WorldWideScience

Sample records for digital microfluidic platform

  1. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Integration of fractal biosensor in a digital microfluidic platform

    KAUST Repository

    Mashraei, Yousof

    2015-11-01

    Fractal capacitive electrodes have been successfully integrated into a digital microfluidic open-platform. These electrodes perform actuation and withstand voltages up to 300V without insulation-layer breakdown. They were used to quantify the concentration levels of C-reactive protein (CRP) to determine the risk of cardiovascular disease. The capacitance increased sevenfold and stabilized in less than 5 minutes. The sensor shows a decreasing trend of capacitance readouts with the increase of concentrations. The same immunoassay was tested with untreated electrodes and showed no significant response, which suggests that immobilization was necessary. This configuration allows the electrodes to be used as biosensors.

  3. A review of digital microfluidics as portable platforms for lab-on a-chip applications.

    Science.gov (United States)

    Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina

    2016-07-07

    Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.

  4. Digital microfluidics for automated hanging drop cell spheroid culture.

    Science.gov (United States)

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.

  5. Quality control of next-generation sequencing library through an integrative digital microfluidic platform.

    Science.gov (United States)

    Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D

    2012-12-01

    We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.

  7. Disposable world-to-chip interface for digital microfluidics

    Science.gov (United States)

    Van Dam, R. Michael; Shah, Gaurav; Keng, Pei-Yuin

    2017-05-16

    The present disclosure sets forth incorporating microfluidic chips interfaces for use with digital microfluidic processes. Methods and devices according to the present disclosure utilize compact, integrated platforms that interface with a chip upstream and downstream of the reaction, as well as between intermediate reaction steps if needed. In some embodiments these interfaces are automated, including automation of a multiple reagent process. Various reagent delivery systems and methods are also disclosed.

  8. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof

    2016-06-08

    The digital microfluidic (DMF) platform introduces many applications in biomedical assays. If it is to be commercially available to the public, it needs to have the essential features of smart sensing and a compact size. In this work, we report on a fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF platforms. A simulation of the electrical field distribution shows reduced peak intensities and uniform distribution of the field. When compared to a V-notch square electrode, the fractal electrode shows a superior performance in both aspects, i.e. field uniformity and intensity. These improvements are translated into a successful and responsive actuation of a water droplet with 100V. Likewise, the effective dielectric strength is improved by a 33% increase in the fractal electrode breakdown voltage. Additionally, the capability of the fractal electrode to work as a capacitive biosensor is evaluated with CRP quantification test. Selected fractal electrodes undergo a surface treatment to immobilize anti-CRP antibodies on their surface. The measurement shows a response to the added CRP in capacitance within three minutes. When the untreated electrodes were used for quantification, there was no significant change in capacitance, and this suggested that immobilization was necessary. The electrodes configuration in the fabricated DMF platform allows the fractal electrodes to be selectively used as biosensors, which means the device could be integrated into point-of-care applications.

  9. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  10. Tutorial: Digital microfluidic biochips: Towards hardware/software co-design and cyber-physical system integration

    DEFF Research Database (Denmark)

    Ho, Tsung-Yi; Huang, Juinn-Dar; Pop, Paul

    2013-01-01

    This tutorial will first provide an overview of typical bio-molecular applications (market drivers) such as immunoassays, DNA sequencing, clinical chemistry, etc. Next, microarrays and various microfluidic platforms will be discussed. The next part of the tutorial will focus on electro-wetting-ba......This tutorial will first provide an overview of typical bio-molecular applications (market drivers) such as immunoassays, DNA sequencing, clinical chemistry, etc. Next, microarrays and various microfluidic platforms will be discussed. The next part of the tutorial will focus on electro......-wetting-based digital micro-fluidic biochips. The key idea here is to manipulate liquids as discrete droplets. A number of case studies based on representative assays and laboratory procedures will be interspersed in appropriate places throughout the tutorial. Basic concepts in micro-fabrication techniques will also...... be discussed. Attendees will next learn about CAD and reconfiguration aspects of digital microfluidic biochips. Synthesis tools will be described to map assay protocols from the lab bench to a droplet-based microfluidic platform and generate an optimized schedule of bioassay operations, the binding of assay...

  11. Digital Microfluidic System with Vertical Functionality

    Directory of Open Access Journals (Sweden)

    Brian F. Bender

    2015-11-01

    Full Text Available Digital (droplet microfluidics (DµF is a powerful platform for automated lab-on-a-chip procedures, ranging from quantitative bioassays such as RT-qPCR to complete mammalian cell culturing. The simple MEMS processing protocols typically employed to fabricate DµF devices limit their functionality to two dimensions, and hence constrain the applications for which these devices can be used. This paper describes the integration of vertical functionality into a DµF platform by stacking two planar digital microfluidic devices, altering the electrode fabrication process, and incorporating channels for reversibly translating droplets between layers. Vertical droplet movement was modeled to advance the device design, and three applications that were previously unachievable using a conventional format are demonstrated: (1 solutions of calcium dichloride and sodium alginate were vertically mixed to produce a hydrogel with a radially symmetric gradient in crosslink density; (2 a calcium alginate hydrogel was formed within the through-well to create a particle sieve for filtering suspensions passed from one layer to the next; and (3 a cell spheroid formed using an on-chip hanging-drop was retrieved for use in downstream processing. The general capability of vertically delivering droplets between multiple stacked levels represents a processing innovation that increases DµF functionality and has many potential applications.

  12. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    Science.gov (United States)

    Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  13. A truly Lego®-like modular microfluidics platform

    Science.gov (United States)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  14. A truly Lego®-like modular microfluidics platform

    International Nuclear Information System (INIS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-01-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos ® and why Legos ® inspire many existing modular microfluidics platforms. In this paper, a truly Lego ® -like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego ® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego ® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail. (paper)

  15. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.

    Science.gov (United States)

    Okura, Naoaki; Nakashoji, Yuta; Koshirogane, Toshihiro; Kondo, Masaki; Tanaka, Yugo; Inoue, Kohei; Hashimoto, Masahiko

    2017-10-01

    We have exploited a compact and facile microfluidic droplet creation device consisting of a poly(dimethylsiloxane) microfluidic chip possessing T-junction channel geometry, two inlet reservoirs, and one outlet reservoir, and a piezoelectric (PZT) diaphragm micropump with controller. Air was evacuated from the outlet reservoir using the PZT pump, reducing the pressure inside. The reduced pressure within the outlet reservoir pulled oil and aqueous solution preloaded in the inlet reservoirs into the microchannels, which then merged at the T-junction, successfully forming water-in-oil emulsion droplets at a rate of ∼1000 per second with minimal sample loss. We confirmed that the onset of droplet formation occurred immediately after turning on the pump (<1 s). Over repeated runs, droplet formation was highly reproducible, with droplet size purity (polydispersity, <4%) comparable to that achieved using other microfluidic droplet preparation techniques. We also demonstrated single-molecule PCR amplification in the created droplets, suggesting that the device could be used for effective droplet digital PCR platforms in most laboratories without requiring great expense, space, or time for acquiring technical skills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Neonatal screening for four lysosomal storage diseases with a digital microfluidics platform: Initial results in Brazil

    Directory of Open Access Journals (Sweden)

    Eurico Camargo Neto

    2018-06-01

    Full Text Available Abstract We describe the initial results of a neonatal screening program for four lysosomal storage diseases (MPS I, Pompe, Gaucher and Fabry using the digital microfluidics methodology. The method successfully identified patients previously diagnosed with these diseases and was used to test dried blood spot samples obtained from 10,527 newborns aged 2 to 14 days. The digital microfluidic technology shows potential for a simple, rapid and high-throughput screening for these four diseases in a standard neonatal screening laboratory.

  17. Reconfigurable microfluidic platform in ice

    OpenAIRE

    Varejka, M.

    2008-01-01

    Microfluidic devices are popular tools in the biotechnology industry where they provide smaller reagent requirements, high speed of analysis and the possibility for automation. The aim of the project is to make a flexible biocompatible microfluidic platform adapted to different specific applications, mainly analytical and separations which parameters and configuration can be changed multiple times by changing corresponding computer programme. The current project has been sup...

  18. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    Directory of Open Access Journals (Sweden)

    Piyush Dak

    2016-04-01

    Full Text Available Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  19. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.

    Science.gov (United States)

    Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B

    2017-09-15

    Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 8 cfu·μg -1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm -1 . Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

  20. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  1. Operation placement for application-specific digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate onchip all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow......, but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  2. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  3. A centrifugal microfluidic platform for point-of-care diagnostic applications

    Directory of Open Access Journals (Sweden)

    Suzanne Hugo

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred to as lab-on-a-disc or lab-on-a-CD systems, provide a particularly attractive solution for the implementation of microfluidic point-of-care diagnostic solutions as a result of their simple and compact instrumentation, as well as their functional diversity. Here we detail the implementation of a centrifugal microfluidic platform the first of its kind in South Africa as a foundation for the development of point-of-care diagnostic applications for which both the need and impact is great. The centrifugal microfluidic platform consists of three main components: a microfluidic disc device similar in size and shape to a CD, a system for controlling fluid flow on the device, and a system for recording the results obtained. These components have been successfully implemented and tested. Preliminary test results show that microfluidic functions such as pumping and valving of fluids can be successfully achieved, as well as the generation of monodisperse microfluidic droplets, providing a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of applications, including point-of-care diagnostics. The lab-on-a-disc platform has the potential to provide new diagnostic solutions at the point-of-need in health- and industry-related areas. This paves the way for providing resource limited areas with services such as improved, decentralised health-care access or water-quality monitoring, and reduced diagnosis times at a low cost.

  4. Designing Polymeric Microfluidic Platforms for Biomedical Applications

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi

    Micro- and Nanotechnology have the potential to offer a smart solution for diagnostics and academia research with rapid, low cost, robust analysis systems to facilitate biological analyses. New, high throughput microfluidic platforms have the potential to surpass in performance the conventional...... analyses systems in use today. The overall goal of this PhD project is to address two different areas using microfluidics : i) Chromosome analysis by metaphase FISH such a platform, if successful, can immediately substitute the routine, labor-intensive, glass slide-based FISH analyses in Clinical...... Cytogenetics laboratories. During the course of this project, initially the suitability of the polymeric chip substrate was tested and a microfluidic device was developed for performing interphase FISH analysis. With this device, the key factors involved in chromosome spreading crucial to FISH analysis were...

  5. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.

    Science.gov (United States)

    Sanjay, Sharma T; Fu, Guanglei; Dou, Maowei; Xu, Feng; Liu, Rutao; Qi, Hao; Li, XiuJun

    2015-11-07

    Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.

  6. Automated Microfluidic Platform for Serial Polymerase Chain Reaction and High-Resolution Melting Analysis.

    Science.gov (United States)

    Cao, Weidong; Bean, Brian; Corey, Scott; Coursey, Johnathan S; Hasson, Kenton C; Inoue, Hiroshi; Isano, Taisuke; Kanderian, Sami; Lane, Ben; Liang, Hongye; Murphy, Brian; Owen, Greg; Shinoda, Nobuhiko; Zeng, Shulin; Knight, Ivor T

    2016-06-01

    We report the development of an automated genetic analyzer for human sample testing based on microfluidic rapid polymerase chain reaction (PCR) with high-resolution melting analysis (HRMA). The integrated DNA microfluidic cartridge was used on a platform designed with a robotic pipettor system that works by sequentially picking up different test solutions from a 384-well plate, mixing them in the tips, and delivering mixed fluids to the DNA cartridge. A novel image feedback flow control system based on a Canon 5D Mark II digital camera was developed for controlling fluid movement through a complex microfluidic branching network without the use of valves. The same camera was used for measuring the high-resolution melt curve of DNA amplicons that were generated in the microfluidic chip. Owing to fast heating and cooling as well as sensitive temperature measurement in the microfluidic channels, the time frame for PCR and HRMA was dramatically reduced from hours to minutes. Preliminary testing results demonstrated that rapid serial PCR and HRMA are possible while still achieving high data quality that is suitable for human sample testing. © 2015 Society for Laboratory Automation and Screening.

  7. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  8. Droplet Size-Aware and Error-Correcting Sample Preparation Using Micro-Electrode-Dot-Array Digital Microfluidic Biochips.

    Science.gov (United States)

    Li, Zipeng; Lai, Kelvin Yi-Tse; Chakrabarty, Krishnendu; Ho, Tsung-Yi; Lee, Chen-Yi

    2017-12-01

    Sample preparation in digital microfluidics refers to the generation of droplets with target concentrations for on-chip biochemical applications. In recent years, digital microfluidic biochips (DMFBs) have been adopted as a platform for sample preparation. However, there remain two major problems associated with sample preparation on a conventional DMFB. First, only a (1:1) mixing/splitting model can be used, leading to an increase in the number of fluidic operations required for sample preparation. Second, only a limited number of sensors can be integrated on a conventional DMFB; as a result, the latency for error detection during sample preparation is significant. To overcome these drawbacks, we adopt a next generation DMFB platform, referred to as micro-electrode-dot-array (MEDA), for sample preparation. We propose the first sample-preparation method that exploits the MEDA-specific advantages of fine-grained control of droplet sizes and real-time droplet sensing. Experimental demonstration using a fabricated MEDA biochip and simulation results highlight the effectiveness of the proposed sample-preparation method.

  9. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available is also offered as numerous devices can be implemented on one disc. A variety of components from sample preparation through to detection can be implemented simply and effectively into an integrated microfluidic solution for life sciences. The lab... in the field of centrifugal microfluidics. New microfluidic platform for life sciences in South Africa S. HUGO, K. LAND CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidic...

  10. Digital Microfluidics for Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Beatriz Coelho

    2017-06-01

    Full Text Available Digital Microfluidics (DMF has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

  11. Design Considerations for Integration of Terahertz Time-Domain Spectroscopy in Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Rasha Al-Hujazy

    2018-03-01

    Full Text Available Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values. White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems.

  12. Redundancy Optimization for Error Recovery in Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2015-01-01

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets. Research......Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate all the necessary functions for biochemical analysis. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets....... Researchers have proposed approaches for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. During the execution...... propose an online recovery strategy, which decides during the execution of the biochemical application the introduction of the redundancy required for fault-tolerance. We consider both time redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creating redundant droplets...

  13. Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death

    Science.gov (United States)

    2015-12-20

    droplet-based microfluidic technology to generate population ‘bottleneck’. This platform will serve as a critical foundation for our long-term goal to...Final Report: Development of a Microfluidic Platform to Analyze Evolution of Programmed Bacterial Death The views, opinions and/or findings contained...Triangle Park, NC 27709-2211 Microfluidics , systems biology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM

  14. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  15. Low consumption single-use microvalve for microfluidic PCB-based platforms

    International Nuclear Information System (INIS)

    Flores, G; Aracil, C; Perdigones, F; Quero, J M

    2014-01-01

    In this paper, a single-use and unidirectional microvalve with low consumption of energy for PCB-based microfluidic platforms is reported. Its activation is easy because it works as a fuse. The fabrication process of the device is based on PCB technology and a typical SU-8 process, using the PCB as a substrate and SU-8 for the microfluidic channels and chambers. The microvalve is intended to be used to impulse small volumes of fluids and it has been designed to be highly integrable in PCB-based microfluidic platforms. The proposed device has been fabricated, integrated and tested in a general purpose microfluidic circuit, resulting in a low activation time, of about 100 μs, and a low consumption of energy, with a maximum of 27 mJ. These results show a significant improvement because the energy consumption is about 84% lower and the time response is about four orders of magnitude shorter if compared with similar microvalves for impulsion of fluids on PCB-based platforms. (paper)

  16. Parallel single-cell analysis microfluidic platform

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; le Gac, Severine

    2011-01-01

    We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed.

  17. A centrifugal microfluidic platform for point-of-care diagnostic applications

    CSIR Research Space (South Africa)

    Hugo, S

    2014-02-01

    Full Text Available Microfluidic systems enable precise control over tiny volumes of fluid in a compact and low-cost form, thus providing the ideal platform on which to develop point-of-care diagnostic solutions. Centrifugal microfluidic systems, also referred...

  18. Building bio-assays with magnetic particles on a digital microfluidic platform.

    Science.gov (United States)

    Kokalj, Tadej; Pérez-Ruiz, Elena; Lammertyn, Jeroen

    2015-09-25

    Digital microfluidics (DMF) has emerged as a promising liquid handling technology for a variety of applications, demonstrating great potential both in terms of miniaturization and automation. DMF is based on the manipulation of discrete, independently controllable liquid droplets, which makes it highly reconfigurable and reprogrammable. One of its most exclusive advantages, compared to microchannel-based microfluidics, is its ability to precisely handle solid nano- and microsized objects, such as magnetic particles. Magnetic particles have become very popular in the last decade, since their high surface-to-volume ratio and the possibility to magnetically separate them from the matrix make them perfect suitable as a solid support for bio-assay development. The potential of magnetic particles in DMF-based bio-assays has been demonstrated for various applications. In this review we discuss the latest developments of magnetic particle-based DMF bio-assays with the aim to present, identify and analyze the trends in the field. We also discuss the state-of-the art of device integration, current status of commercialization and issues that still need to be addressed. With this paper we intend to stimulate researchers to exploit and unveil the potential of these exciting tools, which will shape the future of modern biochemistry, microbiology and biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Multimodal Microchannel and Nanowell-Based Microfluidic Platforms for Bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Tao; Smallwood, Chuck R.; Zhu, Ying; Bredeweg, Erin L.; Baker, Scott E.; Evans, James E.; Kelly, Ryan T.

    2017-03-30

    Modern live-cell imaging approaches permit real-time visualization of biological processes. However, limitations for unicellular organism trapping, culturing and long-term imaging can preclude complete understanding of how such microorganisms respond to perturbations in their local environment or linking single-cell variability to whole population dynamics. We have developed microfluidic platforms to overcome prior technical bottlenecks to allow both chemostat and compartmentalized cellular growth conditions using the same device. Additionally, a nanowell-based platform enables a high throughput approach to scale up compartmentalized imaging optimized within the microfluidic device. These channel and nanowell platforms are complementary, and both provide fine control over the local environment as well as the ability to add/replace media components at any experimental time point.

  20. Routing-based Synthesis of Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2010-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the basic functsions for biochemical analysis. The "digital" microfluidic biochips are manipulating liquids not as a continuous flow, but as discrete droplets on a two-dimensional array...... of electrodes. Basic microfluidic operations, such as mixing and dilution, are performed on the array, by routing the corresponding droplets on a series of electrodes. So far, researchers have assumed that these operations are executed on rectangular virtual devices, formed by grouping several adjacent...

  1. Synthesis of Application-Specific Fault-Tolerant Digital Microfluidic Biochip Architectures

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2016-01-01

    Digital microfluidic biochips (DMBs) are microfluidic devices that manipulate droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, and split, are performed on the electrode array to perform a biochemical application. All previous work assumes that the DMB...

  2. Digital platforms as enablers for digital transformation

    DEFF Research Database (Denmark)

    Hossain, Mokter; Lassen, Astrid Heidemann

    transformation is crucial. This study aims at exploring how organizations are driven towards transformation in various ways to embrace digital platforms for ideas, technologies, and knowledge. It shows the opportunities and challenges digital platforms bring in organizations. It also highlights underlying......Digital platforms offer new ways for organizations to collaborate with the external environment for ideas, technologies, and knowledge. They provide new possibilities and competence but they also bring new challenges for organizations. Understanding the role of these platforms in digital...... mechanisms and potential outcomes of various digital platforms. The contribution of the submission is valuable for scholars to understand and further explore this area. It provides insight for practitioners to capture value through digital platforms and accelerate the pace of organizations’ digital...

  3. Multi-function microfluidic platform for sensor integration.

    Science.gov (United States)

    Fernandes, Ana C; Semenova, Daria; Panjan, Peter; Sesay, Adama M; Gernaey, Krist V; Krühne, Ulrich

    2018-03-06

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  5. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Uddalok; Chatterjee, Souvick [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607 (United States); Sen, Swarnendu [Mechanical Engineering Department, Jadavpur University, Kolkata, 700032 India (India); Tiwari, Manish K. [Department of Mechanical Engineering, University College London, London, WC1E 7JE UK (United Kingdom); Mukhopadhyay, Achintya [Mechanical Engineering Department, Jadavpur University, Kolkata, 700032 India (India); Ganguly, Ranjan, E-mail: ranjan@pe.jusl.ac.in [Department of Power Engineering, Jadavpur University, Kolkata, 700098 India (India)

    2017-01-01

    Active control of droplet generation in a microfluidic platform attracts interest for development of digital microfluidic devices ranging from biosensors to micro-reactors to point-of-care diagnostic devices. The present paper characterizes, through an unsteady three-dimensional Volume of Fluid (VOF) simulation, the active control of ferrofluid droplet generation in a microfluidic T-junction in presence of a non-uniform magnetic field created by an external magnetic dipole. Two distinctly different positions of the dipole were considered – one upstream of the junction and one downstream. While keeping the ferrofluid flow rate fixed, a parametric variation of the continuous phase capillary number, dipole strength, and dipole position was carried out. Differences in the flow behaviour in terms of dripping or jetting and the droplet characteristics in terms of droplet formation time period and droplet size were studied. The existence of a threshold dipole strength, below which the magnetic force was not able to influence the flow behaviour, was identified. It was also observed that, for dipoles placed upstream of the junction, droplet formation was suppressed at some higher dipole strengths, and this value was found to increase with increasing capillary number. Droplet time period was also found to increase with increasing dipole strength, along with droplet size, i.e. an increase in droplet volume. - Highlights: • Active control of ferrofluid droplet generation in a microfluidic T-junction is demonstrated. • Unsteady three-dimensional Volume of Fluid (VOF) simulation is adopted. • Capillary number, dipole strength and position influence droplet shedding behaviour. • Magnetic actuation of a microfluidic droplet generator is characterised.

  6. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    Science.gov (United States)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  7. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  8. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications

    Science.gov (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sen, Swarnendu; Tiwari, Manish K.; Mukhopadhyay, Achintya; Ganguly, Ranjan

    2017-01-01

    Active control of droplet generation in a microfluidic platform attracts interest for development of digital microfluidic devices ranging from biosensors to micro-reactors to point-of-care diagnostic devices. The present paper characterizes, through an unsteady three-dimensional Volume of Fluid (VOF) simulation, the active control of ferrofluid droplet generation in a microfluidic T-junction in presence of a non-uniform magnetic field created by an external magnetic dipole. Two distinctly different positions of the dipole were considered - one upstream of the junction and one downstream. While keeping the ferrofluid flow rate fixed, a parametric variation of the continuous phase capillary number, dipole strength, and dipole position was carried out. Differences in the flow behaviour in terms of dripping or jetting and the droplet characteristics in terms of droplet formation time period and droplet size were studied. The existence of a threshold dipole strength, below which the magnetic force was not able to influence the flow behaviour, was identified. It was also observed that, for dipoles placed upstream of the junction, droplet formation was suppressed at some higher dipole strengths, and this value was found to increase with increasing capillary number. Droplet time period was also found to increase with increasing dipole strength, along with droplet size, i.e. an increase in droplet volume.

  9. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    Science.gov (United States)

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  10. A microfluidic DNA library preparation platform for next-generation sequencing.

    Science.gov (United States)

    Kim, Hanyoup; Jebrail, Mais J; Sinha, Anupama; Bent, Zachary W; Solberg, Owen D; Williams, Kelly P; Langevin, Stanley A; Renzi, Ronald F; Van De Vreugde, James L; Meagher, Robert J; Schoeniger, Joseph S; Lane, Todd W; Branda, Steven S; Bartsch, Michael S; Patel, Kamlesh D

    2013-01-01

    Next-generation sequencing (NGS) is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF) sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM). The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  11. A microfluidic DNA library preparation platform for next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Hanyoup Kim

    Full Text Available Next-generation sequencing (NGS is emerging as a powerful tool for elucidating genetic information for a wide range of applications. Unfortunately, the surging popularity of NGS has not yet been accompanied by an improvement in automated techniques for preparing formatted sequencing libraries. To address this challenge, we have developed a prototype microfluidic system for preparing sequencer-ready DNA libraries for analysis by Illumina sequencing. Our system combines droplet-based digital microfluidic (DMF sample handling with peripheral modules to create a fully-integrated, sample-in library-out platform. In this report, we use our automated system to prepare NGS libraries from samples of human and bacterial genomic DNA. E. coli libraries prepared on-device from 5 ng of total DNA yielded excellent sequence coverage over the entire bacterial genome, with >99% alignment to the reference genome, even genome coverage, and good quality scores. Furthermore, we produced a de novo assembly on a previously unsequenced multi-drug resistant Klebsiella pneumoniae strain BAA-2146 (KpnNDM. The new method described here is fast, robust, scalable, and automated. Our device for library preparation will assist in the integration of NGS technology into a wide variety of laboratories, including small research laboratories and clinical laboratories.

  12. Compilation and Synthesis for Fault-Tolerant Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela

    Microfluidic-based biochips are replacing the conventional biochemical analyzers, by integrating all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips (DMBs) manipulate discrete amounts of fluids of nanoliter volume, named droplets, on an array...... of the operations in the application. During the execution of a bioassay, operations could experience transient faults, thus impacting negatively the correctness of the application. We have proposed both offline (design time) and online (runtime) recovery strategies. The online recovery strategy decides...

  13. Towards a Disruptive Digital Platform Model

    DEFF Research Database (Denmark)

    Kazan, Erol

    that digital platforms leverage on three strategic design elements (i.e., business, architecture, and technology design) to create supportive conditions for facilitating disruption. To shed light on disruptive digital platforms, I opted for payment platforms as my empirical context and unit of analysis......Digital platforms are layered modular information technology architectures that support disruption. Digital platforms are particularly disruptive, as they facilitate the quick release of digital innovations that may replace established innovations. Yet, despite their support for disruption, we have...... not fully understood how such digital platforms can be strategically designed and configured to facilitate disruption. To that end, this thesis endeavors to unravel disruptive digital platforms from the supply perspective that are grounded on strategic digital platform design elements. I suggest...

  14. Application-specific fault-tolerant architecture synthesis for digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    , but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous...

  15. Spintronic microfluidic platform for biomedical and environmental applications

    Science.gov (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  16. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  17. Towards rapid prototyped convective microfluidic DNA amplification platform

    Science.gov (United States)

    Ajit, Smrithi; Praveen, Hemanth Mithun; Puneeth, S. B.; Dave, Abhishek; Sesham, Bharat; Mohan, K. N.; Goel, Sanket

    2017-02-01

    Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.

  18. Multi-function microfluidic platform for sensor integration

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Semenova, Daria; Panjan, Peter

    2018-01-01

    The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high...... throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening...... of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate...

  19. Split and flow: reconfigurable capillary connection for digital microfluidic devices.

    Science.gov (United States)

    Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent

    2014-09-21

    Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.

  20. Optimization of Liquid DiElectroPhoresis (LDEP Digital Microfluidic Transduction for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2011-06-01

    Full Text Available Digital microfluidic has recently been under intensive study, as an effective method to carry out liquid manipulation in Lab-On-a-Chip (LOC systems. Among droplet actuation forces, ElectroWetting on Dielectric (EWOD and Liquid DiElectroPhoresis (LDEP are powerful tools, used in many LOC platforms. Such digital microfluidic transductions do not require integration of complex mechanical components such as pumps and valves to perform the fluidic operations. However, although LDEP has been proved to be efficient to carry and manipulate biological components in insulating liquids, this microfluidic transduction requires several hundreds of volts at relatively high frequencies (kHz to MHz. With the purpose to develop integrated microsystems µ-TAS (Micro Total Analysis System or Point of Care systems, the goal here is to reduce such high actuation voltage, the power consumption, though using standard dielectric materials. This paper gives key rules to determine the best tradeoff between liquid manipulation efficiency, low-power consumption and robustness of microsystems using LDEP actuation. This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes. In particular, several parameters will be investigated to quantify Vth and fc, such as the influence of the chip materials, the electrodes size and the device configurations. Compared to current studies in the field, significant reduction of both Vth and fc is achieved by optimization of the aforementioned parameters.

  1. IFSA: a microfluidic chip-platform for frit-based immunoassay protocols

    Science.gov (United States)

    Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia

    2013-03-01

    Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.

  2. The Logic of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    Digital platforms are disruptive IT artifacts, because they facilitate the quick release of innovative platform derivatives from third parties (e.g., apps). This study endeavours to unravel the disruptive potential, caused by distinct designs and configurations of digital platforms on market...... environments. We postulate that the disruptive potential of digital platforms is determined by the degree of alignment among the business, technology and platform profiles. Furthermore, we argue that the design and configuration of the aforementioned three elements dictates the extent to which open innovation...... is permitted. To shed light on the disruptive potential of digital platforms, we opted for payment platforms as our unit of analysis. Through interviews with experts and payment providers, we seek to gain an in-depth appreciation of how contemporary digital payment platforms are designed and configured...

  3. Next generation digital microfluidic technology: Electrophoresis of charged droplets

    Energy Technology Data Exchange (ETDEWEB)

    Im, Do Jin [Pukyong National University, Busan (Korea, Republic of)

    2015-06-15

    Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

  4. Construction and use of a microfluidic dissection platform for long-term imaging of cellular processes in budding yeast.

    Science.gov (United States)

    Huberts, Daphne H E W; Sik Lee, Sung; Gonzáles, Javier; Janssens, Georges E; Vizcarra, Ima Avalos; Heinemann, Matthias

    2013-06-01

    This protocol describes the production and operation of a microfluidic dissection platform for long-term, high-resolution imaging of budding yeast cells. At the core of this platform is an array of micropads that trap yeast cells in a single focal plane. Newly formed daughter cells are subsequently washed away by a continuous flow of fresh culture medium. In a typical experiment, 50-100 cells can be tracked during their entire replicative lifespan. Apart from aging-related research, the microfluidic platform can also be a valuable tool for other studies requiring the monitoring of single cells over time. Here we provide step-by-step instructions on how to fabricate the silicon wafer mold, how to produce and operate the microfluidic device and how to analyze the obtained data. Production of the microfluidic dissection platform and setting up an aging experiment takes ~7 h.

  5. Microfluidic Platform for Enzyme-Linked and Magnetic Particle-Based Immunoassay

    Directory of Open Access Journals (Sweden)

    Dorota G. Pijanowska

    2013-06-01

    Full Text Available This article presents design and testing of a microfluidic platform for immunoassay. The method is based on sandwiched ELISA, whereby the primary antibody is immobilized on nitrocelluose and, subsequently, magnetic beads are used as a label to detect the analyte. The chip takes approximately 2 h and 15 min to complete the assay. A Hall Effect sensor using 0.35-μm BioMEMS TSMC technology (Taiwan Semiconductor Manufacturing Company Bio-Micro-Electro-Mechanical Systems was fabricated to sense the magnetic field from the beads. Furthermore, florescence detection and absorbance measurements from the chip demonstrate successful immunoassay on the chip. In addition, investigation also covers the Hall Effect simulations, mechanical modeling of the bead–protein complex, testing of the microfluidic platform with magnetic beads averaging 10 nm, and measurements with an inductor-based system.

  6. A microfluidic platform for the investigation of elongation growth in pollen tubes

    International Nuclear Information System (INIS)

    Agudelo, C G; Sanati, A; Ghanbari, M; Packirisamy, M; Geitmann, A

    2012-01-01

    Pollen tubes are an excellent model for the investigation of plant cell growth: they elongate at very high rates and are easily cultured in vitro. One major constraint in the study of pollen tube growth has been the difficulty in providing an in vitro testing environment that physically resembles the in vivo conditions. This work presents the development of a microfluidic platform for the study and manipulation of individual pollen tubes. The platform is fabricated from polydimethylsiloxane using a Silicon/SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels into which the tubes grow to allow for individual testing. A 2D finite element fluid analysis is done to assist optimization of the architectural design. Validation of the device is carried out by growing Camellia japonica pollen. Results show that pollen tube germination and growth rate within the microfluidic network are similar to those obtained in conventional plate or batch assays. The microfluidic network allows for specific testing of a variety of structural features as demonstrated with a simple collision test, and it permits the straightforward integration of further single-cell test assays. (paper)

  7. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    Science.gov (United States)

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  8. The Innovative Capabilities Of Digital Payment Platforms

    DEFF Research Database (Denmark)

    Kazan, Erol

    2015-01-01

    This study presents a model for studying the innovative capabilities of digital payment platforms in regards to open innovation integration and commercialization. We perceive digital platforms as layered modular IT artifacts, where platform governance and the configuration of platform layers impact...... the support for open innovation. The proposed model has been employed in a comparative case study between two digital payment platforms: Apple Pay and Google Wallet. The findings suggest that digital payment platforms make use of boundary resources to be highly integrative or integratable, which supports...... the intended conjoint commercialization efforts. Furthermore, the architectural design of digital platforms impacts the access to commercialization, resulting to an exclusion or inclusion strategy in accessing value opportunities. Our findings contribute to the open innovation and digital platform literature...

