WorldWideScience

Sample records for digital mammographic imaging

  1. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Aliu, R. Azir

    2011-01-01

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  2. Image quality analysis of digital mammographic equipments

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, P.; Pascual, A.; Verdu, G. [Valencia Univ. Politecnica, Chemical and Nuclear Engineering Dept. (Spain); Rodenas, F. [Valencia Univ. Politecnica, Applied Mathematical Dept. (Spain); Campayo, J.M. [Valencia Univ. Hospital Clinico, Servicio de Radiofisica y Proteccion Radiologica (Spain); Villaescusa, J.I. [Hospital Clinico La Fe, Servicio de Proteccion Radiologica, Valencia (Spain)

    2006-07-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  3. Image quality analysis of digital mammographic equipments

    International Nuclear Information System (INIS)

    Mayo, P.; Pascual, A.; Verdu, G.; Rodenas, F.; Campayo, J.M.; Villaescusa, J.I.

    2006-01-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  4. Dissimilarity Application in Digitized Mammographic Images Classification

    Directory of Open Access Journals (Sweden)

    Ubaldo Bottigli

    2006-06-01

    Full Text Available Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, an alternative ways can be found by constructing decision rules on dissimilarity (distance representations. In such a recognition process a new object is described by its distances to (a subset of the training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discriminative power. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs. Each ROI is characterized by some features extracted from co-occurrence matrix containing spatial statistics information on ROI pixel grey tones. A dissimilarity representation of these features is made before the classification. A feed-forward neural network is employed to distinguish pathological records, from non-pathological ones by the new features. The results obtained in terms of sensitivity and specificity will be presented.

  5. Digital imaging improves upright stereotactic core biopsy of mammographic microcalcifications

    International Nuclear Information System (INIS)

    Whitlock, J.P.L.; Evans, A.J.; Burrell, H.C.; Pinder, S.E.; Ellis, I.O.; Blamey, R.W.; Wilson, A.R.M.

    2000-01-01

    AIM: This comparative study was carried out to assess the effect of using digital images compared to conventional film-screen mammography on the accuracy of core biopsy of microcalcifications using upright stereotactic equipment. MATERIALS AND METHODS: The biopsy results from a consecutive series of 104 upright stereotactic 14-gauge core biopsies performed with conventional X-ray (Group A) were compared with 40 biopsies carried out using stereotaxis with digital imaging (Group B). In all cases specimen radiography was performed and analysed for the presence of calcifications. Pathological correlation was then carried out with needle and surgical histology. RESULTS: The use of digital add-on equipment increased the radiographic calcification retrieval rate from 55 to 85% (P < 0.005). The absolute sensitivity of core biopsy in pure ductal carcinoma in situ (DCIS) cases rose from 34 to 69% (P < 0.03), with the complete sensitivity increasing from 52 to 94% (P < 0.005). For DCIS with or without an invasive component the absolute sensitivity rose from 41 to 67% (P = 0.052), while the complete sensitivity was 59% before and 86% after the introduction of digital imaging (P < 0.04). CONCLUSION: Digital equipment improves the performance of upright stereotactic core biopsy of microcalcifications, giving a significantly increased success rate in accurately obtaining calcifications. This leads to an improvement in absolute and complete sensitivity of core biopsy when diagnosing DCIS. Whitlock, J.P.L. (2000)

  6. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    International Nuclear Information System (INIS)

    Annovazzi, A.; Amendolia, S.R.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M.E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-01-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18x24 cm 2 ), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%

  7. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Science.gov (United States)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  8. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Energy Technology Data Exchange (ETDEWEB)

    Annovazzi, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Amendolia, S.R. [Str. Dip. di Matematica e Fisica dell' Universita, Sassari and Sezione I.N.F.N., Pisa (Italy); Bigongiari, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Catarsi, F. [CAEN S.p.A., Viareggio-Lucca (Italy); Cesqui, F. [AMS S.p.A, Rome (Italy); Cetronio, A. [AMS S.p.A, Rome (Italy); Colombo, F. [LABEN S.p.A., Vimodrone-Milan (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Gilberti, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Lanzieri, C. [AMS S.p.A, Rome (Italy); Lavagna, S. [AMS S.p.A, Rome (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Passuello, G. [CAEN S.p.A., Viareggio-Lucca (Italy); Paternoster, G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Pieracci, M. [CAEN S.p.A., Viareggio-Lucca (Italy); Poletti, M. [LABEN S.p.A., Vimodrone-Milan (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy)]. E-mail: arnaldo.stefanini@pi.infn.it; Testa, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Venturelli, L. [AMS S.p.A, Rome (Italy)

    2007-06-11

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm{sup 2} therefore to cover the typical irradiation field used in mammography (18x24 cm{sup 2}), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  9. Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study

    International Nuclear Information System (INIS)

    Chon, Kwon Su; Park, Jeong Gon; Son, Hyun Hwa; Kang, Sung Hoon; Park, Seong Hoon; Kim, Hye Won; Kim, Hun Soo; Yoon, Kwon Ha

    2009-01-01

    To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an Xray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-μm thickness. With a thicker molybdenum filter (100 μm thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-μm thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue

  10. Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Kwon Su [Catholic University of Daegu, Daegu (Korea, Republic of); Park, Jeong Gon; Son, Hyun Hwa; Kang, Sung Hoon; Park, Seong Hoon; Kim, Hye Won; Kim, Hun Soo; Yoon, Kwon Ha [Wonkwang University, Iksan (Korea, Republic of)

    2009-12-15

    To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an Xray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-{mu}m thickness. With a thicker molybdenum filter (100 {mu}m thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-{mu}m thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue.

  11. Mammographic image enhancement using wavelet transform and homomorphic filter

    Directory of Open Access Journals (Sweden)

    F Majidi

    2015-12-01

    Full Text Available Mammography is the most effective method for the early diagnosis of breast cancer diseases. As mammographic images contain low signal to noise ratio and low contrast, it becomes too difficult for radiologists to analyze mammogram. To deal with the above stated problems, it is very important to enhance the mammographic images using image processing methods. This paper introduces a new image enhancement approach for mammographic images which uses the modified mathematical morphology, wavelet transform and homomorphic filter to suppress the noise of images. For performance evaluation of the proposed method, contrast improvement index (CII and edge preservation index (EPI are adopted. Experimental results on mammographic images from Pejvak Digital Imaging Center (PDIC show that the proposed algorithm improves the two indexes, thereby achieving the goal of enhancing mammographic images.

  12. Breast imaging using an amorphous silicon-based full-field digital mammographic system: stability of a clinical prototype.

    Science.gov (United States)

    Vedantham, S; Karellas, A; Suryanarayanan, S; D'Orsi, C J; Hendrick, R E

    2000-11-01

    An amorphous silicon-based full-breast imager for digital mammography was evaluated for detector stability over a period of 1 year. This imager uses a structured CsI:TI scintillator coupled to an amorphous silicon layer with a 100-micron pixel pitch and read out by special purpose electronics. The stability of the system was characterized using the following quantifiable metrics: conversion factor (mean number of electrons generated per incident x-ray), presampling modulation transfer function (MTF), detector linearity and sensitivity, detector signal-to-noise ratio (SNR), and American College of Radiology (ACR) accreditation phantom scores. Qualitative metrics such as flat field uniformity, geometric distortion, and Society of Motion Picture and Television Engineers (SMPTE) test pattern image quality were also used to study the stability of the system. Observations made over this 1-year period indicated that the maximum variation from the average of the measurements were less than 0.5% for conversion factor, 3% for presampling MTF over all spatial frequencies, 5% for signal response, linearity and sensitivity, 12% for SNR over seven locations for all 3 target-filter combinations, and 0% for ACR accreditation phantom scores. ACR mammographic accreditation phantom images indicated the ability to resolve 5 fibers, 4 speck groups, and 5 masses at a mean glandular dose of 1.23 mGy. The SMPTE pattern image quality test for the display monitors used for image viewing indicated ability to discern all contrast steps and ability to distinguish line-pair images at the center and corners of the image. No bleeding effects were observed in the image. Flat field uniformity for all 3 target-filter combinations displayed no artifacts such as gridlines, bad detector rows or columns, horizontal or vertical streaks, or bad pixels. Wire mesh screen images indicated uniform resolution and no geometric distortion.

  13. Scattering influence in mammographic image

    International Nuclear Information System (INIS)

    Poletti, Martin Eduardo; Almeida, Adelaide de

    1996-01-01

    The quantification of mammographic images affected by scattered radiation is studied. The average glandular dose as a function of kVp and breast thickness for breast composition 50/50% is also evaluated. The results show that the contrast decreases with increasing of kVp and breast thickness, and the average glandular dose increase with increasing breast thickness and decreases with increasing kVp

  14. Enhancement and denoising of mammographic images for breast disease detection

    International Nuclear Information System (INIS)

    Yazdani, S.; Yusof, R.; Karimian, A.; Hematian, A.; Yousefi, M.

    2012-01-01

    In these two decades breast cancer is one of the leading cause of death among women. In breast cancer research, Mammographic Image is being assessed as a potential tool for detecting breast disease and investigating response to chemotherapy. In first stage of breast disease discovery, the density measurement of the breast in mammographic images provides very useful information. Because of the importance of the role of mammographic images the need for accurate and robust automated image enhancement techniques is becoming clear. Mammographic images have some disadvantages such as, the high dependence of contrast upon the way the image is acquired, weak distinction in splitting cyst from tumor, intensity non uniformity, the existence of noise, etc. These limitations make problem to detect the typical signs such as masses and microcalcifications. For this reason, denoising and enhancing the quality of mammographic images is very important. The method which is used in this paper is in spatial domain which its input includes high, intermediate and even very low contrast mammographic images based on specialist physician's view, while its output is processed images that show the input images with higher quality, more contrast and more details. In this research, 38 mammographic images have been used. The result of purposed method shows details of abnormal zones and the areas with defects so that specialist could explore these zones more accurately and it could be deemed as an index for cancer diagnosis. In this study, mammographic images are initially converted into digital images and then to increase spatial resolution power, their noise is reduced and consequently their contrast is improved. The results demonstrate effectiveness and efficiency of the proposed methods. (authors)

  15. Radiologists' preferences for digital mammographic display. The International Digital Mammography Development Group.

    Science.gov (United States)

    Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R

    2000-09-01

    To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.

  16. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  17. Pilot study of intraoperative digital imaging with the use of a mammograph for assessment of bone surgical margins in the head and neck region

    International Nuclear Information System (INIS)

    Ntomouchtsis, A.; Xinou, K.; Patrikidou, A.; Paraskevopoulos, K.; Kechagias, N.; Tsekos, A.; Balis, G.C.; Gerasimidou, D.; Thuau, H.; Mangoudi, D.; Vahtsevanos, K.

    2013-01-01

    Aim: To investigate alternative possibilities for the intraoperative evaluation of surgical margins after bone resection utilizing more conventional hospital infrastructure technologies. Materials and methods: A small pilot study was performed using digital mammograph imaging intraoperatively on 16 surgical specimens of bone tumours or malignancies with bone infiltration of the head and neck area, with the aim of evaluating the resection margins. Results: In thirteen cases the intraoperative specimen images indicated clinically complete excision. In two cases incomplete resection or close proximity of margins was detected, which required additional resection. Conclusions: The results indicated that intraoperative specimen radiography can prove useful in evaluating completeness of excision. The significance of intraoperative assessment of surgical margin is of paramount importance when immediate reconstruction is performed. This proposed method is cheap, easy to perform and fast. Its cost–benefit ratio is superior than that of any other available technique. Intraoperative analysis of specimens with digital mammography imaging can potentially become a useful tool for immediate evaluation of osseous margins after resection

  18. Mammographic image restoration using maximum entropy deconvolution

    International Nuclear Information System (INIS)

    Jannetta, A; Jackson, J C; Kotre, C J; Birch, I P; Robson, K J; Padgett, R

    2004-01-01

    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization

  19. Should processed or raw image data be used in mammographic image quality analyses? A comparative study of three full-field digital mammography systems

    International Nuclear Information System (INIS)

    Borg, Mark; Badr, Ishmail; Royle, Gary

    2015-01-01

    The purpose of this study is to compare a number of measured image quality parameters using processed and unprocessed or raw images in two full-field direct digital units and one computed radiography mammography system. This study shows that the difference between raw and processed image data is system specific. The results have shown that there are no significant differences between raw and processed data in the mean threshold contrast values using the contrast-detail mammography phantom in all the systems investigated; however, these results cannot be generalised to all available systems. Notable differences were noted in contrast-to-noise ratios and in other tests including: response function, modulation transfer function, noise equivalent quanta, normalised noise power spectra and detective quantum efficiency as specified in IEC 62220-1-2. Consequently, the authors strongly recommend the use of raw data for all image quality analyses in digital mammography. (authors)

  20. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  1. Applying a new mammographic imaging marker to predict breast cancer risk

    Science.gov (United States)

    Aghaei, Faranak; Danala, Gopichandh; Hollingsworth, Alan B.; Stoug, Rebecca G.; Pearce, Melanie; Liu, Hong; Zheng, Bin

    2018-02-01

    Identifying and developing new mammographic imaging markers to assist prediction of breast cancer risk has been attracting extensive research interest recently. Although mammographic density is considered an important breast cancer risk, its discriminatory power is lower for predicting short-term breast cancer risk, which is a prerequisite to establish a more effective personalized breast cancer screening paradigm. In this study, we presented a new interactive computer-aided detection (CAD) scheme to generate a new quantitative mammographic imaging marker based on the bilateral mammographic tissue density asymmetry to predict risk of cancer detection in the next subsequent mammography screening. An image database involving 1,397 women was retrospectively assembled and tested. Each woman had two digital mammography screenings namely, the "current" and "prior" screenings with a time interval from 365 to 600 days. All "prior" images were originally interpreted negative. In "current" screenings, these cases were divided into 3 groups, which include 402 positive, 643 negative, and 352 biopsy-proved benign cases, respectively. There is no significant difference of BIRADS based mammographic density ratings between 3 case groups (p cancer detection in the "current" screening. Study demonstrated that this new imaging marker had potential to yield significantly higher discriminatory power to predict short-term breast cancer risk.

  2. Computer-aided detection of breast carcinoma in standard mammographic projections with digital mammography

    International Nuclear Information System (INIS)

    Destounis, S.; Hanson, S.

    2007-01-01

    This study was conducted to retrospectively evaluate a computer-aided detection system's ability to detect breast carcinoma in multiple standard mammographic projections. Forty-five lesions in 44 patients imaged with digital mammography (Selenia registered , Hologic, Bedford, MA; Senographe registered , GE, Milwaukee, WI) and had computer-aided detection (CAD, Image-checker registered V 8.3.15, Hologic/R2, Santa Clara, CA) applied at the time of examination were identified for review; all were subsequently recommended to biopsy where cancer was revealed. These lesions were determined by the study Radiologist to be visible in both standard mammographic images (mediolateral oblique, MLO; craniocaudal, CC). For each patient, case data included patient age, tissue density, lesion type, BIRADS registered assessment, lesion size, lesion visibility-visible on MLO and/or CC view, ability of CAD to correctly mark the cancerous lesion, number of CAD marks per image, needle core biopsy results and surgical pathologic correlation. For this study cohort. CAD lesion/case sensitivity of 87% (n = 39) was found and image sensitivity was found to be 69% (n = 31) for MLO view and 78% (n = 35) for the CC view. For the study cohort, cases presented with a median of four marks per cases (range 0-13). Eighty-four percent (n = 38) of lesions proceeded to excision; initial needle biopsy pathology was upgraded at surgical excision from in situ disease to invasive for 24% (n = 9) lesions. CAD has demonstrated the potential to detect mammographically visible cancers in multiple standard mammographic projections in all categories of lesions in this study cohort. (orig.)

  3. Comparative study on mammographic findings between conventional mammography and digital mammography

    International Nuclear Information System (INIS)

    Gonzalez Calle, Aurelio; Saldarriaga Jaramillo, Ximena; Zapata Walliser, Luz Estela; Mejia Restrepo, Jorge Hernando; Arango Martinez, Adriana; Velez Arango, Jorge Mario

    2007-01-01

    We performed conventional-film mammograms in 180 patients between 35 and 6 years and additionally, we added 2 digital CR technique images to each patient, either craneocaudal (90 patients) or oblique (90 patients). All images were interpreted independently by four radiologists for a total of 720 evaluations, who compared film versus digital images through a 5 mega pixel monitor (soft-copy), using a score scale using the following parameters: mass visualization, detection of micro-calcifications, architectural distortion, visibility of the skin line, and image sharpness and noise. Additionally the tissue density was classified as well as the BIRADS score. The data was processed with the Teleform program and analyzed by de SPSSS program. Results: 52.6% of the micro-calcifications were equally visualized with both systems, in 13.5% of the cases they were better visualized with digital mammography. Similarly, in 50% of the cases, the skin line was better visualized with the digital CR modality. Conclusion: the sharpness of the image was also better seen with the digital CR technique in 48.2%. On the contrary, more noise was seen in digital CR images (63%). digital mammography is a diagnostic alternative that can improve mammographic findings detection and finally become a useful tool in breast cancer diagnosis

  4. Image enhancement by using IDL for a mammographic x-ray image in Medical Physics Laboratory

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Md Saion Salikin; Wan Hazlinda Ismail; Norriza Mohd Isa; Azuhar Ripin

    2004-01-01

    Digital image enhancement technique can have a significant impact on the diagnostic quality of a radiographic image. The main aim of image enhancement is to process the image so that the enhanced image is clearer and more useful for specific application. There are three types of image enhancement namely noise reduction, edge enhancement and contrast enhancement. The objective of this project is to enhance the mammographic image by using Interactive Data Language (IDL) software in spatial and frequency domain by using various methods. In spatial domain method, direct manipulation of pixel in an image is used whereas, in frequency domain method, modifying the spectral component or Fourier Transform of an image is used In order to obtain the good quality mammographic image, breast phantom Model 12A with 4.0 cm compressed thickness and Bennett Model DMF- 150 Mammography Machine with various kV and mA are employed. The results of enhanced image with selected technique by using IDL are presented in this paper. (Author)

  5. Computer-aided detection of breast carcinoma in standard mammographic projections with digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Destounis, Stamatia [Elizabeth Wende Breast Care, LLC, Rochester, NY (United States); University of Rochester, School of Medicine and Dentistry, Rochester, NY (United States); Hanson, Sarah; Morgan, Renee; Murphy, Philip; Somerville, Patricia; Seifert, Posy; Andolina, Valerie; Arieno, Andrea; Skolny, Melissa; Logan-Young, Wende [Elizabeth Wende Breast Care, LLC, Rochester, NY (United States)

    2009-06-15

    A retrospective evaluation of the ability of computer-aided detection (CAD) ability to identify breast carcinoma in standard mammographic projections. Forty-five biopsy proven lesions in 44 patients imaged digitally with CAD applied at examination were reviewed. Forty-four screening BIRADS {sup registered} category 1 digital mammography examinations were randomly identified to serve as a comparative normal/control population. Data included patient age; BIRADS {sup registered} breast density; lesion type, size, and visibility; number, type, and location of CAD marks per image; CAD ability to mark lesions; needle core and surgical pathologic correlation. The CAD lesion/case sensitivity of 87% (n=39), image sensitivity of 69% (n=31) for mediolateral oblique view and 78% (n=35) for the craniocaudal view was found. The average false positive rate in 44 normal screening cases was 2.0 (range 1-8). The 2.0 figure is based on 88 reported false positive CAD marks in 44 normal screening exams: 98% (n=44) lesions proceeded to excision; initial pathology upgraded at surgical excision from in situ to invasive disease in 24% (n=9) lesions. CAD demonstrated potential to detect mammographically visible cancers in standard projections for all lesion types. (orig.)

  6. Spectral analysis of mammographic images using a multitaper method

    International Nuclear Information System (INIS)

    Wu Gang; Mainprize, James G.; Yaffe, Martin J.

    2012-01-01

    Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.

  7. Generation of CR mammographic image for evaluation quality parameters

    International Nuclear Information System (INIS)

    Flores, Mabel B.; Mourao, Arnaldo P.; Centro Federal de Educacao Tecnologica de Minas Gerais

    2017-01-01

    Currently, among the diseases most feared by women, breast cancer ranks first in the world with an incidence of more than 1.6 million cases and a mortality of more than 521.9 thousand cases by year, which makes this disease the type of cancer with higher incidence and mortality compared to the other types of cancer that mainly affect the female gender, without considering non-melanoma skin cancer. In Brazil, more than 14.4 thousand deaths were registered in 2013 and more than 57 thousand new cases were estimated for 2016. The use of computerized radiography (CR) for the generation of mammographic digital images is widely used in Brazil for the screening of breast cancer. The aim of this investigation is to study the variation of CR plate response to exposure to X-ray beams in a mammography unit. Two CR plates from different manufacturers and a compressed breast phantom containing calcium carbonate structures of different sizes simulating calcifications were used for this study. An X-ray beam generated by 30 kV was selected to realize successive exposures of each plate by performing a time variation of 0.5 to 3.5 s, obtaining the raw images. The acquired images were evaluated with the ImageJ software to determine the saturation time of the plates when exposed to X-ray beams and the qualitative resolution of each plate. The plates were found to saturate at different times when exposed under the same conditions to X-ray beams. By means of the images acquired with the breast phantom, it was possible to observe only structures of calcium carbonate with sizes greater than 177 μm. (author)

  8. Generation of CR mammographic image for evaluation quality parameters

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Mabel B.; Mourao, Arnaldo P., E-mail: mbustos@ufmg.br, E-mail: apratabhz@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Centro de Engenharia Politecnica

    2017-11-01

    Currently, among the diseases most feared by women, breast cancer ranks first in the world with an incidence of more than 1.6 million cases and a mortality of more than 521.9 thousand cases by year, which makes this disease the type of cancer with higher incidence and mortality compared to the other types of cancer that mainly affect the female gender, without considering non-melanoma skin cancer. In Brazil, more than 14.4 thousand deaths were registered in 2013 and more than 57 thousand new cases were estimated for 2016. The use of computerized radiography (CR) for the generation of mammographic digital images is widely used in Brazil for the screening of breast cancer. The aim of this investigation is to study the variation of CR plate response to exposure to X-ray beams in a mammography unit. Two CR plates from different manufacturers and a compressed breast phantom containing calcium carbonate structures of different sizes simulating calcifications were used for this study. An X-ray beam generated by 30 kV was selected to realize successive exposures of each plate by performing a time variation of 0.5 to 3.5 s, obtaining the raw images. The acquired images were evaluated with the ImageJ software to determine the saturation time of the plates when exposed to X-ray beams and the qualitative resolution of each plate. The plates were found to saturate at different times when exposed under the same conditions to X-ray beams. By means of the images acquired with the breast phantom, it was possible to observe only structures of calcium carbonate with sizes greater than 177 μm. (author)

  9. [Follow-up of surgical biopsies in microcalcifications of the breast. Comparative analysis of patients submitted to mammography and digitalization of mammographic images].

    Science.gov (United States)

    Rulli, A; Cirocchi, R; Vento, A R; Naninato, P; Zanetti, A; Carli, L

    1997-01-01

    Improvements in the techniques of preoperative needle localization of nonpalpable breast lesions that have been detected at mammography, coupled with surgical biopsy of smaller volumes of breast tissue and the use of local anesthesia have produced a more aggressive attitude toward early biopsy of lesions that are suspected of malignancy. The authors report the follow-up in 92 cases, who underwent breast biopsy for microcalcifications with no palpable lesions. In 46 women the presence of microcalcifications was evaluated through a computerized instrument which allows digitalization of the image.

  10. Towards an automatic tool for resolution evaluation of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, J. E. E. [FUMEC, Av. Alfonso Pena 3880, CEP 30130-009 Belo Horizonte - MG (Brazil); Nogueira, M. S., E-mail: juliae@fumec.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901, Belo Horizonte - MG (Brazil)

    2014-08-15

    Medical images are important for diagnosis purposes as they are related to patients medical history and pathology. Breast cancer represents a leading cause of death among women worldwide, and its early detection is the most effective method of reducing mortality. In a way to identify small structures with low density differences, a high image quality is required with the use of low doses of radiation. The analysis of the quality of the obtained image from a mammogram is performed from an image of a simulated breast and this is a fundamental key point for a program of quality control of mammography equipment s. In a control program of mammographic equipment s, besides the analysis of the quality of mammographic images, each element of the chain which composes the formation of the image is also analyzed: X-rays equipment s, radiographic films, and operating conditions. This control allows that an effective and efficient exam can be provided to the population and is within the standards of quality required for the early detection of breast cancer. However, according to the State Program of Quality Control in Mammography of Minas Gerais, Brazil, only 40% of the mammographies have provided a simulated image with a minimum level of quality, thus reinforcing the need for monitoring the images. The reduction of the morbidity and mortality indexes, with optimization and assurance of access to diagnosis and breast cancer treatment in the state of Minas Gerais, Brazil, may be the result of a mammographic exam which has a final image with good quality and which automatic evaluation is not subjective. The reason is that one has to consider the hypothesis that humans are subjective when performing the image analysis and that the evaluation of the image can be executed by a computer with objectivity. In 2007, in order to maintain the standard quality needed to mammography, the State Health Secretariat of Minas Gerais, Brazil, established a Program of Monthly Monitoring the

  11. Towards an automatic tool for resolution evaluation of mammographic images

    International Nuclear Information System (INIS)

    De Oliveira, J. E. E.; Nogueira, M. S.

    2014-08-01

    Medical images are important for diagnosis purposes as they are related to patients medical history and pathology. Breast cancer represents a leading cause of death among women worldwide, and its early detection is the most effective method of reducing mortality. In a way to identify small structures with low density differences, a high image quality is required with the use of low doses of radiation. The analysis of the quality of the obtained image from a mammogram is performed from an image of a simulated breast and this is a fundamental key point for a program of quality control of mammography equipment s. In a control program of mammographic equipment s, besides the analysis of the quality of mammographic images, each element of the chain which composes the formation of the image is also analyzed: X-rays equipment s, radiographic films, and operating conditions. This control allows that an effective and efficient exam can be provided to the population and is within the standards of quality required for the early detection of breast cancer. However, according to the State Program of Quality Control in Mammography of Minas Gerais, Brazil, only 40% of the mammographies have provided a simulated image with a minimum level of quality, thus reinforcing the need for monitoring the images. The reduction of the morbidity and mortality indexes, with optimization and assurance of access to diagnosis and breast cancer treatment in the state of Minas Gerais, Brazil, may be the result of a mammographic exam which has a final image with good quality and which automatic evaluation is not subjective. The reason is that one has to consider the hypothesis that humans are subjective when performing the image analysis and that the evaluation of the image can be executed by a computer with objectivity. In 2007, in order to maintain the standard quality needed to mammography, the State Health Secretariat of Minas Gerais, Brazil, established a Program of Monthly Monitoring the

  12. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    Science.gov (United States)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  13. Comparison of image quality between mammography dedicated monitor and UHD 4K monitor, using standard mammographic phantom: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Cha, Soon Joo; Hong, Sung Hwan; Kim, Su Young; Kim, Yong Hoon; Kim, You Sung; Kim, Jeong A [Dept. of Radiology, Inje Unveristy Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2017-03-15

    Using standard mammographic phantom images, we compared the image quality obtained between a mammography dedicated 5 megapixel monitor (5M) and a UHD 4K (4K) monitor with digital imaging and communications in medicine display, to investigate the possibility of clinical application of 4K monitors. Three different exposures (autoexposure, overexposure and underexposure) images of mammographic phantom were obtained, and six radiologists independently evaluated the images in 5M and 4K without image modulation, by scoring of fibers, groups of specks and masses within the phantom image. The mean score of each object on both monitors was independently analyzed, using t-test and interobserver reliability by intraclass correlation coefficient (ICC) of SPSS. The overall mean scores of fiber, group of specks, and mass in 5M were 4.25, 3.92, and 3.28 respectively, and scores obtained in 4K monitor were 3.81, 3.58, and 3.14, respectively. No statistical difference was seen in scores of fiber and mass between the two monitors at all exposure conditions, but the score of group of specks in 4K was statistically lower in the overall (p = 0.0492) and in underexposure conditions (p = 0.012). The ICC for interobserver reliability was excellent (0.874). Our study suggests that since the mammographic phantom images are appropriate with no significant difference in image quality observed between the two monitors, the 4K monitor could be used for clinical studies. Since this is a small preliminary study using phantom images, the result may differ in actual mammographic images, and subsequent investigation with clinical mammographic images is required.

  14. Feature extraction from mammographic images using fast marching methods

    International Nuclear Information System (INIS)

    Bottigli, U.; Golosio, B.

    2002-01-01

    Features extraction from medical images represents a fundamental step for shape recognition and diagnostic support. The present work faces the problem of the detection of large features, such as massive lesions and organ contours, from mammographic images. The regions of interest are often characterized by an average grayness intensity that is different from the surrounding. In most cases, however, the desired features cannot be extracted by simple gray level thresholding, because of image noise and non-uniform density of the surrounding tissue. In this work, edge detection is achieved through the fast marching method (Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999), which is based on the theory of interface evolution. Starting from a seed point in the shape of interest, a front is generated which evolves according to an appropriate speed function. Such function is expressed in terms of geometric properties of the evolving interface and of image properties, and should become zero when the front reaches the desired boundary. Some examples of application of such method to mammographic images from the CALMA database (Nucl. Instr. and Meth. A 460 (2001) 107) are presented here and discussed

  15. Association of mammographic image feature change and an increasing risk trend of developing breast cancer: an assessment

    Science.gov (United States)

    Tan, Maxine; Leader, Joseph K.; Liu, Hong; Zheng, Bin

    2015-03-01

    We recently investigated a new mammographic image feature based risk factor to predict near-term breast cancer risk after a woman has a negative mammographic screening. We hypothesized that unlike the conventional epidemiology-based long-term (or lifetime) risk factors, the mammographic image feature based risk factor value will increase as the time lag between the negative and positive mammography screening decreases. The purpose of this study is to test this hypothesis. From a large and diverse full-field digital mammography (FFDM) image database with 1278 cases, we collected all available sequential FFDM examinations for each case including the "current" and 1 to 3 most recently "prior" examinations. All "prior" examinations were interpreted negative, and "current" ones were either malignant or recalled negative/benign. We computed 92 global mammographic texture and density based features, and included three clinical risk factors (woman's age, family history and subjective breast density BIRADS ratings). On this initial feature set, we applied a fast and accurate Sequential Forward Floating Selection (SFFS) feature selection algorithm to reduce feature dimensionality. The features computed on both mammographic views were individually/ separately trained using two artificial neural network (ANN) classifiers. The classification scores of the two ANNs were then merged with a sequential ANN. The results show that the maximum adjusted odds ratios were 5.59, 7.98, and 15.77 for using the 3rd, 2nd, and 1st "prior" FFDM examinations, respectively, which demonstrates a higher association of mammographic image feature change and an increasing risk trend of developing breast cancer in the near-term after a negative screening.

  16. Reduction of false-positive recalls using a computerized mammographic image feature analysis scheme

    Science.gov (United States)

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-08-01

    The high false-positive recall rate is one of the major dilemmas that significantly reduce the efficacy of screening mammography, which harms a large fraction of women and increases healthcare cost. This study aims to investigate the feasibility of helping reduce false-positive recalls by developing a new computer-aided diagnosis (CAD) scheme based on the analysis of global mammographic texture and density features computed from four-view images. Our database includes full-field digital mammography (FFDM) images acquired from 1052 recalled women (669 positive for cancer and 383 benign). Each case has four images: two craniocaudal (CC) and two mediolateral oblique (MLO) views. Our CAD scheme first computed global texture features related to the mammographic density distribution on the segmented breast regions of four images. Second, the computed features were given to two artificial neural network (ANN) classifiers that were separately trained and tested in a ten-fold cross-validation scheme on CC and MLO view images, respectively. Finally, two ANN classification scores were combined using a new adaptive scoring fusion method that automatically determined the optimal weights to assign to both views. CAD performance was tested using the area under a receiver operating characteristic curve (AUC). The AUC = 0.793  ±  0.026 was obtained for this four-view CAD scheme, which was significantly higher at the 5% significance level than the AUCs achieved when using only CC (p = 0.025) or MLO (p = 0.0004) view images, respectively. This study demonstrates that a quantitative assessment of global mammographic image texture and density features could provide useful and/or supplementary information to classify between malignant and benign cases among the recalled cases, which may eventually help reduce the false-positive recall rate in screening mammography.

  17. Digital Radiology Image Learning Library

    International Nuclear Information System (INIS)

    Arenson, R.L.; Greenes, R.; Allman, R.; Swett, H.

    1989-01-01

    The Digital Radiology Image Learning Library (DRILL) is designed as an interactive teaching tool targeted to the radiologic community. The DRILL pilot comprises a comprehensive mammographic information base consisting of factual data in a relational database, an extensive knowledge base in semantic nets and high-resolution images. A flexible query module permits the user to browse and retrieve examination data, case discussions, and related images. Other applications, including expert systems, instructional programs, and skill building exercises, can be accessed through well-defined software constructs

  18. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks.

    Science.gov (United States)

    Huynh, Benjamin Q; Li, Hui; Giger, Maryellen L

    2016-07-01

    Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learning features directly from the image data instead of using analytically extracted features. However, CNNs are difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations. Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast lesions (607 full-field digital mammographic images). We compared support vector machine classifiers based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of distinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using analytically extracted features [area under the ROC curve [Formula: see text

  19. Evaluation Of Digital Unsharp-Mask Filtering For The Detection Of Subtle Mammographic Microcalcifications

    Science.gov (United States)

    Chan, Heang-Ping; Vyborny, Carl J.; MacMahon, Heber; Metz, Charles E.; Doi, Kunio; Sickles, Edward A.

    1986-06-01

    We have conducted a study to assess the effects of digitization and unsharp-mask filtering on the ability of observers to detect subtle microcalcifications in mammograms. Thirty-two conventional screen-film mammograms were selected from patient files by two experienced mammographers. Twelve of the mammograms contained a suspicious cluster of microcalcifications in patients who subsequently underwent biopsy. Twenty of the mammograms were normal cases which were initially interpreted as being free of clustered microcalcifications and did not demonstrate such on careful review. The mammograms were digitized with a high-quality Fuji image processing/simulation system. The system consists of two drum scanners with which an original radiograph can be digitized, processed by a minicomputer, and reconstituted on film. In this study, we employed a sampling aperture of 0.1 mm X 0.1 mm and a sampling distance of 0.1 mm. The density range from 0.2 to 2.75 was digitized to 1024 grey levels per pixel. The digitized images were printed on a single emulsion film with a display aperture having the same size as the sampling aperture. The system was carefully calibrated so that the density and contrast of a digitized image were closely matched to those of the original radiograph. Initially, we evaluated the effects of the weighting factor and the mask size of a unsharp-mask filter on the appearance of mammograms for various types of breasts. Subjective visual comparisons suggested that a mask size of 91 X 91 pixels (9.1 mm X 9.1 mm) enhances the visibility of microcalcifications without excessively increasing the high-frequency noise. Further, a density-dependent weighting factor that increases linearly from 1.5 to 3.0 in the density range of 0.2 to 2.5 enhances the contrast of microcalcifications without introducing many potentially confusing artifacts in the low-density areas. An unsharp-mask filter with these parameters was used to process the digitized mammograms. We conducted

  20. Automated Quality Assurance Applied to Mammographic Imaging

    Directory of Open Access Journals (Sweden)

    Anne Davis

    2002-07-01

    Full Text Available Quality control in mammography is based upon subjective interpretation of the image quality of a test phantom. In order to suppress subjectivity due to the human observer, automated computer analysis of the Leeds TOR(MAM test phantom is investigated. Texture analysis via grey-level co-occurrence matrices is used to detect structures in the test object. Scoring of the substructures in the phantom is based on grey-level differences between regions and information from grey-level co-occurrence matrices. The results from scoring groups of particles within the phantom are presented.

  1. Imaging characteristics of different mammographic screens.

    Science.gov (United States)

    Kuhn, H; Knüpfer, W

    1992-01-01

    A study of mammography systems with green-emitting screens was conducted to determine how the image quality parameters (apart from dose requirement), such as modulation transfer function (MTF) and Wiener spectrum (WS), depend on the dye content of the compound and coating weight of the screen. In addition, the contribution to total noise of the individual components, i.e., film, screen, and quantum noise, was studied. The quantities derived from MTF and WS, namely detective quantum efficiency (DQE) and noise equivalent quanta (NEQ), were also investigated in regard to their dose dependency. It can be demonstrated that the MTF of the screens becomes more favorable when the dye content is increased, while noise is not significantly affected. This suggests the use of a mammography screen capable of greater detail recognition, requiring at least double the dose of today's conventional systems with approximately 80 microGy system dose. On the other hand, the manufacture of a screen with about 60% of the dose of the conventional system is possible with very little loss in image quality. For the systems in common use today (80 microGy), quantum noise represents a considerable share of the total noise at low spatial frequencies, whereas in high spatial frequencies, the graininess of the film dominates quantum noise and screen structure.

  2. The Mammographic Head Demonstrator Developed in the Framework of the “IMI” Project:. First Imaging Tests Results

    Science.gov (United States)

    Bisogni, Maria Giuseppina

    2006-04-01

    In this paper we report on the performances and the first imaging test results of a digital mammographic demonstrator based on GaAs pixel detectors. The heart of this prototype is the X-ray detection unit, which is a GaAs pixel sensor read-out by the PCC/MEDIPIXI circuit. Since the active area of the sensor is 1 cm2, 18 detectors have been organized in two staggered rows of nine chips each. To cover the typical mammographic format (18 × 24 cm2) a linear scanning is performed by means of a stepper motor. The system is integrated in mammographic equipment comprehending the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies in collaboration with the universities of Ferrara, Roma “La Sapienza”, Pisa and the INFN.

