WorldWideScience

Sample records for digital imaging systems

  1. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    Cox, G.G.; Dwyer, S.J. III; Templeton, A.W.

    1987-01-01

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  2. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  3. Advanced digital image archival system using MPEG technologies

    Science.gov (United States)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  4. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  5. Digital cine-imaging

    International Nuclear Information System (INIS)

    Masuda, Kazuhiro

    1992-01-01

    Digitization of fluoroscopic images has been developed for the digital cine imaging system as a result of the computer technology, television technology, and popularization of interventional radiology. Present digital cine imaging system is able to offer images similar to cine film because of the higher operatability and better image quality with the development of interventional radiology. As a result, its higher usefulness for catheter diagnosis examination except for interventional radiology was reported, and the possibility of having filmless cine is close to becoming a reality. However several problems have been pointed out, such as spatial resolution, time resolution, storage and exchangeability of data, disconsolidated viewing functions, etc. Anyhow, digital cine imaging system has some unresolved points and lots the needs to be discussed. The tendency of digitization is the passage of the time and we have to promote a study for more useful digital cine imaging system in team medical treatment which centers on the patients. (author)

  6. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  7. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  8. Image quality in digital radiographic systems

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2003-01-01

    Full Text Available The aim of the present study was to evaluate the image quality of four direct digital radiographic systems. Radiographs were made of the maxillary central incisor and mandibular left molar regions of a dry skull, and an aluminum step-wedge. The X-ray generator operated at 10 mA, 60 and 70 kVp, and images were acquired with 3, 5, 8, 12, 24 and 48 exposure pulses. Six well-trained observers classified the images by means of scores from 1 to 3. Collected data were submitted to nonparametric statistical analysis using Fisher's exact test. Statistical analysis showed significant differences (p<0.01 in image quality with the four systems. Based on the results, it was possible to conclude that: 1 all of the digital systems presented good performance in producing acceptable images for diagnosis, if the exposures of the step-wedge and the maxillary central incisor region were made at 5 pulses, as well as at 8 pulses for the mandibular left molar region, selecting 60 or 70kVp; 2 higher percentages of acceptable images were obtained with the administration of lower radiation doses in CCD-sensors (charge-coupled device; 3 the Storage Phosphor systems produced acceptable images at a large range of exposure settings, that included low, intermediate and high radiation doses.

  9. Digital image analysis of X-ray television with an image digitizer

    International Nuclear Information System (INIS)

    Mochizuki, Yasuo; Akaike, Hisahiko; Ogawa, Hitoshi; Kyuma, Yukishige

    1995-01-01

    When video signals of X-ray fluoroscopy were transformed from analog-to-digital ones with an image digitizer, their digital characteristic curves, pre-sampling MTF's and digital Wiener spectral could be measured. This method was advant ageous in that it was able to carry out data sampling because the pixel values inputted could be verified on a CRT. The system of image analysis by this method is inexpensive and effective in evaluating the image quality of digital system. Also, it is expected that this method can be used as a tool for learning the measurement techniques and physical characteristics of digital image quality effectively. (author)

  10. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  11. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    Gaona, E.; Rivera, T.; Arreola, M.; Franco, J.; Molina, N.; Alvarez, B.; Azorín, C.G.; Casian, G.

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  12. A radiographic image archive system on digital optical disks

    International Nuclear Information System (INIS)

    Mankovich, N.J.; Taira, R.K.; Cho, P.S.; Wong, W.K.; Stewart, B.K.; Huang, H.K.

    1986-01-01

    The recent introduction of projection computed radiography (CR) systems allows radiology departments to consider digital operation in over 90% of performed procedures. Ideally, current patient procedures from CT, CT, and MR along with laser-digitized historical films should be centrally stored at their full digital resolution. Magnetic disks, because of their limited storage capacity and expense, can only retain these data on a limited basis. The author devised an optical disk archive system which automatically stores images directly onto 2.6-gigabyte optical cartridges without recourse to film. This system is in full clinical operation in the UCLA Pediatric Radiology Section of the authors' department. From this experience they present (a) an analysis of the digital archiving requirements of the Pediatric Radiology Section based on CR, CT, MR, and laser digitized films; (b) the archive and retrieval methods along with performance statistics; and (c) the procedure for assuring digital image integrity

  13. Practical evaluation of clinical image quality (4). Determination of image quality in digital radiography system

    International Nuclear Information System (INIS)

    Katayama, Reiji

    2016-01-01

    Recently, for medical imaging, digital radiography systems are widely used in clinical practices. However, a study in the past reported that a patient radiation exposure level by digital radiography is in fact not lower than that by analog radiography system. High level of attention needs to be paid for over-exposure when using the conventional analog radiography with a screen and a film, as it results in high density of the film. However, for digital radiography systems, since the automatic adjusting function of image density is equipped with them, no attention for radiation dose need to be paid. Thus technologists tend to be careless and results in higher chance for over-exposure. Current digital radiography systems are high-performance in the image properties and capable of patient dose reduction. Especially, the image quality of the flat panel detector system is recognized, higher than that of the computed radiography system by imaging plates, in both objective and subjective evaluations. Therefore, we technologists are responsible for optimizing the balance between the image quality of the digital radiogram and the radiation dose required for each case. Moreover, it is also required for us as medical technologists to make effective use of such evaluation result of medical images for patients. (author)

  14. Implementation of a dedicated digital projectional radiographic system in thoracic imaging

    International Nuclear Information System (INIS)

    Aberle, D.R.; Batra, P.; Hayrapetian, A.S.; Brown, K.; Morioka, C.A.; Steckel, R.J.

    1988-01-01

    An integrated digital radiographic system was evaluated with respect to image quality and impact on diagnosis relative to conventional chest radiographs for a variety of focal and diffuse lung processes. Digital images were acquired with a stimulable phosphor plate detector that was scanned by a semiconductor laser for immediate digitalization to a 2,048 X 2,464 X 10-bit image. Digital images were displayed on a 2,048-line monitor and printed on 14 X 17-inch film with use of a laser film printer (Kodak). Preliminary results with this system, including the effects of user interaction with the display monitor, inverse intensity display, and regional magnification techniques, indicate that it may be successfully implemented for thoracic imaging

  15. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  16. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  17. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  18. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  19. 78 FR 32427 - Notice of Issuance of Final Determination Concerning Multifunctional Digital Imaging Systems

    Science.gov (United States)

    2013-05-30

    ... multifunctional digital imaging systems for purposes of U.S. Government procurement. DATES: The final... Determination Concerning Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection... country of origin of certain multifunctional digital imaging systems. Based upon the facts presented, CBP...

  20. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Bryant, C.J.; Lincoln, A.D.; Tucker, P.A.; Swanton, S.W.

    1986-08-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  1. Effects of scanning resolution and digital image magnification on photostimulable phosphor imaging system

    International Nuclear Information System (INIS)

    Sakurai, Takashi; Inagaki, Masafumi; Asai, Hideomi; Koyama, Atsushi; Kashima, Isamu

    2000-01-01

    The purpose of this study is to examine the effects of changes in scanning resolution and digital magnification on the image quality and diagnostic ability of the photostimulable phosphor imaging system. Using a photostimulable phosphor imaging system, images of a human adult dried mandible phantom embedded in a 25 mm-thick epoxy resin block were made. The latent images on the photostimulable phosphor imaging plate were scanned using four different pixel sizes as follows: 25 μm x 25 μm, 50 μm x 50 μm, 100 μm x 100 μm and 200 μm x 200 μm. A primary image was produced for each pixel size. These images were also digitally magnified at powers of 2, 4 and 8 times. The gradient range, brightness and contrast of each image were adjusted to optimum levels on a cathode ray tube display, and hard copies were produced with a writing pixel size of 60 μm x 60 μm. The granularity, sharpness and anatomical diagnostic ability of the images were assessed subjectively by eight dentists. Increasing the scanning resolution tended to generally improve image quality and diagnostic ability. Visual image quality was maintained up to a pixel size of 50 μm, and diagnostic ability was maintained up to a pixel size of 100 μm. Digital image magnification degraded image quality, and more than 2-times magnification degraded diagnostic ability. Under the present experimental conditions, increasing the scanning resolution did not always lead to an improvement in image quality or diagnostic ability, and digital image magnification degraded image quality and diagnostic ability. (author)

  2. Digital cardiovascular imaging

    International Nuclear Information System (INIS)

    Myerowitz, P.D.; Mistretta, C.A.; Shaw, C.-G.; Van Lysel, M.S.; Swanson, D.K.; Lasser, T.A.; Dhanani, S.P.; Zarnstorff, W.C.; Vander Ark, C.R.; Dobbins, J.T.; Peppler, W.W.; Crummy, A.B.

    1982-01-01

    The authors have previously reported on real time digital fluoroscopic subtraction techniques developed in the laboratory during the past 10 years. This paper outlines basic apparatus configuration and imaging modes used for preliminary studies involving visualization of the canine and human heart. All of the techniques involve the use of real time digital subtraction processing of data from an image intensified television fluoroscopy system. Based on the configuration of the digital processing equipment a number of different imaging modalities are possible. A brief description of the apparatus and these imaging modes is given. (Auth.)

  3. The establishment of Digital Image Capture System(DICS) using conventional simulator

    International Nuclear Information System (INIS)

    Oh, Tae Sung; Park, Jong Il; Byun, Young Sik; Shin, Hyun Kyoh

    2004-01-01

    The simulator is used to determine patient field and ensure the treatment field, which encompasses the required anatomy during patient normal movement such as during breathing. The latest simulator provide real time display of still, fluoroscopic and digitalized image, but conventional simulator is not yet. The purpose of this study is to introduce digital image capture system(DICS) using conventional simulator and clinical case using digital captured still and fluoroscopic image. We connect the video signal cable to the video terminal in the back up of simulator monitor, and connect the video jack to the A/D converter. After connection between the converter jack and computer, We can acquire still image and record fluoroscopic image with operating image capture program. The data created with this system can be used in patient treatment, and modified for verification by using image processing software. (j.e. photoshop, paintshop) DICS was able to establish easy and economical procedure. DCIS image was helpful for simulation. DICS imaging was powerful tool in the evaluation of the department specific patient positioning. Because the commercialized simulator based of digital capture is very expensive, it is not easily to establish DICS simulator in the most hospital. DICS using conventional simulator enable to utilize the practical use of image equal to high cost digitalized simulator and to research many clinical cases in case of using other software program.

  4. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Tucker, P.A.; Swanton, S.W.

    1987-01-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  5. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  6. Digital X-ray Imaging in Dentistry

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    1999-01-01

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  7. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  8. Ultra-high-resolution photoelectronic digital radiographic imaging system for medicine

    International Nuclear Information System (INIS)

    Bamford, B.R.; Nudelman, S.; Quimette, D.R.; Ovitt, T.W.; Reisken, A.B.; Spackman, T.J.; Zaccheo, T.S.

    1989-01-01

    The authors report the development of a new type of digital radiographic imaging system for medicine. Unlike previous digital radiographic systems that could not match the spatial resolution of film-screen systems, this system has higher spatial resolution and wider dynamic range than film-screen-based systems. There are three components to the system: a microfocal spot x-ray tube, a camera consisting of a Tektronix TK-2048M 2048 x 2048 CCD image sensor in direct contact with a Kodak Min-R intensifying screen, and a Gould IP-9000 with 2048 x 2048 processing and display capabilities. The CCD image sensor is a large-area integrated circuit and is 55.3 mm x 55.3 mm. It has a linear dynamic range of 12 bits or 4,096 gray levels

  9. Quantification of image persistence in a digital angiography system

    International Nuclear Information System (INIS)

    Okkalides, D.P.; Raptou, P.D.

    1993-01-01

    Image persistence, as a characteristic of video imaging systems affecting the quality of fast moving fluoroscopic images, is shown to vary considerably. A simple quantitative method for measuring image persistence in a digital angiography system is presented, together with a series of image intensifier exposure-response curves. For the Saticon tube, used with the Siemens 3VA Digitron, it was found that persistence increased for low exposure rates and may increase to 31% at a 120 ms interval. In addition, a sharp increase in image persistence, from 8.3% to 33%, was observed within 18 months from installation of the system. (author)

  10. Ultra-high performance, solid-state, autoradiographic image digitization and analysis system

    International Nuclear Information System (INIS)

    Lear, J.L.; Pratt, J.P.; Ackermann, R.F.; Plotnick, J.; Rumley, S.

    1990-01-01

    We developed a Macintosh II-based, charge-coupled device (CCD), image digitization and analysis system for high-speed, high-resolution quantification of autoradiographic image data. A linear CCD array with 3,500 elements was attached to a precision drive assembly and mounted behind a high-uniformity lens. The drive assembly was used to sweep the array perpendicularly to its axis so that an entire 20 x 25-cm autoradiographic image-containing film could be digitized into 256 gray levels at 50-microns resolution in less than 30 sec. The scanner was interfaced to a Macintosh II computer through a specially constructed NuBus circuit board and software was developed for autoradiographic data analysis. The system was evaluated by scanning individual films multiple times, then measuring the variability of the digital data between the different scans. Image data were found to be virtually noise free. The coefficient of variation averaged less than 1%, a value significantly exceeding the accuracy of both high-speed, low-resolution, video camera (VC) systems and low-speed, high-resolution, rotating drum densitometers (RDD). Thus, the CCD scanner-Macintosh computer analysis system offers the advantage over VC systems of the ability to digitize entire films containing many autoradiograms, but with much greater speed and accuracy than achievable with RDD scanners

  11. Image quality of a Konica Regius 336 digital system in chest radiography

    International Nuclear Information System (INIS)

    Ostinelli, A.; Frigerio, M.; Monti, A.F.; Gelosa, S.; Tognoli, P.; Perniola, N.; Gozzi, G.

    2000-01-01

    Digital radiographic systems permit to optimize execution, depiction and storage of radiological images. Since a Regius 336 digital system (Konica Corp. Tokyo, Japan) devoted to chest radiography Department of S. Anna Hospital in Como, Italy, it was investigated its performance relative to image quality. Konica Regius 336 is a computed radiography system made of a phosphorescence detector plate which is scanned with an infrared semiconductor laser beam. The radiographic image obtained from the detector is subjected to image processing, which allows a stable output and the nonlinear curve typical of conventional radiographic systems. Image quality was assessed based on the following parameters: dose, contrast, noise and spatial resolution. As reference, it was assessed the same parameters on a Cronex 88 analogic chest-changer (DuPont Pharma, North Billerica, Mass, USA). The Regius 336 air kerma values were always higher than the analogic ones (about 10%), both with and without a chest phantom; noise was also greater than in analogic images, sometimes even doubled. The optical densities of a step wedge and the spatial resolution of the digital chest-changer are independent of the X-ray tube voltage consequent to broader optical latitude. Inversely, the analogic images of the wedges show great optical density variability as a function of the X-ray tube voltage (in a range of 2). The modulation transfer functions of the two systems have the same trend. The performance of the Konica Regius 336 is nearly equivalent to that of an analogic system. The main advantages of the digital system are a standard output, lower consumption of radiographic films, higher productiveness and better image quality standard level [it

  12. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  13. Development of a digital panoramic X-ray imaging system of adaptive image layers for dental applications

    International Nuclear Information System (INIS)

    Choi, S.I.; Park, Y.O.; Cho, H.S.; Oh, J.E.; Cho, H.M.; Hong, D.K.; Lee, M.S.; Yang, Y.J.; Je, U.K.; Kim, D.S.; Lee, H.K.

    2011-01-01

    As a continuation of our digital radiographic sensor R and D, we have developed a prototyped digital panoramic X-ray imaging system for dental applications. The imaging system consists of a slit-collimated X-ray generator with a 0.4 mm focal spot size and a 3.5 mm Al filtration, a linear-array typed CMOS imager with a 48x48 μm 2 pixel size and a 128 (in the scan direction)x3072 (in the vertical direction) pixel format, a series of microstep motors for the precise motion control of the imaging system, and the designed sequences for the motion control and pixel readout required to make a specific plane of interest (POI) to be focused. With the several test phantoms we designed, we obtained useful digital panoramic X-ray images by moving the X-ray generator and the CMOS imager along a continuously sliding rotational center. In this study, we demonstrated that the prototype system can be applicable to any shaped POI or multi-POIs simultaneously to be focused, provided that adequate sequences for motion control and pixel readout are designed. We expect that the imaging system will be useful for our ongoing applications of dental panoramic radiography and nondestructive testing.

  14. Digital image intensifier radiography: first experiences with the DSI (Digital Spot Imaging)

    International Nuclear Information System (INIS)

    Rueckforth, J.; Wein, B.; Stargardt, A.; Guenther, R.W.

    1995-01-01

    We performed a comparative study of digitally and conventionally acquired images in gastrointestinal examinations. Radiation dose and spatial resolution were determined in a water phantom. In 676 examinations with either conventional or digital imaging (system: Diagnost 76, DSI) the number of images and the duration of the fluoroscopy time were compared. 101 examinations with digital as well as conventional documentation were evaluated by using 5 criteria describing the diagnostic performance. The entrance dose of the DSI is 12% to 36% of the film/screen system and the spatial resolution of the DSI may be better than that of a film/screen system with a speed of 200. The fluoroscopy time shows no significant difference between DSI and the film/screen technique. In 2 of 4 examination modes significantly more images were produced by the DSI. With exception of the criterion of edge sharpness, DSI yields a significantly inferior assessment compared with the film/screen technique. (orig./MG) [de

  15. Performances of different digital mammography imaging systems: Evaluation and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)]. E-mail: giuseppina.bisogni@pi.infn.it; Bulajic, D. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); International Centre for Theoretical Physics, Trieste (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' , Universita di Pisa, e Sezione INFN di Pisa, Pisa (Italy)

    2005-07-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems.

  16. Performances of different digital mammography imaging systems: Evaluation and comparison

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Bulajic, D.; Delogu, P.; Fantacci, M.E.; Novelli, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.

    2005-01-01

    Digital mammography is entering routine clinical use and many commercial systems are now in use in the radiological units for screening and diagnostic mammography. At the same time, the research in the digital mammography field is very active in the development of more and more performing devices. In this paper we present the performance of single photon counting pixel detectors (MedipixI) tailored for digital mammographic applications. These devices are based on semiconductor (Si and GaAs) pixel detectors of different thickness, read-out by custom designed integrated circuits. To assess the imaging capability of such systems, the images of a mammographic phantom have been acquired in standard conditions for a clinical examination. The signal-to-noise ratio (SNR) of details simulating tumor masses has been evaluated. The same phantom has been also radiographed by three different commercial digital mammographic systems in the same reference conditions and a comparison in terms of SNR has been carried out. The spatial resolution of the single photon counting systems has also been evaluated by measuring the line spread function with the edge technique and then calculating the Modulation Transfer Function (MTF). The MTFs of the single photon counting systems have been compared with the MTFs of the commercial systems

  17. Analog and digital image quality:

    OpenAIRE

    Sardo, Alberto

    2004-01-01

    Background. Lastly the X ray facilities are moving to a slow, but continuous process of digitalization. The dry laser printers allow hardcopy images with optimum resolution and contrast for all the modalities. In breast imaging, thedelay of digitalization depends to the high cost of digital systems and, attimes, to the doubts of the diagnostic accuracy of reading the breast digital images. Conclusions. The Screen film mammography (SFM) is the most efficient diagnostic modality to detect the b...

  18. Digital optical tomography system for dynamic breast imaging

    Science.gov (United States)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  19. Future approaches to digital systems

    International Nuclear Information System (INIS)

    Woodrough, R.E.; Beckmann, E.; Jenkins, D.; Belcher, D.

    1984-01-01

    The introduction of the first digital imaging systems has led to the concept of a totally digital imaging department - the 'filmless department'. This concept and its associated network system for digital departments are briefly considered. A transducer system of scanned projection radiography with solid state detectors used in digital chest imaging is described. The principles of this transducer system are applicable to other forms of digital radiography. (U.K.)

  20. A digital fluoroscopic imaging system for verification during external beam radiotherapy

    International Nuclear Information System (INIS)

    Takai, Michikatsu

    1990-01-01

    A digital fluoroscopic (DF) imaging system has been constructed to obtain portal images for verification during external beam radiotherapy. The imaging device consists of a fluorescent screen viewed by a highly sensitive video camera through a mirror. The video signal is digitized and processed by an image processor which is linked on-line with a host microcomputer. The image quality of the DF system was compared with that of film for portal images of the Burger phantom and the Alderson anthropomorphic phantom using 10 MV X-rays. Contrast resolution of the DF image integrated for 8.5 sec. was superior to the film resolution, while spatial resolution was slightly inferior. The DF image of the Alderson phantom processed by the adaptive histogram equalization was better in showing anatomical landmarks than the film portal image. The DF image integrated for 1 sec. which is used for movie mode can show patient movement during treatment. (author)

  1. Digital approximation to extended depth of field in no telecentric imaging systems

    International Nuclear Information System (INIS)

    Meneses, J E; Contreras, C R

    2011-01-01

    A method used to digitally extend the depth of field of an imaging system consists to move the object of study along the optical axis of the system and different images will contain different areas that are sharp; those images are stored and processed digitally to obtain a fused image, in that image will be sharp all regions of the object. The implementation of this method, although widely used, imposes certain experimental conditions that should be evaluated for to study the degree of validity of the image final obtained. An experimental condition is related with the conservation of the geometric magnification factor when there is a relative movement between the object and the observation system; this implies that the system must be telecentric, which leads to a reduction of the observation field and the use of expensive systems if the application includes microscopic observation. This paper presents a technique that makes possible to extend depth of filed of an imaging system non telecentric; this system is used to realize applications in Optical Metrology with systems that have great observation field.

  2. Compression and archiving of digital images

    International Nuclear Information System (INIS)

    Huang, H.K.

    1988-01-01

    This paper describes the application of a full-frame bit-allocation image compression technique to a hierarchical digital image archiving system consisting of magnetic disks, optical disks and an optical disk library. The digital archiving system without the compression has been in clinical operation in the Pediatric Radiology for more than half a year. The database in the system consists of all pediatric inpatients including all images from computed radiography, digitized x-ray films, CT, MR, and US. The rate of image accumulation is approximately 1,900 megabytes per week. The hardware design of the compression module is based on a Motorola 68020 microprocessor, A VME bus, a 16 megabyte image buffer memory board, and three Motorola digital signal processing 56001 chips on a VME board for performing the two-dimensional cosine transform and the quantization. The clinical evaluation of the compression module with the image archiving system is expected to be in February 1988

  3. Digital imaging in cardiovascular radiology

    International Nuclear Information System (INIS)

    Heintzen, P.H.; Brennecke, R.

    1983-01-01

    The present book contains 27 papers presented at an international symposium on digital imaging in cardiovascular radiology held in Kiel in 1982. The main themes were as follows. Introductory reviews, digital systems for X-ray video imaging, quantitative X-ray image analysis, and clinical applications. (MG)

  4. X-ray images in the digital mode

    International Nuclear Information System (INIS)

    Buchmann, F.; Balter, S.

    1981-01-01

    In addition to computed tomography which presents actually the most important processing and transfer procedure of digital X-ray images, application of real time addition and substraction of X-ray images in a digital mode has found considerable interest. An estimation of the information contents of both digital and analog images is made in close relation to applications. As example of an image processing system on digital base a recently developed system for intravenous arteriography is described: the Philips-DVI. (orig.) [de

  5. Design and simulation of a totally digital image system for medical image applications

    International Nuclear Information System (INIS)

    Archwamety, C.

    1987-01-01

    The Totally Digital Imaging System (TDIS) is based on system requirements information from the Radiology Department, University of Arizona Health Science Center. This dissertation presents the design of this complex system, the TDIS specification, the system performance requirements, and the evaluation of the system using the computer-simulation programs. Discrete-event simulation models were developed for the TDIS subsystems, including an image network, imaging equipment, storage migration algorithm, data base archive system, and a control and management network. The simulation system uses empirical data generation and retrieval rates measured at the University Medical Center hospital. The entire TDIS system was simulated in Simscript II.5 using a VAX 8600 computer system. Simulation results show the fiber-optical-image network to be suitable; however, the optical-disk-storage system represents a performance bottleneck

  6. Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study

    International Nuclear Information System (INIS)

    Chon, Kwon Su; Park, Jeong Gon; Son, Hyun Hwa; Kang, Sung Hoon; Park, Seong Hoon; Kim, Hye Won; Kim, Hun Soo; Yoon, Kwon Ha

    2009-01-01

    To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an Xray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-μm thickness. With a thicker molybdenum filter (100 μm thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-μm thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue

  7. Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Kwon Su [Catholic University of Daegu, Daegu (Korea, Republic of); Park, Jeong Gon; Son, Hyun Hwa; Kang, Sung Hoon; Park, Seong Hoon; Kim, Hye Won; Kim, Hun Soo; Yoon, Kwon Ha [Wonkwang University, Iksan (Korea, Republic of)

    2009-12-15

    To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an Xray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-{mu}m thickness. With a thicker molybdenum filter (100 {mu}m thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-{mu}m thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue.

  8. Digital imaging in conventional diagnostic radiology: status and trends

    International Nuclear Information System (INIS)

    Pfeiler, M.; Marhoff, P.; Schipper, P.

    1984-01-01

    Digital techniques, i.e. techniques using microcomputers of minicomputers, are getting increasingly common in so-called conventional radiography. These nonreconstructive techniques are referred to here as 'digital, direct-imaging radiography' in order to contrast them with the reconstructive techniques of computerized tomography. Digitalisation of imaging and image processing operation and control will change the jobs of the radiologist and radiological assistants in such manner that only X-ray units with film-foil systems or with X-ray image intensification should be classified as conventional systems. Digital and conventional systems differ in that digital techniques imply the possibility of establishing data pools which may eventually be developed into a digital image interconnection and archiving system. The authors first describe the general system in which the digital imaging systems must be integrated on a medium-term and long-term basis and then proceed to discuss digital imaging and image processing in some more detail. (orig./WU) [de

  9. Implementation of real-time digital endoscopic image processing system

    Science.gov (United States)

    Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho

    1997-10-01

    Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.

  10. A study on the digital image transfer application mass chest X-ray system up-grade

    International Nuclear Information System (INIS)

    Kim, Sun Chil; Park, Jong Sam; Lee, Jon Il

    2003-01-01

    By converting movable indirect mass chest X-ray devices for vehicles into digital systems and upgrading it to share information with the hospital's medical image information system, excellencies have been confirmed as a result of installing and running this type of system and are listed hereinafter. Upgrading analog systems, such as indirect mass chest X-ray devices dependent on printed film, to digital systems allows them to be run and managed much more efficiently, contributing to the increase in the stability and the efficiency of the system. Unlike existing images, communication based on DICOM standards allow images to be compatible with the hospital's outer and inner network PACS systems, extending the scope of the radiation departments information system. Assuming chest-exclusive indirect mass chest X-rays, a linked development of CAD (Computer Aided Diagnosis, Detector) becomes possible. By applying wireless Internet, Web-PACS for movable indirect mass chest X-ray devices for vehicles will become possible. Research in these fields must continue and if the superior image quality and convenience of digital systems are confirmed, I believe that the conversion of systems still dependent on analog images to modernized digital systems is a must

  11. Algebraically approximate and noisy realization of discrete-time systems and digital images

    CERN Document Server

    Hasegawa, Yasumichi

    2009-01-01

    This monograph deals with approximation and noise cancellation of dynamical systems which include linear and nonlinear input/output relationships. It also deal with approximation and noise cancellation of two dimensional arrays. It will be of special interest to researchers, engineers and graduate students who have specialized in filtering theory and system theory and digital images. This monograph is composed of two parts. Part I and Part II will deal with approximation and noise cancellation of dynamical systems or digital images respectively. From noiseless or noisy data, reduction will be

  12. Contribution to the study of integrated system design in digital imaging. Application to digital radiology

    International Nuclear Information System (INIS)

    Boy, M.

    1987-02-01

    In the first part of this work, we describe the hardware and software used to design integrated systems able to acquire, memorize, process and visualize 1024 x 1024 x 8 bits images. In the second part, we present and analyse the first realised prototype system which is a digital radiology one. After a technical and economical digital radiology study, we present the angiographic and tomographic results. In the third part, we indicate possible evolution of this system and we show how the adopted structure and developed hardware allow applications in various fields [fr

  13. System for digitalization of medical images based on DICOM standard

    Directory of Open Access Journals (Sweden)

    Čabarkapa Slobodan

    2009-01-01

    Full Text Available According to DICOM standard, which defines both medical image information and user information, a new system for digitalizing medical images is involved as a part of the main system for archiving and retrieving medical databases. The basic characteristics of this system are described in this paper. Furthermore, the analysis of some important DICOM header's tags which are used in this system, are presented, too. Having chosen the appropriate tags in order to preserve important information, the efficient system has been created. .

  14. Imagers for digital still photography

    Science.gov (United States)

    Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge

    2006-04-01

    This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.

  15. Digital stereoscopic imaging

    Science.gov (United States)

    Rao, A. Ravishankar; Jaimes, Alejandro

    1999-05-01

    The convergence of inexpensive digital cameras and cheap hardware for displaying stereoscopic images has created the right conditions for the proliferation of stereoscopic imagin applications. One application, which is of growing importance to museums and cultural institutions, consists of capturing and displaying 3D images of objects at multiple orientations. In this paper, we present our stereoscopic imaging system and methodology for semi-automatically capturing multiple orientation stereo views of objects in a studio setting, and demonstrate the superiority of using a high resolution, high fidelity digital color camera for stereoscopic object photography. We show the superior performance achieved with the IBM TDI-Pro 3000 digital camera developed at IBM Research. We examine various choices related to the camera parameters, image capture geometry, and suggest a range of optimum values that work well in practice. We also examine the effect of scene composition and background selection on the quality of the stereoscopic image display. We will demonstrate our technique with turntable views of objects from the IBM Corporate Archive.

  16. A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Min Lequan

    2005-01-01

    Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decrypt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.

  17. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    Science.gov (United States)

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  18. Semiautomatic digital imaging system for cytogenetic analysis

    International Nuclear Information System (INIS)

    Chaubey, R.C.; Chauhan, P.C.; Bannur, S.V.; Kulgod, S.V.; Chadda, V.K.; Nigam, R.K.

    1999-08-01

    The paper describes a digital image processing system, developed indigenously at BARC for size measurement of microscopic biological objects such as cell, nucleus and micronucleus in mouse bone marrow; cytochalasin-B blocked human lymphocytes in-vitro; numerical counting and karyotyping of metaphase chromosomes of human lymphocytes. Errors in karyotyping of chromosomes by the imaging system may creep in due to lack of well-defined position of centromere or extensive bending of chromosomes, which may result due to poor quality of preparation. Good metaphase preparations are mandatory for precise and accurate analysis by the system. Additional new morphological parameters about each chromosome have to be incorporated to improve the accuracy of karyotyping. Though the experienced cytogenetisist is the final judge; however, the system assists him/her to carryout analysis much faster as compared to manual scoring. Further, experimental studies are in progress to validate different software packages developed for various cytogenetic applications. (author)

  19. Online patient dosimetry and an image quality audit system in digital radiology

    International Nuclear Information System (INIS)

    Fernandez, J. M.; Vano, E.; Ten, J. I.; Prieto, C.; Martinez, D.

    2006-01-01

    The present work describes an online patient dosimetry and an image quality audit system in digital radiology. the system allows auditing of different parameters depending on contents of DICOM (Digital Imaging and Communication in Medicine) header. For the patient dosimetry audit, current mean values of entrance surface dose (ESD) were compared with local and national reference values (RVs) for the specific examination type evaluated. Mean values exceeding the RV trigger an alarm signal and then an evaluation of the technical parameters, operational practice and image quality starts, using data available in the DICOM header to derive any abnormal settings or performance to obtain the image. the X-ray tube output for different kVp values is measured periodically, allowing for the automatic calculation of the ESD. The system also allows for image quality audit linking it with the dose imparted and other technical parameters if the alarm condition if produced. Results and advantages derived from this online quality control are discussed. (Author) 5 refs

  20. New directions in pediatric digital imaging

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Adams, R.B.; Blackham, W.C.

    1985-01-01

    In this chapter the authors describe several simple experiments performed utilizing digital equipment which apply to clinical situations in pediatrics and which suggest future directions for research in digital imaging. They also discuss experimental systems which they believe will overcome certain limitations of current equipment and might be applicable to pediatric digital imaging in the future

  1. Image quality in digital radiography

    International Nuclear Information System (INIS)

    Kuhn, H.

    1986-01-01

    The contribution deals with the potentials of digital radiography and critically evaluates the advantages of drawbacks of the image intensifier-tv-digital system; digitalisation of the X-ray film and scanning of luminescent storage foils. The evaluation is done in comparison with the image quality of the traditional, large-size X-ray picture. (orig.) [de

  2. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  3. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    Science.gov (United States)

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  4. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  5. Digital image analysis of NDT radiographs

    International Nuclear Information System (INIS)

    Graeme, W.A. Jr.; Eizember, A.C.; Douglass, J.

    1989-01-01

    Prior to the introduction of Charge Coupled Device (CCD) detectors the majority of image analysis performed on NDT radiographic images was done visually in the analog domain. While some film digitization was being performed, the process was often unable to capture all the usable information on the radiograph or was too time consuming. CCD technology now provides a method to digitize radiographic film images without losing the useful information captured in the original radiograph in a timely process. Incorporating that technology into a complete digital radiographic workstation allows analog radiographic information to be processed, providing additional information to the radiographer. Once in the digital domain, that data can be stored, and fused with radioscopic and other forms of digital data. The result is more productive analysis and management of radiographic inspection data. The principal function of the NDT Scan IV digital radiography system is the digitization, enhancement and storage of radiographic images

  6. Image quality in conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Bautz, W.; Saebel, M.

    2000-01-01

    Purpose: Comparison of image quality between conventional film screen system, digital phosphor storage plate mammography in magnification technique and digital mammography in CCD-technique. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system, two digital storage plate systems and two digital systems in CCD-technique. Additionally, the radiograms of one digital phosphor storage plate system were post-processed emphasizing contrast and included in the comparison. Results: The detectability of details was the best with the digital mammography in CCD-technique in comparison with the conventional film screen technique resp. digital phosphor storage plate in magnification technique. Conclusions: Based on these results there is the possibility to replace the conventional film screen system by further studies - this has to be confirmed. (orig.) [de

  7. Image Acquisition and Quality in Digital Radiography.

    Science.gov (United States)

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.

  8. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  9. Image rejects in general direct digital radiography.

    Science.gov (United States)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-10-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality.

  10. X-ray image intensifier/television systems for digital skeletal radiography

    International Nuclear Information System (INIS)

    Rowlands, J.A.; Hynes, D.M.; Edmonds, E.W.; Porter, A.J.; Toth, B.J.

    1987-01-01

    The imaging criteria for skeletal radiography (high resolution and low noise) relevant to the use of x-ray image intensifier/TV digital systems are discussed. It is shown from the modulation transfer function (MTF), noise, and phantom evaluations that conventional x-ray image intensifiers in conjunction with a 1,000-line Plumbicon or Saticon TV camera are in most respects suitable for skeletal radiography. The optimum focal spot size depends on a trade-off with motion blurring through the x-ray exposure time and so is a function of the clinical problem. Since the skeletal system is readily immobilized, a 0.3-mm focal spot size is nearly optimum

  11. [Digitalization, archival storage and use of image documentation in the GastroBase-II system].

    Science.gov (United States)

    Kocna, P

    1997-05-14

    "GastroBase-II" is a module of the clinical information system "KIS-ComSyD"; The main part is represented by structured data-text with an expert system including on-line image digitalization in gastroenterology (incl. endoscopic, X-ray and endosonography pictures). The hardware and software of the GastroBase are described as well as six-years experiences with application of digitalized image data. An integration of a picture into text, reports, slides for a lecture or an electronic atlas is documented with examples. Briefly are reported out experiences with graphic editors (PhotoStyler), text editor (WordPerfect) and slide preparation for lecturing with the presentation software PowerPoint. The multimedia applications on the CD-ROM illustrate a modern trend using digitalized image documentation for pregradual and postgradual education.

  12. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  13. Effects of optimization and image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Kheddache, S.; Maansson, L.G.; Angelhed, J.E.; Denbratt, L.; Gottfridsson, B.; Schlossman, D.

    1991-01-01

    A digital system for chest radiography based on a large image intensifier was compared to a conventional film-screen system. The digital system was optimized with regard to spatial and contrast resolution and dose. The images were digitally processed for contrast and edge enhancement. A simulated pneumothorax and two and two simulated nodules were positioned over the lungs and the mediastinum of an anthro-pomorphic phantom. Observer performance was evaluated with Receiver Operating Characteristic (ROC) analysis. Five observers assessed the processed digital images and the conventional full-size radiographs. The time spent viewing the full-size radiographs and the digital images was recorded. For the simulated pneumothorax, the results showed perfect performance for the full-size radiographs and detectability was high also for the processed digital images. No significant differences in the detectability of the simulated nodules was seen between the two imaging systems. The results for the digital images showed a significantly improved detectability for the nodules in the mediastinum as compared to a previous ROC study where no optimization and image processing was available. No significant difference in detectability was seen between the former and the present ROC study for small nodules in the lung. No difference was seen in the time spent assessing the conventional full-size radiographs and the digital images. The study indicates that processed digital images produced by a large image intensifier are equal in image quality to conventional full-size radiographs for low-contrast objects such as nodules. (author). 38 refs.; 4 figs.; 1 tab

  14. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  15. Digital image intensifier radiography. One year's experience with a Polytron system

    International Nuclear Information System (INIS)

    Busch, H.P.; Lehmann, K.J.; Georgi, M.

    1989-01-01

    Since January 1988, digital image intensifier radiography has been used in the Clinic in Mannheim for DSA examinations and also in place of conventional screen/film examinations. Measurements have shown that compared with 100 mm and film/screen formats, digital radiography has poorer spatial resolution, but improved contrast resolution. The most common use of digital radiography was for examinations of the gastrointestinal tract. Using the demonstration of the mucosal fine relief pattern as a criterion of image quality, digital image intensifier radiography was able to achieve this satisfactorily. Comparison with film/screen examinations showed no loss of diagnostic information. Advantages of image intensifier radiography are reduced radiation dose, the possibility of postprocessing and economy. On the basis of 399 examinations, digital image intensifier radiography is now firmly established as part of the daily routine of the Mannheim Clinic. (orig.) [de

  16. Picture archiving and communications systems in radiation oncology (PACSRO): tools for a physician-based digital image review system

    International Nuclear Information System (INIS)

    McGee, K.P.; Das, I.J.; Fein, D.A.; Martin, E.E.; Schultheiss, T.E.; Hanks, G.E.

    1995-01-01

    Digital imaging is becoming more and more important in the diagnosis, staging, and treatment of patients in radiation oncology. In order to facilitate the most efficient interface of this technology to physicians and other users of this information, a medical image display system (MID) has been developed at the Fox Chase Cancer Center (FCCC). The system runs on 20 personal computers situated in physicians offices as well as a modified system located in the radiation oncology conference room. Access to CT, MRI, and EPID information is achieved through an Ethernet connection to the hospital picture archiving and communications system (PACS). Over a 1-year period a total of 503 patients and 3845 images have been stored on the system. Physician approval using the MID system (without conventional films) was performed on 106 patients. Of these, 22%, 16%, 11%, 10%, and 9% consisted of breast, prostate, pelvic, lung, and head and neck patients, respectively. Digital images sent from a variety of image sources to the MID system take up to 15 s to process and format while image access and display can take 2-5 s, dependent upon image size and speed of the host computer

  17. The x-ray light valve: A potentially low-cost, digital radiographic imaging system-concept and implementation considerations

    International Nuclear Information System (INIS)

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J. A.

    2008-01-01

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed--the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks

  18. Evaluation of a flat panel digital radiographic system for low-dose portable imaging of neonates

    International Nuclear Information System (INIS)

    Samei, Ehsan; Hill, Jeanne G.; Frey, G. Donald; Southgate, W. Michael; Mah, Eugene; Delong, David

    2003-01-01

    The purpose of this study was to evaluate the clinical utility of an investigational flat-panel digital radiography system for low-dose portable neonatal imaging. Thirty image-pairs from neonatal intensive care unit patients were acquired with a commercial Computed Radiography system (Agfa, ADC 70), and with the investigational system (Varian, Paxscan 2520) at one-quarter of the exposure. The images were evaluated for conspicuity and localization of the endings of ancillary catheters and tubes in two observer performance experiments with three pediatric radiologists and three neonatologists serving as observers. The results indicated no statistically significant difference in diagnostic quality between the images from the investigational system and from CR. Given the investigational system's superior resolution and noise characteristics, observer results suggest that the high detective quantum efficiency of flat-panel digital radiography systems can be utilized to decrease the radiation dose/exposure to neonatal patients, although post-processing of the images remains to be optimized. The rapid availability of flat-panel images in portable imaging was found to be an added advantage for timely clinical decision-making

  19. Systems of imaging digital systems in case of glaucoma

    International Nuclear Information System (INIS)

    Fernandez Argones, Liamet; Piloto Diaz, Ibrain; Coba Penna, Maria Josefa; Perez Tamayo, Bertila; Dominguez Randulfe, Marerneda; Trujillo Fonseca, Katia

    2009-01-01

    Now a day we can't consider the strict follow up in Glaucoma without the use of the digital analysis of image system of the optic nerve head and the retinal nerve fiber layer. This is a review about some contributions of Scanning Laser Polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, CA), Confocal Scanning Laser (Heidelberg Retina Tomograph HRT, Heidelberg Engineering Inc.) and Optical Coherence Tomography (Stratus OCT, Carl Zeiss Meditec, Alemania) in the diagnosis and follow up of Glaucoma. It's considered that objective measurement giving by them must be incorporate in the rigorous analysis of each glaucomatous patient

  20. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  1. Development and validation of novel digitalized cervicography system

    Science.gov (United States)

    Kim, Soo-Nyung; Kim, Yun Hwan; Nam, Kye-Hyun; Lee, Seon-Kyung; Lee, Tae Sung; Choi, Ho-Sun; Han, Sei-Jun

    2016-01-01

    Objective Digital cervicography systems would be expected to reduce the costs of film cervicography, and provide the opportunity for "telemedicine-based" screening. We aimed to develop web-based digital cervicography system, and validate it compared with conventional film cervicography. Methods A hundred cases from five centers were prospectively included, and cervical images (analogue, digitalized by scanning analogue, and digital) were taken separately using both analogue (Cerviscope) and digital camera (Dr. Cervicam) in each patient. Nine specialists evaluated the three kinds of images of each case with time interval between evaluations of each image. To validate novel digitalized system, we analyzed intra-observer variance among evaluation results of three kinds of images. Results Sixty-three cases were finally analyzed after excluding technically defective cases that cannot be evaluable on analogue images. The generalized kappa for analogue versus digital image was 0.83, for analogue versus scanned image 0.72, and for digital versus scanned image was 0.71; all were in excellent consensus. Conclusion Digitalized cervicography system can be substituted for the film cervicography very reliably, and can be used as a promising telemedicine tool for cervical cancer screening. PMID:27200314

  2. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  3. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  4. A Recursive Fuzzy System for Efficient Digital Image Stabilization

    Directory of Open Access Journals (Sweden)

    Nikolaos Kyriakoulis

    2008-01-01

    Full Text Available A novel digital image stabilization technique is proposed in this paper. It is based on a fuzzy Kalman compensation of the global motion vector (GMV, which is estimated in the log-polar plane. The GMV is extracted using four local motion vectors (LMVs computed on respective subimages in the logpolar plane. The fuzzy Kalman system consists of a fuzzy system with the Kalman filter's discrete time-invariant definition. Due to this inherited recursiveness, the output results into smoothed image sequences. The proposed stabilization system aims to compensate any oscillations of the frame absolute positions, based on the motion estimation in the log-polar domain, filtered by the fuzzy Kalman system, and thus the advantages of both the fuzzy Kalman system and the log-polar transformation are exploited. The described technique produces optimal results in terms of the output quality and the level of compensation.

  5. Digital Imaging. Chapter 16

    Energy Technology Data Exchange (ETDEWEB)

    Clunie, D. [CoreLab Partners, Princeton (United States)

    2014-09-15

    The original means of recording X ray images was a photographic plate. Nowadays, all medical imaging modalities provide for digital acquisition, though globally, the use of radiographic film is still widespread. Many modalities are fundamentally digital in that they require image reconstruction from quantified digital signals, such as computed tomography (CT) and magnetic resonance imaging (MRI)

  6. Development of a networked four-million-pixel pathological and radiological digital image presentation system and its application to medical conferences

    Science.gov (United States)

    Sakano, Toshikazu; Furukawa, Isao; Okumura, Akira; Yamaguchi, Takahiro; Fujii, Tetsuro; Ono, Sadayasu; Suzuki, Junji; Matsuya, Shoji; Ishihara, Teruo

    2001-08-01

    The wide spread of digital technology in the medical field has led to a demand for the high-quality, high-speed, and user-friendly digital image presentation system in the daily medical conferences. To fulfill this demand, we developed a presentation system for radiological and pathological images. It is composed of a super-high-definition (SHD) imaging system, a radiological image database (R-DB), a pathological image database (P-DB), and the network interconnecting these three. The R-DB consists of a 270GB RAID, a database server workstation, and a film digitizer. The P-DB includes an optical microscope, a four-million-pixel digital camera, a 90GB RAID, and a database server workstation. A 100Mbps Ethernet LAN interconnects all the sub-systems. The Web-based system operation software was developed for easy operation. We installed the whole system in NTT East Kanto Hospital to evaluate it in the weekly case conferences. The SHD system could display digital full-color images of 2048 x 2048 pixels on a 28-inch CRT monitor. The doctors evaluated the image quality and size, and found them applicable to the actual medical diagnosis. They also appreciated short image switching time that contributed to smooth presentation. Thus, we confirmed that its characteristics met the requirements.

  7. Fully integrated digital GAMMA camera-computer system

    International Nuclear Information System (INIS)

    Berger, H.J.; Eisner, R.L.; Gober, A.; Plankey, M.; Fajman, W.

    1985-01-01

    Although most of the new non-nuclear imaging techniques are fully digital, there has been a reluctance in nuclear medicine to abandon traditional analog planar imaging in favor of digital acquisition and display. The authors evaluated a prototype digital camera system (GE STARCAM) in which all of the analog acquisition components are replaced by microprocessor controls and digital circuitry. To compare the relative effects of acquisition matrix size on image quality and to ascertain whether digital techniques could be used in place of analog imaging, Tc-99m bone scans were obtained on this digital system and on a comparable analog camera in 10 patients. The dedicated computer is used for camera setup including definition of the energy window, spatial energy correction, and spatial distortion correction. The display monitor, which is used for patient positioning and image analysis, is 512/sup 2/ non-interlaced, allowing high resolution imaging. Data acquisition and processing can be performed simultaneously. Thus, the development of a fully integrated digital camera-computer system with optimized display should allow routine utilization of non-analog studies in nuclear medicine and the ultimate establishment of fully digital nuclear imaging laboratories

  8. Synchronization of spatiotemporal chaotic systems and application to secure communication of digital image

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Na; Ren Xiao-Li; Zhang Yong-Lei

    2011-01-01

    Coupled map lattices (CMLs) are taken as examples to study the synchronization of spatiotemporal chaotic systems. In this paper, we use the nonlinear coupled method to implement the synchronization of two coupled map lattices. Through the appropriate separation of the linear term from the nonlinear term of the spatiotemporal chaotic system, we set the nonlinear term as the coupling function and then we can achieve the synchronization of two coupled map lattices. After that, we implement the secure communication of digital image using this synchronization method. Then, the discrete characteristics of the nonlinear coupling spatiotemporal chaos are applied to the discrete pixel of the digital image. After the synchronization of both the communication parties, the receiver can decrypt the original image. Numerical simulations show the effectiveness and the feasibility of the proposed program. (general)

  9. Report from the research committee of digital imaging standardization in nuclear medicine

    International Nuclear Information System (INIS)

    Nakamura, Yutaka; Ise, Toshihide; Isetani, Osamu; Ichihara, Takashi; Ohya, Nobuyoshi; Kanaya, Shinichi; Fukuda, Toshio; Horii, Hitoshi.

    1994-01-01

    Since digital scintillation camera systems were developed in 1982, digital imaging is rapidly replacing analog imaging. During the first year, the research committee of digital imaging standardization has collected and analyzed basic data concerning digital examination equipment systems, display equipments, films, and hardware and software techniques to determine items required for the standardization of digital imaging. During the second year, it has done basic phantom studies to assess digital images and analyzed the results from both physical and visual viewpoints. On the basis of the outcome of the research committee's activities and the nationwide survey, the draft of digital imaging standardization in nuclear medicine has been presented. In this paper. the analytical data of the two-year survey, made by the research committee of digital imaging standardization, are presented. The descriptions are given under the following four items: (1) standardization digital examination techniques, (2) standardization of display techniques, (3) the count and pixel of digital images, and (4) standardization of digital imaging techniques. (N.K.)

  10. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  11. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  12. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  13. Digital subtraction angiography system evaluation with phantoms

    International Nuclear Information System (INIS)

    Wenstrup, R.S.; Sweeney, K.P.; Scholz, F.J.

    1985-01-01

    Advances in digital subtraction angiography imaging demonstrate the need for critical evaluation of the performance of digital subtraction equipment. The design of a phantom set for noninvasive assessment of the imaging quality of digital subtraction equipment is described; components include a remotely controlled transport system and individual patterns to evaluate the contrast and detail properties of the image intensifier, low-contrast sensitivity and resolution of the system, geometric distortion of image, linearity, mechanical and electronic stability of equipment, and effects of bone and bowel gas on iodine perception. The performance of an add-on digital radiographic system is presented, along with radiation exposure levels at the image intensifier for a range of radiographic techniques

  14. Digitalization and networking of analog simulators and portal images.

    Science.gov (United States)

    Pesznyák, Csilla; Zaránd, Pál; Mayer, Arpád

    2007-03-01

    Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R&V (Record & Verify) system is required. Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R&V system.

  15. The implementation of CMOS sensors within a real time digital mammography intelligent imaging system: The I-ImaS System

    Science.gov (United States)

    Esbrand, C.; Royle, G.; Griffiths, J.; Speller, R.

    2009-07-01

    The integration of technology with healthcare has undoubtedly propelled the medical imaging sector well into the twenty first century. The concept of digital imaging introduced during the 1970s has since paved the way for established imaging techniques where digital mammography, phase contrast imaging and CT imaging are just a few examples. This paper presents a prototype intelligent digital mammography system designed and developed by a European consortium. The final system, the I-ImaS system, utilises CMOS monolithic active pixel sensor (MAPS) technology promoting on-chip data processing, enabling the acts of data processing and image acquisition to be achieved simultaneously; consequently, statistical analysis of tissue is achievable in real-time for the purpose of x-ray beam modulation via a feedback mechanism during the image acquisition procedure. The imager implements a dual array of twenty 520 pixel × 40 pixel CMOS MAPS sensing devices with a 32μm pixel size, each individually coupled to a 100μm thick thallium doped structured CsI scintillator. This paper presents the first intelligent images of real breast tissue obtained from the prototype system of real excised breast tissue where the x-ray exposure was modulated via the statistical information extracted from the breast tissue itself. Conventional images were experimentally acquired where the statistical analysis of the data was done off-line, resulting in the production of simulated real-time intelligently optimised images. The results obtained indicate real-time image optimisation using the statistical information extracted from the breast as a means of a feedback mechanisms is beneficial and foreseeable in the near future.

  16. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    Science.gov (United States)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  17. Digital imaging in health care

    International Nuclear Information System (INIS)

    1987-01-01

    This volume describes equipment for the generation and processing of digital images in medicine. Separate chapters deal with international trade i this equipment, with economic and social considerations of digital imaging, with experiences in the use and production of digital imaging equipment and with the current status and likely trends in applications of digital imaging. 84 refs, figs and tabs

  18. Benefits and unexpected artifacts of biplanar digital slot-scanning imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, Steven L. [Nemours/A.I duPont Hospital for Children, Department of Medical Imaging, Wilmington, DE (United States); Dinan, David [Nemours Children' s Hospital, Orlando, FL (United States); Grissom, Leslie E. [Nemours/Alfred I. duPont Hospital for Children, Department of Radiology, Wilmington, DE (United States)

    2014-07-15

    Biplanar digital slot-scanning allows for relatively low-dose orthopedic imaging, an advantage in imaging children given the growing concerns regarding radiosensitivity. We have used this system for approximately 1 year for orthopedic imaging of the spine and lower extremities. We have noted advantages of using the digital slot-scanning system when compared with computed radiographic and standard digital radiographic imaging systems, but we also found unexpected but common imaging artifacts that are the direct result of the imaging method and that have not been reported. This pictorial essay serves to familiarize radiologists with the advantages of the digital slot-scanning system as well as imaging artifacts common with this new technology. (orig.)

  19. Ethical Implications of Digital Imaging in Photojournalism.

    Science.gov (United States)

    Terry, Danal; Lasorsa, Dominic L.

    Arguing that the news media are about to adopt digital imaging systems that will have far-reaching implications for the practice of journalism, this paper discusses how the news media is expected to adopt the new technology and explains why the marriage of journalism and digital imaging will create ethical issues with respect to photo manipulation…

  20. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  1. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  2. Integrating Digital Images into the Art and Art History Curriculum.

    Science.gov (United States)

    Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.

    2002-01-01

    Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…

  3. The National Institutes of Health Clinical Center Digital Imaging Network, Picture Archival and Communication System, and Radiology Information System.

    Science.gov (United States)

    Goldszal, A F; Brown, G K; McDonald, H J; Vucich, J J; Staab, E V

    2001-06-01

    In this work, we describe the digital imaging network (DIN), picture archival and communication system (PACS), and radiology information system (RIS) currently being implemented at the Clinical Center, National Institutes of Health (NIH). These systems are presently in clinical operation. The DIN is a redundant meshed network designed to address gigabit density and expected high bandwidth requirements for image transfer and server aggregation. The PACS projected workload is 5.0 TB of new imaging data per year. Its architecture consists of a central, high-throughput Digital Imaging and Communications in Medicine (DICOM) data repository and distributed redundant array of inexpensive disks (RAID) servers employing fiber-channel technology for immediate delivery of imaging data. On demand distribution of images and reports to clinicians and researchers is accomplished via a clustered web server. The RIS follows a client-server model and provides tools to order exams, schedule resources, retrieve and review results, and generate management reports. The RIS-hospital information system (HIS) interfaces include admissions, discharges, and transfers (ATDs)/demographics, orders, appointment notifications, doctors update, and results.

  4. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  5. Correction Method of Wiener Spectrum (WS) on Digital Medical Imaging Systems

    International Nuclear Information System (INIS)

    Kim, Jung Min; Lee, Ki Sung; Kim, You Hyun

    2009-01-01

    Noise evaluation for an image has been performed by root mean square (RMS) granularity, autocorrelation function (ACF), and Wiener spectrum. RMS granularity stands for standard deviation of photon data and ACF is acquired by integration of 1 D function of distance variation. Fourier transform of ACF results in noise power spectrum which is called Wiener spectrum in image quality evaluation. Wiener spectrum represents noise itself. In addition, along with MTF, it is an important factor to produce detective quantum efficiency (DQE). The proposed evaluation method using Wiener spectrum is expected to contribute to educate the concept of Wiener spectrum in educational organizations, choose the appropriate imaging detectors for clinical applications, and maintain image quality in digital imaging systems.

  6. Digitalization and networking of analog simulators and portal images

    Energy Technology Data Exchange (ETDEWEB)

    Pesznyak, C.; Zarand, P.; Mayer, A. [Uzsoki Hospital, Budapest (Hungary). Inst. of Oncoradiology

    2007-03-15

    Background: Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R and V (Record and Verify) system is required. Material and Methods: Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Results: Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. Conclusion: The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R and V system. (orig.)

  7. Subjective image quality comparison between two digital dental radiographic systems and conventional dental film

    Directory of Open Access Journals (Sweden)

    Muhammed Ajmal

    2014-10-01

    Recommendations: Improved software and hardware for digital imaging systems are now available and these improvements may now yield images that are comparable in quality to conventional film. However, we recommend that studies still use more observers and other statistical methods to produce ideal results.

  8. Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems

    International Nuclear Information System (INIS)

    Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Schueler, Beth A.; Ritenour, E. Russell

    2002-01-01

    The purpose of this work was to develop methods to measure the presampled two-dimensional modulation transfer function (2D MTF) of digital imaging systems. A custom x-ray 'point source' phantom was created by machining 256 holes with diameter 0.107 mm through a 0.5-mm-thick copper plate. The phantom was imaged several times, resulting in many images of individual x-ray 'spots'. The center of each spot (with respect to the pixel matrix) was determined to subpixel accuracy by fitting each spot to a 2D Gaussian function. The subpixel spot center locations were used to create a 5x oversampled system point spread function (PSF), which characterizes the optical and electrical properties of the system and is independent of the pixel sampling of the original image. The modulus of the Fourier transform of the PSF was calculated. Next, the Fourier function was normalized to the zero frequency value. Finally, the Fourier transform function was divided by the first-order Bessel function that defined the frequency content of the holes, resulting in the presampled 2D MTF. The presampled 2D MTF of a 0.1 mm pixel pitch computed radiography system and 0.2 mm pixel pitch flat panel digital imaging system that utilized a cesium iodide scintillator was measured. Comparison of the axial components of the 2D MTF to one-dimensional MTF measurements acquired using an edge device method demonstrated that the two methods produced consistent results

  9. Quality control: comparison of images quality with screen film system and digital mammography CR

    International Nuclear Information System (INIS)

    Alvarenga, Frederico L.; Nogueira, Maria do Socorro

    2008-01-01

    The mammography screen film system should be used as part of processing chemicals, revelation process, equipment and this system has have a progressive replacing by the digital technology Full Field Digital Mammography FFDM, Computed Radiography (CR) Mammography and hardcopy. This new acquisition process of medical images has improved radiology section; however it is necessary efficient means for evaluating of the quality parameters. It should be considered taking into account the adaptation of the existent equipment and that procedures adopted for the exam, as well the adaptation of the new mammography films, the radiologist view box constitutes a part of the quality control program. This program aims at obtaining radiography with good quality that allows obtaining more information for the diagnosis and decreases the patient dose. For evaluation the quality image, this article is focused on presenting the differences regarding the acquired images through simulator mammography radiographic PMMA (Poly methyl methacrylate) in CR Mammography system and screen film system. The tests were accomplished at the same equipment of Mammography with the Automatic Exposure Control using a tension of 28 kV for both systems. The quality tests evaluated the spatial resolution, the own structures of the phantom, artifacts, optical density and contrast with conventional and laser films by mammography system. The installation for the accomplishment of the test has a quality control program. The evaluation was based on the pattern developed by the competent organ of the State of Minas Gerais. In this study, it was verified that the suitable Phantom Mama used by the Brazilian School of Radiology for conventional mammography did not obtain satisfactory result for Spatial Resolution in the digital mammography system CR. The final aim of this work is to obtain parameters to characterize the reference phantom quality image in an objective way. These parameters will be used to compare

  10. Desktop publishing and medical imaging: paper as hardcopy medium for digital images.

    Science.gov (United States)

    Denslow, S

    1994-08-01

    Desktop-publishing software and hardware has progressed to the point that many widely used word-processing programs are capable of printing high-quality digital images with many shades of gray from black to white. Accordingly, it should be relatively easy to print digital medical images on paper for reports, instructional materials, and in research notes. Components were assembled that were necessary for extracting image data from medical imaging devices and converting the data to a form usable by word-processing software. A system incorporating these components was implemented in a medical setting and has been operating for 18 months. The use of this system by medical staff has been monitored.

  11. Digital subtraction imaging in cardiac investigations

    International Nuclear Information System (INIS)

    Partridge, J.B.; Dickinson, D.F.

    1984-01-01

    The role of digital subtraction imaging (DSI) in the investigation of heart disease in patients of all ages, including neonates, was evaluated by the addition of a continuous fluoroscopy system to an existing, single-plane catheterisation laboratory. In some situations, DSI provided diagnostic images where conventional radiography could not and, in general, provided images of comparable quality to cineangiography. The total dose of contrast medium was usually less than that which would have been required for biplane cineangiography and the dose of radiation was always less. Digital subtraction imaging can make a significant contribution to the investigation of congenital heart disease and has some useful features in the study of acquired heart disease. (author)

  12. Noise analysis of a digital radiography system

    International Nuclear Information System (INIS)

    Arnold, B.A.; Scheibe, P.O.

    1984-01-01

    The sources of noise in a digital video subtraction angiography system were identified and analyzed. Signal-to-noise ratios of digital radiography systems were measured using the digital image data recorded in the computer. The major sources of noise include quantum noise, TV camera electronic noise, quantization noise from the analog-to-digital converter, time jitter, structure noise in the image intensifier, and video recorder electronic noise. A new noise source was identified, which results from the interplay of fixed pattern noise and the lack of image registration. This type of noise may result from image-intensifier structure noise in combination with TV camera time jitter or recorder time jitter. A similar noise source is generated from the interplay of patient absorption inhomogeneities and patient motion or image re-registration. Signal-to-noise ratios were measured for a variety of experimental conditions using subtracted digital images. Image-intensifier structure noise was shown to be a dominant noise source in unsubtracted images at medium to high radiation exposure levels. A total-system signal-to-noise ratio (SNR) of 750:1 was measured for an input exposure of 1 mR/frame at the image intensifier input. The effect of scattered radiation on subtracted image SNR was found to be greater than previously reported. The detail SNR was found to vary approximately as one plus the scatter degradation factor. Quantization error noise with 8-bit image processors (signal-to-noise ratio of 890:1) was shown to be of increased importance after recent improvements in TV cameras. The results of the analysis are useful both in the design of future digital radiography systems and the selection of optimum clinical techniques

  13. Digital imaging primer

    CERN Document Server

    Parkin, Alan

    2016-01-01

    Digital Imaging targets everyyone with an interest in digital imaging, be they professional or private, who uses even quite modest equipment such as a PC, digital camera and scanner, a graphics editor such as Paint, and an inkjet printer. Uniquely, it is intended to fill the gap between highly technical texts for academics (with access to expensive equipment) and superficial introductions for amateurs. The four-part treatment spans theory, technology, programs and practice. Theory covers integer arithmetic, additive and subtractive color, greyscales, computational geometry, and a new presentation of discrete Fourier analysis; Technology considers bitmap file structures, scanners, digital cameras, graphic editors, and inkjet printers; Programs develops several processing tools for use in conjunction with a standard Paint graphics editor and supplementary processing tools; Practice discusses 1-bit, greyscale, 4-bit, 8-bit, and 24-bit images for the practice section. Relevant QBASIC code is supplied an accompa...

  14. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  15. Digital memory for TV image information

    International Nuclear Information System (INIS)

    Paretti, C.

    1975-01-01

    A system employing closed circuit TV camera and MOS memory is presented to take image information and store it. The apparatus is made in two sections: analog filters and digital memory. Filters have been used to select low amplitude signals from high frequency and low frequency noise components. The memory is arranged to make nondestroying overlap of digit array: this facility is useful for microscope image prejection to overcome depth of field limits, as in automatic nuclear emulsion scanners for personnel radiation monitoring. (author)

  16. Comparison of the perceived image quality between two digital imaging systems for neonatal bedside radiography – A case study

    International Nuclear Information System (INIS)

    Zyl, S.A. van; Kekana, R.M.

    2015-01-01

    Background: Chest X-rays are performed daily in the neonatal intensive care and high care units. The skill of the radiographer is critical for obtaining the best image quality and limiting the patient's radiation exposure. The literature states that indirect flat panel detectors produce images of superior quality in comparison to computed radiography systems. At Steve Biko Academic Hospital a decision was made to revert from the direct digital radiography (DR) system to the computed radiography (CR) system, due to poor image quality experienced. Method: The case study objective was to conduct a comparative analysis describing key technical factors contributing to image quality. The analysis entailed retrospectively comparing the images obtained during 2010 and 2011. An image analysis form was utilised in evaluating the technical aspects of the image. A total of 160 images were viewed by 16 participants sampled from the radiography, radiology and paediatric departments. The participants were asked to re-evaluate two of their allotted images after five days to determine their reliability. Results: Findings were that the DR system provides significantly better image quality than the CR system (p < 0.05) for all the technical factors evaluated. However technical improvements are recommended. A wide variance in intra-observer reliability was also found. Conclusion: This case study demonstrated that DR images were considered to be superior to CR images. Recommendations include: a standardised technique for imaging the neonates; optimisation of the imaging software for the digital detectors, improved feedback systems in terms of exposure index values, and the training of radiographers and referring physicians in technical image analysis. - Highlights: • DR system provides better image quality than the CR system for all technical factors evaluated. • The average values obtained from the VAS showed that the DR system still needs to be optimised. • There is need

  17. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  18. Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017.

    Science.gov (United States)

    Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron

    2018-01-01

    As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.

  19. Modeling digital breast tomosynthesis imaging systems for optimization studies

    Science.gov (United States)

    Lau, Beverly Amy

    Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a

  20. Benchmarking the performance of fixed-image receptor digital radiography systems. Part 2: system performance metric.

    Science.gov (United States)

    Lee, Kam L; Bernardo, Michael; Ireland, Timothy A

    2016-06-01

    This is part two of a two-part study in benchmarking system performance of fixed digital radiographic systems. The study compares the system performance of seven fixed digital radiography systems based on quantitative metrics like modulation transfer function (sMTF), normalised noise power spectrum (sNNPS), detective quantum efficiency (sDQE) and entrance surface air kerma (ESAK). It was found that the most efficient image receptors (greatest sDQE) were not necessarily operating at the lowest ESAK. In part one of this study, sMTF is shown to depend on system configuration while sNNPS is shown to be relatively consistent across systems. Systems are ranked on their signal-to-noise ratio efficiency (sDQE) and their ESAK. Systems using the same equipment configuration do not necessarily have the same system performance. This implies radiographic practice at the site will have an impact on the overall system performance. In general, systems are more dose efficient at low dose settings.

  1. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    van der Stelt, P.F.

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because

  2. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  3. Comparison of the image quality of digital radiography system and film screen system - Radiologist' rating of the visibility of normal anatomic - Structures in chest PA, Skull radiograph and K. U. B

    International Nuclear Information System (INIS)

    Song, Kounn Sik; Kim, Young Goo; Lee, Jong Beum; Kim, Kun Sang

    1987-01-01

    Digital image acquisition and display is widely used in computed tomography, ultrasonography, digital subtraction angiography, nuclear medicine and magnetic resonance image. But most of the radiological examinations performed in radiology department are made by using conventional system. The development of the digital radiography system is essential if totally digitized radiology department is desired. The advantages of digitizing the radiographic information are usually discussed in terms of PACS (picture archiving and communication system), furthermore there are many other advantages such as contrast modification, spatial filtering subtraction and superimposition of the images through the image processing by computer. Currently several approaches are under development or in clinical use, the most promising approach is the use of imaging plate composed of photostimulate phosphors such as barium fluorohalide crystal read with a He-Ne laser to produce digital radiographic images. Another promising approach is scan projection radiography. The authors performed the clinical study of comparing the image qualities of digital radiography system using scanning laser luminescence (FCR) and conventional film-screen system in chest PA, skull radiography and K. U. B. in terms of the visibility of the normal anatomic structure rating those (qualities) on a scale of 0 to 3 and obtained the following results. Normal contrast digital images are comparable to conventional film-screen images, but the images of high frequency enhancement is far superior to conventional film-screen especially in peripherally located structures such as skin, subcutaneous fat, musculoskeletal systems, nasal bone, inner and outer table of the skull including the diploic space, paranasal sinuses, nasopharynx and larynx, trachea and main bronchi, mediastinal structures, retrocardiac and subphrenic vascular markings. Another promising aspects of digital radiography system is its wide exposure latitude and

  4. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  5. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    Dyer, G.R.

    1986-01-01

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  6. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  7. Digital networks for the image management

    International Nuclear Information System (INIS)

    Gomez del Campo L, A.

    1999-01-01

    The digital networks designed specifically for the X-ray departments in the hospitals already were found in open development at beginning the 80's decade. Actually the digital network will be present include the image generation without the necessity to use film in direct form and in its case to print it through a laser ray printers network, an electronic image file, the possibility to integrate the hospitable information system to the electronic expedient which will allow communicate radiograph electronic files and consult by satellite via the problem cases. (Author)

  8. Image-based surveillance and security systems using personal computers for device aiming and digital image comparison

    International Nuclear Information System (INIS)

    Quiett, S.; Axtell, L.H.

    1987-01-01

    A detection-type security system using enhanced capability cameras or other imaging devices can aid in maintaining security from long distance and/or for large areas. To do so requires that the imaging device(s) be repeatedly and accurately positioned so that no areas are overlooked. Digital control using personal computers is the simplest method of achieving positional accuracy. The monitoring of large areas and/or a large number of areas also requires that a substantial quantity of visual information be catalogued and evaluated for potential security problems. While security personnel alone are typically used for such monitoring, as the quantity of visual information increases, the likelihood that potential security threats will be missed also increases. The ability of an image-based security system to detect potential security problems can be further increased with the use of selected image processing techniques. Utilizing personal computers for both imaging device position control as well as image processing, surveillance of large areas can be performed by a limited number of individuals with a high level of system confidence

  9. Exposure reduction in general dental practice using digital x-ray imaging system for intraoral radiography with additional x-ray beam filter

    International Nuclear Information System (INIS)

    Shibuya, Hitoshi; Mori, Toshimichi; Hayakawa, Yoshihiko; Kuroyanagi, Kinya; Ota, Yoshiko

    1997-01-01

    To measure exposure reduction in general dental practice using digital x-ray imaging systems for intraoral radiography with additional x-ray beam filter. Two digital x-ray imaging systems, Pana Digital (Pana-Heraus Dental) and CDR (Schick Technologies), were applied for intraoral radiography in general dental practice. Due to the high sensitivity to x-rays, additional x-ray beam filters for output reduction were used for examination. An Orex W II (Osada Electric Industry) x-ray generator was operated at 60 kVp, 7 mA. X-ray output (air-kerma; Gy) necessary for obtaining clinically acceptable images was measured at 0 to 20 cm in 5 cm steps from the cone tip using an ionizing chamber type 660 (Nuclear Associates) and compared with those for Ektaspeed Plus film (Eastman Kodak). The Pana Digital system was used with the optional filter supplied by Pana-Heraus Dental which reduced the output to 38%. The exposure necessary to obtain clinically acceptable images was only 40% of that for the film. The CDR system was used with the Dental X-ray Beam Filter Kit (Eastman Kodak) which reduced the x-ray output to 30%. The exposure necessary to obtain clinically acceptable images was only 20% of that for the film. The two digital x-ray imaging systems, Pana Digital and CDR, provided large dose savings (60-80%) compared with Ektaspeed Plus film when applied for intraoral radiography in general dental practice. (author)

  10. [Analog gamma camera digitalization computer system].

    Science.gov (United States)

    Rojas, G M; Quintana, J C; Jer, J; Astudillo, S; Arenas, L; Araya, H

    2004-01-01

    Digitalization of analogue gamma cameras systems, using special acquisition boards in microcomputers and appropriate software for acquisition and processing of nuclear medicine images is described in detail. Microcomputer integrated systems interconnected by means of a Local Area Network (LAN) and connected to several gamma cameras have been implemented using specialized acquisition boards. The PIP software (Portable Image Processing) was installed on each microcomputer to acquire and preprocess the nuclear medicine images. A specialized image processing software has been designed and developed for these purposes. This software allows processing of each nuclear medicine exam, in a semiautomatic procedure, and recording of the results on radiological films. . A stable, flexible and inexpensive system which makes it possible to digitize, visualize, process, and print nuclear medicine images obtained from analogue gamma cameras was implemented in the Nuclear Medicine Division. Such a system yields higher quality images than those obtained with analogue cameras while keeping operating costs considerably lower (filming: 24.6%, fixing 48.2% and developing 26%.) Analogue gamma camera systems can be digitalized economically. This system makes it possible to obtain optimal clinical quality nuclear medicine images, to increase the acquisition and processing efficiency, and to reduce the steps involved in each exam.

  11. Performance of automatic exposure control of digital imaging systems in three big hospitals

    International Nuclear Information System (INIS)

    Avramova-Cholakova, S.; Dyakov, I.

    2012-01-01

    The digital imaging systems are quite new in Bulgaria and there is still no clear evidence between all the servicing companies how to set the automatic exposure control (AEC) of the systems. The aim of this work is to study the AEC settings of the digital imaging systems in three big hospitals, serviced by different engineering companies. This study included seven systems, one with digital radiography (DR) and the others with computed radiography (CR) detectors. The AEC settings were tested in terms of mean pixel value (MPV), air kerma at phantom exit and detector dose indicator (DDI) dependence from AEC chamber selection, tube voltage and phantom thickness. Relatively small variations in MPV up to 8 % were observed for 4 of the CR systems, usually with small variations in DDI as well (except for one system, for which up to 40 % difference in DDI consistency between chambers was found). Air kerma at phantom exit for these systems had bigger variations up to 29 %. The other CR systems had big variations in MPV up to 57 % with DDI variations up to 30 % while air kerma changes were not small - from 8 to 38 %. The DR system showed smaller variation in air kerma at phantom exit up to 8 % and bigger variations in MPV and DDI up to 20 % and 15 % respectively. There is no systematic approach in the AEC settings used in the 3 hospitals. Further investigation and collaboration with the servicing companies is needed aiming to establish the optimized selection of AEC calibration parameters in each case. (authors)

  12. Low-complexity camera digital signal imaging for video document projection system

    Science.gov (United States)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  13. Clinical applications of SONIALVISION 100 digital diagnostic table system

    International Nuclear Information System (INIS)

    Shiomi, Takeshi; Shimizu, Tatsuya; Iinuma, Masao; Takemoto, Hajime; Tanaka, Shuji

    2003-01-01

    This report refers to the clinical applications of our newly developed SONIALVISION 100 fully digitalized X-ray diagnostic table system. The main design concept of the SONIALVISION 100 system is the improvement of workflow in various clinical fields. The development of digital imaging technologies has come to allow fully digitalized X-ray diagnostic table systems to be widely utilized in various clinical applications, including interventional radiology (IVR) and examinations using contrast medium. This report mainly refers to the clinical applications of the Shimadzu SONIALVISION 100 digitalized X-ray diagnostic table system, also presenting some typical image data demonstrating the high efficiency, made available through the use of this new system, in high-speed spot imaging and digital tomography. (author)

  14. Digital pulse processor for ion beam microprobe imaging

    International Nuclear Information System (INIS)

    Bogovac, M.; Jaksic, M.; Wegrzynek, D.; Markowicz, A.

    2009-01-01

    Capabilities of spectroscopic ion beam analysis (IBA) techniques that are available in ion microprobe facilities can be greatly improved by the use of digital pulse processing. We report here development of a digital multi parameter data acquisition system suitable for IBA imaging applications. Input signals from charge sensitive preamplifier are conditioned by using a simple circuit and digitized with fast ADCs. The digitally converted signals are processed in real time using FPGA. Implementation of several components of the system is presented.

  15. Digital image processing for radiography in nuclear power plants

    International Nuclear Information System (INIS)

    Heidt, H.; Rose, P.; Raabe, P.; Daum, W.

    1985-01-01

    With the help of digital processing of radiographic images from reactor-components it is possible to increase the security and objectiveness of the evaluation. Several examples of image processing procedures (contrast enhancement, density profiles, shading correction, digital filtering, superposition of images etc.) show the advantages for the visualization and evaluation of radiographs. Digital image processing can reduce some of the restrictions of radiography in nuclear power plants. In addition a higher degree of automation can be cost-saving and increase the quality of radiographic evaluation. The aim of the work performed was to to improve the readability of radiographs for the human observer. The main problem is lack of contrast and the presence of disturbing structures like weld seams. Digital image processing of film radiographs starts with the digitization of the image. Conventional systems use TV-cameras or scanners and provide a dynamic range of 1.5. to 3 density units, which are digitized to 256 grey levels. For the enhancement process it is necessary that the grey level range covers the density range of the important regions of the presented film. On the other hand the grey level coverage should not be wider than necessary to minimize the width of digitization steps. Poor digitization makes flaws and cracks invisible and spoils all further image processing

  16. Enhancement of digital radiography image quality using a convolutional neural network.

    Science.gov (United States)

    Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing

    2017-01-01

    Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.

  17. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  18. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    Science.gov (United States)

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  19. Data compression systems for home-use digital video recording

    NARCIS (Netherlands)

    With, de P.H.N.; Breeuwer, M.; van Grinsven, P.A.M.

    1992-01-01

    The authors focus on image data compression techniques for digital recording. Image coding for storage equipment covers a large variety of systems because the applications differ considerably in nature. Video coding systems suitable for digital TV and HDTV recording and digital electronic still

  20. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J. [Lawrence Berkeley National Lab., CA (United States)

    1998-04-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.). 11 refs.

  1. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    International Nuclear Information System (INIS)

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-01-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.)

  2. Should processed or raw image data be used in mammographic image quality analyses? A comparative study of three full-field digital mammography systems

    International Nuclear Information System (INIS)

    Borg, Mark; Badr, Ishmail; Royle, Gary

    2015-01-01

    The purpose of this study is to compare a number of measured image quality parameters using processed and unprocessed or raw images in two full-field direct digital units and one computed radiography mammography system. This study shows that the difference between raw and processed image data is system specific. The results have shown that there are no significant differences between raw and processed data in the mean threshold contrast values using the contrast-detail mammography phantom in all the systems investigated; however, these results cannot be generalised to all available systems. Notable differences were noted in contrast-to-noise ratios and in other tests including: response function, modulation transfer function, noise equivalent quanta, normalised noise power spectra and detective quantum efficiency as specified in IEC 62220-1-2. Consequently, the authors strongly recommend the use of raw data for all image quality analyses in digital mammography. (authors)

  3. Initial Image Quality and Clinical Experience with New CR Digital Mammography System: A Phantom and Clinical Study

    International Nuclear Information System (INIS)

    Gaona, Enrique; Enriquez, Jesus Gabriel Franco; Alfonso, Beatriz Y. Alvarez; Castellanos, Gustavo Casian

    2008-01-01

    The goal of the study was to evaluate the first CR digital mammography system ( registered Konica-Minolta) in Mexico in clinical routine for cancer detection in a screening population and to determine if high resolution CR digital imaging is equivalent to state-of-the-art screen-film imaging. The mammograms were evaluated by two observers with cytological or histological confirmation for BIRADS 3, 4 and 5. Contrast, exposure and artifacts of the images were evaluated. Different details like skin, retromamillary space and parenchymal structures were judged. The detectability of microcalcifications and lesions were compared and correlated to histology. The difference in sensitivity of CR Mammography (CRM) and Screen Film Mammography (SFM) was not statistically significant. However, CRM had a significantly lower recall rate, and the lesion detection was equal or superior to conventional images. There is no significant difference in the number of microcalcifications and highly suspicious calcifications were equally detected on both film-screen and digital images. Different anatomical regions were better detectable in digital than in conventional mammography

  4. Principles of digital image synthesis

    CERN Document Server

    Glassner, Andrew S

    1995-01-01

    Image synthesis, or rendering, is a field of transformation: it changesgeometry and physics into meaningful images. Because the most popularalgorithms frequently change, it is increasingly important for researchersand implementors to have a basic understanding of the principles of imagesynthesis. Focusing on theory, Andrew Glassner provides a comprehensiveexplanation of the three core fields of study that come together to formdigital image synthesis: the human visual system, digital signalprocessing, and the interaction of matter and light. Assuming no more thana basic background in calculus,

  5. Digital vascular imaging

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Engels, B.C.H.

    1981-01-01

    Digitalizing videosignals from an image intensifying TV-chain, followed by subtraction, contrast intensifying, and reformation to analogous signal deliver angiography pictures of high quality after intravenous injection of the contrast medium. As the examination is only little invasive it can be carried out on outdoor patients or in the polyclinics. The possibilities of the digital vessel imagination (DVI) are shown at vessel images of different parts of the body; a 36 cm image intensifyer which can be switched to 3 different sorts of operation and has a plumbicon-TV recording tube is used as receiver. (orig.) [de

  6. Experimental investigations of image quality in X-ray mammography with conventional screen film system (SFS), digital phosphor storage plate in/without magnification technique (CR) and digital CCD-technique (CCD)

    International Nuclear Information System (INIS)

    Schulz-Wendtland, R.; Aichinger, U.; Boehner, C.; Dobritz, M.; Wenkel, E.; Bautz, W.; Saebel, M.

    2001-01-01

    Comparison of image quality in X-ray mammography between conventional film screen film system (SFS), digital phosphor storage plate in and without magnification technique (CR) and digital CCD-technique (CCD). Radiograms of an RMI-mammography phantom were acquired using a conventional screen film system, three digital storage plate systems and two digital systems in CCD-technique. Additionally the radiograms of one digital phosphor storage plate system were post-processed regarding contrast and included in the comparison. The detectability of details was best with the digital mammography in CCD-technique. After confirming these promising results in clinical studies, digital mammography should be able to replace conventional screen film technique. (orig.)

  7. Control system of digital x-ray systems by quality parameters

    International Nuclear Information System (INIS)

    Balashov, S.V.; Kovalenko, Yu.N.

    2013-01-01

    The paper proposed a control system of X-ray digital equipment on quality indicators. Two basic parameters were determined: image quality and patients' radiation load. A method for monitoring these indicators is proposed. The criterion of equipment suitability is to obtain control digital X-ray images of diagnostically acceptable quality at a fixed low entrance dose in the plane of the digital detector. It is shown that the control system of X-ray digital equipment based on indicators of quality is the most appropriate in situations of deficit of financial resources, since minimizing the costs for the purchase and running of control systems, does not require highly skilled technical personnel, and reduces the duration of the equipment inspection. (authors)

  8. Digital imaging in dentistry.

    Science.gov (United States)

    Essen, S Donovan

    2011-01-01

    Information technology is vital to operations, marketing, accounting, finance and administration. One of the most exciting and quickly evolving technologies in the modern dental office is digital applications. The dentist is often the business manager, information technology officer and strategic planning chief for his small business. The information systems triangle applies directly to this critical manager supported by properly trained ancillary staff and good equipment. With emerging technology driving all medical disciplines and the rapid pace at which it emerges, it is vital for the contemporary practitioner to keep abreast of the newest information technology developments. This article compares the strategic and operational advantages of digital applications, specifically imaging. The focus of this paper will be on digital radiography (DR), 3D computerized tomography, digital photography and digitally-driven CAD/CAM to what are now considered obsolescing modalities and contemplates what may arrive in the future. It is the purpose of this essay to succinctly evaluate the decisions involved in the role, application and implications of employing this tool in the dental environment

  9. Digital imaging and electronic patient records in pathology using an integrated department information system with PACS.

    Science.gov (United States)

    Kalinski, Thomas; Hofmann, Harald; Franke, Dagmar-Sybilla; Roessner, Albert

    2002-01-01

    Picture archiving and communication systems have been widely used in radiology thus far. Owing to the progress made in digital photo technology, their use in medicine opens up further opportunities. In the field of pathology, digital imaging offers new possiblities for the documentation of macroscopic and microscopic findings. Digital imaging has the advantage that the data is permanently and readily available, independent of conventional archives. In the past, PACS was a separate entity. Meanwhile, however, PACS has been integrated in DIS, the department information system, which was also run separately in former times. The combination of these two systems makes the administration of patient data, findings and images easier. Moreover, thanks to the introduction of special communication standards, a data exchange between different department information systems and hospital information systems (HIS) is possible. This provides the basis for a communication platform in medicine, constituting an electronic patient record (EPR) that permits an interdisciplinary treatment of patients by providing data of findings and images from clinics treating the same patient. As the pathologic diagnosis represents a central and often therapy-determining component, it is of utmost importance to add pathologic diagnoses to the EPR. Furthermore, the pathologist's work is considerably facilitated when he is able to retrieve additional data from the patient file. In this article, we describe our experience gained with the combined PACS and DIS systems recently installed at the Department of Pathology, University of Magdeburg. Moreover, we evaluate the current situation and future prospects for PACS in pathology.

  10. Digital color image encoding and decoding using a novel chaotic random generator

    International Nuclear Information System (INIS)

    Nien, H.H.; Huang, C.K.; Changchien, S.K.; Shieh, H.W.; Chen, C.T.; Tuan, Y.Y.

    2007-01-01

    This paper proposes a novel chaotic system, in which variables are treated as encryption keys in order to achieve secure transmission of digital color images. Since the dynamic response of chaotic system is highly sensitive to the initial values of a system and to the variation of a parameter, and chaotic trajectory is so unpredictable, we use elements of variables as encryption keys and apply these to computer internet communication of digital color images. As a result, we obtain much higher communication security. We adopt one statistic method involving correlation coefficient γ and FIPS PUB 140-1 to test on the distribution of distinguished elements of variables for continuous-time chaotic system, and accordingly select optimal encryption keys to use in secure communication of digital color images. At the transmitter end, we conduct RGB level decomposition on digital color images, and encrypt them with chaotic keys, and finally transmit them through computer internet. The same encryption keys are used to decrypt and recover the original images at the receiver end. Even if the encrypted images are stolen in the public channel, an intruder is not able to decrypt and recover the original images because of the lack of adequate encryption keys. Empirical example shows that the chaotic system and encryption keys applied in the encryption, transmission, decryption, and recovery of digital color images can achieve higher communication security and best recovered images

  11. Digital Radiology Image Learning Library

    International Nuclear Information System (INIS)

    Arenson, R.L.; Greenes, R.; Allman, R.; Swett, H.

    1989-01-01

    The Digital Radiology Image Learning Library (DRILL) is designed as an interactive teaching tool targeted to the radiologic community. The DRILL pilot comprises a comprehensive mammographic information base consisting of factual data in a relational database, an extensive knowledge base in semantic nets and high-resolution images. A flexible query module permits the user to browse and retrieve examination data, case discussions, and related images. Other applications, including expert systems, instructional programs, and skill building exercises, can be accessed through well-defined software constructs

  12. An adaptive toolkit for image quality evaluation in system performance test of digital breast tomosynthesis

    Science.gov (United States)

    Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.

  13. Could digital imaging be an alternative for digital colorimeters?

    Science.gov (United States)

    Caglar, Alper; Yamanel, Kivanc; Gulsahi, Kamran; Bagis, Bora; Ozcan, Mutlu

    2010-12-01

    This study evaluated the colour parameters of composite and ceramic shade guides determined using a colorimeter and digital imaging method with illuminants at different colour temperatures. Two different resin composite shade guides, namely Charisma (Heraeus Kulzer) and Premise (Kerr Corporation), and two different ceramic shade guides, Vita Lumin Vacuum (VITA Zahnfabrik) and Noritake (Noritake Co.), were evaluated at three different colour temperatures (2,700 K, 2,700-6,500 K, and 6500 K) of illuminants. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2 and C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc.). The data were analysed using two-way ANOVA, and Pearson's correlation. While mean L* values of both composite and ceramic shade guides were not affected from the colour temperature, L* values obtained with the colorimeter showed significantly lower values than those of the digital imaging (p colorimeter and digital imaging did not show significant differences (p > 0.05). For both composite and ceramic shade guides, L* and b* values obtained from colorimeter and digital imaging method presented a high level of correlation. High-level correlations were also acquired for a* values in all shade guides except for the Charisma composite shade guide. Digital imaging method could be an alternative for the colorimeters unless the proper object-camera distance, digital camera settings and suitable illumination conditions could be supplied. However, variations in shade guides, especially for composites, may affect the correlation.

  14. Qualification process of CR system and quantification of digital image quality

    Science.gov (United States)

    Garnier, P.; Hun, L.; Klein, J.; Lemerle, C.

    2013-01-01

    CEA Valduc uses several X-Ray generators to carry out many inspections: void search, welding expertise, gap measurements, etc. Most of these inspections are carried out on silver based plates. For several years, the CEA/Valduc has decided to qualify new devices such as digital plates or CCD/flat panel plates. On one hand, the choice of this technological orientation is to forecast the assumed and eventual disappearance of silver based plates; on the other hand, it is also to keep our skills mastering up-to-date. The main improvement brought by numerical plates is the continuous progress of the measurement accuracy, especially with image data processing. It is now common to measure defects thickness or depth position within a part. In such applications, data image processing is used to obtain complementary information compared to scanned silver based plates. This scanning procedure is harmful for measurements which imply a data corruption of the resolution, the adding of numerical noise and is time expensive. Digital plates enable to suppress the scanning procedure and to increase resolution. It is nonetheless difficult to define, for digital images, single criteria for the image quality. A procedure has to be defined in order to estimate quality of the digital data itself; the impact of the scanning device and the configuration parameters are also to be taken into account. This presentation deals with the qualification process developed by CEA/Valduc for digital plates (DUR-NDT) based on the study of quantitative criteria chosen to define a direct numerical image quality that could be compared with scanned silver based pictures and the classical optical density. The versatility of the X-Ray parameters is also discussed (X-ray tension, intensity, time exposure). The aim is to be able to transfer the year long experience of CEA/Valduc with silver-based plates inspection to these new digital plates supports. This is an industrial stake.

  15. Fundamental imaging characteristics of a slot-scan digital chest radiographic system

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S.; Lo, Joseph Y.; Dobbins, James T. III; Jesneck, Jonathan L.; Floyd, Carey E.; Ravin, Carl E.

    2004-01-01

    Our purpose in this study was to evaluate the fundamental image quality characteristics of a new slot-scan digital chest radiography system (ThoraScan, Delft Imaging Systems/Nucletron, Veenendaal, The Netherlands). The linearity of the system was measured over a wide exposure range at 90, 117, and 140 kVp with added Al filtration. System uniformity and reproducibility were established with an analysis of images from repeated exposures. The modulation transfer function (MTF) was evaluated using an established edge method. The noise power spectrum (NPS) and the detective quantum efficiency (DQE) of the system were evaluated at the three kilo-voltages over a range of exposures. Scatter fraction (SF) measurements were made using a posterior beam stop method and a geometrical chest phantom. The system demonstrated excellent linearity, but some structured nonuniformities. The 0.1 MTF values occurred between 3.3-3.5 mm -1 . The DQE(0.15) and DQE(2.5) were 0.21 and 0.07 at 90 kVp, 0.18 and 0.05 at 117 kVp, and 0.16 and 0.03 at 140 kVp, respectively. The system exhibited remarkably lower SFs compared to conventional full-field systems with anti-scatter grid, measuring 0.13 in the lungs and 0.43 in the mediastinum. The findings indicated that the slot-scan design provides marked scatter reduction leading to high effective DQE (DQE eff ) of the system and reduced patient dose required to achieve high image quality

  16. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  17. An image adaptive, wavelet-based watermarking of digital images

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  18. Assuring image authenticity within a data grid using lossless digital signature embedding and a HIPAA-compliant auditing system

    Science.gov (United States)

    Lee, Jasper C.; Ma, Kevin C.; Liu, Brent J.

    2008-03-01

    A Data Grid for medical images has been developed at the Image Processing and Informatics Laboratory, USC to provide distribution and fault-tolerant storage of medical imaging studies across Internet2 and public domain. Although back-up policies and grid certificates guarantee privacy and authenticity of grid-access-points, there still lacks a method to guarantee the sensitive DICOM images have not been altered or corrupted during transmission across a public domain. This paper takes steps toward achieving full image transfer security within the Data Grid by utilizing DICOM image authentication and a HIPAA-compliant auditing system. The 3-D lossless digital signature embedding procedure involves a private 64 byte signature that is embedded into each original DICOM image volume, whereby on the receiving end the signature can to be extracted and verified following the DICOM transmission. This digital signature method has also been developed at the IPILab. The HIPAA-Compliant Auditing System (H-CAS) is required to monitor embedding and verification events, and allows monitoring of other grid activity as well. The H-CAS system federates the logs of transmission and authentication events at each grid-access-point and stores it into a HIPAA-compliant database. The auditing toolkit is installed at the local grid-access-point and utilizes Syslog [1], a client-server standard for log messaging over an IP network, to send messages to the H-CAS centralized database. By integrating digital image signatures and centralized logging capabilities, DICOM image integrity within the Medical Imaging and Informatics Data Grid can be monitored and guaranteed without loss to any image quality.

  19. Detection and optimization of image quality and dose in digital mammography systems

    International Nuclear Information System (INIS)

    Semturs, F.

    2015-01-01

    Background and purpose: During the last few years, mammography institutes have replaced their conventional mammography systems (FSM) with digital mammography systems (FFDM). This happened mainly in direction to digital computed radiography systems (FFDM-CR), where the mammography device could be kept in operation. Consequently also the AEC-parameters have not been changed and therefore the same dose as for FFM was used. Following the main theme of the thesis "Optimization of image quality and dose", also measurements with such CR-Systems have been performed in relation to image quality and dose behavior. Optimization in this context means - in following the ALARA principle - the reduction of dose while ensuring required clinical image quality. With other words - image quality is of higher value compared to dose. Considering this, it has been found out through measurements during this thesis, that FFDM-CR Systems need considerable more dose for achieving image quality comparable with FFM. On the other hand, it has been shown with measurements during this thesis, that the newest FFDM-CR technology (needle structure) supports dose reduction (optimization) to a certain degree without compromising image quality. Dose increase, as recommended in this thesis, could also increase the danger of more radiation induced carcinoma. There are several studies (which are also discussed in this thesis), which show that the benefit of not missing cancers because of higher dose dramatically overrides any health concerns. Such an optimization of image quality and dose is now described in more detail by comparing the new CR needle technology with the older power based CR technology. Material and Methods: The image quality and dose behavior for multiple breast thicknesses (simulated with PMMA slabs) of a CR needle crystal detector system is optimized by considering also different beam qualities. Technical image quality is determined with a low contrast phantom (CDMAM phantom) and from

  20. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... of conflict-related images raise issues of knowledge production and research....

  1. Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.

    Science.gov (United States)

    Kim, K

    2016-08-01

    To examine psoriasis or atopic eczema, analyzing skin roughness by palpation is essential to precisely diagnose skin diseases. However, optical sensor based skin imaging systems do not allow dermatologists to touch skin images. To solve the problem, a new haptic rendering technology that can accurately display skin roughness must be developed. In addition, the rendering algorithm must be able to filter spatial noises created during 2D to 3D image conversion without losing the original roughness on the skin image. In this study, a perceptual way to design a noise filter that will remove spatial noises and in the meantime recover maximized roughness is introduced by understanding human sensitivity on surface roughness. A visuohaptic rendering system that can provide a user with seeing and touching digital skin surface roughness has been developed including a geometric roughness estimation method from a meshed surface. In following, a psychophysical experiment was designed and conducted with 12 human subjects to measure human perception with the developed visual and haptic interfaces to examine surface roughness. From the psychophysical experiment, it was found that touch is more sensitive at lower surface roughness, and vice versa. Human perception with both senses, vision and touch, becomes less sensitive to surface distortions as roughness increases. When interact with both channels, visual and haptic interfaces, the performance to detect abnormalities on roughness is greatly improved by sensory integration with the developed visuohaptic rendering system. The result can be used as a guideline to design a noise filter that can perceptually remove spatial noises while recover maximized roughness values from a digital skin image obtained by optical sensors. In addition, the result also confirms that the developed visuohaptic rendering system can help dermatologists or skin care professionals examine skin conditions by using vision and touch at the same time. © 2015

  2. Optimal image resolution for digital storage of radiotherapy-planning images

    International Nuclear Information System (INIS)

    Baba, Yuji; Furusawa, Mitsuhiro; Murakami, Ryuji; Baba, Takashi; Yokoyama, Toshimi; Nishimura, Ryuichi; Takahashi, Mutsumasa

    1998-01-01

    Purpose: To evaluate the quality of digitized radiation-planning images at different resolution and to determine the optimal resolution for digital storage. Methods and Materials: Twenty-five planning films were scanned and digitized using a film scanner at a resolution of 72 dots per inch (dpi) with 8-bit depth. The resolution of scanned images was reduced to 48, 36, 24, and 18 dpi using computer software. Image qualities of these five images (72, 48, 36, 24, and 18 dpi) were evaluated and given scores (4 = excellent; 3 = good; 2 = fair; and 1 = poor) by three radiation oncologists. An image data compression algorithm by the Joint Photographic Experts Group (JPEG) (not reversible and some information will be lost) was also evaluated. Results: The scores of digitized images with 72, 48, 36, 24, and 17 dpi resolution were 3.8 ± 0.3, 3.5 ± 0.3, 3.3 ± 0.5, 2.7 ± 0.5, and 1.6 ± 0.3, respectively. The quality of 36-dpi images were definitely worse compared to 72-dpi images, but were good enough as planning films. Digitized planning images with 72- and 36-dpi resolution requires about 800 and 200 KBytes, respectively. The JPEG compression algorithm produces little degradation in 36-dpi images at compression ratios of 5:1. Conclusion: The quality of digitized images with 36-dpi resolution was good enough as radiation-planning images and required 200 KBytes/image

  3. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  4. Comparison of the diagnostic accuracy of direct digital radiography system, filtered images, and subtraction radiography

    Directory of Open Access Journals (Sweden)

    Wilton Mitsunari Takeshita

    2013-01-01

    Full Text Available Background: To compare the diagnostic accuracy of three different imaging systems: Direct digital radiography system (DDR-CMOS, four types of filtered images, and a priori and a posteriori registration of digital subtraction radiography (DSR in the diagnosis of proximal defects. Materials and Methods: The teeth were arranged in pairs in 10 blocks of vinyl polysiloxane, and proximal defects were performed with drills of 0.25, 0.5, and 1 mm diameter. Kodak RVG 6100 sensor was used to capture the images. A posteriori DSR registrations were done with Regeemy 0.2.43 and subtraction with Image Tool 3.0. Filtered images were obtained with Kodak Dental Imaging 6.1 software. Images (n = 360 were evaluated by three raters, all experts in dental radiology. Results: Sensitivity and specificity of the area under the receiver operator characteristic (ROC curve (Az were higher for DSR images with all three drills (Az = 0.896, 0.979, and 1.000 for drills 0.25, 0.5, and 1 mm, respectively. The highest values were found for 1-mm drills and the lowest for 0.25-mm drills, with negative filter having the lowest values of all (Az = 0.631. Conclusion: The best method of diagnosis was by using a DSR. The negative filter obtained the worst results. Larger drills showed the highest sensitivity and specificity values of the area under the ROC curve.

  5. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Science.gov (United States)

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  6. Crack Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal, Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better than that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  7. Radiographic assessment of proximal caries: A comparison between film-based and dexis digital imaging systems

    Directory of Open Access Journals (Sweden)

    Anupama N Kalappanavar

    2011-01-01

    Full Text Available This study compared Kodak Ektaspeed film and Dexis digital imaging systems for their diagnostic accuracy in detection of proximal canes in 210 proximal surfaces from 105 extracted human teeth (20 premolars and 85 molars, 129 of which were carious. Ground teeth were evaluated histologically. The images were assessed by an observer. ANOVA revealed that groups differ in scoring patterns with f-value of 26.72 and p < 0.01. The mean caries score by histologic assessment was significantly (p < 0.01 more when compared with the scores obtained by conventional and Dexis digital radiographic methods. The mean score for conventional radiographic method was slightly more than Dexis digital radiographic method, but the difference was statistically insignificant (p < 0.05. Both the radiographic methods were less accurate in detecting proximal canes confined to enamel, but as the lesion depth was increased to dentin, the rate of caries detection increased dramatically. It was concluded that both conventional and Dexis digital radiographic methods under estimated canes depth when compared with histologic method. Lastly, conventional film radiographs and Dexis digital radiographs did not perform significantly different from each other in the detection of canes.

  8. The Neuro-Image: Alain Resnais's Digital Cinema without the Digits

    NARCIS (Netherlands)

    Pisters, P.

    2011-01-01

    This paper proposes to read cinema in the digital age as a new type of image, the neuroimage. Going back to Gilles Deleuze's cinema books and it is argued that the neuro-image is based in the future. The cinema of Alain Resnais is analyzed as a neuro-image and digital cinema .

  9. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  10. Fundamental concepts of digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, R.E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  11. Fundamental Concepts of Digital Image Processing

    Science.gov (United States)

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  12. Three-dimensional facial digitization using advanced digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Kieu, Hien; Wang, Zhaoyang; Le, Hanh N D

    2018-03-20

    Presented in this paper is an effective technique to acquire the three-dimensional (3D) digital images of the human face without the use of active lighting and artificial patterns. The technique is based on binocular stereo imaging and digital image correlation, and it includes two key steps: camera calibration and image matching. The camera calibration involves a pinhole model and a bundle-adjustment approach, and the governing equations of the 3D digitization process are described. For reliable pixel-to-pixel image matching, the skin pores and freckles or lentigines on the human face serve as the required pattern features to facilitate the process. It employs feature-matching-based initial guess, multiple subsets, iterative optimization algorithm, and reliability-guided computation path to achieve fast and accurate image matching. Experiments have been conducted to demonstrate the validity of the proposed technique. The simplicity of the approach and the affordable cost of the implementation show its practicability in scientific and engineering applications.

  13. Digital Image Quantitative Evaluations for Low Cost Film Digitizers Height Determination

    International Nuclear Information System (INIS)

    Khairul Anuar Mohd Salleh; Arshad Yassin; Ahmad Nasir Yusof; Noorhazleena Azaman

    2016-01-01

    Non Destructive Testing (NDT) technology contributes significant improvement to the quality of industrial products, and the integrity of equipment and plants. Introduction of powerful computers and reliable imaging technology has had significant impact on the traditional nuclear based NDT technology. Demand for faster, reliable, low cost, and flexible technology is rapidly increased. With the growing demand for more efficient digital archiving, digital image analysis, and reporting results with a low cost technology, one cannot deny the importance of having another cheaper solution. This project will apply fundamental principle of image digitization to be used in building up a low cost film digitization solution. The height of the film digitization was carefully determined by examining each digital images produced. Three (3) repetitive quantitative evaluations (Modulation Transfer Function [MTF], Characteristic Transfer Curve [CTC], and Contrast to Noise Ratio [CNR]) were performed at different condition to assist with the determination of the low cost film digitizers height. All 3 evaluations were successfully applied and the most appropriate height was successfully determined. (author)

  14. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  15. Digital fluoroscopy: a new development in medical imaging

    International Nuclear Information System (INIS)

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  16. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  17. Correction method of slit modulation transfer function on digital medical imaging system

    International Nuclear Information System (INIS)

    Kim, Jung Min; Jung, Hoi Woun; Min, Jung Whan; Im, Eon Kyung

    2006-01-01

    By using CR image pixel data, We examined the way how to calculate the MTF and digital characteristic curve. It can be changed to the text-file (Excel) from a pixel data which was printed with a digital x-ray equipment. In this place, We described the way how to figure out and correct the sharpness of a digital images of the MTF from FUJITA. Excel program was utilized to calculate from radiography of slit. Digital characteristic curve, Line Spread Function, Discrete Fourier Transform, Fast Fourier Transform digital specification curve, were indicated in regular sequence. A big advantage of this method, It can be understood easily and you can get results without costly program an without full knowledge of computer language. It shows many different values by using different correction methods. Therefore we need to be handy with appropriate correction method and we should try many experiments to get a precise MTF figures

  18. The application of digital image plane holography technology to identify Chinese herbal medicine

    Science.gov (United States)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  19. Digital systems to acquire radiological imaging. Characteristics and quality control; Sistemas digitales de adquisicion de imagenes radiograficas. Caracteristicas y Control de Calidad

    Energy Technology Data Exchange (ETDEWEB)

    Torres Cabrera, R.; Hernando Gonzalez, I.

    2006-07-01

    Due to its special characteristics, quality control in digital radiographic systems is very important, even more than in conventional film-screen systems. Differences between digital and analogical images,a in terms of dynamics range, spatial and contrast resolution, and the flexibility of data post-processing require some actions to maintain clinical images in an optimum quality level. Revision 1 of the Spanish Protocol of Quality Control in Diagnostic Radiology includes a chapter dedicated to the quality control of these digital systems for the acquisition of radiographic images. In this paper the different parameters for quality control procedures are described. Also some difficulties to be concerned about (absence of levels of tolerance, access to the raw-data images and related information, availability of use anthropomorphic phantoms, etc, etc) are noted, as well as the most significant aspects of the differences in relation to the ana logical systems. (Author) 15 refs.

  20. Image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Lehtovirta, J.; Matsi, P.; Soimakallio, S.

    1992-01-01

    The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512x512 image format) viewed on a 625 line monitor were processed in 3 different ways: 1.standard display; 2.digital edge enhancement for the standard display; 3.inverse intensity display. The radiographs were interpreted independently by 3 radiologists. Diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease, 17 with pneumonia /atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases respectively. Sensitivity of conventional radiography when averaged overall findings was better than that of digital techniques (P<0.001). Differences in diagnostic accuracy measured by sensitivity and specificity between the 3 digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P<0.05) but poorer specificity for pulmonary emphysema (0.85 vs 0.93; P<0.05) compared with inverse intensity display. It is concluded that when using 512x512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted. (author). 12 refs.; 4 figs.; 2 tabs

  1. Minimal requirements of ACR-NEMA digital imaging and communication standards

    International Nuclear Information System (INIS)

    Wang, Y.; Horrii, S.; Lehr, J.

    1986-01-01

    The American College of Radiology-National Electrical Manufacturers Association (ACR-NEMA) Digital Imaging and Communication Standards were formally adopted in December 1985. They are intended to facilitate management and communication of digital image information regardless of source, format, or device manufacturer; to promote the development and expansion of radiologic imaging and communication systems that can also interface with other systems of hospital information; and to allow the creation of diagnostic information databases that can be interrogated by a wide variety of devices distributed geographically. The Standards specify the hardware interface, a minimum set of software commands, and a consistent set of data formats for communication across the interface between an imaging device and a network interface unit or another imaging device

  2. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  3. Digital image processing of mandibular trabeculae on radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Toshi

    1987-06-01

    The present study was aimed to reveal the texture patterns of the radiographs of the mandibular trabeculae by digital image processing. The 32 cases of normal subjects and the 13 cases of patients with mandibular diseases of ameloblastoma, primordial cysts, squamous cell carcinoma and odontoma were analyzed by their intra-oral radiographs in the right premolar regions. The radiograms were digitized by the use of a drum scanner densitometry method. The input radiographic images were processed by a histogram equalization method. The result are as follows : First, the histogram equalization method enhances the image contrast of the textures. Second, the output images of the textures for normal mandible-trabeculae radiograms are of network pattern in nature. Third, the output images for the patients are characterized by the non-network pattern and replaced by the patterns of the fabric texture, intertwined plants (karakusa-pattern), scattered small masses and amorphous texture. Thus, these results indicates that the present digital image system is expected to be useful for revealing the texture patterns of the radiographs and in the future for the texture analysis of the clinical radiographs to obtain quantitative diagnostic findings.

  4. Process simulation in digital camera system

    Science.gov (United States)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  5. Benchmarking the performance of fixed-image receptor digital radiographic systems part 1: a novel method for image quality analysis.

    Science.gov (United States)

    Lee, Kam L; Ireland, Timothy A; Bernardo, Michael

    2016-06-01

    This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.

  6. A high-resolution multimode digital microscope system.

    Science.gov (United States)

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  7. Design of a laser scanner for a digital mammography system.

    Science.gov (United States)

    Rowlands, J A; Taylor, J E

    1996-05-01

    We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.

  8. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D; Liu, Y [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes. The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.

  9. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  10. The effects of gray scale image processing on digital mammography interpretation performance.

    Science.gov (United States)

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  11. Screen-film versus digital radiography of sacroiliac joints: Evaluation of image quality and dose to patients

    International Nuclear Information System (INIS)

    Jablanovic, D.; Ciraj-Bjelac, O.; Damjanov, N.; Seric, S.; Radak-Perovic, M.; Arandjic, D.; Maksimovic, R.

    2013-01-01

    The purpose of this paper is to evaluate the image quality and dose to patients in the radiography of sacroiliac joints and to perform a clinical comparative study of digital and conventional screen-film radiography. Routine radiography of sacroiliac joint was performed in 60 patients using digital and screen-film radiography. The visibility of five anatomical regions and the overall image quality were rated by experienced radiologists. Patient dose assessment in terms of entrance surface air kerma (ESAK) was performed. The digital system showed slightly improved visualisation of specific anatomical structures. Overall image quality was significantly better in the digital when compared with the screen-film imaging system. The average ESAK was 2.4 mGy in screen-film and 3.6 mGy in digital radiography. The digital radiography provided equal or better visibility of anatomical details and overall image quality, but on higher dose levels. Therefore, the practice on digital systems must be optimised. (authors)

  12. Panoramic images of conventional radiographs: digital panoramic dynamic images

    International Nuclear Information System (INIS)

    Schultze, M.

    2001-01-01

    The benefits of digital technic s to od ontology are evident. Instant images, the possibility to handle them, the reduction of exposition time to radiations, better quality image, better quality information, Stocking them in a compact disc, occupying very little space, allows an easy transport and duplication, as well as the possibility to transfer and save it in an electronica l support.This kind of communication allows the transmission of digital images and every other type of data, instantaneously and no matter distances or geographical borders. Anyway, we should point out that conventional and digital technic s reveal the same information contents

  13. Online patient dosimetry and an image quality audit system in digital radiology; Auditoria en tiempo real de dosis a los pacientes y claidad de imagen en radiologia digital

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J. M.; Vano, E.; Ten, J. I.; Prieto, C.; Martinez, D.

    2006-07-01

    The present work describes an online patient dosimetry and an image quality audit system in digital radiology. the system allows auditing of different parameters depending on contents of DICOM (Digital Imaging and Communication in Medicine) header. For the patient dosimetry audit, current mean values of entrance surface dose (ESD) were compared with local and national reference values (RVs) for the specific examination type evaluated. Mean values exceeding the RV trigger an alarm signal and then an evaluation of the technical parameters, operational practice and image quality starts, using data available in the DICOM header to derive any abnormal settings or performance to obtain the image. the X-ray tube output for different kVp values is measured periodically, allowing for the automatic calculation of the ESD. The system also allows for image quality audit linking it with the dose imparted and other technical parameters if the alarm condition if produced. Results and advantages derived from this online quality control are discussed. (Author) 5 refs.

  14. Using digital watermarking to enhance security in wireless medical image transmission.

    Science.gov (United States)

    Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris

    2010-04-01

    During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.

  15. Image quality analysis of digital mammographic equipments

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, P.; Pascual, A.; Verdu, G. [Valencia Univ. Politecnica, Chemical and Nuclear Engineering Dept. (Spain); Rodenas, F. [Valencia Univ. Politecnica, Applied Mathematical Dept. (Spain); Campayo, J.M. [Valencia Univ. Hospital Clinico, Servicio de Radiofisica y Proteccion Radiologica (Spain); Villaescusa, J.I. [Hospital Clinico La Fe, Servicio de Proteccion Radiologica, Valencia (Spain)

    2006-07-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  16. Image quality analysis of digital mammographic equipments

    International Nuclear Information System (INIS)

    Mayo, P.; Pascual, A.; Verdu, G.; Rodenas, F.; Campayo, J.M.; Villaescusa, J.I.

    2006-01-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  17. Problems and image processing in X-ray film digitization

    International Nuclear Information System (INIS)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru

    1992-01-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author)

  18. Problems and image processing in X-ray film digitization

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru (Toyama Medical and Pharmaceutical Univ. (Japan). Hospital)

    1992-11-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author).

  19. Image analysis of microsialograms of the mouse parotid gland using digital image processing

    International Nuclear Information System (INIS)

    Yoshiura, K.; Ohki, M.; Yamada, N.

    1991-01-01

    The authors compared two digital-image feature-extraction methods for the analysis of microsialograms of the mouse parotid gland following either overfilling, experimentally induced acute sialoadenitis or irradiation. Microsialograms were digitized using a drum-scanning microdensitometer. The grey levels were then partitioned into four bands representing soft tissue, peripheral minor, middle-sized and major ducts, and run-length and histogram analysis of the digital images performed. Serial analysis of microsialograms during progressive filling showed that both methods depicted the structural characteristics of the ducts at each grey level. However, in the experimental groups, run-length analysis showed slight changes in the peripheral duct system more clearly. This method was therefore considered more effective than histogram analysis

  20. The use of digital images in pathology.

    Science.gov (United States)

    Furness, P N

    1997-11-01

    Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.

  1. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  2. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  3. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  4. Evaluation and quality control of digital subtraction angiography systems

    International Nuclear Information System (INIS)

    Louisot, P.

    1986-04-01

    After reviewing the development of systems used in angiography, we rewind the medical interest and describe the steps of an angiographic examination. The following chapter is dedicated to the techniques used for the digitalization of video images. The components of the system involved in the image acquisition are thoroughly investigated in chapter 4. Then, we analyse the capabilities of the machines available in France in 1985. Chapter 6 is devoted to the criteria of quality in digital imaging. In order to assign qualitative values to the above criteria, we design a control procedure which is described in chapter 7. The procedure thus allows the estimate of the physical performances of angiographic digital subtraction systems [fr

  5. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    Science.gov (United States)

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  6. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... and distance, and the multiplicity of images. It engages critically with these interlinking themes as they are addressed in the contributing articles to the Special Issue as well as beyond, asking how genres and tropes are reproduced, how power plays a role in access to images, and how the sheer quantity...... of conflict-related images raise issues of knowledge production and research....

  7. Use of film digitizers to assist radiology image management

    Science.gov (United States)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1996-05-01

    The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders

  8. Digital implementation of a neural network for imaging

    Science.gov (United States)

    Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian

    2012-10-01

    This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.

  9. Unattended digital video surveillance: A system prototype for EURATOM safeguards

    International Nuclear Information System (INIS)

    Chare, P.; Goerten, J.; Wagner, H.; Rodriguez, C.; Brown, J.E.

    1994-01-01

    Ever increasing capabilities in video and computer technology have changed the face of video surveillance. From yesterday's film and analog video tape-based systems, we now emerge into the digital era with surveillance systems capable of digital image processing, image analysis, decision control logic, and random data access features -- all of which provide greater versatility with the potential for increased effectiveness in video surveillance. Digital systems also offer other advantages such as the ability to ''compress'' data, providing increased storage capacities and the potential for allowing longer surveillance Periods. Remote surveillance and system to system communications are also a benefit that can be derived from digital surveillance systems. All of these features are extremely important in today's climate Of increasing safeguards activity and decreasing budgets -- Los Alamos National Laboratory's Safeguards Systems Group and the EURATOM Safeguards Directorate have teamed to design and implement a period surveillance system that will take advantage of the versatility of digital video for facility surveillance system that will take advantage of the versatility of digital video for facility surveillance and data review. In this Paper we will familiarize you with system components and features and report on progress in developmental areas such as image compression and region of interest processing

  10. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  11. How to optimize radiological images captured from digital cameras, using the Adobe Photoshop 6.0 program.

    Science.gov (United States)

    Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P

    2003-06-01

    Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.

  12. Utility of Digital Stereo Images for Optic Disc Evaluation

    Science.gov (United States)

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  13. Digital Imaging Analysis for the Study of Endotoxin-Induced Mitochondrial Ultrastructure Injury

    Directory of Open Access Journals (Sweden)

    Mandar S. Joshi

    2000-01-01

    Full Text Available Primary defects in mitochondrial function have been implicated in over 100 diverse diseases. In situ, mitochondria possess unique and well-defined morphology in normal healthy cells, but diseases linked to defective mitochondrial function are characterized by the presence of morphologically abnormal and swollen mitochondria with distorted cristae. In situ study of mitochondrial morphology is established as an indicator of mitochondrial health but thus far assessments have been via subjective evaluations by trained observers using discontinuous scoring systems. Here we investigated the value of digital imaging analysis to provide for unbiased, reproducible, and convenient evaluations of mitochondrial ultrastructure. Electron photomicrographs of ileal mucosal mitochondria were investigated using a scoring system previously described by us, and also analyzed digitally by using six digital parameters which define size, shape, and electron density characteristics of over 700 individual mitochondria. Statistically significant changes in mitochondrial morphology were detected in LPS treated animals relative to vehicle control using both the subjective scoring system and digital imaging parameters (p < 0:05. However, the imaging approach provided convenient and high throughput capabilities and was easily automated to remove investigator influences. These results illustrate significant changes in ileal mucosal mitochondrial ultrastructure during sepsis and demonstrate the value of digital imaging technology for routine assessments in this setting.

  14. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  15. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  16. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first...

  17. Monuments deterioration evaluation, using digited images. A methodology

    Directory of Open Access Journals (Sweden)

    Ángel, María C.

    1995-12-01

    Full Text Available In this work a methodology is proposed for data processing, integrating the techniques of digital images processing and the analytical capacity of graphical referencing systems and relational databases, in relation with the monuments. The images are generated using the digital image processing and they are included into a graphical data processing systems associated with a database containing the characteristics of the ashars or constituent elements. By combination of the images with the database induced properties the information is processed. The results are thematic maps that we save such as images. These maps are layers of new information (deduced levels. The elaboration of these maps allows attacking the problems of the restoration, renovation or treatment of the different monumental spaces on a global way, paying special attention on the most gravely affected areas.

    En este trabajo se propone una metodología para el tratamiento de la información, integrando las técnicas de proceso digital de imágenes, la capacidad de análisis de los sistemas de referenciación gráfica y las bases de datos relacionales, referidas a monumentos. Para ello se elaboran las imágenes base por algoritmos propios del proceso digital, incluyendo aquellas en una aplicación especifica que asocia cada capa a una base de datos con las propiedades petrofísicas, hídricas, etc., o bien entre si, dando lugar a mapas temáticos. La generación de estos mapas permite abordar los problemas de restauración, rehabilitación o tratamiento de los diferentes espacios monumentales de forma global, con incidencia especial en las zonas más afectadas.

  18. Objective analysis of image quality of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.

    1990-07-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. Currently, virtually all installed systems use methods of digitizing the video signal that is produced for display on the scanner viewing console itself. A series of digital test images have been developed for display on either a GE CT9800 or a GE Signa MRI scanner. These images have been captured with each of five commercially available image capture systems, and the resultant images digitally transferred on floppy disk to a PC1286 computer containing Optimast' image analysis software. Here the images can be displayed in a comparative manner for visual evaluation, in addition to being analyzed statistically. Each of the images have been designed to support certain tests, including noise, accuracy, linearity, gray scale range, stability, slew rate, and pixel alignment. These image capture systems vary widely in these characteristics, in addition to the presence or absence of other artifacts, such as shading and moire pattern. Other accessories such as video distribution amplifiers and noise filters can also add or modify artifacts seen in the captured images, often giving unusual results. Each image is described, together with the tests which were performed using them. One image contains alternating black and white lines, each one pixel wide, after equilibration strips ten pixels wide. While some systems have a slew rate fast enough to track this correctly, others blur it to an average shade of gray, and do not resolve the lines, or give

  19. Storage and retrieval of large digital images

    Science.gov (United States)

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  20. How Digital Image Processing Became Really Easy

    Science.gov (United States)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  1. An online detection system for aggregate sizes and shapes based on digital image processing

    Science.gov (United States)

    Yang, Jianhong; Chen, Sijia

    2017-02-01

    Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.

  2. Micro-Structure Measurement and Imaging Based on Digital Holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem [Chosun University, Gwangju (Korea, Republic of); Kee, Chang Doo [Chonnam National University, Gwangju (Korea, Republic of)

    2010-06-15

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  3. Micro-Structure Measurement and Imaging Based on Digital Holography

    International Nuclear Information System (INIS)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem; Kee, Chang Doo

    2010-01-01

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  4. Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions

    International Nuclear Information System (INIS)

    Obenauer, S.; Luftner-Nagel, S.; Heyden, D. von; Baum, F.; Grabbe, E.; Munzel, U.

    2002-01-01

    The objective of this study was to compare screen-film mammography (SFM) to full-field digital mammography (FFDM) regarding image quality as well as detectability and characterization of lesions using equivalent images of the same patient acquired with both systems. Two mammography units were used, one with a screen-film system (Senographe DMR) and the other with a digital detector (Senographe 2000D, both GEMS). Screen-film and digital mammograms were performed on 55 patients with cytologically or histologically proven tumors on the same day. Together with these, 75 digital mammograms of patients without tumor and the corresponding previous screen-film mammograms not older than 1.5 years were reviewed by three observers in a random order. Contrast, exposure, and the presence of artifacts were evaluated. Different details, such as the skin, the retromamillary region, and the parenchymal structures, were judged according to a three-point ranking scale. Finally, the detectability of microcalcifications and lesions were compared and correlated to histology. Image contrast was judged to be good in 76%, satisfactory in 20%, and unsatisfactory in 4% of screen-film mammograms. Digital mammograms were judged to be good in 99% and unsatisfactory in 1% of cases. Improper exposure of screen-film system occurred in 18% (10% overexposed and 8% underexposed). Digital mammograms were improperly exposed in 4% of all cases but were of acceptable quality after post-processing. Artifacts, most of them of no significance, were found in 78% of screen-film and in none of the digital mammograms. Different anatomical regions, such as the skin, the retromamillary region, and dense parenchymal areas, were better visualized in digital than in screen-film mammography. All malignant tumors were seen by the three radiologists; however, digital mammograms allowed a better characterization of these lesions to the Breast Imaging Reporting and Data System (BI-RADSZZZ;) categories (FFDM better than

  5. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Aliu, R. Azir

    2011-01-01

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  6. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  7. A Medipix2-based imaging system for digital mammography with silicon pixel detectors

    CERN Document Server

    Bisogni, M G; Fantacci, M E; Mettivier, G; Montesi, M C; Novelli, M; Quattrocchi, M; Rosso, V; Russo, P; Stefanini, A

    2004-01-01

    In this paper we present the first tests of a digital imaging system based on a silicon pixel detector bump-bonded to an integrated circuit operating in single photon counting mode. The X-rays sensor is a 300 mu m thick silicon, 14 by 14 mm/sup 2/, upon which a matrix of 256 * 256 pixels has been built. The read-out chip, named MEDIPIX2, has been developed at CERN within the MEDIPIX2 Collaboration and it is composed by a matrix of 256 * 256 cells, 55 * 55 mu m/sup 2/. The spatial resolution properties of the system have been assessed by measuring the square wave resolution function (SWRF) and first images of a standard mammographic phantom were acquired using a radiographic tube in the clinical irradiation condition. (5 refs).

  8. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  9. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  10. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  11. Digital radiography

    International Nuclear Information System (INIS)

    Brody, W.R.

    1984-01-01

    Digital Radiography begins with an orderly introduction to the fundamental concepts of digital imaging. The entire X-ray digital imagining system is described, from an overall characterization of image quality to specific components required for a digital radiographic system. Because subtraction is central to digital radiographic systems, the author details the use of various subtraction methods for image enhancement. Complex concepts are illustrated with numerous examples and presented in terms that can readily be understood by physicians without an advanced mathematics background. The second part of the book discusses implementations and applications of digital imagining systems based on area and scanned detector technologies. This section includes thorough coverage of digital fluoroscopy, scanned projection radiography, and film-based digital imaging systems, and features a state-of-the-art synopsis of the applications of digital subtraction angiography. The book concludes with a timely assessment of anticipated technological advances

  12. Development of test objects for image quality evaluation of digital mammography

    International Nuclear Information System (INIS)

    Pinto, Vitor Nascimento de Carvalho

    2013-01-01

    Mammography is the image exam called 'gold standard' for early detection of breast cancer. 111 Brazil, more than eight million mammograms are carried out per year. With the advancement of technology, the digital systems CR and DR for this diagnostic modality have been increasingly implemented, replacing the conventional screen-film system, which brought environmental problems, like the disposal of chemical waste, and is also responsible for the rejection of radiographic films with processing artifacts. Digital systems, besides not experiencing the problem of environmental pollution, are still capable of image processing, allowing a much lower rejection rate when compared to the conventional system. Moreover, the determination of an accurate diagnosis is highly dependent on the image quality of the examination. To ensure the reliability of the images produced by these systems, it is necessary to evaluate them on a regular basis. Unfortunately, there is no regulation in Brazil about the Quality Assurance of these systems. The aim of this study was to develop a set of test objects that allow the evaluation of some parameters of image quality of these systems, such as field image uniformity, the linearity between the air Kerma incident on detector and the mean pixel value (MPV) of the image, the spatial resolution of the system through the modulation transfer function (MTF) and also to suggest an object to be applied in the evaluation of contrast-to-noise ratio (CNR) and signal-difference-to-noise ratio (SDNR). In order to test the objects. 10 mammography centers were evaluated, seven with CR systems and three with the DR systems. To evaluate the linearity, besides the test objects high sensitivity dosimeters were necessary to be used, namely LiF:Mg,Cu,P TL dosimeters. The use of these dosimeters was recommended in order to minimize the time required to perform the tests and to decrease the number of exposures needed. For evaluation of digital images in DICOM format

  13. Image quality and radiation exposure in digital storage plate mammography with magnification technique

    International Nuclear Information System (INIS)

    Fiedler, E.; Aichinger, U.; Boehner, C.; Schulz-Wendtland, R.; Bautz, W.; Saebel, M.

    1999-01-01

    Purpose: Comparison of image quality between digital phosphor storage plate mammography in magnification technique and a conventional film screen system regarding the special aspect of radiation exposure. Materials and Methods: Radiograms of a RMI-mammography phantom were acquired using a conventional film screen system and two digital storage plate systems. Additionally, the radiograms of one digital system were postprocessed emphasizing contrast and included in the comparison. Results: The detectability of details in storage plate mammographies with magnification technique is almost equal to that of film screen mammographies. Thereby, lower radiation exposures were necessary using the digital systems. Conclusions: Based on these results, storage plate mammography in magnification technique is used in clinical routine at our institution. The correct parameters in image postprocessing are of elementary importance for detail detectability. Future studies must show, whether the lower radiation exposure in digital radiograms of the breast, revealing much higher background noise, will allow the same detail detectability as film screen mammographies. (orig.) [de

  14. Advantages of digital radiography: The DSI system

    International Nuclear Information System (INIS)

    Drouillard, J.

    1990-01-01

    The experience gained over a period of several months, applying the digital and image-enhanced radiography with the DSI system for examination of some hundreds of patients, has confirmed in our eyes the system's diagnostic and economic efficiency, and the important achievement of radiation dose abatement. Looking at the current results and improvements under way (Release 2), there is reason enough to support an extension of the range of indications, especially regarding arteriography and interventional radiography. According to our experience, the DSI system meets the requirements of a modern radiology department: reduction of operating costs, limitation of radiation dose, efficiency enhancement by digital imaging. (orig.) [de

  15. Use of an automated digital images system for detecting plant status changes in response to climate change manipulations

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo

    2014-05-01

    The importance of phenological research for understanding the consequences of global environmental change on vegetation is highlighted in the most recent IPCC reports. Collecting time series of phenological events appears to be of crucial importance to better understand how vegetation systems respond to climatic regime fluctuations, and, consequently, to develop effective management and adaptation strategies. However, traditional monitoring of phenology is labor intensive and costly and affected to a certain degree of subjective inaccuracy. Other methods used to quantify the seasonal patterns of vegetation development are based on satellite remote sensing (land surface phenology) but they operate at coarse spatial and temporal resolution. To overcome the issues of these methodologies different approaches for vegetation monitoring based on "near-surface" remote sensing have been proposed in recent researches. In particular, the use of digital cameras has become more common for phenological monitoring. Digital images provide spectral information in the red, green, and blue (RGB) wavelengths. Inflection points in seasonal variations of intensities of each color channel can be used to identify phenological events. Canopy green-up phenology can be quantified from the greenness indices. Species-specific dates of leaf emergence can be estimated by RGB image analyses. In this research, an Automated Phenological Observation System (APOS), based on digital image sensors, was used for monitoring the phenological behavior of shrubland species in a Mediterranean site. The system was developed under the INCREASE (an Integrated Network on Climate Change Research) EU-funded research infrastructure project, which is based upon large scale field experiments with non-intrusive climatic manipulations. Monitoring of phenological behavior was conducted continuously since October 2012. The system was set to acquire one panorama per day at noon which included three experimental plots for

  16. Computer processing of the scintigraphic image using digital filtering techniques

    International Nuclear Information System (INIS)

    Matsuo, Michimasa

    1976-01-01

    The theory of digital filtering was studied as a method for the computer processing of scintigraphic images. The characteristics and design techniques of finite impulse response (FIR) digital filters with linear phases were examined using the z-transform. The conventional data processing method, smoothing, could be recognized as one kind of linear phase FIR low-pass digital filtering. Ten representatives of FIR low-pass digital filters with various cut-off frequencies were scrutinized from the frequency domain in one-dimension and two-dimensions. These filters were applied to phantom studies with cold targets, using a Scinticamera-Minicomputer on-line System. These studies revealed that the resultant images had a direct connection with the magnitude response of the filter, that is, they could be estimated fairly well from the frequency response of the digital filter used. The filter, which was estimated from phantom studies as optimal for liver scintigrams using 198 Au-colloid, was successfully applied in clinical use for detecting true cold lesions and, at the same time, for eliminating spurious images. (J.P.N.)

  17. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  18. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system

    Science.gov (United States)

    Tucker, Andrew W.; Lu, Jianping; Zhou, Otto

    2013-01-01

    Purpose: In principle, a stationary digital breast tomosynthesis (s-DBT) system has better image quality when compared to continuous motion DBT systems due to zero motion blur of the source. The authors have developed a s-DBT system by using a linear carbon nanotube x-ray source array. The purpose of the current study was to quantitatively evaluate the performance of the s-DBT system; and investigate the dependence of imaging quality on the system configuration parameters. Methods: Physical phantoms were used to assess the image quality of each configuration including inplane resolution as measured by the modulation transfer function (MTF), inplane contrast as measured by the signal difference to noise ratio (SdNR), and depth resolution as measured by the z-axis artifact spread function. Five parameters were varied to create five groups of configurations: (1) total angular span; (2) total number of projection images; (3) distribution of exposure (mAs) across the projection images; (4) entrance dose; (5) detector pixel size. Results: It was found that the z-axis depth resolution increased with the total angular span but was insensitive to the number of projection images, mAs distribution, entrance dose, and detector pixel size. The SdNR was not affected by the angular span or the number of projection images. A decrease in SdNR was observed when the mAs was not evenly distributed across the projection images. As expected, the SdNR increased with entrance dose and when larger pixel sizes were used. For a given detector pixel size, the inplane resolution was found to be insensitive to the total angular span, number of projection images, mAs distribution, and entrance dose. A 25% increase in the MTF was observed when the detector was operating in full resolution mode (70 μm pixel size) compared to 2 × 2 binned mode (140 μm pixel size). Conclusions: The results suggest that the optimal imaging configuration for a s-DBT system is a large angular span, an intermittent

  19. Digital Imaging: An Adobe Photoshop Course

    Science.gov (United States)

    Cobb, Kristine

    2007-01-01

    This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…

  20. Digital image analysis

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Vainer, Ben; Steiniche, Torben

    2012-01-01

    Digital image analysis (DIA) is increasingly implemented in histopathological research to facilitate truly quantitative measurements, decrease inter-observer variation and reduce hands-on time. Originally, efforts were made to enable DIA to reproduce manually obtained results on histological slides...... reproducibility, application of stereology-based quantitative measurements, time consumption, optimization of histological slides, regions of interest selection and recent developments in staining and imaging techniques....

  1. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  2. Conversion to use of digital chest images for surveillance of coal workers' pneumoconiosis (black lung).

    Science.gov (United States)

    Levine, Betty A; Ingeholm, Mary Lou; Prior, Fred; Mun, Seong K; Freedman, Matthew; Weissman, David; Attfield, Michael; Wolfe, Anita; Petsonk, Edward

    2009-01-01

    To protect the health of active U.S. underground coal miners, the National Institute for Occupational Safety and Health (NIOSH) has a mandate to carry out surveillance for coal workers' pneumoconiosis, commonly known as Black Lung (PHS 2001). This is accomplished by reviewing chest x-ray films obtained from miners at approximately 5-year intervals in approved x-ray acquisition facilities around the country. Currently, digital chest images are not accepted. Because most chest x-rays are now obtained in digital format, NIOSH is redesigning the surveillance program to accept and manage digital x-rays. This paper highlights the functional and security requirements for a digital image management system for a surveillance program. It also identifies the operational differences between a digital imaging surveillance network and a clinical Picture Archiving Communication Systems (PACS) or teleradiology system.

  3. The Image Quality of a Digital Chest X-Ray Radiography System: Comparison of Quantitative Image Quality Analysis and Radiologists' Visual Scoring

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Ho [Dept. of Radiology Oncology, Yongsan Hospital, Pusan National University College of Medicine, Yongsan (Korea, Republic of); Chung, Myung Jin [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Park, Darl; Kim, Won Taek; Kim, Yong Ho; Ki, Yong Kan; Kim, DFong Hyun; Lee, Ju Hee; Kim, Dong Won [Dept. of Radiology Oncology, Yongsan Hospital, Pusan National University College of Medicine, Yongsan (Korea, Republic of); Jeon, Ho Sang [Reserach Institue for Convergence of Biomedical Science and Technology, Yongsan Hospital, Pusan National University College of Medicine, Yongsan (Korea, Republic of)

    2011-11-15

    To evaluate the performance of imaging devices, which should be periodically monitored to maintain high quality images to the radiologists. Additionally, this evaluation may prevent patients from radiation over-exposure. The most suitable engineering standard for imaging performance evaluation of digital X-ray thoracic images was determined. IEC 62220-1 standards were used to evaluate the performance of the images. In succession, the visibilities of overall image, pneumothorax, and humerus head in anthropomorphic thoracic phantom images were used to evaluate the image qualities by radiologists. The rank correlation coefficient (p) of visual scoring by radiologists with system spatial resolution is not meaningful (p-value, p = 0.295), but is significant with image noise (p-value, p -0.9267). Finally, the noise equivalent quanta (NEQ) presents a high rank correlation for visual scoring of radiologists (p-value, p = 0.9320). Image quality evaluation of radiologists were mainly affected by imaging noise. Hence, the engineered standard for evaluating image noise is the most important index to effectively monitor the performance of X-ray images. Additionally, the NEQ can be used to evaluate the performance of radiographic systems, because it theoretically corresponds to the synthetic image quality of systems.

  4. Applications of digital image analysis capability in Idaho

    Science.gov (United States)

    Johnson, K. A.

    1981-01-01

    The use of digital image analysis of LANDSAT imagery in water resource assessment is discussed. The data processing systems employed are described. The determination of urban land use conversion of agricultural land in two southwestern Idaho counties involving estimation and mapping of crop types and of irrigated land is described. The system was also applied to an inventory of irrigated cropland in the Snake River basin and establishment of a digital irrigation water source/service area data base for the basin. Application of the system to a determination of irrigation development in the Big Lost River basin as part of a hydrologic survey of the basin is also described.

  5. Treatment verification system in radiotherapy using a digital portal imaging device. Comparison with screen/film systems

    International Nuclear Information System (INIS)

    Nakata, Manabu; Komai, Yoshinori; Okada, Takashi; Fukumoto, Satoshi; Chadani, Kazuma; Nohara, Hiroki; Kazusa, Chudou.

    1994-01-01

    A digital portal imaging (DPI) system for megavoltage photon beams was installed recently in our department. The purpose of this study is to evaluate the image quality of this system. We have analyzed the following properties of the system; relationship between measured dose-rate and pixel values of the DPI, spatial resolution, detectability of low-contrast objects and setup errors. The results were compared with those of conventional screen-film systems. As a result, the relationship between the measured dose-rate and the pixel value of the DPI was found to be linear in the dose-rate range between 100 and 400 cGy/min. Spatial resolution was 1.25 and 0.5 mm for the DPI and the screen-film systems, respectively. The slope of the contrast-detail curves differed between the DPI and the screen-film systems, the contrast thresholds were 0.6 and 0.3% for the DPI and the screen-film systems, respectively. The detectability of a setup error of 1 mm and 2 mm for the DPI was lower than that by the screen-film systems, although the difference was not very significant. In conclusion, the image quality of the DPI at present time is slightly inferior to the conventional screen-film systems. However, notable advantages of the DPI system are that any positional changes in patients during irradiation can be detected very quickly, and that quantitative analysis of the setup variation can be obtained. The image quality of the DPI will be improved as the technology regarding advances. Therefore, this verification system using the DPI device, is expected to be used for clinical radiation therapy in the future. (author)

  6. Securing Digital Images Integrity using Artificial Neural Networks

    Science.gov (United States)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  7. New possibilities of digital luminescence radiography (DLR) and digital image processing for verification and portal imaging

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Blume, J.; Wendhausen, H.; Hebbinghaus, D.; Kovacs, G.; Eilf, K.; Schultze, J.; Kimmig, B.N.

    1995-01-01

    We developed a method, using digital luminescence radiography (DLR), not only for portal imaging of photon beams in an excellent quality, but also for verification of electron beams. Furtheron, DLR was used as basic instrument for image fusion of portal and verification film and simulation film respectively for image processing in ''beams-eye-view'' verification (BEVV) of rotating beams or conformation therapy. Digital radiographs of an excellent quality are gained for verification of photon and electron beams. In photon beams, quality improvement vs. conventional portal imaging may be dramatic, even more for high energy beams (e.g. 15-MV-photon beams) than for Co-60. In electron beams, excellent results may be easily obtained. By digital image fusion of 1 or more verification films on simulation film or MRI-planning film, more precise judgement even on small differences between simulation and verification films becomes possible. Using BEVV, it is possible to compare computer aided simulation in rotating beams or conformation therapy with the really applied treatment. The basic principle of BEVV is also suitable for dynamic multileaf collimation. (orig.) [de

  8. An experimental study on the readability of digital images in the furcal bone defects

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Wuk; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2003-06-15

    To evaluate and compare the efficacy of digital radiographic images in the detection of bone loss at the bifurcation area of the mandibular first molar with traditional film-based periapical radiographs. One dried human mandible with minimal periodontal bone loss around the first molar was selected and an artificial alveolar bone defect at the bifurcation area was serially prepared over 18 steps. Images were taken using a direct CCD-based system and with F-speed periapical films. The images were evaluated by seven interpreters (3 radiologists, 3 periodontologists, and 1 general dentist) using a 5-point confidence rating scale. The readability of both periapical radiographs and digital image increased as the size of the artificial lesion and exposure time increased (p<0.05). Periapical radiographs offered greater readability of smaller bone defects than digital images, and the coefficient of variation of mean score between periapical radiographs and digital images showed a significant difference. The experimental results indicate that a significant difference in the coefficient of variation of mean score exists between periapical radiographs and digital images, and that traditional film-based periapical images offer greater readability of smaller bone defects than digital images can presently offer.

  9. An experimental study on the readability of digital images in the furcal bone defects

    International Nuclear Information System (INIS)

    Kang, Hyung Wuk; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To evaluate and compare the efficacy of digital radiographic images in the detection of bone loss at the bifurcation area of the mandibular first molar with traditional film-based periapical radiographs. One dried human mandible with minimal periodontal bone loss around the first molar was selected and an artificial alveolar bone defect at the bifurcation area was serially prepared over 18 steps. Images were taken using a direct CCD-based system and with F-speed periapical films. The images were evaluated by seven interpreters (3 radiologists, 3 periodontologists, and 1 general dentist) using a 5-point confidence rating scale. The readability of both periapical radiographs and digital image increased as the size of the artificial lesion and exposure time increased (p<0.05). Periapical radiographs offered greater readability of smaller bone defects than digital images, and the coefficient of variation of mean score between periapical radiographs and digital images showed a significant difference. The experimental results indicate that a significant difference in the coefficient of variation of mean score exists between periapical radiographs and digital images, and that traditional film-based periapical images offer greater readability of smaller bone defects than digital images can presently offer.

  10. Considerations on a VXI based digital image surveillance system

    International Nuclear Information System (INIS)

    Gaertner, K.J.; Neumann, G.; Richter, B.

    1995-01-01

    In 1992 the International Atomic Energy Agency established the IAEA Integrated Safeguards Instrumentation Programme (I 2 SIP) which provides a conceptual framework to guide new equipment development activities. One of the main goals of I 2 SIP is to define the optimum structure of future safeguards equipment inventory that would enable the integration of containment, surveillance and unattended radiation monitoring modules for application in facilities with complex safeguards systems. This approach implies a modular equipment structure in both hardware and software. In December 1993, a Consultants Meeting concluded that the VXI instrument bus (VXIbus) standard does not appear to have any technical limitations that will inhibit the use of I 2 SIP and should be considered the first choice for future safeguards equipment. The Agency's development plan for Digital Image Surveillance (DIS) is part of the I 2 SIP and has defined the need for 'distributed systems', i.e. for multichannel surveillance systems, which should accommodate the integration aspect and meet requirements for both mail-in of recorded information to the Agency and remote surveillance. The paper describes the basic considerations that have led to the selection of the VXI bus to be used for such a system including the different modules emphasizing the integration issue

  11. Digital remote viewing system for coronary care unit

    International Nuclear Information System (INIS)

    Cho, P.S.; Tillisch, J.; Huang, H.K.

    1987-01-01

    A digital remote viewing system developed for the coronary care unit at the UCLA Medical Center has been in clinical operation since March 1, 1987. The present system consists of three 512-line monitors, VAX 11/750, Gould IP8500 image processor and a broad-band communication system. The patients' images are acquired with a computed radiography system and are transmitted to the coronary care unit, which is five floors above the radiology department. This exhibit presents the architecture and the performance characteristics of the system. Also, the second-generation system, which consists of an intelligent local work station with three 1,024-line monitors and a fast digital communication network, will be introduced

  12. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  13. Digital image processing in NDT : Application to industrial radiography

    International Nuclear Information System (INIS)

    Aguirre, J.; Gonzales, C.; Pereira, D.

    1988-01-01

    Digital image processing techniques are applied to image enhancement discontinuity detection and characterization is radiographic test. Processing is performed mainly by image histogram modification, edge enhancement, texture and user interactive segmentation. Implementation was achieved in a microcomputer with video image capture system. Results are compared with those obtained through more specialized equipment main frame computers and high precision mechanical scanning digitisers. Procedures are intended as a precious stage for automatic defect detection

  14. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  15. Development of Shimadzu digital subtraction system

    International Nuclear Information System (INIS)

    Nishioka, Hiroyuki; Shibata, Koichi; Shimizu, Yasumitsu; Shibata, Kenji; Wani, Hidenobu

    1985-01-01

    Shimadzu has recently developed a digital subtraction system. It can perform intra-arterial digital subtraction angiography (DSA) using low concentration of contrast medium, or can visualize arteries with intravenuous injection. It can extremely reduce patient's pain in angiography. Image quality of DSA has been much improved by the development of high quality image amplifiers, improvement of signal-to-noise ratio of the x-ray television unit and the development of digital disk recorders. The peak-hold subtraction method that is now under clinical study presents images of blood vessels as the trace of the flow of contrast medium. The maximum-hold memory where the maximum value of the brightness in some period is stored for every picture element is subtracted from the minimum-hold memory where the minimum value is stored, and thus images of blood vessels can be obtained. Hardware of this method is rather simple and it is expected that the amount of contrast medium may be reduced or x-ray dose of the patient may be decreased. (author)

  16. Losing Images in Digital Radiology: More than You Think

    OpenAIRE

    Oglevee, Catherine; Pianykh, Oleg

    2014-01-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and dai...

  17. Characterizing stroke lesions using digital templates and lesion quantification tools in a web-based imaging informatics system for a large-scale stroke rehabilitation clinical trial

    Science.gov (United States)

    Wang, Ximing; Edwardson, Matthew; Dromerick, Alexander; Winstein, Carolee; Wang, Jing; Liu, Brent

    2015-03-01

    Previously, we presented an Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) imaging informatics system that supports a large-scale phase III stroke rehabilitation trial. The ePR system is capable of displaying anonymized patient imaging studies and reports, and the system is accessible to multiple clinical trial sites and users across the United States via the web. However, the prior multicenter stroke rehabilitation trials lack any significant neuroimaging analysis infrastructure. In stroke related clinical trials, identification of the stroke lesion characteristics can be meaningful as recent research shows that lesion characteristics are related to stroke scale and functional recovery after stroke. To facilitate the stroke clinical trials, we hope to gain insight into specific lesion characteristics, such as vascular territory, for patients enrolled into large stroke rehabilitation trials. To enhance the system's capability for data analysis and data reporting, we have integrated new features with the system: a digital brain template display, a lesion quantification tool and a digital case report form. The digital brain templates are compiled from published vascular territory templates at each of 5 angles of incidence. These templates were updated to include territories in the brainstem using a vascular territory atlas and the Medical Image Processing, Analysis and Visualization (MIPAV) tool. The digital templates are displayed for side-by-side comparisons and transparent template overlay onto patients' images in the image viewer. The lesion quantification tool quantifies planimetric lesion area from user-defined contour. The digital case report form stores user input into a database, then displays contents in the interface to allow for reviewing, editing, and new inputs. In sum, the newly integrated system features provide the user with readily-accessible web-based tools to identify the vascular territory involved, estimate lesion area

  18. Image quality and dose management in digital radiography: A new paradigm for optimisation

    International Nuclear Information System (INIS)

    Busch, H. P.; Faulkner, K.

    2005-01-01

    The advent of digital imaging in radiology, combined with the explosive growth of technology, has dramatically improved imaging techniques. This has led to the expansion of diagnostic capabilities, both in terms of the number of procedures and their scope. Throughout the world, film/ screen radiography systems are being rapidly replaced with digital systems. Many progressive medical institutions have acquired, or are considering the purchase of computed radiography systems with storage phosphor plates or direct digital radiography systems with flat panel detectors. However, unknown to some users, these devices offer a new paradigm of opportunity and challenges. Images can be obtained at a lower dose owing to the higher detective quantum efficiency (DQE). These fundamental differences in comparison to conventional film/screens necessitate the development of new strategies for dose and quality optimisations. A set of referral criteria based upon three dose levels is proposed. (authors)

  19. Digital image analyser for autoradiography

    International Nuclear Information System (INIS)

    Muth, R.A.; Plotnick, J.

    1985-01-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis

  20. Quality assurance of computed and digital radiography systems

    International Nuclear Information System (INIS)

    Walsh, C.; Gorman, D.; Byrne, P.; Larkin, A.; Dowling, A.; Malone, J. F.

    2008-01-01

    Computed radiography (CR) and digital radiography (DR) are replacing traditional film screen radiography as hospitals move towards digital imaging and picture archiving and communication systems (PACS). Both IPEM and KCARE have recently published quality assurance and acceptance testing guidelines for DR. In this paper, the performance of a range of CR and DR systems is compared. Six different manufacturers are included. Particular attention is paid to the performance of the systems under automatic exposure control (AEC). The patient is simulated using a range of thicknesses of tissue equivalent material. Image quality assessment was based on detector assessment protocols and includes pixel value measures as well as subjective assessment using Leeds Test Objects. The protocols for detector assessment cover a broad range of tests and in general detectors (whether DR or CR) performed satisfactorily. The chief limitation in performing these tests was that not all systems provided ready access to pixel values. Subjective tests include the use of the Leeds TO20. As part of this work, suggested reference values are provided to calculate the TO20 image quality factor. One consequence of moving from film screen to digital technologies is that the dynamic range of digital detectors is much wider, and increased exposures are no longer evident from changes in image quality. As such, AEC is a key parameter for CR and DR. Dose was measured using a standard phantom as a basic means of comparing systems. In order to assess the AEC performance, exit doses were also measured while varying phantom thickness. Signal-to-noise ratios (SNRs) were calculated on a number of systems where pixel values were available. SNR was affected by the selection of acquisition protocol. Comparisons between different technologies and collation of data will help refine acceptance thresholds and contribute to optimising dose and image quality. (authors)

  1. Preliminary evaluation of a prototype stereoscopic a-Si:H-based X-ray imaging system for full-field digital mammography

    International Nuclear Information System (INIS)

    Darambara, D.G.; Speller, R.D.; Horrocks, J.A.; Godber, S.; Wilson, R.; Hanby, A.

    2001-01-01

    In a pre-clinical study, we have been investigating the potential of a-Si:H active matrix, flat panel imagers for X-ray full-field digital mammography through the development of an advanced 3D X-ray imaging system and have measured a number of their important imaging characteristics. To enhance the information embodied into the digital images produced by the a-Si array, stereoscopic images, created by viewing the object under examination from two angles and recombining the images, were obtained. This method provided us with a full 3D X-ray image of the test object as well as left and right perspective 2D images all at the same time. Within this scope, images of fresh, small human breast tissue specimens--normal and diseased--were obtained at ±2 deg., processed and stereoscopically displayed for a pre-clinical evaluation by radiologists. It was demonstrated that the stereoscopic presentation of the images provides important additional information and has potential benefits over the more traditional 2D data

  2. Earth analog image digitization of field, aerial, and lab experiment studies for Planetary Data System archiving.

    Science.gov (United States)

    Williams, D. A.; Nelson, D. M.

    2017-12-01

    A portion of the earth analog image archive at the Ronald Greeley Center for Planetary Studies (RGCPS)-the NASA Regional Planetary Information Facility at Arizona State University-is being digitized and will be added to the Planetary Data System (PDS) for public use. This will be a first addition of terrestrial data to the PDS specifically for comparative planetology studies. Digitization is separated into four tasks. First is the scanning of aerial photographs of volcanic and aeolian structures and flows. The second task is to scan field site images taken from ground and low-altitude aircraft of volcanic structures, lava flows, lava tubes, dunes, and wind streaks. The third image set to be scanned includes photographs of lab experiments from the NASA Planetary Aeolian Laboratory wind tunnels, vortex generator, and of wax models. Finally, rare NASA documents are being scanned and formatted as PDF files. Thousands of images are to be scanned for this project. Archiving of the data will follow the PDS4 standard, where the entire project is classified as a single bundle, with individual subjects (i.e., the Amboy Crater volcanic structure in the Mojave Desert of California) as collections. Within the collections, each image is considered a product, with a unique ID and associated XML document. Documents describing the image data, including the subject and context, will be included with each collection. Once complete, the data will be hosted by a PDS data node and available for public search and download. As one of the first earth analog datasets to be archived by the PDS, this project could prompt the digitizing and making available of historic datasets from other facilities for the scientific community.

  3. Evaluation of average glandular dose in digital and conventional systems of the mammography

    International Nuclear Information System (INIS)

    Xavier, Aline C.S.; Barros, Vinicius S.M.; Khoury, Hellen J.

    2014-01-01

    Mammography is currently the most effective method of diagnosis and detection of breast pathologies. The main interest in this kid of exam comes from the high incidence rate of breast cancer and necessity of high quality images for accurate diagnosis. Digital mammography systems have several advantages compared to conventional systems, however the use of digital imaging systems is not always integrated to an image acquisition protocol. Therefore, it is questionable if digital systems truly reduce the dose received by the patient, because many times is introduced in the clinics without optimization of the image acquisition protocols. The aim of this study is to estimate the value of incident air Kerma and average glandular dose (AGD) in patients undergoing conventional and digital mammography systems in Recife. This study was conducted with 650 patients in three hospitals. The value of incident air Kerma was estimated from the measurement of the yield of equipment and irradiation parameters used for each patient. From these results and using the methodology proposed by Dance et al. the value of the average glandular dose was calculated. The results obtained show that the lowest value of AGD was found with conventional screen-film system, indicating that the parameters for image acquisition with digital systems are not optimized. It was also observed that the institutions with digital systems use lower breast compression values than the conventional. (author)

  4. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  5. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators......This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  6. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  7. The impact of digital imaging in the field of cytopathology.

    Science.gov (United States)

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2009-03-06

    With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.

  8. Image Format Conversion to DICOM and Lookup Table Conversion to Presentation Value of the Japanese Society of Radiological Technology (JSRT) Standard Digital Image Database.

    Science.gov (United States)

    Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki

    2016-01-01

    Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.

  9. Clinical application of digital angiographic system DIGITEX2400

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Masumi; Tanaka, Shuji; Fujino, Yoshiyuki; Yasumi, Masayuki (Shimadzu Corp., Kyoto (Japan))

    1992-10-01

    Digital angiography (DA) has been of widespread use clinically, and it has attracted considerable attention in angiographic examination today. And under the condition of the spread of interventional angiography, not only high quality image but also ease of operation are required to the system. The clinical usefullness of digital angiographic system DIGITEX2400 are reported in this paper. (author).

  10. Clinical application of digital angiographic system DIGITEX2400

    International Nuclear Information System (INIS)

    Kawai, Masumi; Tanaka, Shuji; Fujino, Yoshiyuki; Yasumi, Masayuki

    1992-01-01

    Digital angiography (DA) has been of widespread use clinically, and it has attracted considerable attention in angiographic examination today. And under the condition of the spread of interventional angiography, not only high quality image but also ease of operation are required to the system. The clinical usefullness of digital angiographic system DIGITEX2400 are reported in this paper. (author)

  11. Experiences upgrading a fluoroscopic system to digital specifications

    International Nuclear Information System (INIS)

    Fox, T.; Fenzl, G.

    1995-01-01

    In 1993, an undertable fluoroscopic system was retrofitted with a Fluorospot HC digital system at the radiological clinic of the Knappschaftskrankenhaus in Puettlingen, Germany. The experiences and possibilities resulting from this digital upgrade are related by the authors, whose narrative is also accompanied by examples of clinical images. The costs involved are also discussed in this article. (orig.)

  12. Image Quality and Radiation Dose Assessment of a Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, N. M.; Hassan, W. M. S. W.; Abdullah, W. A. K. W.; Othman, F.; Ramli, A. A. M.

    2010-01-01

    Image quality and radiation dose of a direct amorphous selenium digital mammography system were considered in terms of contrast to noise ratio (CNR) and average glandular dose (AGD). They were measured for various qualities and breast phantom thicknesses with different types of breast tissue composition to determine optimal radiation quality and dose. Three sets of breast tissue equivalent slabs (30%:70%, 50%:50% and 70%:30% glandular-adipose) with thickness of 2 cm to 7 cm and 0.2 mm aluminum foil were used to provide certain CNR. Two different combinations of anode/ilter material and a wide range of tube voltages were employed for each phantom thickness. Phantom images with grid were acquired using automatic exposure control (AEC) mode for each thickness. Phantom images without grid were also obtained in manual exposure mode by selecting the same anode/filter combination and kVp as the image obtained with grid at the same thickness, but varying mAs of 10 to 200 mAs. Optimization indicated that relatively high energy beam qualities should be used with a greater dose to compensate for lower energy x-rays. The results also indicate that current AEC setting for a fixed detector is not optimal.

  13. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  14. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  15. Steganography and Steganalysis in Digital Images

    Science.gov (United States)

    2012-01-01

    REPORT Steganography and Steganalysis in Digital Images 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Steganography (from the Greek for "covered writing...12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Least Significant Bit ( LSB ), steganography , steganalysis, stegogramme. Dr. Jeff Duffany...Z39.18 - Steganography and Steganalysis in Digital Images Report Title ABSTRACT Steganography (from the Greek for "covered writing") is the secret

  16. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  17. Comparison of vessel contrast measured with a scanning-beam digital x-ray system and an image intensifier/television system

    International Nuclear Information System (INIS)

    Speidel, Michael A.; Wilfley, Brian P.; Heanue, Joseph A.; Betts, Timothy D.; Van Lysel, Michael S.

    2001-01-01

    Vessel contrast was measured in the fluoroscopic images produced by a scanning-beam digital x-ray (SBDX) system and an image intensifier/television (II/TV) based system. The SBDX system electronically scans a series of pencil x-ray beams across the patient, each of which is directed at a distant small-area detector array. The reduction in detected scatter achieved with this geometry was expected to provide an increase in image contrast. Vessel contrast was evaluated from images of a phantom containing iodinated tubes. The vessels were inserted into an acrylic stack to provide a patient-mimicking scattering medium. Vessel diameter ranged from 0.3 to 3.1 mm. Images were acquired at 100 kVp with the SBDX and II/TV systems and averaged to reduce x-ray noise. The II/TV system was operated in the 6-in. image intensifier mode with an anti-scatter grid. The increase in contrast in the SBDX images, expressed as a ratio of the measured SBDX and II/TV contrasts, ranged from 1.63 to 1.79 for individual vessels. This agreed well with a prediction of the contrast improvement ratio for this experiment, based on measurements of the scatter fraction, object-plane line spread functions, and consideration of the source spectrum and detector absorption properties. The predicted contrast improvement ratio for SBDX relative to II/TV images was 1.62 to 1.77

  18. Technology insertion of a COTS RAID server as an image buffer in the image chain of the Defense Mapping Agency's Digital Production System

    Science.gov (United States)

    Mehring, James W.; Thomas, Scott D.

    1995-11-01

    The Data Services Segment of the Defense Mapping Agency's Digital Production System provides a digital archive of imagery source data for use by DMA's cartographic user's. This system was developed in the mid-1980's and is currently undergoing modernization. This paper addresses the modernization of the imagery buffer function that was performed by custom hardware in the baseline system and is being replaced by a RAID Server based on commercial off the shelf (COTS) hardware. The paper briefly describes the baseline DMA image system and the modernization program, that is currently under way. Throughput benchmark measurements were made to make design configuration decisions for a commercial off the shelf (COTS) RAID Server to perform as system image buffer. The test program began with performance measurements of the RAID read and write operations between the RAID arrays and the server CPU for RAID levels 0, 5 and 0+1. Interface throughput measurements were made for the HiPPI interface between the RAID Server and the image archive and processing system as well as the client side interface between a custom interface board that provides the interface between the internal bus of the RAID Server and the Input- Output Processor (IOP) external wideband network currently in place in the DMA system to service client workstations. End to end measurements were taken from the HiPPI interface through the RAID write and read operations to the IOP output interface.

  19. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  20. Trainable Cataloging for Digital Image Libraries with Applications to Volcano Detection

    Science.gov (United States)

    Burl, M. C.; Fayyad, U. M.; Perona, P.; Smyth, P.

    1995-01-01

    Users of digital image libraries are often not interested in image data per se but in derived products such as catalogs of objects of interest. Converting an image database into a usable catalog is typically carried out manually at present. For many larger image databases the purely manual approach is completely impractical. In this paper we describe the development of a trainable cataloging system: the user indicates the location of the objects of interest for a number of training images and the system learns to detect and catalog these objects in the rest of the database. In particular we describe the application of this system to the cataloging of small volcanoes in radar images of Venus. The volcano problem is of interest because of the scale (30,000 images, order of 1 million detectable volcanoes), technical difficulty (the variability of the volcanoes in appearance) and the scientific importance of the problem. The problem of uncertain or subjective ground truth is of fundamental importance in cataloging problems of this nature and is discussed in some detail. Experimental results are presented which quantify and compare the detection performance of the system relative to human detection performance. The paper concludes by discussing the limitations of the proposed system and the lessons learned of general relevance to the development of digital image libraries.

  1. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  2. A study on assessment of bone mass from aluminum-equivalent image by digital imaging system

    International Nuclear Information System (INIS)

    Kim, Jin Soo; Kim, Jae Duck; Choi, Eui Hwan

    1997-01-01

    The purpose of this study was to evaluated the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxy apatite block and hydroxyapatite mass. The results of this study were as follows : 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated (r2=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference (P<0.05) between them. 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r2 =0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different (P<0.05).

  3. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon, E-mail: choi.sh@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Seungwan [Department of Radiological Science, College of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon, 308-812 (Korea, Republic of); Lee, Haenghwa [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Donghoon; Choi, Seungyeon [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Shin, Jungwook [LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2017-03-11

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections (~80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin{sup ®} (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  4. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  5. [Digital imaging and robotics in endoscopic surgery].

    Science.gov (United States)

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).

  6. The in vitro and in vivo validation of a mobile non-contact camera-based digital imaging system for tooth colour measurement.

    Science.gov (United States)

    Smith, Richard N; Collins, Luisa Z; Naeeni, Mojgan; Joiner, Andrew; Philpotts, Carole J; Hopkinson, Ian; Jones, Clare; Lath, Darren L; Coxon, Thomas; Hibbard, James; Brook, Alan H

    2008-01-01

    To assess the reproducibility of a mobile non-contact camera-based digital imaging system (DIS) for measuring tooth colour under in vitro and in vivo conditions. One in vitro and two in vivo studies were performed using a mobile non-contact camera-based digital imaging system. In vitro study: two operators used the DIS to image 10 dry tooth specimens in a randomised order on three occasions. In vivo study 1:25 subjects with two natural, normally aligned, upper central incisors had their teeth imaged using the DIS on four consecutive days by one operator to measure day-to-day variability. On one of the four test days, duplicate images were collected by three different operators to measure inter- and intra-operator variability. In vivo study 2:11 subjects with two natural, normally aligned, upper central incisors had their teeth imaged using the DIS twice daily over three days within the same week to assess day-to-day variability. Three operators collected images from subjects in a randomised order to measure inter- and intra-operator variability. Subject-to-subject variability was the largest source of variation within the data. Pairwise correlations and concordance coefficients were > 0.7 for each operator, demonstrating good precision and excellent operator agreement in each of the studies. Intraclass correlation coefficients (ICCs) for each operator indicate that day-to-day reliability was good to excellent, where all ICC's where > 0.75 for each operator. The mobile non-contact camera-based digital imaging system was shown to be a reproducible means of measuring tooth colour in both in vitro and in vivo experiments.

  7. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  8. Development and application of all-digital monitoring system

    International Nuclear Information System (INIS)

    Xu Tao; Li Jing; Wang Wei

    2014-01-01

    All digital control system has developed into a mainstream means of monitoring, and achieved information, intelligence, and networking. All-digital control system is characterized by clear image, large transport stream, so the higher the data storage and network bandwidth should be required. Existing analog surveillance system architecture, hardware and software configuration can not meet the requirements of all-digital monitoring system, so how to solve the original analog surveillance system is gradually transformed into fully digital monitoring system, to avoid incompatibility issues in surveillance monitoring system upgrade become a research project. This paper describes the advantages and future direction of megapixels camera and proposes key technologies to solve the resolution and frame rate with the actual project requirements, achieves a core technology of megapixels video surveillance system, and proposes solutions for the actual renovation project problems. (authors)

  9. DHM (Digital Holography Microscope) for imaging cells

    International Nuclear Information System (INIS)

    Emery, Yves; Cuche, Etienne; Colomb, Tristan; Depeursinge, Christian; Rappaz, Benjamin; Marquet, Pierre; Magistretti, Pierre

    2007-01-01

    Light interaction with a sample modifies both intensity and phase of the illuminating wave. Any available supports for image recording are only sensitive to intensity, but Denis Gabor [P. Marquet, B. Rappaz, P. Magistretti, et. al. Digital Holography for quantitative phase-contrast imaging, Optics Letters, 30, 5, pp 291-93 (2005)] invented in 1948 a way to encode the phase as an intensity variation: the h ologram . Digital Holographic Microscopy (DHM) [D. Gabor, A new microscopic principle, Nature, 1948] implements digitally this powerful hologram. Characterization of various pollen grains and of morphology changes of neurones associated with hypotonic shock demonstrates the potential of DHM for imaging cells

  10. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various samples. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  11. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  12. A digital correlator upgrade for the Arcminute MicroKelvin Imager

    Science.gov (United States)

    Hickish, Jack; Razavi-Ghods, Nima; Perrott, Yvette C.; Titterington, David J.; Carey, Steve H.; Scott, Paul F.; Grainge, Keith J. B.; Scaife, Anna M. M.; Alexander, Paul; Saunders, Richard D. E.; Crofts, Mike; Javid, Kamran; Rumsey, Clare; Jin, Terry Z.; Ely, John A.; Shaw, Clive; Northrop, Ian G.; Pooley, Guy; D'Alessandro, Robert; Doherty, Peter; Willatt, Greg P.

    2018-04-01

    The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly that from geostationary satellites which are visible from the AMI site when observing at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators - one for each of AMI's two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two sub-bands, each of which are filtered to a width of 2.3 GHz and digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.

  13. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.

    Science.gov (United States)

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  14. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    Science.gov (United States)

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. An Open Source Low-Cost Automatic System for Image-Based 3d Digitization

    Science.gov (United States)

    Menna, F.; Nocerino, E.; Morabito, D.; Farella, E. M.; Perini, M.; Remondino, F.

    2017-11-01

    3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN) prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy).

  16. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  17. Digital data storage of core image using high resolution full color core scanner; Kokaizodo full color scanner wo mochiita core image no digital ka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, W; Ujo, S; Osato, K; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports on digitization of core images by using a new type core scanner system. This system consists of a core scanner unit (equipped with a CCD camera), a personal computer and ancillary devices. This is a modification of the old type system, with measurable core length made to 100 cm/3 scans, and resolution enhanced to 5100 pixels/m (1024 pixels/m in the old type). The camera was changed to that of a color specification, and the A/D conversion was improved to 24-bit full color. As a result of carrying out a detail reproduction test on digital images of this core scanner, it was found that objects can be identified at a level of about the size of pixels constituting the image in the case when the best contrast is obtained between the objects and the background, and that in an evaluation test on visibility of concaves and convexes on core surface, reproducibility is not very good in large concaves and convexes. 2 refs., 6 figs.

  18. Toward objective and quantitative evaluation of imaging systems using images of phantoms

    International Nuclear Information System (INIS)

    Gagne, Robert M.; Gallas, Brandon D.; Myers, Kyle J.

    2006-01-01

    The use of imaging phantoms is a common method of evaluating image quality in the clinical setting. These evaluations rely on a subjective decision by a human observer with respect to the faintest detectable signal(s) in the image. Because of the variable and subjective nature of the human-observer scores, the evaluations manifest a lack of precision and a potential for bias. The advent of digital imaging systems with their inherent digital data provides the opportunity to use techniques that do not rely on human-observer decisions and thresholds. Using the digital data, signal-detection theory (SDT) provides the basis for more objective and quantitative evaluations which are independent of a human-observer decision threshold. In a SDT framework, the evaluation of imaging phantoms represents a 'signal-known-exactly/background-known-exactly' ('SKE/BKE') detection task. In this study, we compute the performance of prewhitening and nonprewhitening model observers in terms of the observer signal-to-noise ratio (SNR) for these 'SKE/BKE' tasks. We apply the evaluation methods to a number of imaging systems. For example, we use data from a laboratory implementation of digital radiography and from a full-field digital mammography system in a clinical setting. In addition, we make a comparison of our methods to human-observer scoring of a set of digital images of the CDMAM phantom available from the internet (EUREF--European Reference Organization). In the latter case, we show a significant increase in the precision of the quantitative methods versus the variability in the scores from human observers on the same set of images. As regards bias, the performance of a model observer estimated from a finite data set is known to be biased. In this study, we minimize the bias and estimate the variance of the observer SNR using statistical resampling techniques, namely, 'bootstrapping' and 'shuffling' of the data sets. Our methods provide objective and quantitative evaluation of

  19. Eliminating "Hotspots" in Digital Image Processing

    Science.gov (United States)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  20. Description of an acquisition, management and archiving system for digital images

    International Nuclear Information System (INIS)

    Andre, M.; Agostini, S.; Clement, J.P.; Giaccone, A.; Lefevre, C.

    1990-01-01

    A digitalizing and archiving system, for radiologic pictures is presented. This system is composed by a camera, a microcomputer (Maclntosh II) with a digitalizing card and a great capacity optical disk (WORM) for storage. Acquiring and archiving are automatically driven by a special soft. The principal qualities of this system are simplicity for the user, speed and low cost [fr

  1. Losing images in digital radiology: more than you think.

    Science.gov (United States)

    Oglevee, Catherine; Pianykh, Oleg

    2015-06-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and daily quality of clinical work. This paper identifies the origins of invisible image losses, provides methods and procedures to detect image loss, and demonstrates modes of action that can be taken to stop the problem from happening.

  2. Quality assessment of the digitalization process of analog x-ray images

    International Nuclear Information System (INIS)

    Georgieva, D.

    2014-01-01

    Computer-assisted diagnosis enabled doctors for a second point-of-view on the test results. This improves the diseases' early detection and significantly reduces the chance of errors. These methods very nicely complemented the possibilities of digital medical imaging apparatus, but in analog images their applicability and results entirely depend on the quality of analog images digitalisation. Today many standards and remarks for good practices discuss the digital apparatus image quality but the digitalisation process of analog medical images is not a part of them. Medical imaging apparatus have become digital, but within an entirely digital medical environment is necessary for their ability to blend with the old analog medical imaging carriers. The life of patients doesn't start with the beginning of digital era and for the aim of tracking diseases it is necessary to use the new digital images as well as older analog ones. For the generation of 40-50 years a large archive of images is piled up, which should be accounted of in the diagnosis process. This article is the author's study of the digitalized image quality problem. It offers a new approach to the x-ray image digitalisation - getting the HDR-image by optical sensor. After the HDR-image generation method offers to be used a digital signal processing to improve the quality of the final 16 bit gray scale medical image. The new method for medical image enhancement is proposed - it improves the image contrast, it increases or preserves the dynamic range and it doesn't lead to the loss of small low contrast structures in the image. Key words: Quality of Digital X-Rays Images

  3. Digital subtraction radiography in the study of the lacrimal system

    International Nuclear Information System (INIS)

    Falaschi, F.; Pieri, L.; Perri, G.; Signorini, G.; Genovese Ebert, F.

    1988-01-01

    The authors emphasize the usefulness of digital dacrycystography (DCG), as compared with various current technoques. Utilizing a radiographic unit equipped with a video-fluoroscopic system and interfaced to a digital video-processor, several digitalized images are acquired before, during and after the injection of contrast medium. Final images are obtained by subtraction of suitable pairs of source frames. Twenty-six patients affected by epiphora have been examined so far. In 21 cases digital subtraction DCG allowed an accurate visualization of the lacrimal system; in the other five patients the amount of information was acceptable. This methodology allows the assessment of both the normal anatomy of the lacrimal passages and their pathological patterns, such as obstructions, stenoses, fistulas, chronic dacrycystites, lacrimal stones. The examination is easy and quick to perform, with no discomfort for the patient. Digital subtraction DCG proves thus to be a very valuable technique thanks to its possible electronic elaboration - i.e. the subtraction and the magnification of images - to its better contrast resolution, and to the possibility it yields of dynamic studies under radioscopic control

  4. FOOT ROT DISEASE IDENTIFICATION FOR VELLAIKODI VARIETY OF BETELVINE PLANTS USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    J. Vijayakumar

    2012-11-01

    Full Text Available Betelvine plants are infected variety of diseases in the complete plantation without any premature warning of the diseases. The aim of this paper is to detection of foot rot disease in the vellaikodi variety of betelvine plants using digital image processing techniques. The digital images of the uninfected or normal betelvine leaves and the digital images of the infected in foot rot diseased betelvine leaves at different stages are collected from different Betelvine plants using a high resolution digital camera and collected betelvine images are stored with JPEG format. The digital images of the betelvine leaves analyses are done using the image processing toolbox in MATLAB which gives the normal patterns of the digital images. Using RGB encoding process, the RGB components of the betelvine leaves are separated. The mean and median values for all sample leaves are computed and calculated values are stored in the system. The mean and median values of test leaves are computed and compared with the stored values. As the result of this comparison, it is identified whether test leaves are affected by foot rot disease or not. Finally this analysis helps to recognize the foot rot disease can be identified before it spreads to entire crop.

  5. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  6. Digital radiography

    International Nuclear Information System (INIS)

    Coulomb, M.; Dal Soglio, S.; Pittet-Barbier, L.; Ranchoup, Y.; Thony, F.; Ferretti, G.; Robert, F.

    1992-01-01

    Digital projection radiography may replace conventional radiography some day, provided it can meet several requirements: equal or better diagnostic effectiveness of the screen-film systems; reasonable image cost; real improvement in the productivity of the Departments of Imaging. All digital radiographic systems include an X-ray source, an image acquisition and formatting sub-system, a display and manipulation sub-system, and archiving subsystem and a laser editing system, preferably shared by other sources of digital images. Three digitization processes are available: digitization of the radiographic film, digital fluorography and phospholuminescent detectors with memory. The advantages of digital fluoroscopy are appealing: real-time image acquisition, suppression of cassettes; but its disadvantages are far from negligible: it cannot be applied to bedside radiography, the field of examination is limited, and the wide-field spatial resolution is poor. Phospholuminescent detectors with memory have great advantages: they can be used for bedside radiographs and on all the common radiographic systems; spatial resolution is satisfactory; its current disadvantages are considerable. These two systems, have common properties making up the entire philosophy of digital radiology and specific features that must guide our choice according to the application. Digital fluorography is best applied in pediatric radiology. However, evaluation works have showed that it was applicable with sufficient quality to many indications of general radiology in which a fluoroscopic control and fast acquisition of the images are essential; the time gained on the examination may be considerable, as well as the savings on film. Detectors with memory are required for bedside radiographs, in osteoarticular and thoracic radiology, in all cases of traumatic emergency and in the resuscitation and intensive care departments

  7. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.

    2013-06-13

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  8. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.; Schneider, J.; Hansen, A.; Lee, M.; Turney, S. G.; Faulkner-Jones, B. E.; Hecht, J. L.; Najarian, R.; Yee, E.; Lichtman, J. W.; Pfister, H.

    2013-01-01

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  9. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  10. Development of DIGITEXαPlus digital angiographic system

    International Nuclear Information System (INIS)

    Imanishi, Tetsuo; Miura, Yusuke; Sasaki, Osamu; Furuyama, Makoto; Yasumi, Masayuki

    2001-01-01

    The functions required of digital angiographic (DA) systems have been noticeably changing with the recent popularization of the technique of interventional radiology (IVR) in the field of angiography. We have developed a new digital angiographic system, named the DIGITEXαPlus, which is designed to meet the requirements of the latest IVR technologies. The DIGITEXαPlus system is equipped with a high-performance one-million-pixel CCD camera, a newly developed F.P.O. (fluoro-power optimizer), and a contrast-priority radiography control system, which combine together to provide high quality of images both in fluoroscopy and in fluorography. In this new system, a low-dose pulsed fluoroscopy method, employed as standard, minimizes the X-ray doses to patients, and an image controller (IVR MASTER) of a joy stick type provides more diversified functions that its predecessors. These two features enhance the reliability, and simplifies the operation, of the IVR system as a whole. (author)

  11. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    International Nuclear Information System (INIS)

    Annovazzi, A.; Amendolia, S.R.; Bigongiari, A.; Bisogni, M.G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M.E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-01-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18x24 cm 2 ), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%

  12. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Science.gov (United States)

    Annovazzi, A.; Amendolia, S. R.; Bigongiari, A.; Bisogni, M. G.; Catarsi, F.; Cesqui, F.; Cetronio, A.; Colombo, F.; Delogu, P.; Fantacci, M. E.; Gilberti, A.; Lanzieri, C.; Lavagna, S.; Novelli, M.; Passuello, G.; Paternoster, G.; Pieracci, M.; Poletti, M.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Testa, A.; Venturelli, L.

    2007-06-01

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm 2 therefore to cover the typical irradiation field used in mammography (18×24 cm 2), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma "La Sapienza", Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  13. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    Science.gov (United States)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  14. High-speed image processing systems in non-destructive testing

    Science.gov (United States)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  15. Digital Data Processing of Images

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  16. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  17. Development of an integrated filing system for endoscopic images.

    Science.gov (United States)

    Fujino, M A; Ikeda, M; Yamamoto, Y; Kinose, T; Tachikawa, H; Morozumi, A; Sano, S; Kojima, Y; Nakamura, T; Kawai, T

    1991-01-01

    A new integrated filing system for endoscopic images has been developed, comprising a main image filing system and subsystems located at different stations. A hybrid filing system made up of both digital and analog filing devices was introduced to construct this system that combines the merits of the two filing methods. Each subsystem provided with a video processor, is equipped with a digital filing device, and routine images were recorded in the analog image filing device of the main system. The use of a multi-input adapter enabled simultaneous input of analog images from up to 8 video processors. Recorded magneto-optical disks make it possible to recall the digital images at any station in the hospital; the disks are copied without image degradation and also utilised for image processing. This system promises reliable storage and integrated, efficient management of endoscopic information. It also costs less to install than the so-called PACS (picture archiving and communication system), which connects all the stations of the hospital using optical fiber cables.

  18. Test Targets 2.0 and Digital Imaging

    Directory of Open Access Journals (Sweden)

    Robert Chung

    2003-04-01

    Full Text Available Current color management systems, based on a modular approach, enable color portability and mass customization of digital images for print. Because of the non-specific nature of the workflow, implementation of ICC-based color management becomes the responsibility of the user. As such the performance of ICC-based CMS is often unknown and has caused much confusion and slow adoption in the printing and publishing industries. To demonstrate how ICC-based color management can be implemented in a number of workflows, this paper describes a project, called Test Targets 2.0. A description of the test targets and how they were used for device calibration, device profiling, and color imaging applications under different workflows, e.g., from scanner to press, or digital camera to press, are introduced. Color management should work equally well for color matching applications. Thus, a continuation of the project focuses on device gamut and profile accuracy assessment.

  19. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  20. Digital PIV (DPIV) Software Analysis System

    Science.gov (United States)

    Blackshire, James L.

    1997-01-01

    A software package was developed to provide a Digital PIV (DPIV) capability for NASA LaRC. The system provides an automated image capture, test correlation, and autocorrelation analysis capability for the Kodak Megaplus 1.4 digital camera system for PIV measurements. The package includes three separate programs that, when used together with the PIV data validation algorithm, constitutes a complete DPIV analysis capability. The programs are run on an IBM PC/AT host computer running either Microsoft Windows 3.1 or Windows 95 using a 'quickwin' format that allows simple user interface and output capabilities to the windows environment.

  1. A New Digital Imaging and Analysis System for Plant and Ecosystem Phenological Studies

    Science.gov (United States)

    Ramirez, G.; Ramirez, G. A.; Vargas, S. A., Jr.; Luna, N. R.; Tweedie, C. E.

    2015-12-01

    Over the past decade, environmental scientists have increasingly used low-cost sensors and custom software to gather and analyze environmental data. Included in this trend has been the use of imagery from field-mounted static digital cameras. Published literature has highlighted the challenge scientists have encountered with poor and problematic camera performance and power consumption, limited data download and wireless communication options, general ruggedness of off the shelf camera solutions, and time consuming and hard-to-reproduce digital image analysis options. Data loggers and sensors are typically limited to data storage in situ (requiring manual downloading) and/or expensive data streaming options. Here we highlight the features and functionality of a newly invented camera/data logger system and coupled image analysis software suited to plant and ecosystem phenological studies (patent pending). The camera has resulted from several years of development and prototype testing supported by several grants funded by the US NSF. These inventions have several unique features and functionality and have been field tested in desert, arctic, and tropical rainforest ecosystems. The system can be used to acquire imagery/data from static and mobile platforms. Data is collected, preprocessed, and streamed to the cloud without the need of an external computer and can run for extended time periods. The camera module is capable of acquiring RGB, IR, and thermal (LWIR) data and storing it in a variety of formats including RAW. The system is full customizable with a wide variety of passive and smart sensors. The camera can be triggered by state conditions detected by sensors and/or select time intervals. The device includes USB, Wi-Fi, Bluetooth, serial, GSM, Ethernet, and Iridium connections and can be connected to commercial cloud servers such as Dropbox. The complementary image analysis software is compatible with all popular operating systems. Imagery can be viewed and

  2. Integration of digital gross pathology images for enterprise-wide access

    Directory of Open Access Journals (Sweden)

    Milon Amin

    2012-01-01

    Full Text Available Background: Sharing digital pathology images for enterprise- wide use into a picture archiving and communication system (PACS is not yet widely adopted. We share our solution and 3-year experience of transmitting such images to an enterprise image server (EIS. Methods: Gross pathology images acquired by prosectors were integrated with clinical cases into the laboratory information system′s image management module, and stored in JPEG2000 format on a networked image server. Automated daily searches for cases with gross images were used to compile an ASCII text file that was forwarded to a separate institutional Enterprise Digital Imaging and Communications in Medicine (DICOM Wrapper (EDW server. Concurrently, an HL7-based image order for these cases was generated, containing the locations of images and patient data, and forwarded to the EDW, which combined data in these locations to generate images with patient data, as required by DICOM standards. The image and data were then "wrapped" according to DICOM standards, transferred to the PACS servers, and made accessible on an institution-wide basis. Results: In total, 26,966 gross images from 9,733 cases were transmitted over the 3-year period from the laboratory information system to the EIS. The average process time for cases with successful automatic uploads (n=9,688 to the EIS was 98 seconds. Only 45 cases (0.5% failed requiring manual intervention. Uploaded images were immediately available to institution- wide PACS users. Since inception, user feedback has been positive. Conclusions: Enterprise- wide PACS- based sharing of pathology images is feasible, provides useful services to clinical staff, and utilizes existing information system and telecommunications infrastructure. PACS-shared pathology images, however, require a "DICOM wrapper" for multisystem compatibility.

  3. Endless everyday images: links and excesses in digital image

    Directory of Open Access Journals (Sweden)

    Ana Cláudia do Amaral Leão

    2013-08-01

    Full Text Available The research analyzed the relationships and communication links between overproduced images on digital media and their carriers. I start from the hypothesis that the way we look, record, save and access images have been deeply modified with the advent of digital cameras and ‘phone cameras’ – encouraging an addictive behavior for pictures. The method was based on interviews with ten informers – the images’ carriers, who let us conclude that we are overproducing pictures as information. In this context arise the producers of endless everyday pictures, here named ‘photomaniacs’, who give birth two kinds of images: the circulatory infoimages and the everyday infoimages. Overproduced digital images transform devices in our magnifiers of memory and oblivion, undoing the way we compile, save or file – and operating in cumulative, disordered, small and private stock of images. Thus, we try to saturate our most superficial memory, that generates schizophrenic pictures when operates on excess. However, even if the way is only technological, we must remember that the body is the living organism suitable to pictures, the place where we hold deep bonding relations. Over this body surface, images survive impregnated of meanings, links, belonging and healing. The research was based on the theories of communication links of Boris Cyrulnik, Jose Ângelo Gaiarsa and Ashley Montagu, besides the works on images and schizophrenia of Nise da Silveira and Leo Navratil. The research also activated the central European stream of Cultural Semiotics, specially the theories of images proposed by Aby Warburg, Walter Benjamin, Dietmar Kamper, Norval Baitello Junior, Hans Belting and Vilém Flusser.

  4. Digital tumor fluoroscopy (DTF)--a new direct imaging system in the therapy planning for brain tumors.

    Science.gov (United States)

    Herbst, M; Fröder, M

    1990-01-01

    Digital Tumor Fluoroscopy is an expanded x-ray video chain optimized to iodine contrast with an extended Gy scale up to 64000 Gy values. Series of pictures are taken before and after injection of contrast medium. With the most recent unit, up to ten images can be taken and stored. The microprogrammable processor allows the subtraction of images recorded at any moment of the examination. Dynamic views of the distribution of contrast medium in the intravasal and extravasal spaces of brain and tumor tissue are gained by the subtraction of stored images. Tumors can be differentiated by studying the storage and drainage behavior of the contrast medium during the period of examination. Meningiomas store contrast medium very intensively during the whole time of investigation, whereas astrocytomas grade 2-3 pick it up less strongly at the beginning and release it within 2 min. Glioblastomas show a massive but delayed accumulation of contrast medium and a decreased flow-off-rate. In comparison with radiography and MR-imaging the most important advantage of Digital Tumor Fluoroscopy is that direct information on tumor localization is gained in relation to the skull-cap. This enables the radiotherapist to mark the treatment field directly on the skull. Therefore it is no longer necessary to calculate the tumor volume from several CT scans for localization. In radiotherapy Digital Tumor Fluoroscopy a unit combined with a simulator can replace CT planning. This would help overcome the disadvantages arising from the lack of a collimating system, and the inaccuracies which result from completely different geometric relationships between a CT unit and a therapy machine.

  5. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    Science.gov (United States)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  6. Development of automatic radiographic inspection system using digital image processing and artificial intelligence

    International Nuclear Information System (INIS)

    Itoga, Kouyu; Sugimoto, Koji; Michiba, Koji; Kato, Yuhei; Sugita, Yuji; Onda, Katsuhiro.

    1991-01-01

    The application of computers to welding inspection is expanding rapidly. The classification of the application is the collection, analysis and processing of data, the graphic display of results, the distinction of the kinds of defects and the evaluation of the harmufulness of defects and the judgement of acceptance or rejection. The application of computer techniques to the automation of data collection was realized at the relatively early stage. Data processing and the graphic display of results are the techniques in progress now, and the application of artificial intelligence to the distinction of the kinds of defects and the evaluation of harmfulness is expected to expand rapidly. In order to computerize radiographic inspection, the abilities of image processing technology and knowledge engineering must be given to computers. The object of this system is the butt joints by arc welding of the steel materials of up to 30 mm thickness. The digitizing transformation of radiographs, the distinction and evaluation of transmissivity and gradation by image processing, and only as for those, of which the picture quality satisfies the standard, the extraction of defect images, their display, the distinction of the kinds and the final judgement are carried out. The techniques of image processing, the knowledge for distinguishing the kinds of defects and the concept of the practical system are reported. (K.I.)

  7. Diagnostic accuracy of artificially induced vertical root fractures: a comparison of direct digital periapical images with conventional periapical images

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kwon, Ki Jeong; Koh, Kwang Joon

    2004-01-01

    To compare the diagnostic accuracy for the detection of root fractures in CMOS-based digital periapical images with conventional film-based periapical images. Sixty extracted single-root human teeth with closed apices were prepared endodontically and divided into two groups; artificially induced vertical root fracture group and control group. All radiographs were obtained using the paralleling technique. The radiographs were examined by 4 observers three times within a 4 week interval. Receiver operating characteristic (ROC) analysis was carried out using data obtained from four observers. Intra- and inter-examiner agreements were computed using kappa analysis. The area under the ROC curve (Az) was used as an indicator of the diagnostic accuracy of the imaging system. Az values were as follows: direct-digital images; 0.93, film-based images; 0.92, and inverted digital images; 0.91. There was no significant difference between imaging modalities(P<0.05). The kappa value of inter-observer agreement was 0.42(range:0.28-0.60) and intra-observer agreement was 0.57(range:0.44-0.75). There is no statistical difference in diagnostic accuracy for the detection of vertical root fractures between digital periapical images and conventional periapical images. The results indicate that the CMOS sensor is a good image detector for the evaluation of vertical root fractures.

  8. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  9. Some computer applications and digital image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Lowinger, T.

    1981-01-01

    Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms

  10. New digital fluorography system for X-ray angiography, super DF series

    International Nuclear Information System (INIS)

    Taniguchi, Yoshio; Fujii, Senzo; Maehama, Tomio

    1994-01-01

    The digital fluorography system is designed for the digital acquisition and processing of angiographic images. Since angiography is a radiographic technique which is occasionally performed during catheterization, the system is required to be highly reliable and efficient in operation. In addition, new demand has arisen in the medical equipment market with the increasing popularity of angioplasty. The DFP-1000A/2000A has been developed as a new system to respond to these requirements of users. The new system supplies high-speed and high-resolution diagnostic images using a TV camera with 1,024-matrix CCD and real-time image processing technology. This paper describes the clinical demand and new technology incorporated in the new system. (author)

  11. Clinical evaluation of a mobile digital specimen radiography system for intraoperative specimen verification.

    Science.gov (United States)

    Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth

    2014-08-01

    Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.

  12. Epistemic Function and Ontology of Analog and Digital Images

    Directory of Open Access Journals (Sweden)

    Aleksandra Łukaszewicz Alcaraz

    2016-01-01

    Full Text Available The important epistemic function of photographic images is their active role in construction and reconstruction of our beliefs concerning the world and human identity, since we often consider photographs as presenting reality or even the Real itself. Because photography can convince people of how different social and ethnic groups and even they themselves look, documentary projects and the dissemination of photographic practices supported the transition from disciplinary society to the present-day society of control. While both analog and digital images are formed from the same basic materia, the ways in which this matter appears are distinctive. In the case of analog photography, we deal with physical and chemical matter, whereas with digital images we face electronic matter. Because digital photography allows endless modification of the image, we can no longer believe in the truthfulness of digital images.

  13. Problems with Permatrace: a note on digital image publication

    Directory of Open Access Journals (Sweden)

    Guy Hopkinson

    2004-01-01

    Full Text Available The methodology presented here developed out of work required to convert the hard-copy illustrations submitted to Internet Archaeology for publication of the 1975 excavations at Cricklade. The publication (and digital image preparatory work was funded by English Heritage and was, in part, an experiment designed to explore some of the possibilities presented by digital image publication. Various challenges in how to transform the drawings on permatrace to a digital format were encountered. While a full exploration of the potential of all areas of digital image preparation and publication was not possible, some interesting technical options were evaluated. This short article explains the processes applied in creating the images that were finally incorporated within the publication. It also examines some other avenues regarding the presentation of archaeological drawings that could be explored in both future Internet Archaeology content and other digital publications.

  14. [Evaluation of dental plaque by quantitative digital image analysis system].

    Science.gov (United States)

    Huang, Z; Luan, Q X

    2016-04-18

    To analyze the plaque staining image by using image analysis software, to verify the maneuverability, practicability and repeatability of this technique, and to evaluate the influence of different plaque stains. In the study, 30 volunteers were enrolled from the new dental students of Peking University Health Science Center in accordance with the inclusion criteria. The digital images of the anterior teeth were acquired after plaque stained according to filming standardization.The image analysis was performed using Image Pro Plus 7.0, and the Quigley-Hein plaque indexes of the anterior teeth were evaluated. The plaque stain area percentage and the corresponding dental plaque index were highly correlated,and the Spearman correlation coefficient was 0.776 (Pchart showed only a few spots outside the 95% consistency boundaries. The different plaque stains image analysis results showed that the difference of the tooth area measurements was not significant, while the difference of the plaque area measurements significant (P<0.01). This method is easy in operation and control,highly related to the calculated percentage of plaque area and traditional plaque index, and has good reproducibility.The different plaque staining method has little effect on image segmentation results.The sensitive plaque stain for image analysis is suggested.

  15. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  16. SU-F-I-14: 3D Breast Digital Phantom for XACT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S; Laaroussi, R; Chen, J; Samant, P; Xiang, L [University of Oklahoma, Norman, OK (United States); Chen, Y; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Yang, K [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The X-ray induced acoustic computed tomography (XACT) is a new imaging modality which combines X-ray contrast and high ultrasonic resolution in a single modality. Using XACT in breast imaging, a 3D breast volume can be imaged by only one pulsed X-ray radiation, which could dramatically reduce the imaging dose for patients undergoing breast cancer screening and diagnosis. A 3D digital phantom that contains both X-ray properties and acoustic properties of different tissue types is indeed needed for developing and optimizing the XACT system. The purpose of this study is to offer a realistic breast digital phantom as a valuable tool for improving breast XACT imaging techniques and potentially leading to better diagnostic outcomes. Methods: A series of breast CT images along the coronal plane from a patient who has breast calcifications are used as the source images. A HU value based segmentation algorithm is employed to identify breast tissues in five categories, namely the skin tissue, fat tissue, glandular tissue, chest bone and calcifications. For each pixel, the dose related parameters, such as material components and density, and acoustic related parameters, such as frequency-dependent acoustic attenuation coefficient and bandwidth, are assigned based on tissue types. Meanwhile, other parameters which are used in sound propagation, including the sound speed, thermal expansion coefficient, and heat capacity are also assigned to each tissue. Results: A series of 2D tissue type image is acquired first and the 3D digital breast phantom is obtained by using commercial 3D reconstruction software. When giving specific settings including dose depositions and ultrasound center frequency, the X-ray induced initial pressure rise can be calculated accordingly. Conclusion: The proposed 3D breast digital phantom represents a realistic breast anatomic structure and provides a valuable tool for developing and evaluating the system performance for XACT.

  17. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  18. AN OPEN SOURCE LOW-COST AUTOMATIC SYSTEM FOR IMAGE-BASED 3D DIGITIZATION

    Directory of Open Access Journals (Sweden)

    F. Menna

    2017-11-01

    Full Text Available 3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy.

  19. Quality considerations on cine-imaging and PTCA-fluoroscopy anticipating a digital future

    International Nuclear Information System (INIS)

    Leeuw, P. de

    1986-01-01

    In a modern catheterization laboratory coronary cineangiography, PTCA procedures and digital radiography are performed with one and the same X-ray system. On the basis of an optimization analysis of the image quality using the concepts of window signal-to-noise ratio and equivalent blur, overall performance can roughly be estimated. Some important aspects of a realistic X-ray system design resulting from this analysis have been identified. Specifically, the X-ray loadability and its loading strategy play a crucial role with respect to signal detection sensitivity and the safe, efficient use of X-ray radiation. The analysis shows also that some basic limitations exist to the use of digital subtraction techniques for moving objects. Last but not least, it shows that the video camera performance is critical with respect to the imaging tasks during PTCA and digital procedures. (Auth.)

  20. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  1. The role of camera-bundled image management software in the consumer digital imaging value chain

    Science.gov (United States)

    Mueller, Milton; Mundkur, Anuradha; Balasubramanian, Ashok; Chirania, Virat

    2005-02-01

    This research was undertaken by the Convergence Center at the Syracuse University School of Information Studies (www.digital-convergence.info). Project ICONICA, the name for the research, focuses on the strategic implications of digital Images and the CONvergence of Image management and image CApture. Consumer imaging - the activity that we once called "photography" - is now recognized as in the throes of a digital transformation. At the end of 2003, market researchers estimated that about 30% of the households in the U.S. and 40% of the households in Japan owned digital cameras. In 2004, of the 86 million new cameras sold (excluding one-time use cameras), a majority (56%) were estimated to be digital cameras. Sales of photographic film, while still profitable, are declining precipitously.

  2. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  4. Comparison of three digital radiographic imaging systems for the visibility of endodontic files

    International Nuclear Information System (INIS)

    Park, Jong Won; Kim, Eun Kyung; Han, Won Jeong

    2004-01-01

    To compare three digital radiographic imaging sensors by evaluating the visibility of endodontic file tips with interobserver reproducibility and assessing subjectively the clarity of images in comparison with the x-ray film images. Forty-five extracted sound premolars were used for this study. Fifteen plaster blocks were made with three premolars each and 8, 10, 15 K-flexofiles were inserted into the root canal of premolars. They were radiographically exposed using periapical x-ray films (Kodak Insight Dental film, Eastmann Kodak company, Rochester, USA), Digora imaging plates (Soredex-Orion Co., Helsinki, Finland), CDX 2000HQ sensors (Biomedisys Co., Seoul, Korea), and CDR sensors (Schick Inc., Long Island, USA). The visibility of endodontic files was evaluated with interobserver reproducibility, which was calculated as the standard deviations of X, Y coordinated of endodontic file tips measured on digital images by three oral and maxillofacial radiologists. The clarity of images was assessed subjectively using 3 grades, i.e, plus, equal, and minus in comparison with the conventional x-ray film images. Interobserver reproducibility of endodontic file tips was the highest in CDR sensor (p<0.05) only except at Y coordinates of 15 file. In the subjective assessment of the image clarity, the plus grade was the most frequent in CDR sensor at all size of endodontic file (p<0.05). CDR sensor was the most superior to the other sensors, CDX 2000HQ sensor and Digora imaging plate in the evaluation of interobserver reproducibility of endodontic file tip and subjective assessment of image clarity.

  5. Aliasing effects in digital images of line-pair phantoms

    International Nuclear Information System (INIS)

    Albert, Michael; Beideck, Daniel J.; Bakic, Predrag R.; Maidment, Andrew D.A.

    2002-01-01

    Line-pair phantoms are commonly used for evaluating screen-film systems. When imaged digitally, aliasing effects give rise to additional periodic patterns. This paper examines one such effect that medical physicists are likely to encounter, and which can be used as an indicator of super-resolution

  6. A GaAs pixel detectors-based digital mammographic system: Performances and imaging tests results

    Energy Technology Data Exchange (ETDEWEB)

    Annovazzi, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Amendolia, S.R. [Str. Dip. di Matematica e Fisica dell' Universita, Sassari and Sezione I.N.F.N., Pisa (Italy); Bigongiari, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Bisogni, M.G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Catarsi, F. [CAEN S.p.A., Viareggio-Lucca (Italy); Cesqui, F. [AMS S.p.A, Rome (Italy); Cetronio, A. [AMS S.p.A, Rome (Italy); Colombo, F. [LABEN S.p.A., Vimodrone-Milan (Italy); Delogu, P. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Fantacci, M.E. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Gilberti, A. [LABEN S.p.A., Vimodrone-Milan (Italy); Lanzieri, C. [AMS S.p.A, Rome (Italy); Lavagna, S. [AMS S.p.A, Rome (Italy); Novelli, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Passuello, G. [CAEN S.p.A., Viareggio-Lucca (Italy); Paternoster, G. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Pieracci, M. [CAEN S.p.A., Viareggio-Lucca (Italy); Poletti, M. [LABEN S.p.A., Vimodrone-Milan (Italy); Quattrocchi, M. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Rosso, V. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy); Stefanini, A. [Dipartimento di Fisica ' E. Fermi' dell' Universita and Sezione I.N.F.N., Pisa (Italy)]. E-mail: arnaldo.stefanini@pi.infn.it; Testa, A. [CAEN S.p.A., Viareggio-Lucca (Italy); Venturelli, L. [AMS S.p.A, Rome (Italy)

    2007-06-11

    The prototype presented in this paper is based on GaAs pixel detectors read-out by the PCC/MEDIPIX I circuit. The active area of a sensor is about 1 cm{sup 2} therefore to cover the typical irradiation field used in mammography (18x24 cm{sup 2}), 18 GaAs detection units have been organized in two staggered rows of nine chips each and moved by a stepper motor in the orthogonal direction. The system is integrated in a mammographic equipment which comprehends the X-ray tube, the bias and data acquisition systems and the PC-based control system. The prototype has been developed in the framework of the Integrated Mammographic Imaging (IMI) project, an industrial research activity aiming to develop innovative instrumentation for morphologic and functional imaging. The project has been supported by the Italian Ministry of Education, University and Research (MIUR) and by five Italian High Tech companies, Alenia Marconi Systems (AMS), CAEN, Gilardoni, LABEN and Poli.Hi.Tech., in collaboration with the universities of Ferrara, Roma 'La Sapienza', Pisa and the Istituto Nazionale di Fisica Nucleare (INFN). In this paper, we report on the electrical characterization and the first imaging test results of the digital mammographic system. To assess the imaging capability of such a detector we have built a phantom, which simulates the breast tissue with malignancies. The radiographs of the phantom, obtained by delivering an entrance dose of 4.8 mGy, have shown particulars with a measured contrast below 1%.

  7. Digital Image Processing Overview For Helmet Mounted Displays

    Science.gov (United States)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  8. Quality assurance in digital dental imaging: a systematic review.

    Science.gov (United States)

    Metsälä, Eija; Henner, Anja; Ekholm, Marja

    2014-07-01

    Doses induced by individual dental examinations are low. However, dental radiography accounts for nearly one third of the total number of radiological examinations in the European Union. Therefore, special attention is needed with regard to radiation protection. In order to lower patient doses, the staff performing dental examinations must have competence in imaging as well as in radiation protection issues. This paper presents a systematic review about the core competencies needed by the healthcare staff in performing digital dental radiological imaging quality assurance. The following databases were searched: Pubmed, Cinahl, Pro Quest and IEEXplore digital library. Also volumes of some dental imaging journals and doctoral theses of the Finnish universities educating dentists were searched. The search was performed using both MeSH terms and keywords using the option 'search all text'. The original keywords were: dental imaging, digital, x-ray, panoramic, quality, assurance, competence, competency, skills, knowledge, radiographer, radiologist technician, dentist, oral hygienist, radiation protection and their Finnish synonyms. Core competencies needed by the healthcare staff performing digital dental radiological imaging quality assurance described in the selected studies were: management of dental imaging equipment, competence in image quality and factors associated with it, dose optimization and quality assurance. In the future there will be higher doses in dental imaging due to increasing use of CBCT and digital imaging. The staff performing dental imaging must have competence in dental imaging quality assurance issues found in this review. They also have to practice ethical radiation safety culture in clinical practice.

  9. X-ray film digitization using a personal computer and hand-held scanner: a simple technique for storing images

    International Nuclear Information System (INIS)

    Munoz-Nunez, C. F.; Lloret-Alcaniz, A.

    1998-01-01

    To develop a simple, low-cost technique for the digitization of X-ray films for personal use. A 66-MHz 486 PC with 8 MB of RAM, a Logitech ScanMan 256 hand-held scanner and a standard negatoscope with the power source converted to direct current. Although the system was originally designed for the digitization of mammographies, it has also been used with computed tomography, magnetic resonance, digital angiography and ultrasonographic images, as well as plain X-rays. After a minimal training period, the system digitized X-ray films easily and rapidly. Although the scanning values vary depending on the type of image to be digitized, an input spatial resolution of 200 dpi and a contrast resolution of 256 levels of gray are generally adequate. Of the storage formats tested, JPEG presented the best quality/image size ratio. A simple, low-cost technique has been developed for the digitization of X-ray films. This technique enables the storage of images in a digital format, thus facilitating their presentation and transmission. (Author) 9 refs

  10. Phantom feet on digital radionuclide images and other scary computer tales

    International Nuclear Information System (INIS)

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.; Ponto, R.

    1989-01-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images

  11. CMOS cassette for digital upgrade of film-based mammography systems

    Science.gov (United States)

    Baysal, Mehmet A.; Toker, Emre

    2006-03-01

    While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.

  12. Recent developments at JPL in the application of digital image processing techniques to astronomical images

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.; Benton, W. D.

    1976-01-01

    Several techniques of a digital image-processing nature are illustrated which have proved useful in visual analysis of astronomical pictorial data. Processed digital scans of photographic plates of Stephans Quintet and NGC 4151 are used as examples to show how faint nebulosity is enhanced by high-pass filtering, how foreground stars are suppressed by linear interpolation, and how relative color differences between two images recorded on plates with different spectral sensitivities can be revealed by generating ratio images. Analyses are outlined which are intended to compensate partially for the blurring effects of the atmosphere on images of Stephans Quintet and to obtain more detailed information about Saturn's ring structure from low- and high-resolution scans of the planet and its ring system. The employment of a correlation picture to determine the tilt angle of an average spectral line in a low-quality spectrum is demonstrated for a section of the spectrum of Uranus.

  13. Dual-energy imaging in full-field digital mammography: a phantom study

    International Nuclear Information System (INIS)

    Taibi, A; Fabbri, S; Baldelli, P; Maggio, C di; Gennaro, G; Marziani, M; Tuffanelli, A; Gambaccini, M

    2003-01-01

    A dual-energy technique which employs the basis decomposition method is being investigated for application to digital mammography. A three-component phantom, made up of plexiglas, polyethylene and water, was doubly exposed with the full-field digital mammography system manufactured by General Electric. The 'low' and 'high' energy images were recorded with a Mo/Mo anode-filter combination and a Rh/Rh combination, respectively. The total dose was kept within the acceptable levels of conventional mammography. The first hybrid images obtained with the dual-energy algorithm are presented in comparison with a conventional radiograph of the phantom. Image-quality characteristics at contrast cancellation angles between plexiglas and water are discussed. Preliminary results show that a combination of a standard Mo-anode 28 kV radiograph with a Rh-anode 49 kV radiograph provides the best compromise between image-quality and dose in the hybrid image

  14. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  15. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners.

    Science.gov (United States)

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results.

  16. Clinical Practicability of a Newly Developed Real-time Digital Kymographic System.

    Science.gov (United States)

    Lee, Jin-Choon; Wang, Soo-Geun; Sung, Eui-Suk; Bae, In-Ho; Kim, Seong-Tae; Lee, Yeon-Woo

    2017-12-22

    A digital kymogram shows real images of vocal fold vibration. However, DKG is difficult to use in clinical practice because the recorded image cannot be seen instantaneously after examination, as considerable encoding time is required to visualize a digital kymogram. In addition, frame-by frame analysis should be implemented to evaluate high-speed videoendoscopy data, but is time- and labor-intensive. The purpose of the study was to validate the clinical practicability of a real-time multislice digital kymographic system developed by the authors. We analyzed the promptness and accuracy of the examination before and after intracordal injections in patients with unilateral vocal fold paralysis. To assess the clinical applicability of this system, six patients with unilateral vocal fold paralysis were selected. Real-time DKG was performed before and immediately after intracordal injection. We observed changes in the digital kymogram after the intracordal injection. Using this system, 10 scanning lines and up to five vertical pixel row could be obtained in real time, and the maximum acquisition time for the DKG image was 10 seconds. A digital kymogram of the patients could be instantaneously acquired, and whether the intracordal injection was appropriate or not. This article is the first validation study after the development of the real-time multislice digital kymographic system. Our system may be a promising tool in clinical practice for immediate assessment of the vibratory patterns of the vocal cords. More research is necessary for further clinical validation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. The influence of software filtering in digital mammography image quality

    Science.gov (United States)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  18. The influence of software filtering in digital mammography image quality

    International Nuclear Information System (INIS)

    Michail, C; Spyropoulou, V; Valais, I; Panayiotakis, G; Kalyvas, N; Fountos, G; Kandarakis, I; Dimitropoulos, N

    2009-01-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  19. Hard copies for digital medical images: an overview

    Science.gov (United States)

    Blume, Hartwig R.; Muka, Edward

    1995-04-01

    This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.

  20. Digital tripwire: a small automated human detection system

    Science.gov (United States)

    Fischer, Amber D.; Redd, Emmett; Younger, A. Steven

    2009-05-01

    A low cost, lightweight, easily deployable imaging sensor that can dependably discriminate threats from other activities within its field of view and, only then, alert the distant duty officer by transmitting a visual confirmation of the threat would provide a valuable asset to modern defense. At present, current solutions suffer from a multitude of deficiencies - size, cost, power endurance, but most notably, an inability to assess an image and conclude that it contains a threat. The human attention span cannot maintain critical surveillance over banks of displays constantly conveying such images from the field. DigitalTripwire is a small, self-contained, automated human-detection system capable of running for 1-5 days on two AA batteries. To achieve such long endurance, the DigitalTripwire system utilizes an FPGA designed with sleep functionality. The system uses robust vision algorithms, such as a partially unsupervised innovative backgroundmodeling algorithm, which employ several data reduction strategies to operate in real-time, and achieve high detection rates. When it detects human activity, either mounted or dismounted, it sends an alert including images to notify the command center. In this paper, we describe the hardware and software design of the DigitalTripwire system. In addition, we provide detection and false alarm rates across several challenging data sets demonstrating the performance of the vision algorithms in autonomously analyzing the video stream and classifying moving objects into four primary categories - dismounted human, vehicle, non-human, or unknown. Performance results across several challenging data sets are provided.

  1. Moiré Effect: Index and the Digital Image

    Directory of Open Access Journals (Sweden)

    Stella Baraklianou

    2014-10-01

    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  2. Surface Distresses Detection of Pavement Based on Digital Image Processing

    OpenAIRE

    Ouyang , Aiguo; Luo , Chagen; Zhou , Chao

    2010-01-01

    International audience; Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and automatic detection. The applications of digital image processing in pavement crack detection, distresses classificati...

  3. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    Science.gov (United States)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  4. Digital Radiography

    Science.gov (United States)

    1986-01-01

    System One, a digital radiography system, incorporates a reusable image medium (RIM) which retains an image. No film is needed; the RIM is read with a laser scanner, and the information is used to produce a digital image on an image processor. The image is stored on an optical disc. System allows the radiologist to "dial away" unwanted images to compare views on three screens. It is compatible with existing equipment and cost efficient. It was commercialized by a Stanford researcher from energy selective technology developed under a NASA grant.

  5. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  6. Portable pulsed X-ray digital radiographic system based on network transmission

    International Nuclear Information System (INIS)

    Tang Le; Li Yuanjing; Wang Yi; Cheng Jianping

    2004-01-01

    Network communication technology of TCP/IP protocol serves as application in pulse X-ray digital radiography system. The system radiographs synchronously with pulse X-ray and converts image signals to digital data, which are transmitted to computer for displaying and processing in network. The system composing structures are present and portable and other characteristics are introduced. (authors)

  7. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  8. Year 2000: status of picture archiving and digital imaging in European hospitals

    International Nuclear Information System (INIS)

    Foord, K.

    2001-01-01

    The aim of this study was to compare the degrees of implementations of full and departmental Picture Archiving and Communication Systems (PACS), the usage of mini-PACS and to compare digital image equipment implementation rates in the countries of the European Union plus the Czech Republic, Cyprus, Malta, Norway, Poland and Switzerland. The degree to which Digital Image Communications in Medicine version 3.0 (DICOM 3.0) protocols are available for data exchange by different digital image equipment is surveyed, to assess underlying PACS preparedness. A questionnaire with an addressed reply envelope was posted to the heads of radiology of 1594 hospitals in 19 countries in early 2000. Data returns were obtained from 17 countries. This indicates considerable variation in PACS implementation and preparedness between European nations. Possible reasons for this are discussed. The highest rates of PACS implementations have been in Austria, Norway and Sweden. (orig.)

  9. Towards A Colorimetric Digital Image Archive For The Visual Arts

    Science.gov (United States)

    Martinez, Kirk; Hamber, Anthony

    1989-04-01

    The aim of this project is to produce a high-resolution, colorimetric and permanent digital archive of images taken directly from works of art. The proposed system is designed for use in education, research, galleries and museums. Tentative user requirements are examined with particular reference to resolution, image access and colorimetry. Existing technology and projects are considered. Some 3000x3000 pel images of paintings are used to illustrate the interrelationship between dimensions of the original, its inherent detail, scan resolution and display.

  10. Comparison of image quality and radiation exposure from digital and 105-mm film images in pediatric fluoroscopy

    International Nuclear Information System (INIS)

    Drake, D.G.; Day, D.L.; Alford, B.A.; Geise, R.; Thompson, W.M.

    1987-01-01

    This study was designed to compare image quality of digitally acquired films compared with conventional 105-mm films in pediatric gastrointestinal and genitourinary fluoroscopic studies. Films were acquired digitally in 1,024 x 1,024 matrix, 512 x 512 matrix, and 105-mm film. Based on the observers' median scoring, the 1,024 x 1,024 reduced to 512 x 512 matrix provided similar overall image quality to the 105-mm films. The digital images produced a patient radiation exposure of 25% to 30% that of the 105-mm images on their equipment. The authors conclude that digital images provide similar image quality to 105-mm images with a significant reduction in patient radiation exposure

  11. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  12. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  13. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  14. The clinical application of the digital imaging in urography

    International Nuclear Information System (INIS)

    Zhu Yuelong; Xie Sumin; Zhang Li; Li Huayu

    2003-01-01

    Objective: To evaluate the clinical application of the digital imaging in the urography. Methods: In total 112 patients underwent digital urography, including intravenous pyelography (IVP) in 38 cases and retrograde pyelography in 74 cases. Results: the entire urinary tract was better shown on digital imaging, which was accurate in locating the obstruction of urinary tract and helped the qualitative diagnosis. Digital urography was especially valuable in detecting urinary calculus. In 38 cases of IVP, the results were normal in 5 patients, renal stone in 12, ureteral stone in 13, ureteral stenosis in 6 and nephroblastom in 2. In the 74 cases of retrograde pyelography, benign ureteral stenosis was found in 31 patients, ureteral stone in 27, ureteral polyp in 2, urethral stone in 8 and benign urethral stenosis in 6. Conclusion: Digital imaging technique is of big value in the diagnosis of urinary tract lesions

  15. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  16. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners

    Science.gov (United States)

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results. PMID:24083133

  17. Film-screen digital radiography

    International Nuclear Information System (INIS)

    Schwenker, R.P.; Eger, H.

    1985-01-01

    The excellent performance of the digital film-screen system as a receptor for projection radiographic data is discussed. An experimental system for obtaining high quality digital radiographic data by laser scanning radiographic films is described. This system is being used to evaluate the clinical utility of various digital image processing algorithms. Future plans include an investigation of quantitative analysis of projection radiographic data. Digital data obtained by film scanning can be used with digital image archiving and communications systems. (author)

  18. Digital image classification with the help of artificial neural network by simple histogram.

    Science.gov (United States)

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.

  19. Digital Image Authentication Algorithm Based on Fragile Invisible Watermark and MD-5 Function in the DWT Domain

    Directory of Open Access Journals (Sweden)

    Nehad Hameed Hussein

    2015-04-01

    Full Text Available Using watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they are less sensitive to the Human Visual System (HVS and preserve high image fidelity. MD-5 and RSA algorithms are used for generating the digital signature from the watermark data that is also embedded in the medical image. We apply the algorithm on number of medical images. The Electronic Patient Record (EPR is used as watermark data. Experiments demonstrate the effectiveness of our algorithm in terms of robustness, invisibility, and fragility. Watermark and digital signature can be extracted without the need to the original image.

  20. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    Science.gov (United States)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  1. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  2. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  3. Imaging sunlight using a digital spectroheliograph

    CERN Document Server

    Harrison, Ken M

    2016-01-01

    Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial ‘etalon’ solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is exp...

  4. A computer program for planimetric analysis of digitized images

    DEFF Research Database (Denmark)

    Lynnerup, N; Lynnerup, O; Homøe, P

    1992-01-01

    bones as seen on X-rays. By placing the X-rays on a digitizer tablet and tracing the outline of the cell system, the area was calculated by the program. The calculated data and traced images could be stored and printed. The program is written in BASIC; necessary hardware is an IBM-compatible personal...

  5. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  6. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  7. Establishing imaging sensor specifications for digital still cameras

    Science.gov (United States)

    Kriss, Michael A.

    2007-02-01

    Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.

  8. Medical image digital archive: a comparison of storage technologies

    Science.gov (United States)

    Chunn, Timothy; Hutchings, Matt

    1998-07-01

    A cost effective, high capacity digital archive system is one of the remaining key factors that will enable a radiology department to eliminate film as an archive medium. The ever increasing amount of digital image data is creating the need for huge archive systems that can reliably store and retrieve millions of images and hold from a few terabytes of data to possibly hundreds of terabytes. Selecting the right archive solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, conformance to open standards, archive availability and reliability, security, cost, achievable benefits and cost savings, investment protection, and more. This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. New technologies will be discussed, such as DVD and high performance tape. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on random and pre-fetch retrieval time will be analyzed. The concept of automated migration of images from high performance, RAID disk storage devices to high capacity, NearlineR storage devices will be introduced as a viable way to minimize overall storage costs for an archive.

  9. Development of FPGA-based digital signal processing system for radiation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Pil Soo; Lee, Chun Sik; Lee, Ju Hahn

    2013-01-01

    We have developed an FPGA-based digital signal processing system that performs both online digital signal filtering and pulse-shape analysis for both particle and gamma-ray spectroscopy. Such functionalities were made possible by a state-of-the-art programmable logic device and system architectures employed. The system performance as measured, for example, in the system dead time and accuracy for pulse-height and rise-time determination, was evaluated with standard alpha- and gamma-ray sources using a CsI(Tl) scintillation detector. It is resulted that the present system has shown its potential application to various radiation-related fields such as particle identification, radiography, and radiation imaging. - Highlights: ► An FPGA-based digital processing system was developed for radiation spectroscopy. ► Our digital system has a 14-bit resolution and a 100-MHz sampling rate. ► The FPGA implements the online digital filtering and pulse-shape analysis. ► The pileup rejection is implemented in trigger logic before digital filtering process. ► Our digital system was verified in alpha-gamma measurements using a CsI detector

  10. Digital radiology and ultrasound

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    1991-01-01

    With the access to digital methods for handling and processing images in general, many medical imaging methods are becoming more effectively handled digitally. This applies in particular to basically digital techniques such as CT and MR but also now includes Nuclear Medicine (NM), Ultrasound (US) and a variety of radiological procedures such as Digital Subtraction Angiography (DSA) and Fluoroscopy (DF). The access to conventional projection images by stimulatable plates (CR) or by digitization of film makes all of radiology potentially accessible, and the management of such images by a network is the basic aim of Picture Archiving and Communication Systems (PACS). However, it is suggested that in order for such systems to be of greater value, that way in which such images are treated needs to change, that is, digital images can be used to derive additional clinical value by appropriate processing

  11. Analysis of identification of digital images from a map of cosmic microwaves

    Science.gov (United States)

    Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.

    2018-04-01

    This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.

  12. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  13. Panning artifacts in digital pathology images

    Science.gov (United States)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  14. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  15. A digital library of radiology images.

    Science.gov (United States)

    Kahn, Charles E

    2006-01-01

    A web-based virtual library of peer-reviewed radiological images was created for use in education and clinical decision support. Images were obtained from open-access content of five online radiology journals and one e-learning web site. Figure captions were indexed by Medical Subject Heading (MeSH) codes, imaging modality, and patient age and sex. This digital library provides a new, valuable online resource.

  16. Development of test objects for image quality evaluation of digital mammography; Desenvolvimento de objetos de teste para avaliacao da qualidade da imagem em mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Vitor Nascimento de Carvalho

    2013-07-01

    Mammography is the image exam called 'gold standard' for early detection of breast cancer. 111 Brazil, more than eight million mammograms are carried out per year. With the advancement of technology, the digital systems CR and DR for this diagnostic modality have been increasingly implemented, replacing the conventional screen-film system, which brought environmental problems, like the disposal of chemical waste, and is also responsible for the rejection of radiographic films with processing artifacts. Digital systems, besides not experiencing the problem of environmental pollution, are still capable of image processing, allowing a much lower rejection rate when compared to the conventional system. Moreover, the determination of an accurate diagnosis is highly dependent on the image quality of the examination. To ensure the reliability of the images produced by these systems, it is necessary to evaluate them on a regular basis. Unfortunately, there is no regulation in Brazil about the Quality Assurance of these systems. The aim of this study was to develop a set of test objects that allow the evaluation of some parameters of image quality of these systems, such as field image uniformity, the linearity between the air Kerma incident on detector and the mean pixel value (MPV) of the image, the spatial resolution of the system through the modulation transfer function (MTF) and also to suggest an object to be applied in the evaluation of contrast-to-noise ratio (CNR) and signal-difference-to-noise ratio (SDNR). In order to test the objects. 10 mammography centers were evaluated, seven with CR systems and three with the DR systems. To evaluate the linearity, besides the test objects high sensitivity dosimeters were necessary to be used, namely LiF:Mg,Cu,P TL dosimeters. The use of these dosimeters was recommended in order to minimize the time required to perform the tests and to decrease the number of exposures needed. For evaluation of digital images in DICOM

  17. Digital Watermark Tracking using Intelligent Multi-Agents System

    Directory of Open Access Journals (Sweden)

    Nagaraj V. DHARWADKAR

    2010-01-01

    Full Text Available E-commerce has become a huge business and adriving factor in the development of the Internet. Onlineshopping services are well established. Due to the evolution of2G and 3G mobile networks, soon online shopping services arecomplemented by their wireless counterparts. Furthermore, inthe recent years online delivery of digital media, such as MP3audio or video or image is very popular and will become anincreasingly important part of E-commerce. The advantage ofinternet is sharing the valuable digital data which lead to misuseof digital data. To resolve the problem of misuse of digital dataon Internet we need to have strong Digital rights monitoringsystem. Digital Rights Management (DRM is fairly youngdiscipline, while some of its underlying technologies have beenknown from many years. The use of DRM for managing andprotecting intellectual property rights is a comparatively newfield. In this paper we propose a model for online digital imagelibrary copyright protection based on watermark trackingSystem.In our proposed model the tracking of watermarks onremote host nodes is done using active mobile agents. The multiagentsystem architecture is used in watermark tracking whichsupports the coordination of several component tasks acrossdistributed and flexible networks of information sources.Whereas a centralized system is susceptible to system-widefailures and processing bottlenecks, multi-agent systems aremore reliable, especially given the likelihood of individualcomponent failures.

  18. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  19. The system of digital-image optical microscope in semiconductor particle detector development

    International Nuclear Information System (INIS)

    Han Lixiang; Li Zhankui; Jin Genming; Wang Zhusheng; Xiao Guoqing

    2009-01-01

    Optical microscopic detection is very important in the process of semiconductor particle detector development. A system of digital-image optical microscope has been constructed with rather low price, which performance is comparable with the moderate-level imports. The system mounts powerful dry objective, and a 2μm resolution could be achieved. Observations with bright and dark field, polarized light,and interference light can be carried out on it. The system have large area on-line monitor,and the photographic device can be controlled by PC. It can be used in the control of defects and contaminations, pattern test, identification of crystal backing, inspection of the smoothness and the flatness of the crystal surface. It can also be used in some precise procedures, such as test, assembly, packaging and repairing. The quality of the bond could be examined by observing the appearance of the bond point and the microscopic structure of the solder. The surface fluctuation can be precisely measured under the microscope with the technology of multi-beam interference. In the article, the application of this system for semiconductor particle detector development has been illustrated, and the construction information has been described in detail. (authors)

  20. Digital Signal Processing for Medical Imaging Using Matlab

    CERN Document Server

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  1. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    Science.gov (United States)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  2. Digital networks for the image management; Las redes digitales para manejo de imagen

    Energy Technology Data Exchange (ETDEWEB)

    Gomez del Campo L, A. [Departamento de Radiologia e Imagen, Hospital Central Militar, Mexico D.F. (Mexico)

    1999-07-01

    The digital networks designed specifically for the X-ray departments in the hospitals already were found in open development at beginning the 80's decade. Actually the digital network will be present include the image generation without the necessity to use film in direct form and in its case to print it through a laser ray printers network, an electronic image file, the possibility to integrate the hospitable information system to the electronic expedient which will allow communicate radiograph electronic files and consult by satellite via the problem cases. (Author)

  3. Automatic Microaneurysm Detection and Characterization Through Digital Color Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Charles; Veras, Rodrigo; Ramalho, Geraldo; Medeiros, Fatima; Ushizima, Daniela

    2008-08-29

    Ocular fundus images can provide information about retinal, ophthalmic, and even systemic diseases such as diabetes. Microaneurysms (MAs) are the earliest sign of Diabetic Retinopathy, a frequently observed complication in both type 1 and type 2 diabetes. Robust detection of MAs in digital color fundus images is critical in the development of automated screening systems for this kind of disease. Automatic grading of these images is being considered by health boards so that the human grading task is reduced. In this paper we describe segmentation and the feature extraction methods for candidate MAs detection.We show that the candidate MAs detected with the methodology have been successfully classified by a MLP neural network (correct classification of 84percent).

  4. Visible digital watermarking system using perceptual models

    Science.gov (United States)

    Cheng, Qiang; Huang, Thomas S.

    2001-03-01

    This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.

  5. 3D digital stereophotogrammetry: a practical guide to facial image acquisition

    Directory of Open Access Journals (Sweden)

    Upson Kristen

    2010-07-01

    Full Text Available Abstract The use of 3D surface imaging technology is becoming increasingly common in craniofacial clinics and research centers. Due to fast capture speeds and ease of use, 3D digital stereophotogrammetry is quickly becoming the preferred facial surface imaging modality. These systems can serve as an unparalleled tool for craniofacial surgeons, proving an objective digital archive of the patient's face without exposure to radiation. Acquiring consistent high-quality 3D facial captures requires planning and knowledge of the limitations of these devices. Currently, there are few resources available to help new users of this technology with the challenges they will inevitably confront. To address this deficit, this report will highlight a number of common issues that can interfere with the 3D capture process and offer practical solutions to optimize image quality.

  6. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  7. Image analysis and machine learning in digital pathology: Challenges and opportunities.

    Science.gov (United States)

    Madabhushi, Anant; Lee, George

    2016-10-01

    With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification

  8. Digital multilayer tomography

    International Nuclear Information System (INIS)

    Dueber, C.; Klose, K.J.; Thelen, M.

    1991-01-01

    With digital multilayer tomography a sequence of projection images is recorded by an image intensifier television system and stored as digital data during a linear run of a layer sequence. Using this data record, tomograms of the examined body region can be computed for any layer thickness by shifts and superimposition of the single projections later at a digital workstation. The qualities of digital and conventional tomograms are basically comparable. A drawback of digital tomography is its lower local resolution (512 x 512 image matrix), advantages are a lower radiation exposure, a shorter patient examination time, and the facilities of digital image processing (later processing, archive setup, transmission). (orig.) [de

  9. A Partnership Training Program in Breast Cancer Diagnosis: Concept Development of the Next Generation Diagnostic Breast Imaging Using Digital Image Library and Networking Techniques

    National Research Council Canada - National Science Library

    Chouikha, Mohamed F

    2004-01-01

    ...); and Georgetown University (Image Science and Information Systems, ISIS). In this partnership training program, we will train faculty and students in breast cancer imaging, digital image database library techniques and network communication strategy...

  10. Digital-image processing improves man-machine communication at a nuclear reactor

    International Nuclear Information System (INIS)

    Cook, S.A.; Harrington, T.P.; Toffer, H.

    1982-01-01

    The application of digital image processing to improve man-machine communication in a nuclear reactor control room is illustrated. At the Hanford N Reactor, operated by UNC Nuclear Industries for the United States Department of Energy, in Richland, Washington, digital image processing is applied to flow, temperature, and tube power data. Color displays are used to present the data in a clear and concise fashion. Specific examples are used to demonstrate the capabilities and benefits of digital image processing of reactor data. N Reactor flow and power maps for routine reactor operations and for perturbed reactor conditions are displayed. The advantages of difference mapping are demonstrated. Image processing techniques have also been applied to results of analytical reactor models; two examples are shown. The potential of combining experimental and analytical information with digital image processing to produce predictive and adaptive reactor core models is discussed. The applications demonstrate that digital image processing can provide new more effective ways for control room personnel to assess reactor status, to locate problems and explore corrective actions. 10 figures

  11. ASTM reference radiologic digital image standards

    International Nuclear Information System (INIS)

    Wysnewski, R.; Wysnewski, D.

    1996-01-01

    ASTM Reference Radiographs have been essential in defining industry's material defect grade levels for many years. ASTM Reference Radiographs are used extensively as even the American Society for Metals Nondestructive Inspection and Quality Control Metals Handbook, Volume 11, eighth edition refers to ASTM Standard Reference Radiographs. The recently published E 1648 Standard Reference Radiographs for Examination of Aluminum Fusion Welds is a prime example of the on-going need for these references. To date, 14 Standard Reference Radiographs have been published to characterize material defects. Standard Reference Radiographs do not adequately address film-less radiologic methods. There are differences in mediums to content with. On a computer CRT defect indications appear differently when compared to indications viewed in a radiograph on a view box. Industry that uses non-film radiologic methods of inspection can be burdened with additional time and money developing internal standard reference radiologic images. These references may be deemed necessary for grading levels of product defects. Because there are no ASTM Standard Reference Radiologic data files for addressing this need in the industry, the authors of this paper suggested implementing a method for their creation under ASTM supervision. ASTM can assure continuity to those users making the transition from analog radiographic images to digital image data by swiftly addressing the requirements for reference digital image standards. The current status and possible future activities regarding a method to create digital data files is presented in this paper summary

  12. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    Science.gov (United States)

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  13. Conception and data transfer analysis of an open-source digital image archive designed for radiology

    International Nuclear Information System (INIS)

    Teichgraeber, U.K.M.; Lehmkuhl, L.; Harderer, A.; Emmel, D.; Ehrenstein, T.; Ricke, J.; Felix, R.

    2003-01-01

    Purpose: Implementation of a self-designed, web-based digital image archive incorporating the existing DICOM infrastructure to assure distribution of digital pictures and reports and to optimize work flow. Assessment after three years. Materials and methods: Open-source software was used to guarantee highest reliability and cost effectiveness. In view of rapidly increasing capacity and decreasing costs of hard discs (HDs), HDs were preferred over slower and expensive magneto-optical disk (MOD) or tape storage systems. The number of installed servers increased from one to 12. By installing HDs with increased capacities, the number of servers should be kept constant. Entry and access of data were analyzed over two 4-month periods (after 1.5 and 2 years of continuous operations). Results: Our digital image archive was found to be very reliable, cost effective and suitable for its designated tasks. As judged from the measured access volume, the average utilization of the system increased by 160%. In the period from January to April 2002, the users accessed 239.8 gigabyte of the stored 873.7 gigabyte image data (27%). The volume of the stored data added 20%, mainly due to an increase in cross-section imaging. Conclusion: The challenge of developing a digital image archive with limited financial resources resulted in a practicable and expandable solution. The utilization, number of active users and volume of transferred data have increased significantly. Our concept of utilizing HDs for image storage proved to be successful. (orig.) [de

  14. PACS and the digital storage of medical images

    International Nuclear Information System (INIS)

    Perry, J.R.; Johnston, R.E.; Pizer, S.M.; Lowendorf, D.D.; Rogers, D.C.; Thompson, B.C.; Parrish, D.M.; Brenton, B.C.; Staab, E.V.

    1986-01-01

    An application of computers in medicine is developing wherein large amounts of digital information in the form of images must be stored, retrieved, and displayed quickly. In radiology this application most commonly goes by the acronym PACS which stands for picture archival and communications system. Estimates of the storage requirements for radiologic images strongly suggest that we should think in terms of terabytes per year for a 150,000 procedure/year, 600 bed hospital. Transmission of patient image data files (a single X-ray image pair may be 12.6 Mbytes) arouses concern over transmission speeds, user waiting tolerances and a communications standard. An important accord is being reached between users and equipment manufacturers in radiology for a standard communications protocol, called the proposed ACR-NEMA standard. Features of PACS which require high speed computational abilities include a lexicon for report generation and image reconstruction, compression, enhancement and 3D display

  15. An efficient architecture to support digital pathology in standard medical imaging repositories.

    Science.gov (United States)

    Marques Godinho, Tiago; Lebre, Rui; Silva, Luís Bastião; Costa, Carlos

    2017-07-01

    In the past decade, digital pathology and whole-slide imaging (WSI) have been gaining momentum with the proliferation of digital scanners from different manufacturers. The literature reports significant advantages associated with the adoption of digital images in pathology, namely, improvements in diagnostic accuracy and better support for telepathology. Moreover, it also offers new clinical and research applications. However, numerous barriers have been slowing the adoption of WSI, among which the most important are performance issues associated with storage and distribution of huge volumes of data, and lack of interoperability with other hospital information systems, most notably Picture Archive and Communications Systems (PACS) based on the DICOM standard. This article proposes an architecture of a Web Pathology PACS fully compliant with DICOM standard communications and data formats. The solution includes a PACS Archive responsible for storing whole-slide imaging data in DICOM WSI format and offers a communication interface based on the most recent DICOM Web services. The second component is a zero-footprint viewer that runs in any web-browser. It consumes data using the PACS archive standard web services. Moreover, it features a tiling engine especially suited to deal with the WSI image pyramids. These components were designed with special focus on efficiency and usability. The performance of our system was assessed through a comparative analysis of the state-of-the-art solutions. The results demonstrate that it is possible to have a very competitive solution based on standard workflows. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Digital radiography

    International Nuclear Information System (INIS)

    Kusano, Shoichi

    1993-01-01

    Firstly, from an historic point of view, fundamental concepts on digital imaging were reviewed to provide a foundation for discussion of digital radiography. Secondly, this review summarized the results of ongoing research in computed radiography that replaces the conventional film-screen system with a photo-stimulable phosphor plate; and thirdly, image quality, radiation protection, and image processing techniques were discussed with emphasis on picture archiving and communication system environment as our final goal. Finally, future expansion of digital radiography was described based on the present utilization of computed tomography at the National Defense Medical College Hospital. (author) 60 refs

  17. Comparison of the automated evaluation of phantom mama in digital and digitalized images

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2011-01-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  18. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  19. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  20. Reengineering the picture archiving and communication system (PACS) process for digital imaging networks PACS.

    Science.gov (United States)

    Horton, M C; Lewis, T E; Kinsey, T V

    1999-05-01

    Prior to June 1997, military picture archiving and communications systems (PACS) were planned, procured, and installed with key decisions on the system, equipment, and even funding sources made through a research and development office called Medical Diagnostic Imaging Systems (MDIS). Beginning in June 1997, the Joint Imaging Technology Project Office (JITPO) initiated a collaborative and consultative process for planning and implementing PACS into military treatment facilities through a new Department of Defense (DoD) contract vehicle called digital imaging networks (DIN)-PACS. The JITPO reengineered this process incorporating multiple organizations and politics. The reengineered PACS process administered through the JITPO transformed the decision process and accountability from a single office to a consultative method that increased end-user knowledge, responsibility, and ownership in PACS. The JITPO continues to provide information and services that assist multiple groups and users in rendering PACS planning and implementation decisions. Local site project managers are involved from the outset and this end-user collaboration has made the sometimes difficult transition to PACS an easier and more acceptable process for all involved. Corporately, this process saved DoD sites millions by having PACS plans developed within the government and proposed to vendors second, and then having vendors respond specifically to those plans. The integrity and efficiency of the process have reduced the opportunity for implementing nonstandard systems while sharing resources and reducing wasted government dollars. This presentation will describe the chronology of changes, encountered obstacles, and lessons learned within the reengineering of the PACS process for DIN-PACS.

  1. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  2. Improving digital image watermarking by means of optimal channel selection

    NARCIS (Netherlands)

    Huynh-The, Thien; Banos Legran, Oresti; Lee, Sungyoung; Yoon, Yongik; Le-Tien, Thuong

    2016-01-01

    Supporting safe and resilient authentication and integrity of digital images is of critical importance in a time of enormous creation and sharing of these contents. This paper presents an improved digital image watermarking model based on a coefficient quantization technique that intelligently

  3. Global manipulation of digital images can lead to variation in cytological diagnosis.

    Science.gov (United States)

    Prasad, H; Wanjari, Sangeeta; Parwani, Rajkumar

    2011-03-31

    With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. To analyse the impact of manipulating digital images on their diagnosis. Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP) to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted κ statistics was used to measure and assess the levels of agreement between observers. Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  4. Digitized video subject positioning and surveillance system for PET

    International Nuclear Information System (INIS)

    Picard, Y.; Thompson, C.J.

    1995-01-01

    Head motion is a significant contribution to the degradation of image quality of Positron Emission Tomography (PET) studies. Images from different studies must also be realigned digitally to be correlated when the subject position has changed. These constraints could be eliminated if the subject's head position could be monitored accurately. The authors have developed a video camera-based surveillance system to monitor the head position and motion of subjects undergoing PET studies. The system consists of two CCD (charge-coupled device) cameras placed orthogonally such that both face and profile views of the subject's head are displayed side by side on an RGB video monitor. Digitized images overlay the live images in contrasting colors on the monitor. Such a system can be used to (1) position the subject in the field of view (FOV) by displaying the position of the scanner's slices on the monitor along with the current subject position, (2) monitor head motion and alert the operator of any motion during the study and (3) reposition the subject accurately for subsequent studies by displaying the previous position along with the current position in a contrasting color

  5. Interpretation of medical imaging data with a mobile application: a mobile digital imaging processing environment

    Directory of Open Access Journals (Sweden)

    Meng Kuan eLin

    2013-07-01

    Full Text Available Digital Imaging Processing (DIP requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and digital imaging processing service, called M-DIP. The objective of the system is to (1 automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC, Neuroimaging Informatics Technology Initiative (NIFTI to RAW formats; (2 speed up querying of imaging measurement; and (3 display high level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle- layer database, a stand-alone DIP server and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data a multiple zoom levels and to increase its quality to meet users expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.

  6. Effect of area x-ray beam equalization on image quality and dose in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jerry; Xu Tong; Husain, Adeel; Le, Huy; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, CA 92697 (United States)

    2004-08-21

    In mammography, thick or dense breast regions persistently suffer from reduced contrast-to-noise ratio (CNR) because of degraded contrast from large scatter intensities and relatively high noise. Area x-ray beam equalization can improve image quality by increasing the x-ray exposure to under-penetrated regions without increasing the exposure to other breast regions. Optimal equalization parameters with respect to image quality and patient dose were determined through computer simulations and validated with experimental observations on a step phantom and an anthropomorphic breast phantom. Three parameters important in equalization digital mammography were considered: attenuator material (Z = 13-92), beam energy (22-34 kVp) and equalization level. A Mo/Mo digital mammography system was used for image acquisition. A prototype 16 x 16 piston driven equalization system was used for preparing patient-specific equalization masks. Simulation studies showed that a molybdenum attenuator and an equalization level of 20 were optimal for improving contrast, CNR and figure of merit (FOM = CNR{sup 2}/dose). Experimental measurements using these parameters showed significant improvements in contrast, CNR and FOM. Moreover, equalized images of a breast phantom showed improved image quality. These results indicate that area beam equalization can improve image quality in digital mammography.

  7. The impact of technical conditions of X-ray imaging on reproducibility and precision of digital computer-assisted X-ray radiogrammetry (DXR)

    International Nuclear Information System (INIS)

    Malich, A.; Boettcher, J.; Pfeil, A.; Sauner, D.; Heyne, J.P.; Petrovitch, A.; Hansch, A.; Kaiser, W.A.; Linss, W.

    2004-01-01

    To evaluate the reproducibility of imaging and analysis for bone mineral density (BMD) determination using digital computer-assisted X-ray radiogrammetry (DXR; Pronosco X-posure, version V.2, Sectra Pronosco, Denmark); to verify potential factors that influence BMD extrapolation such as tube voltage, film-focus distance (FFD), film quality and brand (Kodak T-MAT-Plus, Konika SRH, Agfa Scopix), imaging technology (conventional, digital), imaging system (Kodak, Agfa) and exposure level (mAs); and to clarify whether DXR analysis based on printouts of digital images is comparable to analysis of conventional images. The hand of a cadaver was X-rayed using varied parameters: 4-8 mAs, 40-52 kV, 90-130 cm FFD. Radiographs under standardised conditions were performed 10 times using a conventional machine (Philips Super 80 CP) and the printouts of a digital system (Digital Diagnost Philips Optimus) for the analysis of reproducibility. One image was scanned and analysed 10 times additionally for imaging reproducibility. Reliability error of the system for the imaging process using conventional radiographs-rays was 0.49% (standard conditions: 6 mAs, 40 kV, 1 m FFD), using printouts of digital images was 2.89% (4 mAs, 42 kV, 1 m FFD) and regarding the analysis process was 0.22%. BMD calculation is not affected by alterations in FFD (precision error 1.21%), mAs (0.83%) or film quality/brand (0.38%), but differs significantly depending on tube voltage (2.70%). The system was not able to analyse conventional images with tube voltages of 49/52 kV. DXR technology is stable with most of the tested parameters. Normative data should exclusively be used for calculations using similar tube voltage or correction factors. All other parameters had no significant influence on the BMD calculation. Reproducibility is high. For technical reasons it is not recommended to use the printouts of digital images for BMD determination. (orig.)

  8. Portable digital electronic radiography system

    International Nuclear Information System (INIS)

    Sawicka, B.D.

    1995-01-01

    Radiography is a standard nondestructive technique in the industrial testing of materials and components. It is routinely used during the construction, maintenance and repair of nuclear plants. Traditionally, radiography is performed using photographic film (film radiography, FR). Recent developments in solid-state area imaging radiation detectors, miniature electronics and computer software/hardware techniques have brought electronic alternatives to FR. In recent years various electronic radiography (ER) techniques have served as alternatives to FR, these proved beneficial in some applications. While originally developed to provide real time imaging, ER may offer other advantages over FR, depending on the application. Work was undertaken at CRL to review progress in ER techniques and evaluate the possibility of constructing a portable DER (digital electronic radiography) system, for the inspection of power plant components. A suitable DER technique has been developed and a proof of principle portable system constructed. As this paper demonstrates, a properly designed ER system can be small and compact, while providing radiographic examination with acceptable image quality and the benefits of ER imaging. The CRL DER system can operate with radioactive sources typical of FR. While it does not replace FR, our DER system is expected to be beneficial in specific applications for Candu maintenance, reducing cost, labour and time. Practical, cost saving applications of this system are expected to include valve monitoring and foreign object location during maintenance at Candu reactors

  9. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  10. Digital subtraction angiography with an Isocon camera system: clinical applications

    International Nuclear Information System (INIS)

    Barbaric, Z.L.; Gomes, A.S.; Deckard, M.E.; Nelson, R.S.; Moler, C.L.

    1984-01-01

    A new imaging system for digital subtraction angiography (DSA) was evaluated in 30 clinical studies. The image receptor is a 25 X 25 cm, 12 par gadolinium oxysulfate rare-earth screen whose light output is focused to a low-light-level Isocon camera. The video signal is digitized and processed by an image-array processor containing 31 512 X 512 memories 8 bits deep. In most patients, intraarterial DSA studies were done in conjunction with conventional arteriography. In these arterial studies, images adequate to make a specific diagnosis were obtained using half the radiation dose and half the amount of contrast material needed for conventional angiography. In eight intravenous studies performed either to identify renal artery stenosis or for evaluation of congenital heart anomalies, the images were diagnostic but objectionably noisy

  11. Digital image processing in art conservation

    Czech Academy of Sciences Publication Activity Database

    Zitová, Barbara; Flusser, Jan

    č. 53 (2003), s. 44-45 ISSN 0926-4981 Institutional research plan: CEZ:AV0Z1075907 Keywords : art conservation * digital image processing * change detection Subject RIV: JD - Computer Applications, Robotics

  12. [Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model : Are your clinical imaging processes ready for the digital era?

    Science.gov (United States)

    Studzinski, J

    2017-06-01

    The Digital Imaging Adoption Model (DIAM) has been jointly developed by HIMSS Analytics and the European Society of Radiology (ESR). It helps evaluate the maturity of IT-supported processes in medical imaging, particularly in radiology. This eight-stage maturity model drives your organisational, strategic and tactical alignment towards imaging-IT planning. The key audience for the model comprises hospitals with imaging centers, as well as external imaging centers that collaborate with hospitals. The assessment focuses on different dimensions relevant to digital imaging, such as software infrastructure and usage, workflow security, clinical documentation and decision support, data exchange and analytical capabilities. With its standardised approach, it enables regional, national and international benchmarking. All DIAM participants receive a structured report that can be used as a basis for presenting, e.g. budget planning and investment decisions at management level.

  13. New method of digital angiography

    International Nuclear Information System (INIS)

    Hashiya, Junichi; Korenaga, Takeo; Sakurai, Kenji; Sakai, Fumikazu; Kato, Hisatoyo; Takano, Masao.

    1982-01-01

    New experience of digital angiography using Fuji Intelligent Diagnostic X-ray System was reported. The system utilizes newly developed high sensitivity imaging plate in conjunction with computerized image processor instead of image intensifier-TV series, thus drastically improving image quality. Initial clinical trial was made in 46 cases including intravenous digital subtraction angiography and transcatheter digital arteriography. The advantages of this method were summerized as: 1. better resolution, 2. wider field size, 3. more sophisticated image manipulation program. (author)

  14. Energy-dependent imaging in digital radiography: a review on acquisition, processing and display technique

    International Nuclear Information System (INIS)

    Coppini, G.; Maltinti, G.; Valli, G.; Baroni, M.; Buchignan, M.; Valli, G.

    1986-01-01

    The capabilities of energy-dependent imaging in digital radiography are analyzed paying particular attention to digital video systems. The main techniques developed in recent years for selective energy imaging are reviewed following a unified approach. Discussion about advantages and limits of energy methods is carried out by a comparative analysis of computer simulated data and experimental results as obtained by standard x-ray equipments coupled to a digital video unit. Geometric phantoms are used as test object, as also images of a chest phantom are produced. Since signal-to-noise ratio degradation is one of the major problems when dealing with selective imaging, a particular effort is made to investigate noise effects. In this perspective, an original colour encoding display of energy sequences is presented. By mapping the various energy measurements on different colour bands (typically those of an RGB TV-monitor), an increased image conspicuity is obtained without a significant noise degradation: this is ensured by the energy dependence of attenuation coefficients and by the integrating characteristics of the display device

  15. Digital radiography of the chest

    International Nuclear Information System (INIS)

    Sakurai, Kenji; Hachiya, Junichi; Korenaga, Tateo; Nitatori, Toshiaki; Miyasaka, Yasuo; Furuya, Yoshiro

    1984-01-01

    Initial clinical experience in digital chest radiography utilizing photostimulable phosphor and scanning laser stimulated luminescence was reported. Image quality of conventional film/screen radiography and digital radiography was compared in 30 normal cases. Reflecting wide dynamic range of the system, improved image quality was confirmed in all 30 cases, particularly in visibility of various mediastinal structures and pulmonary vessels. High sensor sensitivity of the system enabled digital radiography to reduce radiation dose requirement significantly. Diagnostically acceptable chest images were obtained with approximately 1/5 of routine dose for conventional radiography without significant image quality degradation. Some artifact created by digital processing were mostly overcome by a routine use of simultaneous display of two different types of image processing and therefore was not an actual drawback from diagnostic standpoint. Further technical advancement of the system to be seen for digital storage, retrieval and tranceference of images. (author)

  16. Computer aided system for segmentation and visualization of microcalcifications in digital mammograms

    International Nuclear Information System (INIS)

    Reljin, B.; Reljin, I.; Milosevic, Z.; Stojic, T.

    2009-01-01

    Two methods for segmentation and visualization of microcalcifications in digital or digitized mammograms are described. First method is based on modern mathematical morphology, while the second one uses the multifractal approach. In the first method, by using an appropriate combination of some morphological operations, high local contrast enhancement, followed by significant suppression of background tissue, irrespective of its radiology density, is obtained. By iterative procedure, this method highly emphasizes only small bright details, possible microcalcifications. In a multifractal approach, from initial mammogram image, a corresponding multifractal 'images' are created, from which a radiologist has a freedom to change the level of segmentation. An appropriate user friendly computer aided visualization (CAV) system with embedded two methods is realized. The interactive approach enables the physician to control the level and the quality of segmentation. Suggested methods were tested through mammograms from MIAS database as a gold standard, and from clinical praxis, using digitized films and digital images from full field digital mammograph. (authors)

  17. The comparison between SVD-DCT and SVD-DWT digital image watermarking

    Science.gov (United States)

    Wira Handito, Kurniawan; Fauzi, Zulfikar; Aminy Ma’ruf, Firda; Widyaningrum, Tanti; Muslim Lhaksmana, Kemas

    2018-03-01

    With internet, anyone can publish their creation into digital data simply, inexpensively, and absolutely easy to be accessed by everyone. However, the problem appears when anyone else claims that the creation is their property or modifies some part of that creation. It causes necessary protection of copyrights; one of the examples is with watermarking method in digital image. The application of watermarking technique on digital data, especially on image, enables total invisibility if inserted in carrier image. Carrier image will not undergo any decrease of quality and also the inserted image will not be affected by attack. In this paper, watermarking will be implemented on digital image using Singular Value Decomposition based on Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) by expectation in good performance of watermarking result. In this case, trade-off happen between invisibility and robustness of image watermarking. In embedding process, image watermarking has a good quality for scaling factor < 0.1. The quality of image watermarking in decomposition level 3 is better than level 2 and level 1. Embedding watermark in low-frequency is robust to Gaussian blur attack, rescale, and JPEG compression, but in high-frequency is robust to Gaussian noise.

  18. Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, Christina; Zuber, Niklaus; Weishaupt, Dominik [Stadtspital Triemli Zurich, Department of Radiology and Nuclear Medicine, Zurich (Switzerland)

    2017-03-15

    The purpose was to report on the initial experience after implementation of a patient dose-monitoring system in conventional X-ray imaging. A dose-monitoring system collected dose data relating to different radiographs (one projection) and studies (two or more projections). Images were acquired on digital X-ray systems equipped with flat-panel detectors. During period 1, examinations were performed in a routine fashion in 12,614 patients. After period 1, technical modifications were performed and radiographers underwent training in radiation protection. During period 2, examinations were performed in 14,514 patients, and the radiographers were advised to read dose data after each radiograph/study. Dose data were compared by means of kerma area product (KAP, gray x centimetre squared) and entrance surface air kerma (ESAK, milligray). During period 1, 13,955 radiographs and 8,466 studies were performed, and in period 2 16,090 radiographs and 10,389 studies. In period 2, KAP values for radiographs were an average of 25 % lower and for studies 7 % lower, and ESAK values for radiographs were 24 % lower and for studies 5 % lower. The reduction in KAP was significant in 8/13 radiographs and in 6/14 studies, and the reduction in ESAK was significant in 6/13 radiographs and 5/14 studies. Implementation of a patient dose-monitoring system in conventional X-ray imaging allows easy data collection, supports dose reduction efforts, and may increase radiographers' dose awareness. (orig.)

  19. Automated extraction of chemical structure information from digital raster images

    Directory of Open Access Journals (Sweden)

    Shedden Kerby A

    2009-02-01

    Full Text Available Abstract Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links

  20. Effects of image enhancement on reliability of landmark identification in digital cephalometry

    Directory of Open Access Journals (Sweden)

    M Oshagh

    2013-01-01

    Full Text Available Introduction: Although digital cephalometric radiography is gaining popularity in orthodontic practice, the most important source of error in its tracing is uncertainty in landmark identification. Therefore, efforts to improve accuracy in landmark identification were directed primarily toward the improvement in image quality. One of the more useful techniques of this process involves digital image enhancement which can increase overall visual quality of image, but this does not necessarily mean a better identification of landmarks. The purpose of this study was to evaluate the effectiveness of digital image enhancements on reliability of landmark identification. Materials and Methods: Fifteen common landmarks including 10 skeletal and 5 soft tissues were selected on the cephalograms of 20 randomly selected patients, prepared in Natural Head Position (NHP. Two observers (orthodontists identified landmarks on the 20 original photostimulable phosphor (PSP digital cephalogram images and 20 enhanced digital images twice with an intervening time interval of at least 4 weeks. The x and y coordinates were further analyzed to evaluate the pattern of recording differences in horizontal and vertical directions. Reliability of landmarks identification was analyzed by paired t test. Results: There was a significant difference between original and enhanced digital images in terms of reliability of points Ar and N in vertical and horizontal dimensions, and enhanced images were significantly more reliable than original images. Identification of A point, Pogonion and Pronasal points, in vertical dimension of enhanced images was significantly more reliable than original ones. Reliability of Menton point identification in horizontal dimension was significantly more in enhanced images than original ones. Conclusion: Direct digital image enhancement by altering brightness and contrast can increase reliability of some landmark identification and this may lead to more

  1. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  2. Evaluation of the quality of CR mammography images in Chugoku Rosai Hospital. Visual evaluation and digital evaluation

    International Nuclear Information System (INIS)

    Makihata, Hiroshi; Fukuda, Tomoya; Aomori, Masaji; Hara, Shinji

    2005-01-01

    New mammography system (50-micrometer system) composed of Fuji computed tomography (FCR) both sides IP, 5000MA and dry imager was introduced in the Department of Physical Checkup of Chugoku Rosai Hospital in 2003. We performed visual evaluation and digital evaluation using 50-micrometer system in accordance with (the quality control guidance of) Non-Profit Organization the Central Committee on Quality Control of Mammographic Screening. In visual evaluation using RMI156 phantom the system cleared the quality control guidance about a fiber, calcification, and masses. On step phantom, it passed about 10 steps, masses, and calcifications. Since a success standard was not announced officially, the performance in digital evaluation cannot be judged and only the result is presented. In digital evaluation, signal-to-noise ratio (SNR) is 14.9, root of mean squares (RMS) is 32.9, SNRC is 16.4, SNRT is 3.65. This system image has high sharpness and is considered from the result in visual evaluation to have the ability of offering images with a high degree of information. (author)

  3. Global manipulation of digital images can lead to variation in cytological diagnosis

    Directory of Open Access Journals (Sweden)

    H Prasad

    2011-01-01

    Full Text Available Background: With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. Aim: To analyse the impact of manipulating digital images on their diagnosis. Design: Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted k statistics was used to measure and assess the levels of agreement between observers. Results: Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Conclusion: Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  4. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  5. Are digital images good enough? A comparative study of conventional film-screen vs digital radiographs on printed images of total hip replacement

    International Nuclear Information System (INIS)

    Eklund, K.; Jonsson, K.; Lindblom, G.; Lundin, B.; Sanfridsson, J.; Sloth, M.; Sivberg, B.

    2004-01-01

    The aim of this study was to evaluate the inter- and intra-observer variability and to find differences in diagnostic safety between digital and analog technique in diagnostic zones around hip prostheses. In 80 patients who had had a total hip replacement (THR) for more than 2 years, a conventional image and a digital image were taken. Gruen's model of seven distinct regions of interest was used for evaluations. Five experienced radiologists observed the seven regions and noted in a protocol the following distances: stem-cement; cement-bone; and stem-bone. All images were printed on hard copies and were read twice. Weighted kappa, κ w , analyses were used. The two most frequently loosening regions, stem-cement region 1 and cement-bone region 7, were closely analyzed. In region 1 the five observers had an agreement of 86.75-97.92% between analog and digital images in stem-cement, which is a varied κ w 0.29-0.71. For cement-bone region 7 an agreement of 87.21-90.45% was found, which is a varied κ w of 0.48-0.58. All the kappa values differ significantly from nil. The result shows that digital technique is as good as analog radiographs for diagnosing possible loosening of hip prostheses. (orig.)

  6. Characterization of microcalcification: can digital monitor zooming replace magnification mammography in full-field digital mammography?

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Kwak, Jin Young; Son, Eun Ju; Youk, Ji Hyun; Choi, Seon Hyeong; Oh, Ki Keun; Han, Mooyoung

    2009-01-01

    The aim of this study was to compare the diagnostic accuracy and image quality of microcalcifications in zoomed digital contact mammography with digital magnification mammography. Three radiologists with different levels of experience in mammography reviewed 120 microcalcification clusters in 111 patients with a full-field digital mammography system relying on digital magnification mammogram (MAG) images and zoomed images from contact mammography (ZOOM) using commercially available zooming systems on monitors. Each radiologist estimated the probability of malignancy and rated the image quality and confidence rate. Performance was evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic (ROC) analysis. All three radiologists rated MAG images higher than ZOOM images for sensitivity with statistical significance (average value, 92% vs. 87%, P<0.05) and performance by ROC analysis improved with MAG imaging. The confidence rate for diagnosis decision and the assessment of lesion characteristics were also better in MAG images than in ZOOM images with statistical significance (P<0.0001). Digital magnification mammography can enhance diagnostic performance when characterizing microcalcifications. Images zoomed from digital contact mammography cannot serve as an alternative to direct magnification digital mammography. (orig.)

  7. Programmable electronic system for analog and digital gamma cameras modernization

    International Nuclear Information System (INIS)

    Osorio Deliz, J. F.; Diaz Garcia, A.; Arista Omeu, E. J.

    2013-01-01

    At present the use of analog and digital gamma cameras is continuously increasing in developing countries. Many of them still largely rely in old hardware electronics, which in many cases limits their use in actual nuclear medicine diagnostic studies. For this reason worldwide there are different medical equipment manufacturing companies engaged into partial or total Gamma Cameras modernization. Nevertheless in several occasions acquisition prices are not affordable for developing countries. This work describes the basic features of a programmable electronic system that allows improving acquisitions functions and processing of analog and digital gamma cameras. This system is based on an electronic board for the acquisition and digitization of nuclear pulses which have been generated by gamma camera detector. It comprises a hardware interface with PC and the associated software to fully signal processing. Signal shaping and image processing are included. The extensive use of reference tables in the processing and signal imaging software allowed the optimization of the processing speed. Time design and system cost were also decreased. (Author)

  8. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  9. Imaging of the peripheral vascular system

    International Nuclear Information System (INIS)

    Gould, S.A.; Pond, G.D.; Pinsky, S.; Moss, G.S.; Srikantaswamy, S.; Ryo, U.Y.

    1984-01-01

    This book is limited neither to the peripheral vascular system nor to diagnostic imaging techniques. Its 18 chapters cover nonimaging blood-flow techniques (Doppler ultrasound, plethysmography) as well as noninvasive and invasive imaging techniques (ultrasound, computed tomography, radionuclide digital-subtraction angiography, and contrast angiography). These are applied not only to the peripheral vascular system but also to the aorta and vena cava

  10. Intra-operative digital imaging: assuring the alignment of components when undertaking total hip arthroplasty.

    Science.gov (United States)

    Hambright, D; Hellman, M; Barrack, R

    2018-01-01

    The aims of this study were to examine the rate at which the positioning of the acetabular component, leg length discrepancy and femoral offset are outside an acceptable range in total hip arthroplasties (THAs) which either do or do not involve the use of intra-operative digital imaging. A retrospective case-control study was undertaken with 50 patients before and 50 patients after the integration of an intra-operative digital imaging system in THA. The demographics of the two groups were comparable for body mass index, age, laterality and the indication for surgery. The digital imaging group had more men than the group without. Surgical data and radiographic parameters, including the inclination and anteversion of the acetabular component, leg length discrepancy, and the difference in femoral offset compared with the contralateral hip were collected and compared, as well as the incidence of altering the position of a component based on the intra-operative image. Digital imaging took a mean of five minutes (2.3 to 14.6) to perform. Intra-operative changes with the use of digital imaging were made for 43 patients (86%), most commonly to adjust leg length and femoral offset. There was a decrease in the incidence of outliers when using intra-operative imaging compared with not using it in regard to leg length discrepancy (20% versus 52%, p = 0.001) and femoral offset inequality (18% versus 44%, p = 0.004). There was also a difference in the incidence of outliers in acetabular inclination (0% versus 7%, p = 0.023) and version (0% versus 4%, p = 0.114) compared with historical results of a high-volume surgeon at the same centre. The use of intra-operative digital imaging in THA improves the accuracy of the positioning of the components at THA without adding a substantial amount of time to the operation. Cite this article: Bone Joint J 2018;100B(1 Supple A):36-43. ©2018 The British Editorial Society of Bone & Joint Surgery.

  11. A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography

    International Nuclear Information System (INIS)

    Pachoud, Marc; Lepori, D; Valley, Jean-Francois; Verdun, Francis R

    2004-01-01

    Our objective is to describe a new test phantom that permits the objective assessment of image quality in conventional and digital mammography for different types of breast tissue. A test phantom, designed to represent a compressed breast, was made from tissue equivalent materials. Three separate regions, with different breast tissue compositions, are used to evaluate low and high contrast resolution, spatial resolution and image noise. The phantom was imaged over a range of kV using a Contour 2000 (Bennett) mammography unit with a Kodak MinR 2190-MinR L screen-film combination and a Senograph 2000D (General Electric) digital mammography unit. Objective image quality assessments for different breast tissue compositions were performed using the phantom for conventional and digital mammography. For a similar mean glandular dose (MGD), the digital system gives a significantly higher contrast-to-noise ratio (CNR) than the screen-film system for 100% glandular tissue. In conclusion, in mammography, a range of exposure conditions is used for imaging because of the different breast tissue compositions encountered clinically. Ideally, the patient dose-image quality relationship should be optimized over the range of exposure conditions. The test phantom presented in this work permits image quality parameters to be evaluated objectively for three different types of breast tissue. Thus, it is a useful tool for optimizing the patient dose-image quality relationship

  12. A digital X-ray imaging system based on silicon strip detectors working in edge-on configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bolanos, L. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Boscardin, M. [IRST, Fondazione Bruno Kessler, Via Sommarive 18, Povo, 38100 Trento (Italy); Cabal, A.E. [CEADEN, Calle 30 502 e/ 5ta y 7ma Avenida, Playa, Ciudad Habana (Cuba); Diaz, M. [InSTEC, Ave. Salvador Allende esq. Luaces, Quinta de los Molinos, Ciudad Habana (Cuba); Grybos, P.; Maj, P. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Prino, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Ramello, L. [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria (Italy)], E-mail: luciano.ramello@mfn.unipmn.it; Szczygiel, R. [Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, Department of Measurement and Instrumentation, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2009-09-21

    We present the energy resolution and imaging performance of a digital X-ray imaging system based on a 512-strip silicon strip detector (SSD) working in the edge-on configuration. The SSDs tested in the system are 300 {mu}m thick with 1 or 2-cm-long strips and 100 {mu}m pitch. To ensure a very small dead area of the SSD working in edge-on configuration, the detector is cut perpendicular to the strips at a distance of only 20 {mu}m from the end of the strips. The 512-strip silicon detector is read out by eight 64-channel integrated circuits called DEDIX [Grybos et al., IEEE Trans. Nucl. Sci. NS-54 (2007) 1207]. The DEDIX IC operates in a single photon counting mode with two independent amplitude discriminators per channel. The readout electronic channel connected to a detector with effective input capacitance of about 2 pF has an average equivalent noise charge (ENC) of about 163 el. rms and is able to count 1 Mcps of average rate of input pulses. The system consisting of 512 channels has an excellent channel-to-channel uniformity-the effective threshold spread calculated to the charge-sensitive amplifier inputs is 12 el. rms (at one sigma level). With this system a few test images of a phantom have been taken in the 10-30 keV energy range.

  13. Patients setup verification tool for RT (PSVTs): DRR, simulation, portal and digital images

    International Nuclear Information System (INIS)

    Lee, Suk; Seong, Jin Sil; Chu, Sung Sil; Lee, Chang Geol; Suh, Chang Ok; Kwon, Soo Il

    2003-01-01

    To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproducibility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (MRT). The utilization of this system is evaluated through phantom and patient case studies. We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, portal and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT The results show that the localization errors are 0.8±0.2 mm (AP) and 1.0±0.3 mm (Lateral) in the cases relating to the brain and 1.1± 0.5 mm (AP) and 1.0±0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software. A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproducibility of the patients' setup in 3DCRT and IMRT

  14. Digital imaging of regional glucose metabolism of the heart with a MWPC

    International Nuclear Information System (INIS)

    Bellazzini, R.; Camici, P.; Coppini, G.; Del Guerra, A.; Massai, M.M.; Ragadini, M.; Spandre, G.; Tonelli, G.

    1983-01-01

    The digital imaging of carbohydrate consumption in myocardial tissue has been performed by using a deposit tracer of glucose metabolism ( 3 H-deoxyglucose) and a specially designed Multiwire Proportional Chamber (MWPC) that acts as a position sensitive radioactivity detector. The resolving power (approx. =1.5 mm FWHM), sensitivity (approx. =10 -1 Bq/cm 2 ), efficiency (approx. =10%) and uniformity (+ or -4%) of the system are shown and MWPC digital autoradiographs of canine heart in different pathophysiological conditions are presented

  15. Managing patient dose in digital radiology

    International Nuclear Information System (INIS)

    2014-01-01

    Digital techniques have the potential to improve the practice of radiology but they also risk the overuse of radiation. The main advantages of digital imaging, i.e. wide dynamic range, post processing, multiple viewing options, and electronic transfer and archiving possibilities, are clear but overexposures can occur without an adverse impact on image quality. In conventional radiography, excessive exposure produces a black film. In digital systems, good images are obtained for a large range of doses. It is very easy to obtain (and delete) images with digital fluoroscopy systems, and there may be a tendency to obtain more images than necessary. In digital radiology, higher patient dose usually means improved image quality, so a tendency to use higher patient doses than necessary could occur. Different medical imaging tasks require different levels of image quality, and doses that have no additional benefit for the clinical purpose should be avoided. Image quality can be compromised by inappropriate levels of data compression and/or post processing techniques. All these new challenges should be part of the optimisation process and should be included in clinical and technical protocols. Local diagnostic reference levels should be re-evaluated for digital imaging, and patient dose parameters should be displayed at the operator console. Frequent patient dose audits should occur when digital techniques are introduced. Training in the management of image quality and patient dose in digital radiology is necessary. Digital radiology will involve new regulations and invoke new challenges for practitioners. As digital images are easier to obtain and transmit, the justification criteria should be reinforced. Commissioning of digital systems should involve clinical specialists, medical physicists, and radiographers to ensure that imaging capability and radiation dose management are integrated. Quality control requires new procedures and protocols (visualisation, transmission

  16. COMPARISON OF DIGITAL IMAGE STEGANOGRAPHY METHODS

    Directory of Open Access Journals (Sweden)

    S. A. Seyyedi

    2013-01-01

    Full Text Available Steganography is a method of hiding information in other information of different format (container. There are many steganography techniques with various types of container. In the Internet, digital images are the most popular and frequently used containers. We consider main image steganography techniques and their advantages and disadvantages. We also identify the requirements of a good steganography algorithm and compare various such algorithms.

  17. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  18. Evaluation of computed radiography (CR) and digital radiography (DR) image quality against the EUREF guidelines

    International Nuclear Information System (INIS)

    Honey, I.

    2007-01-01

    Full text: In the UK National Health Service Breast Screening Program (NHSBSP) the predominant imaging technique remains film/screen. However there is a gradual move towards digital imaging technologies. Before a system can be considered for use by the NHSBSP it must undergo technical and clinical evaluation. The technical evaluation must meet the requirements of EUREF1. In this work the image quality of several systems is compared against these guidelines.

  19. Imaging system design and image interpolation based on CMOS image sensor

    Science.gov (United States)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  20. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  1. An instructional guide for leaf color analysis using digital imaging software

    Science.gov (United States)

    Paula F. Murakami; Michelle R. Turner; Abby K. van den Berg; Paul G. Schaberg

    2005-01-01

    Digital color analysis has become an increasingly popular and cost-effective method utilized by resource managers and scientists for evaluating foliar nutrition and health in response to environmental stresses. We developed and tested a new method of digital image analysis that uses Scion Image or NIH image public domain software to quantify leaf color. This...

  2. Digital image processing software system using an array processor

    International Nuclear Information System (INIS)

    Sherwood, R.J.; Portnoff, M.R.; Journeay, C.H.; Twogood, R.E.

    1981-01-01

    A versatile array processor-based system for general-purpose image processing was developed. At the heart of this system is an extensive, flexible software package that incorporates the array processor for effective interactive image processing. The software system is described in detail, and its application to a diverse set of applications at LLNL is briefly discussed. 4 figures, 1 table

  3. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  4. Comparative study of digital laser film and analog paper image recordings

    International Nuclear Information System (INIS)

    Lee, K.R.; Cox, G.G.; Templeton, A.W.; Preston, D.F.; Anderson, W.H.; Hensley, K.S.; Dwyer, S.J.

    1987-01-01

    The increase in the use of various imaging modalities demands higher quality and more efficacious analog image recordings. Laser electronic recordings with digital array prints of 4,000 x 5,000 x 12 bits obtained using laser-sensitive film or paper are being evaluated. Dry silver paper recordings are being improved and evaluated. High-resolution paper dot printers are being studied to determine their gray-scale capabilities. The authors evaluated the image quality, costs, clinical utilization, and acceptability of CT scans, MR images, digital subtraction angiograms, digital radiographs, and radionuclide scans recorded by seven different printers (three laser, three silver paper, and one dot) and compared the same features in conventional film recording. This exhibit outlines the technical developments and instrumentation of digital laser film and analog paper recorders and presents the results of the study

  5. Practical digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Beverly E. [Washington Univ., Seattle, WA (United States)]|[Virginia Mason Medical Center, VA (United States)

    2008-07-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques.

  6. Practical digital mammography

    International Nuclear Information System (INIS)

    Hashimoto, Beverly E.

    2008-01-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques

  7. Technical quality control - constancy controls for digital mammography systems

    International Nuclear Information System (INIS)

    Pedersen, K.; Landmark, I.D.; Bredholt, K.; Hauge, I.H.R.

    2009-04-01

    To ensure the quality of mammographic images, so-called constancy control tests are performed frequently. The report contains a programme for constancy control of digital mammography systems, encompassing the mammography unit, computed radiography (CR) systems, viewing conditions and displays, printers, and procedures for data collection for patient dose calculations. (Author)

  8. Comparison of Diagnostic Accuracy of Breast Masses Using Digitized Images Versus Screen-Film Mammography

    International Nuclear Information System (INIS)

    Zhigang Liang; Xiangying Du; Jiabin Liu; Xinyu Yao; Yanhui Yang; Kuncheng Li

    2008-01-01

    Background: Medical film digitizers play an important transitory role as digital-analogue bridges in radiology. Digitized mammograms require evaluation of performance to assure medical image quality. Purpose: To compare the diagnostic accuracy in the interpretation of breast masses using original screen-film mammograms versus digitized images. Material and Methods: A total of 72 female patients between 55 and 81 years of age suspected of having breast cancer were selected by two non-observing radiologists. Of these, 31 cases were benign lesions and 41 cases were cancer. The mammography films were digitized using a laser film digitizer. Three radiologists, each with more than 10 years of experience in mammography, interpreted the screen-film mammograms and digitized images respectively. The time interval was 4 weeks. A four-point malignancy scale was used, with 1 defined as definitely not malignant, 2 as probably not malignant, 3 as probably malignant, and 4 as definitely malignant. Receiver operating characteristic (Roc) curves, sensitivity, and specificity were compared. Results: The average area-under-the-curve (Az) value of the original screen-film mammograms was 0.921, and the average Az value of the digitized images was 0.859. This difference was not statistically significant (P=0.131). The detection specificity of extremely dense breasts was lower than that for other breast compositions for both digitized images and screen-film mammograms. No statistical significance in sensitivity and specificity was observed between digitized images and mammograms for each breast composition. Original screen-film mammograms were observed to perform better than digitized images. Conclusion: Digitized images with a spatial resolution of 175 μm can be used instead of screen-film mammograms in the diagnosis of breast cancer

  9. Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system

    International Nuclear Information System (INIS)

    Zhao Bo; Zhao Wei

    2008-01-01

    In breast tomosynthesis a rapid sequence of N images is acquired when the x-ray tube sweeps through different angular views with respect to the breast. Since the total dose to the breast is kept the same as that in regular mammography, the exposure used for each image of tomosynthesis is 1/N. The low dose and high frame rate pose a tremendous challenge to the imaging performance of digital mammography detectors. The purpose of the present work is to investigate the detector performance in different operational modes designed for tomosynthesis acquisition, e.g., binning or full resolution readout, the range of view angles, and the number of views N. A prototype breast tomosynthesis system with a nominal angular range of ±25 deg. was used in our investigation. The system was equipped with an amorphous selenium (a-Se) full field digital mammography detector with pixel size of 85 μm. The detector can be read out in full resolution or 2x1 binning (binning in the tube travel direction). The focal spot blur due to continuous tube travel was measured for different acquisition geometries, and it was found that pixel binning, instead of focal spot blur, dominates the detector modulation transfer function (MTF). The noise power spectrum (NPS) and detective quantum efficiency (DQE) of the detector were measured with the exposure range of 0.4-6 mR, which is relevant to the low dose used in tomosynthesis. It was found that DQE at 0.4 mR is only 20% less than that at highest exposure for both detector readout modes. The detector temporal performance was categorized as lag and ghosting, both of which were measured as a function of x-ray exposure. The first frame lags were 8% and 4%, respectively, for binning and full resolution mode. Ghosting is negligible and independent of the frame rate. The results showed that the detector performance is x-ray quantum noise limited at the low exposures used in each view of tomosynthesis, and the temporal performance at high frame rate (up to

  10. New modified map for digital image encryption and its performance

    Science.gov (United States)

    Suryadi, MT; Yus Trinity Irsan, Maria; Satria, Yudi

    2017-10-01

    Protection to classified digital data becomes so important in avoiding data manipulation and alteration. The focus of this paper is in data and information protection of digital images form. Protection is provided in the form of encrypted digital image. The encryption process uses a new map, {x}n+1=\\frac{rλ {x}n}{1+λ {(1-{x}n)}2}\\quad ({mod} 1), which is called MS map. This paper will show: the results of digital image encryption using MS map and how the performance is regarding the average time needed for encryption/decryption process; randomness of key stream sequence with NIST test, histogram analysis and goodness of fit test, quality of the decrypted image by PSNR, initial value sensitivity level, and key space. The results show that the average time of the encryption process is relatively same as the decryption process and it depends to types and sizes of the image. Cipherimage (encrypted image) is uniformly distributed since: it passes the goodness of fit test and also the histogram of the cipherimage is flat; key stream, that are generated by MS map, passes frequency (monobit) test, and runs test, which means the key stream is a random sequence; the decrypted image has same quality as the original image; and initial value sensitivity reaches 10-17, and key space reaches 3.24 × 10634. So, that encryption algorithm generated by MS map is more resistant to brute-force attack and known plaintext attack.

  11. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  12. Development and image quality assessment of a contrast-enhancement algorithm for display of digital chest radiographs

    International Nuclear Information System (INIS)

    Rehm, K.

    1992-01-01

    This dissertation presents a contrast-enhancement algorithm Artifact-Suppressed Adaptive Histogram Equalization (ASAHE). This algorithm was developed as part of a larger effort to replace the film radiographs currently used in radiology departments with digital images. Among the expected benefits of digital radiology are improved image management and greater diagnostic accuracy. Film radiographs record X-ray transmission data at high spatial resolution, and a wide dynamic range of signal. Current digital radiography systems record an image at reduced spatial resolution and with coarse sampling of the available dynamic range. These reductions have a negative impact on diagnostic accuracy. The contrast-enhancement algorithm presented in this dissertation is designed to boost diagnostic accuracy of radiologists using digital images. The ASAHE algorithm is an extension of an earlier technique called Adaptive Histogram Equalization (AHE). The AHE algorithm is unsuitable for chest radiographs because it over-enhances noise, and introduces boundary artifacts. The modifications incorporated in ASAHE suppress the artifacts and allow processing of chest radiographs. This dissertation describes the psychophysical methods used to evaluate the effects of processing algorithms on human observer performance. An experiment conducted with anthropomorphic phantoms and simulated nodules showed the ASAHE algorithm to be superior for human detection of nodules when compared to a computed radiography system's algorithm that is in current use. An experiment conducted using clinical images demonstrating pneumothoraces (partial lung collapse) indicated no difference in human observer accuracy when ASAHE images were compared to computed radiography images, but greater ease of diagnosis when ASAHE images were used. These results provide evidence to suggest that Artifact-Suppressed Adaptive Histogram Equalization can be effective in increasing diagnostic accuracy and efficiency

  13. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.

  14. Gastrointestinal digital fluoroscopy: Comparison of digital pulsed progressive readout images with 100-mm spot films

    International Nuclear Information System (INIS)

    Steiner, E.; Ferrucci, J.T.; Mueller, P.R.; Hahn, P.F.

    1987-01-01

    New developments in pulsed progressive readout (PPR) techniques allow short, extremely intense pulses of radiation to be used to produce a latent image which is then progressively read off the video camera and placed in 1,024 x 1,024-pixel digital storage. The resulting image is produced by a 10-20-msec pulse, reducing motion artifact to below that achievable with conventional spot film techniques, with a potential for 50%-95% dose reduction. This technique of reducing motion artifact is ideal for digital applications in gastrointestinal radiology. The authors compared 10-mm spot films and PPR digital radiographs of 86 anatomic regions in 43 patients undergoing routine barium enema and cholangiographic examinations. Parameters evaluated included display of normal and pathologic features, image contrast, and resolution. The benefits of the PPR technique include postprocessing to evaluate low contrast region and the potential for significant dose reduction

  15. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

    Science.gov (United States)

    Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu

    2017-04-01

    We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

  16. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  17. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    Science.gov (United States)

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  18. Digital image processing for real-time neutron radiography and its applications

    International Nuclear Information System (INIS)

    Fujine, Shigenori

    1989-01-01

    The present paper describes several digital image processing approaches for the real-time neutron radiography (neutron television-NTV), such as image integration, adaptive smoothing and image enhancement, which have beneficial effects on image improvements, and also describes how to use these techniques for applications. Details invisible in direct images of NTV are able to be revealed by digital image processing, such as reversed image, gray level correction, gray scale transformation, contoured image, subtraction technique, pseudo color display and so on. For real-time application a contouring operation and an averaging approach can also be utilized effectively. (author)

  19. An overview of digital image processing in the field of nuclear medicine

    International Nuclear Information System (INIS)

    Okuyama, Yasuo

    1992-01-01

    The current status and remaining problems of digital image processing in nuclear medicine were discussed. Digitalization of nuclear medicine images has made it possible, in conjunction with computers, to obtain new information (Fourier analysis, Factor analysis, etc.) with added value from images, in place of the fixed concepts that had formerly been drawn only from images. However, the basis of this technology is the special QC and QA of nuclear medicine examinations, and those techniques have not yet been adequately established. The advantage of digitalization is the flexibility that comes from the programs, but the element of the subjectivity of each individual plays a large role, and it can be said that there is also the risk that the logic of image diagnosis established to date will be destroyed. Accordingly, the creation of digital image processing technique with specifications will give birth to standardized digital nuclear medicine images, and these development will certainly lead to progress in nuclear medicine diagnosis. In addition, in comparison with other modalities, the field of nuclear medicine involves a lesser amount of information, and this simplifiers the digitalization of images. At present, equipment is being designed and developed with incorporation of the concept of a work station. A serious problem that remains in this field is the standardization of image transmission. In summary, the main problem that must be solved in the field of nuclear medicine examinations is the establishment of QC and QA methods and practical algorithms for the software. It is hoped that there will be open access to information, etc., related to the software. (author)

  20. Diagnostic ability of the periapical radiographs and digital image in the detection of the artificial proximal caries

    International Nuclear Information System (INIS)

    Heo, Min Suk; You, Dong Soo

    1994-01-01

    Recently, the digital image was introduced into radiological image. The digital image has the power of contrast enhancement, histogram control, and other digitally enhancement. At the point of the resolution, periapical radiograph is superior to the digital image, but enhanced digital procedure improves the diagnostic ability of the digital image. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries in conventional radiographs, digital radiographs and enhanced digital radiographs (histogram specification). ROC (Receiver Operating Characteristic) analysis and paired t-test were used for the evaluation of detectability, and following results were acquired: 1. The mean ROC area of conventional radiographs was 0.9274. 2. The mean ROC area of unenhanced digital image was 0.9168. 3. The mean ROC area of enhanced digital image was 0.9339. 4. The diagnostic ability of three imaging methods was not significant difference (p>0.05). So, the digital images had similar diagnostic ability of artificial proximal caries to conventional radiographs. If properly enhanced digital image, it may be superior to conventional radiographs.

  1. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  2. Digital detection system of surface defects for large aperture optical elements

    International Nuclear Information System (INIS)

    Fan Yong; Chen Niannian; Gao Lingling; Jia Yuan; Wang Junbo; Cheng Xiaofeng

    2009-01-01

    Based on the light defect images against the dark background in a scattering imaging system, a digital detection system of surface defects for large aperture optical elements has been presented. In the system, the image is segmented by a multi-area self-adaptive threshold segmentation method, then a pixel labeling method based on replacing arrays is adopted to extract defect features quickly, and at last the defects are classified through back-propagation neural networks. Experiment results show that the system can achieve real-time detection and classification. (authors)

  3. Are digital images good enough? A comparative study of conventional film-screen vs digital radiographs on printed images of total hip replacement

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, K.; Jonsson, K.; Lindblom, G.; Lundin, B.; Sanfridsson, J.; Sloth, M. [Department of Radiology, Center for Medical Imaging and Physiology, Lund University Hospital, 22185, Lund (Sweden); Sivberg, B. [Department of Nursing, Faculty of Medicine, Lund University, P.O. Box 157, 22100, Lund (Sweden)

    2004-05-01

    The aim of this study was to evaluate the inter- and intra-observer variability and to find differences in diagnostic safety between digital and analog technique in diagnostic zones around hip prostheses. In 80 patients who had had a total hip replacement (THR) for more than 2 years, a conventional image and a digital image were taken. Gruen's model of seven distinct regions of interest was used for evaluations. Five experienced radiologists observed the seven regions and noted in a protocol the following distances: stem-cement; cement-bone; and stem-bone. All images were printed on hard copies and were read twice. Weighted kappa, {kappa}{sub w}, analyses were used. The two most frequently loosening regions, stem-cement region 1 and cement-bone region 7, were closely analyzed. In region 1 the five observers had an agreement of 86.75-97.92% between analog and digital images in stem-cement, which is a varied {kappa}{sub w} 0.29-0.71. For cement-bone region 7 an agreement of 87.21-90.45% was found, which is a varied {kappa}{sub w} of 0.48-0.58. All the kappa values differ significantly from nil. The result shows that digital technique is as good as analog radiographs for diagnosing possible loosening of hip prostheses. (orig.)

  4. Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.

    Science.gov (United States)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.

  5. Digital image management project for dermatological health care environments: a new dedicated software and review of the literature.

    Science.gov (United States)

    Rubegni, Pietro; Nami, Niccolò; Poggiali, Sara; Tataranno, Domenico; Fimiani, M

    2009-05-01

    Because the skin is the only organ completely accessible to visual examination, digital technology has therefore attracted the attention of dermatologists for documenting, monitoring, measuring and classifying morphological manifestations. To describe a digital image management system dedicated to dermatological health care environments and to compare it with other existing softwares for digital image storage. We designed a reliable hardware structure that could ensure future scaling, because storage needs tend to grow exponentially. For the software, we chose a client-web server application based on a relational database and with a 'minimalist' user interface. We developed a software with a ready-made, adaptable index of skin pathologies. It facilitates classification by pathology, patient and visit, with an advanced search option allowing access to all images according to personalized criteria. The software also offers the possibility of comparing two or more digital images (follow-up). The fact that the archives of years of digital photos acquired and saved on PCs can easily be entered in the program distinguishes it from the others in the market. This option is fundamental for accessing all the photos taken in years of practice in the program without entering them one by one. The program is available to any user connected to the local Intranet and the system may directly be available in the future from the Internet. All clinics and surgeries, especially those that rely on digital images, are obliged to keep up with technological advances. It is therefore hoped that our project will become a model for medical structures intending to rationalise digital and other data according to statutory requirements.

  6. Estimation of the variance of noise in digital imaging for quality control

    International Nuclear Information System (INIS)

    Soro Bua, M.; Otero Martinez, C.; Vazquez Vazquez, R.; Santamarina Vazquez, F.; Lobato Busto, R.; Luna Vega, V.; Mosquera Sueiro, J.; Sanchez Garcia, M.; Pombar Camean, M.

    2011-01-01

    In this work is estimated variance kerma function pixel values for the real response curve nonlinear digital image system, without resorting to any approximation to the behavior of the detector. This result is compared with that obtained for the linearized version of the response curve.

  7. Quality control of analogue to digital conversion circuitry for artefact-free SPECT imaging

    International Nuclear Information System (INIS)

    Gillen, G.J.; Elliott, A.T.

    1992-01-01

    A simple method for the objective, quantitative assessment of analogue to digital conversion (ADC) differential linearity has been developed for SPECT imaging. The analytical approach uses the fact that a differential non-linearity in the ADC will produce a non-uniformity in the digitized image which has a well defined periodicity. This can be most clearly demonstrated in the frequency space domain by determining the Fourier transform of a thick profile which is taken through the centre of a flood field image. The accuracy of the method permits deteriorations in the performance of ADCs to be detected well before significant reductions in SPECT image quality are produced. The availability of a quantitative measure of ADC performance, which can be tested objectively using a simple data acquisition method, is of value in the specification, acceptance testing and general quality control of gamma camera SPECT systems. (author)

  8. A comparison of film and 3 digital imaging systems for natural dental caries detection: CCD, CMOS, PSP and film

    Energy Technology Data Exchange (ETDEWEB)

    Han, Won Jeong [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2004-03-15

    To evaluate the diagnostic accuracy of occlusal and proximal caries detection using CCD, CMOS, PSP and film system. 32 occlusal and 30 proximal tooth surfaces were radiographed under standardized conditions using 3 digital systems; CCD (CDX-2000HQ, Biomedysis Co., Seoul, Korea), CMOS (Schick, Schick Inc., Long Island, USA), PSP (Digora FMX, Orion Co./Soredex, Helsinki, Finland) and 1 film system (Kodak Insight, Eastman Kodak, Rochester, USA). 5 observers examined the radiographs for occlusal and proximal caries using a 5-point confidence scale. The presence of caries was validated histologically and radiographically. Diagnostic accuracy was evaluated using ROC curve areas (AZ). Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. For occlusal caries, Kodak Insight film had an Az of 0.765, CCD one of 0.730, CMOS one of 0.742 and PSP one of 0.735. For proximal caries, Kodak Insight film had an Az of 0.833, CCD one of 0.832, CMOS one of 0.828 and PSP one of 0.868. No statistically significant difference was noted between any of the imaging modalities. CCD, CMOS, PSP and film performed equally well in the detection of occlusal and proximal dental caries. CCD, CMOS and PSP-based digital images provided a level of diagnostic performance comparable to Kodak Insight film.

  9. A comparison of film and 3 digital imaging systems for natural dental caries detection: CCD, CMOS, PSP and film

    International Nuclear Information System (INIS)

    Han, Won Jeong

    2004-01-01

    To evaluate the diagnostic accuracy of occlusal and proximal caries detection using CCD, CMOS, PSP and film system. 32 occlusal and 30 proximal tooth surfaces were radiographed under standardized conditions using 3 digital systems; CCD (CDX-2000HQ, Biomedysis Co., Seoul, Korea), CMOS (Schick, Schick Inc., Long Island, USA), PSP (Digora FMX, Orion Co./Soredex, Helsinki, Finland) and 1 film system (Kodak Insight, Eastman Kodak, Rochester, USA). 5 observers examined the radiographs for occlusal and proximal caries using a 5-point confidence scale. The presence of caries was validated histologically and radiographically. Diagnostic accuracy was evaluated using ROC curve areas (AZ). Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. For occlusal caries, Kodak Insight film had an Az of 0.765, CCD one of 0.730, CMOS one of 0.742 and PSP one of 0.735. For proximal caries, Kodak Insight film had an Az of 0.833, CCD one of 0.832, CMOS one of 0.828 and PSP one of 0.868. No statistically significant difference was noted between any of the imaging modalities. CCD, CMOS, PSP and film performed equally well in the detection of occlusal and proximal dental caries. CCD, CMOS and PSP-based digital images provided a level of diagnostic performance comparable to Kodak Insight film.

  10. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  11. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  12. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  13. A REVIEW ON DIAGNOSIS OF NUTRIENT DEFICIENCY SYMPTOMS IN PLANT LEAF IMAGE USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    S Jeyalakshmi

    2017-05-01

    Full Text Available Plants, for their growth and survival, need 13 mineral nutrients. Toxicity or deficiency in any one or more of these nutrients affects the growth of plant and may even cause the destruction of the plant. Hence, a constant monitoring system for tracking the nutrient status in plants becomes essential for increase in production as well as quality of yield. A diagnostic system using digital image processing would diagnose the deficiency symptoms much earlier than human eyes could recognize. This will enable the farmers to adopt appropriate remedial action in time. This paper focuses on the review of work using image processing techniques for diagnosing nutrient deficiency in plants.

  14. Whole slide images and digital media in pathology education, testing, and practice: the Oklahoma experience.

    Science.gov (United States)

    Fung, Kar-Ming; Hassell, Lewis A; Talbert, Michael L; Wiechmann, Allan F; Chaser, Brad E; Ramey, Joel

    2012-01-01

    Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.

  15. A new approach to pre-processing digital image for wavelet-based watermark

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido

    2008-11-01

    The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.

  16. Development of a stationary digital breast tomosynthesis system for clinical applications

    Science.gov (United States)

    Tucker, Andrew Wallace

    Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s

  17. Comparison of different phantoms used in digital diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bor, Dogan, E-mail: bor@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics. Tandogan, 06100 Ankara (Turkey); Unal, Elif, E-mail: elf.unall@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey); Uslu, Anil, E-mail: m.aniluslu@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey)

    2015-09-21

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  18. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng, E-mail: mengwu@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  19. Evaluation of display on CRT by various processing digital images

    International Nuclear Information System (INIS)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-01-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera. (author)

  20. Evaluation of display on CRT by various processing digital images

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-12-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera.