) External revision requests, (4) Extra stainings and (5) External consultation. On average over 19 working hours were saved on a typical day by working digitally, with the highest savings in routine diagnosis and multi-disciplinary meeting workflows. By working digitally, a significant amount of time could be saved in a large regional pathology lab with a typical case mix. We also present the data in each workflow per task and concrete logistic steps to allow extrapolation to the context and case mix of other laboratories. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Whole Slide Images for primary diagnostics in pathology

    NARCIS (Netherlands)

    Al-Janabi, S.

    2013-01-01

    Whole slide imaging is the process of digitizing glass slides resulting in the creation of Whole Slide Images (WSI). WSI are usually explored with the aid of an image viewer in a manner that closely simulates examining glass slides with a conventional microscope, permitting the manipulation of an

  8. Digital image processing in art conservation

    Czech Academy of Sciences Publication Activity Database

    Zitová, Barbara; Flusser, Jan

    č. 53 (2003), s. 44-45 ISSN 0926-4981 Institutional research plan: CEZ:AV0Z1075907 Keywords : art conservation * digital image processing * change detection Subject RIV: JD - Computer Applications, Robotics

  9. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  10. Pilomatricomas in children: imaging characteristics with pathologic correlation

    International Nuclear Information System (INIS)

    Lim, Hyun Wook; Im, Soo Ah; Lim, Gye-Yeon; Park, Hyun Jin; Lee, Heejeong; Sung, Mi Sook; Kang, Bong Joo; Kim, Jee Young

    2007-01-01

    Although pilomatricoma commonly occurs in children, there is still a poor understanding of the imaging characteristics of pilomatricoma and lack of agreement regarding its imaging findings and histopathologic features. To characterize the radiologic appearance of pilomatricomas on US, CT, and MR and to correlate the imaging findings with histopathologic features. The imaging findings of 47 pilomatricomas on US (n = 17), CT (n = 31), and MR (n = 5) were retrospectively evaluated. Pathologic specimens of all cases were reviewed and compared with imaging findings. All lesions were well-circumscribed, subcutaneous nodules with partial attachment to the overlying skin. On US, the lesions were mostly hyperechoic with posterior acoustic shadowing and hypoechoic rim. On CT, they appeared as enhancing soft-tissue masses with varying amounts of calcification. MR findings were internal reticulations and patchy areas on T2-weighted images and contrast-enhanced T1-weighted images, corresponding to edematous stroma on pathology. Peritumoral inflammatory changes and connective capsule on pathology were well correlated with imaging findings. Pilomatricoma should be considered when US or CT shows a well-defined hyperechoic or calcific nodule in subcutaneous fat attached to the skin in children. MR images may be helpful in diagnosis. Pathologic findings are well correlated with imaging findings. (orig.)

  11. Steganography and Steganalysis in Digital Images

    Science.gov (United States)

    2012-01-01

    REPORT Steganography and Steganalysis in Digital Images 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Steganography (from the Greek for "covered writing...12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Least Significant Bit ( LSB ), steganography , steganalysis, stegogramme. Dr. Jeff Duffany...Z39.18 - Steganography and Steganalysis in Digital Images Report Title ABSTRACT Steganography (from the Greek for "covered writing") is the secret

  12. Digital imaging improves upright stereotactic core biopsy of mammographic microcalcifications

    International Nuclear Information System (INIS)

    Whitlock, J.P.L.; Evans, A.J.; Burrell, H.C.; Pinder, S.E.; Ellis, I.O.; Blamey, R.W.; Wilson, A.R.M.

    2000-01-01

    AIM: This comparative study was carried out to assess the effect of using digital images compared to conventional film-screen mammography on the accuracy of core biopsy of microcalcifications using upright stereotactic equipment. MATERIALS AND METHODS: The biopsy results from a consecutive series of 104 upright stereotactic 14-gauge core biopsies performed with conventional X-ray (Group A) were compared with 40 biopsies carried out using stereotaxis with digital imaging (Group B). In all cases specimen radiography was performed and analysed for the presence of calcifications. Pathological correlation was then carried out with needle and surgical histology. RESULTS: The use of digital add-on equipment increased the radiographic calcification retrieval rate from 55 to 85% (P < 0.005). The absolute sensitivity of core biopsy in pure ductal carcinoma in situ (DCIS) cases rose from 34 to 69% (P < 0.03), with the complete sensitivity increasing from 52 to 94% (P < 0.005). For DCIS with or without an invasive component the absolute sensitivity rose from 41 to 67% (P = 0.052), while the complete sensitivity was 59% before and 86% after the introduction of digital imaging (P < 0.04). CONCLUSION: Digital equipment improves the performance of upright stereotactic core biopsy of microcalcifications, giving a significantly increased success rate in accurately obtaining calcifications. This leads to an improvement in absolute and complete sensitivity of core biopsy when diagnosing DCIS. Whitlock, J.P.L. (2000)

  13. Imaging of congenital mesoblastic nephroma with pathological correlation

    International Nuclear Information System (INIS)

    Chaudry, Gulraiz; Perez-Atayde, Antonio R.; Ngan, Bo Yee; Gundogan, Munire; Daneman, Alan

    2009-01-01

    There are a variety of imaging findings for congenital mesoblastic nephroma (CMN) and two main pathological variants: classic and cellular. To determine whether imaging findings in children can predict the likely pathological variant. We reviewed imaging in children with pathology-proven CMN. Imaging findings correlated with gross and histological appearance. In 15 boys and 15 girls with CMN, US was performed in 27, CT in 19, and MRI in 7. Cystic components were readily identified on US; central hemorrhage was better differentiated on CT. MRI demonstrated high sensitivity for both. Histology confirmed classic CMN in 13 children, cellular CMN in 14 and ''mixed'' CMN in 3. Age at presentation was significantly higher in children with the cellular variant. Of 15 solid or predominantly solid tumors and 10 lesions with a hypoechoic ring, 12 and 7, respectively, had pathology consistent with classic CMN. In contrast, five of seven with intratumoral hemorrhage and all with a large cystic/necrotic component had pathology consistent with the cellular variant. The imaging appearance of CMN is often determined by the pathological type of tumor. Findings suggestive of the classic variant include a peripheral hypoechoic ring or large solid component. In comparison, cystic/necrotic change and hemorrhage is much more common in cellular CMN. (orig.)

  14. Digital Data Processing of Images

    African Journals Online (AJOL)

    be concerned with the image enhancement of scintigrams. Two applications of image ... obtained from scintigraphic equipment, image enhance- ment by computer was ... used as an example. ..... Using video-tape display, areas of interest are ...

  15. Three-dimensional facial digitization using advanced digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Kieu, Hien; Wang, Zhaoyang; Le, Hanh N D

    2018-03-20

    Presented in this paper is an effective technique to acquire the three-dimensional (3D) digital images of the human face without the use of active lighting and artificial patterns. The technique is based on binocular stereo imaging and digital image correlation, and it includes two key steps: camera calibration and image matching. The camera calibration involves a pinhole model and a bundle-adjustment approach, and the governing equations of the 3D digitization process are described. For reliable pixel-to-pixel image matching, the skin pores and freckles or lentigines on the human face serve as the required pattern features to facilitate the process. It employs feature-matching-based initial guess, multiple subsets, iterative optimization algorithm, and reliability-guided computation path to achieve fast and accurate image matching. Experiments have been conducted to demonstrate the validity of the proposed technique. The simplicity of the approach and the affordable cost of the implementation show its practicability in scientific and engineering applications.

  16. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  17. Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data

    Science.gov (United States)

    Gutman, David A; Cobb, Jake; Somanna, Dhananjaya; Park, Yuna; Wang, Fusheng; Kurc, Tahsin; Saltz, Joel H; Brat, Daniel J; Cooper, Lee A D

    2013-01-01

    Background The integration and visualization of multimodal datasets is a common challenge in biomedical informatics. Several recent studies of The Cancer Genome Atlas (TCGA) data have illustrated important relationships between morphology observed in whole-slide images, outcome, and genetic events. The pairing of genomics and rich clinical descriptions with whole-slide imaging provided by TCGA presents a unique opportunity to perform these correlative studies. However, better tools are needed to integrate the vast and disparate data types. Objective To build an integrated web-based platform supporting whole-slide pathology image visualization and data integration. Materials and methods All images and genomic data were directly obtained from the TCGA and National Cancer Institute (NCI) websites. Results The Cancer Digital Slide Archive (CDSA) produced is accessible to the public (http://cancer.digitalslidearchive.net) and currently hosts more than 20 000 whole-slide images from 22 cancer types. Discussion The capabilities of CDSA are demonstrated using TCGA datasets to integrate pathology imaging with associated clinical, genomic and MRI measurements in glioblastomas and can be extended to other tumor types. CDSA also allows URL-based sharing of whole-slide images, and has preliminary support for directly sharing regions of interest and other annotations. Images can also be selected on the basis of other metadata, such as mutational profile, patient age, and other relevant characteristics. Conclusions With the increasing availability of whole-slide scanners, analysis of digitized pathology images will become increasingly important in linking morphologic observations with genomic and clinical endpoints. PMID:23893318

  18. Clinico-pathological Correlation of Digital Rectal Examination ...

    African Journals Online (AJOL)

    Aims and Objective: This study aims at correlating different digital rectal examination (DRE) abnormalities with histopathological results in patients with prostatic diseases. Materials and Methods: A prospective study of 236 patients who underwent prostate needle biopsy (PNB). Inclusion criteria were presence of abnormal ...

  19. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  20. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    Science.gov (United States)

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  1. Panoramic images of conventional radiographs: digital panoramic dynamic images

    International Nuclear Information System (INIS)

    Schultze, M.

    2001-01-01

    The benefits of digital technic s to od ontology are evident. Instant images, the possibility to handle them, the reduction of exposition time to radiations, better quality image, better quality information, Stocking them in a compact disc, occupying very little space, allows an easy transport and duplication, as well as the possibility to transfer and save it in an electronica l support.This kind of communication allows the transmission of digital images and every other type of data, instantaneously and no matter distances or geographical borders. Anyway, we should point out that conventional and digital technic s reveal the same information contents

  2. eeDAP: an evaluation environment for digital and analog pathology

    Science.gov (United States)

    Gallas, Brandon D.; Cheng, Wei-Chung; Gavrielides, Marios A.; Ivansky, Adam; Keay, Tyler; Wunderlich, Adam; Hipp, Jason; Hewitt, Stephen M.

    2014-03-01

    Purpose: The purpose of this work is to present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSI) on a computer display to pathologists interpreting glass slides on an optical microscope. Methods: Here we present eeDAP, an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of theWSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires images of the real time microscope view. Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses the comparison on image quality. Results: We reduced the pathologist interpretation area from an entire glass slide (≈10-30 mm)2 to small ROIs google.com (project: eeDAP) as Matlab source or as a precompiled stand-alone license-free application.

  3. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  4. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  5. Image quality analysis of digital mammographic equipments

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, P.; Pascual, A.; Verdu, G. [Valencia Univ. Politecnica, Chemical and Nuclear Engineering Dept. (Spain); Rodenas, F. [Valencia Univ. Politecnica, Applied Mathematical Dept. (Spain); Campayo, J.M. [Valencia Univ. Hospital Clinico, Servicio de Radiofisica y Proteccion Radiologica (Spain); Villaescusa, J.I. [Hospital Clinico La Fe, Servicio de Proteccion Radiologica, Valencia (Spain)

    2006-07-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  6. Image quality analysis of digital mammographic equipments

    International Nuclear Information System (INIS)

    Mayo, P.; Pascual, A.; Verdu, G.; Rodenas, F.; Campayo, J.M.; Villaescusa, J.I.

    2006-01-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  7. Pneumoconiosis: comparison of imaging and pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Semin Chong; Kyung Soo Lee; Myung Jin Chung; Joungho Han; O. Jung Kwon; d Tae Sung Kim [Sungkyunkwan University School of Medicine, Seoul (Republic of Korea). Department of Radiology and Center for Imaging Science

    2006-01-15

    Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coal worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.

  8. Pneumoconiosis: Comparison of imaging and pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Chong, S.; Lee, K.S.; Chung, M.J.; Han, J.H.; Kwon, O.J.; Kim, T.S. [Sungkyunkwan University School of Medicine, Seoul (Republic of Korea). Samsung Medical Center

    2006-01-15

    Pneumoconiosis may be classified as either fibrotic or nonfibrotic, according to the presence or absence of fibrosis. Silicosis, coal worker pneumoconiosis, asbestosis, berylliosis, and talcosis are examples of fibrotic pneumoconiosis. Siderosis, stannosis, and baritosis are nonfibrotic forms of pneumoconiosis that result from inhalation of iron oxide, tin oxide, and barium sulfate particles, respectively. In an individual who has a history of exposure to silica or coal dust, a finding of nodular or reticulonodular lesions at chest radiography or small nodules with a perilymphatic distribution at thin-section computed tomography (CT), with or without eggshell calcifications, is suggestive of silicosis or coal worker pneumoconiosis. Magnetic resonance imaging is helpful for distinguishing between progressive massive fibrosis and lung cancer. CT and histopathologic findings in asbestosis are similar to those in idiopathic pulmonary fibrosis, but the presence of asbestos bodies in histopathologic specimens is specific for the diagnosis of asbestosis. Giant cell interstitial pneumonia due to exposure to hard metals is classified as a fibrotic form of pneumoconiosis and appears on CT images as mixed ground-glass opacities and reticulation. Berylliosis simulates pulmonary sarcoidosis on CT images. CT findings in talcosis include small centrilobular and subpleural nodules or heterogeneous conglomerate masses that contain foci of high attenuation indicating talc deposition. Siderosis is nonfibrotic and is indicated by a CT finding of poorly defined centrilobular nodules or ground-glass opacities.

  9. A digital library of radiology images.

    Science.gov (United States)

    Kahn, Charles E

    2006-01-01

    A web-based virtual library of peer-reviewed radiological images was created for use in education and clinical decision support. Images were obtained from open-access content of five online radiology journals and one e-learning web site. Figure captions were indexed by Medical Subject Heading (MeSH) codes, imaging modality, and patient age and sex. This digital library provides a new, valuable online resource.

  10. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  11. Wavelet-based compression of pathological images for telemedicine applications

    Science.gov (United States)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  12. Salivary gland masses. Dynamic MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Park, Jinho; Inoue, Shingo; Ishizuka, Yasuhito; Shindo, Hiroaki; Kawanishi, Masayuki; Kakizaki, Dai; Abe, Kimihiko; Ebihara, Yoshiro

    1997-01-01

    To evaluate the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI) for the diagnosis of salivary gland masses. We retrospectively examined 19 salivary gland masses that were pathologically diagnosed by surgical operation or biopsy. We obtained T1- and T2-weighted images on MRI, performed dynamic studies on each mass and examined the correlation between enhancement patterns and pathological findings. Four enhancement patterns were recognized on contrast-enhanced MRI: type 1 showed marked, homogeneous enhancement; type 2 slights, homogeneous enhancement; type 3 marginal enhancement; and type 4 poor enhancement of the mass. Most pleomorphic adenomas had a type 1 enhancement pattern, but two had a type 2 pattern. Pathologically, each mass enhancement pattern had different tumor cell and matrix components. Warthin's tumor generally showed the type 4 pattern. Primary malignant tumors of the salivary gland all showed the type 3 pattern, and pathological specimens showed many tumor cells along the marginal portion of the tumor. One inflammatory cyst and one Warthin's tumor also showed the type 3 pattern. Except for metastatic renal cell carcinoma, the enhancement patterns of late phase images and dynamic study images were the same. Dynamic MRI added little diagnostic information about salivary gland masses, but the contrast-enhanced MR features correlated well with the pathological findings. (author)

  13. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  14. MR imaging of the neonatal brain: Pathologic features

    International Nuclear Information System (INIS)

    McArdle, C.B.; Richardson, C.J.; Nicholas, D.A.; Hayden, C.K.; Amparo, E.G.

    1986-01-01

    Seventy-three neonates, aged 29-43 weeks since conception, were studied. US and/or CT correlations were obtained in most infants with pathology. In the first 4-5 days after hemorrhage, US and CT were superior to MR imaging, but after that time MR imaging was the single best modality for imaging blood. In early premature infants with very watery white matter, US detected infarction and brain edema that were poorly seen on both MR imaging and CT. However, in late premature and full-term infants, MR imaging was better than CT in distinguishing between normal white matter and infarction. Only MR imaging disclosed delayed myelination in 13 term infants with hydrocephalus and severe asphyxia. MR imaging with play an important role in imaging neonates once MR imaging-compatible monitors and neonatal head coils become widely available

  15. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  16. Digital mammography in a screening programme and its implications for pathology: a comparative study.

    LENUS (Irish Health Repository)

    Feeley, Linda

    2011-03-01

    Most studies comparing full-field digital mammography (FFDM) with conventional screen-film mammography (SFM) have been radiology-based. The pathological implications of FFDM have received little attention in the literature, especially in the context of screening programmes. The primary objective of this retrospective study is to compare FFDM with SFM in a population-based screening programme with regard to a number of pathological parameters.

  17. Digital fluoroscopy: a new development in medical imaging

    International Nuclear Information System (INIS)

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  18. An Archive of Digital Images.

    Science.gov (United States)

    Fantini, M.; And Others

    1990-01-01

    Describes the architecture of the prototype of an image management system that has been used to develop an application concerning images of frescoes in the Sistina Chapel in the Vatican. Hardware and software design are described, the use of local area networks (LANs) is discussed, and data organization is explained. (15 references) (LRW)

  19. Digital memory for TV image information

    International Nuclear Information System (INIS)

    Paretti, C.

    1975-01-01

    A system employing closed circuit TV camera and MOS memory is presented to take image information and store it. The apparatus is made in two sections: analog filters and digital memory. Filters have been used to select low amplitude signals from high frequency and low frequency noise components. The memory is arranged to make nondestroying overlap of digit array: this facility is useful for microscope image prejection to overcome depth of field limits, as in automatic nuclear emulsion scanners for personnel radiation monitoring. (author)

  20. Digital networks for the image management

    International Nuclear Information System (INIS)

    Gomez del Campo L, A.

    1999-01-01

    The digital networks designed specifically for the X-ray departments in the hospitals already were found in open development at beginning the 80's decade. Actually the digital network will be present include the image generation without the necessity to use film in direct form and in its case to print it through a laser ray printers network, an electronic image file, the possibility to integrate the hospitable information system to the electronic expedient which will allow communicate radiograph electronic files and consult by satellite via the problem cases. (Author)

  1. Molecular digital pathology: progress and potential of exchanging molecular data.

    Science.gov (United States)

    Roy, Somak; Pfeifer, John D; LaFramboise, William A; Pantanowitz, Liron

    2016-09-01

    Many of the demands to perform next generation sequencing (NGS) in the clinical laboratory can be resolved using the principles of telepathology. Molecular telepathology can allow facilities to outsource all or a portion of their NGS operation such as cloud computing, bioinformatics pipelines, variant data management, and knowledge curation. Clinical pathology laboratories can electronically share diverse types of molecular data with reference laboratories, technology service providers, and/or regulatory agencies. Exchange of electronic molecular data allows laboratories to perform validation of rare diseases using foreign data, check the accuracy of their test results against benchmarks, and leverage in silico proficiency testing. This review covers the emerging subject of molecular telepathology, describes clinical use cases for the appropriate exchange of molecular data, and highlights key issues such as data integrity, interoperable formats for massive genomic datasets, security, malpractice and emerging regulations involved with this novel practice.

  2. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image.

    Science.gov (United States)

    Banavar, Spoorthi Ravi; Chippagiri, Prashanthi; Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background . Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated "slide scanners" which can provide a "whole slide digital image." These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods . In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results . The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion . With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost.

  3. Evaluation of skin pathologies by RGB autofluorescence imaging

    Science.gov (United States)

    Lihachev, Alexey; Plorina, Emilija V.; Derjabo, Alexander; Lange, Marta; Lihacova, Ilze

    2017-12-01

    A clinical trial on autofluorescence imaging of malignant and non-malignant skin pathologies comprising 32 basal cell carcinomas (BCC), 4 malignant melanomas (MM), 1 squamous cell carcinoma (SCC), 89 nevi, 14 dysplastic nevi, 20 hemangiomas, 23 seborrheic keratoses, 4 hyperkeratoses, 3 actinic keratoses, 3 psoriasis, 1 dematitis, 2 dermatofibromas, 5 papillofibromas, 12 lupus erythematosus, 7 purpura, 6 bruises, 5 freckles, 3 fungal infections, 1 burn, 1 tattoo, 1 age spot, 1 vitiligo, 32 postoperative scars, 8 post cream therapy BCCs, 4 post radiation therapy scars, 2 post laser therapy scars, 1 post freezing scar as well as 114 reference images of healthy skin was performed. The sequence of autofluorescence images of skin pathologies were recorded by smartphone RGB camera under continuous 405 nm LED excitation during 20 seconds with 0.5 fps. Obtained image sequences further were processed with subsequent extraction of autofluorescence intensity and photobleaching parameters.

  4. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    Science.gov (United States)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  5. PathEdEx – Uncovering high-explanatory visual diagnostics heuristics using digital pathology and multiscale gaze data

    Directory of Open Access Journals (Sweden)

    Dmitriy Shin

    2017-01-01

    Full Text Available Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. Results: We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. Conclusion: PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings.

  6. Magnetic Resonance Imaging of Nonneoplastic Musculoskeletal Pathologies in the Pelvis.

    Science.gov (United States)

    Alapati, Sindhura; Wadhwa, Vibhor; Komarraju, Aparna; Guidry, Carey; Pandey, Tarun

    2017-06-01

    Musculoskeletal pathologies in the pelvis encompass a wide variety of lesions including femoroacetabular impingement, athletic pubalgia, ischiofemoral impingement, and apophyseal avulsion injuries. Magnetic resonance imaging is the noninvasive imaging modality of choice for the diagnosis and management of these lesions. In this article, the authors discuss the nonneoplastic musculoskeletal lesions in the pelvis, with illustrations and relevant case examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Usefulness of MR imaging in pathologic fracture of long bone

    International Nuclear Information System (INIS)

    Lim, Hyo Soon; Park, Jin Gyoon; Song, Jae Min; Chung, Tae Woong; Yoon, Woong; Kang, Heoung Kyun

    2002-01-01

    The purpose of this study was to evaluate the usefulness of MR imaging of pathologic fractures of the long bones. In 18 patients aged between four and 75 (mean, 25.8) years with histologically confirmed pathologic fractures of the long bones, plain radiographs and MR images were retrospectively analyzed. The former were examined with regard to location and type of fracture, and the presence or absence of underlying disease causing fracture; and the latter in terms of underlying disease, extraosseous mass formation, and soft tissue change. The long bones involved were the femur in nine patients, the humerus in six, and the tibia in three. Underlying diseases were metastatic tumor (n=6), benign bone tumor (n=5), primary malignant bone tumor (n=4), osteomyelitis (n=2), and eosinophilic granuloma (n=1). Plain radiographs showed the fracture site as the metaphysis in ten cases, the disphysis in five, and the metadisphysis in one. Fractures were either transverse (n=10), oblique (n=3), spiral (n=1), vertical (n=1), or telescopic (n=1). In two cases, the fracture line was not visible. MR images revealed underlying diseases in all cases. Two benign bone tumors took the form of a cystic mass, hematoma was seen in three cases. Where pathologic fracture of a long bone had occurred, or a pathologic fracture in which the findings of plain radiography were equivocal, MR imaging was useful for evaluating the pattern and extent of an underlying lesion

  8. Deep bilinear features for Her2 scoring in digital pathology

    Directory of Open Access Journals (Sweden)

    Rodner Erik

    2017-09-01

    Full Text Available We present an automated approach for rating HER2 over-expressions in given whole-slide images of breast cancer histology slides. The slides have a very high resolution and only a small part of it is relevant for the rating.