  3. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    Science.gov (United States)

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  4. Development of breast phantom for quality assessment of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata, E-mail: jenifferarvelos00@gmail.com [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil). Centro de Engenharia Biomedica; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Universidad Complutense de Madrid (UCM), Madrid (Spain). Faculdad de Medicina. Departmento de Radiologia

    2017-11-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  5. Development of breast phantom for quality assessment of mammographic images

    International Nuclear Information System (INIS)

    Arvelos, Jeniffer Miranda; Flores, Mabel Bustos; Amaral, Fernando; Rio, Margarita Chevalier del; Mourao, Arnaldo Prata; Universidade Federal de Minas Gerais; Universidad Complutense de Madrid

    2017-01-01

    Diagnosis of breast cancer in young women may be impaired by the tissue composition of breast in this age group, as fibroglandular tissue is present in greater amount in young women and it has higher density than fibrous and fatty tissues which predominate in women older than 40 years old. The higher density of breast tissue makes it difficult to identify nodules in two-dimensional techniques, due to the overlapping of dense layers. Breast phantoms are used in evaluation and quality control of clinical images, and therefore, it is important to develop non-homogeneous phantoms that may better simulate a real breast. Grouped microcalcifications are often the earliest changes associated with malignant neoplasm of breast. In this work, a phantom was developed in the form of a compressed breast using acrylic resin blend. The resin blend used to fulfill the interior of the phantom has similar mammographic density to the one in fibroglandular tissue, representing a dense breast. The lesions were made of acrylic resin blend and calcium compounds that might simulate breast abnormalities, representing nodules, macrocalcifications and microcalcifications of different dimensions and densities. They were distributed into the ma-terial representing fibroglandular tissue. The developed phantom has a thickness of 1 cm, and it may be matched with other plates to represent a dense breast of thickness between 5 and 6 cm. The main goal of the project is to evaluate the sensitivity of detection of these calcifications in relation to their density and location in the breast in two-dimensional images generated in mammography equipment. Mammographic images allow the visualization of the changes implemented in the phantom. The developed phantom may be used in evaluation of diagnostic images generated through two-dimensional and three-dimensional images. (author)

  6. Investigation of support vector machine for the detection of architectural distortion in mammographic images

    International Nuclear Information System (INIS)

    Guo, Q; Shao, J; Ruiz, V

    2005-01-01

    This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma

  7. Investigation of support vector machine for the detection of architectural distortion in mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q [Department of Cybernetics, University of Reading, Reading RG6 6AY (United Kingdom); Shao, J [Department of Electronics, University of Kent at Canterbury, Kent CT2 7NT (United Kingdom); Ruiz, V [Department of Cybernetics, University of Reading, Reading RG6 6AY (United Kingdom)

    2005-01-01

    This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.

  8. Characterization of mammographic masses based on level set segmentation with new image features and patient information

    International Nuclear Information System (INIS)

    Shi Jiazheng; Sahiner, Berkman; Chan Heangping; Ge Jun; Hadjiiski, Lubomir; Helvie, Mark A.; Nees, Alexis; Wu Yita; Wei Jun; Zhou Chuan; Zhang Yiheng; Cui Jing

    2008-01-01

    Computer-aided diagnosis (CAD) for characterization of mammographic masses as malignant or benign has the potential to assist radiologists in reducing the biopsy rate without increasing false negatives. The purpose of this study was to develop an automated method for mammographic mass segmentation and explore new image based features in combination with patient information in order to improve the performance of mass characterization. The authors' previous CAD system, which used the active contour segmentation, and morphological, textural, and spiculation features, has achieved promising results in mass characterization. The new CAD system is based on the level set method and includes two new types of image features related to the presence of microcalcifications with the mass and abruptness of the mass margin, and patient age. A linear discriminant analysis (LDA) classifier with stepwise feature selection was used to merge the extracted features into a classification score. The classification accuracy was evaluated using the area under the receiver operating characteristic curve. The authors' primary data set consisted of 427 biopsy-proven masses (200 malignant and 227 benign) in 909 regions of interest (ROIs) (451 malignant and 458 benign) from multiple mammographic views. Leave-one-case-out resampling was used for training and testing. The new CAD system based on the level set segmentation and the new mammographic feature space achieved a view-based A z value of 0.83±0.01. The improvement compared to the previous CAD system was statistically significant (p=0.02). When patient age was included in the new CAD system, view-based and case-based A z values were 0.85±0.01 and 0.87±0.02, respectively. The study also demonstrated the consistency of the newly developed CAD system by evaluating the statistics of the weights of the LDA classifiers in leave-one-case-out classification. Finally, an independent test on the publicly available digital database for screening

  9. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Karen, E-mail: kdrukker@uchicago.edu; Giger, Maryellen L.; Li, Hui [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A. [Radiology Department, University of California, San Francisco, California 94143 (United States); Flowers, Chris I. [Department of Radiology, University of South Florida, Tampa, Florida 33612 (United States); Drukteinis, Jennifer S. [Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 (United States)

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, “QIA alone,” (2) the three-compartment breast (3CB) composition measure—derived from the dual-energy mammography—of water, lipid, and protein thickness were assessed, “3CB alone”, and (3) information from QIA and 3CB was combined, “QIA + 3CB.” Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, Bland–Altman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the “QIA alone” method, 0.72 (0.07) for “3CB alone” method, and 0.86 (0.04) for “QIA+3CB” combined. The difference in AUC was 0.043 between “QIA + 3CB” and “QIA alone” but failed to reach statistical significance (95% confidence interval [–0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  10. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Mark, E-mail: marktknox@gmail.com; O’Brien, Angela, E-mail: angelaobrien@doctors.org.uk; Szabó, Endre, E-mail: endrebacsi@freemail.hu; Smith, Clare S., E-mail: csmith@mater.ie; Fenlon, Helen M., E-mail: helen.fenlon@cancerscreening.ie; McNicholas, Michelle M., E-mail: michelle.mcnicholas@cancerscreening.ie; Flanagan, Fidelma L., E-mail: fidelma.flanagan@cancerscreening.ie

    2015-06-15

    Highlights: • Digital mammography has changed the presentation of interval breast cancer. • Less interval breast cancers are associated with microcalcifications following FFDM. • Interval breast cancer audit remains a key feature of any breast screening program. - Abstract: Objective: Full field digital mammography (FFDM) is increasingly replacing screen film mammography (SFM) in breast screening programs. Interval breast cancers are an issue in all screening programs and the purpose of our study is to assess the impact of FFDM on the classification of interval breast cancers at independent blind review and to compare the mammographic features of interval cancers at FFDM and SFM. Materials and methods: This study included 138 cases of interval breast cancer, 76 following an FFDM screening examination and 62 following screening with SFM. The prior screening mammogram was assessed by each of five consultant breast radiologists who were blinded to the site of subsequent cancer. Subsequent review of the diagnostic mammogram was performed and cases were classified as missed, minimal signs, occult or true interval. Mammographic features of the interval cancer at diagnosis and any abnormality identified on the prior screening mammogram were recorded. Results: The percentages of cancers classified as missed at FFDM and SFM did not differ significantly, 10.5% (8 of 76) at FFDM and 8.1% (5 of 62) at SFM (p = .77). There were significantly less interval cancers presenting as microcalcifications (alone or in association with another abnormality) following screening with FFDM, 16% (12 of 76) than following a SFM examination, 32% (20 of 62) (p = .02). Conclusion: Interval breast cancers continue to pose a problem at FFDM. The switch to FFDM has changed the mammographic presentation of interval breast cancer, with less interval cancers presenting in association with microcalcifications.

  11. Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers

    International Nuclear Information System (INIS)

    Knox, Mark; O’Brien, Angela; Szabó, Endre; Smith, Clare S.; Fenlon, Helen M.; McNicholas, Michelle M.; Flanagan, Fidelma L.

    2015-01-01

    Highlights: • Digital mammography has changed the presentation of interval breast cancer. • Less interval breast cancers are associated with microcalcifications following FFDM. • Interval breast cancer audit remains a key feature of any breast screening program. - Abstract: Objective: Full field digital mammography (FFDM) is increasingly replacing screen film mammography (SFM) in breast screening programs. Interval breast cancers are an issue in all screening programs and the purpose of our study is to assess the impact of FFDM on the classification of interval breast cancers at independent blind review and to compare the mammographic features of interval cancers at FFDM and SFM. Materials and methods: This study included 138 cases of interval breast cancer, 76 following an FFDM screening examination and 62 following screening with SFM. The prior screening mammogram was assessed by each of five consultant breast radiologists who were blinded to the site of subsequent cancer. Subsequent review of the diagnostic mammogram was performed and cases were classified as missed, minimal signs, occult or true interval. Mammographic features of the interval cancer at diagnosis and any abnormality identified on the prior screening mammogram were recorded. Results: The percentages of cancers classified as missed at FFDM and SFM did not differ significantly, 10.5% (8 of 76) at FFDM and 8.1% (5 of 62) at SFM (p = .77). There were significantly less interval cancers presenting as microcalcifications (alone or in association with another abnormality) following screening with FFDM, 16% (12 of 76) than following a SFM examination, 32% (20 of 62) (p = .02). Conclusion: Interval breast cancers continue to pose a problem at FFDM. The switch to FFDM has changed the mammographic presentation of interval breast cancer, with less interval cancers presenting in association with microcalcifications

  12. Impact of digitalization of mammographic units on average glandular doses in the Flemish Breast Cancer Screening Program

    OpenAIRE

    De Hauwere, An; Thierens, Hubert

    2012-01-01

    The impact of digitalization on the average glandular doses in 49 mammographic units participating in the Flemish Breast Cancer Screening Program was studied. Screen-film was changed to direct digital radiography and computed radiography in 25 and 24 departments respectively. Average glandular doses were calculated before and after digitalization for different PMMA-phantom thicknesses and for groups of 50 successive patients. For the transition from screen-film to computed radiography both ph...

  13. Establishment of quality assessment standard for mammographic equipment: evaluation of phantom and clinical images

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Choe, Yeon Hyeon; Chung, Soo Young

    2005-01-01

    The purpose of this study was to establish a quality standard for mammographic equipment Korea and to eventually improve mammographic quality in clinics and hospitals throughout Korea by educating technicians and clinic personnel. For the phantom test and on site assessment, we visited 37 sites and examined 43 sets of mammographic equipment. Items that were examined include phantom test, radiation dose measurement, developer assessment, etc. The phantom images were assessed visually and by optical density measurements. For the clinical image assessment, clinical images from 371 sites were examined following the new Korean standard for clinical image evaluation. The items examined include labeling, positioning, contrast, exposure, artifacts, collimation among others. Quality standard of mammographic equipment was satisfied in all equipment on site visits. Average mean glandular dose was 114.9 mRad. All phantom image test scores were over 10 points (average, 10.8 points). However, optical density measurements were below 1.2 in 9 sets of equipment (20.9%). Clinical image evaluation revealed appropriate image quality in 83.5%, while images from non-radiologist clinics were adequate in 74.6% (91/122), which was the lowest score of any group. Images were satisfactory in 59.0% (219/371) based on evaluation by specialists following the new Korean standard for clinical image evaluation. Satisfactory images had a mean score of 81.7 (1 S.D. =8.9) and unsatisfactory images had a mean score of 61.9 (1 S.D = 11). The correlation coefficient between the two observers was 0.93 (ρ < 0.01) in 49 consecutive cases. The results of the phantom tests suggest that optical density measurements should be performed as part of a new quality standard for mammographic equipment. The new clinical evaluation criteria that was used in this study can be implemented with some modifications for future mammography quality control by the Korean government

  14. Mammographic Imaging Studies Using the Monte Carlo Image Simulation-Differential Sampling (MCMIS-DS) Code

    International Nuclear Information System (INIS)

    Kuruvilla Verghese

    2002-01-01

    This report summarizes the highlights of the research performed under the 1-year NEER grant from the Department of Energy. The primary goal of this study was to investigate the effects of certain design changes in the Fisher Senoscan mammography system and in the degree of breast compression on the discernability of microcalcifications in calcification clusters often observed in mammograms with tumor lesions. The most important design change that one can contemplate in a digital mammography system to improve resolution of calcifications is the reduction of pixel dimensions of the digital detector. Breast compression is painful to the patient and is though to be a deterrent to women to get routine mammographic screening. Calcification clusters often serve as markers (indicators ) of breast cancer

  15. Monte Carlo simulation of a mammographic test phantom

    International Nuclear Information System (INIS)

    Hunt, R. A.; Dance, D. R.; Pachoud, M.; Carlsson, G. A.; Sandborg, M.; Ullman, G.

    2005-01-01

    A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic units. (authors)

  16. Image quality and dose in mammographic images obtained in Mexico City hospitals

    International Nuclear Information System (INIS)

    Ruiz-Trejo, C.; Brandan, M.-E.; Verdejo, M.; Flores, A.; Guevara, M.; Martin, J.; Madero-Preciado, L.

    2001-01-01

    The performance of three mammographic systems in large Mexican hospitals has been evaluated, as well as the image quality and associated dose. Quality control tests include examination of X-ray equipment, darkroom conditions, film processor, and viewboxes. Systems referred to as '1', '2', and '3' passed 50%, 75% and 75% of these tests, respectively. Quality image is assessed using five images obtained under similar nominal conditions in each X-ray equipment. System 1 generates no image of acceptable quality, while equipment 2 and 3 produce one and two, respectively. The mean glandular dose for the best images obtained in each service with an accreditation phantom has been measured, and the values are 1.4 mGy, 1.6 mGy, and 1.0 mGy, respectively. (author)

  17. Digital Imaging. Chapter 16

    Energy Technology Data Exchange (ETDEWEB)

    Clunie, D. [CoreLab Partners, Princeton (United States)

    2014-09-15

    The original means of recording X ray images was a photographic plate. Nowadays, all medical imaging modalities provide for digital acquisition, though globally, the use of radiographic film is still widespread. Many modalities are fundamentally digital in that they require image reconstruction from quantified digital signals, such as computed tomography (CT) and magnetic resonance imaging (MRI)

  18. Early detection of the incidence of malignancy in mammograms using digital image correlation

    International Nuclear Information System (INIS)

    Espitia, J.; Jacome, J.; Torres, C.

    2016-01-01

    The digital image correlation has proved an effective way for Pattern Recognition, this research to identify the using Findings digitally extracted from a mammographic image, which is the means used by more specialists to determine if a person is a candidate or not, a Suffer Breast Cancer. This shown that early detection of symptom logy 'carcinogenic' is the key . (Author)

  19. Digital versus screen-film mammography: impact of mammographic density and hormone therapy on breast cancer detection.

    Science.gov (United States)

    Chiarelli, Anna M; Prummel, Maegan V; Muradali, Derek; Shumak, Rene S; Majpruz, Vicky; Brown, Patrick; Jiang, Hedy; Done, Susan J; Yaffe, Martin J

    2015-11-01

    Most studies that have examined the effects of mammographic density and hormone therapy use on breast cancer detection have included screen-film mammography. This study further examines this association in post-menopausal women screened by digital mammography. Approved by the University of Toronto Research Ethics Board, this study identified 688,418 women of age 50-74 years screened with digital or screen-film mammography from 2008 to 2009 within the Ontario Breast Screening Program. Of 2993 eligible women with invasive breast cancer, 2450 were contacted and 1421 participated (847 screen-film mammography, 574 digital direct radiography). Mammographic density was measured by study radiologists using the standard BI-RADS classification system and by a computer-assisted method. Information on hormone therapy use was collected by a telephone-administered questionnaire. Logistic regression and two-tailed tests for significance evaluated associations between factors and detection method by mammography type. Women with >75 % radiologist-measured mammographic density compared to those with diagnosed with an interval than screen-detected cancer, with the difference being greater for those screened with screen-film (OR = 6.40, 95 % CI 2.30-17.85) than digital mammography (OR = 2.41, 95 % CI 0.67-8.58) and aged 50-64 years screened with screen-film mammography (OR = 10.86, 95 % CI 2.96-39.57). Recent former hormone therapy users were also at an increased risk of having an interval cancer with the association being significant for women screened with digital mammography (OR = 2.08, 95 % CI 1.17-3.71). Breast screening using digital mammography lowers the risk of having an interval cancer for post-menopausal women aged 50-64 with greater mammographic density.

  20. Investigation of the performance of digital mammographic X-Ray equipment: Determination of noise equivalent quanta (NEQQC) and detective quantum efficiency (DQEQC) compared with the automated analysis of CDMAM test images with CDCOM and CDIC programs

    International Nuclear Information System (INIS)

    Loos, C.; Buhr, H.; Blendl, C.

    2013-01-01

    Purpose: The purpose of this study was to determine the values for noise equivalent quanta, detective quantum efficiency, modulation transfer function, noise power spectrum, and the values for the parameters for automated CDMAM test phantom analyses required to achieve satisfactory quality of digital mammograms. Materials and Methods: During the course of tests according to PAS 1054 (8 CR and 12 DR systems), test images were made with a test phantom insertion plate containing two lead edges in nearly horizontal and vertical directions. Only original data were processed with a program that was developed at the Cologne University of Applied Sciences (FH-Koeln). All equipment systems complied with the requirements regarding visual recognition of gold-plated mammo detail test objects. CDMAM test images were also evaluated using the CDIC (CUAS) and CDCOM (EUREF) programs. Results: CDMAM test images show comparable values for the parameters, precision, sensitivity and specificity. DR systems require about half the dose used for CR systems for similar results. The NEQ values achieved with the dose used for the CDMAM test images show larger scatter ranges. The MTF of the different equipment system types differ significantly from each other. Conclusion: Visual evaluation of CDMAM test images can be replaced by automated evaluation. Limiting values were determined for each parameter. Automated evaluation of CDMAM test phantom images should be used to determine the physical parameter NEQ QC . This method is much more sensitive to noise and sharpness influences and has a higher validity than diagnostic methods. Automated evaluation objectivizes testing. (orig.)

  1. Accuracy and reading time for six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts.

    Science.gov (United States)

    Tagliafico, Alberto Stefano; Calabrese, Massimo; Bignotti, Bianca; Signori, Alessio; Fisci, Erica; Rossi, Federica; Valdora, Francesca; Houssami, Nehmat

    2017-12-01

    To compare six strategies using digital breast tomosynthesis in women with mammographically negative dense breasts. This is a substudy of the 'ASTOUND' trial. 163 women who underwent tomosynthesis with synthetically reconstructed projection images (S-2D) inclusive of 13 (7.9%) cases diagnosed with breast cancer at histopathology after surgery were evaluated. Accuracy measures and screen-reading time of six reading strategies were assessed: (A) Single reading of S-2D alone, (B) single reading of tomosynthesis alone, (C) single reading of joint interpretation of tomosynthesis + S-2D, (D) double-reading of S-2D alone, (E) double reading of tomosynthesis alone, (F) double reading of joint interpretation of tomosynthesis + S-2D. The median age of the patients was 53 years (range, 36-88 years). The highest global accuracy was obtained with double reading of tomosynthesis + S2D (F) with an AUC of 0.979 (ptomosynthesis+ S2D had the best accuracy of six screen-reading strategies although it had the longest reading time. • Tomosynthesis acquisitions are progressively implemented with reconstructed synthesized 2D images • Double reading using S-2D plus tomosynthesis had the highest global accuracy (ptomosynthesis increased reading time.

  2. Local breast density assessment using reacquired mammographic images.

    Science.gov (United States)

    García, Eloy; Diaz, Oliver; Martí, Robert; Diez, Yago; Gubern-Mérida, Albert; Sentís, Melcior; Martí, Joan; Oliver, Arnau

    2017-08-01

    The aim of this paper is to evaluate the spatial glandular volumetric tissue distribution as well as the density measures provided by Volpara™ using a dataset composed of repeated pairs of mammograms, where each pair was acquired in a short time frame and in a slightly changed position of the breast. We conducted a retrospective analysis of 99 pairs of repeatedly acquired full-field digital mammograms from 99 different patients. The commercial software Volpara™ Density Maps (Volpara Solutions, Wellington, New Zealand) is used to estimate both the global and the local glandular tissue distribution in each image. The global measures provided by Volpara™, such as breast volume, volume of glandular tissue, and volumetric breast density are compared between the two acquisitions. The evaluation of the local glandular information is performed using histogram similarity metrics, such as intersection and correlation, and local measures, such as statistics from the difference image and local gradient correlation measures. Global measures showed a high correlation (breast volume R=0.99, volume of glandular tissue R=0.94, and volumetric breast density R=0.96) regardless the anode/filter material. Similarly, histogram intersection and correlation metric showed that, for each pair, the images share a high degree of information. Regarding the local distribution of glandular tissue, small changes in the angle of view do not yield significant differences in the glandular pattern, whilst changes in the breast thickness between both acquisition affect the spatial parenchymal distribution. This study indicates that Volpara™ Density Maps is reliable in estimating the local glandular tissue distribution and can be used for its assessment and follow-up. Volpara™ Density Maps is robust to small variations of the acquisition angle and to the beam energy, although divergences arise due to different breast compression conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Digital cine-imaging

    International Nuclear Information System (INIS)

    Masuda, Kazuhiro

    1992-01-01

    Digitization of fluoroscopic images has been developed for the digital cine imaging system as a result of the computer technology, television technology, and popularization of interventional radiology. Present digital cine imaging system is able to offer images similar to cine film because of the higher operatability and better image quality with the development of interventional radiology. As a result, its higher usefulness for catheter diagnosis examination except for interventional radiology was reported, and the possibility of having filmless cine is close to becoming a reality. However several problems have been pointed out, such as spatial resolution, time resolution, storage and exchangeability of data, disconsolidated viewing functions, etc. Anyhow, digital cine imaging system has some unresolved points and lots the needs to be discussed. The tendency of digitization is the passage of the time and we have to promote a study for more useful digital cine imaging system in team medical treatment which centers on the patients. (author)

  4. Digital Breast Tomosynthesis versus Supplemental Diagnostic Mammographic Views for Evaluation of Noncalcified Breast Lesions

    Science.gov (United States)

    Bandos, Andriy I.; Ganott, Marie A.; Sumkin, Jules H.; Kelly, Amy E.; Catullo, Victor J.; Rathfon, Grace Y.; Lu, Amy H.; Gur, David

    2013-01-01

    Purpose: To compare the diagnostic performance of breast tomosynthesis versus supplemental mammography views in classification of masses, distortions, and asymmetries. Materials and Methods: Eight radiologists who specialized in breast imaging retrospectively reviewed 217 consecutively accrued lesions by using protocols that were HIPAA compliant and institutional review board approved in 182 patients aged 31–60 years (mean, 50 years) who underwent diagnostic mammography and tomosynthesis. The lesions in the cohort included 33% (72 of 217) cancers and 67% (145 of 217) benign lesions. Eighty-four percent (182 of 217) of the lesions were masses, 11% (25 of 217) were asymmetries, and 5% (10 of 217) were distortions that were initially detected at clinical examination in 8% (17 of 217), at mammography in 80% (173 of 217), at ultrasonography (US) in 11% (25 of 217), or at magnetic resonance imaging in 1% (2 of 217). Histopathologic examination established truth in 191 lesions, US revealed a cyst in 12 lesions, and 14 lesions had a normal follow-up. Each lesion was interpreted once with tomosynthesis and once with supplemental mammographic views; both modes included the mediolateral oblique and craniocaudal views in a fully crossed and balanced design by using a five-category Breast Imaging Reporting and Data System (BI-RADS) assessment and a probability-of-malignancy score. Differences between modes were analyzed with a generalized linear mixed model for BI-RADS–based sensitivity and specificity and with modified Obuchowski-Rockette approach for probability-of-malignancy–based area under the receiver operating characteristic (ROC) curve. Results: Average probability-of-malignancy–based area under the ROC curve was 0.87 for tomosynthesis versus 0.83 for supplemental views (P tomosynthesis, the false-positive rate decreased from 85% (989 of 1160) to 74% (864 of 1160) (P tomosynthesis, more cancers were classified as BI-RADS category 5 (39% [226 of 576] vs 33% [188

  5. Feature extraction using convolutional neural network for classifying breast density in mammographic images

    Science.gov (United States)

    Thomaz, Ricardo L.; Carneiro, Pedro C.; Patrocinio, Ana C.

    2017-03-01

    Breast cancer is the leading cause of death for women in most countries. The high levels of mortality relate mostly to late diagnosis and to the direct proportionally relationship between breast density and breast cancer development. Therefore, the correct assessment of breast density is important to provide better screening for higher risk patients. However, in modern digital mammography the discrimination among breast densities is highly complex due to increased contrast and visual information for all densities. Thus, a computational system for classifying breast density might be a useful tool for aiding medical staff. Several machine-learning algorithms are already capable of classifying small number of classes with good accuracy. However, machinelearning algorithms main constraint relates to the set of features extracted and used for classification. Although well-known feature extraction techniques might provide a good set of features, it is a complex task to select an initial set during design of a classifier. Thus, we propose feature extraction using a Convolutional Neural Network (CNN) for classifying breast density by a usual machine-learning classifier. We used 307 mammographic images downsampled to 260x200 pixels to train a CNN and extract features from a deep layer. After training, the activation of 8 neurons from a deep fully connected layer are extracted and used as features. Then, these features are feedforward to a single hidden layer neural network that is cross-validated using 10-folds to classify among four classes of breast density. The global accuracy of this method is 98.4%, presenting only 1.6% of misclassification. However, the small set of samples and memory constraints required the reuse of data in both CNN and MLP-NN, therefore overfitting might have influenced the results even though we cross-validated the network. Thus, although we presented a promising method for extracting features and classifying breast density, a greater database is

  6. Performances of different digital mammography imaging systems: Evaluation and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)]. E-mail: giuseppina.bisogni@pi.infn.it; Bulajic, D. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); International Centre for Theoretical Physics, Trieste (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)

    2005-07-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems.

  7. Performances of different digital mammography imaging systems: Evaluation and comparison

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Bulajic, D.; Delogu, P.; Fantacci, M.E.; Novelli, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2005-01-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems

  8. Digital cardiovascular imaging

    International Nuclear Information System (INIS)

    Myerowitz, P.D.; Mistretta, C.A.; Shaw, C.-G.; Van Lysel, M.S.; Swanson, D.K.; Lasser, T.A.; Dhanani, S.P.; Zarnstorff, W.C.; Vander Ark, C.R.; Dobbins, J.T.; Peppler, W.W.; Crummy, A.B.

    1982-01-01

    The authors have previously reported on real time digital fluoroscopic subtraction techniques developed in the laboratory during the past 10 years. This paper outlines basic apparatus configuration and imaging modes used for preliminary studies involving visualization of the canine and human heart. All of the techniques involve the use of real time digital subtraction processing of data from an image intensified television fluoroscopy system. Based on the configuration of the digital processing equipment a number of different imaging modalities are possible. A brief description of the apparatus and these imaging modes is given. (Auth.)

  9. Automatic detection of regions of interest in mammographic images

    Science.gov (United States)

    Cheng, Erkang; Ling, Haibin; Bakic, Predrag R.; Maidment, Andrew D. A.; Megalooikonomou, Vasileios

    2011-03-01

    This work is a part of our ongoing study aimed at comparing the topology of anatomical branching structures with the underlying image texture. Detection of regions of interest (ROIs) in clinical breast images serves as the first step in development of an automated system for image analysis and breast cancer diagnosis. In this paper, we have investigated machine learning approaches for the task of identifying ROIs with visible breast ductal trees in a given galactographic image. Specifically, we have developed boosting based framework using the AdaBoost algorithm in combination with Haar wavelet features for the ROI detection. Twenty-eight clinical galactograms with expert annotated ROIs were used for training. Positive samples were generated by resampling near the annotated ROIs, and negative samples were generated randomly by image decomposition. Each detected ROI candidate was given a confidences core. Candidate ROIs with spatial overlap were merged and their confidence scores combined. We have compared three strategies for elimination of false positives. The strategies differed in their approach to combining confidence scores by summation, averaging, or selecting the maximum score.. The strategies were compared based upon the spatial overlap with annotated ROIs. Using a 4-fold cross-validation with the annotated clinical galactographic images, the summation strategy showed the best performance with 75% detection rate. When combining the top two candidates, the selection of maximum score showed the best performance with 96% detection rate.

  10. Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology

    Directory of Open Access Journals (Sweden)

    Shibin Wu

    2013-01-01

    Full Text Available A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR, and contrast improvement index (CII.

  11. The impact of mammographic imaging systems on density measurement

    Science.gov (United States)

    Damases, Christine N.; Brennan, Patrick C.; McEntee, Mark F.

    2015-03-01

    The purpose of this study is to investigate whether having a mammogram on differing manufacturer equipment will affect a woman's breast density (BD) measurement. The data set comprised of 40 cases, each containing a combined image of the left craniocaudal (LCC) and left mediolateral oblique (LMLO). These images were obtained from 20 women age between 42-89 years. The images were acquired on two imaging systems (GE and Hologic) one year apart. Volumetric BD was assessed by using Volpara Density Grade (VDG) and average BD% (AvBD%). Twenty American Board of Radiology (ABR) examiners assessed the same images using the BIRADS BD scale 1-4. Statistical comparisons were performed on the means using Mann-Whitney, on correlation using Spearman's rank coefficient of correlation and agreement using Cohen's Kappa. The absolute median BIRADS difference between GE and Hologic was 0.225 (2.00 versus 2.00; pperfect agreement for VDG (κ=0.933; p<0.001).

  12. Quality assurance applied to mammographic equipments using phantoms and software for its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Patricia, E-mail: p.mayo@titaniast.co [Titania Servicios Tecnologicos S.L., Grupo Dominguis, Apartado 46015, Valencia (Spain); Rodenas, Francisco [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Apartado 46022, Valencia (Spain); Manuel Campayo, Juan [Hospital Clinico Universitario de Valencia, Avda. Blasco Ibanez, Apartado 46017, Valencia (Spain); Verdu, Gumersido [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Apartado 46022, Valencia (Spain)

    2010-07-21

    The image quality assessment in radiographic equipments is a very important item for a complete quality control of the radiographic image chain. The periodic evaluation of the radiographic image quality must guarantee the constancy of this quality to carry out a suitable diagnosis. Mammographic phantom images are usually used to study the quality of images obtained by determined mammographic equipment. The digital image treatment techniques allow to carry out an automatic analysis of the phantom image. In this work we apply some techniques of digital image processing to analyze in an automatic way the image quality of mammographic phantoms, namely CIRS SP01 and RACON for different varying conditions of the mammographic equipment. The CIRS SP01 phantom is usually used in analogic mammographic equipments and the RACON phantom has been specifically developed by authors to be applied to acceptance and constancy tests of the image quality in digital radiographic equipments following recommendations of international associations. The purpose of this work consists in analyzing the image quality for both phantoms by means of an automatic software utility. This analysis allows us to study the functioning of the image chain of the mammographic system in an objective way, so an abnormal functioning of the radiographic equipment might be detected.

  13. Quality assurance applied to mammographic equipments using phantoms and software for its evaluation

    International Nuclear Information System (INIS)

    Mayo, Patricia; Rodenas, Francisco; Manuel Campayo, Juan; Verdu, Gumersido

    2010-01-01

    The image quality assessment in radiographic equipments is a very important item for a complete quality control of the radiographic image chain. The periodic evaluation of the radiographic image quality must guarantee the constancy of this quality to carry out a suitable diagnosis. Mammographic phantom images are usually used to study the quality of images obtained by determined mammographic equipment. The digital image treatment techniques allow to carry out an automatic analysis of the phantom image. In this work we apply some techniques of digital image processing to analyze in an automatic way the image quality of mammographic phantoms, namely CIRS SP01 and RACON for different varying conditions of the mammographic equipment. The CIRS SP01 phantom is usually used in analogic mammographic equipments and the RACON phantom has been specifically developed by authors to be applied to acceptance and constancy tests of the image quality in digital radiographic equipments following recommendations of international associations. The purpose of this work consists in analyzing the image quality for both phantoms by means of an automatic software utility. This analysis allows us to study the functioning of the image chain of the mammographic system in an objective way, so an abnormal functioning of the radiographic equipment might be detected.

  14. Mammographic microcalcifications: Detection with xerography, screen-film, and digitized film display

    International Nuclear Information System (INIS)

    Smathers, R.L.; Bush, E.; Drace, J.; Stevens, M.; Sommer, F.G.; Brown, B.W.; Karras, B.

    1986-01-01

    Pulverized bone specks and aluminum oxide specks were measured by hand into sizes ranging from 0.2 mm to 1.0 mm and then arranged in clusters. These clusters were superimposed on a human breast tissue phantom, and xeromammograms and screen-film mammograms of the clusters were made. The screen-film mammograms were digitized using a high-resolution laser scanner and then displayed on cathode ray tube (CRT) monitors. Six radiologists independently counted the microcalcifications on the xeromammograms, the screen-film mammograms, and the digitized film mammograms. The xeromammograms were examined with a magnifying glass; the screen-film images were examined with a magnifying glass and by hot light; and the digitized-film images were examined by electronic magnification and image processing. The bone speck size that corresponded to a mean 50% detectability level for each technique was as follows: xeromammography, 0.550 mm; digitized film, 0.573 mm; and screen-film, 0.661 mm. We postulate that electronic magnification and image processing with edge enhancement can improve the capability of screen-film mammography to enhance the detection of microcalcifications

  15. Mammographic Image Analysis of Breast Using Neural Network

    Directory of Open Access Journals (Sweden)

    Lesa MAMBWE

    2015-07-01

    Full Text Available This paper discusses the various stages of detecting tumours of the breast mammogram images. A Neural Network algorithm is applied for obtaining the complete classification of the tumour into normal or abnormal. The most important procedure or technique for obtaining the classification is the feature extraction, by extracting a few of discriminative features, first-order statistical intensities and gradients. The Image Pre-processing technique is essential prior to Image Segmentation in order to obtain accurate segmentation. Thus mass detection can be carried out. The processes involved in achieving the three techniques mentioned above include global equalization transformation, denoising, binarization, breast orientation determination and the pectoral muscle suppression. The presented feature difference matrices could be created by five features extracted from a suspicious region of interest (ROI. Grey Level Co-occurrence Matrix (GLCM aids the obtaining of statistical features such as correlation, energy, entropy and homogeneity. The other statistical to features to obtain are area, moment, variance, entropy, standard deviation and moment. The Neural network technique yields results of abnormal mammograms.

  16. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first...

  17. Digital imaging primer

    CERN Document Server

    Parkin, Alan

    2016-01-01

    Digital Imaging targets everyyone with an interest in digital imaging, be they professional or private, who uses even quite modest equipment such as a PC, digital camera and scanner, a graphics editor such as Paint, and an inkjet printer. Uniquely, it is intended to fill the gap between highly technical texts for academics (with access to expensive equipment) and superficial introductions for amateurs. The four-part treatment spans theory, technology, programs and practice. Theory covers integer arithmetic, additive and subtractive color, greyscales, computational geometry, and a new presentation of discrete Fourier analysis; Technology considers bitmap file structures, scanners, digital cameras, graphic editors, and inkjet printers; Programs develops several processing tools for use in conjunction with a standard Paint graphics editor and supplementary processing tools; Practice discusses 1-bit, greyscale, 4-bit, 8-bit, and 24-bit images for the practice section. Relevant QBASIC code is supplied an accompa...

  18. Development of a Mammographic Image Processing Environment Using MATLAB.

    Science.gov (United States)

    1994-12-01

    image receptor. The absorption of the photons by the intensifying screen stimulates the emission of visible light that causes the film to darken. The...A H4- NO 4 ., NO 40 400 4444 0 M4-4 0 000. H~E 0 04 4HJ V0 Z ’ H4 ’.. - HHO I0 00 0 00 ý -~ 0 4 H C) 4’~~~~0~ HO 0𔃺 0H H U0.04 4 - . 0 4’ 0440 0m...0 044) 4-4 0. -1 O0H.01 0 0V C4 0.0 004 ’rH OH 0H441 1- - w~ 9. .0 44-4O 0 P. I I I 01 .0 0 .4J ~ 0 H p ’~ 0 p’ a)0H . Z’~ H4 H4 0 HHO a0. 4’. 04 0 P

  19. Digital imaging in health care

    International Nuclear Information System (INIS)

    1987-01-01

    This volume describes equipment for the generation and processing of digital images in medicine. Separate chapters deal with international trade i this equipment, with economic and social considerations of digital imaging, with experiences in the use and production of digital imaging equipment and with the current status and likely trends in applications of digital imaging. 84 refs, figs and tabs

  20. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  1. Digital vascular imaging

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Engels, B.C.H.

    1981-01-01

    Digitalizing videosignals from an image intensifying TV-chain, followed by subtraction, contrast intensifying, and reformation to analogous signal deliver angiography pictures of high quality after intravenous injection of the contrast medium. As the examination is only little invasive it can be carried out on outdoor patients or in the polyclinics. The possibilities of the digital vessel imagination (DVI) are shown at vessel images of different parts of the body; a 36 cm image intensifyer which can be switched to 3 different sorts of operation and has a plumbicon-TV recording tube is used as receiver. (orig.) [de

  2. Computer-aided diagnosis of mammographic masses using geometric verification-based image retrieval

    Science.gov (United States)

    Li, Qingliang; Shi, Weili; Yang, Huamin; Zhang, Huimao; Li, Guoxin; Chen, Tao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Computer-Aided Diagnosis of masses in mammograms is an important indicator of breast cancer. The use of retrieval systems in breast examination is increasing gradually. In this respect, the method of exploiting the vocabulary tree framework and the inverted file in the mammographic masse retrieval have been proved high accuracy and excellent scalability. However it just considered the features in each image as a visual word and had ignored the spatial configurations of features. It greatly affect the retrieval performance. To overcome this drawback, we introduce the geometric verification method to retrieval in mammographic masses. First of all, we obtain corresponding match features based on the vocabulary tree framework and the inverted file. After that, we grasps the main point of local similarity characteristic of deformations in the local regions by constructing the circle regions of corresponding pairs. Meanwhile we segment the circle to express the geometric relationship of local matches in the area and generate the spatial encoding strictly. Finally we judge whether the matched features are correct or not, based on verifying the all spatial encoding are whether satisfied the geometric consistency. Experiments show the promising results of our approach.