  9. Understanding Platform-Based Digital Currencies

    OpenAIRE

    Ben Fung; Hanna Halaburda

    2014-01-01

    Given technological advances and the widespread use of the Internet, various digital currencies have emerged. In most cases, Internet platforms such as Facebook and Amazon restrict the functionality of their digital currencies to enhance the business model and maximize their profits. While platform-based digital currencies could increase the efficiency of retail payments, they could also raise some important policy issues if they were to become widely used outside of the platform. Thus, it is...

  10. Towards a Framework of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2014-01-01

    Digital platforms are disruptive information technology (IT) artifacts that erode conventional business logic associated with traditional market structures. This paper presents a framework for examining the disruptive potential of digital platforms whereby we postulate that the strategic interplay...... digital platforms purposely decouple platform layers, to foster open innovation and accelerate market disruption. This paper therefore represents a first concrete step aimed at unravelling the disruptive potential of digital platforms....... of governance regimes and platform layers is deterministic of whether disruptive derivatives are permitted to flourish. This framework has been employed in a comparative case study between centralized (i.e., PayPal) and decentralized (i.e., Coinkite) digital payment platforms to illustrate its applicability...

  11. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    Science.gov (United States)

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  13. Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

    DEFF Research Database (Denmark)

    Maftei, Elena

    several real-life case studies and synthetic benchmarks. The experiments show that by considering the dynamically reconfigurable nature of microfluidic operations, significant improvements can be obtained, decreasing the biochemical application completion times, reducing thus the biochip area...... of electrodes. The main objective of this thesis is to develop top-down synthesis techniques for digital microfluidic biochips. So far, researchers have assumed that operations are executing on virtual modules of rectangular shape, formed by grouping adjacent electrodes, and which have a fixed placement...... on the microfluidic array. However, operations can actually execute by routing the droplets on any sequence of electrodes on the biochip. Thus, we have proposed a routing-based model of operation execution, and we have developed several associated synthesis approaches, which progressively relax the assumption...

  14. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    Science.gov (United States)

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI

    Science.gov (United States)

    Russo, Maria; Bevilacqua, Paolo; Netti, Paolo Antonio; Torino, Enza

    2016-11-01

    Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.

  16. Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Science.gov (United States)

    Bernacka-Wojcik, Iwona

    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration

  17. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

    OpenAIRE

    Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,

    2018-01-01

    Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystallization conditions. Commercially-available microfluidic junctions and tubing are combined to create the appropriate geometry. In addition, a " chemical library " is produced in tubing. The microfluidic geometry for a " crystallization agent-based chemica...

  18. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  19. Towards A Research Agenda on Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    Digital platforms are disruptive IT artifacts, because they facilitate the quick release of innovative platform derivatives from third parties. This study endeavors to unravel the disruptive potential, caused by distinct designs and configurations of digital platforms on market environments. We...... postulate that the disruptive potential of digital platforms is determined by the degree of alignment among the business, technology and platform profiles. Furthermore, we argue that the design and configuration of the aforementioned three elements dictates the extent to which open innovation is permitted....... To shed light on the disruptive potential of digital platforms, we opted for digital payment platforms as our unit of analysis. Through interviews with experts and payment providers, we seek to gain an in-depth appreciation of how contemporary digital payment platforms are designed and configured...

  20. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  1. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P.

    2017-01-01

    A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase...

  2. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.

    Directory of Open Access Journals (Sweden)

    David A Selck

    Full Text Available Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our

  3. Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing†

    Science.gov (United States)

    Jensen, Erik C.; Stockton, Amanda M.; Chiesl, Thomas N.; Kim, Jungkyu; Bera, Abhisek; Mathies, Richard A.

    2013-01-01

    A digitally programmable microfluidic Automaton consisting of a 2-dimensional array of pneumatically actuated microvalves is programmed to perform new multiscale mixing and sample processing operations. Large (µL-scale) volume processing operations are enabled by precise metering of multiple reagents within individual nL-scale valves followed by serial repetitive transfer to programmed locations in the array. A novel process exploiting new combining valve concepts is developed for continuous rapid and complete mixing of reagents in less than 800 ms. Mixing, transfer, storage, and rinsing operations are implemented combinatorially to achieve complex assay automation protocols. The practical utility of this technology is demonstrated by performing automated serial dilution for quantitative analysis as well as the first demonstration of on-chip fluorescent derivatization of biomarker targets (carboxylic acids) for microchip capillary electrophoresis on the Mars Organic Analyzer. A language is developed to describe how unit operations are combined to form a microfluidic program. Finally, this technology is used to develop a novel microfluidic 6-sample processor for combinatorial mixing of large sets (>26 unique combinations) of reagents. The digitally programmable microfluidic Automaton is a versatile programmable sample processor for a wide range of process volumes, for multiple samples, and for different types of analyses. PMID:23172232

  4. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Margarita Cabrera

    2017-04-01

    Full Text Available The budding yeast Saccharomyces cerevisiae divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been used as a model to study the ageing of mitotically active human cells. Several microfluidic platforms, which use fluid flow to selectively remove daughter cells, have recently been developed that can monitor cell physiology as mother cells age. However, these platforms are not trivial to set up and users often require many hours of training. In this study, we have developed a simple system, which combines a commercially available microfluidic platform (the CellASIC ONIX Microfluidic Platform and a genetic tool to prevent the proliferation of daughter cells (the Mother Enrichment Program, to monitor protein abundance and localization changes during approximately the first half of the yeast replicative lifespan. We validated our system by observing known age-dependent changes, such as decreased Sir2 abundance, and have identified a protein with a previously unknown age-dependent change in localization.

  5. Droplet Microfluidic and Magnetic Particles Platform for Cancer Typing.

    Science.gov (United States)

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, M; Malaquin, Laurent; Descroix, Stéphanie; de Cremoux, Patricia; Viovy, Jean-Louis

    2017-01-01

    Analyses of nucleic acids are routinely performed in hospital laboratories to detect gene alterations for cancer diagnosis and treatment decision. Among the different possible investigations, mRNA analysis provides information on abnormal levels of genes expression. Standard laboratory methods are still not adapted to the isolation and quantitation of low mRNA amounts and new techniques needs to be developed in particular for rare subsets analysis. By reducing the volume involved, time process, and the contamination risks, droplet microfluidics provide numerous advantages to perform analysis down to the single cell level.We report on a droplet microfluidic platform based on the manipulation of magnetic particles that allows the clinical analysis of tumor tissues. In particular, it allows the extraction of mRNA from the total-RNA sample, Reverse Transcription, and cDNA amplification, all in droplets.

  6. Undergraduate Laboratory Module for Implementing ELISA on the High Performance Microfluidic Platform

    Science.gov (United States)

    Giri, Basant; Peesara, Ravichander R.; Yanagisawa, Naoki; Dutta, Debashis

    2015-01-01

    Implementing enzyme-linked immunosorbent assays (ELISA) in microchannels offers several advantages over its traditional microtiter plate-based format, including a reduced sample volume requirement, shorter incubation period, and greater sensitivity. Moreover, microfluidic ELISA platforms are inexpensive to fabricate and allow integration of…

  7. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.

    Science.gov (United States)

    Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad

    2017-11-21

    Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow

  8. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    Science.gov (United States)

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  9. Microfluidic platform for multiplexed detection in single cells and methods thereof

    Science.gov (United States)

    Wu, Meiye; Singh, Anup K.

    2018-05-01

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  10. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement

    International Nuclear Information System (INIS)

    Fobel, Ryan; Fobel, Christian; Wheeler, Aaron R.

    2013-01-01

    We introduce DropBot: an open-source instrument for digital microfluidics (http://microfluidics.utoronto.ca/dropbot). DropBot features two key functionalities for digital microfluidics: (1) real-time monitoring of instantaneous drop velocity (which we propose is a proxy for resistive forces), and (2) application of constant electrostatic driving forces through compensation for amplifier-loading and device capacitance. We anticipate that this system will enhance insight into failure modes and lead to new strategies for improved device reliability, and will be useful for the growing number of users who are adopting digital microfluidics for automated, miniaturized laboratory operation.

  11. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin

    2015-05-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  12. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin; Kokkinis, Georgios; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen; Cardoso, Susana; Cardoso, Filipe; Giouroudi, Ioanna

    2015-01-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  13. Towards a Framework of Digital Platform Competition

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    between monopolistic (i.e., Pingit) and federated (i.e., Paym) mobile payment platforms to illustrate its applicability and yield principles on the nature and impact of competition among platform-driven ubiquitous systems. Preliminary findings indicate that monopolistic mobile digital platforms attempt...... to create unique configurals to obtain monopolistic power by tightly coupling platform layers, which are difficult to replicate. Conversely, federated digital platforms compete by dispersing the service layer to harness the collective resources from individual firms. Furthermore, the interaction...

  14. Microfluidic platform to evaluate migration of cells from patients with DYT1 dystonia

    NARCIS (Netherlands)

    Nery, Flavia C.; da Hora, Cintia C.; Atai, Nadia A.; Kim, Edward Y.; Hettich, Jasmin; Mempel, Thorsten R.; Breakefield, Xandra O.; Irimia, Daniel

    2014-01-01

    Microfluidic platforms for quantitative evaluation of cell biologic processes allow low cost and time efficient research studies of biological and pathological events, such as monitoring cell migration by real-time imaging. In healthy and disease states, cell migration is crucial in development and

  15. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  16. Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis.

    Science.gov (United States)

    Coley, Connor W; Abolhasani, Milad; Lin, Hongkun; Jensen, Klavs F

    2017-08-07

    We present an automated microfluidic platform for in-flow studies of visible-light photoredox catalysis in liquid or gas-liquid reactions at the 15 μL scale. An oscillatory flow strategy enables a flexible residence time while preserving the mixing and heat transfer advantages of flow systems. The adjustable photon flux made possible with the platform is characterized using actinometry. Case studies of oxidative hydroxylation of phenylboronic acids and dimerization of thiophenol demonstrate the capabilities and advantages of the system. Reaction conditions identified through droplet screening translate directly to continuous synthesis with minor platform modifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genesis and Evolution of Digital Payment Platforms

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    Payment transactions through the use of physical coins, bank notes or credit cards have for centuries been the standard formats of exchanging money. Recently online and mobile digital payment platforms has entered the stage as contenders to this position and possibly could penetrate societies...... thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment paltforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  18. Molecular quantification of environmental DNA using microfluidics and digital PCR.

    Science.gov (United States)

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2012-09-01

    Real-time PCR has been widely used to evaluate gene abundance in natural microbial habitats. However, PCR-inhibitory substances often reduce the efficiency of PCR, leading to the underestimation of target gene copy numbers. Digital PCR using microfluidics is a new approach that allows absolute quantification of DNA molecules. In this study, digital PCR was applied to environmental samples, and the effect of PCR inhibitors on DNA quantification was tested. In the control experiment using λ DNA and humic acids, underestimation of λ DNA at 1/4400 of the theoretical value was observed with 6.58 ng μL(-1) humic acids. In contrast, digital PCR provided accurate quantification data with a concentration of humic acids up to 9.34 ng μL(-1). The inhibitory effect of paddy field soil extract on quantification of the archaeal 16S rRNA gene was also tested. By diluting the DNA extract, quantified copy numbers from real-time PCR and digital PCR became similar, indicating that dilution was a useful way to remedy PCR inhibition. The dilution strategy was, however, not applicable to all natural environmental samples. For example, when marine subsurface sediment samples were tested the copy number of archaeal 16S rRNA genes was 1.04×10(3) copies/g-sediment by digital PCR, whereas real-time PCR only resulted in 4.64×10(2) copies/g-sediment, which was most likely due to an inhibitory effect. The data from this study demonstrated that inhibitory substances had little effect on DNA quantification using microfluidics and digital PCR, and showed the great advantages of digital PCR in accurate quantifications of DNA extracted from various microbial habitats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. The Challenges of Designing Digital Services for Multiple Mobile Platforms

    DEFF Research Database (Denmark)

    Ghazawneh, Ahmad

    2016-01-01

    on a multiple case study of three mobile application development firms from Sweden, Denmark and Norway, we synthesize the digital service design taxonomy to understand the challenges faced by third-party developers. Our study identifies a set of challenges in four different levels: user level, platform level...... to tap into and join the digital ecosystem. However, while there is an emerging literature on designing digital services, little empirical evidence exists about challenges faced by third-party developers while designing digital services, and in particular for multiple mobile platforms. Drawing......The value of digital services is increasingly recognized by owners of digital platforms. These services have central role in building and sustaining the business of the digital platform. In order to sustain the design of digital services, owners of digital platforms encourage third-party developers...

  20. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    Science.gov (United States)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  1. An Investigation of Digital Payment Platform Designs

    DEFF Research Database (Denmark)

    Kazan, Erol; Damsgaard, Jan

    2014-01-01

    This paper focuses on the triumph march of mobile phones that currently are annexing music players, navigation devices, and cameras as separate physical objects. The next target is set on payment. Through synthesizing available literature, we construct a framework for studying digital payment...... platforms that combines platform, technology and business design aspects. The framework is applied to conduct a comparative case study of digital payment platforms. Four types of market actors are considered: banks, mobile network operators, merchants, and startups, which are incumbents and disrupters....... By hosting third-party services, payment instruments are evolving from single-purpose to multi-functional ones. Our research extends existing payment literature from the MSP perspective to emphasize certain digital payment platform components, which impact strategies and complementary products....

  2. Digital microfluidics: A promising technique for biochemical applications

    Science.gov (United States)

    Wang, He; Chen, Liguo; Sun, Lining

    2017-12-01

    Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.

  3. Towards a Market Entry Framework for Digital Payment Platforms

    DEFF Research Database (Denmark)

    Kazan, Erol; Damsgaard, Jan

    2016-01-01

    This study presents a framework to understand and explain the design and configuration of digital payment platforms and how these platforms create conditions for market entries. By embracing the theoretical lens of platform envelopment, we employed a multiple and comparative-case study...... in a European setting by using our framework as an analytical lens to assess market-entry conditions. We found that digital payment platforms have acquired market entry capabilities, which is achieved through strategic platform design (i.e., platform development and service distribution) and technology design...... (i.e., issuing evolutionary and revolutionary payment instruments). The studied cases reveal that digital platforms leverage payment services as a mean to bridge and converge core and adjacent platform markets. In so doing, platform envelopment strengthens firms’ market position in their respective...

  4. Microfluidics without channels: highly-flexible synthesis on a digital-microfluidic chip for production of diverse PET tracers

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Robert Michael [Univ. of California, Los Angeles, CA (United States)

    2010-09-01

    Positron emission tomography (PET) imaging is used for fundamental studies of living biological organisms and microbial ecosystems in applications ranging from biofuel production to environmental remediation to the study, diagnosis, and treatment monitoring of human disease. Routine access to PET imaging, to monitor biochemical reactions in living organisms in real time, could accelerate a broad range of research programs of interest to DOE. Using PET requires access to short-lived radioactive-labeled compounds that specifically probe the desired living processes. The overall aims of this project were to develop a miniature liquid-handling technology platform (called “microfluidics”) that increases the availability of diverse PET probes by reducing the cost and complexity of their production. Based on preliminary experiments showing that microfluidic chips can synthesis such compounds, we aimed to advance this technology to improve its robustness, increase its flexibility for a broad range of probes, and increase its user-friendliness. Through the research activities of this project, numerous advances were made; Tools were developed to enable the visualization of radioactive materials within microfluidic chips; Fundamental advances were made in the microfluidic chip architecture and fabrication process to increase its robustness and reliability; The microfluidic chip technology was shown to produce useful quantities of an example PET probes, and methods to further increase the output were successfully pursued; A “universal” chip was developed that could produce multiple types of PET probes, enabling the possibility of “on demand” synthesis of different probes; and Operation of the chip was automated to ensure minimal radiation exposure to the operator Based on the demonstrations of promising technical feasibility and performance, the microfluidic chip technology is currently being commercialized. It is anticipated that costs of microfluidic chips can be

  5. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.

    Science.gov (United States)

    Karuwan, Chanpen; Sukthang, Kreeta; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Patthanasettakul, Viyapol; Wechsatol, Wishsanuruk; Tuantranont, Adisorn

    2011-06-15

    In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Microfluidic-Based Multi-Organ Platforms for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ahmad Rezaei Kolahchi

    2016-09-01

    Full Text Available Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.

  7. Simultaneous detection of multiple HPV DNA via bottom-well microfluidic chip within an infra-red PCR platform.

    Science.gov (United States)

    Liu, Wenjia; Warden, Antony; Sun, Jiahui; Shen, Guangxia; Ding, Xianting

    2018-03-01

    Portable Polymerase Chain Reaction (PCR) devices combined with microfluidic chips or lateral flow stripes have shown great potential in the field of point-of-need testing (PoNT) as they only require a small volume of patient sample and are capable of presenting results in a short time. However, the detection for multiple targets in this field leaves much to be desired. Herein, we introduce a novel PCR platform by integrating a bottom-well microfluidic chip with an infra-red (IR) excited temperature control method and fluorescence co-detection of three PCR products. Microfluidic chips are utilized to partition different samples into individual bottom-wells. The oil phase in the main channel contains multi-walled carbon nanotubes which were used as a heat transfer medium that absorbs energy from the IR-light-emitting diode (LED) and transfers heat to the water phase below. Cyclical rapid heating and cooling necessary for PCR are achieved by alternative power switching of the IR-LED and Universal Serial Bus (USB) mini-fan with a pulse width modulation scheme. This design of the IR-LED PCR platform is economic, compact, and fully portable, making it a promising application in the field of PoNT. The bottom-well microfluidic chip and IR-LED PCR platform were combined to fulfill a three-stage thermal cycling PCR for 40 cycles within 90 min for Human Papilloma Virus (HPV) detection. The PCR fluorescent signal was successfully captured at the end of each cycle. The technique introduced here has broad applications in nucleic acid amplification and PoNT devices.

  8. Hardware/software co-design and optimization for cyberphysical integration in digital microfluidic biochips

    CERN Document Server

    Luo, Yan; Ho, Tsung-Yi

    2015-01-01

    This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain,

  9. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly

    OpenAIRE

    Yafia, Mohamed; Ahmadi, Ali; Hoorfar, Mina; Najjaran, Homayoun

    2015-01-01

    Portable sensors and biomedical devices are influenced by the recent advances in microfluidics technologies, compact fabrication techniques, improved detection limits and enhanced analysis capabilities. This paper reports the development of an integrated ultraportable, low-cost, and modular digital microfluidic (DMF) system and its successful integration with a smartphone used as a high-level controller and post processing station. Low power and cost effective electronic circuits are designed...

  10. An end-to-end microfluidic platform for engineering life supporting microbes in space exploration missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology proposes a programmable, low-cost, and compact microfluidic platform capable of running automated end-to-end processes and optimization...

  11. Multichannel Bipotentiostat Integrated With a Microfluidic Platform for Electrochemical Real-Time Monitoring of Cell Cultures

    DEFF Research Database (Denmark)

    Vergani, Marco; Carminati, Marco; Ferrari, Giorgio

    2012-01-01

    An electrochemical detection system specifically designed for multi-parameter real-time monitoring of stem cell culturing/differentiation in a microfluidic system is presented. It is composed of a very compact 24-channel electronic board, compatible with arrays of microelectrodes and coupled...... to a microfluidic cell culture system. A versatile data acquisition software enables performing amperometry, cyclic voltammetry and impedance spectroscopy in each of the 12 independent chambers over a 100 kHz bandwidth with current resolution down to 5 pA for 100 ms measuring time. The design of the platform, its...... realization and experimental characterization are reported, with emphasis on the analysis of impact of input capacitance (i.e., microelectrode size) and microfluidic pump operation on current noise. Programmable sequences of successive injections of analytes (ferricyanide and dopamine) and rinsing buffer...

  12. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  13. Towards A Framework of Digital Payment Platform Design

    DEFF Research Database (Denmark)

    Kazan, Erol; Damsgaard, Jan

    This paper focuses on the triumph march of mobile phones that currently are annexing music players, navigation devices, and cameras as separate physical objects. The next target is set on payment. Through synthesizing available literature, we construct a framework for studying digital payment...... platforms that combines platform, technology and business design aspects. The framework is applied to conduct a comparative case study of digital payment platforms. Four types of market actors are considered: banks, mobile network operators, merchants, and startups, which are incumbents and disrupters....... By hosting third-party services, payment instruments are evolving from single-purpose to multi-functional ones. Our research extends existing payment literature from the MSP perspective to emphasize certain digital payment platform components, which impact strategies and complementary products....

  14. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    Science.gov (United States)

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-02-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.

  15. How Digital Are the Digital Humanities? An Analysis of Two Scholarly Blogging Platforms

    Science.gov (United States)

    Puschmann, Cornelius; Bastos, Marco

    2015-01-01

    In this paper we compare two academic networking platforms, HASTAC and Hypotheses, to show the distinct ways in which they serve specific communities in the Digital Humanities (DH) in different national and disciplinary contexts. After providing background information on both platforms, we apply co-word analysis and topic modeling to show thematic similarities and differences between the two sites, focusing particularly on how they frame DH as a new paradigm in humanities research. We encounter a much higher ratio of posts using humanities-related terms compared to their digital counterparts, suggesting a one-way dependency of digital humanities-related terms on the corresponding unprefixed labels. The results also show that the terms digital archive, digital literacy, and digital pedagogy are relatively independent from the respective unprefixed terms, and that digital publishing, digital libraries, and digital media show considerable cross-pollination between the specialization and the general noun. The topic modeling reproduces these findings and reveals further differences between the two platforms. Our findings also indicate local differences in how the emerging field of DH is conceptualized and show dynamic topical shifts inside these respective contexts. PMID:25675441

  16. Performance Improvements and Congestion Reduction for Routing-based Synthesis for Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Windh, Skyler; Phung, Calvin; Grissom, Daniel T.

    2017-01-01

    Routing-based synthesis for digital microfluidic biochips yields faster assay execution times compared to module-based synthesis. We show that routing-based synthesis can lead to deadlocks and livelocks in specific cases, and that dynamically detecting them and adjusting the probabilities...

  17. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    Science.gov (United States)

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  18. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    Science.gov (United States)

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  19. A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans.

    Science.gov (United States)

    Gokce, Sertan Kutal; Guo, Samuel X; Ghorashian, Navid; Everett, W Neil; Jarrell, Travis; Kottek, Aubri; Bovik, Alan C; Ben-Yakar, Adela

    2014-01-01

    Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner.

  20. A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy

    Science.gov (United States)

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images. PMID:25545548

  1. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.

    Science.gov (United States)

    Ong, Louis Jun Ye; Chong, Lor Huai; Jin, Lin; Singh, Pawan Kumar; Lee, Poh Seng; Yu, Hanry; Ananthanarayanan, Abhishek; Leo, Hwa Liang; Toh, Yi-Chin

    2017-10-01

    The practical application of microfluidic liver models for in vitro drug testing is partly hampered by their reliance on human primary hepatocytes, which are limited in number and have batch-to-batch variation. Human stem cell-derived hepatocytes offer an attractive alternative cell source, although their 3D differentiation and maturation in a microfluidic platform have not yet been demonstrated. We develop a pump-free microfluidic 3D perfusion platform to achieve long-term and efficient differentiation of human liver progenitor cells into hepatocyte-like cells (HLCs). The device contains a micropillar array to immobilize cells three-dimensionally in a central cell culture compartment flanked by two side perfusion channels. Constant pump-free medium perfusion is accomplished by controlling the differential heights of horizontally orientated inlet and outlet media reservoirs. Computational fluid dynamic simulation is used to estimate the hydrostatic pressure heads required to achieve different perfusion flow rates, which are experimentally validated by micro-particle image velocimetry, as well as viability and functional assessments in a primary rat hepatocyte model. We perform on-chip differentiation of HepaRG, a human bipotent progenitor cell, and discover that 3D microperfusion greatly enhances the hepatocyte differentiation efficiency over static 2D and 3D cultures. However, HepaRG progenitor cells are highly sensitive to the time-point at which microperfusion is applied. Isolated HepaRG cells that are primed as static 3D spheroids before being subjected to microperfusion yield a significantly higher proportion of HLCs (92%) than direct microperfusion of isolated HepaRG cells (62%). This platform potentially offers a simple and efficient means to develop highly functional microfluidic liver models incorporating human stem cell-derived HLCs. Biotechnol. Bioeng. 2017;114: 2360-2370. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  3. Performance of a Multiplex Serological Helicobacter pylori Assay on a Novel Microfluidic Assay Platform

    Directory of Open Access Journals (Sweden)

    Angela Filomena

    2017-10-01

    Full Text Available Infection with Helicobacter pylori (H. pylori occurs in 50% of the world population, and is associated with the development of ulcer and gastric cancer. Serological diagnostic tests indicate an H. pylori infection by detecting antibodies directed against H. pylori proteins. In addition to line blots, multiplex assay platforms provide smart solutions for the simultaneous analysis of antibody responses towards several H. pylori proteins. We used seven H. pylori proteins (FliD, gGT, GroEL, HpaA, CagA, VacA, and HP0231 and an H. pylori lysate for the development of a multiplex serological assay on a novel microfluidic platform. The reaction limited binding regime in the microfluidic channels allows for a short incubation time of 35 min. The developed assay showed very high sensitivity (99% and specificity (100%. Besides sensitivity and specificity, the technical validation (intra-assay CV = 3.7 ± 1.2% and inter-assay CV = 5.5 ± 1.2% demonstrates that our assay is also a robust tool for the analysis of the H. pylori-specific antibody response. The integration of the virulence factors CagA and VacA allow for the assessment of the risk for gastric cancer development. The short assay time and the performance of the platform shows the potential for implementation of such assays in a clinical setting.

  4. Taking advantage of reduced droplet-surface interaction to optimize transport of bioanalytes in digital microfluidics.

    Science.gov (United States)

    Freire, Sergio L S; Thorne, Nathaniel; Wutkowski, Michael; Dao, Selina

    2014-11-10

    Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of "lab-on-a-chip" platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique. Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives. Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation.

  5. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms.

    Science.gov (United States)

    Geng, Tao; Smallwood, Chuck R; Bredeweg, Erin L; Pomraning, Kyle R; Plymale, Andrew E; Baker, Scott E; Evans, James E; Kelly, Ryan T

    2017-09-01

    Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing, and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here, we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. The functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility, and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which should enable studies in bioenergy and environmental research.

  6. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.

    Science.gov (United States)

    Zhu, Yunzeng; Chen, Yiqi; Meng, Xiangrui; Wang, Jing; Lu, Ying; Xu, Youchun; Cheng, Jing

    2017-09-05

    Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.

  7. Cross-platform digital assessment forms for evaluating surgical skills

    Directory of Open Access Journals (Sweden)

    Steven Arild Wuyts Andersen

    2015-04-01

    Full Text Available A variety of structured assessment tools for use in surgical training have been reported, but extant assessment tools often employ paper-based rating forms. Digital assessment forms for evaluating surgical skills could potentially offer advantages over paper-based forms, especially in complex assessment situations. In this paper, we report on the development of cross-platform digital assessment forms for use with multiple raters in order to facilitate the automatic processing of surgical skills assessments that include structured ratings. The FileMaker 13 platform was used to create a database containing the digital assessment forms, because this software has cross-platform functionality on both desktop computers and handheld devices. The database is hosted online, and the rating forms can therefore also be accessed through most modern web browsers. Cross-platform digital assessment forms were developed for the rating of surgical skills. The database platform used in this study was reasonably priced, intuitive for the user, and flexible. The forms have been provided online as free downloads that may serve as the basis for further development or as inspiration for future efforts. In conclusion, digital assessment forms can be used for the structured rating of surgical skills and have the potential to be especially useful in complex assessment situations with multiple raters, repeated assessments in various times and locations, and situations requiring substantial subsequent data processing or complex score calculations.

  8. Tackling online inequality: Making digital platforms work for inclusive ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tackling online inequality: Making digital platforms work for inclusive development. As they become an essential part of the digital experience, online platforms such as Facebook, Amazon, Uber, AirBnB, and Twitter are having a direct bearing on social inclusion and opportunity in many spheres of life for people around the ...

  9. Multimodal microfluidic platform for controlled culture and analysis of unicellular organisms

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Tao; Smallwood, Chuck R.; Bredeweg, Erin L.; Pomraning, Kyle R.; Plymale, Andrew E.; Baker, Scott E.; Evans, James E.; Kelly, Ryan T.

    2017-09-01

    Modern live-cell imaging approaches permit real-time visualization of biological processes, yet limitations exist for unicellular organism isolation, culturing and long-term imaging that preclude fully understanding how cells sense and respond to environmental perturbations and the link between single-cell variability and whole-population dynamics. Here we present a microfluidic platform that provides fine control over the local environment with the capacity to replace media components at any experimental time point, and provides both perfused and compartmentalized cultivation conditions depending on the valve configuration. The functionality and flexibility of the platform were validated using both bacteria and yeast having different sizes, motility and growth media. The demonstrated ability to track the growth and dynamics of both motile and non-motile prokaryotic and eukaryotic organisms emphasizes the versatility of the devices, which with further scale-up should enable studies in bioenergy and environmental research.

  10. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    Science.gov (United States)

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  11. Digital Labour in the Platform Economy: The Case of Facebook

    Directory of Open Access Journals (Sweden)

    Andrea Fumagalli

    2018-05-01

    Full Text Available The aim of the paper is to analyse the features of the digital labour connected with the so-called platform economy. Many platform-based business models rely on a new composition of capital capable of capturing personal information and transforming it into big data. Starting with the example of the Facebook business model, we explain the valorisation process at the core of platform capitalism, stressing the relevance of digital labour, to clarify the crucial distinction between labour and work. Our analysis differs from Fuchs and Sevignani’s thesis about digital work and digital labour and seems consistent with the idea that Facebook extracts a rent from the information produced by the free labour of its users.

  12. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  13. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  14. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis

    International Nuclear Information System (INIS)

    Kise, Drew P; Reddish, Michael J; Brian Dyer, R

    2015-01-01

    We report on a microfluidic mixer fabrication platform that increases the versatility and flexibility of mixers for biomolecular applications. A sandwich-format design allows the application of multiple spectroscopic probes to the same mixer. A polymer spacer is ‘sandwiched’ between two transparent windows, creating a closed microfluidic system. The channels of the mixer are defined by regions in the polymer spacer that lack material and therefore the polymer need not be transparent in the spectral region of interest. Suitable window materials such as CaF 2 make the device accessible to a wide range of optical probe wavelengths, from the deep UV to the mid-IR. In this study, we use a commercially available 3D printer to print the polymer spacers to apply three different channel designs into the passive, continuous-flow mixer, and integrated them with three different spectroscopic probes. All three spectroscopic probes are applicable to each mixer without further changes. The sandwich-format mixer coupled with cost-effective 3D printed fabrication techniques could increase the applicability and accessibility of microfluidic mixing to intricate kinetic schemes and monitoring chemical synthesis in cases where only one probe technique proves insufficient. (paper)

  15. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Michael E. [Univ. of California, Los Angeles, CA (United States)

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies

  16. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Complementors as Connectors: Open Innovation in Digital Product Platforms

    NARCIS (Netherlands)

    Hilbolling, Susan; Berends, Hans; Deken, F.; Tuertscher, Philipp

    2018-01-01

    Through open, standardized interfaces, autonomous third parties can develop complementary products and services for digital product platforms, but, at the same time, these third parties also establish connections that span multiple platforms - beyond the control of the platform owner. This paper

  18. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2011-09-01

    Full Text Available Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975 was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5–2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0

  19. Value Creation in Digital Service Platforms

    DEFF Research Database (Denmark)

    Ghazawneh, Ahmad; Mansour, Osama

    2017-01-01

    Value creation is increasingly relevant for owners of digital service platforms (DSPs). These owners have two vital goals: increase their service base and sustain their service offerers. A key element in continuously accommodating these goals is value creation. While the literature on DSPs is gro...... of service offerers. As such, our study proposes and contributes a value creation framework for DSPs that identifies 8 value sources and highlights resource combination and exchange in the process of value creation.......Value creation is increasingly relevant for owners of digital service platforms (DSPs). These owners have two vital goals: increase their service base and sustain their service offerers. A key element in continuously accommodating these goals is value creation. While the literature on DSPs...... is growing, there is a paucity of knowledge on the value creation process in these platforms. Drawing on a qualitative study of Uber drivers in Denmark and Sweden, we synthesize Schumpeter’s theory of value creation to develop an understanding of the value creation process in DSPs from the perspective...