  9. Fundamental concepts of digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, R.E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  10. Fundamental Concepts of Digital Image Processing

    Science.gov (United States)

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  11. Digital subtraction imaging in cardiac investigations

    International Nuclear Information System (INIS)

    Partridge, J.B.; Dickinson, D.F.

    1984-01-01

    The role of digital subtraction imaging (DSI) in the investigation of heart disease in patients of all ages, including neonates, was evaluated by the addition of a continuous fluoroscopy system to an existing, single-plane catheterisation laboratory. In some situations, DSI provided diagnostic images where conventional radiography could not and, in general, provided images of comparable quality to cineangiography. The total dose of contrast medium was usually less than that which would have been required for biplane cineangiography and the dose of radiation was always less. Digital subtraction imaging can make a significant contribution to the investigation of congenital heart disease and has some useful features in the study of acquired heart disease. (author)

  12. Digital X-ray imager

    CERN Document Server

    LLNL &MedOptics Corporation

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying so...

  13. COMPARISON OF DIGITAL IMAGE STEGANOGRAPHY METHODS

    Directory of Open Access Journals (Sweden)

    S. A. Seyyedi

    2013-01-01

    Full Text Available Steganography is a method of hiding information in other information of different format (container. There are many steganography techniques with various types of container. In the Internet, digital images are the most popular and frequently used containers. We consider main image steganography techniques and their advantages and disadvantages. We also identify the requirements of a good steganography algorithm and compare various such algorithms.

  14. Bone age assessment by digital images

    International Nuclear Information System (INIS)

    Silva, Ana Maria Marques da

    1996-01-01

    An algorithm which allows bone age assessment by digital radiological images was developed. For geometric parameters extraction, the phalangeal and metacarpal regions of interest are enhanced and segmented, through spatial and morphological filtering. This study is based on perimeter, length and area, from distal to proximal portions. The quantification of these parameters make possible comparison between chronological and skeletal age, using growth standard tables

  15. Cherenkov ring imaging using a television digitizer

    International Nuclear Information System (INIS)

    Charpak, G.; Peisert, A.; Sauli, F.; Cavestro, A.; Vascon, M.; Zanella, G.

    1981-01-01

    A Cherenkov ring imaging device using as photon detector a multistep spark chamber coupled to a television digitizer is described. Results of a test run using triethylamine as photo-ionizing vapour are presented, as well as preliminary results obtained with a new vapour having an extremely low ionization potential. (orig.)

  16. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  17. Imaging characteristics of intraparenchymal schwannoma and the related pathology

    International Nuclear Information System (INIS)

    Liu Shuyong; Geng Daoying; He Huijin

    2007-01-01

    Objective: To Analyze the imaging characteristics of intraparenchymal schwannoma and the related pathology, in order to improve the accuracy of diagnosis and be in favor of the clinics and the prognosis. Methods: Four cases were confirmed to be intraparenchymal schwannoma by pathological and immunohistochemistry examination. One case was examined with precontrast and enhanced CT scanning, one with unenhanced MRI scanning, two with unenhanced and enhanced CT and MRI scanning. Their images were retrospectively analyzed. Results: Of the four cases, three patients were less than 30 years old, with tumors located supratentorially. Cysts were found in all cases, with nodules on the wall in 3 cases. The nodules were enhanced markedly in two cases and moderately in one case. In addition, calcification was detected in one case and prominent peritumoral edema existed in 1 case. The picture of the pathology demonstrated Antoni type A and Antoni type B. Immunostaining showed intense immunoreactivity for S-100 protein and Vim and negative immunoreactivity for GFAP and EMA. Conclusions: Intraparenchymal schwannoma mostly occurred in juvenile, which located supratentorially in most cases. The presence of a cyst and peritumoral edema together with the tumor appears to be characteristic of intraparenchymal schwannoma. Calcification or the enhanced nodule is the helpful sign for the diagnosis. Combining the imaging findings with the pathology and immunohistochemistry results can gain the accurate diagnosis. (authors)

  18. Multichannel deblurring of digital images

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Šroubek, Filip; Flusser, Jan

    2011-01-01

    Roč. 47, č. 3 (2011), s. 439-454 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : image restoration * blind deconvolution * deblurring Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/ZOI/sorel-0360217.pdf

  19. Detecting brain tumor in pathological slides using hyperspectral imaging.

    Science.gov (United States)

    Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M; Sarmiento, Roberto

    2018-02-01

    Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides.

  20. The application of magnetic resonance imaging in temporomandibular joint pathology

    International Nuclear Information System (INIS)

    Ehmedov, E.T.; Qahramanov, E.T.

    2007-01-01

    The diseases and damages of temporomandibular joint have compleceted diagnostic unlike other bone-joint pathologies. In 2005 for the first time in history it was implemented the magnetic resonance imaging in diagnostics of patients with with temporomandibular joints pathology. The current researches are in place till today. Being the golden standart the application of magnetic resonance tomography has a great role in differential diagnostics of the chronic arthritis, sclerosanse, deformanse arthrosis and arthrosis with internal derancement. This method guaranteed the correct valuation of the bone, disc and muscle structures of the joint and therefore brought full clearance into the problem

  1. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  2. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  3. Crack Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal, Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better than that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  4. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  5. Image quality in digital radiographic systems

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2003-01-01

    Full Text Available The aim of the present study was to evaluate the image quality of four direct digital radiographic systems. Radiographs were made of the maxillary central incisor and mandibular left molar regions of a dry skull, and an aluminum step-wedge. The X-ray generator operated at 10 mA, 60 and 70 kVp, and images were acquired with 3, 5, 8, 12, 24 and 48 exposure pulses. Six well-trained observers classified the images by means of scores from 1 to 3. Collected data were submitted to nonparametric statistical analysis using Fisher's exact test. Statistical analysis showed significant differences (p<0.01 in image quality with the four systems. Based on the results, it was possible to conclude that: 1 all of the digital systems presented good performance in producing acceptable images for diagnosis, if the exposures of the step-wedge and the maxillary central incisor region were made at 5 pulses, as well as at 8 pulses for the mandibular left molar region, selecting 60 or 70kVp; 2 higher percentages of acceptable images were obtained with the administration of lower radiation doses in CCD-sensors (charge-coupled device; 3 the Storage Phosphor systems produced acceptable images at a large range of exposure settings, that included low, intermediate and high radiation doses.

  6. Lossless Compression of Digital Images

    DEFF Research Database (Denmark)

    Martins, Bo

    Presently, tree coders are the best bi-level image coders. The currentISO standard, JBIG, is a good example.By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code.A number of general-purpose coders...... version that is substantially faster than its precursorsand brings it close to the multi-pass coders in compression performance.Handprinted characters are of unequal complexity; recent work by Singer and Tishby demonstrates that utilizing the physiological process of writing one can synthesize cursive.......The feature vector of a bitmap initially constitutes a lossy representation of the contour(s) of the bitmap. The initial feature space is usually too large but can be reduced automatically by use ofa predictive code length or predictive error criterion....

  7. ASTM reference radiologic digital image standards

    International Nuclear Information System (INIS)

    Wysnewski, R.; Wysnewski, D.

    1996-01-01

    ASTM Reference Radiographs have been essential in defining industry's material defect grade levels for many years. ASTM Reference Radiographs are used extensively as even the American Society for Metals Nondestructive Inspection and Quality Control Metals Handbook, Volume 11, eighth edition refers to ASTM Standard Reference Radiographs. The recently published E 1648 Standard Reference Radiographs for Examination of Aluminum Fusion Welds is a prime example of the on-going need for these references. To date, 14 Standard Reference Radiographs have been published to characterize material defects. Standard Reference Radiographs do not adequately address film-less radiologic methods. There are differences in mediums to content with. On a computer CRT defect indications appear differently when compared to indications viewed in a radiograph on a view box. Industry that uses non-film radiologic methods of inspection can be burdened with additional time and money developing internal standard reference radiologic images. These references may be deemed necessary for grading levels of product defects. Because there are no ASTM Standard Reference Radiologic data files for addressing this need in the industry, the authors of this paper suggested implementing a method for their creation under ASTM supervision. ASTM can assure continuity to those users making the transition from analog radiographic images to digital image data by swiftly addressing the requirements for reference digital image standards. The current status and possible future activities regarding a method to create digital data files is presented in this paper summary

  8. MR imaging of symptomatic osteochondromas with pathological correlation

    International Nuclear Information System (INIS)

    Mehta, M.; Knapp, T.; White, L.M.; Wunder, J.S.; Bell, R.S.

    1998-01-01

    Objective. To demonstrate the value of MR imaging in the diagnosis and differentiation of the various symptomatic complications of osteochondromas, providing pathological correlation with emphasis on the usefulness of MR imaging as a single imaging modality in these patients. Design. We retrospectively reviewed all MR examinations of clinically symptomatic osteochondromas (30 patients) performed at our institution between March 1990 and October 1997. Patients. Thirty patients had clinically symptomatic osteochondromas during the study period. Twenty patients were male and 10 were female. There were five cases of multiple osteochondromatosis. Pathological correlation was available in 24 patients. Results and conclusion. Symptomatic complications included fracture (7%), osseous deformity limiting range of motion (23%), vascular injury (7%), neurological compromise (10%), bursa formation (27%) and malignant transformation (27%). MR imaging was able to diagnose or suggest the etiology for the clinical symptomatology in all cases, demonstrating that it is an ideal imaging modality in the diagnostic evaluation of symptomatic complications of osteochondromas and often avoids the need for further imaging. (orig.)

  9. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  10. Spinal Schmorl's nodes: Sagittal sectional imaging and pathological examination

    International Nuclear Information System (INIS)

    Silberstein, M.; Opeskin, K.

    1999-01-01

    The presence, location and number of Schmorl's nodes was determined in the thoracolumbar spines of 70 motor vehicle accident victims using radiographic examination of a midline sagittal section and subsequent pathological examinations, including histology. In 28% of spines, a greater number of Schmorl's nodes were identified with radiography, while in 44%, pathological examination revealed a greater number of nodes. The visibility of Schmorl's nodes was enhanced by using a sagittal radiographic approach, and, in contrast to previous work, nodes below 0.5 cm 2 were readily detected. The results of the present study offer an additional imaging technique for postmortem analysis of the spine, and support the use of sagittal MR imaging for the evaluation of this condition. Copyright (1999) Blackwell Science Pty Ltd

  11. Towards machine learned quality control: A benchmark for sharpness quantification in digital pathology.

    Science.gov (United States)

    Campanella, Gabriele; Rajanna, Arjun R; Corsale, Lorraine; Schüffler, Peter J; Yagi, Yukako; Fuchs, Thomas J

    2018-04-01

    Pathology is on the verge of a profound change from an analog and qualitative to a digital and quantitative discipline. This change is mostly driven by the high-throughput scanning of microscope slides in modern pathology departments, reaching tens of thousands of digital slides per month. The resulting vast digital archives form the basis of clinical use in digital pathology and allow large scale machine learning in computational pathology. One of the most crucial bottlenecks of high-throughput scanning is quality control (QC). Currently, digital slides are screened manually to detected out-of-focus regions, to compensate for the limitations of scanner software. We present a solution to this problem by introducing a benchmark dataset for blur detection, an in-depth comparison of state-of-the art sharpness descriptors and their prediction performance within a random forest framework. Furthermore, we show that convolution neural networks, like residual networks, can be used to train blur detectors from scratch. We thoroughly evaluate the accuracy of feature based and deep learning based approaches for sharpness classification (99.74% accuracy) and regression (MSE 0.004) and additionally compare them to domain experts in a comprehensive human perception study. Our pipeline outputs spacial heatmaps enabling to quantify and localize blurred areas on a slide. Finally, we tested the proposed framework in the clinical setting and demonstrate superior performance over the state-of-the-art QC pipeline comprising commercial software and human expert inspection by reducing the error rate from 17% to 4.7%. Copyright © 2017. Published by Elsevier Ltd.

  12. Imaging Spectrum of Cerebellar Pathologies: A Pictorial Essay

    International Nuclear Information System (INIS)

    Arora, Richa

    2015-01-01

    The cerebellum is a crucial structure of hindbrain which helps in maintaining motor tone, posture, gait and also coordinates skilled voluntary movements including eye movements. Cerebellar abnormalities have different spectrum, presenting symptoms and prognosis as compared to supratentorial structures and brainstem. This article intends to review the various pathological processes involving the cerebellum along with their imaging features on MR, which are must to know for all radiologists, neurologists and neurosurgeons for their prompt diagnosis and management

  13. Skull base chordoid meningioma: Imaging features and pathology

    International Nuclear Information System (INIS)

    Soo, Mark Y.S.; Gomes, Lavier; Ng, Thomas; Cruz, Malville Da; Dexter, Mark

    2004-01-01

    The clinical, imaging and pathological features of a skull base chordoid meningioma (CM) are described. The huge tumour resulted in obstructive hydrocephalus and partial erosion of the clivus such that a chordoma was suspected. The lesion's MRI findings were similar to those of a meningioma. Light microscopic, immunohistochemistry and ultrastructural features were diagnostic of CM. Chordoid meningioma is a rare subtype of meningioma and has a great tendency to recur should surgical resection be incomplete Copyright (2004) Blackwell Publishing Asia Pty Ltd

  14. Acceptable levels of digital image compression in chest radiology

    International Nuclear Information System (INIS)

    Smith, I.

    2000-01-01

    The introduction of picture archival and communications systems (PACS) and teleradiology has prompted an examination of techniques that optimize the storage capacity and speed of digital storage and distribution networks. The general acceptance of the move to replace conventional screen-film capture with computed radiography (CR) is an indication that clinicians within the radiology community are willing to accept images that have been 'compressed'. The question to be answered, therefore, is what level of compression is acceptable. The purpose of the present study is to provide an assessment of the ability of a group of imaging professionals to determine whether an image has been compressed. To undertake this study a single mobile chest image, selected for the presence of some subtle pathology in the form of a number of septal lines in both costphrenic angles, was compressed to levels of 10:1, 20:1 and 30:1. These images were randomly ordered and shown to the observers for interpretation. Analysis of the responses indicates that in general it was not possible to distinguish the original image from its compressed counterparts. Furthermore, a preference appeared to be shown for images that have undergone low levels of compression. This preference can most likely be attributed to the 'de-noising' effect of the compression algorithm at low levels. Copyright (1999) Blackwell Science Pty. Ltd

  15. [Clinical, pathological and imaging features of primary pelvic Ewing's sarcoma].

    Science.gov (United States)

    Liu, J; Chen, Y; Ling, X L; Gong, Y; Ding, J P; Zhang, Z K; Wang, Y J

    2016-07-19

    To explore the clinical, pathological and imaging features of Ewing's sarcoma in pelvis and to improve knowledge and diagnosis of the disease. A retrospective analysis of the clinical, pathological and imaging data of pathologically confirmed 13 cases of Ewing's sarcoma in pelvis was carried out between May 2008 and March 2016 in the Affiliated Hospital of Hangzhou Normal University, the Third Hospital of Hebei Medical University and the Second Hospital of Hebei Medical University. The median age 13 cases of pelvic primary Ewing's sarcoma was 17 years old.The X-ray and CT imagings showed osteolytic and mixed bone destruction, CT showed mixed type in 10 cases, 8 cases of bone tumors as a flocculent, 10 cases of bone expansion failure, 10 cases of periosteal reaction, the layered 5 cases, radial in 5 cases.Thirteen cases showed soft tissue mass, soft tissue mass was equal or slightly lower density.Four cases showed heterogeneous contrast enhancement.The lesions showed low signal in T1WI and mixed high signal in T2WI of magnetic resonance imaging(MRI). The boundary of the lesions were obscure, and 5 cases had patchy necrosis area, and 9 cases had incomplete false capsule, surrounding soft tissue was violated.Four cases showed heterogeneous contrast enhancement after MRI enhancement scan. The age of onset of Ewing's sarcoma of the pelvis is more concentrated in about 15 years.The imaging feaures are mixed bone destruction and more bone is swelling and permeability damage, soft tissue mass is larger, bone tumor is cloudy or acicular, periosteal reaction in a layered and radial, most cases show that the false envelope is not complete.Combined with clinical and imaging examination, the diagnosis of the disease can be made.

  16. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  17. Primary colorectal lymphoma: spectrum of imaging findings with pathologic correlation

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Han, Joon Koo; Kim, Tae Kyoung; Kim, Young Hoon; Kim, Ah Young; Kim, Kyoung Won; Choi, Ja Young; Choi, Byung Ihn

    2002-01-01

    Primary colorectal lymphoma is a very uncommon disease; therefore, it has received little attention in the radiology literature. Moreover, imaging features of newly described pathologic subtypes have not been reported such as low-grade B-cell lymphoma arising from mucosa-associated lymphoid tissue and peripheral T-cell lymphoma that involves colorectal area. We retrospectively reviewed double-contrast barium enema and CT scans in the patients with primary colorectal lymphoma. In this article the radiologic appearances of primary colorectal lymphoma are categorized into focal lesion and diffuse lesion. Focal lesion includes polypoid mass, circumferential infiltration with smooth mucosal surface, circumferential infiltration with extensive ulceration, cavitary mass, mucosal nodularity, and mucosal fold thickening. Diffuse lesion includes diffuse ulcerative lesion and diffuse nodular lesion. Peripheral T-cell lymphomas that involve the colon manifested as either a diffuse or focal segmental lesion and showed extensive mucosal ulceration. These findings are similar to those of Crohn's disease or tuberculous colitis and are different from those of previously reported colorectal lymphoma. Low-grade B-cell lymphoma arising from mucosa-associated lymphoid tissue manifest as multiple mucosal nodularity. The imaging features of primary colorectal lymphoma are quite variable and overlap with other colonic pathology; however, it is important for radiologists to know the imaging features of primary colorectal lymphoma with their pathologic correlation. (orig.)

  18. The impact of specially designed digital games-based learning in undergraduate pathology and medical education.

    Science.gov (United States)

    Kanthan, Rani; Senger, Jenna-Lynn

    2011-01-01

    The rapid advances of computer technologies have created a new e-learner generation of "Homo-zappien" students that think and learn differently. Digital gaming is an effective, fun, active, and encouraging way of learning, providing immediate feedback and measurable process. Within the context of ongoing reforms in medical education, specially designed digital games, a form of active learning, are effective, complementary e-teaching/learning resources. To examine the effectiveness of the use of specially designed digital games for student satisfaction and for measurable academic improvement. One hundred fourteen students registered in first-year pathology Medicine 102 had 8 of 16 lecture sessions reviewed in specially designed content-relevant digital games. Performance scores to relevant content sessions were analyzed at midterm and final examinations. Seventy-one students who registered in second-year pathology Medicine 202 were exposed to the games only during the final examination, with the midterm examination serving as an internal matched-control group. Outcome measures included performance at midterm and final examinations. Paired 2-tailed t test statistics compared means. A satisfaction survey questionnaire of yes or no responses analyzed student engagement and their perceptions to digital game-based learning. Questions relevant to the game-play sessions had the highest success rate in both examinations among 114 first-year students. In the 71 second-year students, the examination scores at the end of the final examination were significantly higher than the scores on the midterm examination. Positive satisfaction survey noted increased student engagement, enhanced personal learning, and reduced student stress. Specially constructed digital games-based learning in undergraduate pathology courses showed improved academic performance as measured by examination test scores with increased student satisfaction and engagement.

  19. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  20. The iconic image in a digital age

    DEFF Research Database (Denmark)

    Mortensen, Mette; Allan, Stuart; Peters, Chris

    2017-01-01

    This article investigates selected newspapers’ editorial mediations over contrasting perceptions regarding the significance of a controversial set of “iconic” news photographs, namely images of Alan Kurdi, a three-year-old Syrian refugee, whose drowned corpse washed ashore in September, 2015. Spe......-reflexivity within a convergent digital media ecology, this article offers original insights into how and why the epistemic values governing visual communication are being reconsidered and redrawn under pressure from institutional imperatives....

  1. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  2. Storage and retrieval of large digital images

    Science.gov (United States)

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  3. Chondrosarcoma : MR imaging findings correlated with pathologic classification and grade

    International Nuclear Information System (INIS)

    Cho, Seong Whi; Kang, Heung Sik; Kim, Sam Soo; Lee, Sang Hyun; Cho, Jeong Yeon; Yeon, Kyung Mo

    1996-01-01

    To evaluate the MR imaging findings of chondrosarcomas by correlation with pathologic classification and grade. We performed MR imaging-pathologic correlation of nineteen chondrosarcomas. Conventional chondrosarcomas accounted for 15 cases (grade I:6, II:6, III:3) and the mesenchymal and dedifferentiated types each accounted for two. MR signal intensity (SI) of the tumor on T1- and T2-weighted images (T1WI and T2WI, respectively), was classified as homogeneous or heterogeneous low-, iso- or high SI, and enhancing pattern as marginal, marginal and septal, marginal and nodular, or diffuse enhancement. Eighteen cases of chondrosarcomas (95%) showed homogeneous or heterogeneous low- or iso SI on T1WI and high SI on T2WI. Low grade conventional chondrosarcomas showed marginal and septal (n=8/10) or marginal (n=2/10) enhancement on Gd-enhanced MR images. Grade III conventional chondrosarcomas showed marginal or marginal and nodular enhancement. Dedifferentiated and mesenchymal chondrosarcomas showed marginal and nodular or diffuse enhancement. Chondrosarcomas showed iso- or low SI on T1WI and high SI on T2WI. Marginal and septal enhancement was demonstrated on Gd-enhanced MR images of grade I and II conventional chondrosarcomas. If a tumor showed a marginal and nodular or diffuse enhancing pattern, this suggested it was a of high grade chondrosarcoma

  4. Vaginal Masses: Magnetic Resonance Imaging Features with Pathologic Correlation

    International Nuclear Information System (INIS)

    Elsayes, K.M.; Narra, V.R.; Dillman, J.R.; Velcheti, V.; Hameed, O.; Tongdee, R.; Menias, C.O.

    2007-01-01

    The detection of vaginal lesions has increased with the expanding use of cross-sectional imaging. Magnetic resonance imaging (MRI) - with its high-contrast resolution and multiplanar capabilities - is often useful for characterizing vaginal masses. Vaginal masses can be classified as congenital, inflammatory, cystic (benign), and neoplastic (benign or malignant) in etiology. Recognition of the typical MR imaging features of such lesions is important because it often determines the treatment approach and may obviate surgery. Finally, vaginal MR imaging can be used to evaluate post-treatment changes related to previous surgery and radiation therapy. In this article, we will review pertinent vaginal anatomy, vaginal and pelvic MRI technique, and the MRI features of a variety of vaginal lesions with pathological correlation

  5. Imaging pediatric magnet ingestion with surgical-pathological correlation

    International Nuclear Information System (INIS)

    Otjen, Jeffrey P.; Iyer, Ramesh S.; Rohrmann, Charles A.