  3. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  4. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  5. Digital image analysis

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Vainer, Ben; Steiniche, Torben

    2012-01-01

    Digital image analysis (DIA) is increasingly implemented in histopathological research to facilitate truly quantitative measurements, decrease inter-observer variation and reduce hands-on time. Originally, efforts were made to enable DIA to reproduce manually obtained results on histological slides...... reproducibility, application of stereology-based quantitative measurements, time consumption, optimization of histological slides, regions of interest selection and recent developments in staining and imaging techniques....

  6. Diagnostic imaging of lobular carcinoma of the breast. Mammographic, US and MR findings

    International Nuclear Information System (INIS)

    Bazzocchi, M.; Facecchia, I.; Zuiani, C.; Smania, S.; Puglisi, F.; Di Loreto, C.

    2000-01-01

    Purpose of this article is to evaluate the most frequent mammographic, US and MR findings of invasive lobular carcinoma and the role of MRI in defining multifocality and/or multi centricity of this tumor histotype. 45 lobular carcinomas in 39 patients were studied and selected from 421 breast cancers. Core biopsy with a 14G needle was performed in 39 cases, under US guidance in 36/39 and under mammographic guidance in 3/39 cases. Surgical biopsy was performed in 2 cases and the diagnosis could be made only after mastectomy in 5 cases. All patients were examined with mammography and US and (10-13 MHz) and 8 also with MRI. 28/46 palpable lesions (60.9%). Core biopsy correctly diagnosed 38/39 lesions (97.4%). The most frequent mammographic findings was that of a nodular opacity without microcalcifications (34.8%), followed by a mass with spiculate d borders (30.4%). Microcalcifications were seen in one case only (2.2%). Mammography detected no abnormalities in 15.2% of cases, but US showed a lesion in 2 of these cases. The most frequent US pattern was that of a hypoechoic lesion (43.5%), followed by posterior US beam attenuation. No US signs of abnormality were seen 15.2%. MRI correctly detected 13 lesions. Contrast enhancement was greater than 70% at one minute in 10 cases and greater than 40% in one case; two lesions exhibited atypical slow contrast enhancement, peaking at 5 minutes. MRI detected 5 lesions missed both mammography and US and showed multifocal (3 and 2) lesions where the other techniques had detected one lesion only. At mammography and US invasive lobular carcinoma exhibits no different features than ductal carcinoma but is difficult to identify especially in its early stages. US is a useful tool especially to characterize mammography-detected lesions but in the experience it also demonstrated 2 lesions missed at mammography. MRI is a precious examination to define the multifocal, multi centric or bilateral character of invasive lobular carcinoma

  7. Task-Specific Optimization of Mammographic Systems

    National Research Council Canada - National Science Library

    Saunders, Robert

    2005-01-01

    .... This model was verified by a human observer performance experiment. The next objective explored the physical properties of a digital mammographic system, including resolution, noise, efficiency, and lag...

  8. Comparison between the implementation of quality criteria of radiographic image in conventional and digital mammography equipments

    International Nuclear Information System (INIS)

    Alcantara, M.C.; Sordi, G.M.A.A.; Caldas, L.V.E.; Furquim, T.A.C.

    2008-01-01

    The mammographic examination needs a strict quality control. A publication of the European Commission provides guidelines on quality criteria for the images of the breast, quantifying the quality obtained in the image. Following the recommendations of the European Commission, two kinds of mammographic equipments, at a same institution, were evaluated to compare the quality of the conventional and digital images. Besides of that, the Average Glandular Dose (AGD) and the Entrance Surface Dose (ESD) were measured by using an ionization chamber (Radcal, 6M) in the radiation beams of each equipment. The digital equipment fulfills more quality criteria than the conventional equipment, provided ESD values, AGD values and a rejection index lower than the conventional equipment. Therefore, the digital mammography can be considered more adequate than the conventional one, both for criteria analyses and for dose optimization. (author)

  9. Digital stereoscopic imaging

    Science.gov (United States)

    Rao, A. Ravishankar; Jaimes, Alejandro

    1999-05-01

    The convergence of inexpensive digital cameras and cheap hardware for displaying stereoscopic images has created the right conditions for the proliferation of stereoscopic imagin applications. One application, which is of growing importance to museums and cultural institutions, consists of capturing and displaying 3D images of objects at multiple orientations. In this paper, we present our stereoscopic imaging system and methodology for semi-automatically capturing multiple orientation stereo views of objects in a studio setting, and demonstrate the superiority of using a high resolution, high fidelity digital color camera for stereoscopic object photography. We show the superior performance achieved with the IBM TDI-Pro 3000 digital camera developed at IBM Research. We examine various choices related to the camera parameters, image capture geometry, and suggest a range of optimum values that work well in practice. We also examine the effect of scene composition and background selection on the quality of the stereoscopic image display. We will demonstrate our technique with turntable views of objects from the IBM Corporate Archive.

  10. Digital imaging in dentistry.

    Science.gov (United States)

    Essen, S Donovan

    2011-01-01

    Information technology is vital to operations, marketing, accounting, finance and administration. One of the most exciting and quickly evolving technologies in the modern dental office is digital applications. The dentist is often the business manager, information technology officer and strategic planning chief for his small business. The information systems triangle applies directly to this critical manager supported by properly trained ancillary staff and good equipment. With emerging technology driving all medical disciplines and the rapid pace at which it emerges, it is vital for the contemporary practitioner to keep abreast of the newest information technology developments. This article compares the strategic and operational advantages of digital applications, specifically imaging. The focus of this paper will be on digital radiography (DR), 3D computerized tomography, digital photography and digitally-driven CAD/CAM to what are now considered obsolescing modalities and contemplates what may arrive in the future. It is the purpose of this essay to succinctly evaluate the decisions involved in the role, application and implications of employing this tool in the dental environment

  11. Analog and digital image quality:

    OpenAIRE

    Sardo, Alberto

    2004-01-01

    Background. Lastly the X ray facilities are moving to a slow, but continuous process of digitalization. The dry laser printers allow hardcopy images with optimum resolution and contrast for all the modalities. In breast imaging, thedelay of digitalization depends to the high cost of digital systems and, attimes, to the doubts of the diagnostic accuracy of reading the breast digital images. Conclusions. The Screen film mammography (SFM) is the most efficient diagnostic modality to detect the b...

  12. Minimization of annotation work: diagnosis of mammographic masses via active learning

    Science.gov (United States)

    Zhao, Yu; Zhang, Jingyang; Xie, Hongzhi; Zhang, Shuyang; Gu, Lixu

    2018-06-01

    The prerequisite for establishing an effective prediction system for mammographic diagnosis is the annotation of each mammographic image. The manual annotation work is time-consuming and laborious, which becomes a great hindrance for researchers. In this article, we propose a novel active learning algorithm that can adequately address this problem, leading to the minimization of the labeling costs on the premise of guaranteed performance. Our proposed method is different from the existing active learning methods designed for the general problem as it is specifically designed for mammographic images. Through its modified discriminant functions and improved sample query criteria, the proposed method can fully utilize the pairing of mammographic images and select the most valuable images from both the mediolateral and craniocaudal views. Moreover, in order to extend active learning to the ordinal regression problem, which has no precedent in existing studies, but is essential for mammographic diagnosis (mammographic diagnosis is not only a classification task, but also an ordinal regression task for predicting an ordinal variable, viz. the malignancy risk of lesions), multiple sample query criteria need to be taken into consideration simultaneously. We formulate it as a criteria integration problem and further present an algorithm based on self-adaptive weighted rank aggregation to achieve a good solution. The efficacy of the proposed method was demonstrated on thousands of mammographic images from the digital database for screening mammography. The labeling costs of obtaining optimal performance in the classification and ordinal regression task respectively fell to 33.8 and 19.8 percent of their original costs. The proposed method also generated 1228 wins, 369 ties and 47 losses for the classification task, and 1933 wins, 258 ties and 185 losses for the ordinal regression task compared to the other state-of-the-art active learning algorithms. By taking the

  13. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  14. Digital imaging in cardiovascular radiology

    International Nuclear Information System (INIS)

    Heintzen, P.H.; Brennecke, R.

    1983-01-01

    The present book contains 27 papers presented at an international symposium on digital imaging in cardiovascular radiology held in Kiel in 1982. The main themes were as follows. Introductory reviews, digital systems for X-ray video imaging, quantitative X-ray image analysis, and clinical applications. (MG)

  15. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... of conflict-related images raise issues of knowledge production and research....

  16. Neural network recognition of mammographic lesions

    International Nuclear Information System (INIS)

    Oldham, W.J.B.; Downes, P.T.; Hunter, V.

    1987-01-01

    A method for recognition of mammographic lesions through the use of neural networks is presented. Neural networks have exhibited the ability to learn the shape andinternal structure of patterns. Digitized mammograms containing circumscribed and stelate lesions were used to train a feedfoward synchronous neural network that self-organizes to stable attractor states. Encoding of data for submission to the network was accomplished by performing a fractal analysis of the digitized image. This results in scale invariant representation of the lesions. Results are discussed

  17. Modeling indirect detectors for performance optimization of a digital mammographic detector for dual energy applications

    International Nuclear Information System (INIS)

    Martini, N; Koukou, V; Sotiropoulou, P; Nikiforidis, G; Kalyvas, N; Michail, C; Valais, I; Kandarakis, I; Fountos, G; Bakas, A

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. The advent of two X-ray energies (low and high) requires a suitable detector. The scope of this work is to determine optimum detector parameters for dual energy applications. The detector was modeled through the linear cascaded (LCS) theory. It was assumed that a phosphor material was coupled to a CMOS photodetector (indirect detection). The pixel size was 22.5 μm. The phosphor thickness was allowed to vary between 20mg/cm 2 and 160mg/cm 2 The phosphor materials examined where Gd 2 O 2 S:Tb and Gd 2 O 2 S:Eu. Two Tungsten (W) anode X-ray spectra at 35 kV (filtered with 100 μm Palladium (Pd)) and 70 kV (filtered with 800 pm Ytterbium (Yb)), corresponding to low and high energy respectively, were considered to be incident on the detector. For each combination the contrast- to-noise ratio (CNR) and the detector optical gain (DOG), showing the sensitivity of the detector, were calculated. The 40 mg/cm 2 and 70 mg/cm 2 Gd 2 O 2 S:Tb exhibited the higher DOG values for the low and high energy correspondingly. Higher CNR between microcalcification and mammary gland exhibited the 70mg/cm 2 and the 100mg/cm 2 Gd 2 O 2 S:Tb for the low and the high energy correspondingly

  18. A new and fast image feature selection method for developing an optimal mammographic mass detection scheme.

    Science.gov (United States)

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-08-01

    Selecting optimal features from a large image feature pool remains a major challenge in developing computer-aided detection (CAD) schemes of medical images. The objective of this study is to investigate a new approach to significantly improve efficacy of image feature selection and classifier optimization in developing a CAD scheme of mammographic masses. An image dataset including 1600 regions of interest (ROIs) in which 800 are positive (depicting malignant masses) and 800 are negative (depicting CAD-generated false positive regions) was used in this study. After segmentation of each suspicious lesion by a multilayer topographic region growth algorithm, 271 features were computed in different feature categories including shape, texture, contrast, isodensity, spiculation, local topological features, as well as the features related to the presence and location of fat and calcifications. Besides computing features from the original images, the authors also computed new texture features from the dilated lesion segments. In order to select optimal features from this initial feature pool and build a highly performing classifier, the authors examined and compared four feature selection methods to optimize an artificial neural network (ANN) based classifier, namely: (1) Phased Searching with NEAT in a Time-Scaled Framework, (2) A sequential floating forward selection (SFFS) method, (3) A genetic algorithm (GA), and (4) A sequential forward selection (SFS) method. Performances of the four approaches were assessed using a tenfold cross validation method. Among these four methods, SFFS has highest efficacy, which takes 3%-5% of computational time as compared to GA approach, and yields the highest performance level with the area under a receiver operating characteristic curve (AUC) = 0.864 ± 0.034. The results also demonstrated that except using GA, including the new texture features computed from the dilated mass segments improved the AUC results of the ANNs optimized

  19. Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images

    Directory of Open Access Journals (Sweden)

    Fatemeh Pak

    2015-05-01

    Full Text Available Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of mammographic images and help physicians reduce false positive rate (FPR. Materials and Methods In this study, a method was proposed for improving the quality of mammographic images to help radiologists establish a prompt and accurate diagnosis. The proposed approach included three major parts including pre-processing, feature extraction, and classification. In the pre-processing stage, the region of interest was determined and the image quality was improved by non-subsampled contourlet transform and super-resolution algorithm. In the feature extraction stage, some features of image components were extracted and skewness of each feature was calculated. Finally, a support vector machine was utilized to classify the features and determine the probability of benignity or malignancy of the disease. Results Based on the obtained results using Mammographic Image Analysis Society (MIAS database, the mean accuracy was estimated at 87.26% and maximum accuracy was 96.29%. Also, the mean and minimum FPRs were estimated at 9.55% and 2.87%, respectively.     Conclusion The results obtained using MIAS database indicated the superiority of the proposed method to other techniques. The reduced FPR in the proposed method was a significant finding in the present article.

  20. Edge detection using IDL for mammographic image in Medical Physics laboratory

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Md Saion Salikin; Asmaliza Hashim; Norriza Mohd Isa; Azuhar Ripin

    2004-01-01

    Over the decade, doctors, physicists and scientists have been using radiographic images to diagnosis patient illness as well as to study the anatomy of human body without having to cut them. Now days, in the advancement of technologies these images are available in digital form. The image data can be manipulated to determine exactly the information doctors, physicists and scientists want, which can help them in decision making when diagnosis as well as help them in understanding of the human body better. In this paper, the edge detection technique is discussed in brief which is extensive used in image y segmentation where the method is performed by finding the boundaries between objects, thus indirectly defining the object. Bennet Model DMF- 150 Mammography Machine and breast phantom model l2A with 4. 0 cm compressed thickness are employed in this study. A Vidar film digitizer is used to digitize the images. The digitized images are then manipulated by using Interactive Data language (IDL) software. Results of this study are presented in brief in this presentation. (Author)

  1. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    Gaona, E.; Rivera, T.; Arreola, M.; Franco, J.; Molina, N.; Alvarez, B.; Azorín, C.G.; Casian, G.

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  2. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  3. Image quality in digital radiography

    International Nuclear Information System (INIS)

    Kuhn, H.

    1986-01-01

    The contribution deals with the potentials of digital radiography and critically evaluates the advantages of drawbacks of the image intensifier-tv-digital system; digitalisation of the X-ray film and scanning of luminescent storage foils. The evaluation is done in comparison with the image quality of the traditional, large-size X-ray picture. (orig.) [de

  4. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  5. Thickness correction of mammographic images by means of a global parameter model of the compressed breast.

    NARCIS (Netherlands)

    Snoeren, P.R.; Karssemeijer, N.

    2004-01-01

    Peripheral enhancement and tilt correction of unprocessed digital mammograms was achieved with a new reversible algorithm. This method has two major advantages for image visualization. First, the display dynamic range can be relatively small, and second, adjustment of the overall luminance to

  6. Mammographic interpretation

    International Nuclear Information System (INIS)

    Tabor, L.

    1987-01-01

    For mammography to be an effective diagnostic method, it must be performed to a very high standard of quality. Otherwise many lesions, in particular cancer in its early stages, will simply not be detectable on the films, regardless of the skill of the mammographer. Mammographic interpretation consists of two basic steps: perception and analysis. The process of mammographic interpretation begins with perception of the lesion on the mammogram. Perception is influenced by several factors. One of the most important is the parenchymal pattern of the breast tissue, detection of pathologic lesions being easier with fatty involution. The mammographer should use a method for the systematic viewing of the mammograms that will ensure that all parts of each mammogram are carefully searched for the presence of lesions. The method of analysis proceeds according to the type of lesion. The contour analysis of primary importance in the evaluation of circumscribed tumors. After having analyzed the contour and density of a lesion and considered its size, the mammographer should be fairly certain whether the circumscribed tumor is benign or malignant. Fine-needle puncture and/or US may assist the mammographer in making this decision. Painstaking analysis is required because many circumscribed tumors do not need to be biopsied. The perception of circumscribed tumors seldom causes problems, but their analysis needs careful attention. On the other hand, the major challenge with star-shaped lesions is perception. They may be difficult to discover when small. Although the final diagnosis of a stellate lesion can be made only with the help of histologic examination, the preoperative mammorgraphic differential diagnosis can be highly accurate. The differential diagnostic problem is between malignant tumors (scirrhous carcinoma), on the one hand, and traumatic fat necrosis as well as radial scars on the other hand

  7. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  8. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... and distance, and the multiplicity of images. It engages critically with these interlinking themes as they are addressed in the contributing articles to the Special Issue as well as beyond, asking how genres and tropes are reproduced, how power plays a role in access to images, and how the sheer quantity...... of conflict-related images raise issues of knowledge production and research....

  9. Does image quality matter? Impact of resolution and noise on mammographic task performance

    International Nuclear Information System (INIS)

    Saunders, Robert S. Jr.; Baker, Jay A.; Delong, David M.; Johnson, Jeff P.; Samei, Ehsan

    2007-01-01

    The purpose of this study was to examine the effects of different resolution and noise levels on task performance in digital mammography. This study created an image set with images at three different resolution levels, corresponding to three digital display devices, and three different noise levels, with noise magnitudes similar to full clinical dose, half clinical dose, and quarter clinical dose. The images were read by five experienced breast imaging radiologists. The data were then analyzed to compute two accuracy statistics (overall classification accuracy and lesion detection accuracy) and performance at four diagnostic tasks (detection of microcalcifications, benign masses, malignant masses, and discrimination of benign and malignant masses). Human observer results showed decreasing display resolution had little effect on overall classification accuracy and individual diagnostic task performance, but increasing noise caused overall classification accuracy to decrease by a statistically significant 21% as the breast dose went to one quarter of its normal clinical value. The noise effects were most prominent for the tasks of microcalcification detection and mass discrimination. When the noise changed from full clinical dose to quarter clinical dose, the microcalcification detection performance fell from 89% to 67% and the mass discrimination performance decreased from 93% to 79%, while malignant mass detection performance remained relatively constant with values of 88% and 84%, respectively. As a secondary aim, the image set was also analyzed by two observer models to examine whether their performance was similar to humans. Observer models differed from human observers and each other in their sensitivity to resolution degradation and noise. The primary conclusions of this study suggest that quantum noise appears to be the dominant image quality factor in digital mammography, affecting radiologist performance much more profoundly than display resolution

  10. Effect of image quality on calcification detection in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C. [National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Jarvis Breast Screening and Diagnostic Centre, Guildford GU1 1LJ (United Kingdom); Department of Radiology, St. George' s Healthcare NHS Trust, Tooting, London SW17 0QT (United Kingdom); Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ (United Kingdom); Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15210 (United States); National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); National Co-ordinating Centre for the Physics of Mammography, Royal Surrey County Hospital NHS Foundation Trust, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  11. Imagers for digital still photography

    Science.gov (United States)

    Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge

    2006-04-01

    This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.

  12. Effect of image quality on calcification detection in digital mammography.

    Science.gov (United States)

    Warren, Lucy M; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M; Wallis, Matthew G; Chakraborty, Dev P; Dance, David R; Bosmans, Hilde; Young, Kenneth C

    2012-06-01

    This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from

  13. Effect of image quality on calcification detection in digital mammography

    International Nuclear Information System (INIS)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  14. Otimização de imagens mamográficas Optimization of mammographic images

    Directory of Open Access Journals (Sweden)

    Diana Rodrigues de Pina

    2006-10-01

    Full Text Available OBJETIVO: Este trabalho tem como objetivo a otimização de imagens mamográficas, com consideráveis reduções de doses. MATERIAIS E MÉTODOS: Neste estudo o feixe de raios-X foi calibrado para cada tensão (kVp, de modo a determinar a melhor combinação de kVp e mAs que irá proporcionar uma densidade ótica (DO em torno de 1.0 acima da base mais véu do filme utilizado. RESULTADOS: Serão discutidas questões sobre os métodos empregados para a seleção de parâmetros de exposição do feixe de raios-X, seleção da melhor imagem utilizando o método de avaliação gradativa visual, comparações entre as doses e carga do tubo (kVp × mAs proporcionadas pelas técnicas determinadas neste estudo e pelas utilizadas na rotina clínica do Serviço de Diagnóstico por Imagem do Hospital das Clínicas da Faculdade de Medicina de Botucatu. Neste estudo foram obtidas imagens radiográficas de mama de excelente qualidade, com redução de dose e carga de tubo, respectivamente, de 36,8% e 46,2%, quando comparadas com a técnica utilizada pela rotina clínica da instituição. CONCLUSÃO: Esta pesquisa vem contribuir com a otimização da relação risco-benefício para o paciente e custo-benefício para a instituição.OBJECTIVE: The aim of this study is the optimization of mammographic images with a considerable radiation dose reduction. MATERIALS AND METHODS: In the present study the X-ray beam was calibrated for each tension (kVp, aiming at determining the best combination between kVp and mAs, resulting in optical densities of about 1.0 above the base-plus-fog density. RESULTS: This study will bring into question the methods for X-ray beam calibration, the choice of the best image by means of visual grading analysis, comparisons between doses and tube load (kVp × mAs delivered by the techniques described in this study and by those adopted in the clinical routine at Service of Diagnostic Imaging of Faculdade de Medicina de Botucatu Clinics

  15. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  16. Digital Data Processing of Images

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  17. Digital imaging - future visions

    International Nuclear Information System (INIS)

    Sanford, L.

    1993-01-01

    The reality of a filmless future in medicine is closer in the UK than in the US. The initiative with digital data processing, however, is not. Despite the glowing promises in the literature of such visionware', there is as yet no filmless system anywhere in the World. This article examines research in this field. (Author)

  18. Heterogeneity of triple-negative breast cancer: mammographic, US, and MR imaging features according to androgen receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Min Sun; Song, Sung Eun; Kim, Won Hwa; Lee, Su Hyun; Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, So Yeon; Park, In-Ae [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Han, Wonshik; Noh, Dong-Young [Seoul National University College of Medicine, Department of Surgery, Seoul (Korea, Republic of)

    2014-09-16

    Our aim was to determine whether triple-negative breast cancers (TNBCs) with and without androgen receptor (AR) expression have distinguishing imaging features on mammography, breast ultrasound (US), and magnetic resonance (MR) imaging. AR expression was assessed immunohistochemically in 125 patients with TNBC from a consecutive series of 1,086 operable invasive breast cancers. Two experienced radiologists blinded to clinicopathological findings reviewed all imaging studies in consensus using the BI-RADS lexicon. The imaging and pathological features of 33 AR-positive TNBCs were compared with those of 92 AR-negative TNBCs. The presence of mammographic calcifications with or without a mass (p < 0.001), non-mass enhancement on MR imaging (p < 0.001), and masses with irregular shape or spiculated margins on US (p < 0.001 and p = 0.002) and MR imaging (p = 0.001 and p < 0.001) were significantly associated with AR-positive TNBC. Compared with AR-negative TNBC, AR-positive TNBC was more likely to have a ductal carcinoma in situ component (59.8 % vs. 90.9 %, p = 0.001) and low Ki-67 expression (30.4 % vs. 51.5 %, p = 0.030). AR-positive and AR-negative TNBCs have different imaging features, and certain imaging findings can be useful to predict AR status in TNBC. (orig.)

  19. Principles of digital image synthesis

    CERN Document Server

    Glassner, Andrew S

    1995-01-01

    Image synthesis, or rendering, is a field of transformation: it changesgeometry and physics into meaningful images. Because the most popularalgorithms frequently change, it is increasingly important for researchersand implementors to have a basic understanding of the principles of imagesynthesis. Focusing on theory, Andrew Glassner provides a comprehensiveexplanation of the three core fields of study that come together to formdigital image synthesis: the human visual system, digital signalprocessing, and the interaction of matter and light. Assuming no more thana basic background in calculus,

  20. Pediatric digital chest imaging.

    Science.gov (United States)

    Tarver, R D; Cohen, M; Broderick, N J; Conces, D J

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  1. Pediatric digital chest imaging

    International Nuclear Information System (INIS)

    Tarver, R.D.; Cohen, M.; Broderick, N.J.; Conces, D.J. Jr.

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology

  2. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    ...-year graduate students in almost any technical discipline. The leading textbook in its field for more than twenty years, it continues its cutting-edge focus on contemporary developments in all mainstream areas of image processing-e.g...

  3. Mammographic image reject rate analysis and cause – A National Maltese Study

    International Nuclear Information System (INIS)

    Mercieca, N.; Portelli, J.L.; Jadva-Patel, H.

    2017-01-01

    Mammography is used as a first-line investigation in the detection of breast cancer and imaging is required to be of optimal quality and achieved without adverse effects on the health of individuals. Repeated images come at a cost in terms of radiation dose, discomfort to clients and unnecessary financial burdens. No studies investigating mammography quality in Malta had been previously undertaken. Hence, this research aimed to investigate whether mammography is being performed at an acceptable level, through the investigation of reject rates. Quantitative methodology was used to collect data from eight participating mammography units, which were utilising screen film (SFM), computed radiography (CR) and direct digital mammography (DDM). Data relating to the total number of images performed, rejects and causes was prospectively collected over two weeks, resulting in a sample of 2291 images. All units were also asked to answer a questionnaire which provided other data that could be used for analysis. The national mammography reject rate was found to be 2.62%; within the 3% acceptable range. Individual rates' analysis revealed unacceptably high or low reject rates in some units. Positioning was the main reject cause. No significant difference in rejection was found between different types of mammography units or radiographers' experience. Alternatively, radiographers' qualifications, employment conditions and use of rejection criteria were proven to affect reject rates. Whilst on a national level, images are being rejected at an acceptable rate, individual units revealed suboptimal rates; at the cost of extra radiation, added discomfort and financial burden. - Highlights: • The national reject rate complied with the European Guidelines. • Reject rates in different units were found to vary. • Positioning was the commonest cause for repeats. • The equipment used and radiographers' experience did not affect reject rates. • Qualifications

  4. Breast nodules detection in images of ultrasonographic and mammographic simulators; Deteccao de nodulos mamarios em imagens de simuladores ultrassonografico e mamografico

    Energy Technology Data Exchange (ETDEWEB)

    Marcomini, Karem D.; Schiabel, Homero, E-mail: karem.dm@usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Eletrica; Carneiro, Antonio Adilton O. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica

    2013-08-15

    Due to the high incidence rate of breast cancer in women, many procedures have been developed to assist in the diagnosis and early detection. Mammography and ultrasonography stand out as the main breast imaging techniques. In this context, the schemes of computer-aided diagnosis have provided to the specialist a more accurate and reliable second opinion by minimizing the visual subjectivity inter-observer. Thus, we propose the application of an automated method of segmentation, through the neural network SOM, to provide accurate information regarding the border of the lesion. The tests were employed in 100 mammographic images and 70 sonographic, both cases obtained by simulation. In order to verify the accuracy of the boundaries demarcated by the automatic detector, quantitative measurements were extracted to compare these images with the manually delineated by an experienced radiologist. The proposed technique presented high accuracy and sensitivity, and low error rate in correctly representing the mammographic and sonographic findings. (author)

  5. Mammographic Breast Density in Malaysian Women with Breast Cancer

    International Nuclear Information System (INIS)

    Noriah Jamal; Humairah Samad Cheung

    2016-01-01

    The objective of this study was to examine the mammographic breast density of women with breast cancer detected on voluntary mammographic screening at two selected screening centers in Malaysia. This was a retrospective study of Full-Field Digital Mammography (FFDM) images of 150 Malaysian women with biopsy-proven breast cancer. The study population comprised 73 Malays (37.7 %), 59 Chinese (39.3 %) and 18 Indians (12.0 %). The Tabar breast density Patterns (I - V) were used to evaluate mammographic breast density. Data were analyzed using descriptive statistics. The results were compared with findings from a similar study on a group of 668 women who did not have breast cancer. The results showed that 44.7 % of the study population had dense breasts (Patterns IV and V), 14.7 % had predominantly fatty breasts (Patterns II and III) while 40.7 % had Pattern I. The proportion of study population with dense breasts decreased with age. In conclusion, the proportion of women with dense breasts decreased with age. Majority of the women with cancer (44.7 %) had dense breasts of Tabar Patterns IV and V, which has been associated with increased risk of breast cancer detected by voluntary mammographic screening. The results support the notion that increased breast density is a risk factor of breast cancer. (author)

  6. Quantitative Assessment of Mammary Gland Density in Rodents Using Digital Image Analysis

    Directory of Open Access Journals (Sweden)

    Thompson Henry J

    2011-06-01

    Full Text Available Abstract Background Rodent models have been used extensively to study mammary gland development and for studies of toxicology and carcinogenesis. Mammary gland gross morphology can visualized via the excision of intact mammary gland chains following fixation and staining with carmine using a tissue preparation referred to as a whole mount. Methods are described for the automated collection of digital images from an entire mammary gland whole mount and for the interrogation of digital data using a "masking" technique available with Image-Pro® plus image analysis software (Mediacybernetics. Silver Spring, MD. Results Parallel to mammographic analysis in humans, measurements of rodent mammary gland density were derived from area-based or volume-based algorithms and included: total circumscribed mammary fat pad mass, mammary epithelial mass, and epithelium-free fat pad mass. These values permitted estimation of absolute mass of mammary epithelium as well as breast density. The biological plausibility of these measurements was evaluated in mammary whole mounts from rats and mice. During mammary gland development, absolute epithelial mass increased linearly without significant changes in mammographic density. Treatment of rodents with tamoxifen, 9-cis-retinoic acid, or ovariectomy, and occurrence of diet induced obesity decreased both absolute epithelial mass and mammographic density. The area and volumetric methods gave similar results. Conclusions Digital image analysis can be used for screening agents for potential impact on reproductive toxicity or carcinogenesis as well as for mechanistic studies, particularly for cumulative effects on mammary epithelial mass as well as translational studies of mechanisms that explain the relationship between epithelial mass and cancer risk.

  7. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  8. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  9. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    Cox, G.G.; Dwyer, S.J. III; Templeton, A.W.

    1987-01-01

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  10. Correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer

    International Nuclear Information System (INIS)

    Zhang Yili; Du Hongwen; Zhang Yun; Zhang Yuelang; Kuang Fangjun; Guo Zuomin

    2004-01-01

    Objective: To discuss the correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer for early diagnosis and forecast of its prognoses. Methods: Fifty-four breast cancers and 26 benign diseases were proved by pathologic methods and all cases underwent mammography. Immunohistochemical technique was used to measure the expression of bcl-2 and bax proteins in these tissues. The correlation of imaging signs with the expression of bcl-2 and bax proteins in breast cancer and benign lesion was analyzed. Results: The expression of bcl-2 or bax protein in the breast cancer was higher than that in breast benign diseases (χ 2 =15.116, 11.361, P 2 =10.358, 12.818, P 2 =10.996, 10.667, P 2 =10.405, P 2 =6.841, P<0.05). Conclusion: Some imaging signs of breast cancer were closely related to the expression of bcl-2 and bax proteins and these signs could reflect the biological behavior of tumor cells and prognoses. Therefore it could be helpful to the early diagnosis and treatment of breast cancer. (authors)

  11. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  12. Digital image analyser for autoradiography

    International Nuclear Information System (INIS)

    Muth, R.A.; Plotnick, J.

    1985-01-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis

  13. Practical digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Beverly E. [Washington Univ., Seattle, WA (United States)]|[Virginia Mason Medical Center, VA (United States)

    2008-07-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques.

  14. Practical digital mammography

    International Nuclear Information System (INIS)

    Hashimoto, Beverly E.

    2008-01-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques

  15. Efficiency of Lu2SiO5:Ce (LSO) powder phosphor as X-ray to light converter under mammographic imaging conditions

    International Nuclear Information System (INIS)

    David, S.; Michail, C.; Valais, I.; Nikolopoulos, D.; Liaparinos, P.; Kalivas, N.; Kalatzis, I.; Toutountzis, A.; Efthimiou, N.; Loudos, G.; Sianoudis, I.; Cavouras, D.; Dimitropoulos, N.; Nomicos, C.D.; Kandarakis, I.; Panayiotakis, G.S.

    2007-01-01

    The aim of the present study was to examine the light emission efficiency of Lu 2 SiO 5 :Ce (LSO) powder scintillator under X-ray mammographic imaging conditions. Powder LSO scintillator has never been used in X-ray imaging. For the purposes of the present study, a 25 mg/cm 2 thick scintillating screen was prepared in our laboratory, by sedimentation of Lu 2 SiO 5 :Ce powder. Absolute luminescence efficiency measurements were performed within the range of X-ray tube voltages (22-49 kVp) used in mammographic applications. Parameters related to X-ray detection, i.e. the energy absorption efficiency (EAE) and the quantum detection efficiency (QDE) were calculated. A theoretical model, describing radiation and light transfer, was employed to fit experimental data and to estimate values of the intrinsic conversion efficiency and the light attenuation coefficients of the screen. The spectral compatibility of the LSO powder scintillator to mammographic X-ray films and to various electronic optical detectors was determined by performing light emission spectrum measurements and by taking into account the spectral sensitivity of the optical detectors. Results in the voltage range used in mammography showed that Lu 2 SiO 5 :Ce powder scintillator has approximately 10% higher values of QDE and 4.5% higher values of EAE than Gd 2 O 2 S:Tb

  16. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  17. Improved mammographic interpretation of masses using computer-aided diagnosis

    International Nuclear Information System (INIS)

    Leichter, I.; Fields, S.; Novak, B.; Nirel, R.; Bamberger, P.; Lederman, R.; Buchbinder, S.

    2000-01-01

    The aim of this study was to evaluate the effectiveness of computerized image enhancement, to investigate criteria for discriminating benign from malignant mammographic findings by computer-aided diagnosis (CAD), and to test the role of quantitative analysis in improving the accuracy of interpretation of mass lesions. Forty sequential mammographically detected mass lesions referred for biopsy were digitized at high resolution for computerized evaluation. A prototype CAD system which included image enhancement algorithms was used for a better visualization of the lesions. Quantitative features which characterize the spiculation were automatically extracted by the CAD system for a user-defined region of interest (ROI). Reference ranges for malignant and benign cases were acquired from data generated by 214 known retrospective cases. The extracted parameters together with the reference ranges were presented to the radiologist for the analysis of 40 prospective cases. A pattern recognition scheme based on discriminant analysis was trained on the 214 retrospective cases, and applied to the prospective cases. Accuracy of interpretation with and without the CAD system, as well as the performance of the pattern recognition scheme, were analyzed using receiver operating characteristics (ROC) curves. A significant difference (p z ) increased significantly (p z for the results of the pattern recognition scheme was higher (0.95). The results indicate that there is an improved accuracy of diagnosis with the use of the mammographic CAD system above that of the unassisted radiologist. Our findings suggest that objective quantitative features extracted from digitized mammographic findings may help in differentiating between benign and malignant masses, and can assist the radiologist in the interpretation of mass lesions. (orig.)

  18. Digital processing of radiographic images

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  19. New directions in pediatric digital imaging

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Adams, R.B.; Blackham, W.C.

    1985-01-01

    In this chapter the authors describe several simple experiments performed utilizing digital equipment which apply to clinical situations in pediatrics and which suggest future directions for research in digital imaging. They also discuss experimental systems which they believe will overcome certain limitations of current equipment and might be applicable to pediatric digital imaging in the future

  20. Relationship between breast sound speed and mammographic percent density

    Science.gov (United States)

    Sak, Mark; Duric, Nebojsa; Boyd, Norman; Littrup, Peter; Myc, Lukasz; Faiz, Muhammad; Li, Cuiping; Bey-Knight, Lisa

    2011-03-01

    Despite some shortcomings, mammography is currently the standard of care for breast cancer screening and diagnosis. However, breast ultrasound tomography is a rapidly developing imaging modality that has the potential to overcome the drawbacks of mammography. It is known that women with high breast densities have a greater risk of developing breast cancer. Measuring breast density is accomplished through the use of mammographic percent density, defined as the ratio of fibroglandular to total breast area. Using an ultrasound tomography (UST) prototype, we created sound speed images of the patient's breast, motivated by the fact that sound speed in a tissue is proportional to the density of the tissue. The purpose of this work is to compare the acoustic performance of the UST system with the measurement of mammographic percent density. A cohort of 251 patients was studied using both imaging modalities and the results suggest that the volume averaged breast sound speed is significantly related to mammographic percent density. The Spearman correlation coefficient was found to be 0.73 for the 175 film mammograms and 0.69 for the 76 digital mammograms obtained. Since sound speed measurements do not require ionizing radiation or physical compression, they have the potential to form the basis of a safe, more accurate surrogate marker of breast density.