  20. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    Science.gov (United States)

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  1. How do digital platforms for ideas, technologies, and knowledge transfer act as enablers for digital transformation?

    OpenAIRE

    Hossain, Mokter; Lassen, Astrid Heidemann

    2017-01-01

    Digital platforms, along with their supporting tools and features, have emerged as important enablers for firms to leverage distributed knowledge (Sedera et al., 2016), because they offer new ways for organizations to collaborate with the external environment for ideas, technologies, and knowledge. Indeed, studies have explored efforts to promote such collaboration on digital platforms with various popular names, such as crowdsourcing platforms (Afuah & Tucci, 2012), open innovation platf...

  2. Routing-based synthesis of digital microfluidic biochips

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers, and are able to integrate on-chip all the necessary functions for biochemical analysis. The “digital” biochips are manipulating liquids as discrete droplets on a two-dimensional array of electrodes. Basic microfluidic...... electrodes are considered occupied during the operation execution, although the droplet uses only one electrode at a time. Moreover, the operations can actually be performed by routing the droplets on any sequence of electrodes on the microfluidic array. Hence, in this paper, we eliminate the concept...... on the surface of the microfluidic array. We have extended the GRASP-based algorithm to consider contamination avoidance during routing-based synthesis. Several real-life examples and synthetic benchmarks are used to evaluate the proposed approaches....

  3. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  4. How do digital platforms for ideas, technologies, and knowledge transfer act as enablers for digital transformation?

    DEFF Research Database (Denmark)

    Hossain, Mokter; Lassen, Astrid Heidemann

    2017-01-01

    Digital platforms, along with their supporting tools and features, have emerged as important enablers for firms to leverage distributed knowledge (Sedera et al., 2016), because they offer new ways for organizations to collaborate with the external environment for ideas, technologies, and knowledge...... for research and development (R&D), idea generation, prediction, freelance work, peer production, co-creation, product design, and public engagement, to name but a few. For example, Dell’s IdeaStorm (Hossain & Islam, 2015a) and Starbucks’ MyStarbucksIdea (Hossain & Islam, 2015b) are two digital crowdsourcing...... platforms that are used to engage crowds to solicit ideas from them (Bayus, 2013; Chua & Banerjee, 2013). Moreover, intermediary platforms, such as InnoCentive and IdeaConnection, are organizing online competitions to solve the problems of various organizations (Hossain, 2012). Although digital platforms...

  5. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Jing Dai

    2016-10-01

    Full Text Available The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.

  6. SurfaceSlide: a multitouch digital pathology platform.

    Directory of Open Access Journals (Sweden)

    Yinhai Wang

    Full Text Available BACKGROUND: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. METHODOLOGY: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. CONCLUSION: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human-digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.

  7. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  8. A PEG-DA microfluidic device for chemotaxis studies

    International Nuclear Information System (INIS)

    Traore, Mahama Aziz; Behkam, Bahareh

    2013-01-01

    The study of cells in a well-defined and chemically programmable microenvironment is essential for a complete and fundamental understanding of the cell behaviors with respect to specific chemical compounds. Flow-free microfluidic devices that generate quasi-steady chemical gradients (spatially varying but temporally constant) have been demonstrated as effective chemotaxis assay platforms due to dissociating the effect of chemical cues from mechanical shear forces caused by fluid flow. In this work, we demonstrate the fabrication and characterization of a flow-free microfluidic platform made of polyethylene glycol diacrylate (PEG-DA) hydrogel. We have demonstrated that the mass transport properties of these devices can be customized by fabricating them from PEG-DA gels of four distinct molecular weights. In contrast to microfluidic devices developed using soft lithography; this class of devices can be realized using a more cost-effective approach of direct photopolymerization with fewer microfabrication steps. This microfluidic platform was tested by conducting a quantitative study of the chemotactic behavior of Escherichia coli (E. coli) RP437, a model microorganism, in presence of the chemo-effector, casamino-acids. Using the microfabrication and characterization methodology presented in this work, microfluidic platforms with well-defined and customizable diffusive properties can be developed to accommodate the study of a wide range of cell types. (paper)

  9. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    Science.gov (United States)

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.

  10. Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.

    Science.gov (United States)

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Bahari, Norulain; Arof, Hamzah; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-02-25

    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.

  11. Development of a Passive Liquid Valve (PLV Utilizing a Pressure Equilibrium Phenomenon on the Centrifugal Microfluidic Platform

    Directory of Open Access Journals (Sweden)

    Wisam Al-Faqheri

    2015-02-01

    Full Text Available In this paper, we propose an easy-to-implement passive liquid valve (PLV for the microfluidic compact-disc (CD. This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.

  12. Manufacture of Platform Prototype for Digital Safety System

    International Nuclear Information System (INIS)

    Lee, S. Y.; Kim, J. S.; Kim, J. M.

    2010-01-01

    Unit controller is a basic unit of digital safety system platform prototype. The typical unit controller is comprised of CPB(CPU board), CMB(communication board), AIB(Analog input board), AOB(Analog output board), CIB(contact input board), COB(contact output board), and a subrack. It is developed according to H/W development procedure and S/W development life cycle. A digital safety system(for example, plant protection system) is the assemblies of unit controllers. CPB performs the function of each system. DSP(digital signal processor) is built in CPB. CMB is responsible for communication between unit controllers. NSD(Network Switching Device) exchanges data between the unit controllers. Each unit controller of the platform are connected to NSD through CMB. Reliability analyses on unit controller and NSD are performed. These reliability data are used as input of technical validation

  13. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    Science.gov (United States)

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  14. Digital Platforms as Factor Transforming Management Models in Businesses and Industries

    Science.gov (United States)

    Dimitrakiev, D.; Molodchik, A. V.

    2018-05-01

    Increasingly, digital platforms are built into the value chain, acting as an intermediary between the manufacturer and the consumer. The paper presents tendencies and features of business model transformation in connection with management of the new digital technologies. The limitations of traditional business models and the capabilities of business models based on digital platforms and self-organization were revealed. In the study, the viability of the new business model for the dental industry was confirmed and the new concept of the branch self-organizing control system based on the information platform, blockchain, cryptocurrency and reward of target consumer is offered, including mechanisms that make the model attractive for both the consumer and the service provider.

  15. Platform capitalism: The intermediation and capitalization of digital economic circulation

    Directory of Open Access Journals (Sweden)

    Paul Langley

    2017-10-01

    Full Text Available A new form of digital economic circulation has emerged, wherein ideas, knowledge, labour and use rights for otherwise idle assets move between geographically distributed but connected and interactive online communities. Such circulation is apparent across a number of digital economic ecologies, including social media, online marketplaces, crowdsourcing, crowdfunding and other manifestations of the so-called ‘sharing economy’. Prevailing accounts deploy concepts such as ‘co-production’, ‘prosumption’ and ‘peer-to-peer’ to explain digital economic circulation as networked exchange relations characterised by their disintermediated, collaborative and democratising qualities. Building from the neologism of platform capitalism, we place ‘the platform’ – understood as a distinct mode of socio-technical intermediary and business arrangement that is incorporated into wider processes of capitalisation – at the centre of the critical analysis of digital economic circulation. To create multi-sided markets and coordinate network effects, platforms enrol users through a participatory economic culture and mobilise code and data analytics to compose immanent infrastructures. Platform intermediation is also nested in the ex-post construction of a replicable business model. Prioritising rapid up-scaling and extracting revenues from circulations and associated data trails, the model performs the structure of venture capital investment which capitalises on the potential of platforms to realise monopoly rents.

  16. The transformation of Teacher Work through digital learning platforms

    DEFF Research Database (Denmark)

    Christiansen, René Boyer; Andreasen, Lars Birch

    four transformation tendencies in the educational system regarding teacher work and discuss these in relation to a recent research project which aims at looking at the organizational and didactical implications for teachers working with digital platforms in the Danish primary school.......This paper examines a new mandatory initiative in the Danish primary school regarding digital learning platforms for students, teachers and parents and regards this as a part of a global process that leads to a transformation of teacher work and thus everyday life for teachers in schools. We list...

  17. Ice matrix in reconfigurable microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A M [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A [Cranfield Health, Cranfield University, Vincent Building B52, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Meglinski, I [Department of Physics, University of Otago, PO Box 56, Dunedin, 9054 (New Zealand)

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  18. Ice matrix in reconfigurable microfluidic systems

    International Nuclear Information System (INIS)

    Bossi, A M; Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A; Meglinski, I

    2013-01-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  19. Ice matrix in reconfigurable microfluidic systems

    Science.gov (United States)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  20. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

    Science.gov (United States)

    Chen, Arnold; Pan, Tingrui

    2014-09-07

    Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

  1. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Heidary Araghi, Behnaz; Beydaghi, Vahid; Geraili, Armin; Moradi, Farshid; Jafari, Parya; Janmaleki, Mohsen; Valente, Karolina Papera; Akbari, Mohsen; Sanati-Nezhad, Amir

    2016-10-01

    In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A recursive microfluidic platform to explore the emergence of chemical evolution

    Directory of Open Access Journals (Sweden)

    David Doran

    2017-08-01

    Full Text Available We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on droplet microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propagation. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reservoir, and injectors, all run together via a LabVIEWTM program integration system. Together we aim for the system to be used to drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and unbiased nature of automation with our ability to select droplets as functional units based on simple criteria.

  3. Towards Digital Integration: Platform Thinking in the Fashion Business

    DEFF Research Database (Denmark)

    Schou, Finn

    2005-01-01

    ¬quately to changing demands in their business activities. However many companies find it dif¬ficult to achieve the full poten¬tial of these technologies as practical advices that can help companies and the management in their decision-making, selecting and implementing new technology are rare (Boer and Krabbendam......, 1998). The intention of this paper is, through illustrative case studies from France and Denmark within the highly competitive business of optical frame design (fashion) to present a model for strategy as well as a practical model for improvement of time to market of styling objects by use of digital...... platforms. Aspects are: 1) selection of platform from a strategic point of view, 2) selection of 2D and 3D CAD from a practical point of view and 3) creation and implementation of digital platforms. Finally, briefly aspects of teaching of platform theory at the department of Architecture & Industrial design...

  4. A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules.

    Science.gov (United States)

    Hong, Chien-Chong; Wang, Chih-Ying; Peng, Kuo-Ti; Chu, I-Ming

    2011-04-15

    This paper presents a microfluidic chip platform with electrochemical carbon nanotube electrodes for preclinical evaluation of antibiotics nanocapsules. Currently, there has been an increasing interest in the development of nanocapsules for drug delivery applications for localized treatments of diseases. So far, the methods to detect antibiotics are liquid chromatography (LC), high performance liquid chromatography (HPLC), mass spectroscopy (MS). These conventional instruments are bulky, expensive, not ease of access, and talented operator required. In order to help the development of nanocapsules and understand drug release profile before planning the clinical experiments, it is important to set up a biosensing platform which could monitor and evaluate the real-time drug release profile of nanocapsules with high sensitivity and long-term measurement ability. In this work, a microfluidic chip platform with electrochemical carbon nanotube electrodes has been developed and characterized for rapid detection of antibiotics teicoplanin nanocapsules. Multi-walled carbon nanotubes are used to modify the gold electrode surfaces to enhance the performance of the electrochemical biosensors. Experimental results show that the limit of detection of the developed platform using carbon nanotubes electrodes is 0.1 μg/ml with a linear range from 1 μg/ml to 10 μg/ml. The sensitivity of the developed system is 0.023 mA ml/μg at 37°C. The drug release profile of teicoplanin nanocapsules in PBS shows that the antibiotics nanocapsules significantly increased the release of drug on the 4th day, measuring 0.4858 μg/(ml hr). The release of drug from the antibiotics nanocapsules reached 34.98 μg/ml on the 7th day. The results showed a similar trend compared with the measurement result using the HPLC instrument. Compared with the traditional HPLC measurements, the electrochemical sensing platform we developed measures results with increased flexibility in controlling experimental

  5. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips

    Directory of Open Access Journals (Sweden)

    Mirela Alistar

    2017-05-01

    Full Text Available Biochips, or digital labs-on-chip, are developed with the purpose of being used by laboratory technicians or biologists in laboratories or clinics. In this article, we expand this vision with the goal of enabling everyone, regardless of their expertise, to use biochips for their own personal purposes. We developed OpenDrop, an integrated electromicrofluidic platform that allows users to develop and program their own bio-applications. We address the main challenges that users may encounter: accessibility, bio-protocol design and interaction with microfluidics. OpenDrop consists of a do-it-yourself biochip, an automated software tool with visual interface and a detailed technique for at-home operations of microfluidics. We report on two years of use of OpenDrop, released as an open-source platform. Our platform attracted a highly diverse user base with participants originating from maker communities, academia and industry. Our findings show that 47% of attempts to replicate OpenDrop were successful, the main challenge remaining the assembly of the device. In terms of usability, the users managed to operate their platforms at home and are working on designing their own bio-applications. Our work provides a step towards a future in which everyone will be able to create microfluidic devices for their personal applications, thereby democratizing parts of health care.

  6. Preface book Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    This book presents an overview of the major microfluidics techniques and platforms used for medicine and medical applications, providing the reader with an overview of the recent developments in this field. It is divided in three parts: (1) tissue and organs on-chip, (2) microfluidics for medicine

  7. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2017-06-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided to allow, for example, research groups to have access to microfluidic fabrication. Unlike most fabrication methods, a method is provided to fabricate a microfluidic device in one step. In an embodiment, a resolution of 50 micrometers was achieved by using maskless high-resolution digital light projection (MDLP). Bonding and channel fabrication of complex or simple structures can be rapidly incorporated to fabricate the microfluidic devices.

  8. PR-PR: cross-platform laboratory automation system.

    Science.gov (United States)

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  9. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform.

    Directory of Open Access Journals (Sweden)

    Christina C Marasco

    Full Text Available To address the challenges of tracking the multitude of signaling molecules and metabolites that is the basis of biological complexity, we describe a strategy to expand the analytical techniques for dynamic systems biology. Using microfluidics, online desalting, and mass spectrometry technologies, we constructed and validated a platform well suited for sampling the cellular microenvironment with high temporal resolution. Our platform achieves success in: automated cellular stimulation and microenvironment control; reduced non-specific adsorption to polydimethylsiloxane due to surface passivation; real-time online sample collection; near real-time sample preparation for salt removal; and real-time online mass spectrometry. When compared against the benchmark of "in-culture" experiments combined with ultraperformance liquid chromatography-electrospray ionization-ion mobility-mass spectrometry (UPLC-ESI-IM-MS, our platform alleviates the volume challenge issues caused by dilution of autocrine and paracrine signaling and dramatically reduces sample preparation and data collection time, while reducing undesirable external influence from various manual methods of manipulating cells and media (e.g., cell centrifugation. To validate this system biologically, we focused on cellular responses of Jurkat T cells to microenvironmental stimuli. Application of these stimuli, in conjunction with the cell's metabolic processes, results in changes in consumption of nutrients and secretion of biomolecules (collectively, the exometabolome, which enable communication with other cells or tissues and elimination of waste. Naïve and experienced T-cell metabolism of cocaine is used as an exemplary system to confirm the platform's capability, highlight its potential for metabolite discovery applications, and explore immunological memory of T-cell drug exposure. Our platform proved capable of detecting metabolomic variations between naïve and experienced Jurkat T cells

  10. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  11. Microfluidic Devices for Drug Delivery Systems and Drug Screening

    Science.gov (United States)

    Kompella, Uday B.; Damiati, Safa A.

    2018-01-01

    Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948

  12. A Framework for Analyzing Digital Payment as a Multi-sided Platform

    DEFF Research Database (Denmark)

    Kazan, Erol; Damsgaard, Jan

    2013-01-01

    payment systems and analyzing strategies of current market actors, such as banks, mobile network operators, and merchants. These market actors are identified as incumbents or contenders, and they are currently jockeying for digital payment platform leadership. We analyze three different contactless......Near Field Communication (NFC) is a promising digital payment technology that is expected to substitute cash. However, despite its potential, NFC-based payment has not reached mass adoption on the customer nor on the merchant side. This paper constructs a preliminary framework for studying digital...... payment systems implemented or planned by different actors in the European market. When synthesizing our observations, we note that all three multi-sided platforms (MSP) can provide fully functional and technically solid NFC payment systems. All three platforms seek to gain a foothold by subsidizing NFC...

  13. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  14. Diffusion phenomena of cells and biomolecules in microfluidic devices.

    Science.gov (United States)

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-09-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.

  15. Cross-platform digital assessment forms for evaluating surgical skills

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts

    2015-01-01

    developed for the rating of surgical skills. The database platform used in this study was reasonably priced, intuitive for the user, and flexible. The forms have been provided online as free downloads that may serve as the basis for further development or as inspiration for future efforts. In conclusion......A variety of structured assessment tools for use in surgical training have been reported, but extant assessment tools often employ paper-based rating forms. Digital assessment forms for evaluating surgical skills could potentially offer advantages over paper-based forms, especially in complex...... assessment situations. In this paper, we report on the development of cross-platform digital assessment forms for use with multiple raters in order to facilitate the automatic processing of surgical skills assessments that include structured ratings. The FileMaker 13 platform was used to create a database...

  16. Dataflow-based multi-ASIP platform approach for digital control applications

    NARCIS (Netherlands)

    Frijns, R.M.W.; Kamp, A.L.J.; Stuijk, S.; Voeten, J.P.M.; Bontekoe, M.; Gemei, K.J.A.; Corporaal, H.

    2013-01-01

    To provide a good balance between the performance and flexibility of future digital control platforms, we propose an FPGA-based heterogeneous multiprocessor approach, in which the platform is composed of processing elements from a set of parameterizable heterogeneous Application-Specific

  17. Fault-tolerant digital microfluidic biochips compilation and synthesis

    CERN Document Server

    Pop, Paul; Stuart, Elena; Madsen, Jan

    2016-01-01

    This book describes for researchers in the fields of compiler technology, design and test, and electronic design automation the new area of digital microfluidic biochips (DMBs), and thus offers a new application area for their methods.  The authors present a routing-based model of operation execution, along with several associated compilation approaches, which progressively relax the assumption that operations execute inside fixed rectangular modules.  Since operations can experience transient faults during the execution of a bioassay, the authors show how to use both offline (design time) and online (runtime) recovery strategies. The book also presents methods for the synthesis of fault-tolerant application-specific DMB architectures. ·         Presents the current models used for the research on compilation and synthesis techniques of DMBs in a tutorial fashion; ·         Includes a set of “benchmarks”, which are presented in great detail and includes the source code of most of the t...

  18. Digital training platform for interpreting radiographic images of the chest.

    Science.gov (United States)

    McLaughlin, L; Woznitza, N; Cairns, A; McFadden, S L; Bond, R; Hughes, C M; Elsayed, A; Finlay, D; McConnell, J

    2018-05-01

    Time delays and errors exist which lead to delays in patient care and misdiagnosis. Reporting clinicians follow guidance to form their own search strategy. However, little research has tested these training guides. With the use of eye tracking technology and expert input we developed a digital training platform to be used in chest image interpretation learning. Two sections of a digital training platform were planned and developed; A) a search strategy training tool to assist reporters during their interpretation of images, and B) an educational tool to communicate the search strategies of expert viewers to trainees by using eye tracking technology. A digital training platform for use in chest image interpretation was created based on evidence within the literature, expert input and two search strategies previously used in clinical practice. Images and diagrams, aiding translation of the platform content, were incorporated where possible. The platform is structured to allow the chest image interpretation process to be clear, concise and methodical. A search strategy was incorporated within the tool to investigate its use, with the possibility that it could be recommended as an evidence based approach for use by reporting clinicians. Eye tracking, a checklist and voice recordings have been combined to form a multi-dimensional learning tool, which has never been used in chest image interpretation learning before. The training platform for use in chest image interpretation learning has been designed, created and digitised. Future work will establish the efficacy of the developed approaches. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  19. Module-Based Synthesis of Digital Microfluidic Biochips with Droplet-Aware Operation Execution

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2013-01-01

    operations are executed by moving the droplets. So far, researchers have ignored the locations of droplets inside devices, considering that all the electrodes forming the device are occupied throughout the operation execution. In this article, we consider a droplet-aware execution of microfluidic operations......, which means that we know the exact position of droplets inside the modules at each time-step. We propose a Tabu Search-based metaheuristic for the synthesis of digital biochips with droplet-aware operation execution. Experimental results show that our approach can significantly reduce the application...... completion time, allowing us to use smaller area biochips and thus reduce costs....

  20. Development of Testing Platform for Digital I and C System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. Y.; Kim, Y. M.; Jeong, C. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    According to digitalization of the NPP (Nuclear Power Plant) I and C (Instrumentation and Control) system, cyber threats against I and C system are increased. Moreover, the complexity of I and C system are increased due to adopt the up-to-date technologies (i. e., smart sensor, wireless network, and Field Programmable Gate Array / Complex Programmable Logic Device) into NPP's I and C system. For example, new issues such as cyber threat are introduced from digitalized I and C systems and components to replace obsolete analog equipment in existing NPPs. Furthermore, use of wireless communication, FPGA/CPLD, and smart sensor could introduce new considerations such as Defense-in-Depth and Diversity. Therefore, the proof testing for digital I and C system is required to verify the adverse effect from use of up-to-date digital technologies and identify the criteria to resolve and mitigate (or prevent) the (possibility of) effects. The objective of this study is developing the Testing Platform for the proof testing. The digital I and C System Test Platform is implemented using test platform hardware, component software, and architectural design. The digital I and C testing platform includes the safety-related PLC and relevant ladder logics, Windows-based C++ codes for host PC. For software, there are seven spike models to confirm the each module's functionality and generate/monitor the signals to/from PLCs. For future work, digital I and C System Test Platform architecture will be implemented using spike models. And a set of acceptance test against cyber security, smart sensor, wireless network, and FPGA/CPLD will be conducted using digital I and C System Test Platform.

  1. Development of Testing Platform for Digital I and C System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Park, G. Y.; Kim, Y. M.; Jeong, C. H.

    2013-01-01

    According to digitalization of the NPP (Nuclear Power Plant) I and C (Instrumentation and Control) system, cyber threats against I and C system are increased. Moreover, the complexity of I and C system are increased due to adopt the up-to-date technologies (i. e., smart sensor, wireless network, and Field Programmable Gate Array / Complex Programmable Logic Device) into NPP's I and C system. For example, new issues such as cyber threat are introduced from digitalized I and C systems and components to replace obsolete analog equipment in existing NPPs. Furthermore, use of wireless communication, FPGA/CPLD, and smart sensor could introduce new considerations such as Defense-in-Depth and Diversity. Therefore, the proof testing for digital I and C system is required to verify the adverse effect from use of up-to-date digital technologies and identify the criteria to resolve and mitigate (or prevent) the (possibility of) effects. The objective of this study is developing the Testing Platform for the proof testing. The digital I and C System Test Platform is implemented using test platform hardware, component software, and architectural design. The digital I and C testing platform includes the safety-related PLC and relevant ladder logics, Windows-based C++ codes for host PC. For software, there are seven spike models to confirm the each module's functionality and generate/monitor the signals to/from PLCs. For future work, digital I and C System Test Platform architecture will be implemented using spike models. And a set of acceptance test against cyber security, smart sensor, wireless network, and FPGA/CPLD will be conducted using digital I and C System Test Platform

  2. Microfluidic-chip platform for cell sorting

    Science.gov (United States)

    Malik, Sarul; Balyan, Prerna; Akhtar, J.; Agarwal, Ajay

    2016-04-01

    Cell sorting and separation are considered to be very crucial preparatory steps for numerous clinical diagnostics and therapeutics applications in cell biology research arena. Label free cell separation techniques acceptance rate has been increased to multifold by various research groups. Size based cell separation method focuses on the intrinsic properties of the cell which not only avoids clogging issues associated with mechanical and centrifugation filtration methods but also reduces the overall cost for the process. Consequentially flow based cell separation method for continuous flow has attracted the attention of millions. Due to the realization of structures close to particle size in micro dimensions, the microfluidic devices offer precise and rapid particle manipulation which ultimately leads to an extraordinary cell separation results. The proposed microfluidic device is fabricated to separate polystyrene beads of size 1 µm, 5 µm, 10 µm and 20 µm. The actual dimensions of blood corpuscles were kept in mind while deciding the particle size of polystyrene beads which are used as a model particles for study.

  3. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection

    Science.gov (United States)

    Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin

    2016-08-01

    This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

  4. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    Science.gov (United States)

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microfluidic Platform for the Elastic Characterization of Mouse Submandibular Glands by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Aaron P. Mosier

    2014-02-01

    Full Text Available The ability to characterize the microscale mechanical properties of biological materials has the potential for great utility in the field of tissue engineering. The development and morphogenesis of mammalian tissues are known to be guided in part by mechanical stimuli received from the local environment, and tissues frequently develop to match the physical characteristics (i.e., elasticity of their environment. Quantification of these material properties at the microscale may provide valuable information to guide researchers. Presented here is a microfluidic platform for the non-destructive ex vivo microscale mechanical characterization of mammalian tissue samples by atomic force microscopy (AFM. The device was designed to physically hold a tissue sample in a dynamically controllable fluid environment while allowing access by an AFM probe operating in force spectroscopy mode to perform mechanical testing. Results of measurements performed on mouse submandibular gland samples demonstrate the ability of the analysis platform to quantify sample elasticity at the microscale, and observe chemically-induced changes in elasticity.

  6. Data Collection for Mental Health Studies Through Digital Platforms: Requirements and Design of a Prototype.

    Science.gov (United States)

    Aledavood, Talayeh; Triana Hoyos, Ana Maria; Alakörkkö, Tuomas; Kaski, Kimmo; Saramäki, Jari; Isometsä, Erkki; Darst, Richard K

    2017-06-09

    Mental and behavioral disorders are the main cause of disability worldwide. However, their diagnosis is challenging due to a lack of reliable biomarkers; current detection is based on structured clinical interviews which can be biased by the patient's recall ability, affective state, changing in temporal frames, etc. While digital platforms have been introduced as a possible solution to this complex problem, there is little evidence on the extent of usability and usefulness of these platforms. Therefore, more studies where digital data is collected in larger scales are needed to collect scientific evidence on the capacities of these platforms. Most of the existing platforms for digital psychiatry studies are designed as monolithic systems for a certain type of study; publications from these studies focus on their results, rather than the design features of the data collection platform. Inevitably, more tools and platforms will emerge in the near future to fulfill the need for digital data collection for psychiatry. Currently little knowledge is available from existing digital platforms for future data collection platforms to build upon. The objective of this work was to identify the most important features for designing a digital platform for data collection for mental health studies, and to demonstrate a prototype platform that we built based on these design features. We worked closely in a multidisciplinary collaboration with psychiatrists, software developers, and data scientists and identified the key features which could guarantee short-term and long-term stability and usefulness of the platform from the designing stage to data collection and analysis of collected data. The key design features that we identified were flexibility of access control, flexibility of data sources, and first-order privacy protection. We also designed the prototype platform Non-Intrusive Individual Monitoring Architecture (Niima), where we implemented these key design features. We

  7. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.

    Science.gov (United States)

    Fishler, Rami; Mulligan, Molly K; Sznitman, Josué

    2013-11-15

    Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, experiments that replicate several generations of the acinar tree while featuring cyclic wall motion have not yet been realized. Moreover, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we introduce a novel microfluidic device mimicking acinar flow characteristics directly at the alveolar scale. The model features an anatomically-inspired geometry that expands and contracts periodically with five dichotomously branching airway generations lined with alveolar-like cavities. We use micro-particle image velocimetry with a glycerol solution as the carrying fluid to quantitatively characterize detailed flow patterns within the device and reveal experimentally for the first time a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of hypothesized predictions from past CFD simulations. The current measurements show that our microfluidic system captures the underlying characteristics of the acinar flow environment, including Reynolds and Womersley numbers as well as cyclic wall displacements and alveolar flow patterns at a realistic length scale. With the use of air as the carrying fluid, our miniaturized platform is anticipated to capture both particle and flow dynamics and serve in the near future as a promising in vitro tool for investigating the mechanisms of particle deposition deep in the lung. © 2013 Elsevier Ltd. All rights reserved.

  8. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    Science.gov (United States)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-05-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work.

  9. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    International Nuclear Information System (INIS)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-01-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work. (note)

  10. Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: A new tool for anthelmintic research

    Directory of Open Access Journals (Sweden)

    Janis C. Weeks

    2016-12-01

    Full Text Available The screening of candidate compounds and natural products for anthelmintic activity is important for discovering new drugs against human and animal parasites. We previously validated in Caenorhabditis elegans a microfluidic device (‘chip’ that records non-invasively the tiny electrophysiological signals generated by rhythmic contraction (pumping of the worm's pharynx. These electropharyngeograms (EPGs are recorded simultaneously from multiple worms per chip, providing a medium-throughput readout of muscular and neural activity that is especially useful for compounds targeting neurotransmitter receptors and ion channels. Microfluidic technologies have transformed C. elegans research and the goal of the current study was to validate hookworm and Ascaris suum host-stage larvae in the microfluidic EPG platform. Ancylostoma ceylanicum and A. caninum infective L3s (iL3s that had been activated in vitro generally produced erratic EPG activity under the conditions tested. In contrast, A. ceylanicum L4s recovered from hamsters exhibited robust, sustained EPG activity, consisting of three waveforms: (1 conventional pumps as seen in other nematodes; (2 rapid voltage deflections, associated with irregular contractions of the esophagus and openings of the esophogeal-intestinal valve (termed a ‘flutter’; and (3 hybrid waveforms, which we classified as pumps. For data analysis, pumps and flutters were combined and termed EPG ‘events.’ EPG waveform identification and analysis were performed semi-automatically using custom-designed software. The neuromodulator serotonin (5-hydroxytryptamine; 5HT increased EPG event frequency in A. ceylanicum L4s at an optimal concentration of 0.5 mM. The anthelmintic drug ivermectin (IVM inhibited EPG activity in a concentration-dependent manner. EPGs from A. suum L3s recovered from pig lungs exhibited robust pharyngeal pumping in 1 mM 5HT, which was inhibited by IVM. These experiments validate the use of A

  11. Research Progress of Microfluidic Chips Preparation and its Optical Element

    Directory of Open Access Journals (Sweden)

    Feng WANG

    2014-03-01

    Full Text Available Microfluidic technology is the emerging technologies in researching fluid channel and related applications in the micro and nano-scale space. Microfluidic chip is a new miniaturized rapid analysis platform by microfluidic technology, it has many characteristics such as liquid flow control, minimal reagent consumption, rapid analysis, which is widely used in physics, chemistry, biology, and engineering science and other fields, it has strong interdisciplinary. This paper mainly discusses research progress of materials used for microfluidic chips and the devices based on microfluidic technology, including microfluidic chip, microfluidic optical devices, microfluidic laser preparation, microfluidic chip applications, focusing on the quasi-molecular laser processing technology and femtosecond laser processing technology in the microfluidic devices preparation, and make development prospects for it.

  12. Microfluidic Sensing Platforms for Medicine and Diagnostics

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine

    the specialized laboratory. Microfluidic cell migration devices, imitating in vivo conditions were developed with success, improving the in vitro experimental setup for basic research and drug discovery. Polymer biosensors have reached a new level of maturity, and pathogen detection could benefit from...

  13. Advances in Microfluidic Platforms for Analyzing and Regulating Human Pluripotent Stem Cells

    Science.gov (United States)

    Qian, Tongcheng; Shusta, Eric V.; Palecek, Sean P.

    2015-01-01

    Microfluidic devices employ submillimeter length scale control of flow to achieve high-resolution spatial and temporal control over the microenvironment, providing powerful tools to elucidate mechanisms of human pluripotent stem cell (hPSC) regulation and to elicit desired hPSC fates. In addition, microfluidics allow control of paracrine and juxtracrine signaling, thereby enabling fabrication of microphysiological systems comprised of multiple cell types organized into organs-on-a-chip. Microfluidic cell culture systems can also be integrated with actuators and sensors, permitting construction of high-density arrays of cell-based biosensors for screening applications. This review describes recent advances in using microfluidics to understand mechanisms by which the microenvironment regulates hPSC fates and applications of microfluidics to realize the potential of hPSCs for in vitro modeling and screening applications. PMID:26313850

  14. Tabu Search-based Synthesis of Digital Microfluidic Biochips with Dynamically Reconfigurable Non-rectangular Devices

    DEFF Research Database (Denmark)

    Maftei, Elena; Pop, Paul; Madsen, Jan

    2010-01-01

    they are highly reconfigurable and scalable. A digital biochip is composed of a two-dimensional array of cells, together with reservoirs for storing the samples and reagents. Several adjacent cells are dynamically grouped to form a virtual device, on which operations are performed. So far, researchers have...... assumed that throughout its execution, an operation is performed on a rectangular virtual device, whose position remains fixed. However, during the execution of an operation, the virtual device can be reconfigured to occupy a different group of cells on the array, forming any shape, not necessarily...... rectangular. In this paper, we present a Tabu Search metaheuristic for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determines the allocation, resource binding, scheduling and placement of the operations in the application...

  15. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    Science.gov (United States)

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  16. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic operations

    CSIR Research Space (South Africa)

    Hugo, S

    2013-10-01

    Full Text Available can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost. ... stream_source_info Hugo_2015_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 1281 Content-Encoding UTF-8 stream_name Hugo_2015_ABSTRACT.pdf.txt Content-Type text/plain; charset=UTF-8 Rapid Product Development...

  17. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  18. A digital peer-to-peer learning platform for clinical skills development.

    Science.gov (United States)

    Basnak, Jesse; Ortynski, Jennifer; Chow, Meghan; Nzekwu, Emeka

    2017-02-01

    Due to constraints in time and resources, medical curricula may not provide adequate opportunities for pre-clerkship students to practice clinical skills. To address this, medical students at the University of Alberta developed a digital peer-to-peer learning initiative. The initiative assessed if students can learn clinical skills from their peers in co-curricular practice objective structured clinical exams (OSCEs). A total of 144 first-year medical students participated. Students wrote case scenarios that were reviewed by physicians. Students enacted the cases in practice OSCEs, acting as the patient, physician, and evaluator. Verbal and electronic evaluations were completed. A digital platform was used to automate the process. Surveys were disseminated to assess student perceptions of their experience. Seventy-five percent of participants said they needed opportunities to practice patient histories and physical exams in addition to those provided in the medical school curriculum. All participants agreed that the co-curricular practice OSCEs met this need. The majority of participants also agreed that the digital platform was efficient and easy to use. Students found the practice OSCEs and digital platform effective for learning clinical skills. Thus, peer-to-peer learning and computer automation can be useful adjuncts to traditional medical curricula.

  19. Rancang Bangun Platform Sistem SFN TV Digital DVB-T2

    Directory of Open Access Journals (Sweden)

    Rakhmat Oktariza

    2015-12-01

    Full Text Available Menyambut implementasi penuh standar penyiaran TV digital DVB-T2 di Indonesia, pemahaman konsep dan realisasi terkait skema alokasi frekuensi dan susunan pemancar-penerima amat diperlukan untuk dapat melakukan perencanaan jaringan yang matang. Adanya suatu platform untuk implementasi, pengukuran dan analisis kinerja sistem DVB-T2 akan sangat membantu hal tersebut. Tugas Akhir ini bertujuan merancang platform sistem Single Frequency Network (SFN untuk implementasi, pengukuran dan analisis pada aplikasi TV digital berstandar DVB-T2. Rancangan platform untuk pengukuran terdiri atas sebuah PC berisi card DekTec DTA-2131 dan antena UHF sebagai unit penerima, sedangkan dua buah PC berisi card DekTec DTA-2111 sebagai unit pemancar dan sebuah RF channel simulator ditambahkan untuk memungkinkan implementasi dan pengujian SFN secara mandiri dalam skala laboratorium. Pengukuran lapangan melalui drive test dilakukan dengan unit penerima sebagai evaluasi terhadap jaringan penyiaran TV digital di wilayah Gerbang Kertasusila. Hasil yang diperoleh kemudian digunakan dalam simulasi untuk menentukan rekomendasi skenario pengimplementasian SFN di wilayah tersebut, terutama dalam kaitannya dengan faktor Power Imbalance (PI antara dua atau lebih pemancar. Platform yang dirancang sudah mampu diaplikasikan untuk pengukuran dan evaluasi jaringan penyiaran existing. Sementara hasil pengukuran dari 8 test point memberikan rata-rata level RF sebesar -67,70 dBm dan CNR sebesar 20,40 dB untuk wilayah Gerbang Kertasusila. Skenario pasangan pemancar yang direkomendasikan dari hasil simulasi adalah Tx1-2 untuk SFN-SISO dan Tx2-3 untuk SFN-MISO.

  20. Microfluidic Apps for off-the-shelf instruments.

    Science.gov (United States)

    Mark, Daniel; von Stetten, Felix; Zengerle, Roland

    2012-07-21

    Within the last decade a huge increase in research activity in microfluidics could be observed. However, despite several commercial success stories, microfluidic chips are still not sold in high numbers in mass markets so far. Here we promote a new concept that could be an alternative approach to commercialization: designing microfluidic chips for existing off-the-shelf instruments. Such "Microfluidic Apps" could significantly lower market entry barriers and provide many advantages: developers of microfluidic chips make use of existing equipment or platforms and do not have to develop instruments from scratch; end-users can profit from microfluidics without the need to invest in new equipment; instrument manufacturers benefit from an expanded customer base due to the new applications that can be implemented in their instruments. Microfluidic Apps could be considered as low-cost disposables which can easily be distributed globally via web-shops. Therefore they could be a door-opener for high-volume mass markets.

  1. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.

    Science.gov (United States)

    Bsoul, Anas; Pan, Sheng; Cretu, Edmond; Stoeber, Boris; Walus, Konrad

    2016-08-16

    In this paper, we present a disposable inkjet dispenser platform technology and demonstrate the Lab-on-a-Printer concept, an extension of the ubiquitous Lab-on-a-Chip concept, whereby microfluidic modules are directly integrated into the printhead. The concept is demonstrated here through the integration of an inkjet dispenser and a microfluidic mixer enabling control over droplet composition from a single nozzle in real-time during printing. The inkjet dispenser is based on a modular design platform that enables the low-cost microfluidic component and the more expensive actuation unit to be easily separated, allowing for the optional disposal of the former and reuse of the latter. To limit satellite droplet formation, a hydrophobic-coated and tapered micronozzle was microfabricated and integrated with the fluidics to realize the dispenser. The microfabricated devices generated droplets with diameters ranging from 150-220 μm, depending mainly on the orifice diameter, with printing rates up to 8000 droplets per second. The inkjet dispenser is capable of dispensing materials with a viscosity up to ∼19 mPa s. As a demonstration of the inkjet dispenser function and application, we have printed type I collagen seeded with human liver carcinoma cells (cell line HepG2), to form patterned biological structures.

  2. Using a digital marketing platform for the promotion of an internet based health encyclopedia in saudi arabia.

    Science.gov (United States)

    Al Ateeq, Asma; Al Moamary, Eman; Daghestani, Tahani; Al Muallem, Yahya; Al Dogether, Majed; Alsughayr, Abdulrahman; Altuwaijri, Majid; Househ, Mowafa

    2015-01-01

    The objective of this paper is to investigate the experiences of using a digital marketing platform to promote the use of an internet based health encyclopedia in Saudi Arabia. Key informant interviews, meeting documentation, and Google Analytics were the data collection sources used in the study. Findings show that using a digital marketing platform led to a significant increase in the number of visitors to the health encyclopedia. The results demonstrate that digital marketing platforms are effective tools to be used for promoting internet based health education interventions. Future work will examine long-term educational impacts and costs in using digital marketing platforms to promote online healthcare sites in Saudi Arabia.

  3. A Centrifugal Microfluidic Platform Using SLM Extraction

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Burger, Robert; Emnéus, Jenny

    2016-01-01

    Here we present a pump-less microfluidic pla>orm which performs sample clean-up and enrichment in a single step, by integraAng Supported Liquid Membrane (SLM) extracAon. Our pla>orm offers a simple, yet very efficient, method for achieving sample pre-treatment and enrichment of rare analytes, in ...

  4. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    Science.gov (United States)

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  5. Colombian Artists and Digital Music Platforms: Some Difficulties

    Directory of Open Access Journals (Sweden)

    Marcela Palacio Puerta

    2017-12-01

    Full Text Available The Internet provides new business opportunities for the music industry, especially for both independent artists and record companies. The reason of the latter is the great proliferation and growth of digital music platforms. However, contrary to statistics, artists have not been able to benefit of such opportunities in the expected manner. The academic development on this subject is in its beginnings especially with respect to the Colombian panorama, therefore for the first time in the literature, this paper draws some of the difficulties that the Colombian artists face in the world of the digital music.

  6. Self-contained microfluidic systems: a review.

    Science.gov (United States)

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  7. Micro-optics for microfluidic analytical applications.

    Science.gov (United States)

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  8. Open source platform Digital Personal Assistant

    OpenAIRE

    Usachev, Denis; Khusnutdinov, Azat; Mazzara, Manuel; Khan, Adil; Panchenko, Ivan

    2018-01-01

    Nowadays Digital Personal Assistants (DPA) become more and more popular. DPAs help to increase quality of life especially for elderly or disabled people. In this paper we develop an open source DPA and smart home system as a 3-rd party extension to show the functionality of the assistant. The system is designed to use the DPA as a learning platform for engineers to provide them with the opportunity to create and test their own hypothesis. The DPA is able to recognize users' commands in natura...

  9. Digital questionnaire platform in the Danish Blood Donor Study

    DEFF Research Database (Denmark)

    Burgdorf, K S; Felsted, N; Mikkelsen, S

    2016-01-01

    with the questionnaire data in the DBDS database. RESULTS: The digital platform enables personalized questionnaires, presenting only questions relevant to the specific donor by hiding unneeded follow-up questions on screening question results. New versions of questionnaires are immediately available at all blood...

  10. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Control and Innovation on Digital Platforms : the case of Netflix and streaming of video content

    OpenAIRE

    Vigeland, Eirik

    2012-01-01

    In this thesis I investigate innovation processes on innovation platforms, and look at the role played by content release for innovation in digital distribution of home entertainment. I argue that innovation platforms rely on several aspects of innovation in order to succeed, and this thesis is concerned with one of these, namely release of digital entertainment content. I use the American video streaming service Netflix as a case and example of such an innovation platform. By using techno...

  12. Licensing experience with SPINLINE digital I/C platform - 15099

    International Nuclear Information System (INIS)

    Jegou, H.; Duthou, A.; Bach, J.; Burzynski, M.

    2015-01-01

    Rolls-Royce recently received a safety evaluation report from the NRC for the SPINLINE 3 digital safety instrumentation and control platform. The main Rolls-Royce interest in the NRC review was approval of the fail-safe, fault-tolerance, self-monitoring, deterministic, and communication independence features of the platform. The SPINLINE 3 platform consists of a set of standardized, modular hardware and software components and associated development tools. Rolls-Royce used a set of EPRI guidance documents to successfully develop a commercial grade dedication case of the platform. It was important to describe the technical critical characteristics for performance and dependability in the documentation submitted to NRC. The NRC audit forum was an important opportunity to effectively communicate complex technical information about the SPINLINE 3 platform. The NRC review had five interesting focus areas that offer opportunities for lessons learned. The main lesson learned is to put the same emphasis on the review for communication effectiveness as is put on the review for technical completeness and accuracy

  13. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique

    International Nuclear Information System (INIS)

    Chen, Jinyang; Ji, Xinghu; He, Zhike

    2015-01-01

    In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing. - Highlights: • A simple, robust and low-cost sample-introduction technique was developed. • Convenient and flexible sample changing was achieved in microfluidic system. • Novel strategy of concentration gradient generation was presented for barcoding. • High-throughput droplet screening could be realized in the integrated platform. • Multiplex DNA assay was successfully carried out in the droplet platform

  14. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinyang; Ji, Xinghu [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); He, Zhike, E-mail: zhkhe@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Suzhou Institute of Wuhan University, Suzhou 215123 (China)

    2015-08-12

    In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing. - Highlights: • A simple, robust and low-cost sample-introduction technique was developed. • Convenient and flexible sample changing was achieved in microfluidic system. • Novel strategy of concentration gradient generation was presented for barcoding. • High-throughput droplet screening could be realized in the integrated platform. • Multiplex DNA assay was successfully carried out in the droplet platform.

  15. Microdroplet evaporation in closed digital microfluidic biochips

    International Nuclear Information System (INIS)

    Ahmadi, Ali; Buat, Matthew D; Hoorfar, Mina

    2013-01-01

    In this paper, microdroplet evaporation in the closed digital microfluidic systems is studied for hydrophobic and hydrophilic surfaces. The contact angle and contact radius are measured by an enhanced automated polynomial fitting approach. It is observed that the contact angle for both hydrophobic and hydrophilic surfaces remains constant during the evaporation process. However, a higher evaporation rate is observed for hydrophilic droplets compared to the hydrophobic droplets. Since no contact line pinning is observed, first, an analytical model based on the uniform vapor mass flux along the liquid–vapor interface is proposed. Interestingly, it is observed that in the hydrophobic case, the analytical model gives a higher evaporation rate, whereas for the hydrophilic case, the analytical model gives a lower evaporation rate. The discrepancy between the results of the analytical modeling and the experimental values is hypothesized to be due the constant flux assumption. To verify the hypothesis, a finite volume-based numerical model is developed to find the local flux along the liquid–vapor interface. The numerical modeling results confirm that for hydrophilic droplets, the evaporation flux increases very close to the three-phase contact line. In the case of the hydrophobic droplets, on the other hand, the flux decreases close to the contact line due to vapor saturation; as a result the uniform flux assumption overestimates the mass loss. (paper)

  16. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    Science.gov (United States)

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  17. Open-source, community-driven microfluidics with Metafluidics.

    Science.gov (United States)

    Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A

    2017-06-07

    Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

  18. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  19. Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Gennari, O; Finizio, A; Ferraro, P

    2013-10-07

    We tackle the problem of information recovery and imaging through scattering microfluidic chips by means of digital holography (DH). In many cases the chip can become opalescent due to residual deposits settling down the inner channel faces, biofilm formation, scattering particle uptake by the channel cladding or its damaging by corrosive substances, or even by condensing effect on the exterior channels walls. In these cases white-light imaging is severely degraded and no information is obtainable at all about the flowing samples. Here we investigate the problem of counting and estimating velocity of cells flowing inside a scattering chip. Moreover we propose and test a method based on the recording of multiple digital holograms to retrieve improved phase-contrast images despite the strong scattering effect. This method helps, thanks to DH, to recover information which, otherwise, would be completely lost.

  20. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    Science.gov (United States)

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  1. Standardized and modular microfluidic platform for fast lab on chip system development

    NARCIS (Netherlands)

    Dekker, Stefan; van den Berg, Albert; Odijk, Mathieu; Lee, Abraham; DeVoe, Don

    2017-01-01

    This paper reports a modular microfluidic system with standardized parts, enabling rapid prototyping of lab on chip systems. Herewith contributing to the technology transfer from academy to industry. The use of standardized parts also makes it possible to design a microfluidic systems in a top down

  2. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol.

    Science.gov (United States)

    Sun, Bing; Shen, Feng; McCalla, Stephanie E; Kreutz, Jason E; Karymov, Mikhail A; Ismagilov, Rustem F

    2013-02-05

    Here we used a SlipChip microfluidic device to evaluate the performance of digital reverse transcription-loop-mediated isothermal amplification (dRT-LAMP) for quantification of HIV viral RNA. Tests are needed for monitoring HIV viral load to control the emergence of drug resistance and to diagnose acute HIV infections. In resource-limited settings, in vitro measurement of HIV viral load in a simple format is especially needed, and single-molecule counting using a digital format could provide a potential solution. We showed here that when one-step dRT-LAMP is used for quantification of HIV RNA, the digital count is lower than expected and is limited by the yield of desired cDNA. We were able to overcome the limitations by developing a microfluidic protocol to manipulate many single molecules in parallel through a two-step digital process. In the first step we compartmentalize the individual RNA molecules (based on Poisson statistics) and perform reverse transcription on each RNA molecule independently to produce DNA. In the second step, we perform the LAMP amplification on all individual DNA molecules in parallel. Using this new protocol, we increased the absolute efficiency (the ratio between the concentration calculated from the actual count and the expected concentration) of dRT-LAMP 10-fold, from ∼2% to ∼23%, by (i) using a more efficient reverse transcriptase, (ii) introducing RNase H to break up the DNA:RNA hybrid, and (iii) adding only the BIP primer during the RT step. We also used this two-step method to quantify HIV RNA purified from four patient samples and found that in some cases, the quantification results were highly sensitive to the sequence of the patient's HIV RNA. We learned the following three lessons from this work: (i) digital amplification technologies, including dLAMP and dPCR, may give adequate dilution curves and yet have low efficiency, thereby providing quantification values that underestimate the true concentration. Careful

  3. A digital peer-to-peer learning platform for clinical skills development.

    Directory of Open Access Journals (Sweden)

    Jesse Paul Basnak

    2017-02-01

    Conclusion: Students found the practice OSCEs and digital platform effective for learning clinical skills. Thus, peer-to-peer learning and computer automation can be useful adjuncts to traditional medical curricula.

  4. "Connecting worlds - a view on microfluidics for a wider application".

    Science.gov (United States)

    Fernandes, Ana C; Gernaey, Krist V; Krühne, Ulrich

    From its birth, microfluidics has been referenced as a revolutionary technology and the solution to long standing technological and sociological issues, such as detection of dilute compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) being capable of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient's skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, although technologically advanced, has so far failed to reach the originally promised widespread use. In this paper, some of the aspects are identified and discussed that have prevented microfluidics from reaching its full potential, especially in the chemical engineering and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, "plug and play" approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates, reactions and operation conditions, and other microfluidic systems is indeed of surmount importance and current academic and industrial approaches to modular microfluidics are presented. Furthermore, two views on the commercialization of plug-and-play microfluidics systems, leading towards improved acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors in microfluidics. The proposed guidelines are then applied for the development of two different example platforms, and to three examples taken from literature. With this work, we

  5. Microfluidics & nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Gentile, Francesco T.; Nicastri, Annalisa; Perri, Angela Mena; Coluccio, Maria Laura; Adamo, A.; Pardeo, Francesca; Catalano, Rossella; Parrotta, Elvira; Espinosa, Horacio Dante; Cuda, Giovanni; Di Fabrizio, Enzo M.

    2014-01-01

    In this paper, we describe an innovative modular microfluidic platform allowing filtering, concentration and analysis of peptides from a complex mixture. The platform is composed of a microfluidic filtering device and a superhydrophobic surface integrating surface enhanced Raman scattering (SERS) sensors. The microfluidic device was used to filter specific peptides (MW 1553.73 D) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancers, from albumin (66.5 KD), the most represented protein in human plasma. The filtering process consisted of driving the complex mixture through a porous membrane having a cut-off of 12-14 kD by hydrodynamic flow. The filtered samples coming out of the microfluidic device were subsequently deposited on a superhydrophobic surface formed by micro pillars on top of which nanograins were fabricated. The nanograins coupled to a Raman spectroscopy instrument acted as a SERS sensor and allowed analysis of the filtered sample on top of the surface once it evaporated. By using the presented platform, we demonstrate being able to sort small peptides from bigger proteins and to detect them by using a label-free technique at a resolution down to 0.1 ng μL-1. The combination of microfluidics and nanotechnology to develop the presented microfluidic platform may give rise to a new generation of biosensors capable of detecting low concentration samples from complex mixtures without the need for any sample pretreatment or labelling. The developed devices could have future applications in the field of early diagnosis of severe illnesses, e.g. early cancer detection. This journal is

  6. Building the Platform of Digital Earth with Sphere Split Bricks

    Directory of Open Access Journals (Sweden)

    WANG Jinxin

    2015-06-01

    Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.

  7. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

    DEFF Research Database (Denmark)

    Juul, Sissel; Nielsen, Christine Juul Fælled; Labouriau, Rodrigo

    2012-01-01

    detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite....../μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate...

  8. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  9. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2011-10-01

    Full Text Available A supramolecular platform based on self-assembled monolayers (SAMs has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP and pyrophosphate, as well as dipicolinic acid (DPA which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.

  10. Materials for Microfluidic Immunoassays: A Review.

    Science.gov (United States)

    Mou, Lei; Jiang, Xingyu

    2017-08-01

    Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.

    Science.gov (United States)

    Devaraju, Naga Sai Gopi K; Unger, Marc A

    2012-11-21

    Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.

  12. Introduction

    DEFF Research Database (Denmark)

    Pop, Paul; Alistar, Mirela; Stuart, Elena

    2015-01-01

    This chapter presents an introduction to the microfluidics field and microfluidic biochips. We discuss the main fluid propulsion principles used by modern microfluidic platforms, with a focus on “digital” microfluidic biochips, which are the topic of this book. Digital microfluidic biochips...

  13. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.

    Science.gov (United States)

    Hernández-Neuta, Iván; Pereiro, Iago; Ahlford, Annika; Ferraro, Davide; Zhang, Qiongdi; Viovy, Jean-Louis; Descroix, Stéphanie; Nilsson, Mats

    2018-04-15

    Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120μL of DNA dilution at flow rates ranging from 1 to 5μL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Digital questionnaire platform in the Danish Blood Donor Study

    DEFF Research Database (Denmark)

    Burgdorf, Kristoffer Sølvsten; Felsted, N; Mikkelsen, Susan

    2016-01-01

    collection facilities when new projects are initiated. CONCLUSION: The digital platform is a faster, cost-effective and more flexible solution to collect valid data from participating donors compared to paper-based questionnaires. The overall system can be used around the world by the use of Internet...... connection, but the level of security depends on the sensitivity of the data to be collected....

  15. Synthesis of Biochemical Applications on Digital Microfluidic Biochips with Operation Execution Time Variability

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul

    2015-01-01

    that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcetswcets, resulting in unexploited slack...... in the schedule. In this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a quasi-static synthesis strategy...... approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers have assumed...

  16. Long-term brain slice culturing in a microfluidic platform

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi; Avaliani, N.; Tønnesen, J.

    2011-01-01

    In this work, we present the development of a transparent poly(methyl methacrylate) (PMMA) based microfluidic culture system for handling long-term brain slice cultures independent of an incubator. The different stages of system development have been validated by culturing GFP producing brain sli...

  17. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.

    Science.gov (United States)

    Shi, Mingjian; Majumdar, Devi; Gao, Yandong; Brewer, Bryson M; Goodwin, Cody R; McLean, John A; Li, Deyu; Webb, Donna J

    2013-08-07

    Two novel microfluidic cell culture schemes, a vertically-layered set-up and a four chamber set-up, were developed for co-culturing central nervous system (CNS) neurons and glia. The cell chambers in these devices were separated by pressure-enabled valve barriers, which permitted us to control communication between the two cell types. The unique design of these devices facilitated the co-culture of glia with neurons in close proximity (∼50-100 μm), differential transfection of neuronal populations, and dynamic visualization of neuronal interactions, such as the development of synapses. With these co-culture devices, initial synaptic contact between neurons transfected with different fluorescent markers, such as green fluorescent protein (GFP) and mCherry-synaptophysin, was imaged using high-resolution fluorescence microscopy. The presence of glial cells had a profound influence on synapses by increasing the number and stability of synaptic contacts. Interestingly, as determined by liquid chromatography-ion mobility-mass spectrometry, neuron-glia co-cultures produced elevated levels of soluble factors compared to that secreted by individual neuron or glia cultures, suggesting a potential mechanism by which neuron-glia interactions could modulate synaptic function. Collectively, these results show that communication between neurons and glia is critical for the formation and stability of synapses and point to the importance of developing neuron-glia co-culture systems such as the microfluidic platforms described in this study.

  18. A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring.

    Science.gov (United States)

    Talukder, Niloy; Furniturewalla, Abbas; Le, Tuan; Chan, Matthew; Hirday, Shreyas; Cao, Xinnan; Xie, Pengfei; Lin, Zhongtian; Gholizadeh, Azam; Orbine, Steve; Javanmard, Mehdi

    2017-06-01

    We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer and portable analog readout electronics, feeding into an analog-to-digital converter (ADC), and being transmitted via Bluetooth to a user-accessible mobile application. We fabricated a microfluidic impedance cytometer with a novel portable analog readout. The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 μm in diameter, despite using a low-end 8-bit ADC. The lock-in-amplifier and the ADC were set up to receive and transmit data from a Bluetooth module. In order to initiate the system, as well as to transmit all of the data, a user friendly mobile application was developed, and a proof-of-concept trial was run on a blood sample. Applications such as personalized health monitoring require robust device operation and resilience to clogging. It is desirable to avoid using channels comparable in size to the particles being detected thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 μm diameter particles in a 300 μm wide channel. The sensitivity of our system is comparable to that of a high-end bench-top impedance spectrometer when tested using the same sensors. The novel analog design allowed for an instrument with a footprint of less than 80 cm 2 . The aim of this work is to demonstrate the potential of using microfluidic impedance spectroscopy for low cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however, our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.

  19. Desktop aligner for fabrication of multilayer microfluidic devices.

    Science.gov (United States)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  20. Macro to microfluidics system for biological environmental monitoring.

    Science.gov (United States)

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  2. Thin film metal sensors in fusion bonded glass chips for high-pressure microfluidics

    International Nuclear Information System (INIS)

    Andersson, Martin; Ek, Johan; Hedman, Ludvig; Johansson, Fredrik; Sehlstedt, Viktor; Stocklassa, Jesper; Snögren, Pär; Pettersson, Victor; Larsson, Jonas; Vizuete, Olivier; Hjort, Klas; Klintberg, Lena

    2017-01-01

    High-pressure microfluidics offers fast analyses of thermodynamic parameters for compressed process solvents. However, microfluidic platforms handling highly compressible supercritical CO 2 are difficult to control, and on-chip sensing would offer added control of the devices. Therefore, there is a need to integrate sensors into highly pressure tolerant glass chips. In this paper, thin film Pt sensors were embedded in shallow etched trenches in a glass wafer that was bonded with another glass wafer having microfluidic channels. The devices having sensors integrated into the flow channels sustained pressures up to 220 bar, typical for the operation of supercritical CO 2 . No leakage from the devices could be found. Integrated temperature sensors were capable of measuring local decompression cooling effects and integrated calorimetric sensors measured flow velocities over the range 0.5–13.8 mm s −1 . By this, a better control of high-pressure microfluidic platforms has been achieved. (paper)

  3. Droplet microfluidic platform for cell electrofusion

    NARCIS (Netherlands)

    Schoeman, R.M.

    2015-01-01

    In this thesis a lab on a chip platform is described which is capable of electrofusing cells in a picoliter droplet. The platform consist out of glass part containing recessed platinum electrodes plasma bonded to a PDMS slab containing microchannels. First the two cell populations are introduced

  4. Digital labour and development: impacts of global digital labour platforms and the gig economy on worker livelihoods.

    Science.gov (United States)

    Graham, Mark; Hjorth, Isis; Lehdonvirta, Vili

    2017-05-01

    As ever more policy-makers, governments and organisations turn to the gig economy and digital labour as an economic development strategy to bring jobs to places that need them, it becomes important to understand better how this might influence the livelihoods of workers. Drawing on a multi-year study with digital workers in Sub-Saharan Africa and South-east Asia, this article highlights four key concerns for workers: bargaining power, economic inclusion, intermediated value chains, and upgrading. The article shows that although there are important and tangible benefits for a range of workers, there are also a range of risks and costs that unduly affect the livelihoods of digital workers. Building on those concerns, it then concludes with a reflection on four broad strategies - certification schemes, organising digital workers, regulatory strategies and democratic control of online labour platforms - that could be employed to improve conditions and livelihoods for digital workers.

  5. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly

    Directory of Open Access Journals (Sweden)

    Mohamed Yafia

    2015-09-01

    Full Text Available Portable sensors and biomedical devices are influenced by the recent advances in microfluidics technologies, compact fabrication techniques, improved detection limits and enhanced analysis capabilities. This paper reports the development of an integrated ultraportable, low-cost, and modular digital microfluidic (DMF system and its successful integration with a smartphone used as a high-level controller and post processing station. Low power and cost effective electronic circuits are designed to generate the high voltages required for DMF operations in both open and closed configurations (from 100 to 800 V. The smartphone in turn commands a microcontroller that manipulate the voltage signals required for droplet actuation in the DMF chip and communicates wirelessly with the microcontroller via Bluetooth module. Moreover, the smartphone acts as a detection and image analysis station with an attached microscopic lens. The holder assembly is fabricated using three-dimensional (3D printing technology to facilitate rapid prototyping. The holder features a modular design that enables convenient attachment/detachment of a variety of DMF chips to/from an electrical busbar. The electrical circuits, controller and communication system are designed to minimize the power consumption in order to run the device on small lithium ion batteries. Successful controlled DMF operations and a basic colorimetric assay using the smartphone are demonstrated.

  6. Construction of programmable interconnected 3D microfluidic networks

    International Nuclear Information System (INIS)

    Hunziker, Patrick R; Wolf, Marc P; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B

    2015-01-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries. (paper)

  7. New Structural Representation and Digital-Analysis Platform for Symmetrical Parallel Mechanisms

    Directory of Open Access Journals (Sweden)

    Wenao Cao

    2013-05-01

    Full Text Available Abstract An automatic design platform capable of automatic structural analysis, structural synthesis and the application of parallel mechanisms will be a great aid in the conceptual design of mechanisms, though up to now such a platform has only existed as an idea. The work in this paper constitutes part of such a platform. Based on the screw theory and a new structural representation method proposed here which builds a one-to-one correspondence between the strings of representative characters and the kinematic structures of symmetrical parallel mechanisms (SPMs, this paper develops a fully-automatic approach for mobility (degree-of-freedom analysis, and further establishes an automatic digital-analysis platform for SPMs. With this platform, users simply have to enter the strings of representative characters, and the kinematic structures of the SPMs will be generated and displayed automatically, and the mobility and its properties will also be analysed and displayed automatically. Typical examples are provided to show the effectiveness of the approach.

  8. A microfluidic cell culture array with various oxygen tensions.

    Science.gov (United States)

    Peng, Chien-Chung; Liao, Wei-Hao; Chen, Ying-Hua; Wu, Chueh-Yu; Tung, Yi-Chung

    2013-08-21

    Oxygen tension plays an important role in regulating various cellular functions in both normal physiology and disease states. Therefore, drug testing using conventional in vitro cell models under normoxia often possesses limited prediction capability. A traditional method of setting an oxygen tension in a liquid medium is by saturating it with a gas mixture at the desired level of oxygen, which requires bulky gas cylinders, sophisticated control, and tedious interconnections. Moreover, only a single oxygen tension can be tested at the same time. In this paper, we develop a microfluidic cell culture array platform capable of performing cell culture and drug testing under various oxygen tensions simultaneously. The device is fabricated using an elastomeric material, polydimethylsiloxane (PDMS) and the well-developed multi-layer soft lithography (MSL) technique. The prototype device has 4 × 4 wells, arranged in the same dimensions as a conventional 96-well plate, for cell culture. The oxygen tensions are controlled by spatially confined oxygen scavenging chemical reactions underneath the wells using microfluidics. The platform takes advantage of microfluidic phenomena while exhibiting the combinatorial diversities achieved by microarrays. Importantly, the platform is compatible with existing cell incubators and high-throughput instruments (liquid handling systems and plate readers) for cost-effective setup and straightforward operation. Utilizing the developed platform, we successfully perform drug testing using an anti-cancer drug, triapazamine (TPZ), on adenocarcinomic human alveolar basal epithelial cell line (A549) under three oxygen tensions ranging from 1.4% to normoxia. The developed platform is promising to provide a more meaningful in vitro cell model for various biomedical applications while maintaining desired high throughput capabilities.

  9. Digital platforms: an analytical framework for identifying and evaluating policy options

    NARCIS (Netherlands)

    van Eijk, N.; Fahy, R.; van Til, H.; Nooren, P.; Stokking, H.; Gelevert, H.

    2015-01-01

    At the request of the Ministry of Economic Affairs, a project consortium of TNO, Ecorys and IViR have developed a framework to analyse policy questions regarding ‘digital platforms’. This framework enables the government to take advantage of the opportunities these platforms offer and to appreciate

  10. Microfluidic platform for dynamic in vitro optimization of methotrexate-loaded lipid nanoparticle delivery for personalized osteosarcoma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Hernando, M.; Macias, P.; Abella, M.; Desco, M.; Sharpe, S.; Vaquero, J.J.; Muñoz-Barrutia, M.

    2016-07-01

    Cancer is a leading cause of mortality in the world, with osteosarcoma being one of the most common types among children between 1 and 14 years old. The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment. However, current techniques for in vitro testing of these vehicles have shown little validity due to their static nature, in which nanoparticles sediment onto the bottom of the wells and kill the cells via asphyxiation, hiding the real effect achieved by the nanoparticles. In this work, a microfluidic platform capable of determining the optimum dose of methotrexate-loaded lipid nanoparticles in osteosarcoma treatment is presented as a promising alternative to current nanoparticle characterization assays. (Author)

  11. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  12. Development of test platform for digital I and C system evaluation

    International Nuclear Information System (INIS)

    Kim, Young Mi; Kwon, Yong Il

    2012-01-01

    Nuclear I and C (Instrument and Control) systems which need safety critical function have adopted various control units and communication protocols. These trends have been enlarged new nuclear plants design and upgrading of operating plants. Applying to these digital technologies to nuclear power plants has many good advantages, such as upgrade of functionality and performance and improvement of efficiency and economics. But, it also has several flaws. System designs have been more complicated and software reliability analysis and risk analysis have been more difficult. Also, cyber security problems came to the fore as I and C systems are connected through networks. The vulnerabilities of computer systems are vital to nuclear safety. Coping with the new IT technology of new and operating power plants, it is necessary to analyze verification technology and obtain regulatory technology through establishment of test platform. This paper presents test platform for digital I and C system evaluation of NPP

  13. Development of test platform for digital I and C system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Mi; Kwon, Yong Il [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Nuclear I and C (Instrument and Control) systems which need safety critical function have adopted various control units and communication protocols. These trends have been enlarged new nuclear plants design and upgrading of operating plants. Applying to these digital technologies to nuclear power plants has many good advantages, such as upgrade of functionality and performance and improvement of efficiency and economics. But, it also has several flaws. System designs have been more complicated and software reliability analysis and risk analysis have been more difficult. Also, cyber security problems came to the fore as I and C systems are connected through networks. The vulnerabilities of computer systems are vital to nuclear safety. Coping with the new IT technology of new and operating power plants, it is necessary to analyze verification technology and obtain regulatory technology through establishment of test platform. This paper presents test platform for digital I and C system evaluation of NPP.

  14. Digital labour and development: impacts of global digital labour platforms and the gig economy on worker livelihoods

    Science.gov (United States)

    Hjorth, Isis; Lehdonvirta, Vili

    2017-01-01

    As ever more policy-makers, governments and organisations turn to the gig economy and digital labour as an economic development strategy to bring jobs to places that need them, it becomes important to understand better how this might influence the livelihoods of workers. Drawing on a multi-year study with digital workers in Sub-Saharan Africa and South-east Asia, this article highlights four key concerns for workers: bargaining power, economic inclusion, intermediated value chains, and upgrading. The article shows that although there are important and tangible benefits for a range of workers, there are also a range of risks and costs that unduly affect the livelihoods of digital workers. Building on those concerns, it then concludes with a reflection on four broad strategies – certification schemes, organising digital workers, regulatory strategies and democratic control of online labour platforms – that could be employed to improve conditions and livelihoods for digital workers. PMID:28781494

  15. IR thermocycler for centrifugal microfluidic platform with direct on-disk wireless temperature measurement system

    Science.gov (United States)

    Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.

    2011-06-01

    The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up

  16. The MainSTREAM Component Platform: A Holistic Approach to Microfluidic System Design

    DEFF Research Database (Denmark)

    Sabourin, David; Skafte-Pedersen, Peder; Søe, Martin Jensen

    2013-01-01

    A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components...... of reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility...

  17. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  18. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  19. Multi-depth valved microfluidics for biofilm segmentation

    International Nuclear Information System (INIS)

    Meyer, M T; Bentley, W E; Ghodssi, R; Subramanian, S; Kim, Y W; Ben-Yoav, H; Gnerlich, M; Gerasopoulos, K

    2015-01-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information. (paper)

  20. Multi-depth valved microfluidics for biofilm segmentation

    Science.gov (United States)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  1. Biocatalytic process development using microfluidic miniaturized systems

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Heintz, Søren; Ringborg, Rolf Hoffmeyer

    2014-01-01

    The increasing interest in biocatalytic processes means there is a clear need for a new systematic development paradigm which encompasses both protein engineering and process engineering. This paper argues that through the use of a new microfluidic platform, data can be collected more rapidly...

  2. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia

    2015-01-01

    Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experime......Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical...

  3. The concept of resources and documents as means to understand mathematics teachers use of digital platforms in the classroom

    DEFF Research Database (Denmark)

    Tamborg, Andreas Lindenskov

    2018-01-01

    Currently, digital learning platforms are being implemented in Danish elementary schools. These platforms are developed with a dual aim of both supporting teachers’ planning and classroom teaching. This paper investigates and discusses the opportunities of using the documentational approach to st...... to study Danish mathematics teachers’ use of these platforms for classroom teaching and preliminary findings here of in the context of an ongoing PhD project.......Currently, digital learning platforms are being implemented in Danish elementary schools. These platforms are developed with a dual aim of both supporting teachers’ planning and classroom teaching. This paper investigates and discusses the opportunities of using the documentational approach...

  4. Upgrading well plates using open microfluidic patterning.

    Science.gov (United States)

    Berry, Samuel B; Zhang, Tianzi; Day, John H; Su, Xiaojing; Wilson, Ilham Z; Berthier, Erwin; Theberge, Ashleigh B

    2017-12-05

    Cellular communication between multiple cell types is a ubiquitous process that is responsible for vital physiological responses observed in vivo (e.g., immune response, organ function). Many in vitro coculture strategies have been developed, both in traditional culture and microscale systems, and have shown the potential to recreate some of the physiological behaviors of organs or groups of cells. A fundamental limitation of current systems is the difficulty of reconciling the additional engineering requirements for creating soluble factor signaling systems (e.g., segregated cell culture) with the use of well-characterized materials and platforms that have demonstrated successful results and biocompatibility in assays. We present a new open-microfluidic platform, the Monorail Device, that is placed in any existing well plate or Petri dish and enables patterning of segregated coculture regions, thereby allowing the direct upgrade of monoculture experiments into multiculture assays. Our platform patterns biocompatible hydrogel walls via microfluidic spontaneous capillary flow (SCF) along a rail insert set inside commercially available cultureware, creating customized pipette-accessible cell culture chambers that require fewer cells than standard macroscale culture. Importantly, the device allows the use of native surfaces without additional modification or treatments, while creating permeable dividers for the diffusion of soluble factors. Additionally, the ease of patterning afforded by our platform makes reconfiguration of the culture region as simple as changing the rail insert. We demonstrate the ability of the device to pattern flows on a variety of cell culture surfaces and create hydrogel walls in complex and precise shapes. We characterize the physical parameters that enable a reproducible SCF-driven flow and highlight specialized design features that increase the ease of use of the device and control of the open microfluidic flow. Further, we present the

  5. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  6. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling

    International Nuclear Information System (INIS)

    Wang, Chao; Yu, Chenxu

    2015-01-01

    With the rapid development of analytical techniques, it has become much easier to detect chemical and biological analytes, even at very low detection limits. In recent years, techniques based on vibrational spectroscopy, such as surface enhanced Raman spectroscopy (SERS), have been developed for non-destructive detection of pathogenic microorganisms. SERS is a highly sensitive analytical tool that can be used to characterize chemical and biological analytes interacting with SERS-active substrates. However, it has always been a challenge to obtain consistent and reproducible SERS spectroscopic results at complicated experimental conditions. Microfluidics, a tool for highly precise manipulation of small volume liquid samples, can be used to overcome the major drawbacks of SERS-based techniques. High reproducibility of SERS measurement could be obtained in continuous flow generated inside microfluidic devices. This article provides a thorough review of the principles, concepts and methods of SERS-microfluidic platforms, and the applications of such platforms in trace analysis of chemical and biological analytes. (topical review)

  7. Compact handheld low-cost biosensor platform for remote health monitoring

    Science.gov (United States)

    Hastanin, J.; Lenaerts, C.; Gailly, P.; Jans, H.; Huang, C.; Lagae, L.; Kokkinos, D.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab. The microfluidic path of the biochip operates in passive capillary pumping mode. In the proof-of-concept prototype, we address specifically the sensing format involving Surface Plasmon Resonance phenomenon. The biochip is plugged in the readout device without the use of an index matching fluid. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications.

  8. Fabrication and optimisation of a fused filament 3D-printed microfluidic platform

    International Nuclear Information System (INIS)

    Tothill, A M; Partridge, M; James, S W; Tatam, R P

    2017-01-01

    A 3D-printed microfluidic device was designed and manufactured using a low cost ($2000) consumer grade fusion deposition modelling (FDM) 3D printer. FDM printers are not typically used, or are capable, of producing the fine detailed structures required for microfluidic fabrication. However, in this work, the optical transparency of the device was improved through manufacture optimisation to such a point that optical colorimetric assays can be performed in a 50 µ l device. A colorimetric enzymatic cascade assay was optimised using glucose oxidase and horseradish peroxidase for the oxidative coupling of aminoantipyrine and chromotropic acid to produce a blue quinoneimine dye with a broad absorbance peaking at 590 nm for the quantification of glucose in solution. For comparison the assay was run in standard 96 well plates with a commercial plate reader. The results show the accurate and reproducible quantification of 0–10 mM glucose solution using a 3D-printed microfluidic optical device with performance comparable to that of a plate reader assay. (paper)

  9. Leveraging liquid dielectrophoresis for microfluidic applications

    International Nuclear Information System (INIS)

    Chugh, Dipankar; Kaler, Karan V I S

    2008-01-01

    Miniaturized fluidic systems have been developed in recent years and offer new and novel means of leveraging the domain of microfluidics for the development of micro-total analysis systems (μTAS). Initially, such systems employed closed microchannels in order to facilitate chip-based biochemical assays, requiring very small quantities of sample and/or reagents and furthermore providing rapid and low-cost analysis on a compact footprint. More recently, advancements in the domain of surface microfluidics have suggested that similar low volume sample handling and manipulation capabilities for bioassays can be attained by leveraging the phenomena of liquid dielectrophoresis and droplet dielectrophoresis (DEP), without the need for separate pumps or valves. Some of the key aspects of this surface microfluidic technology and its capabilities are discussed and highlighted in this paper. We, furthermore, examine the integration and utility of liquid DEP and droplet DEP in providing rapid and automated sample handling and manipulation capabilities on a compact chip-based platform

  10. A Web-Based Visualization and Animation Platform for Digital Logic Design

    Science.gov (United States)

    Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.

    2015-01-01

    This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…

  11. 3DEXPERIENCE: a digital platform to optimize nuclear projects

    International Nuclear Information System (INIS)

    Grand, T.; Le Ngoc

    2016-01-01

    Dassault Systemes has developed a digital platform 3DEXPERIENCE that enables all the enterprises working on a project to use common software and built databases in a collaborative environment. Now It is possible to simulate all the construction steps of a reactor and 3DEXPERIENCE is already used in the Chinese and Russian nuclear industries. For instance 3DEXPERIENCE allows the testing of different construction scenarios in order to find the best one to cope with the delay of a supplier for a component. The Russian feedback experience shows an average 15% gain in engineering man-hours for the construction of a reactor and up to 25% for its commissioning. The use of 3DEXPERIENCE for the dismantling of ancient facilities is more difficult since in most cases it does not exist a digital description of the facility. (A.C.)

  12. Next generation, in-situ microfluidic flow control using stimuli responsive materials for biomemetic microfluicic platforms

    NARCIS (Netherlands)

    Coleman, Simon; Azouz, Aymen Ben; Schiphorst, Jeroen Ter; Saez, Janire; Whyte, Jeffrey; McCluskey, Peter; Kent, Nigel; Benito-Lopez, Fernando; Schenning, Albert; Diamond, Dermot

    2016-01-01

    The requirement of significant off-chip fluid manipulation using high-cost mechanical components has resulted in design limitations in microfluidic devices. We report the use of novel stimuli responsive polymer gel materials for a variety of bio-inspired processes to achieve in-situ microfluidic

  13. Payment Platform

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  14. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction

    Science.gov (United States)

    Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo

    2017-12-01

    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.

  15. A versatile automated platform for micro-scale cell stimulation experiments.

    Science.gov (United States)

    Sinha, Anupama; Jebrail, Mais J; Kim, Hanyoup; Patel, Kamlesh D; Branda, Steven S

    2013-08-06

    Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥ 10(5)) in milliliter-scale volumes (≥ 0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100-2,000 cells) in micro-scale volumes (1-20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of

  16. Thermo-driven microcrawlers fabricated via a microfluidic approach

    International Nuclear Information System (INIS)

    Wang Wei; Yao Chen; Zhang Maojie; Ju Xiaojie; Xie Rui; Chu Liangyin

    2013-01-01

    A novel thermo-driven microcrawler that can transform thermal stimuli into directional mechanical motion is developed by a simple microfluidic approach together with emulsion-template synthesis. The microcrawler is designed with a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel body and a bell-like structure with an eccentric cavity. The asymmetric shrinking–swelling circulation of the microcrawlers enables a thermo-driven locomotion responding to repeated temperature changes, which provides a novel model with symmetry breaking principle for designing biomimetic soft microrobots. The microfluidic approach offers a novel and promising platform for design and fabrication of biomimetic soft microrobots. (paper)

  17. Microfluidic Devices for Forensic DNA Analysis: A Review.

    Science.gov (United States)

    Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han

    2016-08-05

    Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.

  18. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  19. An optical microfluidic platform for spatiotemporal biofilm treatment monitoring

    International Nuclear Information System (INIS)

    Kim, Young Wook; Mosteller, Matthew P; Subramanian, Sowmya; Meyer, Mariana T; Ghodssi, Reza; Bentley, William E

    2016-01-01

    Bacterial biofilms constitute in excess of 65% of clinical microbial infections, with the antibiotic treatment of biofilm infections posing a unique challenge due to their high antibiotic tolerance. Recent studies performed in our group have demonstrated that a bioelectric effect featuring low-intensity electric signals combined with antibiotics can significantly improve the efficacy of biofilm treatment. In this work, we demonstrate the bioelectric effect using sub-micron thick planar electrodes in a microfluidic device. This is critical in efforts to develop microsystems for clinical biofilm infection management, including both in vivo and in vitro applications. Adaptation of the method to the microscale, for example, can enable the development of localized biofilm infection treatment using microfabricated medical devices, while augmenting existing capabilities to perform biofilm management beyond the clinical realm. Furthermore, due to scale-down of the system, the voltage requirement for inducing the electric field is reduced further below the media electrolysis threshold. Enhanced biofilm treatment using the bioelectric effect in the developed microfluidic device elicited a 56% greater reduction in viable cell density and 26% further decrease in biomass growth compared to traditional antibiotic therapy. This biofilm treatment efficacy, demonstrated in a micro-scale device and utilizing biocompatible voltage ranges, encourages the use of this method for future clinical biofilm treatment applications. (paper)

  20. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.

    Science.gov (United States)

    Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-01-15

    Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon

  1. Microfluidic very large-scale integration for biochips: Technology, testing and fault-tolerant design

    DEFF Research Database (Denmark)

    Araci, Ismail Emre; Pop, Paul; Chakrabarty, Krishnendu

    2015-01-01

    of this paper is on continuous-flow biochips, where the basic building block is a microvalve. By combining these microvalves, more complex units such as mixers, switches, multiplexers can be built, hence the name of the technology, “microfluidic Very Large-Scale Integration” (mVLSI). A roadblock......Microfluidic biochips are replacing the conventional biochemical analyzers by integrating all the necessary functions for biochemical analysis using microfluidics. Biochips are used in many application areas, such as, in vitro diagnostics, drug discovery, biotech and ecology. The focus...... presents the state-of-the-art in the mVLSI platforms and emerging research challenges in the area of continuous-flow microfluidics, focusing on testing techniques and fault-tolerant design....

  2. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    International Nuclear Information System (INIS)

    Butement, Jonathan T; Rowe, David J; Sessions, Neil P; Hua, Ping; Murugan, G Senthil; Wilkinson, James S; Clark, Owain; Chad, John E; Hunt, Hamish C

    2016-01-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µ m fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated. (paper)

  3. Beyond technology : Identifying local government challenges for using digital platforms for citizen engagement

    NARCIS (Netherlands)

    Falco, E.; Kleinhans, R.J.

    2018-01-01

    Previous research has highlighted that there is a lack of advanced technological solutions able to foster government-citizens collaboration. We argue that many examples of digital participatory platforms are already available and also ready to use for governments and citizens. Hence, causes for

  4. Cultura, memória e curadoria digital na plataforma SNIIC | Culture, memory and digital curation in SNIIC platform

    Directory of Open Access Journals (Sweden)

    Maria José Vicentini Jorente

    2015-05-01

    convergent and collaborative platform which  unites digital resources meant to aggregate in one single data base the information regarding cultural matters in order to monitor the System's goals and implementation. The aim of this article is to reflect on the concept of memory in its individual, collective and digital instances considering (a the means that the SNIIC digital platform can offer to promote plural speech, to give voice and visibility to cultural diversity and (b the role it plays in the construction, preservation and dissemination of memory and cultural heritage. The research methodology used is bibliographic, descriptive and exploratory, concentrating on the thematic approach of Information Science regarding the collaborative web and its effects on culture and social memory. Many challenges and issues regarding individual participation and collaboration arise, as well as on new information flows and preservation of the numerous records of activities and cultural heritage in order to subsidise the construction of individual and social Brazilian memory. It is important to explore, to use effectively, and to publicize the existence of the cultural platform, highlighting its importance and functionalities, stimulating people's participation in the collective building of culture through social appropriation of the cultural information in multiple interaction forms. Keywords: Memory on the Internet; Culture; Information and Technology; Collaborative Web; Digital Platform.

  5. How the LEGO Group Is Embarking on Architectural Path Constitution to Transform Its Information Infrastructure into a Digital Platform

    DEFF Research Database (Denmark)

    Törmer, Robert Lorenz

    2018-01-01

    Traditional companies are increasingly turning towards platform strategies to gain speed in the development of digital value propositions and prepare for the challenges arising from digitalization. This paper reports on the digitalization journey of the LEGO Group to elaborate how brick-and-mortar...

  6. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    Science.gov (United States)

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Integrated microfluidic capillary in a waveguide resonator for chemical and biomedical sensing

    International Nuclear Information System (INIS)

    Pavuluri, S K; Lopez-Villarroya, R; McKeever, E; Goussetis, G; Desmulliez, M P Y; Kavanagh, D

    2009-01-01

    A novel microfluidic sensing device based on waveguide cavity filters is proposed for the characterisation, detection of cells in solution and chemical substances in micro-litre volumes. The sensor consists of a micromachined microfluidic channel within a waveguide-based resonator localised increased near-fields and could potentially be designed for different frequency regimes to improve the sensitivity. The present sensor has been proposed for fabrication in different manufacturing platforms and an initial prototype with a 100μm micromachined channel that is embedded within an X-band E-plane waveguide has been fabricated and tested. The design methodology for the microfluidic channel and the E-plane filter is also presented.

  8. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia Parajo, M.F.; van Hulst, N.F.; Ravoo, B.J.; Reinhoudt, David; van den Berg, Albert

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to

  9. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    KAUST Repository

    De Vitis, Stefania; Matarise, Giuseppina; Pardeo, Francesca; Catalano, Rossella; Malara, Natalia Maria; Trunzo, Valentina; Tallerico, Rossana; Gentile, Francesco T.; Candeloro, Patrizio; Coluccio, Maria Laura; Massaro, Alessandro S.; Viglietto, Giuseppe; Carbone, Ennio; Kutter, Jö rg Peter; Perozziello, Gerardo; Di Fabrizio, Enzo M.

    2014-01-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be used to study the interaction between cell membrane and biomolecules. Moreover they allow to perform analysis with high processing speed, small quantity of reagents and samples, short reaction times and low production costs. In this work the developed protocols were used in microfluidic devices for the isolation of cancer cells in heterogeneous blood samples by exploiting the binding of specific antibody to an adhesion protein (EpCAM), overexpressed on the tumor cell membranes. The presented biofunctionalization protocols can be performed right before running the experiment: this allows to have a flexible platform where biomolecules of interest can be linked on the device surface according to the user's needs. © 2014 Elsevier B.V. All rights reserved.

  10. Isolation of cancer cells by "in situ" microfluidic biofunctionalization protocols

    KAUST Repository

    De Vitis, Stefania

    2014-07-01

    The aim of this work is the development of a microfluidic immunosensor for the immobilization of cancer cells and their separation from healthy cells by using "in situ" microfluidic biofunctionalization protocols. These protocols allow to link antibodies on microfluidic device surfaces and can be used to study the interaction between cell membrane and biomolecules. Moreover they allow to perform analysis with high processing speed, small quantity of reagents and samples, short reaction times and low production costs. In this work the developed protocols were used in microfluidic devices for the isolation of cancer cells in heterogeneous blood samples by exploiting the binding of specific antibody to an adhesion protein (EpCAM), overexpressed on the tumor cell membranes. The presented biofunctionalization protocols can be performed right before running the experiment: this allows to have a flexible platform where biomolecules of interest can be linked on the device surface according to the user\\'s needs. © 2014 Elsevier B.V. All rights reserved.

  11. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Science.gov (United States)

    Luka, George; Ahmadi, Ali; Najjaran, Homayoun; Alocilja, Evangelyn; DeRosa, Maria; Wolthers, Kirsten; Malki, Ahmed; Aziz, Hassan; Althani, Asmaa; Hoorfar, Mina

    2015-01-01

    A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture. PMID:26633409

  12. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications

    Directory of Open Access Journals (Sweden)

    George Luka

    2015-12-01

    Full Text Available A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter, increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.

  13. A Transdermal Measurement Platform Based on Microfluidics

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2017-01-01

    Full Text Available The Franz diffusion cell is one of the most widely used devices to evaluate transdermal drug delivery. However, this static and nonflowing system has some limitations, such as a relatively large solution volume and skin area and the development of gas bubbles during sampling. To overcome these disadvantages, this study provides a proof of concept for miniaturizing models of transdermal delivery by using a microfluidic chip combined with a diffusion cell. The proposed diffusion microchip system requires only 80 μL of sample solution and provides flow circulation. Two model compounds, Coomassie Brilliant Blue G-250 and potassium ferricyanide, were successfully tested for transdermal delivery experiments. The diffusion rate is high for a high sample concentration or a large membrane pore size. The developed diffusion microchip system, which is feasible, can be applied for transdermal measurement in the future.

  14. Various on-chip sensors with microfluidics for biological applications.

    Science.gov (United States)

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W

    2014-09-12

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  15. Microfluidics to Mimic Blood Flow in Health and Disease

    Science.gov (United States)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  16. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  17. Controlling the trajectories of bubble trains at a microfluidic junction

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif

    2011-11-01

    The increasing number of applications facilitated by digital microfluidic flows has resulted in a sustained interest in not only understanding the diverse, interesting and often complex dynamics associated with such flows in microchannel networks but also in developing facile strategies to control them. We find that there are readily accessible flow speeds wherein resistance to flow in microchannels decreases with an increase in the number of confined bubbles present, and exploit this intriguing phenomenon to sort all bubble of a train exclusively into one of the arms of a nominally symmetric microfluidic loop. We also demonstrate how the arm into which the train filters into can be chosen by applying a temporary external stimulus by means of an additional flow of the continuous liquid into one the arms of the loop. Furthermore, we show how by tuning the magnitude and period of this temporary stimulus we can switch controllably, the traffic of bubbles between both arms of the loop even when the loop is asymmetric. The results of this work should aid in developing viable methods to regulate traffic of digital flows in microfluidic networks.

  18. The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments

    Directory of Open Access Journals (Sweden)

    Scott C. McCormick

    2017-04-01

    Full Text Available Many unique chemical compounds and nanomaterials are being developed, and each one requires a considerable range of in vitro and/or in vivo toxicity screening in order to evaluate their safety. The current methodology of in vitro toxicological screening on cells is based on well-plate assays that require time-consuming manual handling or expensive automation to gather enough meaningful toxicology data. Cost reduction; access to faster, more comprehensive toxicity data; and a robust platform capable of quantitative testing, will be essential in evaluating the safety of new chemicals and nanomaterials, and, at the same time, in securing the confidence of regulators and end-users. Microfluidic chips offer an alternative platform for toxicity screening that has the potential to transform both the rates and efficiency of nanomaterial testing, as reviewed here. The inherent advantages of microfluidic technologies offer high-throughput screening with small volumes of analytes, parallel analyses, and low-cost fabrication.

  19. Windowless microfluidic platform based on capillary burst valves for high intensity x-ray measurements

    International Nuclear Information System (INIS)

    Vig, Asger Laurberg; Enevoldsen, Nikolaj; Thilsted, Anil Haraksingh; Eriksen, Johan; Kristensen, Anders; Haldrup, Kristoffer; Feidenhans'l, Robert; Nielsen, Martin Meedom

    2009-01-01

    We propose and describe a microfluidic system for high intensity x-ray measurements. The required open access to a microfluidic channel is provided by an out-of-plane capillary burst valve (CBV). The functionality of the out-of-plane CBV is characterized with respect to the diameter of the windowless access hole, ranging from 10 to 130 μm. Maximum driving pressures from 22 to 280 mbar corresponding to refresh rates of the exposed sample from 300 Hz to 54 kHz is demonstrated. The microfluidic system is tested at beamline ID09b at the ESRF synchrotron radiation facility in Grenoble, and x-ray scattering measurements are shown to be feasible and to require only very limited amounts of sample, <1 ml/h of measurements without recapturing of sample. With small adjustments of the present chip design, scattering angles up to 30 deg. can be achieved without shadowing effects and integration on-chip mixing and spectroscopy appears straightforward.

  20. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.

    Science.gov (United States)

    Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan

    2009-10-01

    In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

  1. Accessing microfluidics through feature-based design software for 3D printing

    Science.gov (United States)

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  2. Accessing microfluidics through feature-based design software for 3D printing.

    Science.gov (United States)

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  3. EORTC Radiation Oncology Group quality assurance platform: Establishment of a digital central review facility

    International Nuclear Information System (INIS)

    Fairchild, Alysa; Aird, Edwin; Fenton, Paul A.; Gregoire, Vincent; Gulyban, Akos; Lacombe, Denis; Matzinger, Oscar; Poortmans, Philip; Ruyskart, Pascal; Weber, Damien C.; Hurkmans, Coen W.

    2012-01-01

    Objective: Quality assurance (QA) in clinical trials is essential to ensure treatment is safely and effectively delivered. As QA requirements have increased in complexity in parallel with evolution of radiation therapy (RT) delivery, a need to facilitate digital data exchange emerged. Our objective is to present the platform developed for the integration and standardization of QART activities across all EORTC trials involving RT. Methods: The following essential requirements were identified: secure and easy access without on-site software installation; integration within the existing EORTC clinical remote data capture system; and the ability to both customize the platform to specific studies and adapt to future needs. After retrospective testing within several clinical trials, the platform was introduced in phases to participating sites and QART study reviewers. Results: The resulting QA platform, integrating RT analysis software installed at EORTC Headquarters, permits timely, secure, and fully digital central DICOM-RT based data review. Participating sites submit data through a standard secure upload webpage. Supplemental information is submitted in parallel through web-based forms. An internal quality check by the QART office verifies data consistency, formatting, and anonymization. QART reviewers have remote access through a terminal server. Reviewers evaluate submissions for protocol compliance through an online evaluation matrix. Comments are collected by the coordinating centre and institutions are informed of the results. Conclusions: This web-based central review platform facilitates rapid, extensive, and prospective QART review. This reduces the risk that trial outcomes are compromised through inadequate radiotherapy and facilitates correlation of results with clinical outcomes.

  4. Fabrication of a Paper-Based Microfluidic Device to Readily Determine Nitrite Ion Concentration by Simple Colorimetric Assay

    Science.gov (United States)

    Wang, Bo; Lin, Zhiqiang; Wang, Min

    2015-01-01

    Paper-based microfluidic devices (µPAD) are a burgeoning platform of microfluidic analysis technology. The method described herein is for use in undergraduate and high school chemistry laboratories. A simple and convenient µPAD was fabricated by easy patterning of filter paper using a permanent marker pen. The usefulness of the device was…

  5. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  6. Application of microfluidics for the development of intensified aminotransferase (ATA) processes

    DEFF Research Database (Denmark)

    Heintz, Søren

    Development of biocatalytic processes is greatly dominated by well-established batch process based screening technologies, e.g. glass vials (mL) and microtiter plates (μL). However, there is still a need for improvement of currently available technologies and for new technologies enabling...... relatively easy screening and characterization of different process options. For example, small-scale microfluidic platforms enable testing of complex process options, by combining multiple process steps in a plug-and-play manner, that are difficult to assess with conventional methods. Early...... of biocatalytic processes. Within this thesis, microfluidic modules are applied as tools to screen, characterize, and test reactor and separation process options. Furthermore, multiple microfluidic modules are combined in order to test complex process configurations, i.e. reactor modules combined with separation...

  7. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    Science.gov (United States)

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  8. Open soundcard as a platform for practical, laboratory study of digital audio

    DEFF Research Database (Denmark)

    Dimitrov, Smilen; Serafin, Stefania

    2014-01-01

    This article investigates how lacking suitable platforms for laboratory exercises becomes a learning problem, limiting the practical experience students gain. In engineering education, laboratory demonstration difficulty of issues like real-time streaming in digital signal and audio processing...... afforded by such laboratories, and their open nature, could testably improve the diversity of demonstrated practical topics, while maintaining engineering students' motivation....

  9. A portable chemotaxis platform for short and long term analysis.

    Directory of Open Access Journals (Sweden)

    Chenjie Xu

    Full Text Available Flow-based microfluidic systems have been widely utilized for cell migration studies given their ability to generate versatile and precisely defined chemical gradients and to permit direct visualization of migrating cells. Nonetheless, the general need for bulky peripherals such as mechanical pumps and tubing and the complicated setup procedures significantly limit the widespread use of these microfluidic systems for cell migration studies. Here we present a simple method to power microfluidic devices for chemotaxis assays using the commercially available ALZET® osmotic pumps. Specifically, we developed a standalone chemotaxis platform that has the same footprint as a multiwell plate and can generate well-defined, stable chemical gradients continuously for up to 7 days. Using this platform, we validated the short-term (24 hours and long-term (72 hours concentration dependent PDGF-BB chemotaxis response of human bone marrow derived mesenchymal stem cells.

  10. Paper-based smart microfluidics for education and low-cost diagnostics

    CSIR Research Space (South Africa)

    Smith, S

    2015-11-01

    Full Text Available , point-of-care (PoC) tests, which are performed at or near the site of clinical care, have gained popularity and are actively being developed. Microfluidic systems, in which small volumes of fluids can be processed, provide an ideal platform on which...

  11. Various On-Chip Sensors with Microfluidics for Biological Applications

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  12. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  13. Imaging based agglutination measurement of magnetic micro-particles on a lab-on-a-disk platform

    DEFF Research Database (Denmark)

    Wantiya, P.; Burger, Robert; Alstrøm, Tommy Sonne

    2014-01-01

    In this work we present a magnetic micro beads based agglutination assay on a centrifugal microfluidic platform. An imaging based method is used to quantify bead agglutination and measure the concentration of antibodies or C-reactive protein in solution.......In this work we present a magnetic micro beads based agglutination assay on a centrifugal microfluidic platform. An imaging based method is used to quantify bead agglutination and measure the concentration of antibodies or C-reactive protein in solution....

  14. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  15. Characterization of Reagent Pencils for Deposition of Reagents onto Paper-Based Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Cheyenne H. Liu

    2017-08-01

    Full Text Available Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and digital image colorimetry. The molecular weight of the PEG, concentration of the reagent, and the molecular weight of the reagent were all found to have an inverse correlation with the wear of the pencil cores, but the amount of reagent delivered to the test zone of a device correlated most strongly with the concentration of the reagent in the pencil core. Up to 49% of the total reagent deposited on a device with a pencil was released into the test zone, compared to 58% for reagents deposited from a solution. The results suggest that reagent pencils can be prepared for a variety of reagents using PEGs with molecular weights in the range of 2000 to 6000 g/mol.

  16. Bioreactor process monitoring using an automated microfluidic platform for cell-based assays

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    We report on a novel microfluidic system designed to monitor in real-time the concentration of live and dead cells in industrial cell production. Custom-made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample-to-waste liquid management and image cytometry-based ...

  17. Microfluidic systems for stem cell-based neural tissue engineering.

    Science.gov (United States)

    Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R

    2016-07-05

    Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.

  18. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  19. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  20. High yield, reproducible and quasi-automated bilayer formation in a microfluidic format

    NARCIS (Netherlands)

    Schulze Greiving-Stimberg, Verena Carolin; Bomer, Johan G.; van Uitert, I.; van den Berg, Albert; le Gac, Severine

    2013-01-01

    A microfluidic platform is reported for various experimentation schemes on cell membrane models and membrane proteins using a combination of electrical and optical measurements, including confocal microscopy. Bilayer lipid membranes (BLMs) are prepared in the device upon spontaneous and

  1. Microfluidic Biochip Design

    Science.gov (United States)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  2. Microfluidic Devices for Chemical and Biochemical Analysis in Microgravity

    Science.gov (United States)

    Roman, Gregory T.; Culbertson, Christopher T.; Meyer, Amanda; Ramsey, J. Michael; Gonda, Steven R.

    2004-01-01

    One often touted benefit of "Lab-on-a-Chip" devices is their potential for use in remote environments. The ultimate remote environment is outer space, and NASA has multiple needs in the area of analytical sensing capability in such an environment. In particular, we are interested in integrating microfluidic devices with NASA bioreactor systems. In such an integrated system, the microfluidic device will serve as a biosensor and be used for both feedback control and for detecting various bioproducts produced by cells cultured in the NASA bioreactors. As a first step in demonstrating the ability of microfluidic devices to operate under the extreme environmental conditions found in outer space, we constructed a portable, battery operated platform for testing under reduced gravity conditions on a NASA KC-135 reduced gravity research aircraft, (AKA "the vomit comet"). The test platform consisted of a microchip, two 0-8kV high voltage power supplies, a high voltage switch, a solid-state diode-pumped green laser, a channel photomultiplier, and an inertial mass measurement unit, all under the control of a laptop computer and powered by 10 D-cell alkaline batteries. Over the course of 4 KC-135 flights, 1817 fast electrophoretic separations of 4 amino acids and/or proteins were performed in a variety of gravitational environments including zero-G, Martian-G, lunar-G, and 2-G. Results from these experiments will be presented and discussed.

  3. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    Science.gov (United States)

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Integration of microelectronic chips in microfluidic systems on printed circuit board

    International Nuclear Information System (INIS)

    Burdallo, I; Jimenez-Jorquera, C; Fernández-Sánchez, C; Baldi, A

    2012-01-01

    A new scheme for the integration of small semiconductor transducer chips with microfluidic structures on printed circuit board (PCB) is presented. The proposed approach is based on a packaging technique that yields a large and flat area with small and shallow (∼44 µm deep) openings over the chips. The photocurable encapsulant material used, based on a diacrylate bisphenol A polymer, enables irreversible bonding of polydimethylsiloxane microfluidic structures at moderate temperatures (80 °C). This integration scheme enables the insertion of transducer chips in microfluidic systems with a lower added volume than previous schemes. Leakage tests have shown that the bonded structures withstand more than 360 kPa of pressure. A prototype microfluidic system with two detection chips, including one inter-digitated electrode (IDE) chip for conductivity and one ion selective field effect transistor (ISFET) chip for pH, has been implemented and characterized. Good electrical insulation of the chip contacts and silicon edge surfaces from the solution in the microchannels has been achieved. This integration procedure opens the door to the low-cost fabrication of complex analytical microsystems that combine the extraordinary potential of both the microfluidics and silicon microtechnology fields. (paper)

  5. A Portable Automatic Endpoint Detection System for Amplicons of Loop Mediated Isothermal Amplification on Microfluidic Compact Disk Platform

    Directory of Open Access Journals (Sweden)

    Shah Mukim Uddin

    2015-03-01

    Full Text Available In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD. The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.

  6. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  7. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  8. The Dynamics of Digital Platform Innovation

    DEFF Research Database (Denmark)

    Eaton, Ben

    2016-01-01

    Curated platforms provide an architectural basis for third parties to develop platform complements and for platform owners to control their implementation as a form of open innovation. The refusal to implement complements as innovations can cause tension between platform owners and developers. Th...

  9. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    Science.gov (United States)

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  10. Impedimetric toxicity assay in microfluidics using free and liposome-encapsulated anticancer drugs

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Montini, Lucia

    2015-01-01

    In this work, we have developed a microfluidic cytotoxicity assay for a cell culture and detection platform, which enables both fluid handling and electrochemical/optical detection. The cytotoxic effect of anticancer drugs doxorubicin (DOX), oxaliplatin (OX) as well as OX-loaded liposomes, develo...

  11. Method for using magnetic particles in droplet microfluidics

    Science.gov (United States)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  12. Design concepts for a nuclear digital instrumentation and control system platform

    International Nuclear Information System (INIS)

    Ou, T. C.; Chen, C. K.; Chen, P. J.; Shyu, S. S.; Lee, C. L.; Hsieh, S. F.

    2010-10-01

    The objective of this paper is to present the development results of the nuclear instrumentation and control system in Taiwan. As the Taiwan nuclear power plants age, the need to consider upgrading of both their safety and non-safety-related instrumentation and control systems becomes more urgent. Meanwhile, the digital instrumentation and control system that is based on current fast evolving electronic and information technologies are difficult to maintain effectively. Therefore, Institute of Nuclear Energy Research was made a decision to promote the Taiwan Nuclear Instrumentation and Control System project to collaborate with domestic electronic industry to establish self-reliant capabilities on the design, manufacturing, and application of nuclear instrumentation and control systems with newer technology. In the case of safety-related applications like nuclear instrumentation and control, safety-oriented quality control is required. In order to establish a generic qualified digital platform, the world-wide licensing experience should be considered in the licensing process. This paper describes the qualification and certification tools by IEC 61508 for design and development of safety related equipment and explains the basis for many decisions made while performing the digital upgrade. (Author)

  13. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    Science.gov (United States)

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  14. Formation of actin networks in microfluidic concentration gradients

    Directory of Open Access Journals (Sweden)

    Natalja eStrelnikova

    2016-05-01

    Full Text Available The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  15. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  16. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers.

    Science.gov (United States)

    Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M

    2012-05-08

    One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.

  17. A Bioengineered Three-Dimensional Cell Culture Platform Integrated with Microfluidics To Address Antimicrobial Resistance in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Magdalena K. Bielecka

    2017-02-01

    Full Text Available Antimicrobial resistance presents one of the most significant threats to human health, with the emergence of totally drug-resistant organisms. We have combined bioengineering, genetically modified bacteria, longitudinal readouts, and fluidics to develop a transformative platform to address the drug development bottleneck, utilizing Mycobacterium tuberculosis as the model organism. We generated microspheres incorporating virulent reporter bacilli, primary human cells, and an extracellular matrix by using bioelectrospray methodology. Granulomas form within the three-dimensional matrix, and mycobacterial stress genes are upregulated. Pyrazinamide, a vital first-line antibiotic for treating human tuberculosis, kills M. tuberculosis in a three-dimensional culture but not in a standard two-dimensional culture or Middlebrook 7H9 broth, demonstrating that antibiotic sensitivity within microspheres reflects conditions in patients. We then performed pharmacokinetic modeling by combining the microsphere system with a microfluidic plate and demonstrated that we can model the effect of dynamic antibiotic concentrations on mycobacterial killing. The microsphere system is highly tractable, permitting variation of cell content, the extracellular matrix, sphere size, the infectious dose, and the surrounding medium with the potential to address a wide array of human infections and the threat of antimicrobial resistance.

  18. Ultrahigh throughput microfluidic platform for in-air production of microscale droplets

    Science.gov (United States)

    Tirandazi, Pooyan; Healy, John; Hidrovo, Carlos H.

    2017-11-01

    In-air droplet formation inside microfluidic networks is an alternative technique to the conventional in-liquid systems for creating uniform, microscale droplets. Recent works have highlighted and quantified the use of a gaseous continuous phase for controlled generation of droplets in the Dripping regime in planar structures. Here we demonstrate a new class of non-planar droplet-based systems which rely on controlled breakup of a liquid microjet within a high speed flow of air inside a confined microfluidic flow-focusing PDMS channel. We investigate the physics of confined gas-liquid flows and the effect of geometry on the behavior of a liquid water jet in a gaseous flow. Droplet breakup in the Jetting regime is studied both numerically and experimentally and the results are compared. We show droplet production capability at rates higher than 100 KHz with droplets ranging from 15-30 μm in diameter and a polydispersity index of less than 15%. This work represents an important investigation into the Jetting regime in confined microchannels. The ability to control jet behavior, generation rate, and droplet size in gas-liquid microflows will further expand the potential applications of this system for high throughput operations in material synthesis and biochemical analysis. We acknowledge funding support from NSF CAREER Award Grant CBET-1522841.

  19. Open Source, Social Activism and "Necessary Trade-offs" in the Digital Enclosure: A Case Study of Platform Co-operative, Loomio.org

    Directory of Open Access Journals (Sweden)

    Sam K Jackson

    2016-10-01

    Full Text Available This article explores the tensions and tradeoffs facing the open source platform co-operative Loomio.org, an online tool that aims to decentralize power through deliberative decision-making. Combining discourse analysis with political economy, we demonstrate how Loomio’s politics of resistance is built directly into the architectural design and platform structure, which invites users to participate in its development and evolution. Yet by prioritizing its social justice mission, Loomio must make certain tradeoffs around data storage and management that paradoxically threatens to compromise its wider social goals. The realities of operating an open source platform are discussed in the context of the contemporary digital economy. We argue that if platform co-operatives like Loomio are to fully realize their goals, a digital commons unencumbered by capitalism requires access to reliable, affordable and accessible alternatives to the existing Internet infrastructure.

  20. Establishment of nuclear knowledge-information base; development of courseware on introductory nuclear engineering and establishment of digital education platform

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Na, Mang Yun; Lee, Goung Jin; Yang, Won Sik [Chosun University, Gwangju (Korea)

    2002-01-01

    In this research, there are two major tasks. The first one is a development of digital course-ware program for introductory nuclear engineering. For this task, a development of lecture note is followed by lecture Slide files in html file format, which is based on web. For this purpose, following activities were performed; collection of related materials. planning of overall courseware, writing of lecture note and exercise plan, and securing the computer programs and codes needed. The second task of this research is to plan and install several hardwares in a multimedia class room as a digital education platform. The platform includes smart board with touch screen functionality, network server and personal computers. The digital education platform was established as a multimedia class room in the 2nd College of Engineering building, room 16210 by using the Server-Client environment and smart board, personal computer, and internet was connected by a TCP/IP way. For the courseware, hypertext was supported to be web-based, and photo, picture, data and related web links including text were developed in a close relation, it is possible for students to study big amounts of information in a systemized way and to maximize the learning efficiency. The whole range of introductory nuclear engineering course was divided into nuclear fuel cycle, reactor theory, heat transport, and reactor control, and digital contents were developed by each experts, but the final format of the courseware was maintained consistently for easy understanding . Also, the reactor experiment courseware developed by Kyunghee University can be utilized on this platform. 5 refs., 36 figs., 4 tabs. (Author)

  1. Controlled and tunable polymer particles' production using a single microfluidic device

    Science.gov (United States)

    Amoyav, Benzion; Benny, Ofra

    2018-04-01

    Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

  2. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    Science.gov (United States)

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  3. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems

    Directory of Open Access Journals (Sweden)

    Kyukwang Kim

    2018-02-01

    Full Text Available Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  4. Low-Cost Rapid Prototyping of Whole-Glass Microfluidic Devices

    Science.gov (United States)

    Yuen, Po Ki; Goral, Vasiliy N.

    2012-01-01

    A low-cost, straightforward, rapid prototyping of whole-glass microfluidic devices is presented using glass-etching cream that can be easily purchased in local stores. A self-adhered vinyl stencil cut out by a desktop digital craft cutter was used as an etching mask for patterning microstructures in glass using the glass-etching cream. A specific…

  5. A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies.

    Science.gov (United States)

    Fernandes, João T S; Chutna, Oldriska; Chu, Virginia; Conde, João P; Outeiro, Tiago F

    2016-01-01

    Although, the precise molecular mechanisms underlying Parkinson's disease (PD) are still elusive, it is now known that spreading of alpha-synuclein (aSyn) pathology and neuroinflammation are important players in disease progression. Here, we developed a novel microfluidic cell-culture platform for studying the communication between two different cell populations, a process of critical importance not only in PD but also in many biological processes. The integration of micro-valves in the device enabled us to control fluid routing, cellular microenvironments, and to simulate paracrine signaling. As proof of concept, two sets of experiments were designed to show how this platform can be used to investigate specific molecular mechanisms associated with PD. In one experiment, naïve H4 neuroglioma cells were co-cultured with cells expressing aSyn tagged with GFP (aSyn-GFP), to study the release and spreading of the protein. In our experimental set up, we induced the release of the contents of aSyn-GFP producing cells to the medium and monitored the protein's diffusion. In another experiment, H4 cells were co-cultured with N9 microglial cells to assess the interplay between two cell lines in response to environmental stimuli. Here, we observed an increase in the levels of reactive oxygen species in H4 cells cultured in the presence of activated N9 cells, confirming the cross talk between different cell populations. In summary, the platform developed in this study affords novel opportunities for the study of the molecular mechanisms involved in PD and other neurodegenerative diseases.

  6. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2013-01-01

    Full Text Available We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  7. “Connecting worlds – a view on microfluidics for a wider application”

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Gernaey, Krist V.; Krühne, Ulrich

    2018-01-01

    acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors...... of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient’s skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However...... and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, “plug and play” approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates...

  8. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang; Li, Shunbo; Wang, Limu; Yi, Xin; Hui, Yu Sanna; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  9. Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

    KAUST Repository

    Wang, Xiang

    2013-01-01

    We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.

  10. A Lab-on-a-disc platform for trapping of cells, monitoring of cell behaviour and evaluation of redox metabolism

    DEFF Research Database (Denmark)

    Amato, Letizia; Kuldeep, Kuldeep; Esmail Tehrani, Sheida

    2015-01-01

    In this work, we demonstrate an integrated electrochemical system on a centrifugal microfluidic platform for cell studies by combining electrochemical impedance spectroscopy and amperometry, and comparison of different cleaning protocols for gold electrodes on plastic substrate.......In this work, we demonstrate an integrated electrochemical system on a centrifugal microfluidic platform for cell studies by combining electrochemical impedance spectroscopy and amperometry, and comparison of different cleaning protocols for gold electrodes on plastic substrate....

  11. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.

    Science.gov (United States)

    Berenguel-Alonso, Miguel; Sabés-Alsina, Maria; Morató, Roser; Ymbern, Oriol; Rodríguez-Vázquez, Laura; Talló-Parra, Oriol; Alonso-Chamarro, Julián; Puyol, Mar; López-Béjar, Manel

    2017-10-01

    Assisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling. The microfluidic device was suitable for trapping and maturation of bovine oocytes, which were further studied to determine their ability to be fertilized. Furthermore, another COC microfluidic device was fabricated to store sperm and assess its quality parameters over time. The study herein presented demonstrates a good biocompatibility of the COC when working with gametes, and it exhibits certain advantages, such as the nonabsorption of small molecules, gas impermeability, and low fabrication costs, all at the prototyping and mass production scale, thus taking a step further toward fully automated microfluidic devices in ART.

  12. A microfluidic direct formate fuel cell on paper.

    Science.gov (United States)

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effectiveness of a digital platform for sharing knowledge on headache management: a two-year experience.

    Science.gov (United States)

    Raieli, Vincenzo; Correnti, E; Sandullo, A; Romano, M; Marchese, F; Loiacono, C; Brighina, Filippo

    It is crucial that all headache specialists receive adequate training. Considering the unsatisfactory results obtained with standard updating courses and the growing need for continuing professional education, a digital platform was developed as a training tool. The platform has been active since 1 October 2014. It is readily accessible to doctors by free registration. Users have access to all the material available on the platform, which includes scientific articles, e-books, presentations and images. Users can share their own material and clinical cases directly. At the time of this study, the platform had 37 users. In the second year following its launch 316 files were downloaded and five discussions were started. These saw 22 contributions. Fifteen of the 37 members did not perform any action on the platform. In total, 74 files were uploaded in the second year of activity, but 90% of the contributions came from a very small group of users. There were no significant differences in use of the platform between members of the Italian Society for the Study of Headache and other specialists. Even though the platform appears to be an easily accessible, interactive and inexpensive instrument, the higher number of downloads than uploads suggests that it is used passively.

  14. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  15. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.

    Science.gov (United States)

    Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C

    2017-11-01

    Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Microfluidic Diatomite Analytical Devices for Illicit Drug Sensing with ppb-Level Sensitivity.

    Science.gov (United States)

    Kong, Xianming; Chong, Xinyuan; Squire, Kenny; Wang, Alan X

    2018-04-15

    The escalating research interests in porous media microfluidics, such as microfluidic paper-based analytical devices, have fostered a new spectrum of biomedical devices for point-of-care (POC) diagnosis and biosensing. In this paper, we report microfluidic diatomite analytical devices (μDADs), which consist of highly porous photonic crystal biosilica channels, as an innovative lab-on-a-chip platform to detect illicit drugs. The μDADs in this work are fabricated by spin-coating and tape-stripping diatomaceous earth on regular glass slides with cross section of 400×30µm 2 . As the most unique feature, our μDADs can simultaneously perform on-chip chromatography to separate small molecules from complex biofluidic samples and acquire the surface-enhanced Raman scattering spectra of the target chemicals with high specificity. Owing to the ultra-small dimension of the diatomite microfluidic channels and the photonic crystal effect from the fossilized diatom frustules, we demonstrate unprecedented sensitivity down to part-per-billion (ppb) level when detecting pyrene (1ppb) from mixed sample with Raman dye and cocaine (10 ppb) from human plasma. This pioneering work proves the exclusive advantage of μDADs as emerging microfluidic devices for chemical and biomedical sensing, especially for POC drug screening.

  17. Microfluidic Mixing Technology for a Universal Health Sensor

    Science.gov (United States)

    Chan, Eugene Y.; Bae, Candice

    2009-01-01

    A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.

  18. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics

    Directory of Open Access Journals (Sweden)

    Esmail Pishbin

    2016-12-01

    Full Text Available The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions. Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm3/s and also efficient mixing in centrifugal microfluidic platforms.

  19. Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes.

    Science.gov (United States)

    Balbino, Tiago A; Serafin, Juliana M; Radaic, Allan; de Jesus, Marcelo B; de la Torre, Lucimara G

    2017-04-01

    In this work, pDNA/cationic liposome (CL) lipoplexes for gene delivery were prepared in one-step using multiple hydrodynamic flow-focusing regions. The microfluidic platform was designed with two distinct regions for the synthesis of liposomes and the subsequent assembly with pDNA, forming lipoplexes. The obtained lipoplexes exhibited appropriate physicochemical characteristics for gene therapy applications under varying conditions of flow rate-ratio (FRR), total volumetric flow rate (Q T ) and pDNA content (molar charge ratio, R±). The CLs were able to condense and retain the pDNA in the vesicular structures with sizes ranging from 140nm to 250nm. In vitro transfection assays showed that the lipoplexes prepared in one step by the two-stage configuration achieved similar efficiencies as lipoplexes prepared by conventional bulk processes, in which each step comprises a series of manual operations. The integrated microfluidic platform generates lipoplexes with liposome formation combined in-line with lipoplex assembly, significantly reducing the number of steps usually required to form gene carrier systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Flexible experimental FPGA based platform

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2016-01-01

    This paper presents an experimental flexible Field Programmable Gate Array (FPGA) based platform for testing and verifying digital controlled dc-dc converters. The platform supports different types of control strategies, dc-dc converter topologies and switching frequencies. The controller platform...... interface supporting configuration and reading of setup parameters, controller status and the acquisition memory in a simple way. The FPGA based platform, provides an easy way within education or research to use different digital control strategies and different converter topologies controlled by an FPGA...

  1. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    arbitrary 3D structures, while some perfluoropolymers are extremely inert and antifouling. Chemists can use hydrogels as highly permeable structural material, which allows diffusion of molecules without bulk fluid flows. They are used to support 3D cell culture, to form diffusion gradient, and to serve as actuators. Researchers have recently introduced paper-based devices, which are extremely low-cost to prepare and easy to use, thereby promising in commercial point-of-care assays. In general, the evolution of chip materials reflects the two major trends of microfluidic technology: powerful microscale research platforms and low-cost portable analyses. For laboratory research, chemists choosing materials generally need to compromise the ease in prototyping and the performance of the device. However, in commercialization, the major concerns are the cost of production and the ease and reliability in use. There may be new growth in the combination of surface engineering, functional materials, and microfluidics, which is possibly accomplished by the utilization of composite materials or hybrids for advanced device functions. Also, significant expanding of commercial applications can be predicted.

  2. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  3. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  4. A simple microfluidic platform for rapid and efficient production of the radiotracer [18F]fallypride.

    Science.gov (United States)

    Zhang, Xin; Liu, Fei; Knapp, Karla-Anne; Nickels, Michael L; Manning, H Charles; Bellan, Leon M

    2018-05-01

    Herein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies. To produce the on-chip concentration and purification columns, we employ a simple "trapping" mechanism by inserting rows of square pillars with predefined gaps near the outlet of microchannel. Microspheres with appropriate functionality are suspended in solution and loaded into the microchannels to form columns for radioactivity concentration and product purification. Instead of relying on complicated flow control elements (e.g., micromechanical valves requiring complex external pneumatic actuation), external valves are utilized to control transfer of the reagents between different modules. The on-chip ion exchange column can efficiently capture [18F]fluoride with negligible loss (∼98% trapping efficiency), and subsequently release a burst of concentrated [18F]fluoride to the reaction cavity. A thin layer of PDMS with a small hole in the center facilitates rapid and reliable water evaporation (with the aid of azeotropic distillation and nitrogen flow) while reducing fluoride loss. During the solvent exchange and fluorination reaction, the entire chip is uniformly heated to the desired temperature using a hot plate. All aspects of the [18F]fallypride synthesis were monitored by high-performance liquid chromatography (HPLC) analysis, resulting in labelling efficiency in fluorination reaction ranging from 67-87% (n = 5). Moreover, after isolating unreacted [18F]fluoride, remaining fallypride precursor, and various by-products via an on-chip purification column, the eluted [18F]fallypride is radiochemically pure and of a sufficient

  5. Improving the Usability of the User Interface for a Digital Textbook Platform for Elementary-School Students

    Science.gov (United States)

    Lim, Cheolil; Song, Hae-Deok; Lee, Yekyung

    2012-01-01

    Usability is critical to the development of a user-friendly digital textbook platform interface, yet thorough research on interface development based on usability principles is in short supply. This study addresses that need by looking at usability attributes and corresponding design elements from a learning perspective. The researchers used a…

  6. Modular microfluidics for point-of-care protein purifications.

    Science.gov (United States)

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  7. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2016-08-01

    Microfluidics has advanced in terms of design and structures; however, fabrication methods are time-consuming or expensive relative to facility costs and equipment needed. This work demonstrates a fast and economically viable 2D/3D maskless digital light-projection method based on a stereolithography process. Unlike other fabrication methods, one exposure step is used to form the whole device. Flash microfluidics is achieved by incorporating bonding and channel fabrication of complex structures in just 2.5 s to 4 s and by fabricating channel heights between 25 μm and 150 μm with photopolymer resin. The features of this fabrication technique, such as time and cost saving and easy fabrication, are used to build devices that are mostly needed in microfluidic/lab-on-chip systems. Due to the fast production method and low initial setup costs, the process could be used for point of care applications. © 2016 The Royal Society of Chemistry.

  8. Flash μ-fluidics: a rapid prototyping method for fabricating microfluidic devices

    KAUST Repository

    Buttner, Ulrich; Sivashankar, Shilpa; Agambayev, Sumeyra; Mashraei, Yousof; Salama, Khaled N.

    2016-01-01

    Microfluidics has advanced in terms of design and structures; however, fabrication methods are time-consuming or expensive relative to facility costs and equipment needed. This work demonstrates a fast and economically viable 2D/3D maskless digital light-projection method based on a stereolithography process. Unlike other fabrication methods, one exposure step is used to form the whole device. Flash microfluidics is achieved by incorporating bonding and channel fabrication of complex structures in just 2.5 s to 4 s and by fabricating channel heights between 25 μm and 150 μm with photopolymer resin. The features of this fabrication technique, such as time and cost saving and easy fabrication, are used to build devices that are mostly needed in microfluidic/lab-on-chip systems. Due to the fast production method and low initial setup costs, the process could be used for point of care applications. © 2016 The Royal Society of Chemistry.

  9. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    Science.gov (United States)

    Yip, Hon Ming; Li, John C. S.; Cui, Xin; Gao, Qiannan; Leung, Chi Chiu

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248

  10. Automated long-term monitoring of parallel microfluidic operations applying a machine vision-assisted positioning method.

    Science.gov (United States)

    Yip, Hon Ming; Li, John C S; Xie, Kai; Cui, Xin; Prasad, Agrim; Gao, Qiannan; Leung, Chi Chiu; Lam, Raymond H W

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities.

  11. Automated Long-Term Monitoring of Parallel Microfluidic Operations Applying a Machine Vision-Assisted Positioning Method

    Directory of Open Access Journals (Sweden)

    Hon Ming Yip

    2014-01-01

    Full Text Available As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities.

  12. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  13. Virtual instrumention-based linearity test platform for DCCT of digital power supply at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian; Liu Hong

    2008-01-01

    Based on virtual instrumentation, a reliable and effective test platform, performing instrument control, data acquisition and data recording, has been established to evaluate linearity of high performance DCCT (DC current transducer) for digital power supply at Shanghai Synchrotron Radiation Facility (SSRF). The software in LabVIEW language was developed to perform computer communication via serial communication (RS232) and GPIB, providing a friendly user interface to the linearity test platform. This makes it easy to test the linearity and control power on or off and current output of high-precision and high-current DC constant current output power supply. The experimental data, stored in an EXCEL file, can be processed to obtain DCCT linearity, and provide basis to further analyze DCCT performance in the future. (authors)

  14. Intensely oscillating cavitation bubble in microfluidics

    International Nuclear Information System (INIS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-01-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range. (paper)

  15. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    Science.gov (United States)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  16. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    Science.gov (United States)

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation.

  17. CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings

    Directory of Open Access Journals (Sweden)

    Suzanne Smith

    2016-01-01

    Full Text Available We review the utility of centrifugal microfluidic technologies applied to point-of-care diagnosis in extremely under-resourced environments. The various challenges faced in these settings are showcased, using areas in India and Africa as examples. Measures for the ability of integrated devices to effectively address point-of-care challenges are highlighted, and centrifugal, often termed CD-based microfluidic technologies, technologies are presented as a promising platform to address these challenges. We describe the advantages of centrifugal liquid handling, as well as the ability of a standard CD player to perform a number of common laboratory tests, fulfilling the role of an integrated lab-on-a-CD. Innovative centrifugal approaches for point-of-care in extremely resource-poor settings are highlighted, including sensing and detection strategies, smart power sources and biomimetic inspiration for environmental control. The evolution of centrifugal microfluidics, along with examples of commercial and advanced prototype centrifugal microfluidic systems, is presented, illustrating the success of deployment at the point-of-care. A close fit of emerging centrifugal systems to address a critical panel of tests for under-resourced clinic settings, formulated by medical experts, is demonstrated. This emphasizes the potential of centrifugal microfluidic technologies to be applied effectively to extremely challenging point-of-care scenarios and in playing a role in improving primary care in resource-limited settings across the developing world.

  18. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics.

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin C J

    2008-06-01

    Electrowetting-on-dielectric (EWOD) actuation enables digital (or droplet) microfluidics where small packets of liquids are manipulated on a two-dimensional surface. Due to its mechanical simplicity and low energy consumption, EWOD holds particular promise for portable systems. To improve volume precision of the droplets, which is desired for quantitative applications such as biochemical assays, existing practices would require near-perfect device fabrication and operation conditions unless the droplets are generated under feedback control by an extra pump setup off of the chip. In this paper, we develop an all-electronic (i.e., no ancillary pumping) real-time feedback control of on-chip droplet generation. A fast voltage modulation, capacitance sensing, and discrete-time PID feedback controller are integrated on the operating electronic board. A significant improvement is obtained in the droplet volume uniformity, compared with an open loop control as well as the previous feedback control employing an external pump. Furthermore, this new capability empowers users to prescribe the droplet volume even below the previously considered minimum, allowing, for example, 1 : x (x < 1) mixing, in comparison to the previously considered n : m mixing (i.e., n and m unit droplets).

  19. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    Science.gov (United States)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  20. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  1. Collective Cultural Memory as a TV Guide : ‘Living’ History and Nostalgia on the Digital Television Platform

    NARCIS (Netherlands)

    Hagedoorn, Berber

    2017-01-01

    Collective Cultural Memory as a TV Guide: “Living” History and Nostalgia on the Digital Television Platform Berber Hagedoorn University of Groningen (NL) E-mail: b.hagedoorn@rug.nl Abstract: Modern audiences engage with representations of the past in a particular way via the medium of television,

  2. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    Science.gov (United States)

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  4. A versatile technology platform for microfluidic handling systems, part II : channel design and technology

    NARCIS (Netherlands)

    Groenesteijn, Jarno; de Boer, Meint J.; Lötters, Joost C.; Wiegerink, Remco J.

    2017-01-01

    Microfluidic devices often require channels of a specific size and shape. These devices are then made in a fabrication process that is often specialized to produce only those (and very similar) channels. As a result, devices requiring channels of different size and shape cannot easily be integrated

  5. Microfluidics and Lab-on-a-Chip Devices

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    The rapid advances in microfabrication and nanofabrication in combination with the synthesis and discovery of new materials have propelled the drive to develop new technological devices such as smartphones, personal and tablet computers. These devices have changed the way humankind interacts......TAS technologies need to join forces with those behind the new communication devices which provide sources of power, detection and data transmission complementing the features that lab-on-a-chip and microTAS platforms can offer. An increasing number of microfluidic-based devices, developed both in small start...