    2013-01-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented. (orig.)

  6. Imaging pediatric magnet ingestion with surgical-pathological correlation.

    Science.gov (United States)

    Otjen, Jeffrey P; Rohrmann, Charles A; Iyer, Ramesh S

    2013-07-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented.

  7. Digital image intensifier radiography: first experiences with the DSI (Digital Spot Imaging)

    International Nuclear Information System (INIS)

    Rueckforth, J.; Wein, B.; Stargardt, A.; Guenther, R.W.

    1995-01-01

    We performed a comparative study of digitally and conventionally acquired images in gastrointestinal examinations. Radiation dose and spatial resolution were determined in a water phantom. In 676 examinations with either conventional or digital imaging (system: Diagnost 76, DSI) the number of images and the duration of the fluoroscopy time were compared. 101 examinations with digital as well as conventional documentation were evaluated by using 5 criteria describing the diagnostic performance. The entrance dose of the DSI is 12% to 36% of the film/screen system and the spatial resolution of the DSI may be better than that of a film/screen system with a speed of 200. The fluoroscopy time shows no significant difference between DSI and the film/screen technique. In 2 of 4 examination modes significantly more images were produced by the DSI. With exception of the criterion of edge sharpness, DSI yields a significantly inferior assessment compared with the film/screen technique. (orig./MG) [de

  8. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  9. [Digital imaging and robotics in endoscopic surgery].

    Science.gov (United States)

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).

  10. Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology

    Directory of Open Access Journals (Sweden)

    Vollmer Ekkehard

    2008-04-01

    Full Text Available Abstract Background Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis. Aims To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. Theory and experiences Images used in tissue-based diagnosis present with pathology – specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease – image combination, human – diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image

  11. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various samples. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  12. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  13. Utility of Digital Stereo Images for Optic Disc Evaluation

    Science.gov (United States)

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  14. Image processing methods and architectures in diagnostic pathology.

    Directory of Open Access Journals (Sweden)

    Oscar DĂŠniz

    2010-05-01

    Full Text Available Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory.

  15. Imaging sunlight using a digital spectroheliograph

    CERN Document Server

    Harrison, Ken M

    2016-01-01

    Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial ‘etalon’ solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is exp...

  16. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    Science.gov (United States)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  17. Meningioangiomatosis: MR imaging and pathological correlation in two cases

    International Nuclear Information System (INIS)

    Kim, W.-Y.; Kim, W.S.; Cheon, J.-E.; Yeon, K.M.; Kim, I.-O.

    2002-01-01

    Meningioangiomatosis is a rare, benign neoplastic disorder involving the cortex and leptomeninges. The pathological findings are characterised by proliferation of meningothelial cells and leptomeningeal vessels and calcifications within the mass. We experienced two cases of pathologically confirmed meningioangiomatosis, one as a solitary cortical mass with calcification and the other as a cortical lesion manifested as extensive intracranial haemorrhage. On MRI, the first case showed an isointense cortical mass in the left frontal lobe and homogeneous enhancement on the contrast-enhanced study. The second case showed a target-like lesion with a peripheral dark signal rim on T2-weighted images accompanied by extensive haemorrhage in the adjacent frontal lobe and lateral ventricles. (orig.)

  18. An image adaptive, wavelet-based watermarking of digital images

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  19. [Refuge in Digital Worlds - the Association of Critical Life Events with Pathological Internet Use in Adolescence].

    Science.gov (United States)

    Koenig, Julian; Fischer-Waldschmidt, Gloria; Brunner, Romuald; Resch, Franz; Kaess, Michael

    2016-09-01

    Refuge in Digital Worlds - the Association of Critical Life Events with Pathological Internet Use in Adolescence The present study sought to clarify the potential relationship between critical life events and pathological internet use in adolescents. A cross-sectional survey was conducted within the framework of a European school-based study (SEYLE) which included a representative sample of 1,444 students from the Rhein-Neckar catchment area. The Young Diagnostic Questionnaire (YDQ) was used to assess pathological internet use, whereas a combination of the List of Threatening Experiences (LTE) and Life Events Checklist (LCE) was administered to assess critical life events over the period of the last six months. Statistical models were adjusted for the presence of psychopathological distress using the Strengths and Difficulties Questionnaire (SDQ). 4.8 % of the participating students reported pathological internet use, 14.5 % met criteria for risky Internet use. Overall, adolescents with risky or pathological internet use recalled more critical life events, particularly within the context of interpersonal relationships and academic performance. After adjusting for sociodemographic variables and psychopathological distress, results showed that an unexpected decrease in academic performance as well as the termination of a romantic relationship, both were significantly associated with pathological internet use. Adolescents with pathological internet use reported significantly more frequent interpersonal problems and an unexpected decrease of academic performance. Based on the cross-sectional nature of the investigation, causality of the association cannot be established. However, results point towards potential risk factors (academic performance, termination of relationships) which may guide the identification of adolescents with risky or pathological internet use in child- and adolescent psychiatry.

  20. Endless everyday images: links and excesses in digital image

    Directory of Open Access Journals (Sweden)

    Ana Cláudia do Amaral Leão

    2013-08-01

    Full Text Available The research analyzed the relationships and communication links between overproduced images on digital media and their carriers. I start from the hypothesis that the way we look, record, save and access images have been deeply modified with the advent of digital cameras and ‘phone cameras’ – encouraging an addictive behavior for pictures. The method was based on interviews with ten informers – the images’ carriers, who let us conclude that we are overproducing pictures as information. In this context arise the producers of endless everyday pictures, here named ‘photomaniacs’, who give birth two kinds of images: the circulatory infoimages and the everyday infoimages. Overproduced digital images transform devices in our magnifiers of memory and oblivion, undoing the way we compile, save or file – and operating in cumulative, disordered, small and private stock of images. Thus, we try to saturate our most superficial memory, that generates schizophrenic pictures when operates on excess. However, even if the way is only technological, we must remember that the body is the living organism suitable to pictures, the place where we hold deep bonding relations. Over this body surface, images survive impregnated of meanings, links, belonging and healing. The research was based on the theories of communication links of Boris Cyrulnik, Jose Ângelo Gaiarsa and Ashley Montagu, besides the works on images and schizophrenia of Nise da Silveira and Leo Navratil. The research also activated the central European stream of Cultural Semiotics, specially the theories of images proposed by Aby Warburg, Walter Benjamin, Dietmar Kamper, Norval Baitello Junior, Hans Belting and Vilém Flusser.

  1. Losing Images in Digital Radiology: More than You Think

    OpenAIRE

    Oglevee, Catherine; Pianykh, Oleg

    2014-01-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and dai...

  2. Unusual cystic pancreatic neoplasms -image-pathological correlations

    International Nuclear Information System (INIS)

    Hilendarov, A.; Simova, E.; Petrova, A.; Traikova, N.; Deenichin, G.

    2013-01-01

    The aim is to present the variety of signs and symptoms from the diagnostic imaging methods of atypical neoplasms of the pancreas, presented as a type of cystic lesions. This often leads to unnecessary surgery or inappropriate tracking. In 115 patients (85 men and 30 women) with cystic lesions of the pancreas ultrasonic (US),computer tomography (CT) and magnetic resonance imaging (MRI) were performed and verified through histological and macroscopic pathology preparations. The ultrasound machines equipped with linear and convex transducers, MDCT and MRI imaging systems were used. In 14 of 115 patients atypical neoplasms of the pancreas were diagnosed: two cases with macroscopic serous cystic neoplasms, two nonmucinous cystic neoplasms, two hemorrhagic mucinous neoplasms, two ductal adenocarcinomas with cystic changes, one islet cell cystic tumor, two lymphoepithetial cysts, one lymphangioma, one solid papillary epithelial neoplasm and one mucinous adenocarcinoma. The authors take into consideration and overlapping of clinical symptoms and laboratory tests. Although much of the imaging features and morphological characteristics of cystic neoplasms of the pancreas are well known, should be known about the atypical unusual images in so-called 'typical' cystic neoplasms, cystic images in solid neoplasms and various atypical tumors with cystic lesions. (authors)

  3. Meningioangiomatosis: advanced imaging and pathological study of two cases

    International Nuclear Information System (INIS)

    Gomez-Anson, B.; Munoz, A.; Blasco, A.; Madero, S.; Esparza, J.; Cordobes, F.; Orejon, G.; Mateos, F.

    1995-01-01

    Meningioangiomatosis (MA) is a rare benign intracranial tumour of uncertain pathogenesis, with only 33 cases reported in the literature. Imaging features have been described in 21 cases, only 3 with contrast-enhanced MRI. We present two cases of MA with MRI and/or CT findings and gross, ultra-structural, and immunohistochemical characteristics. MRI is particularly helpful for establishing the origin of the lesion and its anatomical location, while CT shows calcification, if present. The pathological characteristics establish the diagnosis and underline the differences from other entities such as malignant meningioma, one of the most important differential diagnostic considerations. (orig.)

  4. Meningioangiomatosis: advanced imaging and pathological study of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Anson, B [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Servicio de Radiodiagnostica (Neurorradiologia Infantil); Munoz, A [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Servicio de Radiodiagnostica (Neurorradiologia Infantil); Blasco, A [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Seccion de Neuropatologia; Madero, S [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Seccion de Neuropatologia; Esparza, J [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Servicio de Neurocirugia Pediatrica; Cordobes, F [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Servicio de Neurocirugia Pediatrica; Orejon, G [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Servicio de Neurologia; Mateos, F [Hospital Universitario ` ` Doce de Octubre` ` , Madrid (Spain). Servicio de Neurologia

    1995-02-01

    Meningioangiomatosis (MA) is a rare benign intracranial tumour of uncertain pathogenesis, with only 33 cases reported in the literature. Imaging features have been described in 21 cases, only 3 with contrast-enhanced MRI. We present two cases of MA with MRI and/or CT findings and gross, ultra-structural, and immunohistochemical characteristics. MRI is particularly helpful for establishing the origin of the lesion and its anatomical location, while CT shows calcification, if present. The pathological characteristics establish the diagnosis and underline the differences from other entities such as malignant meningioma, one of the most important differential diagnostic considerations. (orig.)

  5. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  6. Creating a panorama of the heart with digital images.

    Science.gov (United States)

    Rosebrock, L

    2000-01-01

    Digital imaging offers new opportunities still being discovered by users. This article describes a technique that was created using a digital camera to photograph the entire surface of a rat heart. The technique may have other applications as well.

  7. Detecting jaundice by using digital image processing

    Science.gov (United States)

    Castro-Ramos, J.; Toxqui-Quitl, C.; Villa Manriquez, F.; Orozco-Guillen, E.; Padilla-Vivanco, A.; Sánchez-Escobar, JJ.

    2014-03-01

    When strong Jaundice is presented, babies or adults should be subject to clinical exam like "serum bilirubin" which can cause traumas in patients. Often jaundice is presented in liver disease such as hepatitis or liver cancer. In order to avoid additional traumas we propose to detect jaundice (icterus) in newborns or adults by using a not pain method. By acquiring digital images in color, in palm, soles and forehead, we analyze RGB attributes and diffuse reflectance spectra as the parameter to characterize patients with either jaundice or not, and we correlate that parameters with the level of bilirubin. By applying support vector machine we distinguish between healthy and sick patients.

  8. Acute Severe Aortic Regurgitation: Imaging with Pathological Correlation.

    Science.gov (United States)

    Janardhanan, Rajesh; Pasha, Ahmed Khurshid

    2016-03-01

    Acute aortic regurgitation (AR) is an important finding associated with a wide variety of disease processes. Its timely diagnosis is of utmost importance. Delay in diagnosis could prove fatal. We describe a case of acute severe AR that was timely diagnosed using real time three-dimensional (3D) transesophageal echocardiogram (3D TEE). Not only did it diagnose but also the images obtained by 3D TEE clearly matched with the pathologic specimen. Using this sophisticated imaging modality that is mostly available at the tertiary centers helped in the timely diagnosis, which lead to the optimal management saving his life. Echocardiography and especially 3D TEE can diagnose AR very accurately. Surgical intervention is the definitive treatment but medical therapy is utilized to stabilize the patient initially.

  9. Semiautomatic digital imaging system for cytogenetic analysis

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Chauhan, P.C.; Bannur, S.V.; Kulgod, S.V.; Chadda, V.K.; Nigam, R.K.

    1999-08-01

    The paper describes a digital image processing system, developed indigenously at BARC for size measurement of microscopic biological objects such as cell, nucleus and micronucleus in mouse bone marrow; cytochalasin-B blocked human lymphocytes in-vitro; numerical counting and karyotyping of metaphase chromosomes of human lymphocytes. Errors in karyotyping of chromosomes by the imaging system may creep in due to lack of well-defined position of centromere or extensive bending of chromosomes, which may result due to poor quality of preparation. Good metaphase preparations are mandatory for precise and accurate analysis by the system. Additional new morphological parameters about each chromosome have to be incorporated to improve the accuracy of karyotyping. Though the experienced cytogenetisist is the final judge; however, the system assists him/her to carryout analysis much faster as compared to manual scoring. Further, experimental studies are in progress to validate different software packages developed for various cytogenetic applications. (author)

  10. The Neuro-Image: Alain Resnais's Digital Cinema without the Digits

    NARCIS (Netherlands)

    Pisters, P.

    2011-01-01

    This paper proposes to read cinema in the digital age as a new type of image, the neuroimage. Going back to Gilles Deleuze's cinema books and it is argued that the neuro-image is based in the future. The cinema of Alain Resnais is analyzed as a neuro-image and digital cinema .

  11. From Digital Imaging to Computer Image Analysis of Fine Art

    Science.gov (United States)

    Stork, David G.

    An expanding range of techniques from computer vision, pattern recognition, image analysis, and computer graphics are being applied to problems in the history of art. The success of these efforts is enabled by the growing corpus of high-resolution multi-spectral digital images of art (primarily paintings and drawings), sophisticated computer vision methods, and most importantly the engagement of some art scholars who bring questions that may be addressed through computer methods. This paper outlines some general problem areas and opportunities in this new inter-disciplinary research program.

  12. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  13. Advanced digital image archival system using MPEG technologies

    Science.gov (United States)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  14. Integrating Digital Images into the Art and Art History Curriculum.

    Science.gov (United States)

    Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.

    2002-01-01

    Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…

  15. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  16. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  17. A data model and database for high-resolution pathology analytical image informatics

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2011-01-01

    Full Text Available Background: The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. Context: This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS, and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs. Aims: (1 Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2 Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. Settings and Design: The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole

  18. A data model and database for high-resolution pathology analytical image informatics.

    Science.gov (United States)

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming

  19. Surface Distresses Detection of Pavement Based on Digital Image Processing

    OpenAIRE

    Ouyang , Aiguo; Luo , Chagen; Zhou , Chao

    2010-01-01

    International audience; Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and automatic detection. The applications of digital image processing in pavement crack detection, distresses classificati...

  20. X-ray images in the digital mode

    International Nuclear Information System (INIS)

    Buchmann, F.; Balter, S.

    1981-01-01

    In addition to computed tomography which presents actually the most important processing and transfer procedure of digital X-ray images, application of real time addition and substraction of X-ray images in a digital mode has found considerable interest. An estimation of the information contents of both digital and analog images is made in close relation to applications. As example of an image processing system on digital base a recently developed system for intravenous arteriography is described: the Philips-DVI. (orig.) [de

  1. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  2. New possibilities of digital luminescence radiography (DLR) and digital image processing for verification and portal imaging

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Blume, J.; Wendhausen, H.; Hebbinghaus, D.; Kovacs, G.; Eilf, K.; Schultze, J.; Kimmig, B.N.

    1995-01-01

    We developed a method, using digital luminescence radiography (DLR), not only for portal imaging of photon beams in an excellent quality, but also for verification of electron beams. Furtheron, DLR was used as basic instrument for image fusion of portal and verification film and simulation film respectively for image processing in ''beams-eye-view'' verification (BEVV) of rotating beams or conformation therapy. Digital radiographs of an excellent quality are gained for verification of photon and electron beams. In photon beams, quality improvement vs. conventional portal imaging may be dramatic, even more for high energy beams (e.g. 15-MV-photon beams) than for Co-60. In electron beams, excellent results may be easily obtained. By digital image fusion of 1 or more verification films on simulation film or MRI-planning film, more precise judgement even on small differences between simulation and verification films becomes possible. Using BEVV, it is possible to compare computer aided simulation in rotating beams or conformation therapy with the really applied treatment. The basic principle of BEVV is also suitable for dynamic multileaf collimation. (orig.) [de

  3. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  4. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators......This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  5. Dissimilarity Application in Digitized Mammographic Images Classification

    Directory of Open Access Journals (Sweden)

    Ubaldo Bottigli

    2006-06-01

    Full Text Available Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, an alternative ways can be found by constructing decision rules on dissimilarity (distance representations. In such a recognition process a new object is described by its distances to (a subset of the training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discriminative power. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs. Each ROI is characterized by some features extracted from co-occurrence matrix containing spatial statistics information on ROI pixel grey tones. A dissimilarity representation of these features is made before the classification. A feed-forward neural network is employed to distinguish pathological records, from non-pathological ones by the new features. The results obtained in terms of sensitivity and specificity will be presented.

  6. Digital Particle Image Velocimetry: Partial Image Error (PIE)

    International Nuclear Information System (INIS)

    Anandarajah, K; Hargrave, G K; Halliwell, N A

    2006-01-01

    This paper quantifies the errors due to partial imaging of seeding particles which occur at the edges of interrogation regions in Digital Particle Image Velocimetry (DPIV). Hitherto, in the scientific literature the effect of these partial images has been assumed to be negligible. The results show that the error is significant even at a commonly used interrogation region size of 32 x 32 pixels. If correlation of interrogation region sizes of 16 x 16 pixels and smaller is attempted, the error which occurs can preclude meaningful results being obtained. In order to reduce the error normalisation of the correlation peak values is necessary. The paper introduces Normalisation by Signal Strength (NSS) as the preferred means of normalisation for optimum accuracy. In addition, it is shown that NSS increases the dynamic range of DPIV

  7. Digital image archiving: challenges and choices.

    Science.gov (United States)

    Dumery, Barbara

    2002-01-01

    In the last five years, imaging exam volume has grown rapidly. In addition to increased image acquisition, there is more patient information per study. RIS-PACS integration and information-rich DICOM headers now provide us with more patient information relative to each study. The volume of archived digital images is increasing and will continue to rise at a steeper incline than film-based storage of the past. Many filmless facilities have been caught off guard by this increase, which has been stimulated by many factors. The most significant factor is investment in new digital and DICOM-compliant modalities. A huge volume driver is the increase in images per study from multi-slice technology. Storage requirements also are affected by disaster recovery initiatives and state retention mandates. This burgeoning rate of imaging data volume presents many challenges: cost of ownership, data accessibility, storage media obsolescence, database considerations, physical limitations, reliability and redundancy. There are two basic approaches to archiving--single tier and multi-tier. Each has benefits. With a single-tier approach, all the data is stored on a single media that can be accessed very quickly. A redundant copy of the data is then stored onto another less expensive media. This is usually a removable media. In this approach, the on-line storage is increased incrementally as volume grows. In a multi-tier approach, storage levels are set up based on access speed and cost. In other words, all images are stored at the deepest archiving level, which is also the least expensive. Images are stored on or moved back to the intermediate and on-line levels if they will need to be accessed more quickly. It can be difficult to decide what the best approach is for your organization. The options include RAIDs (redundant array of independent disks), direct attached RAID storage (DAS), network storage using RAIDs (NAS and SAN), removable media such as different types of tape, compact

  8. Interobserver variation in the diagnosis of fibroepithelial lesions of the breast: a multicentre audit by digital pathology.

    Science.gov (United States)

    Dessauvagie, Benjamin F; Lee, Andrew H S; Meehan, Katie; Nijhawan, Anju; Tan, Puay Hoon; Thomas, Jeremy; Tie, Bibiana; Treanor, Darren; Umar, Seemeen; Hanby, Andrew M; Millican-Slater, Rebecca

    2018-02-13

    Fibroepithelial lesions (FELs) of the breast span a morphological continuum including lesions where distinction between cellular fibroadenoma (FA) and benign phyllodes tumour (PT) is difficult. The distinction is clinically important with FAs managed conservatively while equivocal lesions and PTs are managed with surgery. We sought to audit core biopsy diagnoses of equivocal FELs by digital pathology and to investigate whether digital point counting is useful in clarifying FEL diagnoses. Scanned slide images from cores and subsequent excisions of 69 equivocal FELs were examined in a multicentre audit by eight pathologists to determine the agreement and accuracy of core needle biopsy (CNB) diagnoses and by digital point counting of stromal cellularity and expansion to determine if classification could be improved. Interobserver variation was high on CNB with a unanimous diagnosis from all pathologists in only eight cases of FA, diagnoses of both FA and PT on the same CNB in 15 and a 'weak' mean kappa agreement between pathologists (k=0.36). 'Moderate' agreement was observed on CNBs among breast specialists (k=0.44) and on excision samples (k=0.49). Up to 23% of lesions confidently diagnosed as FA on CNB were PT on excision and up to 30% of lesions confidently diagnosed as PT on CNB were FA on excision. Digital point counting did not aid in the classification of FELs. Accurate and reproducible diagnosis of equivocal FELs is difficult, particularly on CNB, resulting in poor interobserver agreement and suboptimal accuracy. Given the diagnostic difficulty, and surgical implications, equivocal FELs should be reported in consultation with experienced breast pathologists as a small number of benign FAs can be selected out from equivocal lesions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Digital image processing applied Rock Art tracing

    Directory of Open Access Journals (Sweden)

    Montero Ruiz, Ignacio

    1998-06-01

    Full Text Available Adequate graphic recording has been one of the main objectives of rock art research. Photography has increased its role as a documentary technique. Now, digital image and its treatment allows new ways to observe the details of the figures and to develop a recording procedure which is as, or more, accurate than direct tracing. This technique also avoid deterioration of the rock paintings. The mathematical basis of this method is also presented.

    La correcta documentación del arte rupestre ha sido una preocupación constante por parte de los investigadores. En el desarrollo de nuevas técnicas de registro, directas e indirectas, la fotografía ha ido adquiriendo mayor protagonismo. La imagen digital y su tratamiento permiten nuevas posibilidades de observación de las figuras representadas y, en consecuencia, una lectura mediante la realización de calcos indirectos de tanta o mayor fiabilidad que la observación directa. Este sistema evita los riesgos de deterioro que provocan los calcos directos. Se incluyen las bases matemáticas que sustentan el método.

  10. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  11. Feasibility of digital imaging to characterize earth materials : part 1.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  12. Feasibility of digital imaging to characterize earth materials : part 4.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  13. Feasibility of digital imaging to characterize earth materials : part 5.

    Science.gov (United States)

    2012-05-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  14. Feasibility of digital imaging to characterize earth materials : part 3.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  15. Feasibility of digital imaging to characterize earth materials : part 2.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  16. Feasibility of digital imaging to characterize earth materials : part 6.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  17. Securing Digital Images Integrity using Artificial Neural Networks

    Science.gov (United States)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  18. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.