  1. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  2. Mammographic evaluation of suspicious malignant lesions based on ACR(American College of Radiology) breast imaging reporting and data system(BI-RADS)

    International Nuclear Information System (INIS)

    Lee, Jei Hee; Oh, Ki Keun; Chang, So Yong; Kim, Eun Kyung; Kim, Mi Hye

    1999-01-01

    The purpose of this study was to assess the mammographic features and pathologic outcome of category 4 lesions using the Breast Imaging Reporting and Data System(BI-RADS), and to evaluate the significance of final assessment categories. Using BI-RADS, the interpretations of 8,134 mammograms acquired between January 1997 and May 1998 were categorized. From among 161 lesions categorized as '4' ('suspicious abnormality') and pathologically confirmed by surgery or biopsy, we analysed 113, found in 66 patients. The pathologic outcome of these 113 lesions was as follows:infiltrating ductal carcinoma, 17.7%(20/113); DCIS(ductal carcinoma in sitv), 8.0%(9/113); ADH(atypical ductal hyperplasia), 5.3%(6/113); DEH(ductal epithelial hyperplasia), 1.8%(2/113); ductectasia, 0.9%(1/113), FCD(fibrocystic change), 27.4%(31/113); firoadenoma, 7.1%(8/113); stromal fibrosis, 9.7%(11/113); normal parenchyma, 7.1%(8/113); other pathology, 15.0%(17/113). The most frequent mammographic features of BI-RADS category 4 lesions were irregular mass shape(41.2%), spiculated mass margin(52.3%), amorphous calcification(47.3%) and clustered calcification distribution(37.1%). Because category 4 lesions account for about 25.7% of all breast malignancies, mammographic lesions in this category ('suspicious abnormality') should be considered for supplementary study and breast biopsy rather than short-term follow-up. Initial pathologic findings can thus be confirmed

  3. Image Acquisition and Quality in Digital Radiography.

    Science.gov (United States)

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.

  4. Multiscale wavelet representations for mammographic feature analysis

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  5. Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis

    Science.gov (United States)

    Zimmermann, Bernhard B.; Deng, Bin; Singh, Bhawana; Martino, Mark; Selb, Juliette; Fang, Qianqian; Sajjadi, Amir Y.; Cormier, Jayne; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.; Saksena, Mansi A.; Carp, Stefan A.

    2017-04-01

    Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.

  6. Pilot study of quantitative analysis of background enhancement on breast MR images: association with menstrual cycle and mammographic breast density.

    Science.gov (United States)

    Scaranelo, Anabel M; Carrillo, Maria Claudia; Fleming, Rachel; Jacks, Lindsay M; Kulkarni, Supriya R; Crystal, Pavel

    2013-06-01

    To perform semiautomated quantitative analysis of the background enhancement (BE) in a cohort of patients with newly diagnosed breast cancer and to correlate it with mammographic breast density and menstrual cycle. Informed consent was waived after the research ethics board approved this study. Results of 177 consecutive preoperative breast magnetic resonance (MR) examinations performed from February to December 2009 were reviewed; 147 female patients (median age, 48 years; range, 26-86 years) were included. Ordinal values of BE and breast density were described by two independent readers by using the Breast Imaging Reporting and Data System lexicon. The BE coefficient (BEC) was calculated thus: (SI2 · 100/SI1) - 100, where SI is signal intensity, SI2 is the SI enhancement measured in the largest anteroposterior dimension in the axial plane 1 minute after the contrast agent injection, and SI1is the SI before contrast agent injection. BEC was used for the quantitative analysis of BE. Menstrual cycle status was based on the last menstrual period. The Wilcoxon rank-sum or Kruskal-Wallis test was used to compare quantitative assessment groups. Cohen weighted κ was used to evaluate agreement. Of 147 patients, 68 (46%) were premenopausal and 79 (54%) were postmenopausal. The quantitative BEC was associated with the menstrual status (BEC in premenopausal women, 31.48 ± 20.68 [standard deviation]; BEC in postmenopausal women, 25.65 ± 16.74; P = .02). The percentage of overall BE was higher when the MR imaging was performed in women in the inadequate phase of the cycle (quantitative BE than postmenopausal women. No association was found between BE and breast density.

  7. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  8. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  9. Digital image analysis of NDT radiographs

    International Nuclear Information System (INIS)

    Graeme, W.A. Jr.; Eizember, A.C.; Douglass, J.

    1989-01-01

    Prior to the introduction of Charge Coupled Device (CCD) detectors the majority of image analysis performed on NDT radiographic images was done visually in the analog domain. While some film digitization was being performed, the process was often unable to capture all the usable information on the radiograph or was too time consuming. CCD technology now provides a method to digitize radiographic film images without losing the useful information captured in the original radiograph in a timely process. Incorporating that technology into a complete digital radiographic workstation allows analog radiographic information to be processed, providing additional information to the radiographer. Once in the digital domain, that data can be stored, and fused with radioscopic and other forms of digital data. The result is more productive analysis and management of radiographic inspection data. The principal function of the NDT Scan IV digital radiography system is the digitization, enhancement and storage of radiographic images

  10. Digital X-ray imager

    International Nuclear Information System (INIS)

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying source voltage and filtering (predicting the required dynamic range for the detector); evaluating CsI:Tl, CdWO4 and scintillating glass as image converters; recommending image enhancement algorithms. The LLNL modeling results guided the design and experimental elements of the project. The Laboratory's unique array of sources and detectors was employed to resolve specific technical questions. Our image processing expertise was applied to the selection of enhancement tools for image display

  11. Determination of mammography images constancy parameters for C R system using Phantom Mama and mammographic accreditation phantom

    International Nuclear Information System (INIS)

    Santos, Andre U. dos; Souza, Wedla P. de; Hoff, Gabriela

    2009-01-01

    In the diagnostic imaging services is common to find the analogical image acquiring method in transition to the digital acquiring method. However it is necessary to define the appropriate techniques for acquisition of images. For that achievement the reference parameter of image must be determinate and based on that, determine the constancy and diagnostic image quality tests. Annually, for each imaging system, it is recommended the technical parameters review for different types of breast, reducing the dose on the mammary gland and preserving the image quality. It should be done based on national regulations and in accordance to the requirements of the medical team. The methodological proposes of this work has the objective of realize the constancy analysis for the image quality, using the PhantonMama and Mamographic Accreditation Phantom model 18-220 (recommended by ACR) and the software. Both protocols suggested were adequate for the analysis proposed. (author)

  12. Digital X-ray Imaging in Dentistry

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    1999-01-01

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  13. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  14. Digital image analysis of X-ray television with an image digitizer

    International Nuclear Information System (INIS)

    Mochizuki, Yasuo; Akaike, Hisahiko; Ogawa, Hitoshi; Kyuma, Yukishige

    1995-01-01

    When video signals of X-ray fluoroscopy were transformed from analog-to-digital ones with an image digitizer, their digital characteristic curves, pre-sampling MTF's and digital Wiener spectral could be measured. This method was advant ageous in that it was able to carry out data sampling because the pixel values inputted could be verified on a CRT. The system of image analysis by this method is inexpensive and effective in evaluating the image quality of digital system. Also, it is expected that this method can be used as a tool for learning the measurement techniques and physical characteristics of digital image quality effectively. (author)

  15. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    Science.gov (United States)

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  16. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  17. Ethical Implications of Digital Imaging in Photojournalism.

    Science.gov (United States)

    Terry, Danal; Lasorsa, Dominic L.

    Arguing that the news media are about to adopt digital imaging systems that will have far-reaching implications for the practice of journalism, this paper discusses how the news media is expected to adopt the new technology and explains why the marriage of journalism and digital imaging will create ethical issues with respect to photo manipulation…

  18. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  19. Digital Imaging: An Adobe Photoshop Course

    Science.gov (United States)

    Cobb, Kristine

    2007-01-01

    This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…

  20. A uniform system for mammographic reporting BI-RADS

    International Nuclear Information System (INIS)

    Masroor, I.; Ahmad, M. N.; Sheikh, M. Y.

    2001-01-01

    Breast image reporting and data system (BI-RADS) is a new system of categorizing and reporting mammographs and mammographic findings recommended by American College of Radiology. The importance of BI-RADS and final assessment categories are discussed. The purpose is to introduce the above-mentioned mammographic reporting system so that it becomes a standard terminology among the medical personnel, involved in the diagnosis and management of breast diseases. (author)

  1. Iso-precision scaling of digitized mammograms to facilitate image analysis

    International Nuclear Information System (INIS)

    Karssmeijer, N.; van Erning, L.

    1991-01-01

    This paper reports on a 12 bit CCD camera equipped with a linear sensor of 4096 photodiodes which is used to digitize conventional mammographic films. An iso-precision conversion of the pixel values is preformed to transform the image data to a scale on which the image noise is equal at each level. For this purpose film noise and digitization noise have been determined as a function of optical density and pixel size. It appears that only at high optical densities digitization noise is comparable to or larger than film noise. The quantization error caused by compression of images recorded with 12 bits per pixel to 8 bit images by an iso-precision conversion has been calculated as a function of the number of quantization levels. For mammograms digitized in a 4096 2 matrix the additional error caused by such a scale transform is only about 1.5 percent. An iso-precision scale transform can be advantageous when automated procedures for quantitative image analysis are developed. Especially when detection of signals in noise is aimed at, a constant noise level over the whole pixel value range is very convenient. This is demonstrated by applying local thresholding to detect small microcalcifications. Results are compared to those obtained by using logarithmic or linearized scales

  2. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  3. Methodology for correlations between doses and detectability in standard mammographic images: application in Sao Paulo state

    International Nuclear Information System (INIS)

    Furquim, Tania Aparecida Correia

    2005-01-01

    Measurements using mammography units were performed in loco in 50 health establishments, randomly sampled from an equipment list of the Cadastro Nacional de Estabelecimentos de Saude (Health Establishments Brazilian Catalog). For the measurements six phantoms were utilized to establish different quality criteria and to evaluate doses in different breast thicknesses. Two different methods of measuring average glandular doses (AGD) were applied, and measurements of entrance surface doses (ESD) were also realized, in order to obtain mean values to Sao Paulo State. A study relating distribution and properties of different mammography trademarks with doses was performed. The sensitometry of processors allowed a quantification of the film-processing contrast index, A g , establishing a state mean value. The phantom images allowed the evaluation of detection limits of structures as microcalcifications, fibers, and masses, and state mean values were established for: spatial resolution (on surface and glandular breast position); image contrast; and detection expert ability from phantom images in two situations: before knowing the image targets and after viewing of a target map. Then, the results were compared to target detections in laboratory environment. Based on dose results, A g , image contrast, maximum contrast, and detection ratio, a relationship between them was determined. The results show that, in Sao Paulo State, mean glandular doses were lower than reference levels considering the Wu method, and close to or above reference levels for ail phantoms considering the Dance method. The ESD was always close to or above reference levels. The A g presented a mean value of (10,42 ± 0,20) for Sao Paulo State, and the image contrast was lower than the required limits established by the phantom manufacturers. The high contrast resolution showed that mammography units presented the expected values of line pair per mm in the State. The detectability evaluation of local

  4. How Digital Image Processing Became Really Easy

    Science.gov (United States)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  5. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  6. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  7. Are Qualitative Assessments of Background Parenchymal Enhancement, Amount of Fibroglandular Tissue on MR Images, and Mammographic Density Associated with Breast Cancer Risk?

    Science.gov (United States)

    Dontchos, Brian N.; Partridge, Savannah C.; Korde, Larissa A.; Lam, Diana L.; Scheel, John R.; Peacock, Sue; Lehman, Constance D.

    2015-01-01

    Purpose To investigate whether qualitative magnetic resonance (MR) imaging assessments of background parenchymal enhancement (BPE), amount of fibroglandular tissue (FGT), and mammographic density are associated with risk of developing breast cancer in women who are at high risk. Materials and Methods In this institutional review board–approved HIPAA-compliant retrospective study, all screening breast MR images obtained from January 2006 to December 2011 in women aged 18 years or older and at high risk for but without a history of breast cancer were identified. Women in whom breast cancer was diagnosed after index MR imaging comprised the cancer cohort, and one-to-one matching (age and BRCA status) of each woman with breast cancer to a control subject was performed by using MR images obtained in women who did not develop breast cancer with follow-up time maximized. Amount of BPE, BPE pattern (peripheral vs central), amount of FGT at MR imaging, and mammographic density were assessed on index images. Imaging features were compared between cancer and control cohorts by using conditional logistic regression. Results Twenty-three women at high risk (mean age, 47 years ± 10 [standard deviation]; six women had BRCA mutations) with no history of breast cancer underwent screening breast MR imaging; in these women, a diagnosis of breast cancer (invasive, n = 12; in situ, n = 11) was made during the follow-up interval. Women with mild, moderate, or marked BPE were nine times more likely to receive a diagnosis of breast cancer during the follow-up interval than were those with minimal BPE (P = .007; odds ratio = 9.0; 95% confidence interval: 1.1, 71.0). BPE pattern, MR imaging amount of FGT, and mammographic density were not significantly different between the cohorts (P = .5, P = .5, and P = .4, respectively). Conclusion Greater BPE was associated with a higher probability of developing breast cancer in women at high risk for cancer and warrants further study. © RSNA

  8. Eliminating "Hotspots" in Digital Image Processing

    Science.gov (United States)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  9. Compression and archiving of digital images

    International Nuclear Information System (INIS)

    Huang, H.K.

    1988-01-01

    This paper describes the application of a full-frame bit-allocation image compression technique to a hierarchical digital image archiving system consisting of magnetic disks, optical disks and an optical disk library. The digital archiving system without the compression has been in clinical operation in the Pediatric Radiology for more than half a year. The database in the system consists of all pediatric inpatients including all images from computed radiography, digitized x-ray films, CT, MR, and US. The rate of image accumulation is approximately 1,900 megabytes per week. The hardware design of the compression module is based on a Motorola 68020 microprocessor, A VME bus, a 16 megabyte image buffer memory board, and three Motorola digital signal processing 56001 chips on a VME board for performing the two-dimensional cosine transform and the quantization. The clinical evaluation of the compression module with the image archiving system is expected to be in February 1988

  10. Correlation between the physical performances measured from detectors and the diagnostic image quality in digital mammography

    International Nuclear Information System (INIS)

    Perez-Ponce, H.

    2009-05-01

    In digital mammography two approaches exist to estimate image quality. In the first approach, human observer assesses the lesion detection in mammograms. Unfortunately, such quality assessment is subject to interobserver variability, and requires a large amount of time and human resources. In the second approach, objective and human-independent parameters relating to image spatial resolution and noise (MTF and NPS) are used to evaluate digital detector performance; even if these parameters are objective, they are not directly related to lesion detection. A method leading to image quality assessment which is both human independent, and directly related to lesion detection is very important for the optimal use of mammographic units. This Ph.D thesis presents the steps towards such a method: the computation of realistic virtual images using an 'X ray source/digital detector' model taking into account the physical parameters of the detector (spatial resolution and noise measurements) measured under clinical conditions. From results obtained in this work, we have contributed to establish the link between the physical characteristics of detectors and the clinical quality of the image for usual exposition conditions. Furthermore, we suggest the use of our model for the creation of virtual images, in order to rapidly determine the optimal conditions in mammography, which usually is a long and tedious experimental process. This is an essential aspect to be taken into account for radioprotection of patients, especially in the context of organized mass screening of breast cancer. (author)

  11. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  12. Image rejects in general direct digital radiography.

    Science.gov (United States)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-10-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality.

  13. Could digital imaging be an alternative for digital colorimeters?

    Science.gov (United States)

    Caglar, Alper; Yamanel, Kivanc; Gulsahi, Kamran; Bagis, Bora; Ozcan, Mutlu

    2010-12-01

    This study evaluated the colour parameters of composite and ceramic shade guides determined using a colorimeter and digital imaging method with illuminants at different colour temperatures. Two different resin composite shade guides, namely Charisma (Heraeus Kulzer) and Premise (Kerr Corporation), and two different ceramic shade guides, Vita Lumin Vacuum (VITA Zahnfabrik) and Noritake (Noritake Co.), were evaluated at three different colour temperatures (2,700 K, 2,700-6,500 K, and 6500 K) of illuminants. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2 and C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc.). The data were analysed using two-way ANOVA, and Pearson's correlation. While mean L* values of both composite and ceramic shade guides were not affected from the colour temperature, L* values obtained with the colorimeter showed significantly lower values than those of the digital imaging (p colorimeter and digital imaging did not show significant differences (p > 0.05). For both composite and ceramic shade guides, L* and b* values obtained from colorimeter and digital imaging method presented a high level of correlation. High-level correlations were also acquired for a* values in all shade guides except for the Charisma composite shade guide. Digital imaging method could be an alternative for the colorimeters unless the proper object-camera distance, digital camera settings and suitable illumination conditions could be supplied. However, variations in shade guides, especially for composites, may affect the correlation.

  14. Patient comfort from the technologist perspective: factors to consider in mammographic imaging

    Directory of Open Access Journals (Sweden)

    Mendat CC

    2017-05-01

    Full Text Available Christina C Mendat,1 Dave Mislan,2 Lisa Hession-Kunz2 1Human Factors MD, Charlotte, NC, 2Hologic Inc., Marlborough, MA, USA Abstract: A sample size of 280 certified mammography technologists were surveyed to understand what factors affect patient discomfort during breast imaging. Given mammography technologists’ level of patient involvement, they are uniquely positioned to observe factors that affect patient comfort. The findings suggest that according to technologists, multiple factors, including patient ethnicity, breast density, previous biopsy and lumpectomy experience, as well as psychological factors, impact breast discomfort during mammography. Additionally, with respect to imaging protocols, technologists attributed 80% of moderate-to-extreme discomfort to “length of compression time” (27% and “compression force” (53%. Technologists also attributed “pinching at chest wall” and “hard edges of breast platform” to “very high” discomfort significantly more times (P<0.05 than “coolness and edges of paddle”. These findings confirm some of what has been reported to date and challenge other findings. Given that recent decline in breast cancer mortality has been attributed to improvements in early detection and treatment, approaches to reduce discomfort should be considered in order to promote screening compliance. Although more research is needed, it is apparent that the patient experience of comfort and pain during mammography is an area warranting increased research and solutions. Keywords: mammography, discomfort, pain, density, compliance, breast

  15. Mammographic evaluation of suspicious malignant lesions based on ACR(American College of Radiology) breast imaging reporting and data system(BI-RADS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jei Hee; Oh, Ki Keun; Chang, So Yong; Kim, Eun Kyung; Kim, Mi Hye [Yonsei Univ. College of Medicine, Research Institute of Radiological Science, Yonsei Univ., Seoul (Korea, Republic of)

    1999-12-01

    The purpose of this study was to assess the mammographic features and pathologic outcome of category 4 lesions using the Breast Imaging Reporting and Data System(BI-RADS), and to evaluate the significance of final assessment categories. Using BI-RADS, the interpretations of 8,134 mammograms acquired between January 1997 and May 1998 were categorized. From among 161 lesions categorized as '4' ('suspicious abnormality') and pathologically confirmed by surgery or biopsy, we analysed 113, found in 66 patients. The pathologic outcome of these 113 lesions was as follows:infiltrating ductal carcinoma, 17.7%(20/113); DCIS(ductal carcinoma in sitv), 8.0%(9/113); ADH(atypical ductal hyperplasia), 5.3%(6/113); DEH(ductal epithelial hyperplasia), 1.8%(2/113); ductectasia, 0.9%(1/113), FCD(fibrocystic change), 27.4%(31/113); firoadenoma, 7.1%(8/113); stromal fibrosis, 9.7%(11/113); normal parenchyma, 7.1%(8/113); other pathology, 15.0%(17/113). The most frequent mammographic features of BI-RADS category 4 lesions were irregular mass shape(41.2%), spiculated mass margin(52.3%), amorphous calcification(47.3%) and clustered calcification distribution(37.1%). Because category 4 lesions account for about 25.7% of all breast malignancies, mammographic lesions in this category ('suspicious abnormality') should be considered for supplementary study and breast biopsy rather than short-term follow-up. Initial pathologic findings can thus be confirmed.

  16. The relationship between image resolution and computer-aided detection of breast microcalcifications and clusters

    International Nuclear Information System (INIS)

    Nunes, Fatima de Lourdes S.; Schiabel, Homero; Ferrari, Ricardo Jose; Frere, Annie France; Marques, Paulo M.Azevedo

    1996-01-01

    A technique for recognition of microcalcifications clutters in digitized mammograms based on the area-point transformation procedure is proposed. Results presented are concerned to the processing of images obtained by phantoms exposures in mammographic systems

  17. Image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Lehtovirta, J.; Matsi, P.; Soimakallio, S.

    1992-01-01

    The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512x512 image format) viewed on a 625 line monitor were processed in 3 different ways: 1.standard display; 2.digital edge enhancement for the standard display; 3.inverse intensity display. The radiographs were interpreted independently by 3 radiologists. Diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease, 17 with pneumonia /atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases respectively. Sensitivity of conventional radiography when averaged overall findings was better than that of digital techniques (P<0.001). Differences in diagnostic accuracy measured by sensitivity and specificity between the 3 digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P<0.05) but poorer specificity for pulmonary emphysema (0.85 vs 0.93; P<0.05) compared with inverse intensity display. It is concluded that when using 512x512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted. (author). 12 refs.; 4 figs.; 2 tabs

  18. A new texture descriptor based on local micro-pattern for detection of architectural distortion in mammographic images

    Science.gov (United States)

    de Oliveira, Helder C. R.; Moraes, Diego R.; Reche, Gustavo A.; Borges, Lucas R.; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2017-03-01

    This paper presents a new local micro-pattern texture descriptor for the detection of Architectural Distortion (AD) in digital mammography images. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automatic detection of AD, but their performance are still unsatisfactory. The proposed descriptor, Local Mapped Pattern (LMP), is a generalization of the Local Binary Pattern (LBP), which is considered one of the most powerful feature descriptor for texture classification in digital images. Compared to LBP, the LMP descriptor captures more effectively the minor differences between the local image pixels. Moreover, LMP is a parametric model which can be optimized for the desired application. In our work, the LMP performance was compared to the LBP and four Haralick's texture descriptors for the classification of 400 regions of interest (ROIs) extracted from clinical mammograms. ROIs were selected and divided into four classes: AD, normal tissue, microcalcifications and masses. Feature vectors were used as input to a multilayer perceptron neural network, with a single hidden layer. Results showed that LMP is a good descriptor to distinguish AD from other anomalies in digital mammography. LMP performance was slightly better than the LBP and comparable to Haralick's descriptors (mean classification accuracy = 83%).

  19. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  20. Diagnostic implications of asymmetrical mammographic patterns

    International Nuclear Information System (INIS)

    Asenjo, M.; Ania, B.J.

    1997-01-01

    To analyze the effect of asymmetrical mammographic patterns of the diagnosis of breast cancer. In a series of 6, 476 patients referred to a Breast Imaging Diagnosis Unit, we excluded males, women with previous breast surgery, and cases in which mammography was not performed, which left 5,203 women included. Each breast was classified according to one of four patterns of mammographic parenchymal density. Asymmetry was considered to exist when a patient's breasts had different patterns. Breast cancer was confirmed histologically in 282 (5.4%) women. The mammographic pattern was asymmetrical in 8% of the women with cancer and in 2% of the women without cancer (p<0.001). Fine-needle aspiration biopsy was performed in 78% and 96% (p=0.04), respectively, of the women with and without mammographic asymmetry who had neoplasms, and in 33% and 22% (p=0.02), respectively, of the women with and without mammographic asymmetry who did not have neoplasms. Asymmetrical mammographic pattern was four times more frequent in the women with breast cancer. This asymmetry decreased the frequency of needle biopsy in women with cancer, but increased the frequency of needle biopsy in women without cancer. (Author) 11 refs

  1. DHM (Digital Holography Microscope) for imaging cells

    International Nuclear Information System (INIS)

    Emery, Yves; Cuche, Etienne; Colomb, Tristan; Depeursinge, Christian; Rappaz, Benjamin; Marquet, Pierre; Magistretti, Pierre

    2007-01-01

    Light interaction with a sample modifies both intensity and phase of the illuminating wave. Any available supports for image recording are only sensitive to intensity, but Denis Gabor [P. Marquet, B. Rappaz, P. Magistretti, et. al. Digital Holography for quantitative phase-contrast imaging, Optics Letters, 30, 5, pp 291-93 (2005)] invented in 1948 a way to encode the phase as an intensity variation: the h ologram . Digital Holographic Microscopy (DHM) [D. Gabor, A new microscopic principle, Nature, 1948] implements digitally this powerful hologram. Characterization of various pollen grains and of morphology changes of neurones associated with hypotonic shock demonstrates the potential of DHM for imaging cells

  2. A Medipix2-based imaging system for digital mammography with silicon pixel detectors

    CERN Document Server

    Bisogni, M G; Fantacci, M E; Mettivier, G; Montesi, M C; Novelli, M; Quattrocchi, M; Rosso, V; Russo, P; Stefanini, A

    2004-01-01

    In this paper we present the first tests of a digital imaging system based on a silicon pixel detector bump-bonded to an integrated circuit operating in single photon counting mode. The X-rays sensor is a 300 mu m thick silicon, 14 by 14 mm/sup 2/, upon which a matrix of 256 * 256 pixels has been built. The read-out chip, named MEDIPIX2, has been developed at CERN within the MEDIPIX2 Collaboration and it is composed by a matrix of 256 * 256 cells, 55 * 55 mu m/sup 2/. The spatial resolution properties of the system have been assessed by measuring the square wave resolution function (SWRF) and first images of a standard mammographic phantom were acquired using a radiographic tube in the clinical irradiation condition. (5 refs).

  3. Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics

    Science.gov (United States)

    Keller, Brad M.; Nathan, Diane L.; Conant, Emily F.; Kontos, Despina

    2012-03-01

    Breast percent density (PD%), as measured mammographically, is one of the strongest known risk factors for breast cancer. While the majority of studies to date have focused on PD% assessment from digitized film mammograms, digital mammography (DM) is becoming increasingly common, and allows for direct PD% assessment at the time of imaging. This work investigates the accuracy of a generalized linear model-based (GLM) estimation of PD% from raw and postprocessed digital mammograms, utilizing image acquisition physics, patient characteristics and gray-level intensity features of the specific image. The model is trained in a leave-one-woman-out fashion on a series of 81 cases for which bilateral, mediolateral-oblique DM images were available in both raw and post-processed format. Baseline continuous and categorical density estimates were provided by a trained breast-imaging radiologist. Regression analysis is performed and Pearson's correlation, r, and Cohen's kappa, κ, are computed. The GLM PD% estimation model performed well on both processed (r=0.89, p<0.001) and raw (r=0.75, p<0.001) images. Model agreement with radiologist assigned density categories was also high for processed (κ=0.79, p<0.001) and raw (κ=0.76, p<0.001) images. Model-based prediction of breast PD% could allow for a reproducible estimation of breast density, providing a rapid risk assessment tool for clinical practice.

  4. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  5. The use of digital images in pathology.

    Science.gov (United States)

    Furness, P N

    1997-11-01

    Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.

  6. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  7. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    van der Stelt, P.F.

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because

  8. Digital image processing in art conservation

    Czech Academy of Sciences Publication Activity Database

    Zitová, Barbara; Flusser, Jan

    č. 53 (2003), s. 44-45 ISSN 0926-4981 Institutional research plan: CEZ:AV0Z1075907 Keywords : art conservation * digital image processing * change detection Subject RIV: JD - Computer Applications, Robotics

  9. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  10. Steganography and Steganalysis in Digital Images

    Science.gov (United States)

    2012-01-01

    REPORT Steganography and Steganalysis in Digital Images 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Steganography (from the Greek for "covered writing...12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Least Significant Bit ( LSB ), steganography , steganalysis, stegogramme. Dr. Jeff Duffany...Z39.18 - Steganography and Steganalysis in Digital Images Report Title ABSTRACT Steganography (from the Greek for "covered writing") is the secret

  11. Digital Data Processing of Images

    African Journals Online (AJOL)

    be concerned with the image enhancement of scintigrams. Two applications of image ... obtained from scintigraphic equipment, image enhance- ment by computer was ... used as an example. ..... Using video-tape display, areas of interest are ...

  12. Three-dimensional facial digitization using advanced digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Kieu, Hien; Wang, Zhaoyang; Le, Hanh N D

    2018-03-20

    Presented in this paper is an effective technique to acquire the three-dimensional (3D) digital images of the human face without the use of active lighting and artificial patterns. The technique is based on binocular stereo imaging and digital image correlation, and it includes two key steps: camera calibration and image matching. The camera calibration involves a pinhole model and a bundle-adjustment approach, and the governing equations of the 3D digitization process are described. For reliable pixel-to-pixel image matching, the skin pores and freckles or lentigines on the human face serve as the required pattern features to facilitate the process. It employs feature-matching-based initial guess, multiple subsets, iterative optimization algorithm, and reliability-guided computation path to achieve fast and accurate image matching. Experiments have been conducted to demonstrate the validity of the proposed technique. The simplicity of the approach and the affordable cost of the implementation show its practicability in scientific and engineering applications.

  13. Breast tissue classification in digital breast tomosynthesis images using texture features: a feasibility study

    Science.gov (United States)

    Kontos, Despina; Berger, Rachelle; Bakic, Predrag R.; Maidment, Andrew D. A.

    2009-02-01

    Mammographic breast density is a known breast cancer risk factor. Studies have shown the potential to automate breast density estimation by using computerized texture-based segmentation of the dense tissue in mammograms. Digital breast tomosynthesis (DBT) is a tomographic x-ray breast imaging modality that could allow volumetric breast density estimation. We evaluated the feasibility of distinguishing between dense and fatty breast regions in DBT using computer-extracted texture features. Our long-term hypothesis is that DBT texture analysis can be used to develop 3D dense tissue segmentation algorithms for estimating volumetric breast density. DBT images from 40 women were analyzed. The dense tissue area was delineated within each central source projection (CSP) image using a thresholding technique (Cumulus, Univ. Toronto). Two (2.5cm)2 ROIs were manually selected: one within the dense tissue region and another within the fatty region. Corresponding (2.5cm)3 ROIs were placed within the reconstructed DBT images. Texture features, previously used for mammographic dense tissue segmentation, were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance. Different texture features appeared to perform best in the 3D reconstructed DBT compared to the 2D CSP images. Fractal dimension was superior in DBT (AUC=0.90), while contrast was best in CSP images (AUC=0.92). We attribute these differences to the effects of tissue superimposition in CSP and the volumetric visualization of the breast tissue in DBT. Our results suggest that novel approaches, different than those conventionally used in projection mammography, need to be investigated in order to develop DBT dense tissue segmentation algorithms for estimating volumetric breast density.

  14. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  15. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  16. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    Science.gov (United States)

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  17. Spatial recurrence analysis: A sensitive and fast detection tool in digital mammography

    International Nuclear Information System (INIS)

    Prado, T. L.; Galuzio, P. P.; Lopes, S. R.; Viana, R. L.

    2014-01-01

    Efficient diagnostics of breast cancer requires fast digital mammographic image processing. Many breast lesions, both benign and malignant, are barely visible to the untrained eye and requires accurate and reliable methods of image processing. We propose a new method of digital mammographic image analysis that meets both needs. It uses the concept of spatial recurrence as the basis of a spatial recurrence quantification analysis, which is the spatial extension of the well-known time recurrence analysis. The recurrence-based quantifiers are able to evidence breast lesions in a way as good as the best standard image processing methods available, but with a better control over the spurious fragments in the image

  18. Panoramic images of conventional radiographs: digital panoramic dynamic images

    International Nuclear Information System (INIS)

    Schultze, M.

    2001-01-01

    The benefits of digital technic s to od ontology are evident. Instant images, the possibility to handle them, the reduction of exposition time to radiations, better quality image, better quality information, Stocking them in a compact disc, occupying very little space, allows an easy transport and duplication, as well as the possibility to transfer and save it in an electronica l support.This kind of communication allows the transmission of digital images and every other type of data, instantaneously and no matter distances or geographical borders. Anyway, we should point out that conventional and digital technic s reveal the same information contents

  19. Mammography practice in Serbia: Evaluation and optimisation of image quality and the technical aspects of the mammographic imaging chain

    International Nuclear Information System (INIS)

    Kosutic, D.; Ciraj-Bjelac, O.; Arandjic, D.

    2010-01-01

    The purpose of this work was to assess mammography practice in Serbia and its appropriateness for both diagnostic service and potential screening by implementing quality control (QC) protocol in three large teaching hospitals. Corrective actions were suggested, accordingly. In addition to technical aspects of QC, image quality was assessed using image grading before and after the introduction of corrective measures. The survey demonstrated considerable variations in technical parameters that affect image quality and patients doses. Average glandular doses ranged from 1.8 to 2.8 mGy, while reference optical density (OD) ranged from 1.0 to 2.6. Image grading resulted in a very high percentage of images with poor quality (12-70% for cranio-caudal projection and 8-66% for medio-lateral oblique projection). Main problems were associated with film processing, viewing conditions and OD control. Following introduction of corrective measures, the image grading results were improved in some hospitals, so the percentage of images without any remarks has been increased. (authors)

  20. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  1. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  2. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  3. Improved mammographic interpretation of masses using computer-aided diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Leichter, I. [Dept. of Electro-Optics, Jerusalem College of Technology (Israel); Fields, S.; Novak, B. [Dept. of Radiology, Hadassah University Hospital, Mt. Scopus Jerusalem (Israel); Nirel, R. [Dept. of Statistics, Hebrew University of Jerusalem, Mt. Scopus, Jerusalem (Israel); Bamberger, P. [Dept. of Electronics, Jerusalem College of Technology, Jerusalem (Israel); Lederman, R. [Department of Radiology, Hadassah University Hospital, Ein Kerem, Jerusalem (Israel); Buchbinder, S. [Department of Radiology, Montefiore Medical Center, University Hospital for the Albert Einstein College of Medicine, Bronx, New York (United States)

    2000-02-01

    The aim of this study was to evaluate the effectiveness of computerized image enhancement, to investigate criteria for discriminating benign from malignant mammographic findings by computer-aided diagnosis (CAD), and to test the role of quantitative analysis in improving the accuracy of interpretation of mass lesions. Forty sequential mammographically detected mass lesions referred for biopsy were digitized at high resolution for computerized evaluation. A prototype CAD system which included image enhancement algorithms was used for a better visualization of the lesions. Quantitative features which characterize the spiculation were automatically extracted by the CAD system for a user-defined region of interest (ROI). Reference ranges for malignant and benign cases were acquired from data generated by 214 known retrospective cases. The extracted parameters together with the reference ranges were presented to the radiologist for the analysis of 40 prospective cases. A pattern recognition scheme based on discriminant analysis was trained on the 214 retrospective cases, and applied to the prospective cases. Accuracy of interpretation with and without the CAD system, as well as the performance of the pattern recognition scheme, were analyzed using receiver operating characteristics (ROC) curves. A significant difference (p < 0.005) was found between features extracted by the CAD system for benign and malignant cases. Specificity of the CAD-assisted diagnosis improved significantly (p < 0.02) from 14 % for the conventional assessment to 50 %, and the positive predictive value increased from 0.47 to 0.62 (p < 0.04). The area under the ROC curve (A{sub z}) increased significantly (p < 0.001) from 0.66 for the conventional assessment to 0.81 for the CAD-assisted analysis. The A{sub z} for the results of the pattern recognition scheme was higher (0.95). The results indicate that there is an improved accuracy of diagnosis with the use of the mammographic CAD system above that

  4. A digital library of radiology images.

    Science.gov (United States)

    Kahn, Charles E

    2006-01-01

    A web-based virtual library of peer-reviewed radiological images was created for use in education and clinical decision support. Images were obtained from open-access content of five online radiology journals and one e-learning web site. Figure captions were indexed by Medical Subject Heading (MeSH) codes, imaging modality, and patient age and sex. This digital library provides a new, valuable online resource.

  5. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  6. Technique for evaluation of spatial resolution and microcalcifications in digital and scanned images of a standard breast phantom

    International Nuclear Information System (INIS)

    Santana, Priscila do C.; Gomes, Danielle S.; Oliveira, Marcio A.; Oliveira, Paulo Marcio C. de; Meira-Belo, Luiz C.; Nogueira-Tavares, Maria S.

    2011-01-01

    In this work, an automated methodology to evaluate digital and scanned images of a standard phantom (Phantom Mama) was studied. The Phantom Mama was used as an important tool to check the quality of mammographs. The scanned images were digitized using a ScanMaker 9800XL, with resolution of 900 dpi. The aim of this work is to test an automatic methodology for evaluation of spatial resolution and microcalcifications group of phantom mama images acquired with the same parameters in the same equipment. In order to analyze the images we have used the ImageJ software (in Java) which is public domain. We have used the Fast Fourier transform technique to evaluate the spatial resolution and used the ImageJ function Subtract Background and the Light Background plus Sliding Paraboloid on the evaluation of the five groups of microcalcifications on the breast phantom to assess the viability of using automated methods for both types of images. The methodology was adequate for evaluated the microcalcifications group and the spatial resolution in scanned and digital images, but the Phantom Mama doesn't provide sufficient parameters to evaluate the spatial resolution in this images. (author)

  7. Digital fluoroscopy: a new development in medical imaging

    International Nuclear Information System (INIS)

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  8. An Archive of Digital Images.

    Science.gov (United States)

    Fantini, M.; And Others

    1990-01-01

    Describes the architecture of the prototype of an image management system that has been used to develop an application concerning images of frescoes in the Sistina Chapel in the Vatican. Hardware and software design are described, the use of local area networks (LANs) is discussed, and data organization is explained. (15 references) (LRW)

  9. A comprehensive tool for measuring mammographic density changes over time.

    Science.gov (United States)

    Eriksson, Mikael; Li, Jingmei; Leifland, Karin; Czene, Kamila; Hall, Per

    2018-06-01

    Mammographic density is a marker of breast cancer risk and diagnostics accuracy. Density change over time is a strong proxy for response to endocrine treatment and potentially a stronger predictor of breast cancer incidence. We developed STRATUS to analyse digital and analogue images and enable automated measurements of density changes over time. Raw and processed images from the same mammogram were randomly sampled from 41,353 healthy women. Measurements from raw images (using FDA approved software iCAD) were used as templates for STRATUS to measure density on processed images through machine learning. A similar two-step design was used to train density measures in analogue images. Relative risks of breast cancer were estimated in three unique datasets. An alignment protocol was developed using images from 11,409 women to reduce non-biological variability in density change. The protocol was evaluated in 55,073 women having two regular mammography screens. Differences and variances in densities were compared before and after image alignment. The average relative risk of breast cancer in the three datasets was 1.6 [95% confidence interval (CI) 1.3-1.8] per standard deviation of percent mammographic density. The discrimination was AUC 0.62 (CI 0.60-0.64). The type of image did not significantly influence the risk associations. Alignment decreased the non-biological variability in density change and re-estimated the yearly overall percent density decrease from 1.5 to 0.9%, p density measures was not influenced by mammogram type. The alignment protocol reduced the non-biological variability between images over time. STRATUS has the potential to become a useful tool for epidemiological studies and clinical follow-up.