  6. Digital-Control-Based Approximation of Optimal Wave Disturbances Attenuation for Nonlinear Offshore Platforms

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Zhong

    2017-12-01

    Full Text Available The irregular wave disturbance attenuation problem for jacket-type offshore platforms involving the nonlinear characteristics is studied. The main contribution is that a digital-control-based approximation of optimal wave disturbances attenuation controller (AOWDAC is proposed based on iteration control theory, which consists of a feedback item of offshore state, a feedforward item of wave force and a nonlinear compensated component with iterative sequences. More specifically, by discussing the discrete model of nonlinear offshore platform subject to wave forces generated from the Joint North Sea Wave Project (JONSWAP wave spectrum and linearized wave theory, the original wave disturbances attenuation problem is formulated as the nonlinear two-point-boundary-value (TPBV problem. By introducing two vector sequences of system states and nonlinear compensated item, the solution of introduced nonlinear TPBV problem is obtained. Then, a numerical algorithm is designed to realize the feasibility of AOWDAC based on the deviation of performance index between the adjacent iteration processes. Finally, applied the proposed AOWDAC to a jacket-type offshore platform in Bohai Bay, the vibration amplitudes of the displacement and the velocity, and the required energy consumption can be reduced significantly.

  7. The influence of institutional measures and technological proficiency on university teaching through digital platforms

    Directory of Open Access Journals (Sweden)

    Tirado, Ramón

    2012-06-01

    Full Text Available The objective of this study is to empirically test the theoretical model that explains the influence of primary and secondary factors on the integration of digital platforms in university teaching. A sample of 495 teachers from universities in Andalusia completed an online questionnaire that analysed the functions of usage, the digital materials used, the didactic and technological competence of the teaching staff, the support measures adopted by the institutions and the effect on teaching of platform use. Prior factor analysis and the application of the Amos program enabled us to develop a structural equation model to corroborate the indirect influence of the support measures and institutional recognition on teachers in their use of the platforms, and the direct influence of the teachers’ technological proficiency. Este estudio tiene como objetivo poner a prueba empíricamente el modelo teórico que explica la influencia de los factores de primer y segundo orden sobre la integración de las plataformas digitales en la docencia universitaria. Para ello, sobre una muestra de 495 profesores universitarios andaluces, se aplica un cuestionario online que analiza las funciones de uso, materiales digitales utilizados, competencia didáctica y tecnológica del profesorado, medidas de impulso institucionales, y efectos didácticos del uso. El análisis factorial previo y la aplicación del programa Amos permite la elaboración un modelo de ecuación estructural que corrobora la influencia indirecta de las medidas de apoyo y el reconocimiento institucional sobre los efectos didácticos del uso de plataformas, así como la influencia directa de la competencia tecnológica del profesorado.

  8. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor

    Directory of Open Access Journals (Sweden)

    Xuan Weng

    2016-06-01

    Full Text Available The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h to 15–20 min and decreased sample/reagent consumption to 5–10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system.

  9. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  10. Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment

    Science.gov (United States)

    Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.

    2008-02-01

    This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.

  11. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection.

    Science.gov (United States)

    Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-11-09

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.

  12. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.

    Science.gov (United States)

    Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P

    2011-11-21

    Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.

  13. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    Science.gov (United States)

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  14. Integrated Spintronic Platforms for Biomolecular Recognition Detection

    Science.gov (United States)

    Martins, V. C.; Cardoso, F. A.; Loureiro, J.; Mercier, M.; Germano, J.; Cardoso, S.; Ferreira, R.; Fonseca, L. P.; Sousa, L.; Piedade, M. S.; Freitas, P. P.

    2008-06-01

    This paper covers recent developments in magnetoresistive based biochip platforms fabricated at INESC-MN, and their application to the detection and quantification of pathogenic waterborn microorganisms in water samples for human consumption. Such platforms are intended to give response to the increasing concern related to microbial contaminated water sources. The presented results concern the development of biological active DNA chips and protein chips and the demonstration of the detection capability of the present platforms. Two platforms are described, one including spintronic sensors only (spin-valve based or magnetic tunnel junction based), and the other, a fully scalable platform where each probe site consists of a MTJ in series with a thin film diode (TFD). Two microfluidic systems are described, for cell separation and concentration, and finally, the read out and control integrated electronics are described, allowing the realization of bioassays with a portable point of care unit. The present platforms already allow the detection of complementary biomolecular target recognition with 1 pM concentration.

  15. Automation of Silica Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc Platform

    International Nuclear Information System (INIS)

    Kinahan, David J; Mangwanya, Faith; Garvey, Robert; Chung, Danielle WY; Lipinski, Artur; Julius, Lourdes AN; King, Damien; Mohammadi, Mehdi; Mishra, Rohit; Al-Ofi, May; Miyazaki, Celina; Ducrée, Jens

    2016-01-01

    We describe a centrifugal microfluidic ‘Lab-on-a-Disc’ (LoaD) technology for DNA purification towards eventual integration into a Sample-to-Answer platform for detection of the pathogen Escherichia coli O157:H7 from food samples. For this application, we use a novel microfluidic architecture which combines ‘event-triggered’ dissolvable film (DF) valves with a reaction chamber gated by a centrifugo-pneumatic siphon valve (CPSV). This architecture permits comprehensive flow control by simple changes in the speed of the platform innate spindle motor. Even before method optimisation, characterisation by DNA fluorescence reveals an extraction efficiency of 58%, which is close to commercial spin columns. (paper)

  16. A Digital Knowledge Preservation Platform for Environmental Sciences

    Science.gov (United States)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida; Perez, David

    2017-04-01

    The Digital Knowledge Preservation Platform is the evolution of a pilot project for Open Data supporting the full research data life cycle. It is currently being evolved at IFCA (Instituto de Física de Cantabria) as a combination of different open tools that have been extended: DMPTool (https://dmptool.org/) with pilot semantics features (RDF export, parameters definition), INVENIO (http://invenio-software.org/ ) customized version to integrate the entire research data life cycle and Jupyter (http://jupyter.org/) as processing tool and reproducibility environment. This complete platform aims to provide an integrated environment for research data management following the FAIR+R principles: -Findable: The Web portal based on Invenio provides a search engine and all elements including metadata to make them easily findable. -Accessible: Both data and software are available online with internal PIDs and DOIs (provided by Datacite). -Interoperable: Datasets can be combined to perform new analysis. The OAI-PMH standard is also integrated. -Re-usable: different licenses types and embargo periods can be defined. -+Reproducible: directly integrated with cloud computing resources. The deployment of the entire system over a Cloud framework helps to build a dynamic and scalable solution, not only for managing open datasets but also as a useful tool for the final user, who is able to directly process and analyse the open data. In parallel, the direct use of semantics and metadata is being explored and integrated in the framework. Ontologies, being a knowledge representation, can contribute to define the elements and relationships of the research data life cycle, including DMP, datasets, software, etc. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies

  17. Play a Starring Role in Your Textbook: A Digital Web Platform with an Embedded Role-Playing Game

    Science.gov (United States)

    Spielvogel, Laura; Spielvogel, Christian

    2014-01-01

    In this report, we introduce our digital e-textbook web platform with an integrated role-playing game, which has been created for "introduction to anthropology" courses. We believe that textbooks have the potential to do more to motivate students' pursuit of learning if their material (topically organised chapters supported by…

  18. Microfluidic Platform for Circulating Tumor Cells Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Figueras-Mari, I.; Rodriguez-Trujillo, L.; Samitier-Marti, J.

    2016-07-01

    Circulating tumor cells (CTCs) are released from primary tumors into the bloodstream and transported to distant organs, promoting metastasis, which is known to be responsible for most cancer‐related deaths. Currently tumors are not found until symptoms appear or by chance when the patient undergoes a medical test, which in both situations can be too late. Once a tumor is found it is studied from tissue samples obtained directly from the patient in an invasive way. This invasive procedure is known as biopsy and apart from being invasive, it is costly, time consuming and can sometimes be painful and even risky for the patients’ health condition. Therefore, CTCs detection in blood also addressed as “liquid biopsy” would be very useful because by running routine blood analysis CTCs could be detected and collected suggesting tumor presence. However, due to the scarce presence in blood of these cells and to the huge amount of contamination from other cellular components a perfect method providing good capture and purity of CTCs has not been developed yet. In this project, a spiral size sorter microfluidic device has been manufactured and tested in order to determine its performance and limitations. Device performance was tested with different dilutions of healthy donor blood samples mixed with 30 micron particles simulating CTCs. The results obtained from these experiments show very good CTC recovery of up to 100% and the depletion of blood cellular components is around 99.9%. (Author)

  19. Climate Signals: An On-Line Digital Platform for Mapping Climate Change Impacts in Real Time

    Science.gov (United States)

    Cutting, H.

    2016-12-01

    Climate Signals is an on-line digital platform for cataloging and mapping the impacts of climate change. The CS platform specifies and details the chains of connections between greenhouse gas emissions and individual climate events. Currently in open-beta release, the platform is designed to to engage and serve the general public, news media, and policy-makers, particularly in real-time during extreme climate events. Climate Signals consists of a curated relational database of events and their links to climate change, a mapping engine, and a gallery of climate change monitors offering real-time data. For each event in the database, an infographic engine provides a custom attribution "tree" that illustrates the connections to climate change. In addition, links to key contextual resources are aggregated and curated for each event. All event records are fully annotated with detailed source citations and corresponding hyper links. The system of attribution used to link events to climate change in real-time is detailed here. This open-beta release is offered for public user testing and engagement. Launched in May 2016, the operation of this platform offers lessons for public engagement in climate change impacts.

  20. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.

    Science.gov (United States)

    Saha, Arindam; Jana, Nikhil R

    2015-01-14

    Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.

  1. Microfluidics for investigating vaso-occlusions in sickle cell disease.

    Science.gov (United States)

    Horton, Renita E

    2017-07-01

    SCD stems from amutation in the beta globin gene. Upon deoxygenation, hemoglobin polymerizes and triggers RBC remodeling. This phenomenon is central to SCD pathogenesis as individuals suffering from the disease are plagued by painful vaso-occlusive crises episodes. These episodes are the result of a combination of processes including inflammation, thrombosis, and blood cell adhesion to the vascular wall which leads to blockages within the vasculature termed vaso-occlusions. Vaso-occlusive episodes deprive tissues of oxygen and are a major contributor to SCD-related complications; unfortunately, the complex mechanisms that contribute to vaso-occlusions are not well understood. Vaso-occlusions can occur in post-capillary venules; hence, the microvasculature is a prime target for SCD therapies. Traditional in vitro systems poorly recapitulate architectural and dynamic flow properties of in vivo systems. However, microfluidic devices can capture features of the native vasculature such as cellular composition, flow, geometry, and ECM presentation. This review, although not comprehensive, highlights microfluidic approaches that aim to improve our current understanding of the pathophysiological mechanisms surrounding SCD. Microfluidic platforms can aid in identifying factors that may contribute to disease severity and can serve as suitable test beds for novel treatment strategies which may improve patient outcomes. © 2017 John Wiley & Sons Ltd.

  2. Characterization of printable cellular micro-fluidic channels for tissue engineering

    International Nuclear Information System (INIS)

    Zhang, Yahui; Chen, Howard; Ozbolat, Ibrahim T; Yu, Yin

    2013-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  3. Challenges and Opportunities of Centrifugal Microfluidics for Extreme Point-of-Care Testing

    Directory of Open Access Journals (Sweden)

    Issac J. Michael

    2016-02-01

    Full Text Available The advantages offered by centrifugal microfluidic systems have encouraged its rapid adaptation in the fields of in vitro diagnostics, clinical chemistry, immunoassays, and nucleic acid tests. Centrifugal microfluidic devices are currently used in both clinical and point-of-care settings. Recent studies have shown that this new diagnostic platform could be potentially used in extreme point-of-care settings like remote villages in the Indian subcontinent and in Africa. Several technological inventions have decentralized diagnostics in developing countries; however, very few microfluidic technologies have been successful in meeting the demand. By identifying the finest difference between the point-of-care testing and extreme point-of-care infrastructure, this review captures the evolving diagnostic needs of developing countries paired with infrastructural challenges with technological hurdles to healthcare delivery in extreme point-of-care settings. In particular, the requirements for making centrifugal diagnostic devices viable in developing countries are discussed based on a detailed analysis of the demands in different clinical settings including the distinctive needs of extreme point-of-care settings.

  4. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    Science.gov (United States)

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  5. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  6. Disentangling Competition Among Platform Driven Strategic Groups

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2018-01-01

    for the mobile payment market in the United Kingdom as our empirical setting. By conceptualizing digital platforms as layered modular architectures and embracing the theoretical lens of strategic groups, this study supplements prior research by deriving a taxonomy of platform profiles that is grounded...... delivery architecture. The preceding attributes of value creation architecture and value delivery architecture aided us in identifying six profiles associated with mobile payment platforms, which in turn led us to advance three competitive strategies that could be pursued by digital platforms in network...

  7. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  8. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  9. MICROFLUIDIC COMPONENT CAPABLE OF SELF-SEALING

    DEFF Research Database (Denmark)

    2009-01-01

    A microfluidic component (100) for building a microfluidic system is provided. The microfluidic component (100) can be mounted on a microf luidic breadboard (202) in a manner that allows it to be connected to other microfluidic components (204, 206) without the requirement of additional devices....... The microfluidic component (100) comprises at least one flexible tube piece (102) for transporting a fluid. The microfluidic component (100) also comprises means for applying and maintaining pressure (104) between the flexible tube piece (102) and a tube piece (208, 210) housed in another microfluidic component...

  10. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    Science.gov (United States)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  11. A multilevel Lab on chip platform for DNA analysis.

    Science.gov (United States)

    Marasso, Simone Luigi; Giuri, Eros; Canavese, Giancarlo; Castagna, Riccardo; Quaglio, Marzia; Ferrante, Ivan; Perrone, Denis; Cocuzza, Matteo

    2011-02-01

    Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

  12. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  13. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.

    Science.gov (United States)

    Ozcelikkale, Altug; Moon, Hye-Ran; Linnes, Michael; Han, Bumsoo

    2017-09-01

    Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  14. OLED Hybrid Integrated Polymer Microfluidic Biosensing for Point of Care Testing

    Directory of Open Access Journals (Sweden)

    Ashwin Acharya

    2015-09-01

    Full Text Available This paper reports a microfluidic platform with external hybrid integration of an organic light emitting diode (OLED as an excitation source. This device can be used as a simple and cost effective biosensing element. The device is capable of rapid in-situ detection of biological elements such as sensing of interaction of antigen with fluorescent tagged antibody conjugates. These portable microfluidic systems have great potential for use an OLED in a single chip with very high accuracy and sensitivity for various point-of-care (POC diagnosis and lab on a chip (LOC applications, as the miniaturization of the biosensor is essential for handling smaller sample volumes in order to achieve high throughput. The biosensing element was successfully tested to detect anti-sheep IgG conjugates tagged to Alexafluor using a fluorescence based immunoassay method.

  15. Prototyping of Microfluidic Systems with Integrated Waveguides in Cyclin Olefin Copolymer

    DEFF Research Database (Denmark)

    Bundgaard, Frederik

    2007-01-01

    , in a collaboration with IMTEK in Freiburg, Germany, an optical detection principle was developed. Using the principle of total internal reflection of a laser beam incident on a fluidic channel, detection of air bubbles is possible. The principle was used on a rotating platform as well as on non-moving systems....... the substrate, optical layers and the lid in the microfluidic systems. • Thermal bonding of polymer structures, including roll lamination of foil onto substrates. • Laser bonding of two polymer layers, including transparent on black, and transparent on transparent with a particle doped spin coating. • Thermal...... treatment of waveguides to improve the surface roughness and lower the propagation loss. The fabrication methods have been characterised, and have been optimised to minimise parameters like fabrication time, surface roughness and interface bonding strength. Using these fabrication methods, microfluidic...

  16. Discrimination between glycosylation patterns of therapeutic antibodies using a microfluidic platform, MALDI-MS and multivariate statistics.

    Science.gov (United States)

    Thuy, Tran Thi; Tengstrand, Erik; Aberg, Magnus; Thorsén, Gunnar

    2012-11-01

    Optimal glycosylation with respect to the efficacy, serum half-life time, and immunogenic properties is essential in the generation of therapeutic antibodies. The glycosylation pattern can be affected by several different parameters during the manufacture of antibodies and may change significantly over cultivation time. Fast and robust methods for determination of the glycosylation patterns of therapeutic antibodies are therefore needed. We have recently presented an efficient method for the determination of glycans on therapeutic antibodies using a microfluidic CD platform for sample preparation prior to matrix-assisted laser-desorption mass spectrometry analysis. In the present work, this method is applied to analyse the glycosylation patterns of three commercially available therapeutic antibodies and one intended for therapeutic use. Two of the antibodies produced in mouse myeloma cell line (SP2/0) and one produced in Chinese hamster ovary (CHO) cells exhibited similar glycosylation patterns but could still be readily differentiated from each other using multivariate statistical methods. The two antibodies with most similar glycosylation patterns were also studied in an assessment of the method's applicability for quality control of therapeutic antibodies. The method presented in this paper is highly automated and rapid. It can therefore efficiently generate data that helps to keep a production process within the desired design space or assess that an identical product is being produced after changes to the process. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  18. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  19. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.

    Science.gov (United States)

    Han, Sung Il; Hwang, Kyo Seon; Kwak, Rhokyun; Lee, Jeong Hoon

    2016-06-21

    Microfluidic paper-based analytical devices (μPADs) for molecular detection have great potential in the field of point-of-care diagnostics. Currently, a critical problem being faced by μPADs is improving their detection sensitivity. Various preconcentration processes have been developed, but they still have complicated structures and fabrication processes to integrate into μPADs. To address this issue, we have developed a novel paper-based preconcentrator utilizing ion concentration polarization (ICP) with minimal addition on lateral-flow paper. The cation selective membrane (i.e., Nafion) is patterned on adhesive tape, and this tape is then attached to paper-based channels. When an electric field is applied across the Nafion, ICP is initiated to preconcentrate the biomolecules in the paper channel. Departing from previous paper-based preconcentrators, we maintain steady lateral fluid flow with the separated Nafion layer; as a result, fluorescent dyes and proteins (FITC-albumin and bovine serum albumin) are continuously delivered to the preconcentration zone, achieving high preconcentration performance up to 1000-fold. In addition, we demonstrate that the Nafion-patterned tape can be integrated with various geometries (multiplexed preconcentrator) and platforms (string and polymer microfluidic channel). This work would facilitate integration of various ICP devices, including preconcentrators, pH/concentration modulators, and micro mixers, with steady lateral flows in paper-based platforms.

  20. Collective Cultural Memory as a TV Guide: “Living” History and Nostalgia on the Digital Television Platform

    Directory of Open Access Journals (Sweden)

    Hagedoorn Berber

    2017-12-01

    Full Text Available Modern audiences engage with representations of the past in a particular way via the medium of television, negotiating a shared understanding of the past. This is evidenced by the increasing popularity of reboots, newly developed history and documentary programming, re-use of archival footage and nostalgia content. This article takes a closer look at television’s abilities to circulate and contextualize the past in the current era of convergence through narrowcasting or niche programming on digital television platforms, specifically via nostalgia programming. Such platforms exemplify the multifaceted way of looking at and gaining access to television programming through a variety of connected platforms and screens in the current multi-platform era. Since the way in which television professionals (producers, schedulers, commissioners, researchers act as moderators in this process needs to be further analysed, the article places an emphasis on how meaningful connections via previously broadcast history and nostalgia programming are also curated, principally through scheduling and production practices for niche programming – key elements in television’s creative process that have received less academic attention. Furthermore, the article discusses to what extent media policy in the Netherlands is attuned to the (re-circulation of previously broadcast content and programming about past events, and reflects on television’s possibilities for “re-screening” references to the past in the contemporary media landscape. The analysis is based on a combination of textual analysis of audio-visual archival content and a production studies approach of interviews with key professionals, to gain insight into the creators’ strategies in relation to nostalgia programming and scheduling. Subsequently, the article demonstrates how national collective memory, as understood by television professionals in the Netherlands, informs the scheduling and

  1. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  2. Bioanalysis in microfluidic devices.

    Science.gov (United States)

    Khandurina, Julia; Guttman, András

    2002-01-18

    Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.

  3. A review on wax printed microfluidic paper-based devices for international health.

    Science.gov (United States)

    Altundemir, S; Uguz, A K; Ulgen, K

    2017-07-01

    Paper-based microfluidics has attracted attention for the last ten years due to its advantages such as low sample volume requirement, ease of use, portability, high sensitivity, and no necessity to well-equipped laboratory equipment and well-trained manpower. These characteristics have made paper platforms a promising alternative for a variety of applications such as clinical diagnosis and quantitative analysis of chemical and biological substances. Among the wide range of fabrication methods for microfluidic paper-based analytical devices ( μ PADs), the wax printing method is suitable for high throughput production and requires only a commercial printer and a heating source to fabricate complex two or three-dimensional structures for multipurpose systems. μ PADs can be used by anyone for in situ diagnosis and analysis; therefore, wax printed μ PADs are promising especially in resource limited environments where people cannot get sensitive and fast diagnosis of their serious health problems and where food, water, and related products are not able to be screened for toxic elements. This review paper is focused on the applications of paper-based microfluidic devices fabricated by the wax printing technique and used for international health. Besides presenting the current limitations and advantages, the future directions of this technology including the commercial aspects are discussed. As a conclusion, the wax printing technology continues to overcome the current limitations and to be one of the promising fabrication techniques. In the near future, with the increase of the current interest of the industrial companies on the paper-based technology, the wax-printed paper-based platforms are expected to take place especially in the healthcare industry.

  4. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  5. Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.

    Science.gov (United States)

    Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong

    2008-11-01

    We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.

  6. gLibrary/DRI: A grid-based platform to host multiple repositories for digital content

    International Nuclear Information System (INIS)

    Calanducci, A.; Gonzalez Martin, J. M.; Ramos Pollan, R.; Rubio del Solar, M.; Tcaci, S.

    2007-01-01

    In this work we present the gLibrary/DRI (Digital Repositories Infrastructure) platform. gLibrary/DRI extends gLibrary, a system with a easy-to-use web front-end designed to save and organize multimedia assets on Grid-based storage resources. The main goal of the extended platform is to reduce the cost in terms of time and effort that a repository provider spends to get its repository deployed. This is achieved by providing a common infrastructure and a set of mechanisms (APIs and specifications) that the repository providers use to define the data model, the access to the content (by navigation trees and filters) and the storage model. DRI offers a generic way to provide all this functionality; nevertheless the providers can add specific behaviours to the default functions for their repositories. The architecture is Grid based (VO system, data federation and distribution, computing power, etc). A working example based on a mammograms repository is also presented. (Author)

  7. Architecture and Initial Development of a Digital Library Platform for Computable Knowledge Objects for Health.

    Science.gov (United States)

    Flynn, Allen J; Bahulekar, Namita; Boisvert, Peter; Lagoze, Carl; Meng, George; Rampton, James; Friedman, Charles P

    2017-01-01

    Throughout the world, biomedical knowledge is routinely generated and shared through primary and secondary scientific publications. However, there is too much latency between publication of knowledge and its routine use in practice. To address this latency, what is actionable in scientific publications can be encoded to make it computable. We have created a purpose-built digital library platform to hold, manage, and share actionable, computable knowledge for health called the Knowledge Grid Library. Here we present it with its system architecture.

  8. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  9. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Zevenbergen, M.A.G.; Toonder, den J.M.J.

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30–250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  10. “Use Your Skills to Solve This Challenge!”: The Platform Affordances and Politics of Digital Microvolunteering

    Directory of Open Access Journals (Sweden)

    Carla Ilten

    2015-09-01

    Full Text Available How does the rise of managed online platforms for civic engagement change the relationships between activists and organizations? While much has been written about Twitter- and Facebook-enabled mobilization, the emergence of platforms that organize “microaction” in contained ways is a phenomenon understudied by social movement and media scholars. This study draws on both literatures to analyze the hybrid case of Sparked, a microvolunteering platform created by web designers, not activists, that efficiently organizes volunteering through a microaction design. The case exhibits characteristics that social movement scholars understand as resource mobilization through leveraging of affordances by activists, but it also features the structural characteristics of platforms that media scholars identify as both enabling and constraining. To conceptualize the “digitally enabled activism” that takes place within the confines of a managed platform, this study investigates its microaction affordances and their implications. My analysis finds that high leveraging of online affordances can coincide with a shifted logic of engagement in the case of microaction platforms: Sparked’s microaction system affords high performance, but targets only a specialized niche of volunteering. I describe this model as “specialized supersizing” that addresses nonprofits’ needs for increasing organizational overhead services in the context of a professionalizing third sector. Sparked’s microvolunteering design has helped define a platform-centric constitution for microaction that is geared toward rationalization, professionalization, and productivity. Its platform “politics” promote depoliticization, where tactics, not causes, determine exchanges. This emergence of a market for mobilization tactics may have important implications for nonprofits, volunteers, and social movements.

  11. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, Artem Y. [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Murray, Thomas D. [University of California, Berkeley, CA 94720 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Koehl, Antoine [Stanford University, Stanford, CA 94305 (United States); Araci, Ismail Emre [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Uervirojnangkoorn, Monarin; Zeldin, Oliver B. [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L. [SLAC National Accelerator Laboratory, Stanford, CA 94305 (United States); Brewster, Aaron S.; Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Brunger, Axel T., E-mail: brunger@stanford.edu [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Berger, James M., E-mail: brunger@stanford.edu [Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Stanford University, Stanford, CA 94305 (United States)

    2015-04-01

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.

  12. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    Science.gov (United States)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate

  13. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    Science.gov (United States)

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices. © 2013 Wiley Periodicals, Inc.

  14. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Labroo, Pratima; Cui, Yue, E-mail: yue.cui@usu.edu

    2014-02-01

    Graphical abstract: - Highlights: • We report graphene-ink biosensor arrays on a microfluidic paper for metabolites. • The device is able to detect multiple metabolites sensitively and rapidly. • The device fabrication process is simple and inexpensive. - Abstract: The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3–15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications.

  15. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  16. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  17. Competitive Positioning of Complementors on Digital Platforms

    DEFF Research Database (Denmark)

    Wessel, Michael; Thies, Ferdinand; Benlian, Alexander

    2017-01-01

    markets. With increasing numbers of products and services offered via the platforms, signals such as popularity and reputation have become critical market mechanisms that affect the decision-making processes of end-users. In this paper, we examine the positioning strategies of new hosts on Airbnb......, a platform focused on accommodation sharing, to understand how they attempt to cope with the inherent lack of credible quality signals as they join the platform. By analyzing close to 47,000 listings, we find that new hosts follow a cost-leadership strategy rather than trying to differentiate their offerings...

  18. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    Science.gov (United States)

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration.

    Science.gov (United States)

    Ding, Zhaoxiong; Zhang, Dongying; Wang, Guanghui; Tang, Minghui; Dong, Yumin; Zhang, Yixin; Ho, Ho-Pui; Zhang, Xuping

    2016-09-21

    In this paper, an in-line, low-cost, miniature and portable spectrophotometric detection system is presented and used for fast protein determination and calibration in centrifugal microfluidics. Our portable detection system is configured with paired emitter and detector diodes (PEDD), where the light beam between both LEDs is collimated with enhanced system tolerance. It is the first time that a physical model of PEDD is clearly presented, which could be modelled as a photosensitive RC oscillator. A portable centrifugal microfluidic system that contains a wireless port in real-time communication with a smartphone has been built to show that PEDD is an effective strategy for conducting rapid protein bioassays with detection performance comparable to that of a UV-vis spectrophotometer. The choice of centrifugal microfluidics offers the unique benefits of highly parallel fluidic actuation at high accuracy while there is no need for a pump, as inertial forces are present within the entire spinning disc and accurately controlled by varying the spinning speed. As a demonstration experiment, we have conducted the Bradford assay for bovine serum albumin (BSA) concentration calibration from 0 to 2 mg mL(-1). Moreover, a novel centrifugal disc with a spiral microchannel is proposed for automatic distribution and metering of the sample to all the parallel reactions at one time. The reported lab-on-a-disc scheme with PEDD detection may offer a solution for high-throughput assays, such as protein density calibration, drug screening and drug solubility measurement that require the handling of a large number of reactions in parallel.

  20. Introducing a telemonitoring platform for diabetic patients in primary care: will it increase the socio-digital divide?

    Science.gov (United States)

    Buysse, Heidi E C; de Moor, Georges J E; de Maeseneer, Jan

    2013-07-01

    This study investigates whether diabetes patients visiting a primary care setting are interested in using a telemonitoring platform and if so, whether characteristics of interested users could be distinguished. Three questionnaires were administered by 92 diabetes persons recruited between May and September 2011. Descriptive statistics and logistic regression analysis were performed. Special attention was drawn to include patients with low educational levels. Patients with middle or high educational levels show quite some interest in the use of a telemonitoring platform, especially for the transmission of glycaemic data or for asking questions. Patients with low educational levels only show a minor interest in using such a platform. It is possibly worthwhile to implement a telemonitoring platform in a primary care setting; however this study did not show immediate profit for implementation in a CHC that organises diabetes clinics on regular basis. In primary care settings where it will be implemented, even if there is a social-digital divide today, the use of a telemonitoring platform could possibly reduce inequity in health care as time could become available for those most in need for face-to-face contact with their physician. Copyright © 2012 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  1. Interferometric Reflectance Imaging Sensor (IRIS—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    Directory of Open Access Journals (Sweden)

    Oguzhan Avci

    2015-07-01

    Full Text Available Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS, and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i low-magnification (ensemble biomolecular mass measurements and (ii high-magnification (digital detection of individual nanoparticles along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.

  2. High-density self-contained microfluidic KOALA kits for use by everyone

    OpenAIRE

    Guckenberger, David J.; Berthier, Erwin; Beebe, David J.

    2014-01-01

    Cell based assays are essential tools utilized by research labs in a wide range of fields, including cell biology, toxicology, and natural product discovery labs, however in some situations the need for cell based assays does not justify the costs of maintaining cell culture facilities and retaining skilled staff. The Kit-On-A-Lid-Assay (KOALA) technology enables accessible low-cost and pre-packageable microfluidic platforms that can be operated with minimal infrastructure or training. Here, ...

  3. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Directory of Open Access Journals (Sweden)

    Mohammed-Baker Habhab

    2016-11-01

    Full Text Available Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  4. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  5. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  6. Deformable Nanovesicles Synthesized through an Adaptable Microfluidic Platform for Enhanced Localized Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naren Subbiah

    2017-01-01

    Full Text Available Phospholipid-based deformable nanovesicles (DNVs that have flexibility in shape offer an adaptable and facile method to encapsulate diverse classes of therapeutics and facilitate localized transdermal delivery while minimizing systemic exposure. Here we report the use of a microfluidic reactor for the synthesis of DNVs and show that alteration of input parameters such as flow speeds as well as molar and flow rate ratios increases entrapment efficiency of drugs and allows fine-tuning of DNV size, elasticity, and surface charge. To determine the ability of DNV-encapsulated drug to be delivered transdermally to a local site, we synthesized, characterized, and tested DNVs carrying the fluorescently labeled hydrophilic bisphosphonate drug AF-647 zoledronate (AF647-Zol. AF647-Zol DNVs were lyophilized, resuspended, and applied topically as a paste to the calvarial skin of mice. High-resolution fluorescent imaging and confocal microscopy revealed significant increase of encapsulated payload delivery to the target tissue—cranial bone—by DNVs as compared to nondeformable nanovesicles (NVs or aqueous drug solutions. Interestingly, NV delivery was not superior to aqueous drug solution. Our studies show that microfluidic reactor-synthesized DNVs can be produced in good yield, with high encapsulation efficiency, reproducibility, and stability after storage, and represent a useful vehicle for localized transdermal drug delivery.

  7. Integration of Fractal Biosensor in a Digital Microfluidic Platform

    KAUST Repository

    Mashraei, Yousof; Sivashankar, Shilpa; Buttner, Ulrich; Salama, Khaled N.

    2016-01-01

    fractal electrode biosensor that is used for both droplet actuation and sensing C-reactive protein (CRP) concentration levels to assess cardiac disease risk. Our proposed electrode is the first two-terminal electrode design to be integrated into DMF

  8. Integration of fractal biosensor in a digital microfluidic platform

    KAUST Repository

    Mashraei, Yousof; Sivashankar, Shilpa; Buttner, Ulrich; Salama, Khaled N.

    2015-01-01

    the concentration levels of C-reactive protein (CRP) to determine the risk of cardiovascular disease. The capacitance increased sevenfold and stabilized in less than 5 minutes. The sensor shows a decreasing trend of capacitance readouts with the increase

  9. New Digital Metal-Oxide (MOx Sensor Platform

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2018-03-01

    Full Text Available The application of metal oxide gas sensors in Internet of Things (IoT devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

  10. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-07

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  11. Enhancing Protease Activity Assay in Droplet-Based Microfluidics Using a Biomolecule Concentrator

    Science.gov (United States)

    Chen, Chia-Hung; Sarkar, Aniruddh; Song, Yong-Ak; Miller, Miles A.; Kim, Sung Jae; Griffith, Linda G.; Lauffenburger, Douglas A.; Han, Jongyoon

    2011-01-01

    We introduce an integrated microfluidic device consisting of a biomolecule concentrator and a microdroplet generator, which enhances the limited sensitivity of low-abundance enzyme assays by concentrating biomolecules before encapsulating them into droplet microreactors. We used this platform to detect ultra low levels of matrix metalloproteinases (MMPs) from diluted cellular supernatant and showed that it significantly (∼10-fold) reduced the time required to complete the assay and the sample volume used. PMID:21671557

  12. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer.

    Science.gov (United States)

    Zilberman, Yael; Sonkusale, Sameer R

    2015-05-15

    We present a microfluidic optoelectronic sensor for saliva diagnostics with a potential application for non-invasive early diagnosis of stomach cancer. Stomach cancer is the second most common cause of cancer-related deaths in the world. The primary identified cause is infection by a gram-negative bacterium Helicobacter pylori. These bacteria secrete the enzyme urease that converts urea into carbon dioxide (CO2) and ammonia (NH3), leading to their elevated levels in breath and body fluids. The proposed optoelectronic sensor will detect clinically relevant levels of CO2 and NH3 in saliva that can potentially be used for early diagnosis of stomach cancer. The sensor is composed of the embedded in a microfluidic device array of microwells filled with ion-exchange polymer microbeads doped with various organic dyes. The optical response of this unique highly diverse sensor is monitored over a broad spectrum, which provides a platform for cross-reactive sensitivity and allows detection of CO2 and NH3 in saliva at ppm levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  14. Mkit: A Cell Migration Assay Based on Microfluidic Device and Smartphone

    Science.gov (United States)

    Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis

    2017-01-01

    Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. PMID:28772229

  15. A Paradigmatic Analysis of Digital Application Marketplaces

    DEFF Research Database (Denmark)

    Ghazawneh, Ahmad; Henfridsson, Ola

    2015-01-01

    This paper offers a paradigmatic analysis of digital application marketplaces for advancing information systems research on digital platforms and ecosystems. We refer to the notion of digital application marketplace, colloquially called ‘appstores,’ as a platform component that offers a venue...... for exchanging applications between developers and end users belonging to a single or multiple ecosystems. Such marketplaces exhibit diversity in features and assumptions, and we propose that examining this diversity, and its ideal types, will help us to further understand the relationship between application...... marketplaces, platforms, and platform ecosystems. To this end, we generate a typology that distinguishes four kinds of digital application marketplaces: closed, censored, focused, and open marketplaces. The paper also offers implications for actors wishing to make informed decisions about their relationship...

  16. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung Seon; Moon, Jeikwon

    2017-01-01

    Highlights: • Goal is to provide existing tech. with cutting function handling dismantling process. • Proposed tech. can handle various cutting situations in the dismantlement activities. • Proposed tech. can be implemented in existing graphical process simulation software. • Simulation results have demonstrated that the proposed technology achieves its goal. • Proposed tech. enlarges application of graphic simulation into dismantlement activity. - Abstract: This study proposes a methodology to simulate the cutting process in a digital manufacturing platform for the flexible planning of nuclear facility decommissioning. During the planning phase of decommissioning, visualization and verification using process simulation can be powerful tools for the flexible planning of the dismantling process of highly radioactive, large and complex nuclear facilities. However, existing research and commercial solutions are not sufficient for such a situation because complete segmented digital models for the dismantling objects such as the reactor vessel, internal assembly, and closure head must be prepared before the process simulation. The preparation work has significantly impeded the broad application of process simulation due to the complexity and workload. The methodology of process simulation proposed in this paper can flexibly handle various dismantling processes including repetitive object cuttings over heavy and complex structures using a digital manufacturing platform. The proposed methodology, which is applied to dismantling scenarios of a Korean nuclear power plant in this paper, is expected to reduce the complexity and workload of nuclear dismantling simulations.

  17. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Science.gov (United States)

    Capretto, Lorenzo; Mazzitelli, Stefania; Brognara, Eleonora; Lampronti, Ilaria; Carugo, Dario; Hill, Martyn; Zhang, Xunli; Gambari, Roberto; Nastruzzi, Claudio

    2012-01-01

    This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of β-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying β-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for β-thalassemia. PMID:22287841

  18. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    Science.gov (United States)

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  19. Label-free all-electronic biosensing in microfluidic systems

    Science.gov (United States)

    Stanton, Michael A.

    Label-free, all-electronic detection techniques offer great promise for advancements in medical and biological analysis. Electrical sensing can be used to measure both interfacial and bulk impedance changes in conducting solutions. Electronic sensors produced using standard microfabrication processes are easily integrated into microfluidic systems. Combined with the sensitivity of radiofrequency electrical measurements, this approach offers significant advantages over competing biological sensing methods. Scalable fabrication methods also provide a means of bypassing the prohibitive costs and infrastructure associated with current technologies. We describe the design, development and use of a radiofrequency reflectometer integrated into a microfluidic system towards the specific detection of biologically relevant materials. We developed a detection protocol based on impedimetric changes caused by the binding of antibody/antigen pairs to the sensing region. Here we report the surface chemistry that forms the necessary capture mechanism. Gold-thiol binding was utilized to create an ordered alkane monolayer on the sensor surface. Exposed functional groups target the N-terminus, affixing a protein to the monolayer. The general applicability of this method lends itself to a wide variety of proteins. To demonstrate specificity, commercially available mouse anti- Streptococcus Pneumoniae monoclonal antibody was used to target the full-length recombinant pneumococcal surface protein A, type 2 strain D39 expressed by Streptococcus Pneumoniae. We demonstrate the RF response of the sensor to both the presence of the surface decoration and bound SPn cells in a 1x phosphate buffered saline solution. The combined microfluidic sensor represents a powerful platform for the analysis and detection of cells and biomolecules.

  20. Exploration of a digital audio processing platform using a compositional system level performance estimation framework

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents the application of a compositional simulation based system-level performance estimation framework on a non-trivial industrial case study. The case study is provided by the Danish company Bang & Olufsen ICEpower a/s and focuses on the exploration of a digital mobile audio...... processing platform. A short overview of the compositional performance estimation framework used is given followed by a presentation of how it is used for performance estimation using an iterative refinement process towards the final implementation. Finally, an evaluation in terms of accuracy and speed...

  1. Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker.

    Science.gov (United States)

    Carvajal, Susanita; Fera, Samantha N; Jones, Abby L; Baldo, Thaisa A; Mosa, Islam M; Rusling, James F; Krause, Colleen E

    2018-05-01

    Rapidly fabricated, disposable sensor platforms hold tremendous promise for point-of-care detection. Here, we present an inexpensive (Receptor 2 (HER-2). Capture antibodies were bound to a chemically modified surface on the WEA and placed into a microfluidic device. A full sandwich immunoassay was constructed following a simultaneous injection of target protein, biotinylated antibody, and polymerized horseradish peroxide labels into the microfluidic device housing the WEA. With an ultra fast assay time, of only 15mins a clinically relevant limit of detection of 12pgmL -1 was achieved. Excellent reproducibility and sensitivity were observed through recovery assays preformed in human serum with recoveries ranging from 76% to 103%. These easily fabricated and scalable electrochemical sensor platforms can be readily adapted for multiplex detection following this rapid assay protocol for cancer diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Multiple and high-throughput droplet reactions via combination of microsampling technique and microfluidic chip

    KAUST Repository

    Wu, Jinbo

    2012-11-20

    Microdroplets offer unique compartments for accommodating a large number of chemical and biological reactions in tiny volume with precise control. A major concern in droplet-based microfluidics is the difficulty to address droplets individually and achieve high throughput at the same time. Here, we have combined an improved cartridge sampling technique with a microfluidic chip to perform droplet screenings and aggressive reaction with minimal (nanoliter-scale) reagent consumption. The droplet composition, distance, volume (nanoliter to subnanoliter scale), number, and sequence could be precisely and digitally programmed through the improved sampling technique, while sample evaporation and cross-contamination are effectively eliminated. Our combined device provides a simple model to utilize multiple droplets for various reactions with low reagent consumption and high throughput. © 2012 American Chemical Society.

  3. A microfluidic platform for generating large-scale nearly identical human microphysiological system arrays

    Science.gov (United States)

    Hsu, Yu-Hsiang; Moya, Monica L.; Hughes, Christopher C.W.; Georgea, Steven C.; Lee, Abraham P.

    2013-01-01

    This paper reports a polydimethylsiloxane microfluidic model system that can develop an array of nearly identical human microtissues with interconnected vascular networks. The microfluidic system design is based on an analogy with an electric circuit, applying resistive circuit concepts to design pressure dividers in serially-connected microtissue chambers. A long microchannel (550, 620 and 775 mm) creates a resistive circuit with a large hydraulic resistance. Two media reservoirs with a large cross-sectional area and of different heights are connected to the entrance and exit of the long microchannel to serve as a pressure source, and create a near constant pressure drop along the long microchannel. Microtissue chambers (0.12 μl) serve as a two-terminal resistive component with an input impedance > 50-fold larger than the long microchannel. Connecting each microtissue chamber to two different positions along the long microchannel creates a series of pressure dividers. Each microtissue chamber enables a controlled pressure drop of a segment of the microchannel without altering the hydrodynamic behaviour of the microchannel. The result is a controlled and predictable microphysiological environment within the microchamber. Interstitial flow, a mechanical cue for stimulating vasculogenesis, was verified by finite element simulation and experiments. The simplicity of this design enabled the development of multiple microtissue arrays (5, 12, and 30 microtissues) by co-culturing endothelial cells, stromal cells, and fibrin within the microchambers over two and three week periods. This methodology enables the culturing of a large array of microtissues with interconnected vascular networks for biological studies and applications such as drug development. PMID:23723013

  4. Dielectrophoretic Microfluidic Device for in Vitro Fertilization

    Directory of Open Access Journals (Sweden)

    Hong-Yuan Huang

    2018-03-01

    Full Text Available The aim of this work was to create a microfluidic platform that uses in vitro fertilization (IVF and avoids unnecessary damage to oocytes due to the dielectrophoretic force manipulation of the sperms and oocytes that occurs in a traditional IVF operation. The device from this research can serve also to decrease medium volumes, as well as the cost of cell culture under evaporation, and to prevent unnecessary risk in intracytoplasmic sperm injection (ICSI. To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate both the sperms and the oocyte. The mouse oocytes were trapped with a positive dielectrophoretic (p-DEP force by using Indium Tin Oxide (ITO-glass electrodes; the ITO-glass electrode chip was fabricated by wet etching the ITO-glass. The polydimethylsiloxane (PDMS flow-focusing microfluidic device was used to generate microdroplets of micrometer size to contain the zygotes. The volume of the microdroplets was controlled by adjusting the flow rates of both inlets for oil and the DEP buffer. As a result, the rate of fertilization was increased by about 5% beyond that of the DEP treatment in traditional IVF, and more than 20% developed to the blastocyst stage with a low sperm-oocyte ratio.

  5. MICROFLUIDIC MODULES FOR ISOLATION OF RECOMBINANT CYTOKINE FROM BACTERIAL LYSATES

    Energy Technology Data Exchange (ETDEWEB)

    Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2014-01-01

    The portability and personalization of health-care diagnostics and treatments benefits from advancements and applications of micro and nanotechnology. Modularization and miniaturization of standardized biochemical processes and tests facilitates the advancement and customization of analyte detection and diagnosis on-chip. The goal of our work here is to develop modular platforms for on-chip biochemical processing of synthesized biologics for a range of on-demand applications. Our report focuses on the initial development, characterization and application of microfluidic size exclusion/gel filtration and ion exchange protein concentration modules for cytokine isolation from spiked cell extracts.

  6. Generic DART-MS platform for monitoring the on-demand continuous-flow production of pharmaceuticals: Advancing the quantitative protocol for caffeates in microfluidic biocatalysis.

    Science.gov (United States)

    Xu, Yan; Zhang, Dong-Yang; Meng, Xiang-Yun; Liu, Xi; Sheng, Sheng; Wu, Guo-Hua; Wang, Jun; Wu, Fu-An

    2017-04-15

    Today, continuous processing is regarded as an effective on-demand production technique of pharmaceuticals. Homemade microreactors packed with immobilized lipase under continuous-flow conditions were first applied to tailor the production of high-value caffeic acid phenethyl ester (CAPE) from methyl caffeate (MC) and 2-phenylethanol (PE) in cyclohexane via transesterification; however, this method is challenging due to the lack of a rapid platform for monitoring caffeates in microfluidic biocatalysis. The reactants were directly analyzed using Direct Analysis in Real Time Mass Spectrometry (DART-MS), and the corresponding ionization parameters were investigated. Special ions produced from MC (parent ion m/z 192.87 and product ion m/z 133.44) and CAPE (parent ion m/z 282.93 and product ion m/z 178.87) were determined using DART-MS 2 in the negative ion mode. The peak areas of the select reaction monitoring (SRM) signals were calculated to develop the standard curves for quantitative analyses of the concentration. Reasonable linear regression equations of MC and CAPE were obtained in the range of 3.125-50.000mg/L, with linear coefficients (R 2 ) of 0.9515 and 0.9973, limits of detection (LOD) of 0.005 and 0.003mg/L, limits of quantification (LOQ) of 0.02 and 0.01mg/L, and recovery ranges of 92.50-97.11% and 90.11-97.60%, respectively. The results using DART-MS 2 were in good agreement with those using conventional High-Performance Liquid Chromatography with a UV detector (HPLC-UV) and were successfully applied to monitor the kinetics constants and mass transfer coefficients in a continuous-flow packed bed microreactor. Thus, the DART-MS 2 method is an efficient tool for analyzing caffeates in microfluidic biocatalysis with limited sample preparation and short operating time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate.

    Science.gov (United States)

    Guo, Jinhong; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-08-01

    In this paper, we present a MOSFET-based (metal oxide semiconductor field-effect transistor) microfluidic gate to characterize the translocation of red blood cells (RBCs) through a gate. In the microfluidic system, the bias voltage modulated by the particles or biological cells is connected to the gate of MOSFET. The particles or cells can be detected by monitoring the MOSFET drain current instead of DC/AC-gating method across the electronic gate. Polystyrene particles with various standard sizes are utilized to calibrate the proposed device. Furthermore, RBCs from both adults and newborn blood sample are used to characterize the performance of the device in distinguishing the two types of RBCs. As compared to conventional DC/AC current modulation method, the proposed device demonstrates a higher sensitivity and is capable of being a promising platform for bioassay analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  9. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  10. Commercialization of microfluidic devices.

    Science.gov (United States)

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. ENVIRONMENTAL REVIEWS AND CASE STUDIES: Addressing the Public Outreach Responsibilities of the National Historic Preservation Act: Argonne National Laboratory’s Box Digital Display Platform

    Energy Technology Data Exchange (ETDEWEB)

    O’Rourke, Daniel J.; Weber, Cory C.; Richmond, Pamela D.

    2016-07-29

    Federal agencies are made responsible for managing the historic properties under their jurisdiction by the National Historic Preservation Act of 1966, as amended. A component of this responsibility is to mitigate the effect of a federal undertaking on historic properties through mitigation often through documentation. Providing public access to this documentation has always been a challenge. To address the issue of public access to mitigation information, personnel from Argonne National Laboratory created the Box Digital Display Platform, a system for communicating information about historic properties to the public. The platform, developed for the US Army Dugway Proving Ground, uses short introductory videos to present a topic but can also incorporate photos, drawings, GIS information, and documents. The system operates from a small, self-contained computer that can be attached to any digital monitor via an HDMI cable. The system relies on web-based software that allows the information to be republished as a touch-screen device application or as a website. The system does not connect to the Internet, and this increases security and eliminates the software maintenance fees associated with websites. The platform is designed to incorporate the products of past documentation to make this information more accessible to the public; specifically those documentations developed using the Historic American Building Survey/ Historic American Engineering Record (HABS/HAER) standards. Argonne National Laboratory’s Box Digital Display Platform can assist federal agencies in complying with the requirements of the National Historic Preservation Act.

    Environmental Practice 18: 209–213 (2016)

  12. Development and validation of a microfluidic reactor for biofilm monitoring via optical methods

    International Nuclear Information System (INIS)

    Meyer, Mariana T; Roy, Varnika; Bentley, William E; Ghodssi, Reza

    2011-01-01

    We present the design, fabrication, and verification of a microfluidic platform for optical monitoring of bacterial biofilms. Biofilm formation characterizes the majority of infections caused by bacteria that are developing increased resistance to traditional antibiotic treatment, necessitating the development of reliable tools not only for study of biofilm growth, but also for in situ examination of the response to applied stimuli. The presented platform was used to continuously and non-invasively observe the dependence of Escherichia coli biofilm formation on bacterial signaling by monitoring the change in biofilm optical density over the growth period. Results were corroborated by measurement of biofilm morphological properties via confocal microscopy, and statistical analysis was applied to verify the repeatability of observed optical and morphological differences in the biofilms formed. The presented platform will be used to characterize biofilm formation and response in drug discovery applications

  13. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping.

    Science.gov (United States)

    Deng, Yanxiang; Davis, Steven P; Yang, Fan; Paulsen, Kevin S; Kumar, Maneesh; Sinnott DeVaux, Rebecca; Wang, Xianhui; Conklin, Douglas S; Oberai, Assad; Herschkowitz, Jason I; Chung, Aram J

    2017-07-01

    Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An automated microfluidic multiplexer for fast delivery of C. elegans populations from multiwells.

    Directory of Open Access Journals (Sweden)

    Navid Ghorashian

    Full Text Available Automated biosorter platforms, including recently developed microfluidic devices, enable and accelerate high-throughput and/or high-resolution bioassays on small animal models. However, time-consuming delivery of different organism populations to these systems introduces a major bottleneck to executing large-scale screens. Current population delivery strategies rely on suction from conventional well plates through tubing periodically exposed to air, leading to certain disadvantages: 1 bubble introduction to the sample, interfering with analysis in the downstream system, 2 substantial time drain from added bubble-cleaning steps, and 3 the need for complex mechanical systems to manipulate well plate position. To address these concerns, we developed a multiwell-format microfluidic platform that can deliver multiple distinct animal populations from on-chip wells using multiplexed valve control. This Population Delivery Chip could operate autonomously as part of a relatively simple setup that did not require any of the major mechanical moving parts typical of plate-handling systems to address a given well. We demonstrated automatic serial delivery of 16 distinct C. elegans worm populations to a single outlet without introducing any bubbles to the samples, causing cross-contamination, or damaging the animals. The device achieved delivery of more than 90% of the population preloaded into a given well in 4.7 seconds; an order of magnitude faster than delivery modalities in current use. This platform could potentially handle other similarly sized model organisms, such as zebrafish and drosophila larvae or cellular micro-colonies. The device's architecture and microchannel dimensions allow simple expansion for processing larger numbers of populations.

  15. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    Science.gov (United States)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  16. Challenges and trends in the development of a magnetoresistive biochip portable platform

    International Nuclear Information System (INIS)

    Martins, Veronica C.; Germano, Jose; Cardoso, Filipe A.; Loureiro, Joana; Cardoso, Susana; Sousa, Leonel; Piedade, Moises; Fonseca, Luis P.; Freitas, P.P.

    2010-01-01

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  17. Challenges and trends in the development of a magnetoresistive biochip portable platform

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Veronica C., E-mail: veronicamartins@ist.utl.p [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Germano, Jose [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Cardoso, Filipe A.; Loureiro, Joana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cardoso, Susana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Sousa, Leonel; Piedade, Moises [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Electrical and Computer Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Fonseca, Luis P. [IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Freitas, P.P. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-05-15

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  18. Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field.

    Science.gov (United States)

    Wang, Jian; Li, Hao; Zou, Haoyang; Wang, Chenmiao; Zhang, Hao; Mano, João F; Song, Wenlong

    2017-02-28

    Inspired by the rolling of water droplets on lotus leaves, we developed a novel, magnetic field-controlled patterning method for water-soluble proteins and other functional materials on superhydrophobic platforms. This simple method can be used to fabricate biochips and open micro-fluidic devices in a simple way.

  19. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  20. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    system performance by monitoring in real time the cell concentration and viability of yeast extracted directly from an in-house made bioreactor. This is the first demonstration of using the Dean drag force, generated due to the implementation of a curved microchannel geometry in conjunction with high...... flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so...... and thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells...

  1. Novel Biochip Platform for Nucleic Acid Analysis

    Directory of Open Access Journals (Sweden)

    Juan J. Diaz-Mochon

    2012-06-01

    Full Text Available This manuscript describes the use of a novel biochip platform for the rapid analysis/identification of nucleic acids, including DNA and microRNAs, with very high specificity. This approach combines a unique dynamic chemistry approach for nucleic acid testing and analysis developed by DestiNA Genomics with the STMicroelectronics In-Check platform, which comprises two microfluidic optimized and independent PCR reaction chambers, and a sequential microarray area for nucleic acid capture and identification by fluorescence. With its compact bench-top “footprint” requiring only a single technician to operate, the biochip system promises to transform and expand routine clinical diagnostic testing and screening for genetic diseases, cancers, drug toxicology and heart disease, as well as employment in the emerging companion diagnostics market.

  2. The collaboration between and contribution of a digital open innovation platform to a local design process

    DEFF Research Database (Denmark)

    del Castillo, Jacqueline; Bhatti, Yasser; Hossain, Mokter

    2017-01-01

    We examine the potential of an open innovation digital platform to expose a local innovation process to a greater number of ideas and a more inclusive set of stakeholders. To do so we studied an online innovation challenge on the OpenIDEO to reimagine the end-of-life experience sponsored by Sutte...... it leads to a greater number of ideas from a wider and more inclusive set of stakeholders. We offer insights for the literatures on open innovation and design thinking in a healthcare context....

  3. Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip

    International Nuclear Information System (INIS)

    Cho, Jennifer S; Taschereau, Richard; Olma, Sebastian; Liu Kan; Chen Yichun; Shen, Clifton K-F; Van Dam, R Michael; Chatziioannou, Arion F

    2009-01-01

    It has been observed that microfluidic chips used for synthesizing 18 F-labeled compounds demonstrate visible light emission without nearby scintillators or fluorescent materials. The origin of the light was investigated and found to be consistent with the emission characteristics from Cerenkov radiation. Since 18 F decays through the emission of high-energy positrons, the energy threshold for beta particles, i.e. electrons or positrons, to generate Cerenkov radiation was calculated for water and polydimethylsiloxane (PDMS), the most commonly used polymer-based material for microfluidic chips. Beta particles emitted from 18 F have a continuous energy spectrum, with a maximum energy that exceeds this energy threshold for both water and PDMS. In addition, the spectral characteristics of the emitted light from 18 F in distilled water were also measured, yielding a broad distribution from 300 nm to 700 nm, with higher intensity at shorter wavelengths. A photograph of the 18 F solution showed a bluish-white light emitted from the solution, further suggesting Cerenkov radiation. In this study, the feasibility of using this Cerenkov light emission as a method for quantitative measurements of the radioactivity within the microfluidic chip in situ was evaluated. A detector previously developed for imaging microfluidic platforms was used. The detector consisted of a charge-coupled device (CCD) optically coupled to a lens. The system spatial resolution, minimum detectable activity and dynamic range were evaluated. In addition, the calibration of a Cerenkov signal versus activity concentration in the microfluidic chip was determined. This novel method of Cerenkov radiation measurements will provide researchers with a simple yet robust quantitative imaging tool for microfluidic applications utilizing beta particles.

  4. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform.

    Science.gov (United States)

    Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C

    2013-01-21

    Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.

  5. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Capretto L

    2012-01-01

    Full Text Available Lorenzo Capretto1, Stefania Mazzitelli2, Eleonora Brognara2, Ilaria Lampronti2, Dario Carugo1, Martyn Hill1, Xunli Zhang1, Roberto Gambari2, Claudio Nastruzzi31Engineering Sciences, University of Southampton, Southampton, UK; 2Department of Biochemistry and Molecular Biology, 3Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, ItalyAbstract: This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH, based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol

  6. The Construction of Platform Imperialism in the Globalization Era

    Directory of Open Access Journals (Sweden)

    Dal Yong Jin

    2013-01-01

    Full Text Available In the early 21st century, platforms, known as digital media intermediaries, have greatly influenced people’s daily lives. Due to the importance of platforms for the digital economy and culture, including intellectual property and participatory culture, several countries have developed their own social network sites and Web portals. Nonetheless, a handful of Western countries, primarily the U.S., have dominated the global platform market and society. This paper aims to historicize the concept of imperialism in the globalized 21st century. It investigates whether the recent growth of American-based platforms has resulted in a change to the fundamental idea of the imperialism thesis by analyzing the evolutionary nature of imperialism towards platform imperialism. It then addresses whether we are experiencing a new notion of imperialism by mapping out several core characteristics that define platform imperialism, including the swift growth and global dominance of SNSs and smartphones. It pays close attention to the capitalization of platforms and their global expansion, including the major role of intellectual property rights as the most significant form of capital accumulation in the digital age. It eventually endeavors to make a contribution to the platform imperialism discourse as a form of new imperialism, focusing on the nexus of great powers.

  7. Digital Media Platforms and the Use of TV Content: Binge Watching and Video-on-Demand in Germany

    Directory of Open Access Journals (Sweden)

    Lothar Mikos

    2016-07-01

    Full Text Available The advancing digitalization and media convergence demands TV broadcasting companies to adjust their content to various platforms and distribution channels. The internet, as convergent carrier medium, is increasingly taking on a central role for additional media. Classical linear TV is still important, but for some audiences it has been developing from a primary medium to a secondary medium. Owing to the growing melding of classical-linear TV contents with online offerings (e.g. video-on-demand platforms or Web–TV, a great dynamic can be seen which has triggered numerous discussions about the future of TV for some time now. This article will summarize the results of two different audience studies. Film and television shows are meanwhile distributed online via Video-on-Demand platforms such as Netflix or Amazon Prime Video. The first audience study has dealt with the use of VoD-platforms in Germany investigating user rituals, user motivation to watch films and TV shows on these platforms, and the meaning of VoD in everyday life. Most of the participants in this study reported that they mainly watch TV drama series at Netflix or Amazon Prime. Therefore, the second audience study focused the online use of television drama series of individuals and couples elaborating the phenomenon of binge watching. In relating the audience practice to the new structures of the television market the article will shed light on the future of television.

  8. Mkit: A cell migration assay based on microfluidic device and smartphone.

    Science.gov (United States)

    Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis

    2018-01-15

    Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS 2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS 2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS 2 -based cell functional assay for testing cell migration (the M kit ). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the M kit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the M kit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the M kit . In addition to research applications, we demonstrated the effective use of the M kit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed M kit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics.

    Science.gov (United States)

    Hung, Lien-Yu; Wang, Chih-Hung; Fu, Chien-Yu; Gopinathan, Priya; Lee, Gwo-Bin

    2016-08-07

    Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.

  10. Messages with Impact: Creativity in Traditional Outdoor Advertising Platforms in Castellón

    OpenAIRE

    Breva Franch, Eva; Balado Albiol, Consuelo; Rutherford

    2013-01-01

    Outdoor advertising is currently undergoing a transformation as both the variety and popularity of digital platforms increases. This will inevitably involve significant changes in both the conception and production of advertising materials designed for digital platforms, including ‘smartboards’. Notwithstanding the technological advantages of outdoor digital advertising platforms (such as the means to incorporate motion) in attracting the attention of audiences, as a consequence of the cost o...

  11. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2013-11-01

    Full Text Available Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis.

  12. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    Science.gov (United States)

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  13. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.

    Science.gov (United States)

    Esquivel, J P; Colomer-Farrarons, J; Castellarnau, M; Salleras, M; del Campo, F J; Samitier, J; Miribel-Català, P; Sabaté, N

    2012-11-07

    The present paper reports for the first time the integration of a microfluidic system, electronics modules, amperometric sensor and display, all powered by a single micro direct methanol fuel cell. In addition to activating the electronic circuitry, the integrated power source also acts as a tuneable micropump. The electronics fulfil several functions. First, they regulate the micro fuel cell output power, which off-gas controls the flow rate of different solutions toward an electrochemical sensor through microfluidic channels. Secondly, as the fuel cell powers a three-electrode electrochemical cell, the electronics compare the working electrode output signal with a set reference value. Thirdly, if the concentration measured by the sensor exceeds this threshold value, the electronics switch on an integrated organic display. This integrated approach pushes forward the development of truly autonomous point-of-care devices relying on electrochemical detection.

  14. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    Directory of Open Access Journals (Sweden)

    Ana Rubina Perestrelo

    2015-12-01

    Full Text Available Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.

  15. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    Science.gov (United States)

    Perestrelo, Ana Rubina; Águas, Ana C. P.; Rainer, Alberto; Forte, Giancarlo

    2015-01-01

    Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field. PMID:26690442

  16. A novel microfluidic chip electrophoresis strategy for simultaneous, label-free, multi-protein detection based on a graphene energy transfer biosensor.

    Science.gov (United States)

    Lin, Fengming; Zhao, Xiaochao; Wang, Jianshe; Yu, Shiyong; Deng, Yulin; Geng, Lina; Li, HuanJun

    2014-06-07

    A new type of high-throughput and parallel optical sensing platform with a single-color probe based on microfluidic chip electrophoresis combined with aptamer-carboxyfluorescein/graphene oxide energy transfer is reported here. Label-free protein multi-targets were detected, even in challenging complex samples without any pre-treatment.

  17. The development of an open platform to test ITS solutions

    DEFF Research Database (Denmark)

    Lahrmann, Harry; Agerholm, Niels; Juhl, Jens

    2013-01-01

    This paper presents the ITS Platform Northern Denmark, which is an open platform to test ITS solutions. The platform consists of a new developed GNSS/GPRS On Board Unit installed in nearly 500 cars, a backend server and a specially designed digital road map for ITS applications. The platform is o...... is open for third part application. This paper presents the platform’s potentials and explains a series of test applications, which are developed on the plat- form. Moreover, a number of new projects, which are planned for ITS Platform is introduced.......This paper presents the ITS Platform Northern Denmark, which is an open platform to test ITS solutions. The platform consists of a new developed GNSS/GPRS On Board Unit installed in nearly 500 cars, a backend server and a specially designed digital road map for ITS applications. The platform...

  18. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  19. Disentangling Competition Among Platform Driven Strategic Groups

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric

    2015-01-01

    In platform-driven markets, competitive advantage is derived from superior platform design and configurations. For this reason, platform owners strive to create unique and inimitable platform configurals to maintain and extend their competitiveness within network economies. To disentangle firm...... competition within platform-driven markets, we opted for the UK mobile payment market as our empirical setting. By embracing the theoretical lens of strategic groups and digital platforms, this study supplements prior research by deriving a taxonomy of platform-driven strategic groups that is grounded...

  20. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.