    Science.gov (United States)

    Niebudek-Bogusz, Ewa; Kopczynski, Bartosz; Strumillo, Pawel; Morawska, Joanna; Wiktorowicz, Justyna; Sliwinska-Kowalska, Mariola

    2017-07-01

    Digital imaging techniques enable exploration of novel visualization modalities of the vocal folds during phonation and definition of parameters, facilitating more precise diagnosis of voice disorders. Application of computer vision algorithms for analysis of videolaryngostroboscopic (VLS) images aimed at qualitative and quantitative description of phonatory vibrations. VLS examinations were conducted for 45 females, including 15 subjects with vocal nodules, 15 subjects with glottal incompetence, and 15 normophonic females. The recorded VLS images were preprocessed, the glottis area was segmented out, and the glottal cycles were identified. The glottovibrograms were built, and then the glottal area waveforms (GAW) were quantitatively described by computing the following parameters: open quotient (OQ), closing quotient (CQ), speed quotient (SQ), minimal relative glottal area (MRGA), and a new parameter termed closure difference index (CDI). Profiles of the glottal widths assessed along the glottal length differentiated the study groups (P diagnostics. Results of the performed ROC curve analysis suggest that the evaluated parameters can distinguish patients with voice disorders from normophonic subjects.

  19. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  20. Digital pulse processor for ion beam microprobe imaging

    International Nuclear Information System (INIS)

    Bogovac, M.; Jaksic, M.; Wegrzynek, D.; Markowicz, A.

    2009-01-01

    Capabilities of spectroscopic ion beam analysis (IBA) techniques that are available in ion microprobe facilities can be greatly improved by the use of digital pulse processing. We report here development of a digital multi parameter data acquisition system suitable for IBA imaging applications. Input signals from charge sensitive preamplifier are conditioned by using a simple circuit and digitized with fast ADCs. The digitally converted signals are processed in real time using FPGA. Implementation of several components of the system is presented.

  1. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  2. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  3. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  4. Improving digital image watermarking by means of optimal channel selection

    NARCIS (Netherlands)

    Huynh-The, Thien; Banos Legran, Oresti; Lee, Sungyoung; Yoon, Yongik; Le-Tien, Thuong

    2016-01-01

    Supporting safe and resilient authentication and integrity of digital images is of critical importance in a time of enormous creation and sharing of these contents. This paper presents an improved digital image watermarking model based on a coefficient quantization technique that intelligently

  5. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  6. Losing images in digital radiology: more than you think.

    Science.gov (United States)

    Oglevee, Catherine; Pianykh, Oleg

    2015-06-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and daily quality of clinical work. This paper identifies the origins of invisible image losses, provides methods and procedures to detect image loss, and demonstrates modes of action that can be taken to stop the problem from happening.

  7. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  8. Correlation of Imaging Findings with Pathologic Findings of Sclerosing Adenosis

    International Nuclear Information System (INIS)

    Choi, Bo Bae; Shu, Kwang Sun

    2012-01-01

    The purpose of this study was to evaluate the mammographic and sonographic findings of pure sclerosing adenosis. We retrospectively reviewed the mammographic and sonographic findings in 40 cases of pure sclerosing adenosis confirmed by core needle biopsy (n = 23), vacuum-assisted biopsy (n = 7), excision biopsy (n = 9), and lumpectomy (n = 1) from January 2002 to March 2010. All imaging findings were analyzed according to the American College of Radiology (ACR) breast imaging reporting and data system (BI-RADS). Radiologic features were correlated with pathologic findings. Although most mammograms showed negative findings (57%), calcification was the most common abnormal finding of sclerosing adenosis. On sonography, the most common finding was a circumscribed oval hypoechoic mass without posterior features (78%). Most masses showed BI-RADS category 3, (75%, 27/36). Five cases showed categories 4 or 5 (14%, 5/36). Most mammographic and sonographic findings of sclerosing adenosis are non-specific and non-pathognomonic, even though sometimes sclerosing adenosis can be radiologically or histopathologically confused with malignancy

  9. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  10. Effects of optimization and image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Kheddache, S.; Maansson, L.G.; Angelhed, J.E.; Denbratt, L.; Gottfridsson, B.; Schlossman, D.

    1991-01-01

    A digital system for chest radiography based on a large image intensifier was compared to a conventional film-screen system. The digital system was optimized with regard to spatial and contrast resolution and dose. The images were digitally processed for contrast and edge enhancement. A simulated pneumothorax and two and two simulated nodules were positioned over the lungs and the mediastinum of an anthro-pomorphic phantom. Observer performance was evaluated with Receiver Operating Characteristic (ROC) analysis. Five observers assessed the processed digital images and the conventional full-size radiographs. The time spent viewing the full-size radiographs and the digital images was recorded. For the simulated pneumothorax, the results showed perfect performance for the full-size radiographs and detectability was high also for the processed digital images. No significant differences in the detectability of the simulated nodules was seen between the two imaging systems. The results for the digital images showed a significantly improved detectability for the nodules in the mediastinum as compared to a previous ROC study where no optimization and image processing was available. No significant difference in detectability was seen between the former and the present ROC study for small nodules in the lung. No difference was seen in the time spent assessing the conventional full-size radiographs and the digital images. The study indicates that processed digital images produced by a large image intensifier are equal in image quality to conventional full-size radiographs for low-contrast objects such as nodules. (author). 38 refs.; 4 figs.; 1 tab

  11. Digital image processing for radiography in nuclear power plants

    International Nuclear Information System (INIS)

    Heidt, H.; Rose, P.; Raabe, P.; Daum, W.

    1985-01-01

    With the help of digital processing of radiographic images from reactor-components it is possible to increase the security and objectiveness of the evaluation. Several examples of image processing procedures (contrast enhancement, density profiles, shading correction, digital filtering, superposition of images etc.) show the advantages for the visualization and evaluation of radiographs. Digital image processing can reduce some of the restrictions of radiography in nuclear power plants. In addition a higher degree of automation can be cost-saving and increase the quality of radiographic evaluation. The aim of the work performed was to to improve the readability of radiographs for the human observer. The main problem is lack of contrast and the presence of disturbing structures like weld seams. Digital image processing of film radiographs starts with the digitization of the image. Conventional systems use TV-cameras or scanners and provide a dynamic range of 1.5. to 3 density units, which are digitized to 256 grey levels. For the enhancement process it is necessary that the grey level range covers the density range of the important regions of the presented film. On the other hand the grey level coverage should not be wider than necessary to minimize the width of digitization steps. Poor digitization makes flaws and cracks invisible and spoils all further image processing

  12. Epithelioid sarcoma: clinical, MR imaging and pathologic findings

    International Nuclear Information System (INIS)

    Hanna, S.L.; Kaste, S.; Jenkins, J.J.; Hewan-Lowe, K.; Spence, J.V.; Gupta, M.; Monson, D.; Fletcher, B.D.

    2002-01-01

    Objective. To report and describe the MR imaging features of eight new cases of this rare soft tissue sarcoma and correlate them with the clinical and histologic findings.Design and patients. Retrospective analysis was carried out for the MR imaging characteristics and histologic findings of eight patients with pathologically proven epithelioid sarcoma and the literature was reviewed. Findings were correlated in each case with the patient's clinical presentation and eventual outcome.Results. The patients, whose primary tumors ranged from 2.5 cm to 19 cm in maximum dimension, were 1 to 90 years of age. Tumors involved the extremities (n=5), the scalp (n=2) and the paraspinal muscles (n=1). Five tumors presented as well-defined, frequently painful, deeply situated masses and three as subcutaneous nodules or cutaneous ulcers with no palpable mass. Four patients had associated regional lymphadenopathy and one had distant metastases at diagnosis. MR imaging showed tumor infiltration of adjacent tissues in seven patients. Signal characteristics reflected varying degrees of cellularity, and the presence of necrosis, hemorrhage, fibrosis, hyalinization and inflammation. Bone marrow involvement was demonstrated in one patient. Clinical outcomes were generally poor.Conclusions. Epithelioid sarcoma is an aggressive soft tissue sarcoma with a varied clinical presentation, growth pattern, MR signal characteristics and histologic picture. The tumor favors the distal extremities and is commonly infiltrative and accompanied by enlarged regional lymph nodes. This neoplasm may present as an intramuscular mass but should also be suspected in patients with ulcerating cutaneous nodules with or without regional lymphadenopathy. (orig.)

  13. Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.

    Science.gov (United States)

    Irwin, David J; Byrne, Matthew D; McMillan, Corey T; Cooper, Felicia; Arnold, Steven E; Lee, Edward B; Van Deerlin, Vivianna M; Xie, Sharon X; Lee, Virginia M-Y; Grossman, Murray; Trojanowski, John Q

    2016-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. © The Author(s) 2015.

  14. Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy

    Science.gov (United States)

    Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.

    2015-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548

  15. Digital imaging in conventional diagnostic radiology: status and trends

    International Nuclear Information System (INIS)

    Pfeiler, M.; Marhoff, P.; Schipper, P.

    1984-01-01

    Digital techniques, i.e. techniques using microcomputers of minicomputers, are getting increasingly common in so-called conventional radiography. These nonreconstructive techniques are referred to here as 'digital, direct-imaging radiography' in order to contrast them with the reconstructive techniques of computerized tomography. Digitalisation of imaging and image processing operation and control will change the jobs of the radiologist and radiological assistants in such manner that only X-ray units with film-foil systems or with X-ray image intensification should be classified as conventional systems. Digital and conventional systems differ in that digital techniques imply the possibility of establishing data pools which may eventually be developed into a digital image interconnection and archiving system. The authors first describe the general system in which the digital imaging systems must be integrated on a medium-term and long-term basis and then proceed to discuss digital imaging and image processing in some more detail. (orig./WU) [de

  16. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  17. Problems with Permatrace: a note on digital image publication

    Directory of Open Access Journals (Sweden)

    Guy Hopkinson

    2004-01-01

    Full Text Available The methodology presented here developed out of work required to convert the hard-copy illustrations submitted to Internet Archaeology for publication of the 1975 excavations at Cricklade. The publication (and digital image preparatory work was funded by English Heritage and was, in part, an experiment designed to explore some of the possibilities presented by digital image publication. Various challenges in how to transform the drawings on permatrace to a digital format were encountered. While a full exploration of the potential of all areas of digital image preparation and publication was not possible, some interesting technical options were evaluated. This short article explains the processes applied in creating the images that were finally incorporated within the publication. It also examines some other avenues regarding the presentation of archaeological drawings that could be explored in both future Internet Archaeology content and other digital publications.

  18. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  19. In Vivo Imaging of Tau Pathology Using Magnetic Resonance Imaging Textural Analysis

    Directory of Open Access Journals (Sweden)

    Niall Colgan

    2017-11-01

    Full Text Available Background: Non-invasive characterization of the pathological features of Alzheimer's disease (AD could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden.Methods: MRTA was applied to T2 weighted high-resolution MR images of nine 8.5-month-old rTg4510 tau pathology (TG mice and 16 litter matched wild-type (WT mice. MRTA comprised of the filtration-histogram technique, where the filtration step extracted and enhanced features of different sizes (fine, medium, and coarse texture scales, followed by quantification of texture using histogram analysis (mean gray level intensity, mean intensity, entropy, uniformity, skewness, standard-deviation, and kurtosis. MRTA was applied to manually segmented regions of interest (ROI drawn within the cortex, hippocampus, and thalamus regions and the level of tau burden was assessed in equivalent regions using histology.Results: Texture parameters were markedly different between WT and TG in the cortex (E, p < 0.01, K, p < 0.01, the hippocampus (K, p < 0.05 and in the thalamus (K, p < 0.01. In addition, we observed significant correlations between histological measurements of tau burden and kurtosis in the cortex, hippocampus and thalamus.Conclusions: MRTA successfully differentiated WT and TG in brain regions with varying degrees of tau pathology (cortex, hippocampus, and thalamus based on T2 weighted MR images. Furthermore, the kurtosis measurement correlated with histological measures of tau burden. This initial study indicates that MRTA may have a role in the early diagnosis of AD and the assessment of tau pathology using

  20. Imaging characteristics of hepatocellular adenoma compared with pathologic findings

    International Nuclear Information System (INIS)

    Zhao Jing; Zhao Xinming; Ouyang Han; Huang Wenting; Zhou Chunwu

    2012-01-01

    -intense signal on the T 1 WI and hyper-intense signal on the T 2 WI with fat suppression sequences. There were 3 patients with an atypical adenoma type. One patient appeared uniform hypo-density on the non-enhanced CT and hyper-density on the hepatic arterial-dominant phase and became iso-dense on the portal venous phase. On the delay phase, it was slightly hyper-dense. Two out of the three lesions showed isointense and one hypo-intense signal on the in-phase T 1 WI, and hypo-intense, hyper-intense, and iso-intense signal on the T 2 WI with fat suppression sequences,respectively. Two patients examined on all phases of post-contrast MRI scans. The result was similar to the CT findings. Conclusion: The imaging features of hepatocellular adenoma are closely associated with pathological characteristics. (authors)

  1. Imaging-pathologic correlation of multi-step hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Matsui, O.

    2012-01-01

    Full text: Approximately 80% of Japanese HCC cases are derived from HCV-associated liver cirrhosis and chronic hepatitis, and the remaining less than 20% of patients are HBV positive. Because of the introduction of this surveillance system by periodic ultrasound in these high-risk patients, the size of HCCs firstly detected during 2004 to 2005 (n=16809) was less than 2cm in 35% of all cases, 2.1-5.0 cm 48%, respectively. However, various types of hepatocellular nodules such as dysplastic nodule are also detected during screening procedures. Pathologically, human HCC often develops in a multistep fashion from dysplastic nodule to classic hyper vascular HCC. Therefore, for the early diagnosis of HCC, understanding of the sequential changes of imaging findings in accordance with multi-step hepatocarcinogenseis is important. In addition, to understand the imaging features of various types of HCC is also important for the precise characterization of HCCs. (1) Classification of hepatocellular nodules during multistep hepatocarcinogenesis; According to International Consensus Group for Hepatocellular Neoplasia, these nodules are divided into large regenerative nodule, low grade dysplastic nodule (L-DN), high-grade dysplastic nodule (H-DN), and HCC. In addition, small HCC (less than 2 cm) is divided into early HCC and progressed HCC. Early HCC has a vaguely nodular appearance and is highly well differentiated. (2) Imaging of multistep hepatocarcinogenesis; We revealed that the intranodular blood supply changes in accordance with the progression of human hepatocarcinogenesis from dyspalstic nodule to overt HCC. The intranodular portal supply relative to the surrounding liver parenchyma evaluated by CT during arterial portography (CTAP) is decreased, whereas the intranodular arterial supply evaluated by CT during hepatic arteriography (CTHA) revealed is first decreased during the early stage of hepatocarcinogenesis and then increased in parallel with increasing grade of

  2. Digitalization and networking of analog simulators and portal images

    Energy Technology Data Exchange (ETDEWEB)

    Pesznyak, C.; Zarand, P.; Mayer, A. [Uzsoki Hospital, Budapest (Hungary). Inst. of Oncoradiology

    2007-03-15

    Background: Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R and V (Record and Verify) system is required. Material and Methods: Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Results: Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. Conclusion: The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R and V system. (orig.)

  3. Digitalization and networking of analog simulators and portal images.

    Science.gov (United States)

    Pesznyák, Csilla; Zaránd, Pál; Mayer, Arpád

    2007-03-01

    Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R&V (Record & Verify) system is required. Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R&V system.

  4. Implementation of TMA and digitalization in routine diagnostics of breast pathology

    DEFF Research Database (Denmark)

    Rossing, Henrik Holm; Talman, Maj-Lis; Laenkholm, Anne-Vibeke

    2012-01-01

    To ensure optimal treatment of breast cancer patients, breast tumours are classified based on clinico-pathological features. As part of this process, routine diagnostics of breast tumours includes histological typing and grading, as well as profiling by use of an immunohistochemistry panel...... of antibodies, probes and in situ hybridization. This will, as a minimum, include assessment of oestrogen receptor (OR) and HER2. The individual preparation and staining of many breast tumours in a large laboratory with this standard panel is thus time consuming and costly. Herein, we show that in breast cancer...... routine diagnostics the use of the tissue microarray technique in combination with digitalization of the stained multi-slides is not only economical, with a considerable cost reduction, but it also enhances standardization of tumour profiling. We demonstrate that 2 mm breast tumour cores correlate...

  5. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  6. Fat suppression applied to MR imaging of the pathologic orbit

    International Nuclear Information System (INIS)

    Simon, J.H.; Kido, D.K.; Ekholm, S.E.; Totterman, S.; Szumowski, J.; Manzione, J.V. Jr.; Joy, S.E.

    1987-01-01

    Previous MR studies of the normal orbit have shown that fat suppression sequences applied at the proper T1-T2 weighting will decrease artifacts from chemical shift, and can be used to enhance contrast in selected anatomic regions. The purpose of this study was to evaluate the clinical application of fat suppression to studies of the pathologic orbit. The studies included conventional imaging sequences and comparative fat suppression sequences through a range of T1-T2 weighting (repetition time [TR] 400 msec, echo time [TE]20 msec, to TR 2,000 msec, TE 90 msec), using the chopper fat suppression technique developed by J. Szumowski and D. Plewes, which requires no postprocessing and no increased scan time to achieve relatively linear fat suppression. Fat suppression was advantageous in determining tumor margins (extension through sclera); increasing diagnostic specificity (fat vs. water content); detailing anatomic relationships along bony margins (particularly in the orbital apex); and for demonstrating true thickness of optic nerve separate from adjacent cerebrospinal fluid and fibrous sheath. Disadvantages included susceptibility to motion artifact and a perception of lower quality due to lower overall orbital signal

  7. Myocardial perfusion imaging by digital subtraction angiography

    International Nuclear Information System (INIS)

    Kadowaki, Hiroyuki; Ishikawa, Kinji; Ogai, Toshihiro; Katori, Ryo

    1986-01-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; 1) at the R wave of the electrocardiogram, 2) 100 msec before the R wave, and 3) 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery. In all patients with anterior myocardial infarction, low perfusion was observed at the infarcted portion compared to the non-infarcted myocardium. In patients with inferior myocardial infarction, this low perfusion area was not observed because right coronary angiography was not subjected to DSA in this study. (J.P.N.)

  8. [Myocardial perfusion imaging by digital subtraction angiography].

    Science.gov (United States)

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  10. Quality assurance in digital dental imaging: a systematic review.

    Science.gov (United States)

    Metsälä, Eija; Henner, Anja; Ekholm, Marja

    2014-07-01

    Doses induced by individual dental examinations are low. However, dental radiography accounts for nearly one third of the total number of radiological examinations in the European Union. Therefore, special attention is needed with regard to radiation protection. In order to lower patient doses, the staff performing dental examinations must have competence in imaging as well as in radiation protection issues. This paper presents a systematic review about the core competencies needed by the healthcare staff in performing digital dental radiological imaging quality assurance. The following databases were searched: Pubmed, Cinahl, Pro Quest and IEEXplore digital library. Also volumes of some dental imaging journals and doctoral theses of the Finnish universities educating dentists were searched. The search was performed using both MeSH terms and keywords using the option 'search all text'. The original keywords were: dental imaging, digital, x-ray, panoramic, quality, assurance, competence, competency, skills, knowledge, radiographer, radiologist technician, dentist, oral hygienist, radiation protection and their Finnish synonyms. Core competencies needed by the healthcare staff performing digital dental radiological imaging quality assurance described in the selected studies were: management of dental imaging equipment, competence in image quality and factors associated with it, dose optimization and quality assurance. In the future there will be higher doses in dental imaging due to increasing use of CBCT and digital imaging. The staff performing dental imaging must have competence in dental imaging quality assurance issues found in this review. They also have to practice ethical radiation safety culture in clinical practice.

  11. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  12. Evaluating imaging-pathology concordance and discordance after ultrasound-guided breast biopsy

    Science.gov (United States)

    2018-01-01

    Ultrasound (US)-guided breast biopsy has become the main method for diagnosing breast pathology, and it has a high diagnostic accuracy, approaching that of open surgical biopsy. However, methods for confirming adequate lesion retrieval after US-guided biopsy are relatively limited and false-negative results are unavoidable. Determining imaging-pathology concordance after US-guided biopsy is essential for validating the biopsy result and providing appropriate management. In this review article, we briefly present the results of US-guided breast biopsy; describe general aspects to consider when establishing imaging-pathology concordance; and review the various categories of imaging-pathology correlations and corresponding management strategies. PMID:29169231

  13. Epistemic Function and Ontology of Analog and Digital Images

    Directory of Open Access Journals (Sweden)

    Aleksandra Łukaszewicz Alcaraz

    2016-01-01

    Full Text Available The important epistemic function of photographic images is their active role in construction and reconstruction of our beliefs concerning the world and human identity, since we often consider photographs as presenting reality or even the Real itself. Because photography can convince people of how different social and ethnic groups and even they themselves look, documentary projects and the dissemination of photographic practices supported the transition from disciplinary society to the present-day society of control. While both analog and digital images are formed from the same basic materia, the ways in which this matter appears are distinctive. In the case of analog photography, we deal with physical and chemical matter, whereas with digital images we face electronic matter. Because digital photography allows endless modification of the image, we can no longer believe in the truthfulness of digital images.

  14. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  15. Implementation of TMA and digitalization in routine diagnostics of breast pathology.

    Science.gov (United States)

    Rossing, Henrik Holm; Talman, Maj-Lis Møller; Laenkholm, Anne-Vibeke; Wielenga, Vera Timmermans

    2012-04-01

    To ensure optimal treatment of breast cancer patients, breast tumours are classified based on clinico-pathological features. As part of this process, routine diagnostics of breast tumours includes histological typing and grading, as well as profiling by use of an immunohistochemistry panel of antibodies, probes and in situ hybridization. This will, as a minimum, include assessment of oestrogen receptor (OR) and HER2. The individual preparation and staining of many breast tumours in a large laboratory with this standard panel is thus time consuming and costly. Herein, we show that in breast cancer routine diagnostics the use of the tissue microarray technique in combination with digitalization of the stained multi-slides is not only economical, with a considerable cost reduction, but it also enhances standardization of tumour profiling. We demonstrate that 2 mm breast tumour cores correlate with the corresponding tumour on whole mount slides, regarding staining/hybridizing results with the biomarkers in our panel consisting of human epidermal growth factor receptor 2, OR and Topiomerase IIa. Furthermore, we show that simultaneous staining/hybridizing of multiple breast tumour specimens reduces variation of staining/hybridizing quality, hereby increasing reliability of interpretation. By scanning and digitalization of the stained and hybridized multi-slides, we could optimize documentation and filing of the results. Our work is an example of translational research by implementing a tool in daily diagnostics originally developed for high throughput analyses in the search for prognostic and predictive markers in targeted medicine. © 2012 The Authors APMIS © 2012 APMIS.

  16. A radiographic image archive system on digital optical disks

    International Nuclear Information System (INIS)

    Mankovich, N.J.; Taira, R.K.; Cho, P.S.; Wong, W.K.; Stewart, B.K.; Huang, H.K.

    1986-01-01

    The recent introduction of projection computed radiography (CR) systems allows radiology departments to consider digital operation in over 90% of performed procedures. Ideally, current patient procedures from CT, CT, and MR along with laser-digitized historical films should be centrally stored at their full digital resolution. Magnetic disks, because of their limited storage capacity and expense, can only retain these data on a limited basis. The author devised an optical disk archive system which automatically stores images directly onto 2.6-gigabyte optical cartridges without recourse to film. This system is in full clinical operation in the UCLA Pediatric Radiology Section of the authors' department. From this experience they present (a) an analysis of the digital archiving requirements of the Pediatric Radiology Section based on CR, CT, MR, and laser digitized films; (b) the archive and retrieval methods along with performance statistics; and (c) the procedure for assuring digital image integrity

  17. RecutClub.com: An open source, whole slide image-based pathology education system

    Directory of Open Access Journals (Sweden)

    Paul A Christensen

    2017-01-01

    Full Text Available Background: Our institution's pathology unknown conferences provide educational cases for our residents. However, the cases have not been previously available digitally, have not been collated for postconference review, and were not accessible to a wider audience. Our objective was to create an inexpensive whole slide image (WSI education suite to address these limitations and improve the education of pathology trainees. Materials and Methods: We surveyed residents regarding their preference between four unique WSI systems. We then scanned weekly unknown conference cases and study set cases and uploaded them to our custom built WSI viewer located at RecutClub.com. We measured site utilization and conference participation. Results: Residents preferred our OpenLayers WSI implementation to Ventana Virtuoso, Google Maps API, and OpenSlide. Over 16 months, we uploaded 1366 cases from 77 conferences and ten study sets, occupying 793.5 GB of cloud storage. Based on resident evaluations, the interface was easy to use and demonstrated minimal latency. Residents are able to review cases from home and from their mobile devices. Worldwide, 955 unique IP addresses from 52 countries have viewed cases in our site. Conclusions: We implemented a low-cost, publicly available repository of WSI slides for resident education. Our trainees are very satisfied with the freedom to preview either the glass slides or WSI and review the WSI postconference. Both local users and worldwide users actively and repeatedly view cases in our study set.

  18. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  19. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  20. Evaluation of display on CRT by various processing digital images

    International Nuclear Information System (INIS)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-01-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera. (author)

  1. Evaluation of display on CRT by various processing digital images

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-12-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera.

  2. The clinical application of the digital imaging in urography

    International Nuclear Information System (INIS)

    Zhu Yuelong; Xie Sumin; Zhang Li; Li Huayu

    2003-01-01

    Objective: To evaluate the clinical application of the digital imaging in the urography. Methods: In total 112 patients underwent digital urography, including intravenous pyelography (IVP) in 38 cases and retrograde pyelography in 74 cases. Results: the entire urinary tract was better shown on digital imaging, which was accurate in locating the obstruction of urinary tract and helped the qualitative diagnosis. Digital urography was especially valuable in detecting urinary calculus. In 38 cases of IVP, the results were normal in 5 patients, renal stone in 12, ureteral stone in 13, ureteral stenosis in 6 and nephroblastom in 2. In the 74 cases of retrograde pyelography, benign ureteral stenosis was found in 31 patients, ureteral stone in 27, ureteral polyp in 2, urethral stone in 8 and benign urethral stenosis in 6. Conclusion: Digital imaging technique is of big value in the diagnosis of urinary tract lesions

  3. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  4. Digitalization of the radiological image. A new philosophy of the radiological imagery: the high resolution of the contrasts

    International Nuclear Information System (INIS)

    Schmidt, R.

    1983-01-01

    Three cases of digitalization are to be considered: static digitalization of the conventional radiographic image; static digitalization of the calculated image, like tomodensitometric images; dynamic digitalization of television images [fr

  5. Simple and robust image-based autofocusing for digital microscopy.

    Science.gov (United States)

    Yazdanfar, Siavash; Kenny, Kevin B; Tasimi, Krenar; Corwin, Alex D; Dixon, Elizabeth L; Filkins, Robert J

    2008-06-09

    A simple image-based autofocusing scheme for digital microscopy is demonstrated that uses as few as two intermediate images to bring the sample into focus. The algorithm is adapted to a commercial inverted microscope and used to automate brightfield and fluorescence imaging of histopathology tissue sections.

  6. Factors to consider in the transition to digital radiological imaging.

    LENUS (Irish Health Repository)

    MacDonald, David

    2009-02-01

    The dentist considering adopting digital radiological technology should consider more than the type of detector with which to capture the image. He\\/she should also consider the mode of display, image enhancement, radiation dose reduction, how the image can be stored long term, and infection control.

  7. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  8. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    Science.gov (United States)

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  9. Information Seeking Behavior in Digital Image Collections: A Cognitive Approach

    Science.gov (United States)

    Matusiak, Krystyna K.

    2006-01-01

    Presents the results of a qualitative study that focuses on search patterns of college students and community users interacting with a digital image collection. The study finds a distinct difference between the two groups of users and examines the role of mental models in information seeking behavior in digital libraries.

  10. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  11. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  12. Development of digital image correlation method to analyse crack ...

    Indian Academy of Sciences (India)

    samples were performed to verify the performance of the digital image correlation method. ... development cannot be measured accurately. ..... Mendelson A 1983 Plasticity: Theory and application (USA: Krieger Publishing company Malabar,.

  13. Digital Imaging of Pipeline Mechanical Damage and Residual Stress

    Science.gov (United States)

    2010-02-19

    The purpose of this program was to enhance characterization of mechanical damage in pipelines through application of digital eddy current imaging. Lift-off maps can be used to develop quantitative representations of mechanical damage and magnetic per...

  14. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  15. Pathologic and post-operative conditions of the plantar fascia: review of MR imaging appearances

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.S. [Ohio State Univ., Columbus (United States). Dept. of Radiology

    2000-09-01

    Magnetic resonance (MR) imaging has emerged as an important noninvasive diagnostic imaging technique for assessment of foot pathology. This modality, owing to its multiplanar imaging capability and inherent superiority in contrast, has been shown to be more accurate and sensitive for detection of plantar fascia pathology than any other imaging method. One of the most important and recognizable causes of heel pain is plantar fasciitis. With the exception of plantar fasciitis, there has been little emphasis on imaging other conditions that affect this important structure. The objective of this review is to demonstrate, from a perspective of MR imaging, the many different pathologic conditions that affect the plantar fascia. Included in this review will be a discussion of normal anatomy as well as entities such as acute plantar fasciitis, chronic plantar fasciitis, traumatic rupture, normal post-surgical changes, pathologic post-fasciotomy conditions, infection, and fibromatosis. (orig.)

  16. Pathologic and post-operative conditions of the plantar fascia: review of MR imaging appearances

    International Nuclear Information System (INIS)

    Yu, J.S.

    2000-01-01

    Magnetic resonance (MR) imaging has emerged as an important noninvasive diagnostic imaging technique for assessment of foot pathology. This modality, owing to its multiplanar imaging capability and inherent superiority in contrast, has been shown to be more accurate and sensitive for detection of plantar fascia pathology than any other imaging method. One of the most important and recognizable causes of heel pain is plantar fasciitis. With the exception of plantar fasciitis, there has been little emphasis on imaging other conditions that affect this important structure. The objective of this review is to demonstrate, from a perspective of MR imaging, the many different pathologic conditions that affect the plantar fascia. Included in this review will be a discussion of normal anatomy as well as entities such as acute plantar fasciitis, chronic plantar fasciitis, traumatic rupture, normal post-surgical changes, pathologic post-fasciotomy conditions, infection, and fibromatosis. (orig.)

  17. Needs and workflow assessment prior to implementation of a digital pathology infrastructure for the US Air Force Medical Service

    Directory of Open Access Journals (Sweden)

    Jonhan Ho

    2013-01-01

    Full Text Available Background: Advances in digital pathology are accelerating integration of this technology into anatomic pathology (AP. To optimize implementation and adoption of digital pathology systems within a large healthcare organization, initial assessment of both end user (pathologist needs and organizational infrastructure are required. Contextual inquiry is a qualitative, user-centered tool for collecting, interpreting, and aggregating such detailed data about work practices that can be employed to help identify specific needs and requirements. Aim: Using contextual inquiry, the objective of this study was to identify the unique work practices and requirements in AP for the United States (US Air Force Medical Service (AFMS that had to be targeted in order to support their transition to digital pathology. Subjects and Methods: A pathology-centered observer team conducted 1.5 h interviews with a total of 24 AFMS pathologists and histology lab personnel at three large regional centers and one smaller peripheral AFMS pathology center using contextual inquiry guidelines. Findings were documented as notes and arranged into a hierarchal organization of common themes based on user-provided data, defined as an affinity diagram. These data were also organized into consolidated graphic models that characterized AFMS pathology work practices, structure, and requirements. Results: Over 1,200 recorded notes were grouped into an affinity diagram composed of 27 third-level, 10 second-level, and five main-level (workflow and workload distribution, quality, communication, military culture, and technology categories. When combined with workflow and cultural models, the findings revealed that AFMS pathologists had needs that were unique to their military setting, when compared to civilian pathologists. These unique needs included having to serve a globally distributed patient population, transient staff, but a uniform information technology (IT structure. Conclusions: The

  18. Micro-Structure Measurement and Imaging Based on Digital Holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem [Chosun University, Gwangju (Korea, Republic of); Kee, Chang Doo [Chonnam National University, Gwangju (Korea, Republic of)

    2010-06-15

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  19. Micro-Structure Measurement and Imaging Based on Digital Holography

    International Nuclear Information System (INIS)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem; Kee, Chang Doo

    2010-01-01

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  20. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    Dyer, G.R.

    1986-01-01

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  1. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  2. MR imaging of the eyeball : anatomy and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hun; Lee, Ho Kyu; Yoon, Young Hee; Choi, Choong Gon; Suh, Dae Chul [Asan Medical Center, Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-06-01

    The eyeball can be divided into the anterior and posterior compartment bordering on the lens. The ocular wall is composed of three layers, namely the sclera, choroid and retina. Different pathologic conditions can occur, depending on the anatomic location. This paper illustrates the anatomical features of normal eyeball, as seen on MRI, and a variety of pathologic conditions of the compartments. An understanding of the MR features of various intraocular lesions is thus facilitated.

  3. MR imaging of the eyeball : anatomy and pathology

    International Nuclear Information System (INIS)

    Kim, Dong Hun; Lee, Ho Kyu; Yoon, Young Hee; Choi, Choong Gon; Suh, Dae Chul

    1999-01-01

    The eyeball can be divided into the anterior and posterior compartment bordering on the lens. The ocular wall is composed of three layers, namely the sclera, choroid and retina. Different pathologic conditions can occur, depending on the anatomic location. This paper illustrates the anatomical features of normal eyeball, as seen on MRI, and a variety of pathologic conditions of the compartments. An understanding of the MR features of various intraocular lesions is thus facilitated

  4. Creating an anthropomorphic digital MR phantom—an extensible tool for comparing and evaluating quantitative imaging algorithms

    International Nuclear Information System (INIS)

    Bosca, Ryan J; Jackson, Edward F

    2016-01-01

    Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland–Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms. (paper)

  5. The influence of software filtering in digital mammography image quality

    Science.gov (United States)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  6. The influence of software filtering in digital mammography image quality

    International Nuclear Information System (INIS)

    Michail, C; Spyropoulou, V; Valais, I; Panayiotakis, G; Kalyvas, N; Fountos, G; Kandarakis, I; Dimitropoulos, N

    2009-01-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  7. NAIP Digital Ortho Photo Image 2010

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  8. Digital Image Quantitative Evaluations for Low Cost Film Digitizers Height Determination

    International Nuclear Information System (INIS)

    Khairul Anuar Mohd Salleh; Arshad Yassin; Ahmad Nasir Yusof; Noorhazleena Azaman

    2016-01-01

    Non Destructive Testing (NDT) technology contributes significant improvement to the quality of industrial products, and the integrity of equipment and plants. Introduction of powerful computers and reliable imaging technology has had significant impact on the traditional nuclear based NDT technology. Demand for faster, reliable, low cost, and flexible technology is rapidly increased. With the growing demand for more efficient digital archiving, digital image analysis, and reporting results with a low cost technology, one cannot deny the importance of having another cheaper solution. This project will apply fundamental principle of image digitization to be used in building up a low cost film digitization solution. The height of the film digitization was carefully determined by examining each digital images produced. Three (3) repetitive quantitative evaluations (Modulation Transfer Function [MTF], Characteristic Transfer Curve [CTC], and Contrast to Noise Ratio [CNR]) were performed at different condition to assist with the determination of the low cost film digitizers height. All 3 evaluations were successfully applied and the most appropriate height was successfully determined. (author)

  9. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    Science.gov (United States)

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Digital image processing in NDT : Application to industrial radiography

    International Nuclear Information System (INIS)

    Aguirre, J.; Gonzales, C.; Pereira, D.

    1988-01-01

    Digital image processing techniques are applied to image enhancement discontinuity detection and characterization is radiographic test. Processing is performed mainly by image histogram modification, edge enhancement, texture and user interactive segmentation. Implementation was achieved in a microcomputer with video image capture system. Results are compared with those obtained through more specialized equipment main frame computers and high precision mechanical scanning digitisers. Procedures are intended as a precious stage for automatic defect detection

  11. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  12. A report on digital image processing and analysis

    International Nuclear Information System (INIS)

    Singh, B.; Alex, J.; Haridasan, G.

    1989-01-01

    This report presents developments in software, connected with digital image processing and analysis in the Centre. In image processing, one resorts to either alteration of grey level values so as to enhance features in the image or resorts to transform domain operations for restoration or filtering. Typical transform domain operations like Karhunen-Loeve transforms are statistical in nature and are used for a good registration of images or template - matching. Image analysis procedures segment grey level images into images contained within selectable windows, for the purpose of estimating geometrical features in the image, like area, perimeter, projections etc. In short, in image processing both the input and output are images, whereas in image analyses, the input is an image whereas the output is a set of numbers and graphs. (author). 19 refs

  13. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  14. Optimal image resolution for digital storage of radiotherapy-planning images

    International Nuclear Information System (INIS)

    Baba, Yuji; Furusawa, Mitsuhiro; Murakami, Ryuji; Baba, Takashi; Yokoyama, Toshimi; Nishimura, Ryuichi; Takahashi, Mutsumasa

    1998-01-01

    Purpose: To evaluate the quality of digitized radiation-planning images at different resolution and to determine the optimal resolution for digital storage. Methods and Materials: Twenty-five planning films were scanned and digitized using a film scanner at a resolution of 72 dots per inch (dpi) with 8-bit depth. The resolution of scanned images was reduced to 48, 36, 24, and 18 dpi using computer software. Image qualities of these five images (72, 48, 36, 24, and 18 dpi) were evaluated and given scores (4 = excellent; 3 = good; 2 = fair; and 1 = poor) by three radiation oncologists. An image data compression algorithm by the Joint Photographic Experts Group (JPEG) (not reversible and some information will be lost) was also evaluated. Results: The scores of digitized images with 72, 48, 36, 24, and 17 dpi resolution were 3.8 ± 0.3, 3.5 ± 0.3, 3.3 ± 0.5, 2.7 ± 0.5, and 1.6 ± 0.3, respectively. The quality of 36-dpi images were definitely worse compared to 72-dpi images, but were good enough as planning films. Digitized planning images with 72- and 36-dpi resolution requires about 800 and 200 KBytes, respectively. The JPEG compression algorithm produces little degradation in 36-dpi images at compression ratios of 5:1. Conclusion: The quality of digitized images with 36-dpi resolution was good enough as radiation-planning images and required 200 KBytes/image

  15. New modified map for digital image encryption and its performance

    Science.gov (United States)

    Suryadi, MT; Yus Trinity Irsan, Maria; Satria, Yudi

    2017-10-01

    Protection to classified digital data becomes so important in avoiding data manipulation and alteration. The focus of this paper is in data and information protection of digital images form. Protection is provided in the form of encrypted digital image. The encryption process uses a new map, {x}n+1=\\frac{rλ {x}n}{1+λ {(1-{x}n)}2}\\quad ({mod} 1), which is called MS map. This paper will show: the results of digital image encryption using MS map and how the performance is regarding the average time needed for encryption/decryption process; randomness of key stream sequence with NIST test, histogram analysis and goodness of fit test, quality of the decrypted image by PSNR, initial value sensitivity level, and key space. The results show that the average time of the encryption process is relatively same as the decryption process and it depends to types and sizes of the image. Cipherimage (encrypted image) is uniformly distributed since: it passes the goodness of fit test and also the histogram of the cipherimage is flat; key stream, that are generated by MS map, passes frequency (monobit) test, and runs test, which means the key stream is a random sequence; the decrypted image has same quality as the original image; and initial value sensitivity reaches 10-17, and key space reaches 3.24 × 10634. So, that encryption algorithm generated by MS map is more resistant to brute-force attack and known plaintext attack.

  16. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  17. Digital Data Processing of Images | Lotter | South African Medical ...

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  18. Quantification of image persistence in a digital angiography system

    International Nuclear Information System (INIS)

    Okkalides, D.P.; Raptou, P.D.

    1993-01-01

    Image persistence, as a characteristic of video imaging systems affecting the quality of fast moving fluoroscopic images, is shown to vary considerably. A simple quantitative method for measuring image persistence in a digital angiography system is presented, together with a series of image intensifier exposure-response curves. For the Saticon tube, used with the Siemens 3VA Digitron, it was found that persistence increased for low exposure rates and may increase to 31% at a 120 ms interval. In addition, a sharp increase in image persistence, from 8.3% to 33%, was observed within 18 months from installation of the system. (author)

  19. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  20. The task of control digital image compression

    OpenAIRE

    TASHMANOV E.B.; МАМАTOV М.S.

    2014-01-01

    In this paper we consider the relationship of control tasks and image compression losses. The main idea of this approach is to allocate structural lines simplified image and further compress the selected data

  1. Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology

    DEFF Research Database (Denmark)

    Tardif, Christine L; Bedell, Barry J; Eskildsen, Simon Fristed

    2012-01-01

    pathology. The objective of this study was to characterize the MRI signature of CLs to help interpret the changes seen in vivo and elucidate the factors limiting their visualization. A quantitative 3D high-resolution (350 μm isotropic) MRI study at 3 Tesla of a fixed post mortem cerebral hemisphere from...

  2. Open source tools for management and archiving of digital microscopy data to allow integration with patient pathology and treatment information.

    Science.gov (United States)

    Khushi, Matloob; Edwards, Georgina; de Marcos, Diego Alonso; Carpenter, Jane E; Graham, J Dinny; Clarke, Christine L

    2013-02-12

    Virtual microscopy includes digitisation of histology slides and the use of computer technologies for complex investigation of diseases such as cancer. However, automated image analysis, or website publishing of such digital images, is hampered by their large file sizes. We have developed two Java based open source tools: Snapshot Creator and NDPI-Splitter. Snapshot Creator converts a portion of a large digital slide into a desired quality JPEG image. The image is linked to the patient's clinical and treatment information in a customised open source cancer data management software (Caisis) in use at the Australian Breast Cancer Tissue Bank (ABCTB) and then published on the ABCTB website (http://www.abctb.org.au) using Deep Zoom open source technology. Using the ABCTB online search engine, digital images can be searched by defining various criteria such as cancer type, or biomarkers expressed. NDPI-Splitter splits a large image file into smaller sections of TIFF images so that they can be easily analysed by image analysis software such as Metamorph or Matlab. NDPI-Splitter also has the capacity to filter out empty images. Snapshot Creator and NDPI-Splitter are novel open source Java tools. They convert digital slides into files of smaller size for further processing. In conjunction with other open source tools such as Deep Zoom and Caisis, this suite of tools is used for the management and archiving of digital microscopy images, enabling digitised images to be explored and zoomed online. Our online image repository also has the capacity to be used as a teaching resource. These tools also enable large files to be sectioned for image analysis. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5330903258483934.

  3. Open source tools for management and archiving of digital microscopy data to allow integration with patient pathology and treatment information

    Directory of Open Access Journals (Sweden)

    Khushi Matloob

    2013-02-01

    Full Text Available Abstract Background Virtual microscopy includes digitisation of histology slides and the use of computer technologies for complex investigation of diseases such as cancer. However, automated image analysis, or website publishing of such digital images, is hampered by their large file sizes. Results We have developed two Java based open source tools: Snapshot Creator and NDPI-Splitter. Snapshot Creator converts a portion of a large digital slide into a desired quality JPEG image. The image is linked to the patient’s clinical and treatment information in a customised open source cancer data management software (Caisis in use at the Australian Breast Cancer Tissue Bank (ABCTB and then published on the ABCTB website (http://www.abctb.org.au using Deep Zoom open source technology. Using the ABCTB online search engine, digital images can be searched by defining various criteria such as cancer type, or biomarkers expressed. NDPI-Splitter splits a large image file into smaller sections of TIFF images so that they can be easily analysed by image analysis software such as Metamorph or Matlab. NDPI-Splitter also has the capacity to filter out empty images. Conclusions Snapshot Creator and NDPI-Splitter are novel open source Java tools. They convert digital slides into files of smaller size for further processing. In conjunction with other open source tools such as Deep Zoom and Caisis, this suite of tools is used for the management and archiving of digital microscopy images, enabling digitised images to be explored and zoomed online. Our online image repository also has the capacity to be used as a teaching resource. These tools also enable large files to be sectioned for image analysis. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5330903258483934

  4. Evaluation of a teaching strategy based on integration of clinical subjects, virtual autopsy, pathology museum, and digital microscopy for medical students.

    Science.gov (United States)

    Diaz-Perez, Julio A; Raju, Sharat; Echeverri, Jorge H

    2014-01-01

    Learning pathology is fundamental for a successful medical practice. In recent years, medical education has undergone a profound transformation toward the development of an integrated curriculum incorporating both basic science and clinical material. Simultaneously, there has been a shift from a magisterial teaching approach to one centered around problem-based learning. Now-a-days, informatics tools are expected to help better implement these strategies. We applied and evaluated a new teaching method based on an active combination of clinical problems, gross pathology, histopathology, and autopsy pathology, all given through informatics tools, to teach a group of medical students at the Universidad de Santander, Colombia. Ninety-four medical students were followed in two consecutive semesters. Students were randomized to receive teaching either through traditional methodology or through the new integrated approach. There was no significant difference between the intervention group and the control group at baseline. At the end of the study, the scores in the intervention group were significantly higher compared to the control group (3.91/5.0 vs. 3.33/5.0, P = 0.0008). Students and tutors endorsed the benefits of the integrated approach. Participants were very satisfied with this training approach and rated the program an 8.7 out of 10, on average. This study confirms that an integrated curriculum utilizing informatics systems provides an excellent opportunity to associate pathology with clinical medicine early in training of medical students. This can be possible with the use of virtual microscopy and digital imaging.

  5. Comparison of the automated evaluation of phantom mama in digital and digitalized images

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2011-01-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  6. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  7. Image enhancement of digital periapical radiographs according to diagnostic tasks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of)

    2014-03-15

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  8. Image enhancement of digital periapical radiographs according to diagnostic tasks

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung

    2014-01-01

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  9. Information quantity in a pixel of digital image

    OpenAIRE

    Kharinov, M.

    2014-01-01

    The paper is devoted to the problem of integer-valued estimating of information quantity in a pixel of digital image. The definition of an integer estimation of information quantity based on constructing of the certain binary hierarchy of pixel clusters is proposed. The methods for constructing hierarchies of clusters and generating of hierarchical sequences of image approximations that minimally differ from the image by a standard deviation are developed. Experimental results on integer-valu...

  10. Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.

  11. Digital image processing as an aid in forensic medicine

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.; Wenz, W.; Friedrich, G.

    1992-01-01

    Radiology plays an important role in the identification of unknown corpses. Positive radiographic identification by comparison with antemortem films is an established technique in this setting. Technical defects together with non-well-preserved films make it sometimes difficult or even impossible to establish a confident comparison. Digital image processing after secondary digitalization of ante- and postmortem films represents an important development and aid in forensic medicine. The application of this method is demonstrated on a single case. (orig.) [de

  12. 11C-Choline PET/pathology image coregistration in primary localized prostate cancer

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Prokic, Vesna; Weirich, Gregor; Wendl, Christina; Geinitz, Hans; Molls, Michael; Kirste, Simon; Souvatzoglou, Michael; Schwaiger, Markus; Gschwend, Juergen E.; Treiber, Uwe; Weber, Wolfgang A.; Krause, Bernd Joachim

    2014-01-01

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of 11 C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, 11 C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. 11 C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  13. Dual Level Digital Watermarking for Images

    Science.gov (United States)

    Singh, V. K.; Singh, A. K.

    2010-11-01

    More than 700 years ago, watermarks were used in Italy to indicate the paper brand and the mill that produced it. By the 18th century watermarks began to be used as anti counterfeiting measures on money and other documents.The term watermark was introduced near the end of the 18th century. It was probably given because the marks resemble the effects of water on paper. The first example of a technology similar to digital watermarking is a patent filed in 1954 by Emil Hembrooke for identifying music works. In 1988, Komatsu and Tominaga appear to be the first to use the term "digital watermarking". Consider the following hypothetical situations. You go to a shop, buy some goods and at the counter you are given a currency note you have never come across before. How do you verify that it is not counterfeit? Or say you go to a stationery shop and ask for a ream of bond paper. How do you verify that you have actually been given what you asked for? How does a philatelist verify the authenticity of a stamp? In all these cases, the watermark is used to authenticate. Watermarks have been in existence almost from the time paper has been in use. The impression created by the mesh moulds on the slurry of fibre and water remains on the paper. It serves to identify the manufacturer and thus authenticate the product without actually degrading the aesthetics and utility of the stock. It also makes forgery significantly tougher. Even today, important government and legal documents are watermarked. But what is watermarking, when it comes to digital data? Information is no longer present on a physical material but is represented as a series of zeros and ones. Duplication of information is achieved easily by just reproducing that combination of zeros and ones. How then can one protect ownership rights and authenticate data? The digital watermark is the same as that of conventional watermarks.

  14. Forensic Analysis of Digital Image Tampering

    Science.gov (United States)

    2004-12-01

    analysis of when each method fails, which Chapter 4 discusses. Finally, a test image containing an invisible watermark using LSB steganography is...2.2 – Example of invisible watermark using Steganography Software F5 ............. 8 Figure 2.3 – Example of copy-move image forgery [12...used to embed the hidden watermark is Steganography Software F5 version 11+ discussed in Section 2.2. Original JPEG Image – 580 x 435 – 17.4

  15. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  16. Experience with CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.; Cannon, M.

    1994-10-01

    This paper presents results from the authors experience with CANDID (Comparison Algorithm for Navigating Digital Image Databases), which was designed to facilitate image retrieval by content using a query-by-example methodology. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized similarity measure between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to a user-provided example image. Results for three test applications are included.

  17. Latin American image quality survey in digital mammography studies

    International Nuclear Information System (INIS)

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Garcia Aguilar, Juan; Gamarra, Mirtha; Ubeda, Carlos

    2017-01-01

    Under International Atomic Energy Agency regional programme TSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs. (authors)

  18. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  19. Digital pathology access and usage in the UK: results from a national survey on behalf of the National Cancer Research Institute's CM-Path initiative.

    Science.gov (United States)

    Williams, Bethany Jill; Lee, Jessica; Oien, Karin A; Treanor, Darren

    2018-05-01

    To canvass the UK pathology community to ascertain current levels of digital pathology usage in clinical and academic histopathology departments, and prevalent attitudes to digital pathology. A 15-item survey was circulated to National Health Service and academic pathology departments across the UK using the SurveyMonkey online survey tool. Responses were sought at a departmental or institutional level. Where possible, departmental heads were approached and asked to complete the survey, or forward it to the most relevant individual in their department. Data were collected over a 6-month period from February to July 2017. 41 institutes from across the UK responded to the survey. 60% (23/39) of institutions had access to a digital pathology scanner, and 60% (24/40) had access to a digital pathology workstation. The most popular applications of digital pathology in current use were undergraduate and postgraduate teaching, research and quality assurance. Investigating the deployment of digital pathology in their department was identified as a high or highest priority by 58.5% of institutions, with improvements in efficiency, turnaround times, reporting times and collaboration in their institution anticipated by the respondents. Access to funding for initial hardware, software and staff outlay, pathologist training and guidance from the Royal College of Pathologists were identified as factors that could enable respondent institutions to increase their digital pathology usage. Interest in digital pathology adoption in the UK is high, with usage likely to increase in the coming years. In light of this, pathologists are seeking more guidance on safe usage. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Digital pathology access and usage in the UK: results from a national survey on behalf of the National Cancer Research Institute’s CM-Path initiative

    Science.gov (United States)

    Williams, Bethany Jill; Lee, Jessica; Oien, Karin A; Treanor, Darren

    2018-01-01

    Aim To canvass the UK pathology community to ascertain current levels of digital pathology usage in clinical and academic histopathology departments, and prevalent attitudes to digital pathology. Methods A 15-item survey was circulated to National Health Service and academic pathology departments across the UK using the SurveyMonkey online survey tool. Responses were sought at a departmental or institutional level. Where possible, departmental heads were approached and asked to complete the survey, or forward it to the most relevant individual in their department. Data were collected over a 6-month period from February to July 2017. Results 41 institutes from across the UK responded to the survey. 60% (23/39) of institutions had access to a digital pathology scanner, and 60% (24/40) had access to a digital pathology workstation. The most popular applications of digital pathology in current use were undergraduate and postgraduate teaching, research and quality assurance. Investigating the deployment of digital pathology in their department was identified as a high or highest priority by 58.5% of institutions, with improvements in efficiency, turnaround times, reporting times and collaboration in their institution anticipated by the respondents. Access to funding for initial hardware, software and staff outlay, pathologist training and guidance from the Royal College of Pathologists were identified as factors that could enable respondent institutions to increase their digital pathology usage. Conclusion Interest in digital pathology adoption in the UK is high, with usage likely to increase in the coming years. In light of this, pathologists are seeking more guidance on safe usage. PMID:29317516

  1. The apport of functional cerebral imaging in the psychiatric pathology

    International Nuclear Information System (INIS)

    Maktouf, Ch.; Kotzki, P.O.; Humbert, Th.

    1992-01-01

    Recent advances in medical brain imaging using structural and functional brain imaging techniques have contributed to the investigation of the living human brain. These new techniques hold great promise for the evaluation and understanding mental disorders. We report the position emission tomography (PET) and the more widely available single emission photon (SPECT) studies, as functional brain imaging, to assess regional cerebral metabolism and blood flow in psychiatric illness. (author)

  2. Moiré Effect: Index and the Digital Image

    Directory of Open Access Journals (Sweden)

    Stella Baraklianou

    2014-10-01

    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  3. Fisheye image rectification using spherical and digital distortion models

    Science.gov (United States)

    Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang

    2018-02-01

    Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.

  4. Thinning an object boundary on digital image using pipelined algorithm

    International Nuclear Information System (INIS)

    Dewanto, S.; Aliyanta, B.

    1997-01-01

    In digital image processing, the thinning process to an object boundary is required to analyze the image structure with a measurement of parameter such as area, circumference of the image object. The process needs a sufficient large memory and time consuming if all the image pixels stored in the memory and the following process is done after all the pixels has ben transformed. pipelined algorithm can reduce the time used in the process. This algorithm uses buffer memory where its size can be adjusted. the next thinning process doesn't need to wait all the transformation of pixels. This paper described pipelined algorithm with some result on the use of the algorithm to digital image

  5. MR imaging findings of painful type II accessory navicular bone: correlation with surgical and pathologic studies

    International Nuclear Information System (INIS)

    Choi, Yun Sun; Lee, Kyung Tai; Kim, Eun Kyung; Kang, Heung Sik

    2004-01-01

    To evaluate the MR imaging findings of painful type II accessory navicular bone and to correlate these with the surgical and pathologic findings. The MR images of 17 patients with medial foot pain and surgically proven type II accessory navicular abnormalities were reviewed. The changes of signal intensity in the accessory navicular, synchondrosis and adjacent soft tissue, the presence of synchondrosis widening, and posterior tibial tendon (PTT) pathology on the T1-weighted and fat-suppressed T2-weighted images were analyzed. The MR imaging findings were compared with the surgical and pathologic findings. The fat-suppressed T2-weighted images showed high signal intensity in the accessory navicular bones and synchondroses in all patients, and in the soft tissue in 11 (64.7%) of the 17 patients, as well as synchondrosis widening in 3 (17.6%) of the 17 patients. The MR images showed tendon pathology in 12 (75%) of the 16 patients with PTT dysfunction at surgery. The pathologic findings of 16 surgical specimens included areas of osteonecrosis with granulomatous inflammation, fibrosis and destruction of the cartilage cap. The MR imaging findings of painful type II accessory navicular bone are a persistent edema pattern in the accessory navicular bone and within the synchondrosis, indicating osteonecrosis, inflammation and destruction of the cartilage cap. Posterior tibial tendon dysfunction was clinically evident in most patients

  6. The role of camera-bundled image management software in the consumer digital imaging value chain

    Science.gov (United States)

    Mueller, Milton; Mundkur, Anuradha; Balasubramanian, Ashok; Chirania, Virat

    2005-02-01

    This research was undertaken by the Convergence Center at the Syracuse University School of Information Studies (www.digital-convergence.info). Project ICONICA, the name for the research, focuses on the strategic implications of digital Images and the CONvergence of Image management and image CApture. Consumer imaging - the activity that we once called "photography" - is now recognized as in the throes of a digital transformation. At the end of 2003, market researchers estimated that about 30% of the households in the U.S. and 40% of the households in Japan owned digital cameras. In 2004, of the 86 million new cameras sold (excluding one-time use cameras), a majority (56%) were estimated to be digital cameras. Sales of photographic film, while still profitable, are declining precipitously.

  7. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  8. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides

    Directory of Open Access Journals (Sweden)

    Mark D Zarella

    2015-01-01

    Full Text Available Hematoxylin and eosin (H&E staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma. By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image

  9. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides.

    Science.gov (United States)

    Zarella, Mark D; Breen, David E; Plagov, Andrei; Garcia, Fernando U

    2015-01-01

    Hematoxylin and eosin (H&E) staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma). By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image processing.

  10. Computational chemical imaging for cardiovascular pathology: chemical microscopic imaging accurately determines cardiac transplant rejection.

    Directory of Open Access Journals (Sweden)

    Saumya Tiwari

    Full Text Available Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients' biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures.

  11. A digital library for medical imaging activities

    Science.gov (United States)

    dos Santos, Marcelo; Furuie, Sérgio S.

    2007-03-01

    This work presents the development of an electronic infrastructure to make available a free, online, multipurpose and multimodality medical image database. The proposed infrastructure implements a distributed architecture for medical image database, authoring tools, and a repository for multimedia documents. Also it includes a peer-reviewed model that assures quality of dataset. This public repository provides a single point of access for medical images and related information to facilitate retrieval tasks. The proposed approach has been used as an electronic teaching system in Radiology as well.

  12. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  13. Comprehensive evaluation of a digital imaging network

    International Nuclear Information System (INIS)

    Mun, S.K.; Benson, H.; Elliott, L.P.; Horii, S.

    1988-01-01

    The authors' institution has installed a comprehensive PACS network involving a dozen work stations and ten imaging systems with electronic archiving and teleradiology capability based on the CommView (AT and T) system and its fiberoptic network. Diagnostic reporting stations are placed in neuroradiology, abdominal imaging, general radiology, and ultrasound service. Other review stations are located in intensive care units, radiation medicine, the emergency room, and other sites. Clinical acceptance of such technology varies depending on a number of factors: image quality, image data volume, service style, and personal preference. The general acceptance depends on the work station performance, network response time, and work station environment. Clinical acceptance by radiologists and referring physicians was evaluated. The evaluation project included work-station performance, network performance, system interface, RIS interface, and development of training methods and implementation strategy for other sites. A cost analysis and a study of administrative impact are integral parts of the comprehensive evaluation project

  14. Digital image management project for dermatological health care environments: a new dedicated software and review of the literature.

    Science.gov (United States)

    Rubegni, Pietro; Nami, Niccolò; Poggiali, Sara; Tataranno, Domenico; Fimiani, M

    2009-05-01

    Because the skin is the only organ completely accessible to visual examination, digital technology has therefore attracted the attention of dermatologists for documenting, monitoring, measuring and classifying morphological manifestations. To describe a digital image management system dedicated to dermatological health care environments and to compare it with other existing softwares for digital image storage. We designed a reliable hardware structure that could ensure future scaling, because storage needs tend to grow exponentially. For the software, we chose a client-web server application based on a relational database and with a 'minimalist' user interface. We developed a software with a ready-made, adaptable index of skin pathologies. It facilitates classification by pathology, patient and visit, with an advanced search option allowing access to all images according to personalized criteria. The software also offers the possibility of comparing two or more digital images (follow-up). The fact that the archives of years of digital photos acquired and saved on PCs can easily be entered in the program distinguishes it from the others in the market. This option is fundamental for accessing all the photos taken in years of practice in the program without entering them one by one. The program is available to any user connected to the local Intranet and the system may directly be available in the future from the Internet. All clinics and surgeries, especially those that rely on digital images, are obliged to keep up with technological advances. It is therefore hoped that our project will become a model for medical structures intending to rationalise digital and other data according to statutory requirements.

  15. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  16. Digital training platform for interpreting radiographic images of the chest.

    Science.gov (United States)

    McLaughlin, L; Woznitza, N; Cairns, A; McFadden, S L; Bond, R; Hughes, C M; Elsayed, A; Finlay, D; McConnell, J

    2018-05-01

    Time delays and errors exist which lead to delays in patient care and misdiagnosis. Reporting clinicians follow guidance to form their own search strategy. However, little research has tested these training guides. With the use of eye tracking technology and expert input we developed a digital training platform to be used in chest image interpretation learning. Two sections of a digital training platform were planned and developed; A) a search strategy training tool to assist reporters during their interpretation of images, and B) an educational tool to communicate the search strategies of expert viewers to trainees by using eye tracking technology. A digital training platform for use in chest image interpretation was created based on evidence within the literature, expert input and two search strategies previously used in clinical practice. Images and diagrams, aiding translation of the platform content, were incorporated where possible. The platform is structured to allow the chest image interpretation process to be clear, concise and methodical. A search strategy was incorporated within the tool to investigate its use, with the possibility that it could be recommended as an evidence based approach for use by reporting clinicians. Eye tracking, a checklist and voice recordings have been combined to form a multi-dimensional learning tool, which has never been used in chest image interpretation learning before. The training platform for use in chest image interpretation learning has been designed, created and digitised. Future work will establish the efficacy of the developed approaches. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. The use of digital imaging, video conferencing, and telepathology in histopathology: a national survey.

    Science.gov (United States)

    Dennis, T; Start, R D; Cross, S S

    2005-03-01

    To undertake a large scale survey of histopathologists in the UK to determine the current infrastructure, training, and attitudes to digital pathology. A postal questionnaire was sent to 500 consultant histopathologists randomly selected from the membership of the Royal College of Pathologists in the UK. There was a response rate of 47%. Sixty four per cent of respondents had a digital camera mounted on their microscope, but only 12% had any sort of telepathology equipment. Thirty per cent used digital images in electronic presentations at meetings at least once a year and only 24% had ever used telepathology in a diagnostic situation. Fifty nine per cent had received no training in digital imaging. Fifty eight per cent felt that the medicolegal implications of duty of care were a barrier to its use. A large proportion of pathologists (69%) were interested in using video conferencing for remote attendance at multidisciplinary team meetings. There is a reasonable level of equipment and communications infrastructure among histopathologists in the UK but a very low level of training. There is resistance to the use of telepathology in the diagnostic context but enthusiasm for the use of video conferencing in multidisciplinary team meetings.

  18. Computer processing of the scintigraphic image using digital filtering techniques

    International Nuclear Information System (INIS)

    Matsuo, Michimasa

    1976-01-01

    The theory of digital filtering was studied as a method for the computer processing of scintigraphic images. The characteristics and design techniques of finite impulse response (FIR) digital filters with linear phases were examined using the z-transform. The conventional data processing method, smoothing, could be recognized as one kind of linear phase FIR low-pass digital filtering. Ten representatives of FIR low-pass digital filters with various cut-off frequencies were scrutinized from the frequency domain in one-dimension and two-dimensions. These filters were applied to phantom studies with cold targets, using a Scinticamera-Minicomputer on-line System. These studies revealed that the resultant images had a direct connection with the magnitude response of the filter, that is, they could be estimated fairly well from the frequency response of the digital filter used. The filter, which was estimated from phantom studies as optimal for liver scintigrams using 198 Au-colloid, was successfully applied in clinical use for detecting true cold lesions and, at the same time, for eliminating spurious images. (J.P.N.)

  19. CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, T.M.

    1994-02-21

    In this paper, we propose a method for calculating the similarity between two digital images. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized distance between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to an example target image. This algorithm is applied to the problem of search and retrieval for database containing pulmonary CT imagery, and experimental results are provided.

  20. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  1. Post-processing of digital images.

    Science.gov (United States)

    Perrone, Luca; Politi, Marco; Foschi, Raffaella; Masini, Valentina; Reale, Francesca; Costantini, Alessandro Maria; Marano, Pasquale

    2003-01-01

    Post-processing of bi- and three-dimensional images plays a major role for clinicians and surgeons in both diagnosis and therapy. The new spiral (single and multislice) CT and MRI machines have allowed better quality of images. With the associated development of hardware and software, post-processing has become indispensable in many radiologic applications in order to address precise clinical questions. In particular, in CT the acquisition technique is fundamental and should be targeted and optimized to obtain good image reconstruction. Multiplanar reconstructions ensure simple, immediate display of sections along different planes. Three-dimensional reconstructions include numerous procedures: multiplanar techniques as maximum intensity projections (MIP); surface rendering techniques as the Shaded Surface Display (SSD); volume techniques as the Volume Rendering Technique; techniques of virtual endoscopy. In surgery computer-aided techniques as the neuronavigator, which with information provided by neuroimaging helps the neurosurgeon in simulating and performing the operation, are extremely interesting.

  2. Pathological diagnosis of bladder cancer by image analysis of hypericin induced fluorescence cystoscopic images

    Science.gov (United States)

    Kah, James C. Y.; Olivo, Malini C.; Lau, Weber K. O.; Sheppard, Colin J. R.

    2005-08-01

    Photodynamic diagnosis of bladder carcinoma based on hypericin fluorescence cystoscopy has shown to have a higher degree of sensitivity for the detection of flat bladder carcinoma compared to white light cystoscopy. The potential of the photosensitizer hypericin-induced fluorescence in performing non-invasive optical biopsy to grade bladder cancer in vivo using fluorescence cystoscopic image analysis without surgical resection for tissue biopsy is investigated in this study. The correlation between tissue fluorescence and histopathology of diseased tissue was explored and a diagnostic algorithm based on fluorescence image analysis was developed to classify the bladder cancer without surgical resection for tissue biopsy. Preliminary results suggest a correlation between tissue fluorescence and bladder cancer grade. By combining both the red-to-blue and red-to-green intensity ratios into a 2D scatter plot yields an average sensitivity and specificity of around 70% and 85% respectively for pathological cancer grading of the three different grades of bladder cancer. Therefore, the diagnostic algorithm based on colorimetric intensity ratio analysis of hypericin fluorescence cystoscopic images developed in this preliminary study shows promising potential to optically diagnose and grade bladder cancer in vivo.

  3. Magnetic resonance imaging for extramammary Paget's disease: radiological and pathological correlations

    International Nuclear Information System (INIS)

    Akaike, Gensuke; Nozaki, Taiki; Matsusako, Masaki; Saida, Yukihisa; Matsui, Mizuko; Ohtake, Naoyuki; Eto, Hikaru; Suzuki, Koyu

    2013-01-01

    Extramammary Paget's disease (EMPD) is a rare cutaneous neoplasm that is thought to represent intraepithelial adenocarcinoma developing in an area rich in apocrine glands. Magnetic resonance imaging (MRI) findings for this disease are not well established. We report three cases of pathologically confirmed EMPD in which MRI was performed before surgery. The lesions were widespread in the epidermis and the dermis. Lesions were sharply well enhanced on gadolinium-enhanced T1-weighted imaging and appeared hyperintense on diffusion-weighted imaging in all cases. Areas with enhancement in depth corresponded well with the pathological lesion. In addition, different malignant legions were found on the same images from MRI in two cases, indicating potential associations with other malignancies. We describe the MRI findings and their pathological correlation. MRI could be useful for preoperative evaluation of disease spread and detection of associated malignancies. (orig.)

  4. Matching rendered and real world images by digital image processing

    Science.gov (United States)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  5. Operational digital image processing within the Bureau of Land Management

    International Nuclear Information System (INIS)

    Work, E.A.; Story, M.

    1991-01-01

    An overview of the use of operational digital image processing at the U.S. Bureau of Land Management (BLM) is presented. The BLM digital image analysis facility for the processing and analysis of aerial photography and satellite data is described, and its role within the Bureau's operational structure is explained. Attention is given to examples of BLM digital data analysis projects that have utilized Landsat (MSS and TM), NOAA-AVHRR, or SPOT data. These projects include: landcover mapping to assist land use planning or special projects; monitoring of wilderness units to detect unauthorized activities; stratification aid for detailed field inventories; identification/quantification of unauthorized use (agricultural and mineral trespass); and fire fuels mapping and updates. 3 refs

  6. Digital image intensifier radiography: A new diagnostic procedure in traumatology?

    International Nuclear Information System (INIS)

    Schmidt, C.; Deininger, H.K.; Staedtische Kliniken Darmstadt

    1990-01-01

    Digital image intensifier radiography visualises all traumatological changes of clinical relevance and can therefore be used in traumatology. However, the quality of conventional radiographs cannot be attained as yet. Radiation exposure is markedly reduced, and radiographs are obtained directly after exposure, so that this is an extremely rapid radiographic procedure. Images can be quickly transmitted by video cable to the relevant departments and working places. (orig.) [de

  7. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  8. Aliasing effects in digital images of line-pair phantoms

    International Nuclear Information System (INIS)

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  9. Application of digital image correlation method for analysing crack ...

    Indian Academy of Sciences (India)

    centrated strain by imitating the treatment of micro-cracks using the finite element ... water and moisture to penetrate the concrete leading to serious rust of the ... The correlations among various grey values of digital images are analysed for ...

  10. Evaluating fracture healing using digital x-ray image analysis

    African Journals Online (AJOL)

    2011-03-02

    Mar 2, 2011 ... with intensive imaging and modelling.6 dual energy X-ray ... techniques due to their high-quality digital output in ... the bone in the loaded X-ray is at an angular offset due to .... The research described in this article was carried ...

  11. A computer program for planimetric analysis of digitized images

    DEFF Research Database (Denmark)

    Lynnerup, N; Lynnerup, O; Homøe, P

    1992-01-01

    bones as seen on X-rays. By placing the X-rays on a digitizer tablet and tracing the outline of the cell system, the area was calculated by the program. The calculated data and traced images could be stored and printed. The program is written in BASIC; necessary hardware is an IBM-compatible personal...

  12. Application of digital-image-correlation techniques in analysing ...

    Indian Academy of Sciences (India)

    Basis theory of strain analysis using the digital image correlation method .... Type 304N Stainless Steel (Modulus of Elasticity = 193 MPa, Tensile Yield .... also proves the accuracy of the qualitative analyses by using the DIC ... We thank the National Science Council of Taiwan for supporting this research through grant. No.

  13. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  14. Determining storage related egg quality changes via digital image ...

    African Journals Online (AJOL)

    Area and length measurements related to exterior and interior egg quality were determined by digital image analysis. In general, excluding the outer thin albumen area, all of the area measurements such as total egg content area and inner thick albumen area were larger in stored eggs than in fresh eggs (52.28 vs.

  15. Problems and image processing in X-ray film digitization

    International Nuclear Information System (INIS)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru

    1992-01-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author)

  16. Problems and image processing in X-ray film digitization

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru (Toyama Medical and Pharmaceutical Univ. (Japan). Hospital)

    1992-11-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author).

  17. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  18. Role of targeted magnetic resonance imaging sequences in the surgical management of anterior skull base pathology.

    Science.gov (United States)

    Chawla, S; Bowman, J; Gandhi, M; Panizza, B

    2017-01-01

    The skull base is a highly complex anatomical region that provides passage for important nerves and vessels as they course into and out of the cranial cavity. Key to the management of pathology in this region is a thorough understanding of the anatomy, with its variations, and the relationship of various neurovascular structures to the pathology in question. Targeted high-resolution magnetic resonance imaging on high field strength magnets can enable the skull base surgeon to understand this intricate relationship and deal with the pathology from a position of relative advantage. With the help of case studies, this paper illustrates the application of specialised magnetic resonance techniques to study pathology of the orbital apex in particular. The fine anatomical detail provided gives surgeons the ability to design an endonasal endoscopic procedure appropriate to the anatomy of the pathology.

  19. Digital image processing of mandibular trabeculae on radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Toshi

    1987-06-01

    The present study was aimed to reveal the texture patterns of the radiographs of the mandibular trabeculae by digital image processing. The 32 cases of normal subjects and the 13 cases of patients with mandibular diseases of ameloblastoma, primordial cysts, squamous cell carcinoma and odontoma were analyzed by their intra-oral radiographs in the right premolar regions. The radiograms were digitized by the use of a drum scanner densitometry method. The input radiographic images were processed by a histogram equalization method. The result are as follows : First, the histogram equalization method enhances the image contrast of the textures. Second, the output images of the textures for normal mandible-trabeculae radiograms are of network pattern in nature. Third, the output images for the patients are characterized by the non-network pattern and replaced by the patterns of the fabric texture, intertwined plants (karakusa-pattern), scattered small masses and amorphous texture. Thus, these results indicates that the present digital image system is expected to be useful for revealing the texture patterns of the radiographs and in the future for the texture analysis of the clinical radiographs to obtain quantitative diagnostic findings.

  20. A survey of passive technology for digital image forensics

    Institute of Scientific and Technical Information of China (English)

    LUO Weiqi; QU Zhenhua; PAN Feng; HUANG Jiwu

    2007-01-01

    Over the past years,digital images have been widely used in the Internet and other applications.Whilst image processing techniques are developing at a rapid speed,tampering with digital images without leaving any obvious traces becomes easier and easier.This may give rise to some problems such as image authentication.A new passive technology for image forensics has evolved quickly during the last few years.Unlike the signature-based or watermark-based methods,the new technology does not need any signature generated or watermark embedded in advance,it assumes that different imaging devices or processing would introduce different inherent patterns into the output images.These underlying patterns are consistent in the original untampered images and would be altered after some kind of manipulations.Thus,they can be used as evidence for image source identification and alteration detection.In this paper,we will discuss this new forensics technology and give an overview of the prior literatures.Some concluding remarks are made about the state of the art and the challenges in this novel technology.

  1. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  2. Periosteal anomaly in osteosarcoma: the imaging findings and its pathological basis

    International Nuclear Information System (INIS)

    Chen Yingming; Meng Quanfei; Jiang Bo; Ma Ling; Lai Yingrong

    2008-01-01

    Objective: To summarize the types and imaging features of periosteal anomaly in osteosmcoma. Further to seek the feature of genesis and advancement of periosteal anomaly and its clinical significance. Methods: One hundred and twenty-eight patients with osteosarcoma were enrolled in this study, which consisted of 76 males and 52 females aging from 5 to 66 years old with an average of 19 years. Both x-ray plain film and MR images were obtained in all patients, and DWI were done in 23 patients. CT scanning was conducted in 48 patients, which included post-contrast scanning done in 36. The pathological gross specimen, macrosection and point-to-point microsection were obtained in each of 14 cases to correlate the imaging findings of periosteal anomaly to the pathological outcome. Results: The imaging and pathological finding: (1) Periosteodema, occurring in 96 patients. The sign was merely demonstratable on MR image and presented as loosened periosteal structure with no tumoral infiltration pathologically. (2) Periosteal lift and thickening, demonstratable on both CT and MR image, including 13 noted on CT and 42 on MR image. Pathologically, non-tumoral infiltration was noted in the thickened periosteum. (3) Periosteal destruction, occurring in 48 patients. Periosteal destruction was merely demonstratable on MR image and presented as localized or generalized tumoral infiltration of the periosteum. (4) Linear periosteal neo-bone formation, demonstrated in 42 cases on plain films, 13 cases on CT and 22 on MR images, respectively. The linear periosteal neo-bone formation was pathologically regularly arranged periosteal neo-bone. (5) Laminar periosteal neo-bone fomation, demonstrated in 21 cases on plain films, 6 cases on CT and 21 on MR images, respectively. Pathologically, it appeared as multi-layer arrangement. (6) Radiated and spiculate periosteal neo-bone formation, demonstrated in 13 cases on plain films, 7 cases on CT and 14 on MR images, respectively. On both plain

  3. The right atrium: gateway to the heart--anatomic and pathologic imaging findings.

    Science.gov (United States)

    Malik, Sachin B; Kwan, Damon; Shah, Amar B; Hsu, Joe Y

    2015-01-01

    Knowledge of right atrial anatomic and pathologic imaging findings and associated clinical symptoms is important to avoid false-positive diagnoses and missed findings. Complete evaluation of the heart often requires a multimodality approach that includes radiography, echocardiography, computed tomography (CT), magnetic resonance (MR) imaging, and invasive angiography. In general, CT provides the highest spatial resolution of these modalities at the cost of radiation exposure to the patient. Echocardiography and MR imaging offer complementary and detailed information for functional evaluation without added radiation exposure. The advantages and disadvantages of each modality for the evaluation of right atrial anatomic structure, size, and pathologic findings are discussed. Cardiac MR imaging is the reference standard for evaluation of right atrial size and volume but often is too time consuming and resource intensive to perform in routine clinical practice. Therefore, established reference ranges for two-dimensional transthoracic echocardiography are often used. Right atrial pathologic findings can be broadly categorized into (a) congenital anomalies (cor triatriatum dexter, Ebstein anomaly, and aneurysm), (b) disorders of volume (tricuspid regurgitation, pathologic mimics such as a pseudoaneurysm, and atrial septal defect), (c) disorders of pressure (tricuspid stenosis, restrictive cardiomyopathy, and constrictive pericarditis), and (d) masses (pseudomasses, thrombus, lipomatous hypertrophy of the interatrial septum, lipoma, myxoma, sarcoma, and metastatic disease). Familiarity with each pathologic entity and its treatment options is essential to ensure that appropriate imaging modalities are selected. Online supplemental material is available for this article. RSNA, 2015

  4. Comparison of Macroscopic Pathology Measurements With Magnetic Resonance Imaging and Assessment of Microscopic Pathology Extension for Colorectal Liver Metastases

    International Nuclear Information System (INIS)

    Méndez Romero, Alejandra; Verheij, Joanne; Dwarkasing, Roy S.; Seppenwoolde, Yvette; Redekop, William K.; Zondervan, Pieter E.; Nowak, Peter J.C.M.; Ijzermans, Jan N.M.; Levendag, Peter C.; Heijmen, Ben J.M.; Verhoef, Cornelis

    2012-01-01

    Purpose: To compare pathology macroscopic tumor dimensions with magnetic resonance imaging (MRI) measurements and to establish the microscopic tumor extension of colorectal liver metastases. Methods and Materials: In a prospective pilot study we included patients with colorectal liver metastases planned for surgery and eligible for MRI. A liver MRI was performed within 48 hours before surgery. Directly after surgery, an MRI of the specimen was acquired to measure the degree of tumor shrinkage. The specimen was fixed in formalin for 48 hours, and another MRI was performed to assess the specimen/tumor shrinkage. All MRI sequences were imported into our radiotherapy treatment planning system, where the tumor and the specimen were delineated. For the macroscopic pathology analyses, photographs of the sliced specimens were used to delineate and reconstruct the tumor and the specimen volumes. Microscopic pathology analyses were conducted to assess the infiltration depth of tumor cell nests. Results: Between February 2009 and January 2010 we included 13 patients for analysis with 21 colorectal liver metastases. Specimen and tumor shrinkage after resection and fixation was negligible. The best tumor volume correlations between MRI and pathology were found for T1-weighted (w) echo gradient sequence (r s = 0.99, slope = 1.06), and the T2-w fast spin echo (FSE) single-shot sequence (r s = 0.99, slope = 1.08), followed by the T2-w FSE fat saturation sequence (r s = 0.99, slope = 1.23), and the T1-w gadolinium-enhanced sequence (r s = 0.98, slope = 1.24). We observed 39 tumor cell nests beyond the tumor border in 12 metastases. Microscopic extension was found between 0.2 and 10 mm from the main tumor, with 90% of the cases within 6 mm. Conclusions: MRI tumor dimensions showed a good agreement with the macroscopic pathology suggesting that MRI can be used for accurate tumor delineation. However, microscopic extensions found beyond the tumor border indicate that caution is needed

  5. Limitations in imaging common conjunctival and corneal pathologies with fourier-domain optical coherence tomography.

    Science.gov (United States)

    Demirci, Hakan; Steen, Daniel W

    2014-01-01

    To describe the limitations of Fourier-domain optical coherence tomography (OCT) in imaging common conjunctival and corneal pathology. Retrospective, single-center case series of 40 patients with conjunctival and cornea pathology. Fourier-domain OCT imaged laser in situ keratomileusis (LASIK) flaps in detail, including its relation to other corneal structures and abnormalities. Similarly, in infectious or degenerative corneal disorders, Fourier-domain OCT successfully showed the extent of infiltration or material deposition, which appeared as hyper-reflective areas. In cases with pterygium, the underlying cornea could not be imaged. All cases of common conjunctival pathologies, such as nevus or pinguecula, were successfully imaged in detail. Nevi, scleritis, pterygium, pinguecula, and subconjunctival hemorrhage were hyper-reflective lesions, while cysts and lymphangiectasia were hyporeflective. The details of the underlying sclera were not uniformly imaged in conjunctival pathologies. Fourier-domain OCT imaged the trabeculectomy bleb in detail, whereas the details of structures of the anterior chamber angle were not routinely visualized in all cases. Light scatter through vascularized, densely inflamed, or thick lesions limits the imaging capabilities of Fourier-domain anterior segment OCT.

  6. Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex

    OpenAIRE

    Serhat Avcu; Ersan Altun; Ihsan Akpinar; Mehmet Deniz Bulut; Kemal Eresov; Tugrul Biren

    2010-01-01

    Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI) of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to exam...

  7. MR imaging of renal cell carcinoma: associations among signal intensity, tumor enhancement, and pathologic findings.

    OpenAIRE

    Yabuki, Takayuki; Togami, Izumi; Kitagawa, Takahiro; Sasai, Nobuya; Tsushima, Tomoyasu; Shirasaki, Yoshinori; Hiraki, Yoshio

    2003-01-01

    The purpose of this study was to compare the MR characteristics of renal cell carcinomas against histologic findings and to assess the correlations among signal intensity, tumor enhancement, and pathologic findings. Fifty-four patients (56 lesions) were examined by MR imaging and then underwent partial or radical nephrectomy. The pathologic diagnosis of all lesions was renal cell carcinoma. All MR examinations were performed as dynamic studies using the same 1.5-T scanner. MR characteristics ...

  8. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  9. Digital Intraoral Imaging Re-Exposure Rates of Dental Students.

    Science.gov (United States)

    Senior, Anthea; Winand, Curtis; Ganatra, Seema; Lai, Hollis; Alsulfyani, Noura; Pachêco-Pereira, Camila

    2018-01-01

    A guiding principle of radiation safety is ensuring that radiation dosage is as low as possible while yielding the necessary diagnostic information. Intraoral images taken with conventional dental film have a higher re-exposure rate when taken by dental students compared to experienced staff. The aim of this study was to examine the prevalence of and reasons for re-exposure of digital intraoral images taken by third- and fourth-year dental students in a dental school clinic. At one dental school in Canada, the total number of intraoral images taken by third- and fourth-year dental students, re-exposures, and error descriptions were extracted from patient clinical records for an eight-month period (September 2015 to April 2016). The data were categorized to distinguish between digital images taken with solid-state sensors or photostimulable phosphor plates (PSP). The results showed that 9,397 intraoral images were made, and 1,064 required re-exposure. The most common error requiring re-exposure for bitewing images was an error in placement of the receptor too far mesially or distally (29% for sensors and 18% for PSP). The most common error requiring re-exposure for periapical images was inadequate capture of the periapical area (37% for sensors and 6% for PSP). A retake rate of 11% was calculated, and the common technique errors causing image deficiencies were identified. Educational intervention can now be specifically designed to reduce the retake rate and radiation dose for future patients.

  10. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinghai; Li, Jinning; Zhang, Lan; Chen, Ying; Zhang, Minming [Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Yan, Fuhua, E-mail: zemylife@163.com [Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2014-05-15

    Objective: To investigate the clinical potential of diffusion-weighted imaging (DWI) in assessing renal pathology of chronic kidney disease (CKD). Methods: Seventy-one CKD patients and twelve healthy volunteers were examined using DWI with prospective acquisition correction. Renal biopsy specimens from the CKD patients were scored based on the severity of renal pathology and to confirm pathology type. CKD patients were divided into three groups according to pathology scores: mild, moderate, or severe. The association between renal apparent diffusion coefficient (ADC) values and pathology scores was investigated using Pearson's correlation and single factor analysis of variance. Multiple linear regression analysis was performed to explore associations between renal ADC values and pathology score, glomerular filtration rate, serum creatinine, and age. The Kruskal–Wallis H test was conducted to compare ADC values and pathology type. Results: Renal ADC values correlated negatively with pathology scores (r = −0.633, P < 0.001). The ADC values among the four groups (mild, moderate, severe impairment, and controls) were significantly different (F = 19.512, P < 0.001). However, when patients were stratified by pathology type, no significant differences were found in ADC values among these groups (χ{sup 2} = 9.929, P = 0.270). Further multiple linear regression analysis showed that only the pathology score and ADC values were related (t = −4.586, P = 0.000). Conclusions: DWI has clinical potential in assessing the severity of renal pathology in CKD and shows promise as a non-invasive and effective technique to guide therapy and follow-up.

  11. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study

    International Nuclear Information System (INIS)

    Li, Qinghai; Li, Jinning; Zhang, Lan; Chen, Ying; Zhang, Minming; Yan, Fuhua

    2014-01-01

    Objective: To investigate the clinical potential of diffusion-weighted imaging (DWI) in assessing renal pathology of chronic kidney disease (CKD). Methods: Seventy-one CKD patients and twelve healthy volunteers were examined using DWI with prospective acquisition correction. Renal biopsy specimens from the CKD patients were scored based on the severity of renal pathology and to confirm pathology type. CKD patients were divided into three groups according to pathology scores: mild, moderate, or severe. The association between renal apparent diffusion coefficient (ADC) values and pathology scores was investigated using Pearson's correlation and single factor analysis of variance. Multiple linear regression analysis was performed to explore associations between renal ADC values and pathology score, glomerular filtration rate, serum creatinine, and age. The Kruskal–Wallis H test was conducted to compare ADC values and pathology type. Results: Renal ADC values correlated negatively with pathology scores (r = −0.633, P < 0.001). The ADC values among the four groups (mild, moderate, severe impairment, and controls) were significantly different (F = 19.512, P < 0.001). However, when patients were stratified by pathology type, no significant differences were found in ADC values among these groups (χ 2 = 9.929, P = 0.270). Further multiple linear regression analysis showed that only the pathology score and ADC values were related (t = −4.586, P = 0.000). Conclusions: DWI has clinical potential in assessing the severity of renal pathology in CKD and shows promise as a non-invasive and effective technique to guide therapy and follow-up

  12. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  13. The Benefits of Digital Pathology in the Assessment of HER2 ISH in a National External Quality Assessment Scheme.

    Directory of Open Access Journals (Sweden)

    Katherine Sheehan

    2016-06-01

    Due to the large number of participants enrolled in the UK NEQAS HER2 ISH scheme, it is not possible to provide each laboratory with a H&E-stained slide. Without a reference H&E-stained slide it can be difficult to clearly identify invasive tumour cells on an ISH-stained preparation increasing the chance of error in the assessment of HER2 gene status in tissue samples. However, with the technological advancement of digital pathology, it has been possible to provide UK NEQAS participants with a relevant H&E-stained slide of the tissue samples. In Conclusion, digital pathology has greatly facilitated the move from cell lines to breast cancer tissue samples for the UK NEQAS HER2 ISH module. Access to the digitized H&E-stained slides has enabled participants to quickly and more accurately visualize and pinpoint areas of invasive tumour. Our experience confirms the significant role for this electronic resource in EQA, education and continuing professional development.

  14. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  15. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  16. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  17. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  18. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  19. Longitudinal and transverse digital image reconstruction with a tomographic scanner

    International Nuclear Information System (INIS)

    Pickens, D.R.; Price, R.R.; Erickson, J.J.; Patton, J.A.; Partain, C.L.; Rollo, F.D.

    1981-01-01

    A Siemens Gammasonics PHO/CON-192 Multiplane Imager is interfaced to a digital computer for the purpose of performing tomographic reconstructions from the data collected during a single scan. Data from the two moving gamma cameras as well as camera position information are sent to the computer by an interface designed in the authors' laboratory. Backprojection reconstruction is implemented by the computer. Longitudinal images in whole-body format as well as smaller formats are reconstructed for up to six planes simultaneously from the list mode data. Transverse reconstructions are demonstrated for 201 T1 myocardial scans. Post-reconstruction deconvolution processing to remove the blur artifact (characteristic of focal plane tomography) is applied to a multiplane phantom. Digital data acquisition of data and reconstruction of images are practical, and can extend the usefulness of the machine when compared with the film output (author)

  20. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  1. A study of transverse image reconstruction with digital subtraction angiography

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Terasawa, Yuuji; Oda, Masahiko; Gotou, Hiroshi; Nasada, Toshiya; Tanooka, Masao

    1995-01-01

    For digital subtraction angiography (DSA) with C-type equipment, it is possible to radiate an X-ray during rotation and to collect data at different angular settings. We tried to reconstruct transverse image from data obtained by scanning DSA images at different angular settings. 88 projection data were obtained by rotating the object at 180deg during radiation. Reconstruction was made using the convolution method with pixel value distribution for each projection. Similarly, the image quality of the reconstructed images were compared with the unsubtracted and subtracted ones. In case a part object was outside the calculating region, artifacts were generally produced. However, the artifacts were reduced by subtracting the background from the image. In addition, the cupping phenomenon caused by beam hardening was relaxed and high-quality imaging could be achieved. This method will become even more effective, if we will use it with selective angiography in which the limited area is enhanced. (author)

  2. Digital signal and image processing using Matlab

    CERN Document Server

    Blanchet , Gérard

    2015-01-01

    The most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals, the theory being supported by exercises and computer simulations relating to real applications.   More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.  Following on from the first volume, this second installation takes a more practical stance, provi

  3. On the detection of pornographic digital images

    Science.gov (United States)

    Schettini, Raimondo; Brambilla, Carla; Cusano, Claudio; Ciocca, Gianluigi

    2003-06-01

    The paper addresses the problem of distinguishing between pornographic and non-pornographic photographs, for the design of semantic filters for the web. Both, decision forests of trees built according to CART (Classification And Regression Trees) methodology and Support Vectors Machines (SVM), have been used to perform the classification. The photographs are described by a set of low-level features, features that can be automatically computed simply on gray-level and color representation of the image. The database used in our experiments contained 1500 photographs, 750 of which labeled as pornographic on the basis of the independent judgement of several viewers.

  4. Digital signal and image processing using MATLAB

    CERN Document Server

    Blanchet , Gérard

    2014-01-01

    This fully revised and updated second edition presents the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications. More than 200 programs and functions are provided in the MATLABÒ language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject. This fully revised new edition updates : - the

  5. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  6. Towards A Colorimetric Digital Image Archive For The Visual Arts

    Science.gov (United States)

    Martinez, Kirk; Hamber, Anthony

    1989-04-01

    The aim of this project is to produce a high-resolution, colorimetric and permanent digital archive of images taken directly from works of art. The proposed system is designed for use in education, research, galleries and museums. Tentative user requirements are examined with particular reference to resolution, image access and colorimetry. Existing technology and projects are considered. Some 3000x3000 pel images of paintings are used to illustrate the interrelationship between dimensions of the original, its inherent detail, scan resolution and display.

  7. Contribution to the study of integrated system design in digital imaging. Application to digital radiology

    International Nuclear Information System (INIS)

    Boy, M.

    1987-02-01

    In the first part of this work, we describe the hardware and software used to design integrated systems able to acquire, memorize, process and visualize 1024 x 1024 x 8 bits images. In the second part, we present and analyse the first realised prototype system which is a digital radiology one. After a technical and economical digital radiology study, we present the angiographic and tomographic results. In the third part, we indicate possible evolution of this system and we show how the adopted structure and developed hardware allow applications in various fields [fr

  8. Applications of digital image analysis capability in Idaho

    Science.gov (United States)

    Johnson, K. A.

    1981-01-01

    The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.

  9. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma.

    Science.gov (United States)

    Choi, E-Ryung; Lee, Ho Yun; Jeong, Ji Yun; Choi, Yoon-La; Kim, Jhingook; Bae, Jungmin; Lee, Kyung Soo; Shim, Young Mog

    2016-10-11

    We aimed to compare quantitative radiomic parameters from dual-energy computed tomography (DECT) of lung adenocarcinoma and pathologic complexity.A total 89 tumors with clinical stage I/II lung adenocarcinoma were prospectively included. Fifty one radiomic features were assessed both from iodine images and non-contrast images of DECT datasets. Comprehensive histologic subtyping was evaluated with all surgically resected tumors. The degree of pathologic heterogeneity was assessed using pathologic index and the number of mixture histologic subtypes in a tumor. Radiomic parameters were correlated with pathologic index. Tumors were classified as three groups according to the number of mixture histologic subtypes and radiomic parameters were compared between the three groups.Tumor density and 50th through 97.5th percentile Hounsfield units (HU) of histogram on non-contrast images showed strong correlation with the pathologic heterogeneity. Radiomic parameters including 75th and 97.5th percentile HU of histogram, entropy, and inertia on 1-, 2- and 3 voxel distance on non-contrast images showed incremental changes while homogeneity showed detrimental change according to the number of mixture histologic subtypes (all Ps heterogeneity, which may help in the prediction of intratumoral heterogeneity of the whole tumor.

  10. Successful treatment of suspected organizing pneumonia in a patient without typical imaging and pathological characteristic: A case report.

    Science.gov (United States)

    Ailing, Liu; Ning, Xu; Tao, Qu; Aijun, Li

    2017-01-01

    Organizing pneumonia (OP) is a clinicopathological entity characterized by granulation tissue plugs in the lumen of small airways, alveolar ducts, and alveoli. Diagnosis of OP needs the combination of clinical features, imaging and pathology. But it occurs often that there are no typical pathological features to support the diagnosis, which poses a challenge for clinicians' diagnosis and treatment. We diagnosed a case of OP without typical imaging and pathological characteristic and treated successfully. Finally we confirmed the pathological diagnosis. Not every OP case is supported by pathological evidence and typical imaging changes. It is important for us to judge and decide the diagnosis according to clinical experience.

  11. Imaging of Cerebrovascular Pathology in Animal Models of Alzheimer`s Disease

    Directory of Open Access Journals (Sweden)

    Jan eKlohs

    2014-03-01

    Full Text Available In Alzheimer’s disease (AD, vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.

  12. Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: feasibility study.

    Science.gov (United States)

    Becker, A S; Blüthgen, C; Phi van, V D; Sekaggya-Wiltshire, C; Castelnuovo, B; Kambugu, A; Fehr, J; Frauenfelder, T

    2018-03-01

    To evaluate the feasibility of Deep Learning-based detection and classification of pathological patterns in a set of digital photographs of chest X-ray (CXR) images of tuberculosis (TB) patients. In this prospective, observational study, patients with previously diagnosed TB were enrolled. Photographs of their CXRs were taken using a consumer-grade digital still camera. The images were stratified by pathological patterns into classes: cavity, consolidation, effusion, interstitial changes, miliary pattern or normal examination. Image analysis was performed with commercially available Deep Learning software in two steps. Pathological areas were first localised; detected areas were then classified. Detection was assessed using receiver operating characteristics (ROC) analysis, and classification using a confusion matrix. The study cohort was 138 patients with human immunodeficiency virus (HIV) and TB co-infection (median age 34 years, IQR 28-40); 54 patients were female. Localisation of pathological areas was excellent (area under the ROC curve 0.82). The software could perfectly distinguish pleural effusions from intraparenchymal changes. The most frequent misclassifications were consolidations as cavitations, and miliary patterns as interstitial patterns (and vice versa). Deep Learning analysis of CXR photographs is a promising tool. Further efforts are needed to build larger, high-quality data sets to achieve better diagnostic performance.

  13. Effects of scanning resolution and digital image magnification on photostimulable phosphor imaging system

    International Nuclear Information System (INIS)

    Sakurai, Takashi; Inagaki, Masafumi; Asai, Hideomi; Koyama, Atsushi; Kashima, Isamu

    2000-01-01

    The purpose of this study is to examine the effects of changes in scanning resolution and digital magnification on the image quality and diagnostic ability of the photostimulable phosphor imaging system. Using a photostimulable phosphor imaging system, images of a human adult dried mandible phantom embedded in a 25 mm-thick epoxy resin block were made. The latent images on the photostimulable phosphor imaging plate were scanned using four different pixel sizes as follows: 25 μm x 25 μm, 50 μm x 50 μm, 100 μm x 100 μm and 200 μm x 200 μm. A primary image was produced for each pixel size. These images were also digitally magnified at powers of 2, 4 and 8 times. The gradient range, brightness and contrast of each image were adjusted to optimum levels on a cathode ray tube display, and hard copies were produced with a writing pixel size of 60 μm x 60 μm. The granularity, sharpness and anatomical diagnostic ability of the images were assessed subjectively by eight dentists. Increasing the scanning resolution tended to generally improve image quality and diagnostic ability. Visual image quality was maintained up to a pixel size of 50 μm, and diagnostic ability was maintained up to a pixel size of 100 μm. Digital image magnification degraded image quality, and more than 2-times magnification degraded diagnostic ability. Under the present experimental conditions, increasing the scanning resolution did not always lead to an improvement in image quality or diagnostic ability, and digital image magnification degraded image quality and diagnostic ability. (author)

  14. CT and MR imaging of the normal and pathologic conditions of the facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Lorenz E-mail: jaeger@ikra.med.uni-muenchen.de; Reiser, Maximilian

    2001-11-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are well established imaging modalities to examine the facial nerve as well as the course of the facial nerve itself. High spatial resolution is guaranteed not only in the x- and y-axis, but also in the z-axis using multislice spiral CT. With this technique, reformatted multiplanar images in oblique planes, avoiding additional examinations in the coronal plane, facilitate the delineation of the facial nerve canal. This is beneficial in patients with temporal bone trauma, malformation or osseous changes. MR has a superior soft-tissue contrast to CT that enables imaging of the facial nerve itself. Therefore the normal facial nerve as well as pathologic changes of the facial nerve is readily visualized from the brain stem to the parotid gland. This review article presents anatomy, pathology and imaging strategies in the diagnostics of the facial nerve.

  15. Some computer applications and digital image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Lowinger, T.

    1981-01-01

    Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms

  16. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  17. Database Description - Open TG-GATEs Pathological Image Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Open TG-GATEs Pathological Image Database Database Description General information of database Database... name Open TG-GATEs Pathological Image Database Alternative name - DOI 10.18908/lsdba.nbdc00954-0...iomedical Innovation 7-6-8, Saito-asagi, Ibaraki-city, Osaka 567-0085, Japan TEL:81-72-641-9826 Email: Database... classification Toxicogenomics Database Organism Taxonomy Name: Rattus norvegi... Article title: Author name(s): Journal: External Links: Original website information Database

  18. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  19. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  20. 78 FR 32427 - Notice of Issuance of Final Determination Concerning Multifunctional Digital Imaging Systems

    Science.gov (United States)

    2013-05-30

    ... multifunctional digital imaging systems for purposes of U.S. Government procurement. DATES: The final... Determination Concerning Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection... country of origin of certain multifunctional digital imaging systems. Based upon the facts presented, CBP...

  1. Imaging of compound palmar ganglion with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Sourav Talukder

    2014-12-01

    Full Text Available Compound palmar ganglion, or chronic flexor tenosynovitis, most commonly of tuberculousorigin, is a rare extrapulmonary manifestation of tuberculosis (TB. The flexor synovialsheath is not a common site for TB but, once involved, causes rapid involvement of all flexortendons. We discuss the case of a 70-year-old farmer who presented to us with pain and progressive swelling of the palmar aspect of the wrist. On clinical examination, swelling both above and below the proximal wrist crease was found, with positive cross-fluctuation. Onultrasonography and magnetic resonance imaging, features suggestive of compound palmarganglion were present. The patient underwent surgical resection (extensive tenosynovectomyand chemotherapy. Post-operative histopatholgical findings correlated with the radiological features.

  2. Digital implementation of a neural network for imaging

    Science.gov (United States)

    Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian

    2012-10-01

    This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.

  3. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  4. Monuments deterioration evaluation, using digited images. A methodology

    Directory of Open Access Journals (Sweden)

    Ángel, María C.

    1995-12-01

    Full Text Available In this work a methodology is proposed for data processing, integrating the techniques of digital images processing and the analytical capacity of graphical referencing systems and relational databases, in relation with the monuments. The images are generated using the digital image processing and they are included into a graphical data processing systems associated with a database containing the characteristics of the ashars or constituent elements. By combination of the images with the database induced properties the information is processed. The results are thematic maps that we save such as images. These maps are layers of new information (deduced levels. The elaboration of these maps allows attacking the problems of the restoration, renovation or treatment of the different monumental spaces on a global way, paying special attention on the most gravely affected areas.

    En este trabajo se propone una metodología para el tratamiento de la información, integrando las técnicas de proceso digital de imágenes, la capacidad de análisis de los sistemas de referenciación gráfica y las bases de datos relacionales, referidas a monumentos. Para ello se elaboran las imágenes base por algoritmos propios del proceso digital, incluyendo aquellas en una aplicación especifica que asocia cada capa a una base de datos con las propiedades petrofísicas, hídricas, etc., o bien entre si, dando lugar a mapas temáticos. La generación de estos mapas permite abordar los problemas de restauración, rehabilitación o tratamiento de los diferentes espacios monumentales de forma global, con incidencia especial en las zonas más afectadas.

  5. Practical evaluation of clinical image quality (4). Determination of image quality in digital radiography system

    International Nuclear Information System (INIS)

    Katayama, Reiji

    2016-01-01

    Recently, for medical imaging, digital radiography systems are widely used in clinical practices. However, a study in the past reported that a patient radiation exposure level by digital radiography is in fact not lower than that by analog radiography system. High level of attention needs to be paid for over-exposure when using the conventional analog radiography with a screen and a film, as it results in high density of the film. However, for digital radiography systems, since the automatic adjusting function of image density is equipped with them, no attention for radiation dose need to be paid. Thus technologists tend to be careless and results in higher chance for over-exposure. Current digital radiography systems are high-performance in the image properties and capable of patient dose reduction. Especially, the image quality of the flat panel detector system is recognized, higher than that of the computed radiography system by imaging plates, in both objective and subjective evaluations. Therefore, we technologists are responsible for optimizing the balance between the image quality of the digital radiogram and the radiation dose required for each case. Moreover, it is also required for us as medical technologists to make effective use of such evaluation result of medical images for patients. (author)

  6. Implementation of whole slide imaging in surgical pathology: A value added approach

    Directory of Open Access Journals (Sweden)

    Mike Isaacs

    2011-01-01

    Full Text Available Background: Whole slide imaging (WSI makes it possible to capture images of an entire histological slide. WSI has established roles in surgical pathology, including support of off-site frozen section interpretation, primary diagnosis, educational activities, and laboratory quality assurance (QA activities. Analyses of the cost of WSI have traditionally been based solely on direct costs and diagnostic accuracy; however, these types of analyses largely ignore workflow and cost issues that arise as a result of redundancy, the need for additional staffing, and customized software development when WSI is integrated into routine diagnostic surgical pathology. The pre-scan, scan, and post-scan costs; quality control and QA costs; and IT process costs can be significant, and consequently, pathology groups can find it difficult to perform a realistic cost-benefit analysis of adding WSI to their practice. Materials and Methods: In this paper, we report a "value added" approach developed to guide our decisions regarding integration of WSI into surgical pathology practice. The approach focuses on specific operational measures (cost, time, and enhanced patient care and practice settings (clinical, education, and research to identify routine activities in which the addition of WSI can provide improvements. Results: When applied to our academic pathology group practice, the value added approach resulted in expanded and improved operations, as demonstrated by outcome based measures. Conclusion: A value added can be used to perform a realistic cost-benefit analysis of integrating WSI into routine surgical pathology practice.

  7. A Multiresolution Image Completion Algorithm for Compressing Digital Color Images

    Directory of Open Access Journals (Sweden)

    R. Gomathi

    2014-01-01

    Full Text Available This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total Variation (TV inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264 Intracoding algorithms. The results show that the proposed algorithm works well.

  8. Computer Aided Quantification of Pathological Features for Flexor Tendon Pulleys on Microscopic Images

    Directory of Open Access Journals (Sweden)

    Yung-Chun Liu

    2013-01-01

    Full Text Available Quantifying the pathological features of flexor tendon pulleys is essential for grading the trigger finger since it provides clinicians with objective evidence derived from microscopic images. Although manual grading is time consuming and dependent on the observer experience, there is a lack of image processing methods for automatically extracting pulley pathological features. In this paper, we design and develop a color-based image segmentation system to extract the color and shape features from pulley microscopic images. Two parameters which are the size ratio of abnormal tissue regions and the number ratio of abnormal nuclei are estimated as the pathological progression indices. The automatic quantification results show clear discrimination among different levels of diseased pulley specimens which are prone to misjudgments for human visual inspection. The proposed system provides a reliable and automatic way to obtain pathological parameters instead of manual evaluation which is with intra- and interoperator variability. Experiments with 290 microscopic images from 29 pulley specimens show good correspondence with pathologist expectations. Hence, the proposed system has great potential for assisting clinical experts in routine histopathological examinations.

  9. Correlation of an abnormal rest /sup 201/Tl myocardial image: Pathological findings in cardiac transplant recipients

    Energy Technology Data Exchange (ETDEWEB)

    McKillop, J.H.; McDougall, I.R.; Billingham, M.; Schroeder, J.S.

    1982-06-01

    Rest myocardial /sup 201/Tl scintigraphy was undertaken in 15 males mean age 39 years (22-54) who had been accepted for cardiac transplantation. Complete pathological correlation was obtained in 14 after transplantation and in 1 who died before a suitable donor heart became available. The average time from scintigraphy to pathological evaluation was 42 days (9-103). All the /sup 201/Tl images were grossly abnormal and on the basis of these studies it was not possible to differentiate ischemic from idiopathic cardiomyopathy. Each of the three views of the /sup 201/Tl study was divided into three segments, therefore 135 areas were available for comparison (3 x 3 x 15). Eighty-eight of these were abnormal on scan and 78 of these were abnormal pathologically. The right ventricle was seen on all rest images but the degree of uptake bore no relationship to the measured thickness of the right ventricular wall. Structures such as the atrial wall and the enlarged papillary muscle were visualized in some patients. In two patients there was an improvement of the rest /sup 201/Tl image in delayed views and histologically these areas showed a mixture of muscle and fibrous tissue. The sensitivity of /sup 201/Tl imaging in this study was 89% and there was close correlation of the images with gross and microscopic pathological findings.

  10. Precision Diagnosis Of Melanoma And Other Skin Lesions From Digital Images.

    Science.gov (United States)

    Bhattacharya, Abhishek; Young, Albert; Wong, Andrew; Stalling, Simone; Wei, Maria; Hadley, Dexter

    2017-01-01

    Melanoma will affect an estimated 73,000 new cases this year and result in 9,000 deaths, yet precise diagnosis remains a serious problem. Without early detection and preventative care, melanoma can quickly spread to become fatal (Stage IV 5-year survival rate is 20-10%) from a once localized skin lesion (Stage IA 5- year survival rate is 97%). There is no biomarker for melanoma in clinical use, and the current diagnostic criteria for skin lesions remains subjective and imprecise. Accurate diagnosis of melanoma relies on a histopathologic gold standard; thus, aggressive excision of melanocytic skin lesions has been the mainstay of treatment. It is estimated that 36 biopsies are performed for every melanoma confirmed by pathology among excised lesions. There is significant morbidity in misdiagnosing melanoma such as progression of the disease for a false negative prediction vs the risks of unnecessary surgery for a false positive prediction. Every year, poor diagnostic precision adds an estimated $673 million in overall cost to manage the disease. Currently, manual dermatoscopic imaging is the standard of care in selecting atypical skin lesions for biopsy, and at best it achieves 90% sensitivity but only 59% specificity when performed by an expert dermatologist. Many computer vision (CV) algorithms perform better than dermatologists in classifying skin lesions although not significantly so in clinical practice. Meanwhile, open source deep learning (DL) techniques in CV have been gaining dominance since 2012 for image classification, and today DL can outperform humans in classifying millions of digital images with less than 5% error rates. Moreover, DL algorithms are readily run on commoditized hardware and have a strong online community of developers supporting their rapid adoption. In this work, we performed a successful pilot study to show proof of concept to DL skin pathology from images. However, DL algorithms must be trained on very large labelled datasets of

  11. PACS and the digital storage of medical images

    International Nuclear Information System (INIS)

    Perry, J.R.; Johnston, R.E.; Pizer, S.M.; Lowendorf, D.D.; Rogers, D.C.; Thompson, B.C.; Parrish, D.M.; Brenton, B.C.; Staab, E.V.

    1986-01-01

    An application of computers in medicine is developing wherein large amounts of digital information in the form of images must be stored, retrieved, and displayed quickly. In radiology this application most commonly goes by the acronym PACS which stands for picture archival and communications system. Estimates of the storage requirements for radiologic images strongly suggest that we should think in terms of terabytes per year for a 150,000 procedure/year, 600 bed hospital. Transmission of patient image data files (a single X-ray image pair may be 12.6 Mbytes) arouses concern over transmission speeds, user waiting tolerances and a communications standard. An important accord is being reached between users and equipment manufacturers in radiology for a standard communications protocol, called the proposed ACR-NEMA standard. Features of PACS which require high speed computational abilities include a lexicon for report generation and image reconstruction, compression, enhancement and 3D display

  12. Digital Image Processing Overview For Helmet Mounted Displays

    Science.gov (United States)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  13. Is screening with digital imaging using one retinal view adequate?

    Science.gov (United States)

    Herbert, H M; Jordan, K; Flanagan, D W

    2003-05-01

    To compare the detection of diabetic retinopathy from digital images with slit-lamp biomicroscopy, and to determine whether British Diabetic Association (BDA) screening criteria are attained (>80% sensitivity, >95% specificity, &fashion. A single 45 degrees fundus image was obtained using the nonmydriatic digital camera. Each patient subsequently underwent slit-lamp biomicroscopy and diabetic retinopathy grading by a consultant ophthalmologist. Diabetic retinopathy and maculopathy was graded according to the Early Treatment of Diabetic Retinopathy Study. A total of 145 patients (288 eyes) were identified for screening. Of these, 26% of eyes had diabetic retinopathy, and eight eyes (3%) had sight-threatening diabetic retinopathy requiring treatment. The sensitivity for detection of any diabetic retinopathy was 38% and the specificity 95%. There was a 4% technical failure rate. There were 42/288 false negatives and 10/288 false positives. Of the 42 false negatives, 18 represented diabetic maculopathy, 20 represented peripheral diabetic retinopathy and four eyes had both macular and peripheral changes. Three eyes in the false-negative group (1% of total eyes) had sight-threatening retinopathy. There was good concordance between the two consultants (79% agreement on slit-lamp biomicroscopy and 84% on digital image interpretation). The specificity value and technical failure rate compare favourably with BDA guidelines. The low sensitivity for detection of any retinopathy reflects failure to detect minimal maculopathy and retinopathy outside the 45 degrees image. This could be improved by an additional nasal image and careful evaluation of macular images with a low threshold for slit-lamp biomicroscopy if image quality is poor.

  14. Tendo-ligamentous pathologies of the wrist joint: Can ultrasonography replace magnetic resonance imaging?

    Directory of Open Access Journals (Sweden)

    Kunwarpal Singh

    2017-09-01

    Full Text Available Background: Characterization of tendo-ligamentous pathologies of wrist remains problematic, despite advances in imaging. By using clinical history and imaging appearance, one can determine the diagnosis. USG is used as first imaging modality whereas MRI aids in making a specific diagnosis of few of the lesions. Aims: To investigate the etiological spectrum of tendo-ligamentous pathologies of wrist on USG & MRI with statistical correlation. Patients and methods: 80 patients (male/female = 46/34 with complaint of swelling or pain in wrist were included and underwent USG and MRI of both the wrists. Results: The spectrum included ganglion cysts, vascular malformations, tenosynovitis, tendinopathy, ligament tears and fibrosis. The analysis was done using kappa coefficient and spearman's rho correlation coefficient. The strength of agreement between USG and MRI for the diagnosis of ganglion cysts, vascular malformations, tenosynovitis and tendinopathy was found to be very good. Conclusion: USG provides detailed depiction of superficial structures, is less expensive, and allows dynamic examinations of the wrist. It should be the first choice of investigation for majority of the cystic, tendinous, vascular, and fibrotic pathologies of the wrist. However, less promising results were observed for ligamentous pathologies on USG in our study. Keywords: Tendo-ligamentous pathologies, Ganglion cyst, Tenosynovitis, Ultrasonography, MRI

  15. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  16. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  17. Performances of different digital mammography imaging systems: Evaluation and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)]. E-mail: giuseppina.bisogni@pi.infn.it; Bulajic, D. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); International Centre for Theoretical Physics, Trieste (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)

    2005-07-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems.

  18. Performances of different digital mammography imaging systems: Evaluation and comparison

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Bulajic, D.; Delogu, P.; Fantacci, M.E.; Novelli, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2005-01-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems

  19. USRC: a new strategy for adding digital images to the medical school curriculum.

    Science.gov (United States)

    Pinelle, David; Burbridge, Brent; Kalra, Neil

    2012-10-01

    Many medical schools use learning management systems (LMSs) to give students access to online lecture notes, assignments, quizzes, and other learning resources. LMSs can also be used to provide access to digital radiology images, potentially improving preclinical teaching in anatomy, physiology, and pathology while also allowing students to develop interpretation skills that are important in clinical practice. However, it is unclear how radiology images can best be stored, imported, and displayed in an LMS. We developed University of Saskatchewan Radiology Courseware (USRC), a new web application that allows course designers to import images into pages linked to BlackBoard Learn, a popular LMS. Page content, including images, annotations, captions, and supporting text, are stored as teaching cases on a MIRC (Medical Imaging Resource Center) server. Course designers create cases in MIRC, and then create a corresponding page in BlackBoard by modifying an HTML template so that it holds the URL of a MIRC case. When a user visits the page in BlackBoard, the page requests content from the MIRC case, reformats the text for display in BlackBoard, and loads an image viewer plug-in that allows students to view and interact with the images stored in the case. The USRC technology can be used to reformat MIRC cases for presentation in any website or in any learning management system that supports custom pages written in HTML with embedded JavaScript.

  20. Osteoporosis: a new approach of digital processing of radiological images

    International Nuclear Information System (INIS)

    Salles, Adilson Dias; Braz, Valeria Silva

    1998-01-01

    The authors applied a method based on digital processing of radiological images (fast Fourier transform) to analyze the radius distal epiphysis and calcaneus spongy bone architecture. The study revealed distinct patterns of trabecular distribution. Prior studies about osteoporosis have focused on bone density quantification and its role on fracture prediction. However, resistance to fractures (mechanical strength) is also determined by structural arrangement of bone. THe digital processing (spectral analysis) was applied to radiological images of the radius and calcaneus from 15 normal and osteopenic individuals. Normal bone trabeculae showed an individualized behavior (stress lines). On the other hand, porotic bone trabeculae revealed a diffuse pattern (honey comb). The scattered frequency components showed that the porotic bone trabeculae were remodeled. This process would be responsible for the maintenance of its physical properties. (author)