  10. Digital memory for TV image information

    International Nuclear Information System (INIS)

    Paretti, C.

    1975-01-01

    A system employing closed circuit TV camera and MOS memory is presented to take image information and store it. The apparatus is made in two sections: analog filters and digital memory. Filters have been used to select low amplitude signals from high frequency and low frequency noise components. The memory is arranged to make nondestroying overlap of digit array: this facility is useful for microscope image prejection to overcome depth of field limits, as in automatic nuclear emulsion scanners for personnel radiation monitoring. (author)

  11. Digital networks for the image management

    International Nuclear Information System (INIS)

    Gomez del Campo L, A.

    1999-01-01

    The digital networks designed specifically for the X-ray departments in the hospitals already were found in open development at beginning the 80's decade. Actually the digital network will be present include the image generation without the necessity to use film in direct form and in its case to print it through a laser ray printers network, an electronic image file, the possibility to integrate the hospitable information system to the electronic expedient which will allow communicate radiograph electronic files and consult by satellite via the problem cases. (Author)

  12. Mammographic screening programmes in Europe

    DEFF Research Database (Denmark)

    Giordano, Livia; von Karsa, Lawrence; Tomatis, Mariano

    2012-01-01

    To summarize participation and coverage rates in population mammographic screening programmes for breast cancer in Europe.......To summarize participation and coverage rates in population mammographic screening programmes for breast cancer in Europe....

  13. Fundamental concepts of digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, R.E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  14. Fundamental Concepts of Digital Image Processing

    Science.gov (United States)

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  15. Digital subtraction imaging in cardiac investigations

    International Nuclear Information System (INIS)

    Partridge, J.B.; Dickinson, D.F.

    1984-01-01

    The role of digital subtraction imaging (DSI) in the investigation of heart disease in patients of all ages, including neonates, was evaluated by the addition of a continuous fluoroscopy system to an existing, single-plane catheterisation laboratory. In some situations, DSI provided diagnostic images where conventional radiography could not and, in general, provided images of comparable quality to cineangiography. The total dose of contrast medium was usually less than that which would have been required for biplane cineangiography and the dose of radiation was always less. Digital subtraction imaging can make a significant contribution to the investigation of congenital heart disease and has some useful features in the study of acquired heart disease. (author)

  16. Digital X-ray imager

    CERN Document Server

    LLNL &MedOptics Corporation

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying so...

  17. COMPARISON OF DIGITAL IMAGE STEGANOGRAPHY METHODS

    Directory of Open Access Journals (Sweden)

    S. A. Seyyedi

    2013-01-01

    Full Text Available Steganography is a method of hiding information in other information of different format (container. There are many steganography techniques with various types of container. In the Internet, digital images are the most popular and frequently used containers. We consider main image steganography techniques and their advantages and disadvantages. We also identify the requirements of a good steganography algorithm and compare various such algorithms.

  18. Stratification of mammographic computerized analysis by BI-RADS categories

    Energy Technology Data Exchange (ETDEWEB)

    Lederman, Richard [Department of Radiology, Hadassah University Hospital, Ein Kerem, Jerusalem (Israel); Leichter, Isaac [Department of Electro-Optics, Jerusalem College of Technology, P.O.B. 16031, Jerusalem (Israel); Buchbinder, Shalom [Department of Radiology of The Montefiore Medical Center, The University Hospital for the Albert Einstein College of Medicine, Bronx, New York (United States); Novak, Boris [Department of Applied Mathematics, Jerusalem College of Technology, P.O.B. 16031, Jerusalem 91160 (Israel); Bamberger, Philippe [Department of Electronics, Jerusalem College of Technology, POB 16031, Jerusalem (Israel); Fields, Scott [Department of Radiology, Hadassah University Hospital, Mt. Scopus, Jerusalem (Israel)

    2003-02-01

    The Breast Imaging Reporting and Data System (BI-RADS) was implemented to standardize characterization of mammographic findings. The purpose of the present study was to evaluate in which BI-RADS categories the changes recommended by computerized mammographic analysis are most beneficial. Archival cases including, 170 masses (101 malignant, 69 benign) and 63 clusters of microcalcifications (MCs; 36 malignant, 27 benign), were evaluated retrospectively, using the BI-RADS categories, by several radiologists, blinded to the pathology results. A computerized system then automatically extracted from the digitized mammogram features characterizing mammographic lesions, which were used to classify the lesions. The results of the computerized classification scheme were compared, by receiver operating characteristics (ROC) analysis, to the conventional interpretation. In the ''low probability of malignancy group'' (excluding BI-RADS categories 4 and 5), computerized analysis improved the A{sub z}of the ROC curve significantly, from 0.57 to 0.89. In the ''high probability of malignancy group'' (mostly category 5) the computerized analysis yielded an ROC curve with an A {sub z}of 0.99. In the ''intermediate probability of malignancy group'' computerized analysis improved the A {sub z}significantly, from 0.66 for to 0.83. Pair-wise analysis showed that in the latter group the modifications resulting from computerized analysis were correct in 83% of cases. Computerized analysis has the ability to improve the performance of the radiologists exactly in the BI-RADS categories with the greatest difficulties in arriving at a correct diagnosis. It increased the performance significantly in the problematic group of ''intermediate probability of malignancy'' and pinpointed all the cases with missed cancers in the ''low probability'' group. (orig.)

  19. Stratification of mammographic computerized analysis by BI-RADS categories

    International Nuclear Information System (INIS)

    Lederman, Richard; Leichter, Isaac; Buchbinder, Shalom; Novak, Boris; Bamberger, Philippe; Fields, Scott

    2003-01-01

    The Breast Imaging Reporting and Data System (BI-RADS) was implemented to standardize characterization of mammographic findings. The purpose of the present study was to evaluate in which BI-RADS categories the changes recommended by computerized mammographic analysis are most beneficial. Archival cases including, 170 masses (101 malignant, 69 benign) and 63 clusters of microcalcifications (MCs; 36 malignant, 27 benign), were evaluated retrospectively, using the BI-RADS categories, by several radiologists, blinded to the pathology results. A computerized system then automatically extracted from the digitized mammogram features characterizing mammographic lesions, which were used to classify the lesions. The results of the computerized classification scheme were compared, by receiver operating characteristics (ROC) analysis, to the conventional interpretation. In the ''low probability of malignancy group'' (excluding BI-RADS categories 4 and 5), computerized analysis improved the A z of the ROC curve significantly, from 0.57 to 0.89. In the ''high probability of malignancy group'' (mostly category 5) the computerized analysis yielded an ROC curve with an A z of 0.99. In the ''intermediate probability of malignancy group'' computerized analysis improved the A z significantly, from 0.66 for to 0.83. Pair-wise analysis showed that in the latter group the modifications resulting from computerized analysis were correct in 83% of cases. Computerized analysis has the ability to improve the performance of the radiologists exactly in the BI-RADS categories with the greatest difficulties in arriving at a correct diagnosis. It increased the performance significantly in the problematic group of ''intermediate probability of malignancy'' and pinpointed all the cases with missed cancers in the ''low probability'' group. (orig.)

  20. Bone age assessment by digital images

    International Nuclear Information System (INIS)

    Silva, Ana Maria Marques da

    1996-01-01

    An algorithm which allows bone age assessment by digital radiological images was developed. For geometric parameters extraction, the phalangeal and metacarpal regions of interest are enhanced and segmented, through spatial and morphological filtering. This study is based on perimeter, length and area, from distal to proximal portions. The quantification of these parameters make possible comparison between chronological and skeletal age, using growth standard tables

  1. Cherenkov ring imaging using a television digitizer

    International Nuclear Information System (INIS)

    Charpak, G.; Peisert, A.; Sauli, F.; Cavestro, A.; Vascon, M.; Zanella, G.

    1981-01-01

    A Cherenkov ring imaging device using as photon detector a multistep spark chamber coupled to a television digitizer is described. Results of a test run using triethylamine as photo-ionizing vapour are presented, as well as preliminary results obtained with a new vapour having an extremely low ionization potential. (orig.)

  2. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  3. Multichannel deblurring of digital images

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Šroubek, Filip; Flusser, Jan

    2011-01-01

    Roč. 47, č. 3 (2011), s. 439-454 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : image restoration * blind deconvolution * deblurring Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/ZOI/sorel-0360217.pdf

  4. The impact of digital imaging in the field of cytopathology.

    Science.gov (United States)

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2009-03-06

    With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.

  5. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  6. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  7. Crack Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal, Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better than that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  8. A prototype for a mammographic head and related developments

    Energy Technology Data Exchange (ETDEWEB)

    Amendolia, S.R.; Annovazzi, A.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Chianella, M.; Delogu, P.; Fantacci, M.E.; Galimberti, D.; Lanzieri, C.; Lavanga, S.; Novelli, M.; Passuello, G.; Stefanini, A.; Testa, A.; Venturelli, L

    2004-02-01

    The Integrated Mammographic Imaging (IMI) project aims to realize innovative instrumentations for morphological and functional mammography, in particular, one of the research topics is the design and development of a prototype of a mammographic head. Innovative industrial processes for the production of GaAs pixel detectors and for their bump-bonding to the read-out VLSI electronics have been developed by AMS. The data acquisition and processing have been developed by LABEN; the power supply and distribution system has been realized by CAEN; while the integration of the head in a standard mammograph has been carried on by the Laboratori di Ricerca Gilardoni.

  9. A prototype for a mammographic head and related developments

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Annovazzi, A.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Chianella, M.; Delogu, P.; Fantacci, M.E.; Galimberti, D.; Lanzieri, C.; Lavanga, S.; Novelli, M.; Passuello, G.; Stefanini, A.; Testa, A.; Venturelli, L.

    2004-01-01

    The Integrated Mammographic Imaging (IMI) project aims to realize innovative instrumentations for morphological and functional mammography, in particular, one of the research topics is the design and development of a prototype of a mammographic head. Innovative industrial processes for the production of GaAs pixel detectors and for their bump-bonding to the read-out VLSI electronics have been developed by AMS. The data acquisition and processing have been developed by LABEN; the power supply and distribution system has been realized by CAEN; while the integration of the head in a standard mammograph has been carried on by the Laboratori di Ricerca Gilardoni

  10. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  11. Image quality in digital radiographic systems

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2003-01-01

    Full Text Available The aim of the present study was to evaluate the image quality of four direct digital radiographic systems. Radiographs were made of the maxillary central incisor and mandibular left molar regions of a dry skull, and an aluminum step-wedge. The X-ray generator operated at 10 mA, 60 and 70 kVp, and images were acquired with 3, 5, 8, 12, 24 and 48 exposure pulses. Six well-trained observers classified the images by means of scores from 1 to 3. Collected data were submitted to nonparametric statistical analysis using Fisher's exact test. Statistical analysis showed significant differences (p<0.01 in image quality with the four systems. Based on the results, it was possible to conclude that: 1 all of the digital systems presented good performance in producing acceptable images for diagnosis, if the exposures of the step-wedge and the maxillary central incisor region were made at 5 pulses, as well as at 8 pulses for the mandibular left molar region, selecting 60 or 70kVp; 2 higher percentages of acceptable images were obtained with the administration of lower radiation doses in CCD-sensors (charge-coupled device; 3 the Storage Phosphor systems produced acceptable images at a large range of exposure settings, that included low, intermediate and high radiation doses.

  12. Red mercuric iodide crystals obtained by isothermal solution evaporation: Characterization for mammographic X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, A.M.F.; Ugucioni, J.C.; Mulato, M.

    2014-02-11

    Millimeter-sized mercury iodide crystals were obtained by the isothermal evaporation technique using dimethylformamide (DMF), diethyl-ether/DMF mixture and THF. Different concentrations (18 mM and 400 mM) and solution temperature (25–80 °C) were used to obtain varied evaporation rates (0.1×10{sup −4}–5000×10{sup −4} ml/h). Different crystal sizes and shapes were obtained by changing solvents, mixture and initial solution volume. According to X-ray diffraction the samples are monocrystalline. The top surface was investigated by SEM. Optical band-gaps above 2 eV were obtained from photoacoustic spectroscopy. Photoluminescence spectra indicated band-to-band electronic transitions, and the presence of sub-band gap states. Excitons, structural defects and the presence of impurities are discussed and correlated to the electrical measurements. Crystals obtained using pure DMF as solvent showed better general properties, including under the exposure to mammographic X-ray energy range that led to sensibility of about 25 μC/Rcm{sup 2}.

  13. Lossless Compression of Digital Images

    DEFF Research Database (Denmark)

    Martins, Bo

    Presently, tree coders are the best bi-level image coders. The currentISO standard, JBIG, is a good example.By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code.A number of general-purpose coders...... version that is substantially faster than its precursorsand brings it close to the multi-pass coders in compression performance.Handprinted characters are of unequal complexity; recent work by Singer and Tishby demonstrates that utilizing the physiological process of writing one can synthesize cursive.......The feature vector of a bitmap initially constitutes a lossy representation of the contour(s) of the bitmap. The initial feature space is usually too large but can be reduced automatically by use ofa predictive code length or predictive error criterion....

  14. Mammographic density and breast cancer risk in breast screening assessment cases and women with a family history of breast cancer.

    Science.gov (United States)

    Duffy, Stephen W; Morrish, Oliver W E; Allgood, Prue C; Black, Richard; Gillan, Maureen G C; Willsher, Paula; Cooke, Julie; Duncan, Karen A; Michell, Michael J; Dobson, Hilary M; Maroni, Roberta; Lim, Yit Y; Purushothaman, Hema N; Suaris, Tamara; Astley, Susan M; Young, Kenneth C; Tucker, Lorraine; Gilbert, Fiona J

    2018-01-01

    Mammographic density has been shown to be a strong independent predictor of breast cancer and a causative factor in reducing the sensitivity of mammography. There remain questions as to the use of mammographic density information in the context of screening and risk management, and of the association with cancer in populations known to be at increased risk of breast cancer. To assess the association of breast density with presence of cancer by measuring mammographic density visually as a percentage, and with two automated volumetric methods, Quantra™ and VolparaDensity™. The TOMosynthesis with digital MammographY (TOMMY) study of digital breast tomosynthesis in the Breast Screening Programme of the National Health Service (NHS) of the United Kingdom (UK) included 6020 breast screening assessment cases (of whom 1158 had breast cancer) and 1040 screened women with a family history of breast cancer (of whom two had breast cancer). We assessed the association of each measure with breast cancer risk in these populations at enhanced risk, using logistic regression adjusted for age and total breast volume as a surrogate for body mass index (BMI). All density measures showed a positive association with presence of cancer and all declined with age. The strongest effect was seen with Volpara absolute density, with a significant 3% (95% CI 1-5%) increase in risk per 10 cm 3 of dense tissue. The effect of Volpara volumetric density on risk was stronger for large and grade 3 tumours. Automated absolute breast density is a predictor of breast cancer risk in populations at enhanced risk due to either positive mammographic findings or family history. In the screening context, density could be a trigger for more intensive imaging. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Comparison of dignity determination of mammographic microcalcification with two systems for digital full-field mammography with different detector resolution. A retrospective clinical study

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Adamietz, B.; Meier-Meitinger, M.; Wenkel, E.; Lell, M.; Anders, K.; Uder, M.; Hermann, K.P.

    2011-01-01

    The aim of this retrospective clinical study was to compare the diagnostic accuracy of the novel 50 μm FFDM (full-field digital mammography) system (DR) with an established 70 μm system (DR) in the differential diagnosis between benign and malignant clusters of microcalcification (n=50) (BI-RADS trademark classification 4/5) and to assess the possible incremental value of the 50 μm pixel-pitch on specificity. From March 2009 to September 2009, 50 patients underwent full-field digital mammography (FFDM) (detector resolution 70 μm) (Novation, Siemens, Erlangen, Germany). As there were suspicious signs of microcalcification classified with BI-RADS trademark 4/5 after diagnosis and preoperative wire localization, control images were made with the new FFDM system (detector: resolution 50 μm) (Amulet, Fujifilm, Tokyo, Japan) with the same exposure parameters. The diagnosis was determined after the operation by five radiologists with different experience in digital mammography from randomly distributed mediolateral views (monitor reading) whose results were correlated with the final histology of all lesions. Histopathology revealed 19 benign and 31 malignant lesions in 50 patients after open biopsy. The results of the five readers showed a higher sensitivity of the new FFDM system (80.0%) in the ability to recognize malignant microcalcification in comparison to the established system (74.8%). The specificity (75.8 versus 71.6%) was slightly higher for the new system but hese results were not statistically significant (p [de

  16. ASTM reference radiologic digital image standards

    International Nuclear Information System (INIS)

    Wysnewski, R.; Wysnewski, D.

    1996-01-01

    ASTM Reference Radiographs have been essential in defining industry's material defect grade levels for many years. ASTM Reference Radiographs are used extensively as even the American Society for Metals Nondestructive Inspection and Quality Control Metals Handbook, Volume 11, eighth edition refers to ASTM Standard Reference Radiographs. The recently published E 1648 Standard Reference Radiographs for Examination of Aluminum Fusion Welds is a prime example of the on-going need for these references. To date, 14 Standard Reference Radiographs have been published to characterize material defects. Standard Reference Radiographs do not adequately address film-less radiologic methods. There are differences in mediums to content with. On a computer CRT defect indications appear differently when compared to indications viewed in a radiograph on a view box. Industry that uses non-film radiologic methods of inspection can be burdened with additional time and money developing internal standard reference radiologic images. These references may be deemed necessary for grading levels of product defects. Because there are no ASTM Standard Reference Radiologic data files for addressing this need in the industry, the authors of this paper suggested implementing a method for their creation under ASTM supervision. ASTM can assure continuity to those users making the transition from analog radiographic images to digital image data by swiftly addressing the requirements for reference digital image standards. The current status and possible future activities regarding a method to create digital data files is presented in this paper summary

  17. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  18. [Comparison of dignity determination of mammographic microcalcification with two systems for digital full-field mammography with different detector resolution: a retrospective clinical study].

    Science.gov (United States)

    Schulz-Wendtland, R; Hermann, K-P; Adamietz, B; Meier-Meitinger, M; Wenkel, E; Lell, M; Anders, K; Uder, M

    2011-02-01

    The aim of this retrospective clinical study was to compare the diagnostic accuracy of the novel 50 µm FFDM (full-field digital mammography) system (DR) with an established 70 µm system (DR) in the differential diagnosis between benign and malignant clusters of microcalcification (n=50) (BI-RADS™ classification 4/5) and to assess the possible incremental value of the 50 µm pixel-pitch on specificity. From March 2009 to September 2009, 50 patients underwent full-field digital mammography (FFDM) (detector resolution 70 µm) (Novation, Siemens, Erlangen, Germany). As there were suspicious signs of microcalcification classified with BI-RADS™ 4/5 after diagnosis and preoperative wire localization, control images were made with the new FFDM system (detector: resolution 50 µm) (Amulet, Fujifilm, Tokyo, Japan) with the same exposure parameters. The diagnosis was determined after the operation by five radiologists with different experience in digital mammography from randomly distributed mediolateral views (monitor reading) whose results were correlated with the final histology of all lesions. Histopathology revealed 19 benign and 31 malignant lesions in 50 patients after open biopsy. The results of the five readers showed a higher sensitivity of the new FFDM system (80.0%) in the ability to recognize malignant microcalcification in comparison to the established system (74.8%). The specificity (75.8 versus 71.6%) was slightly higher for the new system but these results were not statistically significant (pdetector: resolution 50 µm) was also slightly superior to the well-known system (detector: resolution 70 µm) (80.1% versus 76.4%). Our study has shown that the new full-field digital mammography system using the novel detector compared with the already established FFDM system with respect to the assessment of microcalcification is at least equivalent.

  19. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  20. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  1. The iconic image in a digital age

    DEFF Research Database (Denmark)

    Mortensen, Mette; Allan, Stuart; Peters, Chris

    2017-01-01

    This article investigates selected newspapers’ editorial mediations over contrasting perceptions regarding the significance of a controversial set of “iconic” news photographs, namely images of Alan Kurdi, a three-year-old Syrian refugee, whose drowned corpse washed ashore in September, 2015. Spe......-reflexivity within a convergent digital media ecology, this article offers original insights into how and why the epistemic values governing visual communication are being reconsidered and redrawn under pressure from institutional imperatives....

  2. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  3. Storage and retrieval of large digital images

    Science.gov (United States)

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  4. Computer-aided diagnosis of mammographic microcalcification clusters

    International Nuclear Information System (INIS)

    Kallergi, Maria

    2004-01-01

    Computer-aided diagnosis techniques in medical imaging are developed for the automated differentiation between benign and malignant lesions and go beyond computer-aided detection by providing cancer likelihood for a detected lesion given image and/or patient characteristics. The goal of this study was the development and evaluation of a computer-aided detection and diagnosis algorithm for mammographic calcification clusters. The emphasis was on the diagnostic component, although the algorithm included automated detection, segmentation, and classification steps based on wavelet filters and artificial neural networks. Classification features were selected primarily from descriptors of the morphology of the individual calcifications and the distribution of the cluster. Thirteen such descriptors were selected and, combined with patient's age, were given as inputs to the network. The features were ranked and evaluated for the classification of 100 high-resolution, digitized mammograms containing biopsy-proven, benign and malignant calcification clusters. The classification performance of the algorithm reached a 100% sensitivity for a specificity of 85% (receiver operating characteristic area index A z =0.98±0.01). Tests of the algorithm under various conditions showed that the selected features were robust morphological and distributional descriptors, relatively insensitive to segmentation and detection errors such as false positive signals. The algorithm could exceed the performance of a similar visual analysis system that was used as basis for development and, combined with a simple image standardization process, could be applied to images from different imaging systems and film digitizers with similar sensitivity and specificity rates

  5. Digital image intensifier radiography: first experiences with the DSI (Digital Spot Imaging)

    International Nuclear Information System (INIS)

    Rueckforth, J.; Wein, B.; Stargardt, A.; Guenther, R.W.

    1995-01-01

    We performed a comparative study of digitally and conventionally acquired images in gastrointestinal examinations. Radiation dose and spatial resolution were determined in a water phantom. In 676 examinations with either conventional or digital imaging (system: Diagnost 76, DSI) the number of images and the duration of the fluoroscopy time were compared. 101 examinations with digital as well as conventional documentation were evaluated by using 5 criteria describing the diagnostic performance. The entrance dose of the DSI is 12% to 36% of the film/screen system and the spatial resolution of the DSI may be better than that of a film/screen system with a speed of 200. The fluoroscopy time shows no significant difference between DSI and the film/screen technique. In 2 of 4 examination modes significantly more images were produced by the DSI. With exception of the criterion of edge sharpness, DSI yields a significantly inferior assessment compared with the film/screen technique. (orig./MG) [de

  6. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  7. [Digital imaging and robotics in endoscopic surgery].

    Science.gov (United States)

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).

  8. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various samples. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  9. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  10. Force balancing in mammographic compression

    International Nuclear Information System (INIS)

    Branderhorst, W.; Groot, J. E. de; Lier, M. G. J. T. B. van; Grimbergen, C. A.; Neeter, L. M. F. H.; Heeten, G. J. den; Neeleman, C.

    2016-01-01

    Purpose: In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. Methods: A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. Results: For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. Conclusions: In mammographic breast

  11. Utility of Digital Stereo Images for Optic Disc Evaluation

    Science.gov (United States)

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  12. Development of terminology for mammographic techniques for radiological technologists.

    Science.gov (United States)

    Yagahara, Ayako; Yokooka, Yuki; Tsuji, Shintaro; Nishimoto, Naoki; Uesugi, Masahito; Muto, Hiroshi; Ohba, Hisateru; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2011-07-01

    We are developing a mammographic ontology to share knowledge of the mammographic domain for radiologic technologists, with the aim of improving mammographic techniques. As a first step in constructing the ontology, we used mammography reference books to establish mammographic terminology for identifying currently available knowledge. This study proceeded in three steps: (1) determination of the domain and scope of the terminology, (2) lexical extraction, and (3) construction of hierarchical structures. We extracted terms mainly from three reference books and constructed the hierarchical structures manually. We compared features of the terms extracted from the three reference books. We constructed a terminology consisting of 440 subclasses grouped into 19 top-level classes: anatomic entity, image quality factor, findings, material, risk, breast, histological classification of breast tumors, role, foreign body, mammographic technique, physics, purpose of mammography examination, explanation of mammography examination, image development, abbreviation, quality control, equipment, interpretation, and evaluation of clinical imaging. The number of terms that occurred in the subclasses varied depending on which reference book was used. We developed a terminology of mammographic techniques for radiologic technologists consisting of 440 terms.

  13. Imaging sunlight using a digital spectroheliograph

    CERN Document Server

    Harrison, Ken M

    2016-01-01

    Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial ‘etalon’ solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is exp...

  14. Textural Classification of Mammographic Parenchymal Patterns with the SONNET Selforganizing Neural Network

    Directory of Open Access Journals (Sweden)

    Daniel Howard

    2008-01-01

    Full Text Available In nationwide mammography screening, thousands of mammography examinations must be processed. Each consists of two standard views of each breast, and each mammogram must be visually examined by an experienced radiologist to assess it for any anomalies. The ability to detect an anomaly in mammographic texture is important to successful outcomes in mammography screening and, in this study, a large number of mammograms were digitized with a highly accurate scanner; and textural features were derived from the mammograms as input data to a SONNET selforganizing neural network. The paper discusses how SONNET was used to produce a taxonomic organization of the mammography archive in an unsupervised manner. This process is subject to certain choices of SONNET parameters, in these numerical experiments using the craniocaudal view, and typically produced O(10, for example, 39 mammogram classes, by analysis of features from O(103 mammogram images. The mammogram taxonomy captured typical subtleties to discriminate mammograms, and it is submitted that this may be exploited to aid the detection of mammographic anomalies, for example, by acting as a preprocessing stage to simplify the task for a computational detection scheme, or by ordering mammography examinations by mammogram taxonomic class prior to screening in order to encourage more successful visual examination during screening. The resulting taxonomy may help train screening radiologists and conceivably help to settle legal cases concerning a mammography screening examination because the taxonomy can reveal the frequency of mammographic patterns in a population.

  15. An image adaptive, wavelet-based watermarking of digital images

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  16. Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors.

    Science.gov (United States)

    Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming

    2017-11-09

    The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P  .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Technical quality control - constancy controls for digital mammography systems

    International Nuclear Information System (INIS)

    Pedersen, K.; Landmark, I.D.; Bredholt, K.; Hauge, I.H.R.

    2009-04-01

    To ensure the quality of mammographic images, so-called constancy control tests are performed frequently. The report contains a programme for constancy control of digital mammography systems, encompassing the mammography unit, computed radiography (CR) systems, viewing conditions and displays, printers, and procedures for data collection for patient dose calculations. (Author)

  18. Endless everyday images: links and excesses in digital image

    Directory of Open Access Journals (Sweden)

    Ana Cláudia do Amaral Leão

    2013-08-01

    Full Text Available The research analyzed the relationships and communication links between overproduced images on digital media and their carriers. I start from the hypothesis that the way we look, record, save and access images have been deeply modified with the advent of digital cameras and ‘phone cameras’ – encouraging an addictive behavior for pictures. The method was based on interviews with ten informers – the images’ carriers, who let us conclude that we are overproducing pictures as information. In this context arise the producers of endless everyday pictures, here named ‘photomaniacs’, who give birth two kinds of images: the circulatory infoimages and the everyday infoimages. Overproduced digital images transform devices in our magnifiers of memory and oblivion, undoing the way we compile, save or file – and operating in cumulative, disordered, small and private stock of images. Thus, we try to saturate our most superficial memory, that generates schizophrenic pictures when operates on excess. However, even if the way is only technological, we must remember that the body is the living organism suitable to pictures, the place where we hold deep bonding relations. Over this body surface, images survive impregnated of meanings, links, belonging and healing. The research was based on the theories of communication links of Boris Cyrulnik, Jose Ângelo Gaiarsa and Ashley Montagu, besides the works on images and schizophrenia of Nise da Silveira and Leo Navratil. The research also activated the central European stream of Cultural Semiotics, specially the theories of images proposed by Aby Warburg, Walter Benjamin, Dietmar Kamper, Norval Baitello Junior, Hans Belting and Vilém Flusser.

  19. Losing Images in Digital Radiology: More than You Think

    OpenAIRE

    Oglevee, Catherine; Pianykh, Oleg

    2014-01-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and dai...

  20. Panning artifacts in digital pathology images

    Science.gov (United States)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  1. Comparative evaluation of average glandular dose and image of digital mammography and film mammography in Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Nogueira, M.; Leyton, F.; Rodrigue, L. L.C.; Oliveira, M.A.; Joana, G.S.; Silva, S.D.

    2015-01-01

    Breast cancer is the most common cancer among women, and early detection is critical to its diagnosis and treatment. Mammography is the best method for breast-cancer screening and is capable of reducing mortality rates To date, the most effective method for early detection of breast cancer has been x-ray mammography for which the screen/film (SF) technique has been the gold standard. Digital mammography has been proposed as a substitute for film mammography given the benefits inherent to digital technology. The purpose of our study was to compare the technical performance of digital mammographic and screen-film mammography. A PMMA phantom with objects to simulate breast structures. For the screen/film (SF) technique the results showed that 54% mammography units did not achieve the minimum acceptable performance as far the image quality. Besides, 67% services showed inadequate performance in their processing systems, which had significant influence on the image quality. At the mean glandular dose only 44% of digital systems evaluated were compliant in all thicknesses of PMMA. The average glandular dose AGD was 90 % higher than in screen/film systems. (authors)

  2. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  3. Creating a panorama of the heart with digital images.

    Science.gov (United States)

    Rosebrock, L

    2000-01-01

    Digital imaging offers new opportunities still being discovered by users. This article describes a technique that was created using a digital camera to photograph the entire surface of a rat heart. The technique may have other applications as well.

  4. Clinical evaluation of JPEG2000 compression for digital mammography

    Science.gov (United States)

    Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik

    2002-06-01

    Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.

  5. Detecting jaundice by using digital image processing

    Science.gov (United States)

    Castro-Ramos, J.; Toxqui-Quitl, C.; Villa Manriquez, F.; Orozco-Guillen, E.; Padilla-Vivanco, A.; Sánchez-Escobar, JJ.

    2014-03-01

    When strong Jaundice is presented, babies or adults should be subject to clinical exam like "serum bilirubin" which can cause traumas in patients. Often jaundice is presented in liver disease such as hepatitis or liver cancer. In order to avoid additional traumas we propose to detect jaundice (icterus) in newborns or adults by using a not pain method. By acquiring digital images in color, in palm, soles and forehead, we analyze RGB attributes and diffuse reflectance spectra as the parameter to characterize patients with either jaundice or not, and we correlate that parameters with the level of bilirubin. By applying support vector machine we distinguish between healthy and sick patients.

  6. Anxiety in mammography: mammographers' and clients' perspectives

    International Nuclear Information System (INIS)

    Galletta, S.; Joel, N.; Maguire, R.; Weaver, K.; Poulos, A.

    2003-01-01

    The aim of this study was to identify causes of anxiety experienced by mammographers and clients during mammography and strategies to decrease the anxiety generated by the mammographic procedure. Two questionnaires were distributed: one to mammographers in public and private centres within NSW, the other to women (clients) who have experienced mammography. Mammographers' and clients' rankings of causes of clients' anxiety demonstrated many similarities indicating the mammographers' acknowledgement of factors contributing to client anxiety. Thematic analysis provided important qualitative data concerning anxiety experienced by both mammographers and clients and the influence of mammographer and client behaviour on that anxiety. The results of this study have provided important new knowledge for mammographic practice and mammography education. By understanding the causes of anxiety experienced by clients, mammographers can provide an informed, empathetic approach to the mammographic process. By acknowledging factors which increase their own anxiety mammographers can reduce the impact of this on themselves and on their clients. Copyright (2003) Australian Institute of Radiography

  7. Evaluation of the quality of CR mammography images in Chugoku Rosai Hospital. Visual evaluation and digital evaluation

    International Nuclear Information System (INIS)

    Makihata, Hiroshi; Fukuda, Tomoya; Aomori, Masaji; Hara, Shinji

    2005-01-01

    New mammography system (50-micrometer system) composed of Fuji computed tomography (FCR) both sides IP, 5000MA and dry imager was introduced in the Department of Physical Checkup of Chugoku Rosai Hospital in 2003. We performed visual evaluation and digital evaluation using 50-micrometer system in accordance with (the quality control guidance of) Non-Profit Organization the Central Committee on Quality Control of Mammographic Screening. In visual evaluation using RMI156 phantom the system cleared the quality control guidance about a fiber, calcification, and masses. On step phantom, it passed about 10 steps, masses, and calcifications. Since a success standard was not announced officially, the performance in digital evaluation cannot be judged and only the result is presented. In digital evaluation, signal-to-noise ratio (SNR) is 14.9, root of mean squares (RMS) is 32.9, SNRC is 16.4, SNRT is 3.65. This system image has high sharpness and is considered from the result in visual evaluation to have the ability of offering images with a high degree of information. (author)

  8. Semiautomatic digital imaging system for cytogenetic analysis

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Chauhan, P.C.; Bannur, S.V.; Kulgod, S.V.; Chadda, V.K.; Nigam, R.K.

    1999-08-01

    The paper describes a digital image processing system, developed indigenously at BARC for size measurement of microscopic biological objects such as cell, nucleus and micronucleus in mouse bone marrow; cytochalasin-B blocked human lymphocytes in-vitro; numerical counting and karyotyping of metaphase chromosomes of human lymphocytes. Errors in karyotyping of chromosomes by the imaging system may creep in due to lack of well-defined position of centromere or extensive bending of chromosomes, which may result due to poor quality of preparation. Good metaphase preparations are mandatory for precise and accurate analysis by the system. Additional new morphological parameters about each chromosome have to be incorporated to improve the accuracy of karyotyping. Though the experienced cytogenetisist is the final judge; however, the system assists him/her to carryout analysis much faster as compared to manual scoring. Further, experimental studies are in progress to validate different software packages developed for various cytogenetic applications. (author)

  9. The Neuro-Image: Alain Resnais's Digital Cinema without the Digits

    NARCIS (Netherlands)

    Pisters, P.

    2011-01-01

    This paper proposes to read cinema in the digital age as a new type of image, the neuroimage. Going back to Gilles Deleuze's cinema books and it is argued that the neuro-image is based in the future. The cinema of Alain Resnais is analyzed as a neuro-image and digital cinema .

  10. From Digital Imaging to Computer Image Analysis of Fine Art

    Science.gov (United States)

    Stork, David G.

    An expanding range of techniques from computer vision, pattern recognition, image analysis, and computer graphics are being applied to problems in the history of art. The success of these efforts is enabled by the growing corpus of high-resolution multi-spectral digital images of art (primarily paintings and drawings), sophisticated computer vision methods, and most importantly the engagement of some art scholars who bring questions that may be addressed through computer methods. This paper outlines some general problem areas and opportunities in this new inter-disciplinary research program.

  11. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  12. Advanced digital image archival system using MPEG technologies

    Science.gov (United States)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  13. Integrating Digital Images into the Art and Art History Curriculum.

    Science.gov (United States)

    Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.

    2002-01-01

    Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…

  14. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  15. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  16. Surface Distresses Detection of Pavement Based on Digital Image Processing

    OpenAIRE

    Ouyang , Aiguo; Luo , Chagen; Zhou , Chao

    2010-01-01

    International audience; Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and automatic detection. The applications of digital image processing in pavement crack detection, distresses classificati...

  17. X-ray images in the digital mode

    International Nuclear Information System (INIS)

    Buchmann, F.; Balter, S.

    1981-01-01

    In addition to computed tomography which presents actually the most important processing and transfer procedure of digital X-ray images, application of real time addition and substraction of X-ray images in a digital mode has found considerable interest. An estimation of the information contents of both digital and analog images is made in close relation to applications. As example of an image processing system on digital base a recently developed system for intravenous arteriography is described: the Philips-DVI. (orig.) [de

  18. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  19. New possibilities of digital luminescence radiography (DLR) and digital image processing for verification and portal imaging

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Blume, J.; Wendhausen, H.; Hebbinghaus, D.; Kovacs, G.; Eilf, K.; Schultze, J.; Kimmig, B.N.

    1995-01-01

    We developed a method, using digital luminescence radiography (DLR), not only for portal imaging of photon beams in an excellent quality, but also for verification of electron beams. Furtheron, DLR was used as basic instrument for image fusion of portal and verification film and simulation film respectively for image processing in ''beams-eye-view'' verification (BEVV) of rotating beams or conformation therapy. Digital radiographs of an excellent quality are gained for verification of photon and electron beams. In photon beams, quality improvement vs. conventional portal imaging may be dramatic, even more for high energy beams (e.g. 15-MV-photon beams) than for Co-60. In electron beams, excellent results may be easily obtained. By digital image fusion of 1 or more verification films on simulation film or MRI-planning film, more precise judgement even on small differences between simulation and verification films becomes possible. Using BEVV, it is possible to compare computer aided simulation in rotating beams or conformation therapy with the really applied treatment. The basic principle of BEVV is also suitable for dynamic multileaf collimation. (orig.) [de

  20. Effect of the Availability of Prior Full-Field Digital Mammography and Digital Breast Tomosynthesis Images on the Interpretation of Mammograms

    Science.gov (United States)

    Catullo, Victor J.; Chough, Denise M.; Ganott, Marie A.; Kelly, Amy E.; Shinde, Dilip D.; Sumkin, Jules H.; Wallace, Luisa P.; Bandos, Andriy I.; Gur, David

    2015-01-01

    Purpose To assess the effect of and interaction between the availability of prior images and digital breast tomosynthesis (DBT) images in decisions to recall women during mammogram interpretation. Materials and Methods Verbal informed consent was obtained for this HIPAA-compliant institutional review board–approved protocol. Eight radiologists independently interpreted twice deidentified mammograms obtained in 153 women (age range, 37–83 years; mean age, 53.7 years ± 9.3 [standard deviation]) in a mode by reader by case-balanced fully crossed study. Each study consisted of current and prior full-field digital mammography (FFDM) images and DBT images that were acquired in our facility between June 2009 and January 2013. For one reading, sequential ratings were provided by using (a) current FFDM images only, (b) current FFDM and DBT images, and (c) current FFDM, DBT, and prior FFDM images. The other reading consisted of (a) current FFDM images only, (b) current and prior FFDM images, and (c) current FFDM, prior FFDM, and DBT images. Fifty verified cancer cases, 60 negative and benign cases (clinically not recalled), and 43 benign cases (clinically recalled) were included. Recall recommendations and interaction between the effect of prior FFDM and DBT images were assessed by using a generalized linear model accounting for case and reader variability. Results Average recall rates in noncancer cases were significantly reduced with the addition of prior FFDM images by 34% (145 of 421) and 32% (106 of 333) without and with DBT images, respectively (P < .001). However, this recall reduction was achieved at the cost of a corresponding 7% (23 of 345) and 4% (14 of 353) reduction in sensitivity (P = .006). In contrast, availability of DBT images resulted in a smaller reduction in recall rates (false-positive interpretations) of 19% (76 of 409) and 26% (71 of 276) without and with prior FFDM images, respectively (P = .001). Availability of DBT images resulted in 4% (15 of

  1. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  2. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators......This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  3. Posterior breast cancer: Mammographic and ultrasonographic features

    Directory of Open Access Journals (Sweden)

    Janković Ana

    2013-01-01

    Full Text Available Background/Aim. Posterior breast cancers are located in the prepectoral region of the breast. Owing to this distinctive anatomical localization, physical examination and mammographic or ultrasonographic evaluation can be difficult. The purpose of the study was to assess possibilities of diagnostic mammography and breast ultrasonography in detection and differentiation of posterior breast cancers. Methods. The study included 40 women with palpable, histopathological confirmed posterior breast cancer. Mammographic and ultrasonographic features were defined according to Breast Imaging Reporting and Data System (BI-RADS lexicon. Results. Based on standard two-view mammography 87.5%, of the cases were classified as BI-RADS 4 and 5 categories, while after additional mammographic views all the cases were defined as BIRADS 4 and 5 categories. Among 96 mammographic descriptors, the most frequent were: spiculated mass (24.0%, architectural distortion (16.7%, clustered microcalcifications (12.6% and focal asymmetric density (12.6%. The differentiation of the spiculated mass was significantly associated with the possibility to visualize the lesion at two-view mammography (p = 0.009, without the association with lesion diameter (p = 0.083 or histopathological type (p = 0.055. Mammographic signs of invasive lobular carcinoma were significantly different from other histopathological types (architectural distortion, p = 0.003; focal asymmetric density, p = 0.019; association of four or five subtle signs of malignancy, p = 0.006. All cancers were detectable by ultrasonography. Mass lesions were found in 82.0% of the cases. Among 153 ultrasonographic descriptors, the most frequent were: irregular mass (15.7%, lobulated mass (7.2%, abnormal color Doppler signals (20.3%, posterior acoustic attenuation (18.3%. Ultrasonographic BI-RADS 4 and 5 categories were defined in 72.5% of the cases, without a significant difference among various histopathological types (p = 0

  4. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.

    Directory of Open Access Journals (Sweden)

    Abbas Cheddad

    Full Text Available INTRODUCTION: Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for measuring both area and volumetric mammographic density from processed images. METHODS: The data set used in this study comprises raw and processed images of the same view from 1462 women. We developed two algorithms for processed images, an automated area-based approach (CASAM-Area and a volumetric-based approach (CASAM-Vol. The latter method was based on training a random forest prediction model with image statistical features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association analysis was based on 1011 control subjects. RESULTS: All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p0.10 for risk, p>0.03 for rs10995190. CONCLUSIONS: Our results show that it is possible to obtain reliable automated measures of volumetric and area mammographic density from processed digital images. Area and volumetric measures of density on processed digital images performed similar in terms of risk and genetic association.

  5. Digital Particle Image Velocimetry: Partial Image Error (PIE)

    International Nuclear Information System (INIS)

    Anandarajah, K; Hargrave, G K; Halliwell, N A

    2006-01-01

    This paper quantifies the errors due to partial imaging of seeding particles which occur at the edges of interrogation regions in Digital Particle Image Velocimetry (DPIV). Hitherto, in the scientific literature the effect of these partial images has been assumed to be negligible. The results show that the error is significant even at a commonly used interrogation region size of 32 x 32 pixels. If correlation of interrogation region sizes of 16 x 16 pixels and smaller is attempted, the error which occurs can preclude meaningful results being obtained. In order to reduce the error normalisation of the correlation peak values is necessary. The paper introduces Normalisation by Signal Strength (NSS) as the preferred means of normalisation for optimum accuracy. In addition, it is shown that NSS increases the dynamic range of DPIV

  6. Digital image archiving: challenges and choices.

    Science.gov (United States)

    Dumery, Barbara

    2002-01-01

    In the last five years, imaging exam volume has grown rapidly. In addition to increased image acquisition, there is more patient information per study. RIS-PACS integration and information-rich DICOM headers now provide us with more patient information relative to each study. The volume of archived digital images is increasing and will continue to rise at a steeper incline than film-based storage of the past. Many filmless facilities have been caught off guard by this increase, which has been stimulated by many factors. The most significant factor is investment in new digital and DICOM-compliant modalities. A huge volume driver is the increase in images per study from multi-slice technology. Storage requirements also are affected by disaster recovery initiatives and state retention mandates. This burgeoning rate of imaging data volume presents many challenges: cost of ownership, data accessibility, storage media obsolescence, database considerations, physical limitations, reliability and redundancy. There are two basic approaches to archiving--single tier and multi-tier. Each has benefits. With a single-tier approach, all the data is stored on a single media that can be accessed very quickly. A redundant copy of the data is then stored onto another less expensive media. This is usually a removable media. In this approach, the on-line storage is increased incrementally as volume grows. In a multi-tier approach, storage levels are set up based on access speed and cost. In other words, all images are stored at the deepest archiving level, which is also the least expensive. Images are stored on or moved back to the intermediate and on-line levels if they will need to be accessed more quickly. It can be difficult to decide what the best approach is for your organization. The options include RAIDs (redundant array of independent disks), direct attached RAID storage (DAS), network storage using RAIDs (NAS and SAN), removable media such as different types of tape, compact

  7. Digital image processing applied Rock Art tracing

    Directory of Open Access Journals (Sweden)

    Montero Ruiz, Ignacio

    1998-06-01

    Full Text Available Adequate graphic recording has been one of the main objectives of rock art research. Photography has increased its role as a documentary technique. Now, digital image and its treatment allows new ways to observe the details of the figures and to develop a recording procedure which is as, or more, accurate than direct tracing. This technique also avoid deterioration of the rock paintings. The mathematical basis of this method is also presented.

    La correcta documentación del arte rupestre ha sido una preocupación constante por parte de los investigadores. En el desarrollo de nuevas técnicas de registro, directas e indirectas, la fotografía ha ido adquiriendo mayor protagonismo. La imagen digital y su tratamiento permiten nuevas posibilidades de observación de las figuras representadas y, en consecuencia, una lectura mediante la realización de calcos indirectos de tanta o mayor fiabilidad que la observación directa. Este sistema evita los riesgos de deterioro que provocan los calcos directos. Se incluyen las bases matemáticas que sustentan el método.

  8. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.

    1991-01-01

    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  9. Feasibility of digital imaging to characterize earth materials : part 1.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  10. Feasibility of digital imaging to characterize earth materials : part 4.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  11. Feasibility of digital imaging to characterize earth materials : part 5.

    Science.gov (United States)

    2012-05-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  12. Feasibility of digital imaging to characterize earth materials : part 3.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  13. Feasibility of digital imaging to characterize earth materials : part 2.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  14. Feasibility of digital imaging to characterize earth materials : part 6.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  15. Securing Digital Images Integrity using Artificial Neural Networks

    Science.gov (United States)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  16. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  17. Digital pulse processor for ion beam microprobe imaging

    International Nuclear Information System (INIS)

    Bogovac, M.; Jaksic, M.; Wegrzynek, D.; Markowicz, A.

    2009-01-01

    Capabilities of spectroscopic ion beam analysis (IBA) techniques that are available in ion microprobe facilities can be greatly improved by the use of digital pulse processing. We report here development of a digital multi parameter data acquisition system suitable for IBA imaging applications. Input signals from charge sensitive preamplifier are conditioned by using a simple circuit and digitized with fast ADCs. The digitally converted signals are processed in real time using FPGA. Implementation of several components of the system is presented.

  18. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  19. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents.

    Science.gov (United States)

    Zhang, Jing; Lo, Joseph Y; Kuzmiak, Cherie M; Ghate, Sujata V; Yoon, Sora C; Mazurowski, Maciej A

    2014-09-01

    Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. The authors' algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different from 0.5 (perror

  20. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents

    International Nuclear Information System (INIS)

    Zhang, Jing; Ghate, Sujata V.; Yoon, Sora C.; Lo, Joseph Y.; Kuzmiak, Cherie M.; Mazurowski, Maciej A.

    2014-01-01

    Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different

  1. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: jing.zhang2@duke.edu; Ghate, Sujata V.; Yoon, Sora C. [Department of Radiology, Duke University School of Medicine, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology, Duke University School of Medicine, Durham, North Carolina 27705 (United States); Duke Cancer Institute, Durham, North Carolina 27710 (United States); Departments of Biomedical Engineering and Electrical and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Kuzmiak, Cherie M. [Department of Radiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599 (United States); Mazurowski, Maciej A. [Department of Radiology, Duke University School of Medicine, Durham, North Carolina 27705 (United States); Duke Cancer Institute, Durham, North Carolina 27710 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different

  2. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  3. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  4. Improving digital image watermarking by means of optimal channel selection

    NARCIS (Netherlands)

    Huynh-The, Thien; Banos Legran, Oresti; Lee, Sungyoung; Yoon, Yongik; Le-Tien, Thuong

    2016-01-01

    Supporting safe and resilient authentication and integrity of digital images is of critical importance in a time of enormous creation and sharing of these contents. This paper presents an improved digital image watermarking model based on a coefficient quantization technique that intelligently

  5. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  6. Digital Mammography Tomosynthesis

    International Nuclear Information System (INIS)

    Gergov, I.; Alexov, G.; Rusonov, K.

    2017-01-01

    Siemens MAMMOMAT Inspiration with Tomosynthesis enhances the diagnostic precision in mammographic screening. The apparatus has a wide-angle tomosynthesis up to 50 degrees. The Siemens breast augmentation algorithm reconstructs multiple two-dimensional breast images into three-dimensional images at the lowest doses to help detect tumors hidden from the overlapping chest tissue, allowing for a more accurate diagnosis than standard 2-dimensional digital mammography, and reducing the number of false positive results. 3D digital tomosynthesis improves the precision of detecting and diagnosing a larger number of expansive lesions, ensures better morphological mass analysis and architectural distortion, and detecting calcifications by adding digital breast tomosynthesis to the traditional two-dimensional digital mammogram of the patient. In this way, it solves the problem of overlapping parenchyma, reduces the number of unnecessary biopsies from questionable sonomammographic findings, and the need for stressful repeating procedures, which usually contributes to both better patient outcomes and cost saving. [bg

  7. Losing images in digital radiology: more than you think.

    Science.gov (United States)

    Oglevee, Catherine; Pianykh, Oleg

    2015-06-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and daily quality of clinical work. This paper identifies the origins of invisible image losses, provides methods and procedures to detect image loss, and demonstrates modes of action that can be taken to stop the problem from happening.

  8. Analysis of mammographic findings of breast cancer

    International Nuclear Information System (INIS)

    Park, Hyun Joo; Han, Heon; Yang, Dal Mo; Chung, Hyo Sun; Kim, Jee Eun; Kim, Young Chae

    1995-01-01

    This study is to describe authors' experience on mammographic findings of breast cancer and to know if there is difference between 35 years of age or younger and older groups. Mammograms of 72 patients with breast cancer detected from January, 1991 to December, 1993 were retrospectively analysed. Mammographic findings were classified into mass only, mass with microcalcifications, microcalcifications only and others. Marginal characteristics of mass were classified into spiculated, poorly marginated and well marginated. Shape of microcalcifications were classified into casting, granular and mixed types. These findings were compared between 35 years of age or younger and older groups. Mammogram showed mass only in 33 patients (46%), mass with microcalcifications in 26 patients (36%), microcalcifications only in seven (10%) and other findings in six (8%). Other findings were architectural distortion, asymmetric high density and incidental breast carcinoma from paraffinoma in one patient respectively, and dense breast in three patients. The margins of the breast mass were spiculated in ten (17%). poorly marginated in 30 (51%), well-marginated in 19 (32%). Shape of microcalcifications were casting type in 13 (40%). granular in 14 (42%) and mixed in six (18%) cases. 3 patients had dense breast with which mammography did not demonstrate the lesion. 3 patients without mammographically demonstrable lesions due to dense breasts were under 35 years in age, and there was statistically significant difference between the two groups (ρ -value < 0.05). Microcalcifications only was more common findings in 35 years of age or younger. The most important mammographic findings of breast cancer were mass and microcalcifications. Architectural distortion and asymmetric high density were additional findings. In 35 years of age or younger, microcalcifications only was an important finding because mass lesions are frequently masked by dense breast. Thus other imaging modalities, such as

  9. Use of border information in the classification of mammographic masses

    International Nuclear Information System (INIS)

    Varela, C; Timp, S; Karssemeijer, N

    2006-01-01

    We are developing a new method to characterize the margin of a mammographic mass lesion to improve the classification of benign and malignant masses. Towards this goal, we designed features that measure the degree of sharpness and microlobulation of mass margins. We calculated these features in a border region of the mass defined as a thin band along the mass contour. The importance of these features in the classification of benign and malignant masses was studied in relation to existing features used for mammographic mass detection. Features were divided into three groups, each representing a different mass segment: the interior region of a mass, the border and the outer area. The interior and the outer area of a mass were characterized using contrast and spiculation measures. Classification was done in two steps. First, features representing each of the three mass segments were merged into a neural network classifier resulting in a single regional classification score for each segment. Secondly, a classifier combined the three single scores into a final output to discriminate between benign and malignant lesions. We compared the classification performance of each regional classifier and the combined classifier on a data set of 1076 biopsy proved masses (590 malignant and 486 benign) from 481 women included in the Digital Database for Screening Mammography. Receiver operating characteristic (ROC) analysis was used to evaluate the accuracy of the classifiers. The area under the ROC curve (A z ) was 0.69 for the interior mass segment, 0.76 for the border segment and 0.75 for the outer mass segment. The performance of the combined classifier was 0.81 for image-based and 0.83 for case-based evaluation. These results show that the combination of information from different mass segments is an effective approach for computer-aided characterization of mammographic masses. An advantage of this approach is that it allows the assessment of the contribution of regions rather

  10. Mammographic scar for stereotaxic biopsy

    International Nuclear Information System (INIS)

    Guzman Tattis; Hincapie U, Ana Lucia; Patino P, Jairo Hernando

    1997-01-01

    It is reported the case of 56 years old woman who underwent a stereotactic biopsy because of having a circumscribed breast nodule. The histologic diagnosis was benign. After six months, during the mammographic control, it was noticed that the nodule showed irregular contours, because of that a surgical biopsy was performed. The histopathology was reported as benign. it is considered then, that the mammographic changes observed in the mammographic control are due to scar phenomenon after stereotactic biopsy. This findings has not been reported previously

  11. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  12. The impact of using weight estimated from mammographic images vs. self-reported weight on breast cancer risk calculation

    Science.gov (United States)

    Nair, Kalyani P.; Harkness, Elaine F.; Gadde, Soujanye; Lim, Yit Y.; Maxwell, Anthony J.; Moschidis, Emmanouil; Foden, Philip; Cuzick, Jack; Brentnall, Adam; Evans, D. Gareth; Howell, Anthony; Astley, Susan M.

    2017-03-01

    Personalised breast screening requires assessment of individual risk of breast cancer, of which one contributory factor is weight. Self-reported weight has been used for this purpose, but may be unreliable. We explore the use of volume of fat in the breast, measured from digital mammograms. Volumetric breast density measurements were used to determine the volume of fat in the breasts of 40,431 women taking part in the Predicting Risk Of Cancer At Screening (PROCAS) study. Tyrer-Cuzick risk using self-reported weight was calculated for each woman. Weight was also estimated from the relationship between self-reported weight and breast fat volume in the cohort, and used to re-calculate Tyrer-Cuzick risk. Women were assigned to risk categories according to 10 year risk (below average =8%) and the original and re-calculated Tyrer-Cuzick risks were compared. Of the 716 women diagnosed with breast cancer during the study, 15 (2.1%) moved into a lower risk category, and 37 (5.2%) moved into a higher category when using weight estimated from breast fat volume. Of the 39,715 women without a cancer diagnosis, 1009 (2.5%) moved into a lower risk category, and 1721 (4.3%) into a higher risk category. The majority of changes were between below average and average risk categories (38.5% of those with a cancer diagnosis, and 34.6% of those without). No individual moved more than one risk group. Automated breast fat measures may provide a suitable alternative to self-reported weight for risk assessment in personalized screening.

  13. A deep learning method for classifying mammographic breast density categories.

    Science.gov (United States)

    Mohamed, Aly A; Berg, Wendie A; Peng, Hong; Luo, Yahong; Jankowitz, Rachel C; Wu, Shandong

    2018-01-01

    Mammographic breast density is an established risk marker for breast cancer and is visually assessed by radiologists in routine mammogram image reading, using four qualitative Breast Imaging and Reporting Data System (BI-RADS) breast density categories. It is particularly difficult for radiologists to consistently distinguish the two most common and most variably assigned BI-RADS categories, i.e., "scattered density" and "heterogeneously dense". The aim of this work was to investigate a deep learning-based breast density classifier to consistently distinguish these two categories, aiming at providing a potential computerized tool to assist radiologists in assigning a BI-RADS category in current clinical workflow. In this study, we constructed a convolutional neural network (CNN)-based model coupled with a large (i.e., 22,000 images) digital mammogram imaging dataset to evaluate the classification performance between the two aforementioned breast density categories. All images were collected from a cohort of 1,427 women who underwent standard digital mammography screening from 2005 to 2016 at our institution. The truths of the density categories were based on standard clinical assessment made by board-certified breast imaging radiologists. Effects of direct training from scratch solely using digital mammogram images and transfer learning of a pretrained model on a large nonmedical imaging dataset were evaluated for the specific task of breast density classification. In order to measure the classification performance, the CNN classifier was also tested on a refined version of the mammogram image dataset by removing some potentially inaccurately labeled images. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to measure the accuracy of the classifier. The AUC was 0.9421 when the CNN-model was trained from scratch on our own mammogram images, and the accuracy increased gradually along with an increased size of training samples

  14. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  15. Effects of optimization and image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Kheddache, S.; Maansson, L.G.; Angelhed, J.E.; Denbratt, L.; Gottfridsson, B.; Schlossman, D.

    1991-01-01

    A digital system for chest radiography based on a large image intensifier was compared to a conventional film-screen system. The digital system was optimized with regard to spatial and contrast resolution and dose. The images were digitally processed for contrast and edge enhancement. A simulated pneumothorax and two and two simulated nodules were positioned over the lungs and the mediastinum of an anthro-pomorphic phantom. Observer performance was evaluated with Receiver Operating Characteristic (ROC) analysis. Five observers assessed the processed digital images and the conventional full-size radiographs. The time spent viewing the full-size radiographs and the digital images was recorded. For the simulated pneumothorax, the results showed perfect performance for the full-size radiographs and detectability was high also for the processed digital images. No significant differences in the detectability of the simulated nodules was seen between the two imaging systems. The results for the digital images showed a significantly improved detectability for the nodules in the mediastinum as compared to a previous ROC study where no optimization and image processing was available. No significant difference in detectability was seen between the former and the present ROC study for small nodules in the lung. No difference was seen in the time spent assessing the conventional full-size radiographs and the digital images. The study indicates that processed digital images produced by a large image intensifier are equal in image quality to conventional full-size radiographs for low-contrast objects such as nodules. (author). 38 refs.; 4 figs.; 1 tab

  16. Digital image processing for radiography in nuclear power plants

    International Nuclear Information System (INIS)

    Heidt, H.; Rose, P.; Raabe, P.; Daum, W.

    1985-01-01

    With the help of digital processing of radiographic images from reactor-components it is possible to increase the security and objectiveness of the evaluation. Several examples of image processing procedures (contrast enhancement, density profiles, shading correction, digital filtering, superposition of images etc.) show the advantages for the visualization and evaluation of radiographs. Digital image processing can reduce some of the restrictions of radiography in nuclear power plants. In addition a higher degree of automation can be cost-saving and increase the quality of radiographic evaluation. The aim of the work performed was to to improve the readability of radiographs for the human observer. The main problem is lack of contrast and the presence of disturbing structures like weld seams. Digital image processing of film radiographs starts with the digitization of the image. Conventional systems use TV-cameras or scanners and provide a dynamic range of 1.5. to 3 density units, which are digitized to 256 grey levels. For the enhancement process it is necessary that the grey level range covers the density range of the important regions of the presented film. On the other hand the grey level coverage should not be wider than necessary to minimize the width of digitization steps. Poor digitization makes flaws and cracks invisible and spoils all further image processing

  17. Mammographic findings of women recalled for diagnostic work-up in digital versus screen-film mammography in a population-based screening program

    International Nuclear Information System (INIS)

    Lipasti, Seppo; Pamilo, Martti; Anttila, Ahti

    2010-01-01

    Background: Limited information is available concerning differences in the radiological findings of women recalled for diagnostic work-up in digital mammography (DM) versus screen-film mammography (SFM) screening. Purpose: To compare the radiological findings, their positive predictive values (PPVs) for cancer and other process indicators of DM screening performed by computed radiography (CR) technology and SFM screening in a population-based program. Material and Methods: The material consisted of women, 50-59 years of age, who were invited for screening: 30 153 women with DM in 2007-2008 and 32 939 women with SFM in 1999-2000. The attendance rate was 77.7% (23 440) in the DM arm and 83.8% (27 593) in the SFM arm. In the DM arm, 1.71% of those screened (401) and in the SFM arm 1.59% (438) were recalled for further work-up. The images resulting in the recall were classified as: 1) tumor-like mass, 2) parenchymal distortion/asymmetry, 3) calcifications, and 4) combination of mass and calcifications. The distributions of the various radiological findings and their PPVs for cancer were compared in both study groups. The recall rates, cancer detection rates, test specificities, and PPVs of the DM and SFM groups were also compared. Results: Women were recalled for diagnostic work-up most often due to tumor-like mass. It was more common in SFM (1.08% per woman screened) than in DM (0.93%). The second most common finding was parenchymal distortion and asymmetry, more often in DM (0.58%) than in SFM (0.37%). Calcifications were the third most common finding. DM exposed calcifications more often (0.49%) than SFM (0.26%). The PPVs for cancer of the recalls were higher in DM than in SFM in all subgroups of radiological findings. The test specificities were similar (DM 98.9%, SFM 98.8%). Significantly more cancers were detected by DM (cancer detection rate 0.623% per woman screened, n=146) than by SFM (cancer detection rate 0.406% per woman screened, n=112). The PPVs for

  18. Full-field digital mammography versus computed radiology mammography: comparison in image quality and radiation dose

    International Nuclear Information System (INIS)

    Zhao Yongxia; Song Shaojuan; Liu Chuanya; Qi Hengtao; Qin Weichang

    2008-01-01

    Objective: To investigate the differences in image quality and radiation dose between full- field digital mammography (FFDM) system and compute radiology mammography (CRM) system. Methods: The ALVIM mammographic phantom was exposed by FFDM system with automatic exposure control (AEC) and then exposed by CRM system with the unique imaging plank on the same condition. The FFDM system applied the same kV value and the different mAs values (14, 16, 18, 22 and 24 mAs), and the emission skin dose (ESD) and the average gland dose (AGD) were recorded for the above-mentioned exposure factors. All images were read by five experienced radiologists under the same condition and judged based on 5-point scales. And then receive operating characteristic (ROC) curve was drawn and the probability (P det ) values were calculated. The data were statistically processed with ANOVA. Results: The P det values of calcifications and lesion lump were higher with FFDM system than with CRM system at the same dose (1.36 mGy). Especially, for microcalcifications and lesion lump, the largest difference of the P det value was 0.215, and that of lesion lump was 0.245. In comparison with CRM system, the radiation dose of FFDM system could be reduced at the same P det value. The ESD value was reduced by 26%, and the ACD value was reduced by 41%. When the mAs value exceed AEC value, the P det value almost had no change, though the radiation dose was increased. Conclusions: The detection rates of microcalcifications and lesion lump with FFDM system are proven to be superior to CRM system at the same dose. The radiation dose of FFDM system was less than CRM system for the same image quality. (authors)

  19. Digital imaging in conventional diagnostic radiology: status and trends

    International Nuclear Information System (INIS)

    Pfeiler, M.; Marhoff, P.; Schipper, P.

    1984-01-01

    Digital techniques, i.e. techniques using microcomputers of minicomputers, are getting increasingly common in so-called conventional radiography. These nonreconstructive techniques are referred to here as 'digital, direct-imaging radiography' in order to contrast them with the reconstructive techniques of computerized tomography. Digitalisation of imaging and image processing operation and control will change the jobs of the radiologist and radiological assistants in such manner that only X-ray units with film-foil systems or with X-ray image intensification should be classified as conventional systems. Digital and conventional systems differ in that digital techniques imply the possibility of establishing data pools which may eventually be developed into a digital image interconnection and archiving system. The authors first describe the general system in which the digital imaging systems must be integrated on a medium-term and long-term basis and then proceed to discuss digital imaging and image processing in some more detail. (orig./WU) [de

  20. Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair; Dance, David R.; Workman, Adam; Yip, Mary; Wells, Kevin; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford, GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Northern Ireland Regional Medical Physics Service, Forster Green Hospital, Belfast, BT8 4HD (United Kingdom); Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford, GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2012-05-15

    Purpose: Undertaking observer studies to compare imaging technology using clinical radiological images is challenging due to patient variability. To achieve a significant result, a large number of patients would be required to compare cancer detection rates for different image detectors and systems. The aim of this work was to create a methodology where only one set of images is collected on one particular imaging system. These images are then converted to appear as if they had been acquired on a different detector and x-ray system. Therefore, the effect of a wide range of digital detectors on cancer detection or diagnosis can be examined without the need for multiple patient exposures. Methods: Three detectors and x-ray systems [Hologic Selenia (ASE), GE Essential (CSI), Carestream CR (CR)] were characterized in terms of signal transfer properties, noise power spectra (NPS), modulation transfer function, and grid properties. The contributions of the three noise sources (electronic, quantum, and structure noise) to the NPS were calculated by fitting a quadratic polynomial at each spatial frequency of the NPS against air kerma. A methodology was developed to degrade the images to have the characteristics of a different (target) imaging system. The simulated images were created by first linearizing the original images such that the pixel values were equivalent to the air kerma incident at the detector. The linearized image was then blurred to match the sharpness characteristics of the target detector. Noise was then added to the blurred image to correct for differences between the detectors and any required change in dose. The electronic, quantum, and structure noise were added appropriate to the air kerma selected for the simulated image and thus ensuring that the noise in the simulated image had the same magnitude and correlation as the target image. A correction was also made for differences in primary grid transmission, scatter, and veiling glare. The method was

  1. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  2. A preliminary investigation of the imaging performance of photostimulable phosphor computed radiography using a new design of mammographic quality control test object

    International Nuclear Information System (INIS)

    Cowen, A.R.; Brettle, D.S.; Coleman, N.J.; Parkin, G.J.S.

    1992-01-01

    Leeds Test Object TOR[MAM] has been designed to supplement the current FAXIL mammography test object TOR[MAX]. It contains a range of details that have a more natural radiographic appearance and has been designed as a test that more closely approximates the image quality achieved in clinical mammography. Physical aspects of the design and implementation of TOR[MAM] are presented. The TOR[MAM] has been used in a preliminary physical evaluation of the comparative image qualities produced by conventional (screen-film) and phostostimulable phosphor computed mammography and the results are discussed. TOR[MAX] results are also presented. The influence of digital image processing (enhancement) on the image quality of computed mammograms is also considered. The results presented indicate the sensitivity of TOR[MAM]. (author)

  3. Problems with Permatrace: a note on digital image publication

    Directory of Open Access Journals (Sweden)

    Guy Hopkinson

    2004-01-01

    Full Text Available The methodology presented here developed out of work required to convert the hard-copy illustrations submitted to Internet Archaeology for publication of the 1975 excavations at Cricklade. The publication (and digital image preparatory work was funded by English Heritage and was, in part, an experiment designed to explore some of the possibilities presented by digital image publication. Various challenges in how to transform the drawings on permatrace to a digital format were encountered. While a full exploration of the potential of all areas of digital image preparation and publication was not possible, some interesting technical options were evaluated. This short article explains the processes applied in creating the images that were finally incorporated within the publication. It also examines some other avenues regarding the presentation of archaeological drawings that could be explored in both future Internet Archaeology content and other digital publications.

  4. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  5. Digitalization and networking of analog simulators and portal images

    Energy Technology Data Exchange (ETDEWEB)

    Pesznyak, C.; Zarand, P.; Mayer, A. [Uzsoki Hospital, Budapest (Hungary). Inst. of Oncoradiology

    2007-03-15

    Background: Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R and V (Record and Verify) system is required. Material and Methods: Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Results: Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. Conclusion: The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R and V system. (orig.)

  6. Digitalization and networking of analog simulators and portal images.

    Science.gov (United States)

    Pesznyák, Csilla; Zaránd, Pál; Mayer, Arpád

    2007-03-01

    Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R&V (Record & Verify) system is required. Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R&V system.

  7. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  8. Myocardial perfusion imaging by digital subtraction angiography

    International Nuclear Information System (INIS)

    Kadowaki, Hiroyuki; Ishikawa, Kinji; Ogai, Toshihiro; Katori, Ryo

    1986-01-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; 1) at the R wave of the electrocardiogram, 2) 100 msec before the R wave, and 3) 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery. In all patients with anterior myocardial infarction, low perfusion was observed at the infarcted portion compared to the non-infarcted myocardium. In patients with inferior myocardial infarction, this low perfusion area was not observed because right coronary angiography was not subjected to DSA in this study. (J.P.N.)

  9. [Myocardial perfusion imaging by digital subtraction angiography].

    Science.gov (United States)

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  11. Quality assurance in digital dental imaging: a systematic review.

    Science.gov (United States)

    Metsälä, Eija; Henner, Anja; Ekholm, Marja

    2014-07-01

    Doses induced by individual dental examinations are low. However, dental radiography accounts for nearly one third of the total number of radiological examinations in the European Union. Therefore, special attention is needed with regard to radiation protection. In order to lower patient doses, the staff performing dental examinations must have competence in imaging as well as in radiation protection issues. This paper presents a systematic review about the core competencies needed by the healthcare staff in performing digital dental radiological imaging quality assurance. The following databases were searched: Pubmed, Cinahl, Pro Quest and IEEXplore digital library. Also volumes of some dental imaging journals and doctoral theses of the Finnish universities educating dentists were searched. The search was performed using both MeSH terms and keywords using the option 'search all text'. The original keywords were: dental imaging, digital, x-ray, panoramic, quality, assurance, competence, competency, skills, knowledge, radiographer, radiologist technician, dentist, oral hygienist, radiation protection and their Finnish synonyms. Core competencies needed by the healthcare staff performing digital dental radiological imaging quality assurance described in the selected studies were: management of dental imaging equipment, competence in image quality and factors associated with it, dose optimization and quality assurance. In the future there will be higher doses in dental imaging due to increasing use of CBCT and digital imaging. The staff performing dental imaging must have competence in dental imaging quality assurance issues found in this review. They also have to practice ethical radiation safety culture in clinical practice.

  12. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  13. Epistemic Function and Ontology of Analog and Digital Images

    Directory of Open Access Journals (Sweden)

    Aleksandra Łukaszewicz Alcaraz

    2016-01-01

    Full Text Available The important epistemic function of photographic images is their active role in construction and reconstruction of our beliefs concerning the world and human identity, since we often consider photographs as presenting reality or even the Real itself. Because photography can convince people of how different social and ethnic groups and even they themselves look, documentary projects and the dissemination of photographic practices supported the transition from disciplinary society to the present-day society of control. While both analog and digital images are formed from the same basic materia, the ways in which this matter appears are distinctive. In the case of analog photography, we deal with physical and chemical matter, whereas with digital images we face electronic matter. Because digital photography allows endless modification of the image, we can no longer believe in the truthfulness of digital images.

  14. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  15. A radiographic image archive system on digital optical disks

    International Nuclear Information System (INIS)

    Mankovich, N.J.; Taira, R.K.; Cho, P.S.; Wong, W.K.; Stewart, B.K.; Huang, H.K.

    1986-01-01

    The recent introduction of projection computed radiography (CR) systems allows radiology departments to consider digital operation in over 90% of performed procedures. Ideally, current patient procedures from CT, CT, and MR along with laser-digitized historical films should be centrally stored at their full digital resolution. Magnetic disks, because of their limited storage capacity and expense, can only retain these data on a limited basis. The author devised an optical disk archive system which automatically stores images directly onto 2.6-gigabyte optical cartridges without recourse to film. This system is in full clinical operation in the UCLA Pediatric Radiology Section of the authors' department. From this experience they present (a) an analysis of the digital archiving requirements of the Pediatric Radiology Section based on CR, CT, MR, and laser digitized films; (b) the archive and retrieval methods along with performance statistics; and (c) the procedure for assuring digital image integrity

  16. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  17. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  18. Evaluation of display on CRT by various processing digital images

    International Nuclear Information System (INIS)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-01-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera. (author)

  19. Evaluation of display on CRT by various processing digital images

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-12-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera.

  20. The clinical application of the digital imaging in urography

    International Nuclear Information System (INIS)

    Zhu Yuelong; Xie Sumin; Zhang Li; Li Huayu

    2003-01-01

    Objective: To evaluate the clinical application of the digital imaging in the urography. Methods: In total 112 patients underwent digital urography, including intravenous pyelography (IVP) in 38 cases and retrograde pyelography in 74 cases. Results: the entire urinary tract was better shown on digital imaging, which was accurate in locating the obstruction of urinary tract and helped the qualitative diagnosis. Digital urography was especially valuable in detecting urinary calculus. In 38 cases of IVP, the results were normal in 5 patients, renal stone in 12, ureteral stone in 13, ureteral stenosis in 6 and nephroblastom in 2. In the 74 cases of retrograde pyelography, benign ureteral stenosis was found in 31 patients, ureteral stone in 27, ureteral polyp in 2, urethral stone in 8 and benign urethral stenosis in 6. Conclusion: Digital imaging technique is of big value in the diagnosis of urinary tract lesions

  1. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  2. Digitalization of the radiological image. A new philosophy of the radiological imagery: the high resolution of the contrasts

    International Nuclear Information System (INIS)

    Schmidt, R.

    1983-01-01

    Three cases of digitalization are to be considered: static digitalization of the conventional radiographic image; static digitalization of the calculated image, like tomodensitometric images; dynamic digitalization of television images [fr

  3. Simple and robust image-based autofocusing for digital microscopy.

    Science.gov (United States)

    Yazdanfar, Siavash; Kenny, Kevin B; Tasimi, Krenar; Corwin, Alex D; Dixon, Elizabeth L; Filkins, Robert J

    2008-06-09

    A simple image-based autofocusing scheme for digital microscopy is demonstrated that uses as few as two intermediate images to bring the sample into focus. The algorithm is adapted to a commercial inverted microscope and used to automate brightfield and fluorescence imaging of histopathology tissue sections.

  4. Factors to consider in the transition to digital radiological imaging.

    LENUS (Irish Health Repository)

    MacDonald, David

    2009-02-01

    The dentist considering adopting digital radiological technology should consider more than the type of detector with which to capture the image. He\\/she should also consider the mode of display, image enhancement, radiation dose reduction, how the image can be stored long term, and infection control.

  5. Ethnicity, Soybean Consumption, and Mammographic Densities

    National Research Council Canada - National Science Library

    Maskarinec, Gertraud

    1997-01-01

    The purpose of this study is to determine whether mammographic density patterns differ by ethnic background and to explore the possible association of a soy rich diet with mammographic density patterns...

  6. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  7. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    Science.gov (United States)

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  8. Information Seeking Behavior in Digital Image Collections: A Cognitive Approach

    Science.gov (United States)

    Matusiak, Krystyna K.

    2006-01-01

    Presents the results of a qualitative study that focuses on search patterns of college students and community users interacting with a digital image collection. The study finds a distinct difference between the two groups of users and examines the role of mental models in information seeking behavior in digital libraries.

  9. Double-blind randomized 12-month soy intervention had no effects on breast MRI fibroglandular tissue density or mammographic density

    Science.gov (United States)

    Wu, Anna H.; Spicer, Darcy; Garcia, Agustin; Tseng, Chiu-Chen; Hovanessian-Larsen, Linda; Sheth, Pulin; Martin, Sue Ellen; Hawes, Debra; Russell, Christy; McDonald, Heather; Tripathy, Debu; Su, Min-Ying; Ursin, Giske; Pike, Malcolm C.

    2015-01-01

    Soy supplementation by breast cancer patients remains controversial. No controlled intervention studies have investigated the effects of soy supplementation on mammographic density in breast cancer patients. We conducted a double-blind, randomized, placebo-controlled intervention study in previously treated breast cancer patients (n=66) and high-risk women (n=29). We obtained digital mammograms and breast magnetic resonance imaging (MRI) scans at baseline and after 12 months of daily soy (50 mg isoflavones per day) (n=46) or placebo (n=49) tablet supplementation. The total breast area (MA) and the area of mammographic density (MD) on the mammogram was measured using a validated computer-assisted method, and mammographic density percent (MD% = 100 × MD/MA) was determined. A well-tested computer algorithm was used to quantitatively measure the total breast volume (TBV) and fibroglandular tissue volume (FGV) on the breast MRI, and the FGV percent (FGV% = 100 × FGV/TBV) was calculated. On the basis of plasma soy isoflavone levels, compliance was excellent. Small decreases in MD% measured by the ratios of month 12 to baseline levels, were seen in the soy (0.95) and the placebo (0.87) groups; these changes did not differ between the treatments (P=0.38). Small decreases in FGV% were also found in both the soy (0.90) and the placebo (0.92) groups; these changes also did not differ between the treatments (P=0.48). Results were comparable in breast cancer patients and high-risk women. We found no evidence that soy supplementation would decrease mammographic density and that MRI might be more sensitive to changes in density than mammography. PMID:26276750

  10. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  11. Mammographic classification of breast lesions amongst women in ...

    African Journals Online (AJOL)

    Objectives: The study was to classify lesions identified on mammograms using Breast Imaging Reporting and Data System (BIRADS) grading method. This was in view of ascertaining the rate of occurrence of breast malignancy of the studied population. Methods: A retrospective cohort study of 416 mammographic reports of ...

  12. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  13. Development of digital image correlation method to analyse crack ...

    Indian Academy of Sciences (India)

    samples were performed to verify the performance of the digital image correlation method. ... development cannot be measured accurately. ..... Mendelson A 1983 Plasticity: Theory and application (USA: Krieger Publishing company Malabar,.

  14. Digital Imaging of Pipeline Mechanical Damage and Residual Stress

    Science.gov (United States)

    2010-02-19

    The purpose of this program was to enhance characterization of mechanical damage in pipelines through application of digital eddy current imaging. Lift-off maps can be used to develop quantitative representations of mechanical damage and magnetic per...

  15. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  16. Demonstration Project on Mammographic Computer-Aided Diagnosis for Breast Cancer Detection

    National Research Council Canada - National Science Library

    Doi, Kunio

    2000-01-01

    ...) in mammographic detection of breast cancer. Our plan is to develop advanced CAD schemes for detection and characterization of clustered microcalcifications and masses by incorporating artificial neural networks and various image processing techniques...

  17. Demonstration Project on Mammographic Computer-Aided Diagnosis for Breast Cancer Detection

    National Research Council Canada - National Science Library

    Doi, Kunio

    2001-01-01

    ...) in mammographic detection of breast cancer. Our plan is to develop advanced CAD schemes for detection and characterization of clustered microcalcifications and masses by incorporating artificial neural networks and various image processing techniques...

  18. Demonstration Project on Mammographic Computer-Aided Diagnosis for Breast Cancer Detection

    National Research Council Canada - National Science Library

    Doi, Kunio

    1999-01-01

    ...) in mammographic detection of breast cancer. Our plan is to develop advanced CAD schemes for detection and characterization of clustered microcalcifications and masses by incorporating artificial neural networks and various image processing techniques...

  19. Demonstration Project on Mammographic Computer-Aided Diagnosis for Breast Cancer Detection

    National Research Council Canada - National Science Library

    Doi, Kunio

    2002-01-01

    ...) in mammographic detection of breast cancer. Our plan is to develop advanced CAD schemes for detection and characterization of clustered microcalcifications and masses by incorporating artificial neural networks and various image processing techniques...

  20. Selective magnetic resonance imaging (MRI) in invasive lobular breast cancer based on mammographic density: does it lead to an appropriate change in surgical treatment?

    Science.gov (United States)

    Bansal, Gaurav J; Santosh, Divya; Davies, Eleri L

    2016-01-01

    The purpose of this study was to evaluate whether high mammographic density can be used as one of the selection criteria for MRI in invasive lobular breast cancer (ILC). In our institute, high breast density has been used as one of the indications for performing MRI scan in patients with ILC. We divided the patients in two groups, one with MRI performed pre-operatively and other without MRI. We compared their surgical procedures and analyzed whether surgical plan was altered after MRI. In case of alteration of plan, we analyzed whether the change was adequate by comparing post-operative histological findings. Between 2011 and 2015, there were a total of 1601 breast cancers with 97 lobular cancers, out of which 36 had pre-operative MRI and 61 had no MRI scan. 12 (33.3%) had mastectomy following MRI, out of which 9 (25%) had change in surgical plan from conservation to mastectomy following MRI. There were no unnecessary mastectomies in the MRI group. However, utilization of MRI in this cohort of patients did not reduce reoperation rate (19.3%). Lobular carcinoma in situ (LCIS) was identified in 60% of reoperations on post-surgical histology. Patients in the "No MRI" group had higher mastectomy rate 26 (42.6%), which was again appropriate. High mammographic density is a useful risk stratification criterion for selective MRI in ILC within a multidisciplinary team meeting setting. Provided additional lesions identified on MRI are confirmed with biopsy, pre-operative MRI does not cause unnecessary mastectomies. Used in this selective manner, reoperation rates were not eliminated, albeit reduced when compared to literature. High mammographic breast density can be used as one of the selection criteria for pre-operative MRI in ILC without an increase in inappropriate mastectomies with potential time and cost savings. In this cohort, re-excisions were not reduced markedly with pre-operative MRI.

  1. Malignant Lesions as Mammographically Appearing Intramammary Ganglia

    International Nuclear Information System (INIS)

    Martinez-Miraveta, P.; Pons, M. J.; Pina, L. J.; Zornoza, G.

    2004-01-01

    Intramammary ganglia are frequent mammographic findings of no pathological importance. We present two cases of malignant breast lesions whose mammographic appearance could resemble that of intramammary ganglia. Although the mammographic appearance of a lesion is similar to that of intramammary ganglia, it should be carefully studied, especially if it presents a poorly defined border or is palpable. (Author)

  2. Micro-Structure Measurement and Imaging Based on Digital Holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem [Chosun University, Gwangju (Korea, Republic of); Kee, Chang Doo [Chonnam National University, Gwangju (Korea, Republic of)

    2010-06-15

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  3. Micro-Structure Measurement and Imaging Based on Digital Holography

    International Nuclear Information System (INIS)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem; Kee, Chang Doo

    2010-01-01

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  4. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    Dyer, G.R.

    1986-01-01

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  5. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  6. Single x-ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume

    International Nuclear Information System (INIS)

    Malkov, Serghei; Wang, Jeff; Kerlikowske, Karla; Cummings, Steven R.; Shepherd, John A.

    2009-01-01

    Purpose: This study describes the design and characteristics of a highly accurate, precise, and automated single-energy method to quantify percent fibroglandular tissue volume (%FGV) and fibroglandular tissue volume (FGV) using digital screening mammography. Methods: The method uses a breast tissue-equivalent phantom in the unused portion of the mammogram as a reference to estimate breast composition. The phantom is used to calculate breast thickness and composition for each image regardless of x-ray technique or the presence of paddle tilt. The phantom adheres to the top of the mammographic compression paddle and stays in place for both craniocaudal and mediolateral oblique screening views. We describe the automated method to identify the phantom and paddle orientation with a three-dimensional reconstruction least-squares technique. A series of test phantoms, with a breast thickness range of 0.5-8 cm and a %FGV of 0%-100%, were made to test the accuracy and precision of the technique. Results: Using test phantoms, the estimated repeatability standard deviation equaled 2%, with a ±2% accuracy for the entire thickness and density ranges. Without correction, paddle tilt was found to create large errors in the measured density values of up to 7%/mm difference from actual breast thickness. This new density measurement is stable over time, with no significant drifts in calibration noted during a four-month period. Comparisons of %FGV to mammographic percent density and left to right breast %FGV were highly correlated (r=0.83 and 0.94, respectively). Conclusions: An automated method for quantifying fibroglandular tissue volume has been developed. It exhibited good accuracy and precision for a broad range of breast thicknesses, paddle tilt angles, and %FGV values. Clinical testing showed high correlation to mammographic density and between left and right breasts.

  7. The influence of software filtering in digital mammography image quality

    Science.gov (United States)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  8. The influence of software filtering in digital mammography image quality

    International Nuclear Information System (INIS)

    Michail, C; Spyropoulou, V; Valais, I; Panayiotakis, G; Kalyvas, N; Fountos, G; Kandarakis, I; Dimitropoulos, N

    2009-01-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  9. NAIP Digital Ortho Photo Image 2010

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  10. COMBINED MAMMOGRAPHIC AND SONOGRAPHIC EVALUATION OF PALPABLE BREAST MASSES

    Directory of Open Access Journals (Sweden)

    Reena Mathur

    2016-10-01

    Full Text Available BACKGROUND Breast diseases are common in females. In developing countries like India, females are unaware of breast pathologies hence they are detected usually in advanced stages. We have studied 100 patients of palpable breast masses presenting to our department and evaluate the role of combined mammographic and sonographic imaging in patients with palpable abnormalities of the breast, which help in decision making by clinician as to lesion go for biopsy or follow up. MATERIALS AND METHODS The study was conducted at Department of Radiodiagnosis J. L.N. Medical College & Associated Groups of Hospitals, Ajmer. We included women equal to or more than 30 years referred to this centre with palpable abnormalities of breast during a period from March 2015 to August 2016. All these women underwent a combined mammographic and sonographic evaluation of breast. RESULTS 50 (50% of the 100 palpable abnormalities had benign assessment, 30 (60% of the benign lesions were visible both on mammography and sonography; 18 (36% of the 50 benign lesions were mammographically occult and identified at sonographic evaluation. 2 lesion was sonographically occult (4% and visualized on mammography. In 14 (14% of the 100 cases, imaging evaluation resulted in a suspicious assessment and all these lesions underwent biopsy and 4 were diagnosed as having malignancy. 36(36% of the 100 palpable abnormalities had negative imaging assessment finding: of these 14 patients underwent biopsy and all had benign findings. The sensitivity and negative predictive value for combined mammographic and sonographic assessment were 100%; the specificity was 78.26%. CONCLUSION Combined use of mammography and sonography plays an important role in the management of palpable breast lesions. It characterizes the palpable mass lesion, avoids unnecessary interventions in which imaging findings are unequivocally benign. Negative findings on combined mammographic and sonographic imaging have very high

  11. Digital Image Quantitative Evaluations for Low Cost Film Digitizers Height Determination

    International Nuclear Information System (INIS)

    Khairul Anuar Mohd Salleh; Arshad Yassin; Ahmad Nasir Yusof; Noorhazleena Azaman

    2016-01-01

    Non Destructive Testing (NDT) technology contributes significant improvement to the quality of industrial products, and the integrity of equipment and plants. Introduction of powerful computers and reliable imaging technology has had significant impact on the traditional nuclear based NDT technology. Demand for faster, reliable, low cost, and flexible technology is rapidly increased. With the growing demand for more efficient digital archiving, digital image analysis, and reporting results with a low cost technology, one cannot deny the importance of having another cheaper solution. This project will apply fundamental principle of image digitization to be used in building up a low cost film digitization solution. The height of the film digitization was carefully determined by examining each digital images produced. Three (3) repetitive quantitative evaluations (Modulation Transfer Function [MTF], Characteristic Transfer Curve [CTC], and Contrast to Noise Ratio [CNR]) were performed at different condition to assist with the determination of the low cost film digitizers height. All 3 evaluations were successfully applied and the most appropriate height was successfully determined. (author)

  12. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    Science.gov (United States)

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Digital image processing in NDT : Application to industrial radiography

    International Nuclear Information System (INIS)

    Aguirre, J.; Gonzales, C.; Pereira, D.

    1988-01-01

    Digital image processing techniques are applied to image enhancement discontinuity detection and characterization is radiographic test. Processing is performed mainly by image histogram modification, edge enhancement, texture and user interactive segmentation. Implementation was achieved in a microcomputer with video image capture system. Results are compared with those obtained through more specialized equipment main frame computers and high precision mechanical scanning digitisers. Procedures are intended as a precious stage for automatic defect detection

  14. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  15. A report on digital image processing and analysis

    International Nuclear Information System (INIS)

    Singh, B.; Alex, J.; Haridasan, G.

    1989-01-01

    This report presents developments in software, connected with digital image processing and analysis in the Centre. In image processing, one resorts to either alteration of grey level values so as to enhance features in the image or resorts to transform domain operations for restoration or filtering. Typical transform domain operations like Karhunen-Loeve transforms are statistical in nature and are used for a good registration of images or template - matching. Image analysis procedures segment grey level images into images contained within selectable windows, for the purpose of estimating geometrical features in the image, like area, perimeter, projections etc. In short, in image processing both the input and output are images, whereas in image analyses, the input is an image whereas the output is a set of numbers and graphs. (author). 19 refs

  16. Tumor location and detectability in mammographic screening

    International Nuclear Information System (INIS)

    Schmitt, E.L.; Threatt, B.

    1982-01-01

    The adequacy of a film mammogram that does not visualize the retromammary space or ribs has concerned radiologists. The 79 prevalent cancers detected in the 10,000 self-referred woman at the University of Michigan Breast Cancer Detection Demonstration Project were analyzed for number of films required to detect the cancer, relationship of the cancer to the posterior edge of the film, number of occult lesions, tumor size, histologic type, sensitivity of detection method, and number of interval carcinomas. The mammograms were obtained using a dedicated mammographic machine and the upright position, with visualization of the anterior axillary fold on the mediolateral view. The ribs were not imaged. Of the 79 cancers, 76 were detectable on the mammogram. All were visualized on the mediolateral view, while three were not imaged on the craniocaudal view. Twelve percent of the cancers were within 1 cm of the posterior edge of the film. Only six ''interval'' carcinomas were found in the 10,000 patients within the year of the initial examinations; these women had dense P2 or DY mammographic parenchymal patterns. The detected cancers were smaller and had a significantly higher percentage of noninvasive cancers than in a symptomatic clinical population. Thus, properly exposed film mammograms using vigorous breast compression examine the breast adequately without visualizing the ribs

  17. Mammographic feature enhancement by multiscale analysis

    International Nuclear Information System (INIS)

    Laine, A.F.; Schuler, S.; Fan, J.; Huda, W.

    1994-01-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis by overcomplete multiresolution representations. The authors show that efficient representations may be identified within a continuum of scale-space and used to enhance features of importance to mammography. Methods of contrast enhancement are described based on three overcomplete multiscale representations: (1) the dyadic wavelet transform (separable), (2) the var-phi-transform (nonseparable, nonorthogonal), and (3) the hexagonal wavelet transform (nonseparable). Multiscale edges identified within distinct levels of transform space provide local support for image enhancement. Mammograms are reconstructed from wavelet coefficients modified at one or more levels by local and global nonlinear operators. In each case, edges and gain parameters are identified adaptively by a measure of energy within each level of scale-space. The authors show quantitatively that transform coefficients, modified by adaptive nonlinear operators, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. The results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. The authors demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology, they can improve chances of early detection while requiring less time to evaluate mammograms for most patients

  18. Optimal image resolution for digital storage of radiotherapy-planning images

    International Nuclear Information System (INIS)

    Baba, Yuji; Furusawa, Mitsuhiro; Murakami, Ryuji; Baba, Takashi; Yokoyama, Toshimi; Nishimura, Ryuichi; Takahashi, Mutsumasa

    1998-01-01

    Purpose: To evaluate the quality of digitized radiation-planning images at different resolution and to determine the optimal resolution for digital storage. Methods and Materials: Twenty-five planning films were scanned and digitized using a film scanner at a resolution of 72 dots per inch (dpi) with 8-bit depth. The resolution of scanned images was reduced to 48, 36, 24, and 18 dpi using computer software. Image qualities of these five images (72, 48, 36, 24, and 18 dpi) were evaluated and given scores (4 = excellent; 3 = good; 2 = fair; and 1 = poor) by three radiation oncologists. An image data compression algorithm by the Joint Photographic Experts Group (JPEG) (not reversible and some information will be lost) was also evaluated. Results: The scores of digitized images with 72, 48, 36, 24, and 17 dpi resolution were 3.8 ± 0.3, 3.5 ± 0.3, 3.3 ± 0.5, 2.7 ± 0.5, and 1.6 ± 0.3, respectively. The quality of 36-dpi images were definitely worse compared to 72-dpi images, but were good enough as planning films. Digitized planning images with 72- and 36-dpi resolution requires about 800 and 200 KBytes, respectively. The JPEG compression algorithm produces little degradation in 36-dpi images at compression ratios of 5:1. Conclusion: The quality of digitized images with 36-dpi resolution was good enough as radiation-planning images and required 200 KBytes/image

  19. Mammographic features of breast carcinoma: mammographic-pathologic correlation

    International Nuclear Information System (INIS)

    Gu Yajia; Wang Jiuhua; Chen Tongzhen; Zhang Tingqiu; Zhou Kangrong

    2003-01-01

    Objective: To analyze the mammographic features of breast carcinoma and the correlation between the mammographic and pathologic findings. Methods: A prospective study of 397 consecutive mammograms in patients with breast carcinoma, including infiltrating ductal carcinoma (IDC, n=297), ductal carcinoma in situ (DCIS) and DCIS associated with small invasive foci (n=38), mucinous carcinoma (n=21), medullary carcinoma (n=22) and invasive lobular carcinoma (n=19), was performed to determine the correlations between the mammographic and pathologic findings. Results: (1) Microcalcifications appeared in 170 cases (42.8%), a mass in 258 cases (65.0%), and distortion in 33 cases (8.3%), respectively. (2) Microcalcifications were more commonly associated with DCIS and IDC (χ 2 =30.90, P 2 =30.87, P 2 =27.40, P 2 =6.22, P 2 =7.19, P < 0.01). Conclusion: The common features of breast carcinoma in mammography were microcalcifications, microcalcifications with a mass, a mass, and distortion IDC was the commonest in breast carcinoma, and could be considered when mammographic malignant features above mentioned were found except the appearance of microcalcifications alone, which was firstly suggestive of DCIS. A mass also appeared in medullary and mucinous carcinoma, and distortion appeared in invasive lobular carcinoma

  20. New modified map for digital image encryption and its performance

    Science.gov (United States)

    Suryadi, MT; Yus Trinity Irsan, Maria; Satria, Yudi

    2017-10-01

    Protection to classified digital data becomes so important in avoiding data manipulation and alteration. The focus of this paper is in data and information protection of digital images form. Protection is provided in the form of encrypted digital image. The encryption process uses a new map, {x}n+1=\\frac{rλ {x}n}{1+λ {(1-{x}n)}2}\\quad ({mod} 1), which is called MS map. This paper will show: the results of digital image encryption using MS map and how the performance is regarding the average time needed for encryption/decryption process; randomness of key stream sequence with NIST test, histogram analysis and goodness of fit test, quality of the decrypted image by PSNR, initial value sensitivity level, and key space. The results show that the average time of the encryption process is relatively same as the decryption process and it depends to types and sizes of the image. Cipherimage (encrypted image) is uniformly distributed since: it passes the goodness of fit test and also the histogram of the cipherimage is flat; key stream, that are generated by MS map, passes frequency (monobit) test, and runs test, which means the key stream is a random sequence; the decrypted image has same quality as the original image; and initial value sensitivity reaches 10-17, and key space reaches 3.24 × 10634. So, that encryption algorithm generated by MS map is more resistant to brute-force attack and known plaintext attack.

  1. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  2. Digital Data Processing of Images | Lotter | South African Medical ...

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  3. Classification of mammographic masses using generalized dynamic fuzzy neural networks

    International Nuclear Information System (INIS)

    Lim, Wei Keat; Er, Meng Joo

    2004-01-01

    In this article, computer-aided classification of mammographic masses using generalized dynamic fuzzy neural networks (GDFNN) is presented. The texture parameters, derived from first-order gradient distribution and gray-level co-occurrence matrices, were computed from the regions of interest. A total of 343 images containing 180 benign masses and 163 malignant masses from the Digital Database for Screening Mammography were analyzed. A fast approach of automatically generating fuzzy rules from training samples was implemented to classify tumors. This work is novel in that it alleviates the problem of requiring a designer to examine all the input-output relationships of a training database in order to obtain the most appropriate structure for the classifier in a conventional computer-aided diagnosis. In this approach, not only the connection weights can be adjusted, but also the structure can be self-adaptive during the learning process. By virtue of the automatic generation of the classifier by the GDFNN learning algorithm, the area under the receiver-operating characteristic curve, A z , attains 0.868±0.020, which corresponds to a true-positive fraction of 95.0% at a false positive fraction of 52.8%. The corresponding accuracy is 70.0%, the positive predictive value is 62.0%, and the negative predictive value is 91.4%

  4. Quantification of image persistence in a digital angiography system

    International Nuclear Information System (INIS)

    Okkalides, D.P.; Raptou, P.D.

    1993-01-01

    Image persistence, as a characteristic of video imaging systems affecting the quality of fast moving fluoroscopic images, is shown to vary considerably. A simple quantitative method for measuring image persistence in a digital angiography system is presented, together with a series of image intensifier exposure-response curves. For the Saticon tube, used with the Siemens 3VA Digitron, it was found that persistence increased for low exposure rates and may increase to 31% at a 120 ms interval. In addition, a sharp increase in image persistence, from 8.3% to 33%, was observed within 18 months from installation of the system. (author)

  5. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  6. The task of control digital image compression

    OpenAIRE

    TASHMANOV E.B.; МАМАTOV М.S.

    2014-01-01

    In this paper we consider the relationship of control tasks and image compression losses. The main idea of this approach is to allocate structural lines simplified image and further compress the selected data

  7. Breast Tissue Composition and Immunophenotype and Its Relationship with Mammographic Density in Women at High Risk of Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Jia-Min B Pang

    Full Text Available To investigate the cellular and immunophenotypic basis of mammographic density in women at high risk of breast cancer.Mammograms and targeted breast biopsies were accrued from 24 women at high risk of breast cancer. Mammographic density was classified into Wolfe categories and ranked by increasing density. The histological composition and immunophenotypic profile were quantified from digitized haematoxylin and eosin-stained and immunohistochemically-stained (ERα, ERβ, PgR, HER2, Ki-67, and CD31 slides and correlated to mammographic density.Increasing mammographic density was significantly correlated with increased fibrous stroma proportion (rs (22 = 0.5226, p = 0.0088 and significantly inversely associated with adipose tissue proportion (rs (22 = -0.5409, p = 0.0064. Contrary to previous reports, stromal expression of ERα was common (19/20 cases, 95%. There was significantly higher stromal PgR expression in mammographically-dense breasts (p=0.026.The proportion of stroma and fat underlies mammographic density in women at high risk of breast cancer. Increased expression of PgR in the stroma of mammographically dense breasts and frequent and unexpected presence of stromal ERα expression raises the possibility that hormone receptor expression in breast stroma may have a role in mediating the effects of exogenous hormonal therapy on mammographic density.

  8. Comparison of the automated evaluation of phantom mama in digital and digitalized images

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2011-01-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  9. Mammographic and sonographic features of fat necrosis of the breast

    International Nuclear Information System (INIS)

    Upadhyaya, Vidya S; Uppoor, Raghuraj; Shetty, Lathika

    2013-01-01

    Imaging features of fat necrosis vary depending on its stage of evolution and can mimic malignancy in late stages. Imaging may suffice to differentiate fat necrosis in the early stages from malignancy and thus avoid unnecessary biopsy. In this pictorial essay, we present combination of benign features in mammography and/or ultrasonography (USG) that can lead to imaging diagnosis of fat necrosis. The follow-up imaging features of fat necrosis which mirror its pathophysiological evolution have also been demonstrated. To summarize, in the appropriate clinical setting, no mammographic features suspicious for malignancy should be present. When the typical mammographic features are not present, USG can aid with the diagnosis and follow up USG can confirm it

  10. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  11. Image enhancement of digital periapical radiographs according to diagnostic tasks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of)

    2014-03-15

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  12. Image enhancement of digital periapical radiographs according to diagnostic tasks

    International Nuclear Information System (INIS)

    Choi, Jin Woo; Han, Won Jeong; Kim, Eun Kyung

    2014-01-01

    his study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. There were significant differences between the image quality of the processed images and that of the original images (P<0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P<0.01). Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

  13. Information quantity in a pixel of digital image

    OpenAIRE

    Kharinov, M.

    2014-01-01

    The paper is devoted to the problem of integer-valued estimating of information quantity in a pixel of digital image. The definition of an integer estimation of information quantity based on constructing of the certain binary hierarchy of pixel clusters is proposed. The methods for constructing hierarchies of clusters and generating of hierarchical sequences of image approximations that minimally differ from the image by a standard deviation are developed. Experimental results on integer-valu...

  14. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely

  15. Digital image processing as an aid in forensic medicine

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.; Wenz, W.; Friedrich, G.

    1992-01-01

    Radiology plays an important role in the identification of unknown corpses. Positive radiographic identification by comparison with antemortem films is an established technique in this setting. Technical defects together with non-well-preserved films make it sometimes difficult or even impossible to establish a confident comparison. Digital image processing after secondary digitalization of ante- and postmortem films represents an important development and aid in forensic medicine. The application of this method is demonstrated on a single case. (orig.) [de

  16. Dual Level Digital Watermarking for Images

    Science.gov (United States)

    Singh, V. K.; Singh, A. K.

    2010-11-01

    More than 700 years ago, watermarks were used in Italy to indicate the paper brand and the mill that produced it. By the 18th century watermarks began to be used as anti counterfeiting measures on money and other documents.The term watermark was introduced near the end of the 18th century. It was probably given because the marks resemble the effects of water on paper. The first example of a technology similar to digital watermarking is a patent filed in 1954 by Emil Hembrooke for identifying music works. In 1988, Komatsu and Tominaga appear to be the first to use the term "digital watermarking". Consider the following hypothetical situations. You go to a shop, buy some goods and at the counter you are given a currency note you have never come across before. How do you verify that it is not counterfeit? Or say you go to a stationery shop and ask for a ream of bond paper. How do you verify that you have actually been given what you asked for? How does a philatelist verify the authenticity of a stamp? In all these cases, the watermark is used to authenticate. Watermarks have been in existence almost from the time paper has been in use. The impression created by the mesh moulds on the slurry of fibre and water remains on the paper. It serves to identify the manufacturer and thus authenticate the product without actually degrading the aesthetics and utility of the stock. It also makes forgery significantly tougher. Even today, important government and legal documents are watermarked. But what is watermarking, when it comes to digital data? Information is no longer present on a physical material but is represented as a series of zeros and ones. Duplication of information is achieved easily by just reproducing that combination of zeros and ones. How then can one protect ownership rights and authenticate data? The digital watermark is the same as that of conventional watermarks.

  17. Forensic Analysis of Digital Image Tampering

    Science.gov (United States)

    2004-12-01

    analysis of when each method fails, which Chapter 4 discusses. Finally, a test image containing an invisible watermark using LSB steganography is...2.2 – Example of invisible watermark using Steganography Software F5 ............. 8 Figure 2.3 – Example of copy-move image forgery [12...used to embed the hidden watermark is Steganography Software F5 version 11+ discussed in Section 2.2. Original JPEG Image – 580 x 435 – 17.4

  18. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  19. Experience with CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.; Cannon, M.

    1994-10-01

    This paper presents results from the authors experience with CANDID (Comparison Algorithm for Navigating Digital Image Databases), which was designed to facilitate image retrieval by content using a query-by-example methodology. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized similarity measure between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to a user-provided example image. Results for three test applications are included.

  20. Gastrointestinal digital fluoroscopy: Comparison of digital pulsed progressive readout images with 100-mm spot films

    International Nuclear Information System (INIS)

    Steiner, E.; Ferrucci, J.T.; Mueller, P.R.; Hahn, P.F.

    1987-01-01

    New developments in pulsed progressive readout (PPR) techniques allow short, extremely intense pulses of radiation to be used to produce a latent image which is then progressively read off the video camera and placed in 1,024 x 1,024-pixel digital storage. The resulting image is produced by a 10-20-msec pulse, reducing motion artifact to below that achievable with conventional spot film techniques, with a potential for 50%-95% dose reduction. This technique of reducing motion artifact is ideal for digital applications in gastrointestinal radiology. The authors compared 10-mm spot films and PPR digital radiographs of 86 anatomic regions in 43 patients undergoing routine barium enema and cholangiographic examinations. Parameters evaluated included display of normal and pathologic features, image contrast, and resolution. The benefits of the PPR technique include postprocessing to evaluate low contrast region and the potential for significant dose reduction

  1. Latin American image quality survey in digital mammography studies

    International Nuclear Information System (INIS)

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Garcia Aguilar, Juan; Gamarra, Mirtha; Ubeda, Carlos

    2017-01-01

    Under International Atomic Energy Agency regional programme TSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs. (authors)

  2. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  3. Mammographic density measurements are not affected by mammography system.

    Science.gov (United States)

    Damases, Christine N; Brennan, Patrick C; McEntee, Mark F

    2015-01-01

    Mammographic density (MD) is a significant risk factor for breast cancer and has been shown to reduce the sensitivity of mammography screening. Knowledge of a woman's density can be used to predict her risk of developing breast cancer and personalize her imaging pathway. However, measurement of breast density has proven to be troublesome with wide variations in density recorded using radiologists' visual Breast Imaging Reporting and Data System (BIRADS). Several automated methods for assessing breast density have been proposed, each with their own source of measurement error. The use of differing mammographic imaging systems further complicates MD measurement, especially for the same women imaged over time. The purpose of this study was to investigate whether having a mammogram on differing manufacturer's equipment affects a woman's MD measurement. Raw mammographic images were acquired on two mammography imaging systems (General Electric and Hologic) one year apart and processed using VolparaDensity™ to obtain the Volpara Density Grade (VDG) and average volumetric breast density percentage (AvBD%). Visual BIRADS scores were also obtained from 20 expert readers. BIRADS scores for both systems showed strong positive correlation ([Formula: see text]; [Formula: see text]), while the VDG ([Formula: see text]; [Formula: see text]) and AvBD% ([Formula: see text]; [Formula: see text]) showed stronger positive correlations. Substantial agreement was shown between the systems for BIRADS ([Formula: see text]; [Formula: see text]), however, the systems demonstrated an almost perfect agreement for VDG ([Formula: see text]; [Formula: see text]).

  4. Mucinous carcinoma of the breast: mammographic features with histologic correlation

    International Nuclear Information System (INIS)

    Cui Chunyan; Zhang Ling; Wu Yaopan; Li Shuqin

    2011-01-01

    Objective: To correlate the mammographic findings of mucinous carcinoma with histologic features. Methods: Retrospective analysis of the mammographic and pathologic findings of 37 patients with mucinous carcinomas of the breasts was performed. Results: Mammograms of ten (52.6%) women with mucinous carcinomas showed masses with well-defined, lobu-lated margins correlating well with the pure histologic type. Thirteen (81.3%) mixed type of mucinous carcinomas demonstrated poorly defined or spiculated margins (P<0.05). Most of the pure type carcinomas were hyperdense similar to most of mixed type carcinomas (P<0.05). Of 34 mucinous carcinomas tested, there were 25 ER-positive, 29 PR-positive, 24 C-erbB-2 negative expressions with pure type carcinomas accounting for 78.9%, 89.5% and 78.9%, respectively. Conclusion: The mammographic features of pure type are different from those of mixed type of mucinous breast carcinomas. The most common mammographic appearance of pure mucinous carcinoma is a well-defined mass without calcification whereas the mixed type carcinomas have more aggressive imaging characteristics. (authors)

  5. Moiré Effect: Index and the Digital Image

    Directory of Open Access Journals (Sweden)

    Stella Baraklianou

    2014-10-01

    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  6. Fisheye image rectification using spherical and digital distortion models

    Science.gov (United States)

    Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang

    2018-02-01

    Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.

  7. Thinning an object boundary on digital image using pipelined algorithm

    International Nuclear Information System (INIS)

    Dewanto, S.; Aliyanta, B.

    1997-01-01

    In digital image processing, the thinning process to an object boundary is required to analyze the image structure with a measurement of parameter such as area, circumference of the image object. The process needs a sufficient large memory and time consuming if all the image pixels stored in the memory and the following process is done after all the pixels has ben transformed. pipelined algorithm can reduce the time used in the process. This algorithm uses buffer memory where its size can be adjusted. the next thinning process doesn't need to wait all the transformation of pixels. This paper described pipelined algorithm with some result on the use of the algorithm to digital image

  8. Serum osteoprotegerin levels and mammographic density among high-risk women.

    Science.gov (United States)

    Moran, Olivia; Zaman, Tasnim; Eisen, Andrea; Demsky, Rochelle; Blackmore, Kristina; Knight, Julia A; Elser, Christine; Ginsburg, Ophira; Zbuk, Kevin; Yaffe, Martin; Narod, Steven A; Salmena, Leonardo; Kotsopoulos, Joanne

    2018-06-01

    Mammographic density is a risk factor for breast cancer but the mechanism behind this association is unclear. The receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL) pathway has been implicated in the development of breast cancer. Given the role of RANK signaling in mammary epithelial cell proliferation, we hypothesized this pathway may also be associated with mammographic density. Osteoprotegerin (OPG), a decoy receptor for RANKL, is known to inhibit RANK signaling. Thus, it is of interest to evaluate whether OPG levels modify breast cancer risk through mammographic density. We quantified serum OPG levels in 57 premenopausal and 43 postmenopausal women using an enzyme-linked immunosorbent assay (ELISA). Cumulus was used to measure percent density, dense area, and non-dense area for each mammographic image. Subjects were classified into high versus low OPG levels based on the median serum OPG level in the entire cohort (115.1 pg/mL). Multivariate models were used to assess the relationship between serum OPG levels and the measures of mammographic density. Serum OPG levels were not associated with mammographic density among premenopausal women (P ≥ 0.42). Among postmenopausal women, those with low serum OPG levels had higher mean percent mammographic density (20.9% vs. 13.7%; P = 0.04) and mean dense area (23.4 cm 2 vs. 15.2 cm 2 ; P = 0.02) compared to those with high serum OPG levels after covariate adjustment. These findings suggest that low OPG levels may be associated with high mammographic density, particularly in postmenopausal women. Targeting RANK signaling may represent a plausible, non-surgical prevention option for high-risk women with high mammographic density, especially those with low circulating OPG levels.

  9. The role of camera-bundled image management software in the consumer digital imaging value chain

    Science.gov (United States)

    Mueller, Milton; Mundkur, Anuradha; Balasubramanian, Ashok; Chirania, Virat

    2005-02-01

    This research was undertaken by the Convergence Center at the Syracuse University School of Information Studies (www.digital-convergence.info). Project ICONICA, the name for the research, focuses on the strategic implications of digital Images and the CONvergence of Image management and image CApture. Consumer imaging - the activity that we once called "photography" - is now recognized as in the throes of a digital transformation. At the end of 2003, market researchers estimated that about 30% of the households in the U.S. and 40% of the households in Japan owned digital cameras. In 2004, of the 86 million new cameras sold (excluding one-time use cameras), a majority (56%) were estimated to be digital cameras. Sales of photographic film, while still profitable, are declining precipitously.

  10. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  11. A digital library for medical imaging activities

    Science.gov (United States)

    dos Santos, Marcelo; Furuie, Sérgio S.

    2007-03-01

    This work presents the development of an electronic infrastructure to make available a free, online, multipurpose and multimodality medical image database. The proposed infrastructure implements a distributed architecture for medical image database, authoring tools, and a repository for multimedia documents. Also it includes a peer-reviewed model that assures quality of dataset. This public repository provides a single point of access for medical images and related information to facilitate retrieval tasks. The proposed approach has been used as an electronic teaching system in Radiology as well.

  12. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    International Nuclear Information System (INIS)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  13. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  14. Comprehensive evaluation of a digital imaging network

    International Nuclear Information System (INIS)

    Mun, S.K.; Benson, H.; Elliott, L.P.; Horii, S.

    1988-01-01

    The authors' institution has installed a comprehensive PACS network involving a dozen work stations and ten imaging systems with electronic archiving and teleradiology capability based on the CommView (AT and T) system and its fiberoptic network. Diagnostic reporting stations are placed in neuroradiology, abdominal imaging, general radiology, and ultrasound service. Other review stations are located in intensive care units, radiation medicine, the emergency room, and other sites. Clinical acceptance of such technology varies depending on a number of factors: image quality, image data volume, service style, and personal preference. The general acceptance depends on the work station performance, network response time, and work station environment. Clinical acceptance by radiologists and referring physicians was evaluated. The evaluation project included work-station performance, network performance, system interface, RIS interface, and development of training methods and implementation strategy for other sites. A cost analysis and a study of administrative impact are integral parts of the comprehensive evaluation project

  15. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  16. Digital training platform for interpreting radiographic images of the chest.

    Science.gov (United States)

    McLaughlin, L; Woznitza, N; Cairns, A; McFadden, S L; Bond, R; Hughes, C M; Elsayed, A; Finlay, D; McConnell, J

    2018-05-01

    Time delays and errors exist which lead to delays in patient care and misdiagnosis. Reporting clinicians follow guidance to form their own search strategy. However, little research has tested these training guides. With the use of eye tracking technology and expert input we developed a digital training platform to be used in chest image interpretation learning. Two sections of a digital training platform were planned and developed; A) a search strategy training tool to assist reporters during their interpretation of images, and B) an educational tool to communicate the search strategies of expert viewers to trainees by using eye tracking technology. A digital training platform for use in chest image interpretation was created based on evidence within the literature, expert input and two search strategies previously used in clinical practice. Images and diagrams, aiding translation of the platform content, were incorporated where possible. The platform is structured to allow the chest image interpretation process to be clear, concise and methodical. A search strategy was incorporated within the tool to investigate its use, with the possibility that it could be recommended as an evidence based approach for use by reporting clinicians. Eye tracking, a checklist and voice recordings have been combined to form a multi-dimensional learning tool, which has never been used in chest image interpretation learning before. The training platform for use in chest image interpretation learning has been designed, created and digitised. Future work will establish the efficacy of the developed approaches. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  17. Computer processing of the scintigraphic image using digital filtering techniques

    International Nuclear Information System (INIS)

    Matsuo, Michimasa

    1976-01-01

    The theory of digital filtering was studied as a method for the computer processing of scintigraphic images. The characteristics and design techniques of finite impulse response (FIR) digital filters with linear phases were examined using the z-transform. The conventional data processing method, smoothing, could be recognized as one kind of linear phase FIR low-pass digital filtering. Ten representatives of FIR low-pass digital filters with various cut-off frequencies were scrutinized from the frequency domain in one-dimension and two-dimensions. These filters were applied to phantom studies with cold targets, using a Scinticamera-Minicomputer on-line System. These studies revealed that the resultant images had a direct connection with the magnitude response of the filter, that is, they could be estimated fairly well from the frequency response of the digital filter used. The filter, which was estimated from phantom studies as optimal for liver scintigrams using 198 Au-colloid, was successfully applied in clinical use for detecting true cold lesions and, at the same time, for eliminating spurious images. (J.P.N.)

  18. CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, T.M.

    1994-02-21

    In this paper, we propose a method for calculating the similarity between two digital images. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized distance between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to an example target image. This algorithm is applied to the problem of search and retrieval for database containing pulmonary CT imagery, and experimental results are provided.

  19. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  20. Post-processing of digital images.

    Science.gov (United States)

    Perrone, Luca; Politi, Marco; Foschi, Raffaella; Masini, Valentina; Reale, Francesca; Costantini, Alessandro Maria; Marano, Pasquale

    2003-01-01

    Post-processing of bi- and three-dimensional images plays a major role for clinicians and surgeons in both diagnosis and therapy. The new spiral (single and multislice) CT and MRI machines have allowed better quality of images. With the associated development of hardware and software, post-processing has become indispensable in many radiologic applications in order to address precise clinical questions. In particular, in CT the acquisition technique is fundamental and should be targeted and optimized to obtain good image reconstruction. Multiplanar reconstructions ensure simple, immediate display of sections along different planes. Three-dimensional reconstructions include numerous procedures: multiplanar techniques as maximum intensity projections (MIP); surface rendering techniques as the Shaded Surface Display (SSD); volume techniques as the Volume Rendering Technique; techniques of virtual endoscopy. In surgery computer-aided techniques as the neuronavigator, which with information provided by neuroimaging helps the neurosurgeon in simulating and performing the operation, are extremely interesting.

  1. Matching rendered and real world images by digital image processing

    Science.gov (United States)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  2. Operational digital image processing within the Bureau of Land Management

    International Nuclear Information System (INIS)

    Work, E.A.; Story, M.

    1991-01-01

    An overview of the use of operational digital image processing at the U.S. Bureau of Land Management (BLM) is presented. The BLM digital image analysis facility for the processing and analysis of aerial photography and satellite data is described, and its role within the Bureau's operational structure is explained. Attention is given to examples of BLM digital data analysis projects that have utilized Landsat (MSS and TM), NOAA-AVHRR, or SPOT data. These projects include: landcover mapping to assist land use planning or special projects; monitoring of wilderness units to detect unauthorized activities; stratification aid for detailed field inventories; identification/quantification of unauthorized use (agricultural and mineral trespass); and fire fuels mapping and updates. 3 refs

  3. Digital image intensifier radiography: A new diagnostic procedure in traumatology?

    International Nuclear Information System (INIS)

    Schmidt, C.; Deininger, H.K.; Staedtische Kliniken Darmstadt

    1990-01-01

    Digital image intensifier radiography visualises all traumatological changes of clinical relevance and can therefore be used in traumatology. However, the quality of conventional radiographs cannot be attained as yet. Radiation exposure is markedly reduced, and radiographs are obtained directly after exposure, so that this is an extremely rapid radiographic procedure. Images can be quickly transmitted by video cable to the relevant departments and working places. (orig.) [de

  4. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  5. Aliasing effects in digital images of line-pair phantoms

    International Nuclear Information System (INIS)

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  6. Application of digital image correlation method for analysing crack ...

    Indian Academy of Sciences (India)

    centrated strain by imitating the treatment of micro-cracks using the finite element ... water and moisture to penetrate the concrete leading to serious rust of the ... The correlations among various grey values of digital images are analysed for ...

  7. Evaluating fracture healing using digital x-ray image analysis

    African Journals Online (AJOL)

    2011-03-02

    Mar 2, 2011 ... with intensive imaging and modelling.6 dual energy X-ray ... techniques due to their high-quality digital output in ... the bone in the loaded X-ray is at an angular offset due to .... The research described in this article was carried ...

  8. A computer program for planimetric analysis of digitized images

    DEFF Research Database (Denmark)

    Lynnerup, N; Lynnerup, O; Homøe, P

    1992-01-01

    bones as seen on X-rays. By placing the X-rays on a digitizer tablet and tracing the outline of the cell system, the area was calculated by the program. The calculated data and traced images could be stored and printed. The program is written in BASIC; necessary hardware is an IBM-compatible personal...

  9. Application of digital-image-correlation techniques in analysing ...

    Indian Academy of Sciences (India)

    Basis theory of strain analysis using the digital image correlation method .... Type 304N Stainless Steel (Modulus of Elasticity = 193 MPa, Tensile Yield .... also proves the accuracy of the qualitative analyses by using the DIC ... We thank the National Science Council of Taiwan for supporting this research through grant. No.

  10. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  11. Determining storage related egg quality changes via digital image ...

    African Journals Online (AJOL)

    Area and length measurements related to exterior and interior egg quality were determined by digital image analysis. In general, excluding the outer thin albumen area, all of the area measurements such as total egg content area and inner thick albumen area were larger in stored eggs than in fresh eggs (52.28 vs.

  12. Problems and image processing in X-ray film digitization

    International Nuclear Information System (INIS)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru

    1992-01-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author)

  13. Problems and image processing in X-ray film digitization

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru (Toyama Medical and Pharmaceutical Univ. (Japan). Hospital)

    1992-11-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author).

  14. Digital image processing of mandibular trabeculae on radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Toshi

    1987-06-01

    The present study was aimed to reveal the texture patterns of the radiographs of the mandibular trabeculae by digital image processing. The 32 cases of normal subjects and the 13 cases of patients with mandibular diseases of ameloblastoma, primordial cysts, squamous cell carcinoma and odontoma were analyzed by their intra-oral radiographs in the right premolar regions. The radiograms were digitized by the use of a drum scanner densitometry method. The input radiographic images were processed by a histogram equalization method. The result are as follows : First, the histogram equalization method enhances the image contrast of the textures. Second, the output images of the textures for normal mandible-trabeculae radiograms are of network pattern in nature. Third, the output images for the patients are characterized by the non-network pattern and replaced by the patterns of the fabric texture, intertwined plants (karakusa-pattern), scattered small masses and amorphous texture. Thus, these results indicates that the present digital image system is expected to be useful for revealing the texture patterns of the radiographs and in the future for the texture analysis of the clinical radiographs to obtain quantitative diagnostic findings.

  15. A survey of passive technology for digital image forensics

    Institute of Scientific and Technical Information of China (English)

    LUO Weiqi; QU Zhenhua; PAN Feng; HUANG Jiwu

    2007-01-01

    Over the past years,digital images have been widely used in the Internet and other applications.Whilst image processing techniques are developing at a rapid speed,tampering with digital images without leaving any obvious traces becomes easier and easier.This may give rise to some problems such as image authentication.A new passive technology for image forensics has evolved quickly during the last few years.Unlike the signature-based or watermark-based methods,the new technology does not need any signature generated or watermark embedded in advance,it assumes that different imaging devices or processing would introduce different inherent patterns into the output images.These underlying patterns are consistent in the original untampered images and would be altered after some kind of manipulations.Thus,they can be used as evidence for image source identification and alteration detection.In this paper,we will discuss this new forensics technology and give an overview of the prior literatures.Some concluding remarks are made about the state of the art and the challenges in this novel technology.

  16. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  17. Identification of simulated microcalcifications in white noise and mammographic backgrounds

    International Nuclear Information System (INIS)

    Reiser, Ingrid; Nishikawa, Robert M.

    2006-01-01

    This work investigates human performance in discriminating between differently shaped simulated microcalcifications embedded in white noise or mammographic backgrounds. Human performance was determined through two alternative forced-choice (2-AFC) experiments. The signals used were computer-generated simple shapes that were designed such that they had equal signal energy. This assured equal detectability. For experiments involving mammographic backgrounds, signals were blurred to account for the imaging system modulation transfer function (MTF). White noise backgrounds were computer generated; anatomic background patches were extracted from normal mammograms. We compared human performance levels as a function of signal energy in the expected difference template. In the discrimination task, the expected difference template is the difference between the two signals shown. In white noise backgrounds, human performance in the discrimination task was degraded compared to the detection task. In mammographic backgrounds, human performance in the discrimination task exceeded that of the detection task. This indicates that human observers do not follow the optimum decision strategy of correlating the expected signal template with the image. Human observer performance was qualitatively reproduced by non-prewhitening with eye filter (NPWE) model observer calculations, in which spatial uncertainty was explicitly included by shifting the locations of the expected difference templates. The results indicate that human strategy in the discrimination task may be to match individual signal templates with the image individually, rather than to perform template matching between the expected difference template and the image

  18. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  19. Digital Intraoral Imaging Re-Exposure Rates of Dental Students.

    Science.gov (United States)

    Senior, Anthea; Winand, Curtis; Ganatra, Seema; Lai, Hollis; Alsulfyani, Noura; Pachêco-Pereira, Camila

    2018-01-01

    A guiding principle of radiation safety is ensuring that radiation dosage is as low as possible while yielding the necessary diagnostic information. Intraoral images taken with conventional dental film have a higher re-exposure rate when taken by dental students compared to experienced staff. The aim of this study was to examine the prevalence of and reasons for re-exposure of digital intraoral images taken by third- and fourth-year dental students in a dental school clinic. At one dental school in Canada, the total number of intraoral images taken by third- and fourth-year dental students, re-exposures, and error descriptions were extracted from patient clinical records for an eight-month period (September 2015 to April 2016). The data were categorized to distinguish between digital images taken with solid-state sensors or photostimulable phosphor plates (PSP). The results showed that 9,397 intraoral images were made, and 1,064 required re-exposure. The most common error requiring re-exposure for bitewing images was an error in placement of the receptor too far mesially or distally (29% for sensors and 18% for PSP). The most common error requiring re-exposure for periapical images was inadequate capture of the periapical area (37% for sensors and 6% for PSP). A retake rate of 11% was calculated, and the common technique errors causing image deficiencies were identified. Educational intervention can now be specifically designed to reduce the retake rate and radiation dose for future patients.

  20. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  1. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  2. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  3. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  4. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  5. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  6. Longitudinal and transverse digital image reconstruction with a tomographic scanner

    International Nuclear Information System (INIS)

    Pickens, D.R.; Price, R.R.; Erickson, J.J.; Patton, J.A.; Partain, C.L.; Rollo, F.D.

    1981-01-01

    A Siemens Gammasonics PHO/CON-192 Multiplane Imager is interfaced to a digital computer for the purpose of performing tomographic reconstructions from the data collected during a single scan. Data from the two moving gamma cameras as well as camera position information are sent to the computer by an interface designed in the authors' laboratory. Backprojection reconstruction is implemented by the computer. Longitudinal images in whole-body format as well as smaller formats are reconstructed for up to six planes simultaneously from the list mode data. Transverse reconstructions are demonstrated for 201 T1 myocardial scans. Post-reconstruction deconvolution processing to remove the blur artifact (characteristic of focal plane tomography) is applied to a multiplane phantom. Digital data acquisition of data and reconstruction of images are practical, and can extend the usefulness of the machine when compared with the film output (author)

  7. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  8. A study of transverse image reconstruction with digital subtraction angiography

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Terasawa, Yuuji; Oda, Masahiko; Gotou, Hiroshi; Nasada, Toshiya; Tanooka, Masao

    1995-01-01

    For digital subtraction angiography (DSA) with C-type equipment, it is possible to radiate an X-ray during rotation and to collect data at different angular settings. We tried to reconstruct transverse image from data obtained by scanning DSA images at different angular settings. 88 projection data were obtained by rotating the object at 180deg during radiation. Reconstruction was made using the convolution method with pixel value distribution for each projection. Similarly, the image quality of the reconstructed images were compared with the unsubtracted and subtracted ones. In case a part object was outside the calculating region, artifacts were generally produced. However, the artifacts were reduced by subtracting the background from the image. In addition, the cupping phenomenon caused by beam hardening was relaxed and high-quality imaging could be achieved. This method will become even more effective, if we will use it with selective angiography in which the limited area is enhanced. (author)

  9. Digital signal and image processing using Matlab

    CERN Document Server

    Blanchet , Gérard

    2015-01-01

    The most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals, the theory being supported by exercises and computer simulations relating to real applications.   More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.  Following on from the first volume, this second installation takes a more practical stance, provi

  10. On the detection of pornographic digital images

    Science.gov (United States)

    Schettini, Raimondo; Brambilla, Carla; Cusano, Claudio; Ciocca, Gianluigi

    2003-06-01

    The paper addresses the problem of distinguishing between pornographic and non-pornographic photographs, for the design of semantic filters for the web. Both, decision forests of trees built according to CART (Classification And Regression Trees) methodology and Support Vectors Machines (SVM), have been used to perform the classification. The photographs are described by a set of low-level features, features that can be automatically computed simply on gray-level and color representation of the image. The database used in our experiments contained 1500 photographs, 750 of which labeled as pornographic on the basis of the independent judgement of several viewers.

  11. Digital signal and image processing using MATLAB

    CERN Document Server

    Blanchet , Gérard

    2014-01-01

    This fully revised and updated second edition presents the most important theoretical aspects of Image and Signal Processing (ISP) for both deterministic and random signals. The theory is supported by exercises and computer simulations relating to real applications. More than 200 programs and functions are provided in the MATLABÒ language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject. This fully revised new edition updates : - the

  12. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  13. Towards A Colorimetric Digital Image Archive For The Visual Arts

    Science.gov (United States)

    Martinez, Kirk; Hamber, Anthony

    1989-04-01

    The aim of this project is to produce a high-resolution, colorimetric and permanent digital archive of images taken directly from works of art. The proposed system is designed for use in education, research, galleries and museums. Tentative user requirements are examined with particular reference to resolution, image access and colorimetry. Existing technology and projects are considered. Some 3000x3000 pel images of paintings are used to illustrate the interrelationship between dimensions of the original, its inherent detail, scan resolution and display.

  14. Contribution to the study of integrated system design in digital imaging. Application to digital radiology

    International Nuclear Information System (INIS)

    Boy, M.

    1987-02-01

    In the first part of this work, we describe the hardware and software used to design integrated systems able to acquire, memorize, process and visualize 1024 x 1024 x 8 bits images. In the second part, we present and analyse the first realised prototype system which is a digital radiology one. After a technical and economical digital radiology study, we present the angiographic and tomographic results. In the third part, we indicate possible evolution of this system and we show how the adopted structure and developed hardware allow applications in various fields [fr

  15. Applications of digital image analysis capability in Idaho

    Science.gov (United States)

    Johnson, K. A.

    1981-01-01

    The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.

  16. Effects of scanning resolution and digital image magnification on photostimulable phosphor imaging system

    International Nuclear Information System (INIS)

    Sakurai, Takashi; Inagaki, Masafumi; Asai, Hideomi; Koyama, Atsushi; Kashima, Isamu

    2000-01-01

    The purpose of this study is to examine the effects of changes in scanning resolution and digital magnification on the image quality and diagnostic ability of the photostimulable phosphor imaging system. Using a photostimulable phosphor imaging system, images of a human adult dried mandible phantom embedded in a 25 mm-thick epoxy resin block were made. The latent images on the photostimulable phosphor imaging plate were scanned using four different pixel sizes as follows: 25 μm x 25 μm, 50 μm x 50 μm, 100 μm x 100 μm and 200 μm x 200 μm. A primary image was produced for each pixel size. These images were also digitally magnified at powers of 2, 4 and 8 times. The gradient range, brightness and contrast of each image were adjusted to optimum levels on a cathode ray tube display, and hard copies were produced with a writing pixel size of 60 μm x 60 μm. The granularity, sharpness and anatomical diagnostic ability of the images were assessed subjectively by eight dentists. Increasing the scanning resolution tended to generally improve image quality and diagnostic ability. Visual image quality was maintained up to a pixel size of 50 μm, and diagnostic ability was maintained up to a pixel size of 100 μm. Digital image magnification degraded image quality, and more than 2-times magnification degraded diagnostic ability. Under the present experimental conditions, increasing the scanning resolution did not always lead to an improvement in image quality or diagnostic ability, and digital image magnification degraded image quality and diagnostic ability. (author)

  17. Some computer applications and digital image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Lowinger, T.

    1981-01-01

    Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms

  18. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  19. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  20. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  1. 78 FR 32427 - Notice of Issuance of Final Determination Concerning Multifunctional Digital Imaging Systems

    Science.gov (United States)

    2013-05-30

    ... multifunctional digital imaging systems for purposes of U.S. Government procurement. DATES: The final... Determination Concerning Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection... country of origin of certain multifunctional digital imaging systems. Based upon the facts presented, CBP...

  2. Digital implementation of a neural network for imaging

    Science.gov (United States)

    Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian

    2012-10-01

    This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.

  3. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  4. Monuments deterioration evaluation, using digited images. A methodology

    Directory of Open Access Journals (Sweden)

    Ángel, María C.

    1995-12-01

    Full Text Available In this work a methodology is proposed for data processing, integrating the techniques of digital images processing and the analytical capacity of graphical referencing systems and relational databases, in relation with the monuments. The images are generated using the digital image processing and they are included into a graphical data processing systems associated with a database containing the characteristics of the ashars or constituent elements. By combination of the images with the database induced properties the information is processed. The results are thematic maps that we save such as images. These maps are layers of new information (deduced levels. The elaboration of these maps allows attacking the problems of the restoration, renovation or treatment of the different monumental spaces on a global way, paying special attention on the most gravely affected areas.

    En este trabajo se propone una metodología para el tratamiento de la información, integrando las técnicas de proceso digital de imágenes, la capacidad de análisis de los sistemas de referenciación gráfica y las bases de datos relacionales, referidas a monumentos. Para ello se elaboran las imágenes base por algoritmos propios del proceso digital, incluyendo aquellas en una aplicación especifica que asocia cada capa a una base de datos con las propiedades petrofísicas, hídricas, etc., o bien entre si, dando lugar a mapas temáticos. La generación de estos mapas permite abordar los problemas de restauración, rehabilitación o tratamiento de los diferentes espacios monumentales de forma global, con incidencia especial en las zonas más afectadas.

  5. Practical evaluation of clinical image quality (4). Determination of image quality in digital radiography system

    International Nuclear Information System (INIS)

    Katayama, Reiji

    2016-01-01

    Recently, for medical imaging, digital radiography systems are widely used in clinical practices. However, a study in the past reported that a patient radiation exposure level by digital radiography is in fact not lower than that by analog radiography system. High level of attention needs to be paid for over-exposure when using the conventional analog radiography with a screen and a film, as it results in high density of the film. However, for digital radiography systems, since the automatic adjusting function of image density is equipped with them, no attention for radiation dose need to be paid. Thus technologists tend to be careless and results in higher chance for over-exposure. Current digital radiography systems are high-performance in the image properties and capable of patient dose reduction. Especially, the image quality of the flat panel detector system is recognized, higher than that of the computed radiography system by imaging plates, in both objective and subjective evaluations. Therefore, we technologists are responsible for optimizing the balance between the image quality of the digital radiogram and the radiation dose required for each case. Moreover, it is also required for us as medical technologists to make effective use of such evaluation result of medical images for patients. (author)

  6. A Multiresolution Image Completion Algorithm for Compressing Digital Color Images

    Directory of Open Access Journals (Sweden)

    R. Gomathi

    2014-01-01

    Full Text Available This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total Variation (TV inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264 Intracoding algorithms. The results show that the proposed algorithm works well.

  7. PACS and the digital storage of medical images

    International Nuclear Information System (INIS)

    Perry, J.R.; Johnston, R.E.; Pizer, S.M.; Lowendorf, D.D.; Rogers, D.C.; Thompson, B.C.; Parrish, D.M.; Brenton, B.C.; Staab, E.V.

    1986-01-01

    An application of computers in medicine is developing wherein large amounts of digital information in the form of images must be stored, retrieved, and displayed quickly. In radiology this application most commonly goes by the acronym PACS which stands for picture archival and communications system. Estimates of the storage requirements for radiologic images strongly suggest that we should think in terms of terabytes per year for a 150,000 procedure/year, 600 bed hospital. Transmission of patient image data files (a single X-ray image pair may be 12.6 Mbytes) arouses concern over transmission speeds, user waiting tolerances and a communications standard. An important accord is being reached between users and equipment manufacturers in radiology for a standard communications protocol, called the proposed ACR-NEMA standard. Features of PACS which require high speed computational abilities include a lexicon for report generation and image reconstruction, compression, enhancement and 3D display

  8. Digital Image Processing Overview For Helmet Mounted Displays

    Science.gov (United States)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  9. Is screening with digital imaging using one retinal view adequate?

    Science.gov (United States)

    Herbert, H M; Jordan, K; Flanagan, D W

    2003-05-01

    To compare the detection of diabetic retinopathy from digital images with slit-lamp biomicroscopy, and to determine whether British Diabetic Association (BDA) screening criteria are attained (>80% sensitivity, >95% specificity, &fashion. A single 45 degrees fundus image was obtained using the nonmydriatic digital camera. Each patient subsequently underwent slit-lamp biomicroscopy and diabetic retinopathy grading by a consultant ophthalmologist. Diabetic retinopathy and maculopathy was graded according to the Early Treatment of Diabetic Retinopathy Study. A total of 145 patients (288 eyes) were identified for screening. Of these, 26% of eyes had diabetic retinopathy, and eight eyes (3%) had sight-threatening diabetic retinopathy requiring treatment. The sensitivity for detection of any diabetic retinopathy was 38% and the specificity 95%. There was a 4% technical failure rate. There were 42/288 false negatives and 10/288 false positives. Of the 42 false negatives, 18 represented diabetic maculopathy, 20 represented peripheral diabetic retinopathy and four eyes had both macular and peripheral changes. Three eyes in the false-negative group (1% of total eyes) had sight-threatening retinopathy. There was good concordance between the two consultants (79% agreement on slit-lamp biomicroscopy and 84% on digital image interpretation). The specificity value and technical failure rate compare favourably with BDA guidelines. The low sensitivity for detection of any retinopathy reflects failure to detect minimal maculopathy and retinopathy outside the 45 degrees image. This could be improved by an additional nasal image and careful evaluation of macular images with a low threshold for slit-lamp biomicroscopy if image quality is poor.

  10. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  11. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    Science.gov (United States)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  12. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  13. American College of Radiology Accreditation Program for mammographic screening sites: Physical evaluation criteria

    International Nuclear Information System (INIS)

    Hendrick, R.E.; Haus, A.G.; Hubbard, L.B.; Lasky, H.J.; McCrohan, J.; McLelland, R.; Rothenberg, L.N.; Tanner, R.L.; Zinninger, M.D.

    1987-01-01

    The American College of Radiology has initiated a program for the accreditation of mammographic screening sites, which includes evaluation by mail of image quality and average glandular breast dose. Image quality is evaluated by use of a specially designed phantom (a modified RMI 152D Mammographic Phantom) containing simulated microcalcifications, fibrils and masses. Average glandular dose to a simulated 4.5-cm-thick (50% glandular, 50% fat) compressed breast is evaluated by thermoluminescent dosimeter measurements of entrance exposure and half value layer. Standards for acceptable image quality and patient doses are presented and preliminary results of the accreditation program are discussed

  14. Osteoporosis: a new approach of digital processing of radiological images

    International Nuclear Information System (INIS)

    Salles, Adilson Dias; Braz, Valeria Silva

    1998-01-01

    The authors applied a method based on digital processing of radiological images (fast Fourier transform) to analyze the radius distal epiphysis and calcaneus spongy bone architecture. The study revealed distinct patterns of trabecular distribution. Prior studies about osteoporosis have focused on bone density quantification and its role on fracture prediction. However, resistance to fractures (mechanical strength) is also determined by structural arrangement of bone. THe digital processing (spectral analysis) was applied to radiological images of the radius and calcaneus from 15 normal and osteopenic individuals. Normal bone trabeculae showed an individualized behavior (stress lines). On the other hand, porotic bone trabeculae revealed a diffuse pattern (honey comb). The scattered frequency components showed that the porotic bone trabeculae were remodeled. This process would be responsible for the maintenance of its physical properties. (author)

  15. Test Targets 2.0 and Digital Imaging

    Directory of Open Access Journals (Sweden)

    Robert Chung

    2003-04-01

    Full Text Available Current color management systems, based on a modular approach, enable color portability and mass customization of digital images for print. Because of the non-specific nature of the workflow, implementation of ICC-based color management becomes the responsibility of the user. As such the performance of ICC-based CMS is often unknown and has caused much confusion and slow adoption in the printing and publishing industries. To demonstrate how ICC-based color management can be implemented in a number of workflows, this paper describes a project, called Test Targets 2.0. A description of the test targets and how they were used for device calibration, device profiling, and color imaging applications under different workflows, e.g., from scanner to press, or digital camera to press, are introduced. Color management should work equally well for color matching applications. Thus, a continuation of the project focuses on device gamut and profile accuracy assessment.

  16. Digital optical tomography system for dynamic breast imaging

    Science.gov (United States)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  17. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    Science.gov (United States)

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  18. GrinLine identification using digital imaging and Adobe Photoshop.

    Science.gov (United States)

    Bollinger, Susan A; Brumit, Paula C; Schrader, Bruce A; Senn, David R

    2009-03-01

    The purpose of this study was to outline a method by which an antemortem photograph of a victim can be critically compared with a postmortem photograph in an effort to facilitate the identification process. Ten subjects, between 27 and 55 years old provided historical pictures of themselves exhibiting a broad smile showing anterior teeth to some extent (a grin). These photos were termed "antemortem" for the purpose of the study. A digital camera was used to take a current photo of each subject's grin. These photos represented the "postmortem" images. A single subject's "postmortem" photo set was randomly selected to be the "unknown victim." These combined data of the unknown and the 10 antemortem subjects were digitally stored and, using Adobe Photoshop software, the images were sized and oriented for comparative analysis. The goal was to devise a technique that could facilitate the accurate determination of which "antemortem" subject was the "unknown." The generation of antemortem digital overlays of the teeth visible in a grin and the comparison of those overlays to the images of the postmortem dentition is the foundation of the technique. The comparisons made using the GrinLine Identification Technique may assist medical examiners and coroners in making identifications or exclusions.

  19. Freezing effect on bread appearance evaluated by digital imaging

    Science.gov (United States)

    Zayas, Inna Y.

    1999-01-01

    In marketing channels, bread is sometimes delivered in a frozen sate for distribution. Changes occur in physical dimensions, crumb grain and appearance of slices. Ten loaves, twelve bread slices per loaf were scanned for digital image analysis and then frozen in a commercial refrigerator. The bread slices were stored for four weeks scanned again, permitted to thaw and scanned a third time. Image features were extracted, to determine shape, size and image texture of the slices. Different thresholds of grey levels were set to detect changes that occurred in crumb, images were binarized at these settings. The number of pixels falling into these gray level settings were determined for each slice. Image texture features of subimages of each slice were calculated to quantify slice crumb grain. The image features of the slice size showed shrinking of bread slices, as a results of freezing and storage, although shape of slices did not change markedly. Visible crumb texture changes occurred and these changes were depicted by changes in image texture features. Image texture features showed that slice crumb changed differently at the center of a slice compared to a peripheral area close to the crust. Image texture and slice features were sufficient for discrimination of slices before and after freezing and after thawing.

  20. Radiographic techniques for digital mammography

    International Nuclear Information System (INIS)

    Horita, Katsuhei

    2007-01-01

    Since the differences in X-ray absorption between various breast tissues are small, a dedicated X-ray system for examination of the breast and a high-contrast, high-resolution screen/film system (SFM) (light-receiving system) are employed for X-ray diagnosis. Currently, however, there is a strong trend toward digital imaging in the field of general radiography, and this trend is also reflected in the field of mammographic examination. In fact, approximately 70% of facilities purchasing new mammography systems are now selecting a digital mammography system (DRM). Given this situation, this report reviews the differences between SFM and DRM and discusses the radiographic techniques and quality assurance procedures for digital mammography. (author)

  1. System for digitalization of medical images based on DICOM standard

    Directory of Open Access Journals (Sweden)

    Čabarkapa Slobodan

    2009-01-01

    Full Text Available According to DICOM standard, which defines both medical image information and user information, a new system for digitalizing medical images is involved as a part of the main system for archiving and retrieving medical databases. The basic characteristics of this system are described in this paper. Furthermore, the analysis of some important DICOM header's tags which are used in this system, are presented, too. Having chosen the appropriate tags in order to preserve important information, the efficient system has been created. .

  2. Resolution effects on the morphology of calcifications in digital mammograms

    Energy Technology Data Exchange (ETDEWEB)

    Kallergi, Maria; He, Li; Gavrielides, Marios; Heine, John; Clarke, Laurence P [Department of Radiology, College of Medicine, and H. Lee Moffitt Cancer Center and Research Institute at the University of South Florida, 12901 Bruce B. Downs Blvd., Box 17, Tampa, FL 33612 (United States)

    1999-12-31

    The development of computer assisted diagnosis (CAD) techniques and direct digital mammography systems have generated significant interest in the issue of the effect of image resolution on the detection and classification (benign vs malignant) of mammographic abnormalities. CAD in particular seems to heavily depend on image resolution, either due to the inherent algorithm design and optimization, which is almost always dependent, or due to the differences in image content at the various resolutions. This twofold dependence makes it even more difficult to answer the question of what is the minimum resolution required for successful detection and/or classification of a specific mammographic abnormality, such as calcifications. One may begin by evaluating the losses in the mammograms as the films are digitized with different pixel sizes and depths. In this paper we attempted to measure these losses for the case of calcifications at four different spatial resolutions through a simulation model and a classification scheme that is based only on morphological features. The results showed that a 60 {mu}m pixel size and 12 bits per pixel should at least be used if the morphology and distribution of the calcifications are essential components in the CAD algorithm design. These conclusions were tested with the use of a wavelet-based algorithm for the segmentation of simulated mammographic calcifications at various resolutions. The evaluation of the segmentation through shape analysis and classification supported the initial conclusion. (authors) 14 refs., 1 tabs.

  3. Objective and Subjective Assessment of Digital Pathology Image Quality

    Directory of Open Access Journals (Sweden)

    Prarthana Shrestha

    2015-03-01

    Full Text Available The quality of an image produced by the Whole Slide Imaging (WSI scanners is of critical importance for using the image in clinical diagnosis. Therefore, it is very important to monitor and ensure the quality of images. Since subjective image quality assessments by pathologists are very time-consuming, expensive and difficult to reproduce, we propose a method for objective assessment based on clinically relevant and perceptual image parameters: sharpness, contrast, brightness, uniform illumination and color separation; derived from a survey of pathologists. We developed techniques to quantify the parameters based on content-dependent absolute pixel performance and to manipulate the parameters in a predefined range resulting in images with content-independent relative quality measures. The method does not require a prior reference model. A subjective assessment of the image quality is performed involving 69 pathologists and 372 images (including 12 optimal quality images and their distorted versions per parameter at 6 different levels. To address the inter-reader variability, a representative rating is determined as a one-tailed 95% confidence interval of the mean rating. The results of the subjective assessment support the validity of the proposed objective image quality assessment method to model the readers’ perception of image quality. The subjective assessment also provides thresholds for determining the acceptable level of objective quality per parameter. The images for both the subjective and objective quality assessment are based on the HercepTestTM slides scanned by the Philips Ultra Fast Scanners, developed at Philips Digital Pathology Solutions. However, the method is applicable also to other types of slides and scanners.

  4. Quality control of the interpretation monitors of digital radiological images

    International Nuclear Information System (INIS)

    Favero, Mariana S.; Goulart, Adriano Oliveira S.

    2016-01-01

    The performance monitors has great importance in image quality of digital radiographic systems. In environments without films, it became necessary to implement acceptance testing and quality control monitors used for interpretation of medical images. The monitors dedicated to radiodiagnostic should provide information that represent slight differences in x-ray attenuation or minor differences in some anatomical region of interest. This should also result in small differences in luminance of an image represented. Factors affecting the quality of medical imaging are contrast, noise, resolution, artifacts and distortions. Therefore, a monitor must have specific characteristics, making it possible for the observer to carry out an assessment that leads to better diagnosis. Based on the need to evaluate diagnostic monitors in various radiological applications, this paper presents a summary for implementation and standardization of tests that are recommended by the publication AAPM Report 03. (author)

  5. Orthoscopic real-image display of digital holograms.

    Science.gov (United States)

    Makowski, P L; Kozacki, T; Zaperty, W

    2017-10-01

    We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.

  6. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  7. Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017.

    Science.gov (United States)

    Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron

    2018-01-01

    As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.

  8. Use of film digitizers to assist radiology image management

    Science.gov (United States)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1996-05-01

    The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders

  9. [Evaluation of dental plaque by quantitative digital image analysis system].

    Science.gov (United States)

    Huang, Z; Luan, Q X

    2016-04-18

    To analyze the plaque staining image by using image analysis software, to verify the maneuverability, practicability and repeatability of this technique, and to evaluate the influence of different plaque stains. In the study, 30 volunteers were enrolled from the new dental students of Peking University Health Science Center in accordance with the inclusion criteria. The digital images of the anterior teeth were acquired after plaque stained according to filming standardization.The image analysis was performed using Image Pro Plus 7.0, and the Quigley-Hein plaque indexes of the anterior teeth were evaluated. The plaque stain area percentage and the corresponding dental plaque index were highly correlated,and the Spearman correlation coefficient was 0.776 (Pchart showed only a few spots outside the 95% consistency boundaries. The different plaque stains image analysis results showed that the difference of the tooth area measurements was not significant, while the difference of the plaque area measurements significant (P<0.01). This method is easy in operation and control,highly related to the calculated percentage of plaque area and traditional plaque index, and has good reproducibility.The different plaque staining method has little effect on image segmentation results.The sensitive plaque stain for image analysis is suggested.

  10. Hard copies for digital medical images: an overview

    Science.gov (United States)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.

  11. Ultrasound detection of nonpalpable mammographically occult malignancy

    International Nuclear Information System (INIS)

    Simpson, W.L.; Hermann, G.; Rausch, D.R.; Sherman, J.; Feig, S.A.; Bleiweiss, I.J.; Jaffer, S.

    2008-01-01

    To evaluate the prevalence of occult malignancy with screening breast ultrasound. All ultrasound-guided core needle breast biopsies performed between January 1, 1999, and June 30, 2001, were retrospectively reviewed. Lesions were identified during screening breast ultrasound in high-risk women with no mammographic or palpable abnormality in either breast, a unilateral mammographic or palpable abnormality in the contralateral breast, or a unilateral mammographic or palpable abnormality in a different quadrant of the same breast. All ultrasound-detected lesions were histologically verified. Six hundred and fifty-two women with a mean age of 49 years underwent 698 biopsies during the study period. Three hundred and forty-nine of these lesions were detected at screening breast ultrasound. Out of 349, 11 (3.2%) had a mammographically and clinically occult malignancy. Nine cancers were found in women with no mammographic or palpable abnormality. Two cancers were found in the same breast as the mammographic or palpable abnormality. None were found in the breast contralateral to a palpable or mammographic abnormality. Screening breast ultrasound of high-risk women has a similar detection rate for occult carcinoma as screening mammography, but has a low positive predictive value in cases where biopsy is performed. (author)

  12. Rethinking Over Textuality of Digital Image: A Methodological Proposal for Pleasant Reading on Digital Screens

    Directory of Open Access Journals (Sweden)

    Cristian Álvarez

    2009-12-01

    Full Text Available It sets out the necessity about thinking over the instructional function of image in digital world under the light of the new opportunities of a methodological proposal to read as a game. First, for this reason it exams the perceptions of García Canclini about the reading of university students, and its problems on the context of new technologies: accumulation of information versus weakening of reflection. To this situation it adds the no appreciation of visual images. Faced with this problematic situation, and with the aim of sketching out options, it analyzes two experiences about books: the “tasty” reading of texts (the “good reading”, and the potentialities presented in the essential characteristics of playing. So, it proposes a methodology shaped for five steps to read images on digital screen. Its aim is seizing the possibilities of “good reading” to expand the comprehension of the visual information perceived through the screen. The proposal puts the accent in the textuality of representational surface of an image. Also it brings the attentive visual route about in order to enable to identify both significant forms and spaces. This proposal is illustrated with examples.

  13. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensio