WorldWideScience

Sample records for digital control room

  1. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  2. Integration of analog and digital instrumentation and control systems in hybrid control rooms

    International Nuclear Information System (INIS)

    2010-01-01

    he IAEA's activities in the area of nuclear power plant operating performance and life cycle management are aimed at increasing Member State capabilities in utilizing good engineering and management practices as developed and transferred by the IAEA. In particular, the IAEA supports the improvement of nuclear power plant performance, plant life management, training, power uprating, operational license renewal, and the modernization of instrumentation and control (I and C) systems of plants. The issue of the integration of analog and digital I and C systems in hybrid control rooms was suggested by the IAEA Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-NPPCI) at its meetings in 2003 and 2005. The subject was then approved by the IAEA and included in its work programmes for 2006-2009. The purpose of this report is to help nuclear utilities in planning control room and other human system interface (HSI) changes, making appropriate use of modern technologies. These technologies would aid in managing ageing and obsolescence, and facilitate improvements in plant performance and safety. This report covers a broad spectrum of potential changes to the control room ranging from the replacement of a few obsolete components with newer digital devices to a fully computerized control room. New digital technologies offer significant opportunities to improve access to and presentation of information to the user, e.g. operators, maintenance staff and management. However, this technology should be used prudently. In some cases, modernization is undertaken to resolve ageing and obsolescence or to meet regulatory requirements for license renewal. The integration of new technologies during main control room (MCR) modernizations should be performed cautiously and all affected aspects of plant maintenance, and operation should be carefully considered, paying particular attention to the human factors elements of these aspects. This report describes a

  3. Migration of Older to New Digital Control Systems in Nuclear Power Plant Main Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, Casey Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    The United States (U.S.) Department of Energy (DOE) Office of Nuclear Energy (NE) has the primary mission to advance nuclear power by resolving socio-technical issues through research and development (R&D). One DOE-NE activity supporting this mission is the Light Water Reactor Sustainability (LWRS) program. LWRS has the overall objective to sustain the operation of existing commercial nuclear power plants (NPPs) through conducting R&D across multiple “pathways,” or R&D focus areas. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway conducts targeted R&D to address aging and reliability concerns with the legacy instrumentation and control (I&C) and related information systems in operating U.S. NPPs. This work involves (1) ensuring that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) implementing digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Under the LWRS Advanced II&C pathway, Human Factors experts at Idaho National Laboratory (INL) have been conducting R&D in support of NPP main control room (MCR) modernization activities. Work in prior years has focused on migrating analog I&C systems to new digital I&C systems (). In fiscal year 2016 (FY16), one new focus area for this research is migrating older digital I&C systems to new and advanced digital I&C systems. This report summarizes a plan for conducting a digital-to-digital migration of a legacy digital I&C system to a new digital I&C system in support of control room modernization activities.

  4. Migration of Older to New Digital Control Systems in Nuclear Power Plant Main Control Rooms

    International Nuclear Information System (INIS)

    Kovesdi, Casey Robert; Joe, Jeffrey Clark

    2016-01-01

    The United States (U.S.) Department of Energy (DOE) Office of Nuclear Energy (NE) has the primary mission to advance nuclear power by resolving socio-technical issues through research and development (R&D). One DOE-NE activity supporting this mission is the Light Water Reactor Sustainability (LWRS) program. LWRS has the overall objective to sustain the operation of existing commercial nuclear power plants (NPPs) through conducting R&D across multiple ''pathways,'' or R&D focus areas. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway conducts targeted R&D to address aging and reliability concerns with the legacy instrumentation and control (I&C) and related information systems in operating U.S. NPPs. This work involves (1) ensuring that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) implementing digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Under the LWRS Advanced II&C pathway, Human Factors experts at Idaho National Laboratory (INL) have been conducting R&D in support of NPP main control room (MCR) modernization activities. Work in prior years has focused on migrating analog I&C systems to new digital I&C systems (). In fiscal year 2016 (FY16), one new focus area for this research is migrating older digital I&C systems to new and advanced digital I&C systems. This report summarizes a plan for conducting a digital-to-digital migration of a legacy digital I&C system to a new digital I&C system in support of control room modernization activities.

  5. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    International Nuclear Information System (INIS)

    Jiang, Guo Jin; Sun, Yong Bin; Tan, Ke; Zhang, Li Ming; Shi, Ji; Zhang, Xue Gang; Huang, Wei Jun; Mao, Ting; Liu Yanzi

    2011-01-01

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided

  6. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guo Jin; Sun, Yong Bin; Tan, Ke; Zhang, Li Ming; Shi, Ji; Zhang, Xue Gang; Huang, Wei Jun; Mao, Ting; Liu Yanzi [China Nuclear Power Engineering Company, Shenzen (China)

    2011-08-15

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided.

  7. Digitized operator evaluation system for main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yu; Yan Shengyuan; Chen Wenlong

    2014-01-01

    In order to evaluate the human-machine system matching relation of main control room in nuclear power plant accurately and efficiently, the expression and parameters of operator human body model were analyzed, and the evaluation required function of digital operator was determined. Based on the secondary development technology, the digital operator evaluation body model was developed. It could choose generation, gender, operation posture, single/eyes horizon, and left/right hand up to the domain according to the needs of specific evaluation, it was used to evaluate whether display information can be visible and equipment can be touch, and it also has key evaluation functions such as workspace and character visibility at the same time. The examples show that this method can complete the evaluation work of human-machine matching relation for main control room of nuclear power plant accurately, efficiently and quickly, and achieve the most optimal human-machine coordination relationship. (authors)

  8. Future control room design (modernization of control room systems)

    International Nuclear Information System (INIS)

    Reischl, Ludwig; Freitag, Timo; Dergel, Rene

    2009-01-01

    In the frame of lifetime extension for nuclear power plants the modernization of the complete safety and operational control technology will be digitalized. It is also recommended to modernize the operator facilities, monitoring systems in the control room, the back-up shut-down center and the local control stations. The authors summarize the reasons for the modernization recommendations and discuss possible solutions for display-oriented control rooms. A concept for control room backfitting includes generic requirements, requirements of the local authorities, ergonomic principles information content and information density, and the design process. The backfitting strategy should include a cooperation with the operational personnel, The quality assurance and training via simulator needs sufficient timing during the implementation of the backfitting.

  9. Hybrid control rooms: the effects of introducing new technology into existing control rooms

    International Nuclear Information System (INIS)

    Morisseau, Dolores S.

    2001-02-01

    The goal of this part of the Hybrid Control Room Project is to gain a perspective on the issues and problems that are an integral part of introducing new technology, automated systems, or support systems into nuclear power plant (NPP) control rooms, particularly when they are introduced on a system-by-system basis. For purposes of this project, hybrid control rooms are defined as those into which new technology, such as digital and computer-based controls are gradually incorporated as opposed to those that are completely, or nearly completely, refitted with new technology. Although the focus of this project is the introduction of computer based, digital systems into NPP control rooms, it is not possible to exclude the effects throughout the process that are inevitable when new technology is introduced anywhere in complex process control systems. Thus, this document examines the effects of such changes within the context of the organisation in which they occur, including the management of change, work procedures and work methods, communications and crew interaction, training, and the interdependent functions in the operational context. (Author)

  10. THE DEVELOPMENT OF DETAILED HUMAN FACTORS ENGINEERING GUIDELINES FOR DIGITAL CONTROL ROOM UPGRADES

    International Nuclear Information System (INIS)

    BROWN, W.; O'HARA, J.M.

    2004-01-01

    As part of the Department of Energy and Electric Power Research Institute's hybrid control room project, detailed human factors engineering guidance was developed for designing human-system interfaces that may be affected by introduction of additional digital technology during modernization of nuclear power plants. The guidance addresses several aspects of human-system interaction: information display, interface management, soft controls, alarms, computer-based procedures, computerized operator support systems, communications, and workstation/workplace design. In this paper, the ways in which digital upgrades might affect users' interaction with systems in each of these contexts are briefly described, and the contents of the guidance developed for each of the topics is also described

  11. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  12. Design and modernization of the control room with of the new digital I and C systems

    International Nuclear Information System (INIS)

    Fernandez, L. A.; Ortega, F.; Rejas, L.

    2011-01-01

    The use of the new digital I and c systems in the design of the new nuclear power plants, as well as the modernization of the existing ones, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept, therefore a detailed analysis is required to take into consideration all the operating and human factor aspects. based on Tecnatom's experience, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (Author)

  13. Future control room design (modernization of control room systems); Zukuenftiges Wartendesign (Modernisierung von Warteneinrichtungen)

    Energy Technology Data Exchange (ETDEWEB)

    Reischl, Ludwig; Freitag, Timo; Dergel, Rene [AREVA NP (Germany). NLLR-G ' ' Reactor I and C' '

    2009-07-01

    In the frame of lifetime extension for nuclear power plants the modernization of the complete safety and operational control technology will be digitalized. It is also recommended to modernize the operator facilities, monitoring systems in the control room, the back-up shut-down center and the local control stations. The authors summarize the reasons for the modernization recommendations and discuss possible solutions for display-oriented control rooms. A concept for control room backfitting includes generic requirements, requirements of the local authorities, ergonomic principles information content and information density, and the design process. The backfitting strategy should include a cooperation with the operational personnel, The quality assurance and training via simulator needs sufficient timing during the implementation of the backfitting.

  14. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  15. How does a change in the control room design affect diagnostic strategies in nuclear power plants?

    International Nuclear Information System (INIS)

    Kim, Dong Young; Kim, Jonghyun

    2014-01-01

    Recently, main control rooms have been considerably changed by modern computer techniques. Some of the features that distinguish digital control rooms from conventional, analog rooms in nuclear power plants include advanced alarm systems, graphic information display systems, computerized procedure systems, and soft control. These features can bring changes in operator tasks, changing the characteristics of tasks or creating new tasks for operators. It is especially expected that these features may bring out changes in the operator's diagnostic tasks and strategies in a digital control room as compared with an analog control room. This study investigates the differences in the operator's diagnostic tasks and strategies in analog and digital control rooms. This study also attempts to evaluate how new systems in a digital control room affect diagnostic strategies. Three different approaches, which are complementary, are used to identify diagnostic strategies in the digital control room and in the analog control room: (1) observation in the simulator, (2) interview with operators, and (3) a literature review. The results show that the digital control room introduces new diagnosis strategies compared with the analog control room while also changing the characteristics of the strategies, mostly by gaining more support from the computerized system. (author)

  16. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    R. Fink, D. Hill, J. O' Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  17. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification. Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    International Nuclear Information System (INIS)

    Fink, R.; Hill, D.; O'Hara, J.

    2004-01-01

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces

  18. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  19. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    International Nuclear Information System (INIS)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-01-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy's Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  20. Verification and Validation of Digitally Upgraded Control Rooms

    International Nuclear Information System (INIS)

    Boring, Ronald; Lau, Nathan

    2015-01-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation - which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design - early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  1. Verification and Validation of Digitally Upgraded Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lau, Nathan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  2. The evaluation the magnitude radiation exposure dose rate in digital radiography room design

    Science.gov (United States)

    Dwiyanto, Agung; Setia Budi, Wahyu; Hardiman, Gagoek

    2017-12-01

    This study discusses the dose rate in digital radiography room, buit according to meet the provisions of KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation of BAPETEN No. 8 / 2011. The provisions primary concern of radiation safety, not comfort, by considering the space design. There are five aspects to consider in designing the space: functionality, comfort, security, movement activities and aesthetics. However provisions only met three aspects of the design, which are a function, security and movement activity. Therefore, it is necessary to evaluate digital radiography room in terms of its ability to control external radiation exposure to be safe and comfortable The dose rate is measured by the range of primary and secondary radiation in the observation points by using Surveymeter. All data are obtained by the preliminary survey prior to the study. Furthermore, the review of digital radiography room is done based on architectural design theory. The dose rate for recommended improvement room is recalculated using the same method as the actual room with the help of computer modeling. The result of dose rate calculation at the inner and outer part of digital radiography observation room shows that in-room dose for a week at each measuring point exceeds the allowable dose limit both for staff and public. During a week of observation, the outdoor dose at some measuring points exceeds the dose limit set by the KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation BEPETEN No 8/2011. Meanwhile, the result of dose rate calculation in the inner and outer part of the improved digital radiography room can meet the applicable regulations better.

  3. IAEA technical meeting on integrating analog and digital instrumentation and control systems in hybrid main control rooms at nuclear power plants. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    that digital technology offers are needed to increase cost-effective electricity production. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) will also be modernized. To support safe and effective operation, it is critical to specify, design, implement, operate, and maintain, as well as train for, the control room and HSI changes to take advantage of human cognitive processing abilities. This consideration of human factors is essential to increase performance and to reduce the likelihood of human errors. The plant I and C and HSI modifications can affect personnel in various ways. They can impact the role of personnel, the tasks to be performed, the way tasks are performed, and the knowledge, skills and training required of personnel. As part of modernization, HSIs are becoming more computer-based, incorporating features such as soft controls and computerized procedures, touch-screen interfaces, sit-down workstations, and large-screen overview displays. As computer-based technologies are integrated into control rooms that were largely based on conventional technology, hybrid control rooms are created. The potential benefits of implementing digital technology include more efficient operations and maintenance, leading to improved power plant availability and safety through the avoidance of transients, forced outages, and unnecessary shutdowns. The potential benefits also include increased efficiency and power output as well as reduced operating costs. New digital systems provide the opportunity to give personnel information they did not have with conventional systems. The importance of these issues has led the IAEA to organize (in conjunction with AECL) an international forum for presentations and discussions on the potential benefits and challenges related to the integration of Analog and Digital Instrumentation and Control Systems in Hybrid Main Control Rooms. Many of these

  4. Design and modernization of the control room with of the new digital I and C systems; El diseno y modernizacion de las salas de control con los nuevos sistemas de I and C digital

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, L. A.; Ortega, F.; Rejas, L.

    2011-07-01

    The use of the new digital I and c systems in the design of the new nuclear power plants, as well as the modernization of the existing ones, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept, therefore a detailed analysis is required to take into consideration all the operating and human factor aspects. based on Tecnatom's experience, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (Author)

  5. Impact of Advanced Alarm Systems and Information Displays on Human Reliability in the Digital Control Room of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Dang, Vinh N

    2011-01-01

    This paper discusses the potential impacts of two advanced features of digital control rooms, alarm systems and information display systems, on the Human Reliability Analysis (HRA) in nuclear power plants. Although the features of digital control rooms have already been implemented in new or upgraded nuclear power plants, HRAs have so far not taken much credit for these features. In this circumstance, this paper aims at examining the potential effects of these features on human performance and discussing how these effects can be addressed with existing HRA methods. A conclusion derivable from past experimental studies is that those features are supportive in the severe conditions such as complex scenarios and knowledge-based works. However, in the less complex scenarios and rule-based work, they may have no difference with or sometimes negative impacts on operator performance. The discussion about the impact on the HRA is provided on the basis on the THERP method

  6. Investigation of the impact of main control room digitalization on operators cognitive reliability in nuclear power plants.

    Science.gov (United States)

    Zhou, Yong; Mu, Haiying; Jiang, Jianjun; Zhang, Li

    2012-01-01

    Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology is incompatible with operators' cognitive characteristics, it may have negative effects on operators' cognitive reliability. Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliability are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests that interface management and unbalanced workload distribution have more significant impacts on operators' cognitive reliability.

  7. Control room philosophy: Principles of control room design and control room work

    International Nuclear Information System (INIS)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla

    2006-01-01

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages

  8. Development of Alarm System link Drawing for Operation Support for APR1400 Digital Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Digitalized MMI(Man-Machine Interface) including Digital Main Control Room(MCR) and digital I and C system was being applied for SKN 3 and 4 Nuclear Power Plant(NPP) and subsequent APR1400 NPP type. But, operators can not easily find instrument for alarm immediately. Therefore, Alarm system is required to easily find instrument for Alarm. For this implementation, we will plan system design considering design feature without affecting network load and CPU load. We have developed Alarm system link drawing for digital MCR. Operators of the digitalized MCR navigates from their consoles to the drawings related to the plant alarms and their instruments or the operation status. Such method gives cognitive load to the operators having to travel to different locations in finding the related information. Screen Sharing System, which is the fundamental technique for Drawing Interconnection Alarm System is close to completion, and it should be functionally tested and verified by the human factor engineering. For the actual application to the operating plants, the drawings to be interconnected to the alarms and the opinions from the operators/maintenance departments for designating alarm number should be surveyed, Also, another function that allows the access to the alarm related drawings not only from the MCR but also from the other offices.

  9. Development of Alarm System link Drawing for Operation Support for APR1400 Digital Main Control Room

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan

    2016-01-01

    Digitalized MMI(Man-Machine Interface) including Digital Main Control Room(MCR) and digital I and C system was being applied for SKN 3 and 4 Nuclear Power Plant(NPP) and subsequent APR1400 NPP type. But, operators can not easily find instrument for alarm immediately. Therefore, Alarm system is required to easily find instrument for Alarm. For this implementation, we will plan system design considering design feature without affecting network load and CPU load. We have developed Alarm system link drawing for digital MCR. Operators of the digitalized MCR navigates from their consoles to the drawings related to the plant alarms and their instruments or the operation status. Such method gives cognitive load to the operators having to travel to different locations in finding the related information. Screen Sharing System, which is the fundamental technique for Drawing Interconnection Alarm System is close to completion, and it should be functionally tested and verified by the human factor engineering. For the actual application to the operating plants, the drawings to be interconnected to the alarms and the opinions from the operators/maintenance departments for designating alarm number should be surveyed, Also, another function that allows the access to the alarm related drawings not only from the MCR but also from the other offices

  10. Research on transfer rule of the monitoring of operator in digital main control room of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Li; Li Linfeng; Li Pengcheng; Lu Changshen; Huang Weigang; Dai Zhonghua; Huang Yuanzheng; Chen Qingqing

    2013-01-01

    In the digital main control room of nuclear power plants, monitoring the operating status of the system of reactor is not only one of the most important tasks of the operators, but also the basis and premise of controlling the system of reactor running correctly. After analyzing, inducing, summarizing the data obtained, we found the operators' monitor behavior could be classified as procedure transfer, abnormal transfer, and exchange transfer. The times of exchange transfer is 29% of the total transfer times, abnormal transfer is 14%, regulation transfer is 36%, and others are 21%. (authors)

  11. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Clefton, Gordon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by various resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.

  12. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  13. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  14. Benefits of Advanced Control Room Technologies: Phase One Upgrades to the HSSL, Research Plan, and Performance Measures

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control room. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes the initial upgrades to the HSSL and outlines the methodology for a pilot test of the HSSL configuration.

  15. Improvement of main control room

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Ham, Chang Sik; Kwon, Ki Chun

    1991-07-01

    Information display system, advanced alarm system and fiber optical communication system were developed to improve the main control room in nuclear power plant. Establishing the new hierachical information structure of plant operation data, plant overview status board(POSB) and digital indicator(DI) were designed and manufactured. The prototype advanced alarm system which employed the new alarm logics and algorithm compared with the conventional alarm system were developed and its effectiveness was proved. Optical communication system which has multi-drop feature and capability of upgrading to large-scale system by using BITBUS communication protocol which is proven technology, were developed. Reliability of that system was enhanced by using distributed control. (Author)

  16. Cooperative research for human factors review of advanced control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Jae Chang; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul

    2000-12-01

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms.

  17. Cooperative research for human factors review of advanced control rooms

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Park, Jae Chang; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul

    2000-12-01

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms

  18. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  19. Nuclear power plant control room operator control and monitoring tasks

    International Nuclear Information System (INIS)

    Bovell, C.R.; Beck, M.G.; Carter, R.J.

    1998-01-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today's NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters

  20. An experimental investigation on relationship between PSFs and operator performances in the digital main control room

    International Nuclear Information System (INIS)

    Park, Jooyoung; Lee, Daeil; Jung, Wondea; Kim, Jonghyun

    2017-01-01

    Highlights: • The relationship between performance shaping factors and operator performances are experimentally investigated. • The experiment includes features of digital main control room. • The result indicates that the operator’s experience level is the most effective on the performance. - Abstract: This study designs an experiment to investigate the relationship between performance shaping factors (PSFs) and operator performances. This study involves selecting three PSFs that are controllable in the experiments: (1) experience, (2) complexity, and (3) urgency. Six scenarios are developed to reflect the PSFs. The experiment involves the participation of licensed operators and the use of an APR1400 simulator. During the experiment, operator performances, such as completion time, error, secondary task, workload, and situation awareness, are measured and collected. The experimental result indicates that the operator’s experience is most effective on the overall performances. The task complexity influences the secondary tasks and situation awareness.

  1. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  2. Control room philosophy: Principles of control room design and control room work; Kontrollrumsfilosofi: Principer foer kontrollrumsutformning och kontrollrumsarbete

    Energy Technology Data Exchange (ETDEWEB)

    Skriver, Jan; Ramberg, Jasmine; Allwin, Pernilla [Scandpower Risk Management AB, Uppsala (Sweden)

    2006-01-15

    In order to provide insights for improvement of work in control rooms several factors have to be considered. Knowledge of principles including control room philosophies will guide the recommended improvements. In addition to knowledge about specific principles an advantage for an organization can be an understanding of similarities and policies used in other high risk industry. The report has been developed on the basis of a document analysis of international standards and other guiding documents. (NUREG 0711, ISO 11064, ISO 6385, IEC 60964). In addition to the document analysis which has strived to compare the documents to see similarities in important principals, experience from working with control room design, modifications and evaluations in other high risk industries has pervaded the report. Important principles have been identified which are recommended to be included in a control room philosophy. Many of these are similar to the principles identified in the international standards. An additional principal which is regarded as important is the utilization of Key Performance Indicators (KPI) which can be used as a measure to target preventative means. Further more it is critical that the control room philosophy is easy to access and comprehend for all users. One of the challenges that remain after having developed a control room philosophy is how to utilize it in the daily work situation. It is vital that the document remains as a living document, guiding the continual improvement of the control room in the various life cycle stages.

  3. Analysis on nuclear power plant control room system design and improvement based on human factor engineering

    International Nuclear Information System (INIS)

    Gao Feng; Liu Yanzi; Sun Yongbin

    2014-01-01

    The design of nuclear power plant control room system is a process of improvement with the implementation of human factor engineering theory and guidance. The method of implementation human factor engineering principles into the nuclear power plant control room system design and improvement was discussed in this paper. It is recommended that comprehensive address should be done from control room system function, human machine interface, digital procedure, control room layout and environment design based on the human factor engineering theory and experience. The main issues which should be paid more attention during the control room system design and improvement also were addressed in this paper, and then advices and notices for the design and improvement of the nuclear power plant control room system were afforded. (authors)

  4. Control room lay-out

    International Nuclear Information System (INIS)

    Toma, Violeta

    2004-01-01

    TRIUMF (Tri-University Meson Facility) is Canada's national laboratory for particle and nuclear physics. There are 6 accelerators and 3 Control Rooms at TRIUMF. The main control room serves the big cyclotron, the 500 MeV, and the adjacent experiment. The 42 MeV and two 32 MeV ones are production dedicated. These cyclotrons belong to a private company but are operated by TRIUMF staff from ATG (Applied Technology Group) Control Room. The last is ISAC (Isotope Acceleration and Separation) Control Room, from which the LINAC is controlled. Research areas cover theoretical (2 subjects), pure (5 subjects) and applied (8 subjects) physics. In the early '70s, as the 500 MeV was being completed, the first Control Room was built in the main accelerator building. The recent topics covered by this paper are proton and pion therapy, what are the operator's duties?, the CP42, TR30 and TR13 cyclotron control rooms, the ISAC control systems including control room modification. Due to the nature of an operator's job, the Control Room layout is pretty important. This is true for any work environment, but when working shifts it becomes essential. Lots of time and effort, not to mention money, were spent to figure out the optimum configuration. It seems to me that the key factor in the control room layout is versatility, and this is because it has to keep happy a group of people with different inclinations, which have a tendency to become quite moody after the second night shift. No matter what, there will still be unhappy people, but we are trying our best. (Y. Tanaka)

  5. Control room design

    International Nuclear Information System (INIS)

    Zinke, H.

    1980-01-01

    To control a 1300 megawatt nuclear power plant, about 15000 plant parameters must be collected together to control and operate the plant. The control room design therefore is of particular importance. The main design criteria are: Required functions of the power plant process - Level of Automation - Ergonomics - Available Technology. Extensive analysis has resulted in a control room design method. This ensures that an objective solution will be reached. Resulting from this methodical approach are: 1. Scope, position and appearance of the instrumentation. 2. Scope, position and appearance of the operator controls. Process analysis dictates what instrumentation and operator controls are needed. The priority and importance of the control and instrumentation (this we define as the utilisation areas), dictates the rough layout of the control room. (orig./RW)

  6. Concept and design of a fully computerized control room for future nuclear power plant

    International Nuclear Information System (INIS)

    Hinz, W.; Kollmannsberger, J.

    1991-01-01

    The development of digital process control equipment and of safety engineering equipment together with the CRT - based information visualization systems is advanced to a state allowing process control of nuclear power plant to be done by these equipments. The systems have been tested in the control room of the fossil-fuel Staudinger reactor station, unit 5, and the computer-assisted PRISCA process information system has been tested in the Konvoi-type nuclear reactor series. These tests serve as a basis for further process control system development by Siemens KWU, to be used in their future nuclear power plants. The advantages of digital process control and CRT-based information display are intended to be used for further optimization of the man-machine interface in nuclear power plant. One important aspect is to give the control room personnel complete insight into the operational processes of the entire plant, and to establish for detail recognition for process monitoring a very close mental link between operators and the system processes. In addition, the control room operator has to be given appropriate means and tools for process monitoring and control, fulfilling the requirements of guaranteeing the plant's availability and safety. These requirements put very high demands on the process monitoring and control equipment. (orig.) [de

  7. User evaluation of an innovative digital reading room.

    Science.gov (United States)

    Hugine, Akilah; Guerlain, Stephanie; Hedge, Alan

    2012-06-01

    Reading room design can have a major impact on radiologists' health, productivity, and accuracy in reading. Several factors must be taken into account in order to optimize the work environment for radiologists. Further, with the advancement in imaging technology, clinicians now have the ability to view and see digital exams without having to interact with radiologists. However, it is important to design components that encourage and enhance interactions between clinicians and radiologists to increase patient safety, and to combine physician and radiologist expertise. The present study evaluates alternative workstations in a real-world testbed space, using qualitative data (users' perspectives) to measure satisfaction with the lighting, ergonomics, furniture, collaborative spaces, and radiologist workstations. In addition, we consider the impact of the added collaboration components of the future reading room design, by utilizing user evaluation surveys to devise baseline satisfaction data regarding the innovative reading room environment.

  8. BEYOND INTEGRATED SYSTEM VALIDATION: USE OF A CONTROL ROOM TRAINING SIMULATOR FOR PROOF-OF-CONCEPT INTERFACE DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Boring; Vivek Agarwal

    2012-07-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plants in the US. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  9. Retrofit of new digital control systems in existing power stations

    International Nuclear Information System (INIS)

    Smith, J.E.; Baird, C.F.

    1986-01-01

    With the notable exception of the Canadian CANDU nuclear power stations, little use has been made of digital control in North American nuclear stations. Recently, however, there has been renewed interest in such systems within the nuclear industry in response to demands for better ergonomics in control room design and the obsolescence of control equipment whose fundamental design has changed little in 20 yr. Early in 1985, Atomic Energy of Canada Limited was asked by New Brunswick Power to advise on the redesign of the control systems for two fossil-fired generating stations, Coleson Cove and Courtenay Bay Unit 4. Coleson Cove is to be converted from oil to coal firing with consequent extensive control system changes and Courtenay Bay Unit 4 required a low-cost solution to the problem of relocating its control room from the existing isolated location to the combined control center used by units 1, 2, and 3. In both cases, the recommended solution involves the retrofit of state-of-the-art digital control systems. Although the units involved are nonnuclear the experience is applicable

  10. Guidelines for control room design reviews

    International Nuclear Information System (INIS)

    1981-09-01

    The control room design review is part of a broad program being undertaken by the nuclear industry and the government to ensure consideration of human factors in nuclear power plant design and operation. The purpose of the control room design review described by these guidelines is to (1) review and evaluate the control room workspace, instrumentation, controls, and other equipment from a human factors engineering point of view that takes into account both system demands and operator capabilities; and (2) to identify, assess, and implement control room design modifications that correct inadequate or unsuitable items. The scope of the control room design review described by these guidelines covers the human engineering review of completed control rooms; i.e., operational control rooms or those at that stage of the licensing process where control room design and equipment selection are committed. These guidelines should also be of use during the design process for new control rooms. However, additional analyses to optimize the allocation of functions to man and machine, and further examination of advanced control system technology, are recommended for new control rooms. Guidelines and references for comprehensive system analyses designed to incorporate human factors considerations into the design and development of new control rooms are presented in Appendix B. Where possible, a generic approach to the control room design review process is encouraged; for example, when control room designs are replicated wholly or in part in two or more units. Even when designs are not replicated exactly, generic reviews which can be modified to account for specific differences in particular control rooms should be considered. Industry organizations and owners groups are encouraged to coordinate joint efforts and share data to develop generic approaches to the design review process. The control room design review should accomplish the following specific objectives. To determine

  11. Engineering human factors into the Westinghouse advanced control room

    International Nuclear Information System (INIS)

    Easter, J.R.

    1987-01-01

    By coupling the work of the Riso Laboratory in Denmark on human behaviour with new digital computation and display technology, Westinghouse has developed a totally new control room design. This design features a separate, co-ordinated work station to support the systems management role in decision making, as well as robust alarm and display systems. This coupling of the functional and physical data presentation is now being implemented in test facilities. (author)

  12. Replacement of the complete control system of the NPP Oskarshamn 1 by digital distributed control system

    International Nuclear Information System (INIS)

    Berger, E.

    1998-01-01

    As part of an ongoing modernization program, Oskarshamn 1's I and C system and control room will be upgraded by ABB using its Advant Power range of digital, programmable process control system. Besides ensuring the higher level of safety that is demanded today, the new equipment provides the plant with an integrated system which will improve operator overview of operation and reduce risk of human error and serve as a platform for further improvements of the control room. This paper discusses in the example of Oskarshamn 1 how the complete control system of a nuclear power plant may be exchanged, the technical solution and the time schedule. Oskarshamn 1 is the first nuclear power plant in Sweden. It is a boiling water reactor built by ABB ATOM in Sweden between 1966 and 1971. According to this age the control system is semiconductor based and the reactor protection system is relays based. This makes the maintenance expensive and extensions nearly impossible. To extend the life period of this plant the owner has decided to improve the safety system and to replace the reactor protection system and safety related control and the non safety related control by a state of the art digital distributed control system of ABB. In March 1997 ABB got the order to replace the reactor protection system, the safety control system, to start the replacement of all control systems and to replace the old control room by a new ergonomically designed control room. Together with the exchange of the control system an enhancement of the safety system and of the emergency power supply will be implemented

  13. Digital angiography and surgery in the same room

    International Nuclear Information System (INIS)

    Goldman, M.L.; Hack, S.N.; Sarrafizadeh, M.S.; Marar, H.G.; Behar, D.J.; Chigurupati, R.C.; Klein, S.I.; Widlus, D.M.; Fortune, J.B.

    1986-01-01

    Albany Medical Center and private industries (XRE and United X-ray corporations) have collaborated to develop a room within the operating suite that allows high-speed and high-resolution digital angiography and surgery to be performed simultaneously. Patients who have sustained massive trauma can be transferred directly from the ambulance to this new facility. While the patient is undergoing exploratory laparotomy, other vital areas of the body can be evaluated by angiography. This combined approach of surgery and angiography has also led to improved management of patients with massive or occult intestinal hemorrhage and patients with peripheral vascular disease. Other patients undergoing difficult emergency or elective surgery, as in the biliary tract, can now have available the benefits of an operating room facility that also allows high-resolution fluoroscopy and complete angiography to be undertaken

  14. Consequences of modern information display technologies in power plant control rooms. What has changed in control rooms?

    International Nuclear Information System (INIS)

    Kruip, Jochen

    2007-01-01

    Control rooms of power plants have undergone major developments and changes, some of them considerable, over the past few years. The most visible change has been the display of information on a variety of video screens and projectors. The question examined in the article is whether the visible or invisible changes in power plant control rooms have any influence on the training of operators. In a contribution coming from the Simulator Center, this question naturally focuses on simulator training, which is to be discussed in the light of the basic objectives of this type of training. The main duty of the Essen Simulator Center is to offer first training and in-career training to the licensed operators of nuclear power plants. The experience accumulated in nearly thirty years of simulator training has been laid down in the 'Kompendium der Simulatorschulung' (Handbook of Simulator Training). Simulator training, as referred to above, is a major component of all training programs. The two main objectives of simulator training are 'reliability in operation' and 'experience' in handling the new information systems and digital I and C systems. In the future, simulators can also be used for advanced developments and for advance testing and training. (orig.)

  15. The conference hybrid control room

    International Nuclear Information System (INIS)

    Gieci, A.; Caucik, J.; Macko, J.

    2008-01-01

    An original concept of a hybrid control room was developed for the Mochovce-3 and Mochovce-4 reactor units which are under construction. The basic idea underlying the concept is that the control room should be a main working place for the operators (reactor operator and turbine operator) and for the shift supervisor, designed as a comprehensive unit desk shaped so that all members of the control room crew are in a face-to-face contact constantly. The main desk consists of three clearly identified areas serving the operators and the unit supervisor as their main working places. A soft control system is installed at the main working places. A separate safety-related working place, designed as a panel with classical instrumentations at the conference hybrid control room, is provided in case of abnormal conditions or emergency situation. Principles of ergonomics and cognitive engineering were taken into account when designing the new conference hybrid control room for the Mochovce-3 and -4 reactor units. The sizes, propositions, shapes and disposition of the equipment at the control room have been created and verified by using virtual reality tools. (orig.)

  16. EDP supported control room simulation for training of fault cases

    International Nuclear Information System (INIS)

    Weber, P.

    1984-01-01

    The picture used for simulation was the model of a power station control room designed by KWU for the German Museum, the cooling water circuit of which is illustrated, in order to avoid long training times by a manageable problem setting. A process video system equipped with a light pen made by KRUPP ATLAS was available for the VDU representation of simulation, which is used in industry, for the control and supervision of technical system. This process video system was controlled by a Digital PDP 11/40, which has several great advantages over stand-alone operation. (orig./DG) [de

  17. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Joe, J.; Boring, R.

    2017-05-01

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to support migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.

  18. Control room habitability during severe accidents

    International Nuclear Information System (INIS)

    Siu, R.P.

    1989-01-01

    The requirements for protection of control room personnel against radiation hazards are specified in 10CFR50, Appendix A, GDC 19. The conventional approach involves a mechanistic evaluation of the radiation doses to control room personnel during design-basis accidents. In this study, an assessment of control room habitability during severe accidents is conducted. The potential levels of radiation hazards to control room personnel are evaluated in terms of both magnitude and probability of occurrence. The expected values for the probabilities of exceeding GDC-19 limits and the cumulative probability distributions of control room doses are determined. In this study, a pressurized water reactor with a large dry containment has been selected for analysis. The types of control rooms evaluated in this study include designs with: (a) filtered local intakes only, (b) filtered recirculation only, (c) filtered local intakes and recirculation, and (d) filtered dual remote intakes and recirculation. From the observations, it is concluded that, except for control room D, all other control room designs may require improvements in order to provide adequate radiation protection during severe accidents, particularly in terms of reducing whole-body gamma doses and skin doses. Potential design improvements include reduction of intake flows for concepts relying on pressurization, reduction in overall leakages, and control room pressurization through the use of bottled air supply

  19. Modern control room for AHWR

    International Nuclear Information System (INIS)

    Verghese, Clement C.; Joseph, Jose; Biswas, B.B.; Patil, R.K.

    2005-01-01

    Advanced Heavy Water Reactor (AHWR) is a next generation nuclear power plant being developed by Bhabha Atomic Research Centre. A modern control room has been conceived for operation and monitoring of the plant in tune with the advanced features of the reactor. A state of the art C and I architecture based on extensive use of computers and networking has been conceived for this plant. This architecture enables the implementation of a fully computerised operator friendly control room with soft HMIs. Features of the modern control room and control room and concept of soft HMI based operator interfaces have been described in the paper. (author)

  20. Leadership in the control room

    International Nuclear Information System (INIS)

    McDougall, S.J.

    2006-01-01

    This paper discusses the importance of leadership within the control rooms at nuclear power facilities. the leadership capability of control room staff has a significant influence over the improvement of human performance and the development of an 'event free' culture within the business. The development of leadership competency in the control room must be an important part of any nuclear power utility business improvement plan. (author)

  1. Leadership in the control room

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.J. [Bruce Power, Bruce B Operations Div., Tiverton, Ontario (Canada)

    2006-07-01

    This paper discusses the importance of leadership within the control rooms at nuclear power facilities. the leadership capability of control room staff has a significant influence over the improvement of human performance and the development of an 'event free' culture within the business. The development of leadership competency in the control room must be an important part of any nuclear power utility business improvement plan. (author)

  2. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  3. In the LEAR control room

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    View into the control room of the Low Energy Antiproton Ring (LEAR). Edgar Asseo (sitting) and Dieter Möhl and Georges Carron reflecting upon some beam dynamics (or hardware?) problem. Vassilis Agoritsas, in the background, leaning over a plan or a keyboard. LEAR in its early years (1982 to about 1990) was run from this local control room in building 363 close to the end of the PS South Hall, where the ring was installed. Later-on the operation was surveyed from the PS main control room.

  4. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Boring, Ronald; Persensky, Julius; Thomas, Kenneth

    2011-01-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  5. Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Boring; Julius Persensky; Kenneth Thomas

    2011-09-01

    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor

  6. Controlling the clean room atmosphere

    International Nuclear Information System (INIS)

    Meeks, R.F.

    1979-01-01

    Several types of clean rooms are commonly in use. They include the conventional clean room, the horizontal laminar flow clean room, the vertical laminar flow clean room and a fourth type that incorporates ideas from the previous types and is known as a clean air bench or hood. These clean rooms are briefly described. The origin of contamination and methods for controlling the contamination are discussed

  7. The next step: intelligent digital assistance for clinical operating rooms

    Directory of Open Access Journals (Sweden)

    Miehle Juliana

    2017-08-01

    Full Text Available With the emergence of new technologies, the surgical working environment becomes increasingly complex and comprises many medical devices that have to be taken cared of. However, the goal is to reduce the workload of the surgical team to allow them to fully focus on the actual surgical procedure. Therefore, new strategies are needed to keep the working environment manageable. Existing research projects in the field of intelligent medical environments mostly concentrate on workflow modeling or single smart features rather than building up a complete intelligent environment. In this article, we present the concept of intelligent digital assistance for clinical operating rooms (IDACO, providing the surgeon assistance in many different situations before and during an ongoing procedure using natural spoken language. The speech interface enables the surgeon to concentrate on the surgery and control the technical environment at the same time, without taking care of how to interact with the system. Furthermore, the system observes the context of the surgery and controls several devices autonomously at the appropriate time during the procedure.

  8. Control room and ergonomic design

    International Nuclear Information System (INIS)

    Hinz, W.

    1984-01-01

    The important basis for the configuration of the control room of a nuclear power station is the concept for controlling a fault and that for controlling normal operation. The tasks resulting from this for the control room personnel are decided by the control room concept. In this configuration process (from the division of process control tasks between the system components operators and control technology to the configuration of individual means of operation) the characteristics and capabilities of the personnel, which are subject to special requirements as regards their qualifications, are observed. New concepts which are only now technically feasible are therefore being developed for information processing and display, in order to give the personnel a better oversight of the state and trends of the plant. (orig./DG) [de

  9. Ergonomics influence on control room layout

    International Nuclear Information System (INIS)

    Hartfiel, H.D.

    1984-01-01

    Nowadays, human factors has become an important aspect of the design of work places. Since the control room in a nuclear power plant is a work place, too, its layout is also influenced by ergonomics. With the KWU control room concept for the 1300 MW PWR as an example, we show how assured and applicable ergonomic findings enter into the control room design. On the basis of general design principles for work places, specific methods for control room planning have been developed. By working with these methods a concept that makes it possible to build a man-machine interface able to fulfill the process control tasks with all their underlying conditions has been derived. (author)

  10. Nuclear power station main control room habitability

    International Nuclear Information System (INIS)

    Paschal, W.B.; Knous, W.S.

    1989-01-01

    The main control room at a nuclear power station must remain habitable during a variety of plant conditions and postulated events. The control room habitability requirement and the function of the heating, ventilating, air-conditioning, and air treatment system are to control environmental factors, such as temperature, pressure, humidity, radiation, and toxic gas. Habitability requirements provide for the safety of personnel and enable operation of equipment required to function in the main control room. Habitability as an issue has been gaining prominence with the Advisor Committee of Reactor Safeguards and the Nuclear Regulatory Commission since the incident at Three Mile Island. Their concern is the ability of the presently installed habitability systems to control the main control room environment after an accident. This paper discusses main control room HVAC systems; the concern, requirements, and results of NRC surveys and notices; and an approach to control room habitability reviews

  11. Replacement of the complete control system of the NPP Oskarshamn 1 by digital distributed control system

    International Nuclear Information System (INIS)

    Berger, E.

    1998-01-01

    As part of an ongoing modernization program, the I and C system and the control room of Oskarshamn 1 will be upgraded by ABB using its 'Advant Power' range of digital, programmable process control system. Besides ensuring the higher level of safety that is demanded today, the new equipment provides the plant with an integrated system which will improve operator interaction with the plant and reduce the risk of human error. The newly installed DCS system will serve also as a platform for further improvements of the control room. This paper discusses Oskarshamn 1 exchange of the complete control system of a nuclear power plant, the technical solution and the time schedule. Oskarshamn 1 is the first nuclear power plant in Sweden. It is a boiling water reactor built between 1966 and 1971 by ABB ATOM in Sweden. According to the plant age the control system is relay-based, while instrumentation and analogue control is semiconductor-based. This makes maintenance expensive and even worse, makes extensions nearly impossible. According to the safety standards of the 1960s, there is no separation between safety and non safety control and no seismic qualification. To extend the life of this plant the owner has decided to improve the safety system as well as to replace the reactor protection system, the safety related control and the non safety related control by a state-of-the-art digital distributed control system from ABB. In March 1997, ABB got the order to replace the reactor protection system, the safety control system and to start the replacement of all control systems. The old control room has to be replaced by a new ergonomically design. Together with the exchange of the control system the safety features of the plant and the emergency power supply has to be extended. (author)

  12. Development, structure and qualification of a new digital instrumentation and control system

    International Nuclear Information System (INIS)

    Hofmann, H.; Sauer, H.J.

    1991-01-01

    Introduction of digital instrumentation and control in nuclear power plants is characterized by the need to meet numerous requirements concerning reliability, ergonomic design of the main control room and comprehensive qualification. The system described here is distinguished by a hierarchical and modular structure, being redundant throughout. Ergonomic considerations dominate the layout of the screen-based main control room. Powerful computer-aided engineering tools are employed for planning of the entire system and for generation of the user software. Qualification is performed in step with the development of the system, based on the applicable national and international rules and regulations and in close cooperation with an independent expert. (orig.) [de

  13. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    International Nuclear Information System (INIS)

    Naser, J.; Morris, G.

    2004-01-01

    Several nuclear power plants in the United States are starting instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics

  14. A control room lighting study

    International Nuclear Information System (INIS)

    Vaidya, V.V.; Iwasa-Madge, K.M.; Howard, B.; Willson, R.B.

    1984-01-01

    Operators at a Heavy Water Plant in Ontario, Canada complained about lighting-related difficulties in the control room. The Human Factors Engineering Unit was requested to perform a lighting survey and make recommendations to improve the control centre lighting conditions. This paper describes the control room, the operator tasks, the procedures used for the lighting survey, the findings, and the changes recommended

  15. Human error mode identification for NPP main control room operations using soft controls

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol

    2011-01-01

    The operation environment of main control rooms (MCRs) in modern nuclear power plants (NPPs) has considerably changed over the years. Advanced MCRs, which have been designed by adapting digital and computer technologies, have simpler interfaces using large display panels, computerized displays, soft controls, computerized procedure systems, and so on. The actions for the NPP operations are performed using soft controls in advanced MCRs. Soft controls have different features from conventional controls. Operators need to navigate the screens to find indicators and controls and manipulate controls using a mouse, touch screens, and so on. Due to these different interfaces, different human errors should be considered in the human reliability analysis (HRA) for advanced MCRs. In this work, human errors that could occur during operation executions using soft controls were analyzed. This work classified the human errors in soft controls into six types, and the reasons that affect the occurrence of the human errors were also analyzed. (author)

  16. Design and modernization of control rooms according to new I and C systems based on HFE principles

    International Nuclear Information System (INIS)

    Rejas, Luis; Larraz, Javier; Ortega, Fernando

    2011-01-01

    The use of new digital I and C systems in the design of new nuclear power plants, as well as the modernization of existing facilities, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept. Therefore, a detailed analysis is required to take into consideration all the operating and human factors aspects. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (author)

  17. Design and modernization of control rooms according to new I and C systems based on HFE principles

    Energy Technology Data Exchange (ETDEWEB)

    Rejas, Luis; Larraz, Javier, E-mail: lrejas@tecnatom.e, E-mail: jlarraz@tecnatom.e [Tecnatom S.A., San Sebastian de los Reyes, Madrid (Spain). New Control Room Design Dept.; Ortega, Fernando, E-mail: fortega@tecnatom.e [Tecnatom S.A., San Sebastian de los Reyes, Madrid (Spain). Control Room and Simulation Dept.

    2011-07-01

    The use of new digital I and C systems in the design of new nuclear power plants, as well as the modernization of existing facilities, implies relevant changes in the control room design. New I and C systems provide new features that affect the control room operating concept. Therefore, a detailed analysis is required to take into consideration all the operating and human factors aspects. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (author)

  18. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea

    2014-01-01

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators

  19. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators.

  20. Digital control application for the advanced boiling water reactor

    International Nuclear Information System (INIS)

    Fennern, L.E.; Pearson, T.; Wills, H.D.; Swire Rhodes, L.; Pearson, R.L.

    1986-01-01

    The Advanced Boiling Water Reactor (ABWR) is a 1300 MWe class Nuclear Power Plant whose design studies and demonstration tests are being performed by the three manufacturers, General Electric, Toshiba and Hitachi, under requirement specifications from the Tokyo Electric Power Company. The goals are to apply new technology to the BWR in order to achieve enhanced operational efficiencies, improved safety measures and cost reductions. In the plant instrumentation and control areas, traditional analog control equipment and wire cables will be replaced by distributed digital microprocessor based control units communicating with each other and the control room over fiber optic multiplexed data buses

  1. Applications of human factors engineering in the digital HMI

    International Nuclear Information System (INIS)

    Zhou Bingjian

    2014-01-01

    In order to prevent and minimize human errors in the digital main control room, the principles of human factors engineering must be complied strictly in the design process of digital human-machine interface. This paper briefly describes the basic human factors engineering principles of designing main control room, introduces the main steps to implement the human factors engineering verification and validation of main control room, including HSI task support verification, human factors engineering design verification and integrated system validation. Meanwhile, according to the new digital human-machine interface characteristics, the development models of human error are analyzed. (author)

  2. A remote control room at DIII-D

    International Nuclear Information System (INIS)

    Abla, G.; Schissel, D.P.; Penaflor, B.G.; Wallace, G.

    2008-01-01

    This paper describes a remote control room built at DIII-D to support remote participation activities of DIII-D research staff. In order to create a persistent, efficient, and reliable remote participation environment for DIII-D scientists, a remote control room has been built in a 640-ft 2 dedicated area. The purpose of this room is to experiment and define a remote control room framework that can facilitate the remote participation needs of current and future fusion experiments such as ITER. A variety of hardware equipment has been installed and several remote participation and collaboration technologies have been deployed. Objectivity and practical consideration has been the key while designing the room and deploying the technologies. Although, the DIII-D remote control room is still a work in progress and new software tools are being implemented, it has been already useful for a number of international remote participation activities. For example, it has been used for remote support of the EAST Tokamak in China during the start up operation and proven effective for other collaborative experiment activities. The description of the remote control room design is given along with technologies deployed for remote collaboration needs. We will also discuss our recent experiences involving the DIII-D remote control room as well as future plans for improvements

  3. A user-friendly, digital console for the control room parameters supervision in old-generation nuclear plants

    International Nuclear Information System (INIS)

    Memmi, Fabrizio; Falconi, Luca; Cappelli, Mauro; Palomba, Mario; Sepielli, Massimo

    2016-01-01

    Highlights: • We propose a user-friendly monitoring system for reactor supervision. • Statistics from data analysis can be used to optimize reactor management. • The tool has been designed in order to include a simulation tool for prediction. • The proposed system could help operators in training and continuous learning. - Abstract: In this work a user-friendly, digital monitoring system for supervision of process variables coming from a fission nuclear reactor of TRIGA type (1-MW TRIGA reactor RC-1) is presented. The system, developed on the basis of COTS tools, can easily interface the control room instrumentation and display the typical monitoring parameters (e.g. nuclear power, temperatures, flow rates, radiological variables) in an intuitive, user-adjustable way for plant operators. A front panel of a virtual instrument allows for a direct measure while the acquisition system, for signals coming from the reactor, can process the data and generate a detailed representation of the results, whose statistics can be interpreted to optimize the reactor management parameters. This system has been also designed so as to include a simulation tool able to predict specific performances and investigate critical phenomena, and to optimize overall plant performances. In particular, it allows to have a feedback control and to perform several predictive statistical surveys of all main process parameters. The proposed system could help operators in training and continuous learning activities, and serve as a basis for an advanced decision support system and for a remote training tool for students and trainees not authorized to work in a radiation environment.

  4. A user-friendly, digital console for the control room parameters supervision in old-generation nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, Fabrizio; Falconi, Luca; Cappelli, Mauro, E-mail: mauro.cappelli@enea.it; Palomba, Mario; Sepielli, Massimo

    2016-06-15

    Highlights: • We propose a user-friendly monitoring system for reactor supervision. • Statistics from data analysis can be used to optimize reactor management. • The tool has been designed in order to include a simulation tool for prediction. • The proposed system could help operators in training and continuous learning. - Abstract: In this work a user-friendly, digital monitoring system for supervision of process variables coming from a fission nuclear reactor of TRIGA type (1-MW TRIGA reactor RC-1) is presented. The system, developed on the basis of COTS tools, can easily interface the control room instrumentation and display the typical monitoring parameters (e.g. nuclear power, temperatures, flow rates, radiological variables) in an intuitive, user-adjustable way for plant operators. A front panel of a virtual instrument allows for a direct measure while the acquisition system, for signals coming from the reactor, can process the data and generate a detailed representation of the results, whose statistics can be interpreted to optimize the reactor management parameters. This system has been also designed so as to include a simulation tool able to predict specific performances and investigate critical phenomena, and to optimize overall plant performances. In particular, it allows to have a feedback control and to perform several predictive statistical surveys of all main process parameters. The proposed system could help operators in training and continuous learning activities, and serve as a basis for an advanced decision support system and for a remote training tool for students and trainees not authorized to work in a radiation environment.

  5. PS Control Room

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    The good old PS Control Room, all manual. For each parameter, a knob or a button to control it; for each, a light or meter or oscilloscope to monitor it; carefully written pages serve as the data bank; phones and intercom for communication. D.Dekkers is at the microphone, M.Valvini sits in front.

  6. Advanced control room design review guidelines: Merging old and new

    International Nuclear Information System (INIS)

    Carter, R.J.; Wachtel, J.A.

    1992-01-01

    The nuclear power industry is currently developing operator interface systems based on innovative applications of digital computers. To assure that this advanced technology is incorporated in a way that maximizes the potential safety benefits of the technology and minimizes the potential negative effects on human performance, human factors principles must be considered. NUREG-0700 contains guidelines for the review of operator interfaces. However, in light of the rapid technological advances in digital technology which have taken place in the eleven years since its publication, it is no longer adequate to assess the rapidly changing human-system interfaces. A research program, the purpose of which is to upgrade NUREG-0700, has been initiated. Thus far a set of draft advanced control room design review (ACRDR) guidelines has been complied. Three tasks, which were oriented towards integrating the applicable guidelines in NUREG-0700 into the ACRDR document, are described in the paper

  7. Analysis of Human Error Types and Performance Shaping Factors in the Next Generation Main Control Room

    International Nuclear Information System (INIS)

    Sin, Y. C.; Jung, Y. S.; Kim, K. H.; Kim, J. H.

    2008-04-01

    Main control room of nuclear power plants has been computerized and digitalized in new and modernized plants, as information and digital technologies make great progresses and become mature. Survey on human factors engineering issues in advanced MCRs: Model-based approach, Literature survey-based approach. Analysis of human error types and performance shaping factors is analysis of three human errors. The results of project can be used for task analysis, evaluation of human error probabilities, and analysis of performance shaping factors in the HRA analysis

  8. Digital substraction angiography (DSA) in a universal radiodiagnostic room with a novel multi-pulse high-frequency generator

    International Nuclear Information System (INIS)

    Ellegast, H.H.; Kloss, R.; Mayr, H.; Ammann, E.; Kuehnel, W.; Siemens A.G., Erlangen

    1985-01-01

    Application of digital subtraction angiography in a universal radiodiagnostic room can be implemented rapidly and reliably. The number of examinations could be increased without negative effects to conventional operations in this room. At optimum radiation hygiene and high-degree operational safety, the multipulse high-frequency generator with its DSA parameter automatic system guarantees a reproducibly good image quality equalling that of a special DSA facility. In this way, the examination room constitutes an economic solution for small-sized hospitals without any special angiography room, too. (orig.) [de

  9. Nuclear reactor control room construction

    International Nuclear Information System (INIS)

    Lamuro, R.C.; Orr, R.

    1993-01-01

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures

  10. Control room habitability in Spanish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mediavilla, F.; Sierra, J. J.

    2007-01-01

    Since the NRC published in 2003 the Generic Letter 2003-01 Control room Habitability and the Regulatory guide 1.197 Demonstrating Control Room Envelope Integrity at Nuclear Power Reactors, where it is emphasized the importance of verifying the control room habitability by means of alternative methods, Spanish Nuclear Power Plants are undertaking the different necessary activities to fulfill the requirements of the regulatory commission. This paper describes the main mechanisms included in NEI 99-03 Nuclear Energy Institute publication Control room Habitability Assessment guidance, to demonstrate and maintain Control room Habitability. In addition, in this article it Ds shown the theoretical principle of the test used to quantify air in-leakage in a control room envelope by using tracer gas techniques. The necessary activities to perform the initial in leakage testing are also put forward. Since 2006 Tecnatom, S. A. has performed the baseline testing in four Spanish Units, all of them with successful results. The rest of the Plants are scheduled to perform the tests during the second half of this year. Finally, this document summarises the more important aspects to be taken into account in the development of control room Habitability Programs, which are expected to ensure the integral maintenance of the Control room Envelope during the life a plant. (Author)

  11. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Finlayson, F.C.

    1977-01-01

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  12. Implementation of digital control and protection systems of China advanced research reactor

    International Nuclear Information System (INIS)

    Zeng Hai; Jin Huajin; Xu Qiguo; Zhang Mingkui

    2005-01-01

    China Advanced Research Reactor (CARR), a reactor of the 21st century with high performance is being constructed in China. The requirements of reliability and stability on the control and protection (c and p) system are the main points raised. Especially, with the development of digital technology, the c and p system of CARR is demanded to match the trend of digitization in the field of reactor control. The c and p system, including reactor protection system, reactor monitoring and control system, reactor power regulating system, and the mitigation system for ATWS (Anticipate Transient Without Scram), adopts digital technology, and the digital display screen will replace the analog panels in the main control room. The c and p system of CARR adopts redundant technology with 2 or 3 redundant channels to improve the system reliability. The 10/100 Mbps self-adaptive redundant optic fiber industry Ethernet ring network is used to interlink operator workstations, supervisor workstation, and I/O control stations. Commercial grade equipment with mature experience in industrial application are applied to the c and p system of CARR, which have high reliability, good interchangeability, and is easily purchased, the software-developing tools fully match the international industry standards. The realization of digital c and p system of CARR will promote the progress of digital control technology for reactors in China, and certainly become a technical basic platform for developing informational and intelligent reactors in China. (authors)

  13. New technologies for control room habitability assessment

    International Nuclear Information System (INIS)

    Lahti, G.P.; Muraida, J.E.; Perchiazzi, W.T.; Harden, P.A.

    1994-01-01

    Older nuclear power plants typically considered only a nominal amount of unfiltered inleakage (typically 10 cfm) impacting their postaccident control room habitability. However, recent measurements of unfiltered inleakage show values in excess of the nominal 10 cfm. A reassessment for two of these ''older'' stations has been completed recently to show that the measured inleakage did not jeopardize the safety of the control room occupants. Recent concerns at the Zion Station and the Palisades Station about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing each of the control rooms has the potential for unfiltered in-leakage through many locations. For example, at the Palisades Station, the current limiting control room habitability analysis allows for 25 cfm unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. An alternate approach was to review the analysis and reassess the most important parameters. The key effort was to determine the atmospheric dispersion factors (χ/Qs) through wind tunnel tests using scale models of the stations. The results of the wind tunnel testing could yield more realistic χ/Qs for control room habitability than previously employed methods. The wind tunnel study options were selected based on their ease of implementation, realistic results, and low cost. More importantly, the results of the studies would allow more realistic values of unfiltered inleakage

  14. Current Approaches for Control Room I and C Modernization

    International Nuclear Information System (INIS)

    Lopez, Alberto; Jimenez, Alfonso

    2002-01-01

    In general, instrumentation and control (I and C) systems for nuclear power plants were made using analogic systems and relays, since this was the only technology available by the time these systems were designed. This fact impacts on the operational and maintenance capabilities required to these systems. For this reason, nuclear power plants are facing nowadays two challenges: on one hand, the obsolescence of these systems contributes to the increase in the operation and maintenance costs - due to the difficulties for getting spare parts and support from the system vendors -. On the other hand, there has been an increase in the utilities competitiveness due to the electric power market liberalization. All this, of course, along with the commitment to maintain the current safety levels and meet the new requirements and standards that may arise in the near future. The application of current technologies, especially digital technology, solves the obsolescence problems and allows for a more functional and updated human-machine interface. Nevertheless, the cost associated to these modifications makes it necessary to develop strategies to determine which systems need to be modified and how to implement modifications effectively, so that these systems can work jointly with others using different technologies. Other issues inherent to digital technology must be considered, such as verification and validation of the software and of the human-machine interface, which are required for its licensing. This presentation describes the current approaches for I and C modernization, the main reasons, technologies and implementation plans, focusing on the control room and on the impact on operations. The main issues to be considered for developing a specific modernization plan are analysed. The goals and status of the 'Feasibility Study of the Control Room I and C Modernization' are described. This study is currently being developed by Endesa, Iberdrola and Tecnatom, and is included

  15. HAMMLAB 1999 experimental control room: design - design rationale - experiences

    International Nuclear Information System (INIS)

    Foerdestroemmen, N. T.; Meyer, B. D.; Saarni, R.

    1999-01-01

    A presentation of HAMMLAB 1999 experimental control room, and the accumulated experiences gathered in the areas of design and design rationale as well as user experiences. It is concluded that HAMMLAB 1999 experimental control room is a realistic, compact and efficient control room well suited as an Advanced NPP Control Room (ml)

  16. Control room habitability study - findings and recommendations

    International Nuclear Information System (INIS)

    Driscoll, J.W.

    1987-01-01

    The Advisory Committee on Reactor Safeguards (ACRS) has raised a number of concerns related to control room habitability and has recommended actions which they believe could alleviate these concerns. As a result of the ACRS's concerns, the US Nuclear Regulatory Commission's (NRC) Office of Nuclear Reactor Regulation (NRR) in conjunction with the Offices of Research and Inspection and Enforcement, and the NRC regional offices, embarked upon a program to reevaluate Control Room Habitability. Argonne National Laboratory was contracted by the NRC to perform a Control Room Habitability Study on twelve licensed power reactors. The plants selected for the study were chosen based upon architect engineer, nuclear steam system supplier, utility, and plant location. The major findings of this study are included in this report along with generic recommendations of the review team that apply to control room HVAC systems. Although the study is not complete, at the time of publication of this report, the results obtained to date should be useful to persons responsible for Control Room Habitability in evaluating their own systems

  17. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    International Nuclear Information System (INIS)

    Jokstad, Håkon; Boring, Ronald

    2015-01-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy's (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE

  18. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Inst. for Energy Technology, Halden (Norway); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE has

  19. Guidelines for control room systems design. Working material. Report

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains comprehensive technical and methodological information and recommendations for the benefit of Member States for advice and assistance in ''NPP control room systems'' design backfitting existing nuclear power plants and design for future stations. The term ''Control Room Systems'' refers to the entire human/machine interface for the nuclear stations - including the main control room, back-ups control room and the emergency control rooms, local panels, technical support centres, operating staff, operating procedures, operating training programs, communications, etc. Refs, figs and tabs

  20. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partners—the U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) – as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI design—both for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  1. Control room habitability study: findings and recommendations

    International Nuclear Information System (INIS)

    Driscoll, J.W.

    1986-01-01

    The Advisory Committee on Reactor Safeguards (ACRS) has raised a number of concerns related to control room habitability and has recommended actions which they believe could alleviate these concerns. As a result of the ACRS's concerns, the US Nuclear Regulatory Commission's (NRC) Office of Nuclear Reactor Regulation (NRR) in conjunction with the Offices of Research and Inspection and Enforcement, and the NRC regional offices, embarked upon a program to reevaluate Control Room Habitability. Argonne National Laboratory was contracted by the NRC to perform a Control Room Habitability Study on twelve licensed power reactors. The plants selected for the study were chosen based upon architect engineer, nuclear steam system supplier, utility, and plant location. Participants in the study review the plant design as contained in the Updated Safety Analysis Report, Technical Specifications, Three Mile Island action item III.D.3.4 submittal on Control Room Habitability, NRC staff evaluation of the III.D.3.4 submittal, appropriate plant operating procedures, system drawings, and significant Licensee Event Reports on Loss of Cooling to the Control Room Envelope. A two-day visit is then made to the plant to determine if the as-built systems are built, operated, and surveillance performed as described in the documentation reviewed prior to the visit. The major findings of this study are included in this report along with generic recommendations of the review team that apply to control room HVAC systems. Although the study is not complete, at the time of publication of this report, the results obtained to date should be useful to persons responsible for Control Room Habitability in evaluating their own systems

  2. Perception of tomorrow's nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Meyer, O.R.

    1986-01-01

    Major development programs are upgrading today's light water reactor nuclear power plant (NPP) control rooms. These programs involve displays, control panel architecture, procedures, staffing, and training, and are supported by analytical efforts to refine the definitions of the dynamics and the functional requirements of NPP operation. These programs demonstrate that the NPP control room is the visible command/control/communications center of the complex man/machine system that operates the plant. These development programs are primarily plant specific, although the owners' groups and the Institute of Nuclear Power Operations (INPO) do provide some standardization. The Idaho National Engineering Laboratory recently completed a project to categorize control room changes and estimate the degree of change. That project, plus related studies, provides the basis for this image of the next generation of NPP control rooms. The next generation of NPP control rooms is envisioned as being dominated by three current trends: (1) application of state-of-the-art computer hardware and software; (2) use of NPP dynamic analyses to provide the basis for the control room man/machine system design; and (3) application of empirical principles of human performance

  3. Report for Task 8.4: Development of Control Room Layout Recommendations

    International Nuclear Information System (INIS)

    McDonald, Robert

    2016-01-01

    Idaho National Laboratory (INL) has contracted Institutt for Energiteknikk (IFE) to support in the development of an end state vision for the US Nuclear industry and in particular for a utility that is currently moving forward with a control room modernization project. This support includes the development of an Overview display and technical support in conducting an operational study. Development of operational scenarios to be conducted using a full scope simulator at the INL HSSL. Additionally IFE will use the CREATE modelling tool to provide 3-D views of the potential and possible end state view after the completion of digital upgrade project.

  4. Report for Task 8.4: Development of Control Room Layout Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Idaho National Laboratory (INL) has contracted Institutt for Energiteknikk (IFE) to support in the development of an end state vision for the US Nuclear industry and in particular for a utility that is currently moving forward with a control room modernization project. This support includes the development of an Overview display and technical support in conducting an operational study. Development of operational scenarios to be conducted using a full scope simulator at the INL HSSL. Additionally IFE will use the CREATE modelling tool to provide 3-D views of the potential and possible end state view after the completion of digital upgrade project.

  5. Advanced control room caters for the operator

    International Nuclear Information System (INIS)

    George, C.R.; Rygg, D.E.

    1980-01-01

    In existing control rooms the operators' efficiency is often limited by widely scattered and sometimes illogically arranged controls which tend to increase the potential for outages or equipment damage. The advanced control room described allows instant and ready access to preselected information and control by one or two operators from a seated or standing position. (author)

  6. Human factors methods for nuclear control room design. Volume 2. Human factors survey of control room design practices

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1979-11-01

    An earlier review of the control rooms of operating nuclear power plants identified many design problems having potential for degrading operator performance. As a result, the formal application of human factors principles was found to be needed. This report demonstrates the use of human factors in the design of power plant control rooms. The approaches shown in the report can be applied to operating power plants, as well as to those in the design stage. This study documents human factors techniques required to provide a sustained concern for the man-machine interface from control room concept definition to system implementation

  7. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  8. Local control room

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Local control room in the ejection building : all electronics pertaining to proton distribution and concomitants such as beam gymnastics and diagnostics at high energies will eventually be gathered here. Shown is the first of two rows of fast ejection electronic racks. It includes only what is necessary for operation.

  9. Measuring Situation Awareness of Operating Team in Different Main Control Room Environments of Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Seung Woo Lee

    2016-02-01

    Full Text Available Environments in nuclear power plants (NPPs are changing as the design of instrumentation and control systems for NPPs is rapidly moving toward fully digital instrumentation and control, and modern computer techniques are gradually introduced into main control rooms (MCRs. Within the context of these environmental changes, the level of performance of operators in a digital MCR is a major concern. Situation awareness (SA, which is used within human factors research to explain to what extent operators of safety-critical systems know what is transpiring in the system and the environment, is considered a prerequisite factor to guarantee the safe operation of NPPs. However, the safe operation of NPPs can be guaranteed through a team effort. In this regard, the operating team's SA in a conventional and digital MCR should be measured in order to assess whether the new design features implemented in a digital MCR affect this parameter. This paper explains the team SA measurement method used in this study and the results of applying this measurement method to operating teams in different MCR environments. The paper also discusses several empirical lessons learned from the results.

  10. Creys-Malville control room and data processing

    International Nuclear Information System (INIS)

    Decuyper, J.

    1984-01-01

    After a brief definition of the control of a plant, this article presents the Creys-Malville control room: control means display and considerations on ergonomy and specific features in respect of the PWR control room. The Creys-Malville data processing is then rapidly presented with a brief description, the different data treatments and the specificity of the centralised data computer [fr

  11. Engineering Process Monitoring for Control Room Operation

    CERN Document Server

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close collaboration of control room teams, exploitation personnel and process specialists. In this paper some principles for the engineering of monitoring information for control room operation are developed at the example of the exploitation of a particle accelerator at the European Laboratory for Nuclear Research (CERN).

  12. Atmospheric diffusion model for control room habitability assessments

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Lee, J.Y.

    1993-01-01

    General Design Criterion 19 for nuclear power plants (Appendix A to 10CFR50) requires control room radiation protection adequate to limit radiation exposures to control room personnel. Murphy and Campe proposed the procedure currently used in evaluating control room habitability. However, data from building-wake diffusion experiments at nuclear power plants indicate that the Murphy-Campe procedure tends to overestimate concentrations, particularly during low wind speeds. This paper describes an alternative procedure developed by the Pacific Northwest Laboratory that is acceptable to U.S. Nuclear Regulatory Commission (NRC) staff. The procedure estimates control room air intake concentrations that are generally lower than those estimated by the Murphy-Campe procedure, yet are still conservative

  13. Operation Aspect of the Main Control Room of NPP

    International Nuclear Information System (INIS)

    Sahala M Lumbanraja

    2009-01-01

    The main control room of Nuclear Power Plant (NPP) is operational centre to control all of the operation activity of NPP. NPP must be operated carefully and safely. Many aspect that contributed to operation of NPP, such as man power whose operated, technology type used, ergonomic of main control room, operational management, etc. The disturbances of communication in control room must be anticipated so the high availability of NPP can be achieved. The ergonomic of the NPP control room that will be used in Indonesia must be designed suitable to anthropometric of Indonesia society. (author)

  14. Survey of licensee control room habitability practices

    International Nuclear Information System (INIS)

    Boland, J.F.; Brookshire, R.L.; Danielson, W.F.; Driscoll, J.W.; Graham, E.D.; McConnell, R.J.; Thompson, V.N.

    1985-04-01

    This document presents the results of a survey of Licensee control-room-habitability practices. The survey is part of a comprehensive program plan instituted in August 1983 by the NRC to respond to ongoing questions from the Advisory Committee on Reactor Safeguards (ACRS). The emphasis of this survey was to determine by field review the control-room habitability practices at three different plants, one of which is still under construction and scheduled to receive an operating license in 1986. The other two plants are currently operating, having received operating licenses in the mid-1970's and early 1980's. The major finding of this survey is that despite the fact that the latest control-room-habitability systems have become larger and more complex than earlier systems surveyed, the latest systems do not appear to be functionally superior. The major recommendation of this report is to consolidate into a single NRC document, based upon a comprehensive systems engineering approach, the pertinent criteria for control-room-habitability design

  15. Gaining control room habitability margin at the Palisades Plant

    International Nuclear Information System (INIS)

    Harden, P.A.

    1993-01-01

    The bounding design-basis accident for control room habitability is the loss-of-coolant accident (LOCA). At Palisades, very little margin existed between the calculated control room operator thyroid dose and the 0.3-Sv (30-rem) limit of Standard Review Plan (SRP) 6.4. Also, a low rate of unfiltered air leakage into the control room during the emergency mode of operation, 5.5 x 10 -3 m 3 /s (11.6 ft 3 /min), was accounted for in the control room habitability analysis. The control room heating, ventilating and air-conditioning system at Palisades has louvered isolation dampers for the normal air intake that are exposed to a negative pressure. Considering the small margin to the thyroid dose limits and the leakage characteristics of louvered dampers, a low allowable rate of unfiltered air in-leakage raised some concern. A significant effort has been initiated to alleviate control room habitability concerns at Palisades. The first step in this effort was to evaluate the calculational models for control room habitability and gain margin through updated analytical methods. To accomplish this, a new radiological consequence analysis for the LOCA was completed

  16. Control Room Habitability for Accidental Sulfuric Acid Release

    International Nuclear Information System (INIS)

    Cho, Sungmin; Lee, Heedo; Song, Dongsoo

    2006-01-01

    The 10 CFR 50 Appendix A Criterion 19, 'Control Room', requires that a control room be provided from which actions can be taken to operate the nuclear power unit safely under normal conditions and to maintain it in a safe condition under accident conditions. For compliance with the requirement, the control room of a nuclear power plant should be appropriately protected from hazardous chemicals that may be discharged as a result of equipment failures, operator errors, or events and conditions outside the control of the nuclear power plant. We have excluded sulfuric acid from a target of estimation for control room habitability merely because its boiling point is too high; qualitative analysis in this paper shows that we can exclude sulfuric acid from the target of habitability estimation

  17. Occurrences in control room equipment, procedures and personnel performances: IRS control room events

    International Nuclear Information System (INIS)

    Tolstykh, V.

    1994-01-01

    The IAEA/NEA Incident Reporting System (IRS) was established in the early 1980, its objective being to gain from operating experience achieved in countries with nuclear power programmes by means of exchanging information on events relevant to safety. Among the 2171 events in the database, 175 events (i.e. 8%) were identified as ''control room events''. It was decided to group these into three sets for further study: 65 events with common mode/cause failures (CCFs), 22 events with cognitive errors and 30 events with unforeseen interaction between NPP systems. It is expected that the pitfalls experienced in the IRS and the questions derived from this study will help to gain a better understanding of the needs and interests of specialists in advanced information methods and artificial intelligence in NPP control rooms. (author)

  18. Digital control card based on digital signal processor

    International Nuclear Information System (INIS)

    Hou Shigang; Yin Zhiguo; Xia Le

    2008-01-01

    A digital control card based on digital signal processor was developed. Two Freescale DSP-56303 processors were utilized to achieve 3 channels proportional- integral-differential regulations. The card offers high flexibility for 100 MeV cyclotron RF system development. It was used as feedback controller in low level radio frequency control prototype, with the feedback gain parameters continuously adjustable. By using high precision analog to digital converter with 500 kHz sampling rate, a regulation bandwidth of 20 kHz was achieved. (authors)

  19. Discussion on control room habitability assessment

    International Nuclear Information System (INIS)

    Li Bing; Chen Yingying; Xiao Jun; Yang Duanjie; Cui Hao

    2014-01-01

    The discussion on control room envelope integrity, source term analysis in habitability assessments and other impact factors for dose consequence is provided combined with regulatory requirements and the current status of domestic NPPs. Considering that the infiltration is an important factor for control room habitability assessment, CRE integrity test should be performed to demonstrate the CRE's infiltration characteristics. The consequence assessment should be performed based on different DBAs and different pathways, such as pathways internal to the plant. (authors)

  20. Control room modernization at Finnish nuclear power plants - Two projects compared

    International Nuclear Information System (INIS)

    Laarni, J.; Norros, L.

    2006-01-01

    The modernization of automation systems and human-machine interfaces is a current issue at both of the two nuclear power plants (i.e., Fortum's Loviisa plant and TVO's Olkiluoto plant) in Finland. Since the plants have been launched in the 1970's or 1980's, technology is in part old-fashioned and needs to be renewed. At Olkiluoto upgrades of the turbine operator systems have already been conducted; at Loviisa the first phase of the modernization project has just started. Basically, there is a question of the complete digitalization of the information streams at the two plants, and transition from a conventional hard-wired or hybrid control room to a screen-based one. The new human-machine interfaces will comprise new technology, such as PC workstations, soft control, touch screens and large-screen overall displays. The modernization of human-system interfaces is carried out in a stepwise manner at both plants. At both plants the main driver has not been the need to renew the user interfaces of the control room, but the need to upgrade the automation systems. In part because of this, there is a lack of a systematic top-down approach in which different aspects of human factors (HF) engineering are considered in relationship to higher level goals. Our aim here is to give an overview description of the control room modernization projects at the two plants and provide a preliminary evaluation of their progress to date. The projects are also compared, for example, in terms of duration, scope and phasing, and who is responsible for the realization of the project. In addition, we also compare experiences from the Finnish projects to experiences from similar projects abroad. The main part of the data used in this study is based on designers' and project members' interviews. (authors)

  1. Preliminary considerations on safety of computerized control rooms

    International Nuclear Information System (INIS)

    Vittet, J.

    1983-02-01

    Safety problems are analyzed in this report by the study of the interaction: ''human behavior in a rigid environment/information overload in perturbed situation''. For pedagogy the study is presented as a research of factors influencing operator performance in a control room and a dialogue between an analyst and a conceiving engineer. Danger of all control room where the strategy for data acquisition is too rigid and without spatial reference is stressed in conclusion. Orientations for an advanced control room are outlined [fr

  2. Considerations concerning the ergonomics of power plant control rooms

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Modern control rooms for the monitoring and control of large power plants have a high degree of automation. However, it is the responsibility of the control room personnel to ensure optimum process control during all operational states. The proper ergonomic design of a control room is one of the prerequisites to ensure that the operators are able to perceive the often large flow of current information and, after processing, to respond properly. (orig.) [de

  3. Use of task analysis in control room evaluations

    International Nuclear Information System (INIS)

    Ross, K.C.

    1981-01-01

    Responding to recently formulated regulatory requirements, the BWR Owners' Group, working in conjunction with General Electric, has formulated a method for performing human factors design reviews of nuclear power plant control rooms. This process incorporates task analyses to analyze operational aspects of panel layout and design. Correlation of operator functions defined by emergency procedures against required controls and displays has proven successful in identifying instrumentation required in the control room to adequately respond to transient conditions, and in evaluating the effectiveness of panel design and physical arrangement. Extensions of the analysis have provided information on operator response paths, frequency of use of instruments, and control room layout. The techniques used were based on a need to identify primary controls and indications required by the operator in performing each step of the applicable procedure. The relative locations of these instruments were then analyzed for information on the adequacy of the control room design for those conditions

  4. Control room inleakage testing using tracer gases at Zion Generating station

    International Nuclear Information System (INIS)

    Lagus, P.L.; Brown, J.H.; Dubois, L.J.; Fleming, K.M.

    1993-01-01

    In order to assess the amount of air inleakage into the Control Room Envelope at Zion Generating Station (ZGS), a series of tracer gas tests using sulfur hexafluoride (SF 6 ) were performed on the Control Room ventilation system (PV system) and the Computer Room/Miscellaneous Area ventilation system (OV system) during February, 1991. Two redundant trains, denoted A and B comprise the PV system. Inleakage was measured for each train. An OV supply duct passes through the Control Room Envelope. Leakage from this duct into the Control Room would constitute air leakage into the Control room Envelope and hence any potential leakage had to be quantified. Each test attempted to measure the contribution (if any) of a particular section of PV return duct or OV supply duct to the total air inleakage into the Control Room. This paper reviews the tracer gas tests. Described here are the control room inleakage testing, HVAC equipment room duct inleakage, purge plenum inleakage, OV duct leakage into the control room envelope, vestibule PV return inleakage, TSC duct inleakage, and cable spreading room inleakage. Conclusions from the testing are presented. 5 refs., 4 figs., 7 tabs

  5. Design of a multisystem remote maintenance control room

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.

    1988-01-01

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab

  6. Operations strategy for workload balancing of crews in an advanced main control room

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea

    2016-01-01

    The advanced main control room (advanced-MCR) is the one that allows for reactor operations based on digital instrumentation and control (I and C) technology. Thus, the operators of an advanced-MCR operate the plant through digital I and C interfaces, and for this purpose, an additional digital manipulation task for the operating equipment should be performed that cannot be observed in a conventional-MCR. As a prior study proposing the cognitive, communicative, and operational activity measurement approach (COCOA), COCOA enables an evaluation of the operator's workload in an advanced-MCR,which includes newly generated tasks for Man-Machine Interface System based secondary operation under a digital environment, which does not exist in a conventional-MCR. As a result of observations on the workload level by utilizing COCOA for a reference plant with an advanced-MCR when conducting an emergency operating procedure, it was observed that the workload of the shift supervisor is about two times greater than that of other operators. This is because operators therein stuck to the old guidelines customized to a conventional-MCR and failed to accomplish load balancing in consideration of the operation environment that an advanced-MCR provides. In this context, it would be imperative to develop and apply an operations strategy for an advanced-MCR operation. This study proposes an operations strategy in an attempt to make a balanced workload of operators in an advanced-MCR. (author)

  7. Introduction of digital control

    International Nuclear Information System (INIS)

    Kim, Sang Jin

    1988-01-01

    This book is one of mechatronics series. It deals with digital control, which includes what is digital control?, display way of control system, output of primary system, secondary system like example of system and display way of the system, stabilizing of control system such as method to decide stability and system out of control, displaying equation of state into vector, good control such as the right characteristic, transient behavior and design of position control system using DC servo motor.

  8. Taking account of human factors in control-room design

    International Nuclear Information System (INIS)

    Dien, Y.; Montmayeul, R.

    1995-07-01

    Since the Three Mile Island accident two ways for improving the Human-Machine Interface have mainly been followed: the development of computerized operator aids in existing control-rooms and the design of advanced control-rooms. Insufficient attention paid to human factors in the design of operator aids has generally led to these aids being neglected or unused by their potential users. While for the design of advanced control-rooms efforts have been made for dealing with human factors in more extensive way. Based upon this experience, a general method for taking account of human factors in a control-room design has been devised and is described in this paper. (author)

  9. Modern control room design experience and speculation

    International Nuclear Information System (INIS)

    Smith, J.E.

    1993-01-01

    Can operators trained to use conventional control panels readily adapt to CRT based control rooms? Does automation make the design of good man-machine interfaces more or less difficult? In a conventional, hard-wired control room is the operator's peripheral vision always an asset and how can one do better in a CRT based control room? Are Expert System assisted man-machine interfaces a boon or a bust? This paper explores these questions in the light of actual experience with advanced power plant control environments. This paper discusses how automation has in fact simplified the problem of ensuring that the operator has at all times a clear understanding of the plant state. The author contends that conventional hard-wired control rooms are very poor at providing the operator with a good overview of the plant status particularly under startup, or upset conditions and that CRT-based control rooms offer an opportunity for improvement. Experience with some early attempts at this are discussed together with some interesting proposals from other authors. Finally the paper discusses the experience to date with expert system assisted man-machine interfaces. Although promising for the future progress has been slow. The amount of knowledge research required is often formidable and consequently costly. Often when an adequate knowledge base is finally acquired it turns out to be better to use it to increase the level of automation and thus simplify the operator's task. The risks are not any greater and automation offers more consistent operation. It is important also to carefully distinguish between expert system assisted display selection and expert system operator guidance. The first is intended to help the operator in his quest for information. The second attempts to guide the operator actions. The good and the bad points of each of these approaches is discussed

  10. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2011-06-16

    ...: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety Administration... the Control Room Management/Human Factors regulations in order to realize the safety benefits sooner... FR 5536). By this amendment to the Control Room Management/Human Factors (CRM) rule, an operator must...

  11. Precision digital control systems

    Science.gov (United States)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  12. Study on the main control room design for Hamaoka Unit No.5

    International Nuclear Information System (INIS)

    Tsuruta, Tadakazu; Sakamoto, Minoru; Maruyama, Tohru; Saito, Tadashi

    2000-01-01

    The main control room of nuclear power station is important to operate the power station and to promote public acceptance of nuclear power station. To enhance them, there is an idea of high ceiling control room with a gallery room located in backside middle upper floor. The control room is expected to enhance habitability and to offer visitors the fine view of the control room. In this study, psychological and physiological influence of such a high ceiling control room design on operators was investigated first. And then some human engineering requirements for desirable main control room were identified. A control room (ceiling height: about 5 meters) adequate to the requirements was designed, and finally the validity of the design was verified by means of full mockup model room tests. The results of this study are applied to the main control room design of Hamaoka Nuclear Power Station Unit No.5 (Chubu Electric Power Co., Inc.) (author)

  13. Control rooms in German nuclear power plants

    International Nuclear Information System (INIS)

    Hoffmann, E.

    1999-01-01

    The paper explains and illustrates the dissimilarity in design and equipment of control rooms in German NPPs, as well as a historical survey of the general principles and approaches applied in the evolution of control room technology, including backfitting activities. Experience obtained from daily operation as well training at the simulators is taken as a basis to formulate fundamental requirements for modification or novel design approaches. (orig./CB) [de

  14. Design and implementation of new control room system in Damavand tokamak

    Science.gov (United States)

    Rasouli, H.; Zamanian, H.; Gheidi, M.; Kheiri-Fard, M.; Kouhi, A.

    2017-07-01

    The aim of this paper is design and implementation of an up-to-date control room. The previous control room had a lot of constraints and it was not apposite to the sophisticated diagnostic systems as well as to the modern control and multivariable systems. Although it provided the best output for the considered experiments and implementing offline algorithms among all similar plants, it needed to be developed to provide more capability for complex algorithm mechanisms and this work introduces our efforts in this area. Accordingly, four leading systems were designed and implemented, including real-time control system, online Data Acquisition System (DAS), offline DAS, monitoring and data transmission system. In the control system, three real-time control modules were established based on Digital Signal Processor (DSP). Thanks to them, implementation of the classic and linear and nonlinear intelligent controllers was possible to control the plasma position and its elongation. Also, online DAS was constructed in two modules. Using them, voltages and currents of charge for the capacitor banks and pressure of different parts in vacuum vessel were measured and monitored. Likewise, by real-time processing of the online data, the safety protocol of plant performance was accomplished. In addition, the offline DAS was organized in 13 modules based on Field Programmable Gate Array (FPGA). This system can be used for gathering all diagnostic, control, and performance data in 156 channels. Data transmission system and storing mechanism in the server was provided by data transmitting network and MDSplus standard protocol. Moreover, monitoring software was designed so that it could display the required plots for physical analyses. Taking everything into account, this new platform can improve the quality and quantity of research activities in plasma physics for Damavand tokamak.

  15. Single room control for user-optimised room air conditions; Einzelraumregelung fuer nutzungsoptimiertes Raumklima

    Energy Technology Data Exchange (ETDEWEB)

    Lezius, A. [Staefa Control System GmbH, Leinfelden-Echterdingen (Germany)

    1995-12-31

    In chapter 14 of the anthology about building control the single room control for achieving user-optimised room air conditions is described. The following aspects are discussed: What is comfort? What is economic efficiency? Systems for secondary air treatment, adapted functions of the measurement and control technique, management functions, orientation of the demand at the use, investment and amortisation. (BWI) [Deutsch] Kapitel 14 des Sammelbandes ueber Building control ist dem Thema der Einzelraumregelung zur Erzielung eines nutzungsoptimierten Raumklimas gewidmet. In diesem Zusammenhang werden folgende Themenbereiche angesprochen: Was ist Komfort? Was ist Wirtschaftlichkeit? Systeme fuer sekundaere Luftbehandlung; Angepasste Funktionen der MSR-Technik; Managementfunktionen; Bedarfsorientierung an der Nutzung; Investition und Amortisation. (BWI)

  16. 75 FR 69912 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2010-11-16

    ... 192 and 195 [Docket ID PHMSA-2007-27954] RIN 2137-AE64 Pipeline Safety: Control Room Management/Human... Control Room Management/Human Factors rule at 49 CFR 192.631 and 195.446. The NPRM proposes to expedite... rule and to engage in open discussions with the agency at PHMSA's Control Room Management...

  17. New technologies for a postaccident control room habitability assessment

    International Nuclear Information System (INIS)

    Lahti, G.P.; Perchiazzi, W.T.

    1993-01-01

    Older nuclear power plants typically considered only a nominal amount of unfiltered in-leakage (typically 10 ft 3 /min) affecting their postaccident habitability. However, recent measurements of unfiltered in-leakage show leakages in excess of the nominal 10 ft 3 /m in. The assessment of postaccident doses in control rooms is done in a number of well-defined steps: (1) Determine the initial release of radioactivity to the containment (the open-quotes source termclose quotes). (2) Determine the release of radioactivity to the environment. (3) Determine the atmospheric dispersion and the concentration at the control room air intake. (4) Determine within-building dilution (if any). (5) Determine unfiltered in-leakage. (6) Determine the concentration of radioactivity in the control room. (7) Determine the dose to control room occupants. The prescriptive methodology of the Murphy-Campe paper and Standard Review Plan (SRP) 6.4 has been used by the U.S. Nuclear Regulatory Commission (NRC) to assess control room designs. However, a number of new technologies have been employed to reevaluate an existing pressurized water reactor plant design

  18. Control console for the X-ray room

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A.

    1998-01-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  19. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Min, E-mail: jewellee@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Hyun Chul, E-mail: leehc@kaeri.re.kr [Korea Atomic Energy Research Institute, 305-353, 989-111 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ha, Jun Su, E-mail: junsu.ha@kustar.ac.ae [Department of Nuclear Engineering, Khalifa University of Science Technology and Research, Abu Dhabi P.O. Box 127788 (United Arab Emirates); Seong, Poong Hyun, E-mail: phseong@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2016-10-15

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  20. Development of digital device based work verification system for cooperation between main control room operators and field workers in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Lee, Hyun Chul; Ha, Jun Su; Seong, Poong Hyun

    2016-01-01

    Highlights: • A digital device-based work verification and cooperation support system was developed. • Requirements were derived by interviewing field operators having experiences with mobile-based work support systems. • The usability of the proposed system was validated by conducting questionnaire surveys. • The proposed system will be useful if the manual or the set of guidelines is well constructed. - Abstract: Digital technologies have been applied in the nuclear field to check task results, monitor events and accidents, and transmit/receive data. The results of using digital devices have proven that these devices can provide high accuracy and convenience for workers, allowing them to obtain obvious positive effects by reducing their workloads. In this study, as one step forward, a digital device-based cooperation support system, the nuclear cooperation support and mobile documentation system (Nu-COSMOS), is proposed to support communication between main control room (MCR) operators and field workers by verifying field workers’ work results in nuclear power plants (NPPs). The proposed system consists of a mobile based information storage system to support field workers by providing various functions to make workers more trusted by MCR operators; also to improve the efficiency of meeting, and a large screen based information sharing system supports meetings by allowing both sides to share one medium. The usability of this system was estimated by interviewing field operators working in nuclear power plants and experts who have experience working as operators. A survey to estimate the usability of the suggested system and the suitability of the functions of the system for field working was conducted for 35 subjects who have experience in field works or with support system development-related research. The usability test was conducted using the system usability scale (SUS), which is widely used in industrial usability evaluation. Using questionnaires

  1. Ergonomics in the licensing and evaluation of nuclear reactors control room

    International Nuclear Information System (INIS)

    Santos, Isaac Jose Antonio Luquetti dos; Vidal, Mario Cesar Rodriguez

    2002-01-01

    A nuclear control room is a complex system that controls a thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear plant safety and influence the operator activity. The TMI (Three Mile Island) accident demonstrated that only the anthropometric aspects were not enough for an adequate nuclear control room design. The studies showed that the accident was aggravated because the designers had not considered adequately human factor aspects. After TMI accident, the designers introduce in the nuclear control room development only human factors standards and human factors guidelines. The ergonomics approaches was not considered. Our objective is introduce in nuclear control room design and nuclear control room evaluation, a methodology that. includes human factors standards, human factors guidelines and ergonomic approaches, the operator activity analysis. (author)

  2. Applying human factors engineering program to the modernization project of NPP Control Room in accordance with U.S.NRC and KTA regulations

    International Nuclear Information System (INIS)

    Avellar, Renato Koga de; Schirru, Roberto

    2017-01-01

    Application of Human Factors Engineering (HFE) in the design and implementation of such a project is essential to ensure that the new man-machine interface outcoming from the modernization does not have any negative impacts on human performance and plant safety. This paper analyzes the applicability of the Human Factors Engineering Program in the licensing and certification of Konvoi Nucleoelectric Power Plant Control Room Modernization Project using digital instrumentation and control in accordance with U.S.NRC and KTA regulations. The results of the analyses show that although regulatory bodies adopt different methodology in the process of licensing the modernization of control rooms, the engineering aspects are being developed based on the principles of engineering. (author)

  3. Applying human factors engineering program to the modernization project of NPP Control Room in accordance with U.S.NRC and KTA regulations

    Energy Technology Data Exchange (ETDEWEB)

    Avellar, Renato Koga de, E-mail: rkoga@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Assessoria de Licenciamento Nuclear e Ambiental; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    Application of Human Factors Engineering (HFE) in the design and implementation of such a project is essential to ensure that the new man-machine interface outcoming from the modernization does not have any negative impacts on human performance and plant safety. This paper analyzes the applicability of the Human Factors Engineering Program in the licensing and certification of Konvoi Nucleoelectric Power Plant Control Room Modernization Project using digital instrumentation and control in accordance with U.S.NRC and KTA regulations. The results of the analyses show that although regulatory bodies adopt different methodology in the process of licensing the modernization of control rooms, the engineering aspects are being developed based on the principles of engineering. (author)

  4. Control room MMI 2000 for NORS simulator in HAMMLAB

    International Nuclear Information System (INIS)

    Saarni, R.; Foerdestroemmen, N.T.; Meyer, B.D.; Skjerve, A.B.M.

    2001-03-01

    The report presents the control room MMI as of year 2000 for the NORS simulator in HAMMLAB. It consists of two main parts: NORS Reference Control Room MMI and NORS Experimental Control Room MMI. They are both utilised in human factors experiments in HAMMLAB. The HAMMLAB Experimental Control Room 2000 is presented together with the NORS Reference CR MMI, which includes the following display types: Overview displays, process and control displays, trend displays, supplementary alarm displays and logic displays for the protection system and other automatic control systems. User experiences based on feedback from professional Loviisa NPP operators are also given. For the Experimental Control Room MMI, main emphasis is on presenting the design of a new large screen overview display called; experimental Automatic Information Presentation (AIP) display. It was used for the first time last year in the HCA-2000 experiment in HAMMLAB. The design is quite different from previous overview displays being developed and used in HAMMLAB. The display presents the overall dynamic status of both the process and the automatic systems. The plans for the future include to develop and user test an upgraded AIP overview display, and to enhance and user test a limited set of task-based display prototypes. (Author)

  5. Assessment of control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Norros, L.; Ranta, J.; Wahlstroem, B.

    1983-05-01

    To identify and correct the lacks in control rooms of operating power plants and plants under construction an extensive program has been started in the USA. In Finland as in other countries using nuclear power, the development in the USA particularly with regard to the requirements imposed on nuclear power plants is carefully followed. The changes in these requirements are sooner or later also reflected in the guidelines given by the Finnish authorities. It is therefore important to be able to form a notion of how the new requirements apply to Finnish conditions. Especially it is important to review the latest assessment guidelines for control room implementation (NUREG-0700). Thus we can avoid possible over hasty conclusions. The aim of the analysis of the method and experiments presented in NUREG 0700 report was to create a basis for assessment of the suitability of the method for Finnish control room implementation. The task group has made a general methodical analysis of the method, and partly tried it in assessment of the TVO2 control room. It is obvious that direct conclusions from the American situation are misleading. It can be considered unfeasible to follow the American requirements as such, because they can lead to unwanted results. If the review is limited to control room details, the NRC program (checklist) can be considered successful. It can also be used during planning to observation of small discrepancies. However, we can question the applicability of some requirements. It is, though, more essential that the control room entity has neither in this nor in several other programs been reached or standardized. In spite of the difficulties we should try to reach this most important goal. (author)

  6. Control room envelope unfiltered air inleakage test protocols

    International Nuclear Information System (INIS)

    Lagus, P.L.; Grot, R.A.

    1997-01-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs

  7. Control room envelope unfiltered air inleakage test protocols

    Energy Technology Data Exchange (ETDEWEB)

    Lagus, P.L. [Lagus Applied Technology, San Diego, CA (United States); Grot, R.A. [Lagus Applied Technology, Olney, MD (United States)

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  8. 3D visualization based customer experiences of nuclear plant control room

    International Nuclear Information System (INIS)

    Sun Tienlung; Chou Chinmei; Hung Tamin; Cheng Tsungchieh; Yang Chihwei; Yang Lichen

    2011-01-01

    This paper employs virtual reality (VR) technology to develop an interactive virtual nuclear plant control room in which the general public could easily walk into the 'red zone' and play with the control buttons. The VR-based approach allows deeper and richer customer experiences that the real nuclear plant control room could not offer. When people know more about the serious process control procedures enforced in the nuclear plant control room, they will appropriate more about the safety efforts imposed by the nuclear plant and become more comfortable about the nuclear plant. The virtual nuclear plant control room is built using a 3D game development tool called Unity3D. The 3D scene is connected to a nuclear plant simulation system through Windows API programs. To evaluate the usability of the virtual control room, an experiment will be conducted to see how much 'immersion' the users could feel when they played with the virtual control room. (author)

  9. NRC study of control room habitability

    International Nuclear Information System (INIS)

    Hayes, J.J. Jr.; Muller, D.R.; Gammill, W.P.

    1985-01-01

    Since 1980, the Advisory Committee on Reactor Safeguards (ACRS) has held several meetings with the NRC staff to discuss the subject of control room habitability. Several meetings between the ACRS and the staff have resulted in ACRS letters that express specific concerns, and the staff has provided responses in reports and meetings. In June of 1983, the NRC Executive Director for Operations directed the Offices of Nuclear Reactor Regulation and Inspection and Enforcement to develop a plan to handle the issues raised by the ACRS and to report to him specific proposed courses of action to respond to the ACRS's concerns. The NRC control room habitability working group has reviewed the subject in such areas as NRR review process, transformation of control room habitability designs to as-built systems, and determination of testing protocol. The group has determined that many of the ACRS concerns and recommendations are well founded, and has recommended actions to be taken to address these as well as other concerns which were raised independent of the ACRS. The review has revealed significant areas where the approach presently utilized in reviews should be altered

  10. Emergency control room design of a nuclear reactor used to produce radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L. dos; Farias, Larissa P. de; Ponte, Luana T.L.; Goncalves, Gabriel L.; Castro, Heraclito M.; Farias, Marcos S.; Carvalho, Paulo V.R. de; Vianna Filho, Alfredo M.V., E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento Engenharia Nuclear

    2015-07-01

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Emergency control room acts as an alternative control room for the purpose of shutting down or maintaining the facility in a safe shutdown state when the main control room is uninhabitable. The mission of emergency control room is to provide the resources to bring the plant to a safe shutdown condition after an evacuation of the main control room. An evacuation of the main control room is assumed when there is no possibility to accomplish tasks involved in the shutdown except reactor trip. The purpose of this paper is to present a specific approach for the design of the emergency control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the development phase of the design. Using the information gathered from standards and from the multidisciplinary team a 3D Sketch and a 3D printing of the emergency control room were created. (author)

  11. Emergency control room design of a nuclear reactor used to produce radioisotope

    International Nuclear Information System (INIS)

    Santos, Isaac J.A.L. dos; Farias, Larissa P. de; Ponte, Luana T.L.; Goncalves, Gabriel L.; Castro, Heraclito M.; Farias, Marcos S.; Carvalho, Paulo V.R. de; Vianna Filho, Alfredo M.V.

    2015-01-01

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Emergency control room acts as an alternative control room for the purpose of shutting down or maintaining the facility in a safe shutdown state when the main control room is uninhabitable. The mission of emergency control room is to provide the resources to bring the plant to a safe shutdown condition after an evacuation of the main control room. An evacuation of the main control room is assumed when there is no possibility to accomplish tasks involved in the shutdown except reactor trip. The purpose of this paper is to present a specific approach for the design of the emergency control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the development phase of the design. Using the information gathered from standards and from the multidisciplinary team a 3D Sketch and a 3D printing of the emergency control room were created. (author)

  12. Control room habitability system review models

    International Nuclear Information System (INIS)

    Gilpin, H.

    1990-12-01

    This report provides a method of calculating control room operator doses from postulated reactor accidents and chemical spills as part of the resolution of TMI Action Plan III.D.3.4. The computer codes contained in this report use source concentrations calculated by either TACT5, FPFP, or EXTRAN, and transport them via user-defined flow rates to the control room envelope. The codes compute doses to six organs from up to 150 radionuclides (or 1 toxic chemical) for time steps as short as one second. Supporting codes written in Clipper assist in data entry and manipulation, and graphically display the results of the FORTRAN calculations. 7 refs., 22 figs

  13. A new Main Control Room for the AGS complex

    International Nuclear Information System (INIS)

    Ingrassia, P.F.; Zaharatos, R.M.; Dyling, O.H.

    1991-01-01

    A new Main Control Room (MCR) has been built to control the accelerators of the AGS Complex. A new physical environment was produced to better control light, sound, temperature, and traffic. New control consoles were built around the work-stations that make up the distributed control system. Equipment placement within consoles and console placement within the room reflect attention to the 'human factors' needs of the operator

  14. Digital LLRF System for RFQ

    International Nuclear Information System (INIS)

    Agashe, Alok; Motiwala, P.D.; Bharade, S.K.; Mohan, Shyam; Joshi, Gopal; Das, D.

    2015-01-01

    A Low level RF (LLRF) system based on digital techniques has been developed for RFQ of Low Energy High Intensity Proton Accelerator (LEHIPA). The basic LLRF system for RFQ is composed of a Front end analog module housed in a 19 inch bin and a 6U cPCI based Digital board having a high speed and high density FPGA onboard, supporting 32 bit/33MHz PCI ver2.0 protocol and housed in a 19 inch cPCI crate. It also has a cPCI based CPU board with QNX operating system. The cPCI crate is connected to control room via Ethernet. Analog module conditions the input field signals from RF cavity and makes it compatible to digital board. It also amplifies RF Drive signal (Modulator output) from digital board, which goes to high power amplifier. The digital board digitally processes the input RF signals, and generates RF drive signal, which after amplification, used for driving the resonant cavity. The main features of digital board are under-sampling of input RF signals, digital in-phase and quadrature detection, and a proportional- integral (PI) controller algorithm implemented in a FPGA. The LLRF system works in CW as well as in PULSE mode. It also has a DDS implemented in VHDL, used for conditioning and tracking/tuning of the cavity. LLRF system operates under QNX based equipment frontend application and client running from control room. One analog module and one digital board set, supports one resonant cavity. The present paper describes the development of an LLRF system and its results with a test cavity. (author)

  15. Design process and philosophy of TVA's latest advance control room complex

    International Nuclear Information System (INIS)

    Owens, G.R.; Masters, D.W.

    1979-01-01

    TVA's latest nuclear power plant control room design includes a greater emphasis on human factors as compared to their earlier plant designs. This emphasis has resulted in changes in the overall design philosophy and design process. This paper discusses some of the prominent design features of both the control room and the surrounding control room complex. In addition, it also presents some of the important activities involved in the process of developing the advanced control room design

  16. Teamwork and problem solving in the control room

    International Nuclear Information System (INIS)

    Nygard, F.I.; Dedon, J.M.; Fuld, R.B.

    1989-01-01

    The importance of teamwork and communications in the control room of a nuclear power plant has been the subject of significant attention during the 10 yr since the Three Mile Island accident. The ability to conduct effective problem solving, especially under unexpected conditions, requires that the control room crew be well trained in techniques that produce synergism and avoid ambiguous or conflicting interactions. This paper describes the foundations of a training program developed and conducted by Combustion Engineering to produce a winning team in the control room. The complete licensed operations staffs of three utilities, Florida Power ampersand Light, Louisiana Power ampersand Light, and Omaha Public Power District, have completed this program. Thus, the results of the experience of ∼150 licensed operators is reported

  17. A new main control room for the AGS complex

    International Nuclear Information System (INIS)

    Ingrassia, P.F.; Zaharatos, R.M.; Dyling, O.H.

    1991-01-01

    A new Main Control Room (MCR) has been built to control the accelerators of the AGS Complex. A new physical environment was produced to better control light, sound, temperature, and traffic. New control consoles were built around the work-stations that make up the distributed control system. Equipment placement within consoles and console placement within the room reflect attention to the ''human factors'' needs of the operator. 1 ref., 2 figs

  18. Using a Research Simulator for Validating Control Room Modernization Concepts

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Agarwal, Vivek; Persensky, Julius J.; Joe, Jeffrey C.

    2012-01-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I and C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I and C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across. (author)

  19. Using a Research Simulator for Validating Control Room Modernization Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Vivek Agarwal; Julius J. Persensky; Jeffrey C. Joe

    2012-05-01

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the United States Department of Energy. The program is operated in close collaboration with industry research and development programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants that are currently in operation. Advanced instrumentation and control (I&C) technologies are needed to support the continued safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear control rooms. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe life extension of current reactors. One of the main areas of focus is control room modernization. Current analog control rooms are growing obsolete, and it is difficult for utilities to maintain them. Using its reconfigurable control room simulator adapted from a training simulator, INL serves as a neutral test bed for implementing new control room system technologies and assisting in control room modernization efforts across.

  20. Overview of the LHD central control room data monitoring environment

    International Nuclear Information System (INIS)

    Emoto, M.; Yoshinuma, M.; Yoshida, M.; Nakanishi, H.; Iwata, C.; Ohsuna, M.; Nonomura, M.; Imazu, S.; Yokota, M.; Aoyagi, M.; Ogawa, H.; Ida, K.; Watanabe, K.; Kaneko, O.

    2016-01-01

    Highlights: • In this paper, the data monitoring environments in the LHD central control room, for example, summary data graph and video monitoring tools are introduced. Also, the environments for the remote participants are introduced. - Abstract: During the Large Helical Device (LHD) experiments, many scientists and technical staff are working in the central control room to operate the experiment. They must manage the diagnostics and controlling devices referring to the results of the last plasma shot. Also, the experiment coordinator must decide the conditions for the subsequent experiments using the results. Furthermore, many scientists are participating in the experiment from remote sites. Therefore, it is important to share the information in the control room quickly, such as the results of the last plasma discharge, with the remote user as well as with the staff in the room. In this paper, the data monitoring environment in the LHD central control room is introduced.

  1. Overview of the LHD central control room data monitoring environment

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M., E-mail: emoto.masahiko@nifs.ac.jp; Yoshinuma, M.; Yoshida, M.; Nakanishi, H.; Iwata, C.; Ohsuna, M.; Nonomura, M.; Imazu, S.; Yokota, M.; Aoyagi, M.; Ogawa, H.; Ida, K.; Watanabe, K.; Kaneko, O.

    2016-11-15

    Highlights: • In this paper, the data monitoring environments in the LHD central control room, for example, summary data graph and video monitoring tools are introduced. Also, the environments for the remote participants are introduced. - Abstract: During the Large Helical Device (LHD) experiments, many scientists and technical staff are working in the central control room to operate the experiment. They must manage the diagnostics and controlling devices referring to the results of the last plasma shot. Also, the experiment coordinator must decide the conditions for the subsequent experiments using the results. Furthermore, many scientists are participating in the experiment from remote sites. Therefore, it is important to share the information in the control room quickly, such as the results of the last plasma discharge, with the remote user as well as with the staff in the room. In this paper, the data monitoring environment in the LHD central control room is introduced.

  2. Optimizing the human engineering design of control panels in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Behrendt, V.; Krehbiehl, T.; Hartfiel, H.D.; Mannhaupt, H.R.

    1986-12-01

    The study contains two parts. In the first part an analytical procedure is developed to logically and reproducibly subdivide the control room personnel tasks resulting in a list of the elements (operations) and the structure (operations scheme) of a task. The second part lists together all knowledge of and influences on human engineering which are known at this time and which should be taken into account in designing control rooms. The content of this catalogue can best be used and presented by using a personal computer. Two fundamental different ways are possible to use the catalogue. Designing new control rooms or new parts of control rooms the results of the task analysis which should be done first, should guide the search in the catalogue to find the right human engineering factors. For assessing existing control room panels the performance shaping factors which are establishing the table of content, permit a quick access to the catalogue. Both the specific procedure of the task analysis and the different ways of access to the catalogue of human engineering knowledge for designing nuclear power plant control rooms have been proven by experienced system engineers and safety experts. The results are presented. They have been considered in this version of the study. (orig.) [de

  3. An electronic logbook for the HEP control room

    International Nuclear Information System (INIS)

    Roediger, G.; Pomatto, P.; Kyriakopulos, J.; Panacek, S.; Canal, P.; Kubarovsky, A.

    2001-01-01

    The Control Room Logbook (CRL) is designed to improve and replace the paper logbooks traditionally used in the HEP accelerator control room. Its features benefit the on-line coordinator, the shift operators, and the remote observers. The author explains some of the most attractive features for each of these roles. The features include the ability to configure the logbook for the specific needs of a collaboration, a large variety of entry types an operator can add by simply clicking and dragging, and a flexible web interface for the remote observer to keep up with control room activities. The entries and saved as UTF-8 based XML files, which allowed us to give the data structure and meaning such that it can easily be parsed in the present and far into the future. The XML tag data is also indexed in a relational database, making queries on dates, keywords, entry type and other criteria feasible and fast. The CRL is used in the D0 control room. This presentation also discusses our experience with deployment, platform independence and other interesting issues that arose with the installation and use of logbook

  4. An Electronic Logbook for the HEP Control Room

    International Nuclear Information System (INIS)

    Gary Roediger

    2001-01-01

    The Control Room Logbook (CRL) is designed to improve and replace the paper logbooks traditionally used in the HEP accelerator control room. Its features benefit the on-line coordinator, the shift operators, and the remote observers. This paper explains some of the most attractive features for each of these roles. The features include the ability to configure the logbook for the specific needs of a collaboration, a large variety of entry types an operator can add by simply clicking and dragging, and a flexible web interface for the remote observer to keep up with control room activities. The entries are saved as UTF-8 based XML files, which allowed us to give the data structure and meaning such that it can easily be parsed in the present and far into the future. The XML tag data is also indexed in a relational database, making queries on dates, keywords, entry type and other criteria feasible and fast. The CRL is used in the D0 control room. This presentation also discusses our experience with deployment, platform independence and other interesting issues that arose with the installation and use of the logbook

  5. Information Foraging in Nuclear Power Plant Control Rooms

    International Nuclear Information System (INIS)

    Boring, R.L.

    2011-01-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  6. Information Foraging in Nuclear Power Plant Control Rooms

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  7. A new remote control room for tokamak operations

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P., E-mail: schissel@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, CA (United States); Abla, G.; Flanagan, S.; Kim, E.N. [General Atomics, P.O. Box 85608, San Diego, CA (United States)

    2012-12-15

    This paper presents a summary of a new remote tokamak control room constructed near the offices of DIII-D's scientific staff. This integrated system combines hardware, software, data, and control of the room (R-232) into a unified package that has been designed and constructed in a generic fashion so that it can be used with any tokamak operating worldwide. The room is approximately 300 ft{sup 2} and can accommodate up to 12 seated participants. Mounted on the wall facing each scientist are five 52 Double-Prime LCD televisions and mounted to the wall on their right are six 24 Double-Prime LCD monitors. Each seat has associated with it a 24 Double-Prime monitor, network connection, and power and the scientist is either provided with a computer or they can use their own. The room has been used for operation of DIII-D, EAST, and KSTAR. Due to the long distances, data from EAST and KSTAR was brought back to local DIII-D computers in one large parallel network transfer and subsequently served to scientists in the remote control room to other US collaborators. This parallel data transfer allowed the data to be available to US participants between pulses making remote experimental participation highly effective.

  8. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  9. Improving 900 MW(e) PWR control rooms

    International Nuclear Information System (INIS)

    Bouat, M.; Marcille, R.

    1983-01-01

    Analyses of the behaviour of operators during operating tests on PWR units and the lessons learned from the TMI-2 accident have demonstrated the need to improve the interface between operators and the facilities they control. To that end, and to complement its establishment of safety panels, Electricite de France (EDF) embarked upon a study on the ''Modification of Control Desks and Boards'' in control rooms. This study, involving twenty-eight 900 MW(e) units, almost all of which are currently in service, began with an ergonomic analysis of control rooms by an external consultant, the ADERSA GERBIOS Association. This analysis was based on interviews with simulator instructors and operators, a study of the operation of the unit, and a general review of previous studies. The analysis began in October 1980 and resulted, in April 1981, in a critical report and a proposal to create a full-scale mock-up of a 900 MW(e) control room. Improvements to this were subsequently proposed, enabling options to be made between, among other things, active overall control panels and function-by-function control panels. Finally, a number of general principles, which largely encompass the operators' suggestions, were defined. The alterations to be made will make it necessary to revamp the control panels completely. The work and tests involved should match the duration of refuelling shut-downs. Audio-visual training programmes are planned (portable model). (author)

  10. Have it your way. A modular approach to custom compact control rooms

    International Nuclear Information System (INIS)

    Harmon, Daryl; Scarola, Ken

    2003-01-01

    In spite of the recent lack of growth in the nuclear power industry, a transition is taking place to compact main control rooms as the design of choice for power generating facilities. This is evident in the design and construction of new facilities, including Advanced Light Water Reactors such as the Korean Shin Kori 3 and 4 units, as well as Generation IV reactors. Also, compact control rooms are increasingly preferred for the modernization of current generation plants. This shift reflects that compact control rooms combine cost savings through equipment reduction and standardization with operability improvements through increased functionality and flexibility and improved presentation. Though compact control rooms feature significantly fewer Human Machine Interface (HMI) devices than their conventional counterparts, customers still require a wide variety of different configurations to accommodate their individual operations philosophies, cultural norms, licensing regulations and physical constraints. To meet this need, Westinghouse Electric Company has developed an innovative, modular approach to designing compact control rooms for nuclear power plants. This approach features a small set of standard HMI devices serving as building blocks for all compact control room functions. The building blocks include qualified and non-safety video devices for implementing displays, alarms, multi-channel soft controls, computerized procedures, etc. These building blocks can be used for (1) large screen overview displays, (2) console-based control and monitoring and (3) HMI devices for conventional, benchboard-style control panels. Their modular design allows these building blocks to be arranged in various physical configurations to meet a wide variety of customer's control room preferences and constraints. For example, a compact control room could use the qualified building blocks (1) to configure a dedicated safety panel independent of the normal operational consoles, or (2

  11. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  12. Room Thermostat with Servo Controlled by PIC Microcontroller

    Directory of Open Access Journals (Sweden)

    Jan Skapa

    2013-01-01

    Full Text Available This paper describes the design of room thermostat with Microchip PIC microcontroller. Thermostat is designated for two-pipe heating system. The microprocessor controls thermostatic valve via electric actuator with mechanical gear unit. The room thermostat uses for its activity measurements of air temperature in the room and calorimetric measurement of heat, which is served to the radiator. These features predestinate it mainly for underfloor heating regulation. The thermostat is designed to work in a network. Communication with heating system's central control unit is proceeded via RS485 bus with proprietary communication protocol. If the communication failure occurs the thermostat is able to work separately. The system uses its own real time clock circuit and memory with heating programs. These programs are able to cover the whole heating season. The method of position discontinuous PSD control is used in this equipment.

  13. Experience of digital control systems in Scandinavian BWRs

    International Nuclear Information System (INIS)

    Rydahl, I.

    1989-01-01

    Since 1984 digital control systems have been in operation in various Scandinavian BWRs. Examples of such digital control systems are: dual microprocessor based system for complete control of radwaste plant, three channel recirculation control system, and three channel feedwater control system. This paper describes Swedish development from one channel through three channel analog control systems to digital systems. The author describes experience of digital control systems during design, testing, commissioning and operation. The main benefits of digital compared with analog technology are discussed. Especially the outstanding facility of using a built-in process simulator for commissioning and tuning. The use of digital technology in nuclear safety system and future plans are dealt with

  14. Low frequency sound field control for loudspeakers in rectangular rooms using CABS (Controlled Acoustical Bass System)

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2010-01-01

    Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level.  Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies....... As sound propagates in time, it seems natural that the problems can best be analyzed and solved in the time domain. A time based room correction system named CABS (Controlled Acoustical Bass System) has been developed for sound reproduction in rectangular listening rooms. It can control the sound...... sound field in the whole room, and short impulse response.  In a standard listening room (180 m3) only 4 loudspeakers are needed, 2 more than a traditional stereo setup. CABS is controlled by a developed DSP system. The time based approached might help with the understanding of sound field control...

  15. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  16. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-01-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (1) the estimation of human error associated with advanced control room equipment and configurations, (2) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (3) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms

  17. HABIT, Toxic and Radioactive Release Hazards in Reactor Control Room

    International Nuclear Information System (INIS)

    Stage, S.A.

    2005-01-01

    1 - Description of program or function: HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. 2 - Methods: Given information about the design of a nuclear power plant, a scenario for the release of toxic or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel

  18. Game-based training environment for nuclear plant control room

    International Nuclear Information System (INIS)

    Hung Tamin; Sun Tienlung; Yang Chihwei; Yang Lichen; Cheng Tsungchieh; Wang Jyhgang

    2011-01-01

    Nuclear power plant's safety is very important problem. In this very conscientious environment if operator has a little mistake, they may threaten with many people influence their safety. Therefore, operating training of control room is very important. However, the operator training is in limited space and time. Each operator must go to simulative control room do some training. If we can let each trainee having more time to do training and does not go to simulative control room. It may have some advantages for trainee. Moreover, in the traditional training ways, each operator may through the video, teaching manual or through the experienced instructor to learn the knowledge. This training way may let operator feel bored and stressful. So, in this paper aims, we hope utilizing virtual reality technology developing a game-based virtual training environment of control room. Finally, we will use presence questionnaire evaluating realism and feasibility of our virtual training environment. Expecting this initial concept of game-based virtual training environment can attract trainees having more learning motivation to do training in off-hour. (author)

  19. Digital control system of advanced reactor

    International Nuclear Information System (INIS)

    Peng Huaqing; Zhang Rui; Liu Lixin

    2001-01-01

    This article produced the Digital Control System For Advanced Reactor made by NPIC. This system uses Siemens SIMATIC PCS 7 process control system and includes five control system: reactor power control system, pressurizer level control system, pressurizer pressure control system, steam generator water level control system and dump control system. This system uses three automatic station to realize the function of five control system. Because the safety requisition of reactor is very strict, the system is redundant. The system configuration uses CFC and SCL. the human-machine interface is configured by Wincc. Finally the system passed the test of simulation by using RETRAN 02 to simulate the control object. The research solved the key technology of digital control system of reactor and will be very helpful for the nationalization of digital reactor control system

  20. Controlling allergens in animal rooms by using curtains

    DEFF Research Database (Denmark)

    Krohn, Thomas Cæcius; Itter, Gabi; Fosse, Richard

    2006-01-01

    The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room. The experimen......The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room....... The experimental situation we studied provides some information regarding allergen disposition in animal rooms but is clearly artificial and does not reflect a typical, ‘real-world’ environment in terms of preventing exposure of workers to allergens. Plastic curtains with holes were placed in front of racks......, and a corridor between the racks and a curtain was present. The room was ventilated with air, which was blown into the room through the middle of the corridor, flowing downstream and passing through the holes in the curtain. This set-up resulted in air flow from the corridor through the curtain. Air samples were...

  1. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1989-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor. 1 fig., 1 tab

  2. Replacement of the Advanced Test Reactor control room

    International Nuclear Information System (INIS)

    Durney, J.L.; Klingler, W.B.

    1990-01-01

    The control room for the Advanced Test Reactor has been replaced to provide modern equipment utilizing current standards and meeting the current human factors requirements. The control room was designed in the early 1960 era and had not been significantly upgraded since the initial installation. The replacement did not change any of the safety circuits or equipment but did result in replacement of some of the recorders that display information from the safety systems. The replacement was completed in concert with the replacement of the control room simulator which provided important feedback on the design. The design successfully incorporates computer-based systems into the display of the plant variables. This improved design provides the operator with more information in a more usable form than was provided by the original design. The replacement was successfully completed within the scheduled time thereby minimizing the down time for the reactor

  3. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    Michael Spata; Thomas Oren

    2005-01-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facility's 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week maintenance period with no interruption to beam operations. We present the results of this effort

  4. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    Michael Spata; Thomas Oren

    2005-01-01

    The Machine Control Center at Jefferson Lab's Continuous Electron Beam Accelerator Facility was initially constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on workflow processes and ergonomic attributes. This effort also sets the foundation for the redevelopment of the accelerator's control system to deliver high reliability performance with improvements in beam specifications management and information flow. The complete renovation was performed over a three-week period with no interruption to beam operations. We present the results of this effort

  5. The development of KNGR control room man-machine interface design

    International Nuclear Information System (INIS)

    Sung-Jae Cho; Yeong-Cheol Shin

    2000-01-01

    KNGR MMI design has been developed for the last 7 years as a part of Korea Next Generation Reactor (KNGR) design development. The KNGR control room has the common features of advanced control room such as large display panel, redundant compact workstations, soft control, and computerized procedure system. A conventional type safety console is provided as a backup when operation at the workstations is impossible. The strong points of an advanced control room are based on the powerful information processing and flexible graphic presentation capability of computer technology. On the other hand, workstation based design has a weak point that the amount of information to be presented in one VDU is limited. This can cause navigational overload and inconsistent interfaces and provide chances for performance errors/failures, if not designed carefully. From this background, the regulators require licensees to follow strict top-down human factor engineering design process. Analysis of operating experiences and iterative evaluations are used to address the potential problems of the KNGR advanced control room MMI design. But, further study is necessary in design area like CPS design, where experiences or design guidance is insufficient. Further study topics for KNGR advanced control room MMI design development are discussed briefly in this paper. (author)

  6. Analysis of the operator's tasks: An aid to control room design

    International Nuclear Information System (INIS)

    Blanc, P.; Guesnier, G.P.; Heilbronn, B.; Monnier, B.

    1983-01-01

    The control room designer usually has no knowledge of the tasks performed by the operator in the control room since an overall picture of the situation only becomes available once the whole facility has been constructed. In order to study and design control rooms for its future PWR units, Electricite de France (EDF) felt it was essential to analyse these tasks: the work was facilitated by the existence of 900 MW PWR units which were already in operation and which are controlled in much the same manner as future units of the same type. Accordingly, by analysing the control procedures of these 900 MW PWR units, a data base describing the control and monitoring tasks performed by operators in normal, incident and accident situations has been built up. The data-base files, which were established from a study of 130 control procedures, record all the commands given and data available in the control room (about 7000), describe the tasks connected with these commands and data, and identify the times at which they are made use of by the operator. Using this data base, the principle of operator-system communication and of data processing in the control room of the future has been established: in such a control room, most controls and data will be accessible through computer communication systems to ensure that control and monitoring systems are closely integrated under normal operating conditions as well as in incident and post-accident situations and to enable the plant to be controlled by one or two operators in a seated position. (author)

  7. Control room design of a nuclear reactor used to produce radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac Jose Antonio Luquetti dos; Carvalho, Paulo Vitor R.; Lacerda, Fabio de; Szabo, Andre P.; Vianna Filho, Alfredo Marques, E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio Janeiro, RJ (Brazil). Divisao de Instrumentacao e Confiabilidade Humana; Falcao, Mariana A. [Escola de Belas Artes da Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2011-07-01

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Inadequate integration between control room and operators reduces safety, increases the operation complexity, complicates operator training and increases the likelihood of human errors occurrence. The purpose of this paper is to present a specific approach for the design of the main control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the conceptual and basic phases of the design. Using the information gathered from standards and from the multidisciplinary an initial sketch 3D of the main control room is being developed. (author)

  8. Control room design of a nuclear reactor used to produce radioisotope

    International Nuclear Information System (INIS)

    Santos, Isaac Jose Antonio Luquetti dos; Carvalho, Paulo Vitor R.; Lacerda, Fabio de; Szabo, Andre P.; Vianna Filho, Alfredo Marques

    2011-01-01

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Inadequate integration between control room and operators reduces safety, increases the operation complexity, complicates operator training and increases the likelihood of human errors occurrence. The purpose of this paper is to present a specific approach for the design of the main control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the conceptual and basic phases of the design. Using the information gathered from standards and from the multidisciplinary an initial sketch 3D of the main control room is being developed. (author)

  9. Recent Development in the ATLAS Control Room

    CERN Document Server

    Armen Vartapetian

    Only recently the name ATLAS Control Room (ACR) was more associated with the building at Point 1 (SCX1) than with the real thing. But just within the last several months, with the installation of the ACR hardware, that perception has changed significantly. The recently furnished ATLAS control room. But first of all, if you are not familiar with the ATLAS experimental site and are interested in visiting the ATLAS control room to see the place that in the near future will become the brain of the detector operations, it is quite easy to do so. You don't even need safety helmet or shoes! The ACR is located on the ground floor of a not so typical, glass-covered building in Point 1. The building number on the CERN map is 3162, or SCX1 as we call it. It is also easy to recognize that building by its shiny appearance within the cluster of Point 1 buildings if you are driving from Geneva. Final design and prototyping of the ACR hardware started at the beginning of 2006. Evaluation of the chosen hardware confi...

  10. Advanced tools for enhancing control room collaborations

    International Nuclear Information System (INIS)

    Abla, G.; Flanagan, S.M.; Peng, Q.; Burruss, J.R.; Schissel, D.P.

    2006-01-01

    The US National Fusion Collaboratory (NFC) project has been exploring a variety of computer and network technologies to develop a persistent, efficient, reliable and convenient collaborative environment for magnetic fusion research. One goal is to enhance remote and collocated team collaboration by integrating collaboration software tools into control room operations as well as with data analysis tools. To achieve this goal, the NFC recently introduced two new collaboration technologies into the DIII-D tokamak control room. The first technology is a high-resolution, large format Shared Display Wall (SDW). By creating a shared public display space and providing real time visual information about the multiple aspects of complex experiment activity, the large SDW plays an important role in increasing the rate of information dissemination and promoting interaction among team members. The second technology being implemented is the 'tokamak control room aware' Instant Messaging (IM) service. In addition to providing text-chat capabilities for research scientists, it enables them to automatically receive information about experiment operations and data analysis processes to remotely monitor the status of ongoing tokamak experiment. As a result, the IM service has become a unified portal interface for team collaboration and remote participation

  11. Advanced tools for enhancing control room collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States)]. E-mail: abla@fusion.gat.com; Flanagan, S.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States); Peng, Q. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States); Burruss, J.R. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States); Schissel, D.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186 5608 (United States)

    2006-07-15

    The US National Fusion Collaboratory (NFC) project has been exploring a variety of computer and network technologies to develop a persistent, efficient, reliable and convenient collaborative environment for magnetic fusion research. One goal is to enhance remote and collocated team collaboration by integrating collaboration software tools into control room operations as well as with data analysis tools. To achieve this goal, the NFC recently introduced two new collaboration technologies into the DIII-D tokamak control room. The first technology is a high-resolution, large format Shared Display Wall (SDW). By creating a shared public display space and providing real time visual information about the multiple aspects of complex experiment activity, the large SDW plays an important role in increasing the rate of information dissemination and promoting interaction among team members. The second technology being implemented is the 'tokamak control room aware' Instant Messaging (IM) service. In addition to providing text-chat capabilities for research scientists, it enables them to automatically receive information about experiment operations and data analysis processes to remotely monitor the status of ongoing tokamak experiment. As a result, the IM service has become a unified portal interface for team collaboration and remote participation.

  12. CERN opens up its control rooms to youngsters

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    CERN is inviting 13 to 18 year-olds to come and spend a couple of hours in the control rooms of the LHC and its experiments. Registration is now open.   Is your neighbour's kid eager to come and see what's going on in the CERN control rooms for himself? Is your niece from Germany fascinated by the famous accelerator near Geneva that she's heard about and asking to know more? Then Researchers Night is for them! From 6.00 p.m. on Friday 23 September until 1.00 a.m. the following morning, the LHC and its experiments will open their doors to 13 to 18 year-olds. They are invited to come and spend a couple of hours in the control rooms watching the physicists and taking part in various activities. ALICE, ATLAS, CMS, LHCb, TOTEM, and the CERN Control Centre (CCC) will all be welcoming visitors. For this second year of CERN's involvement in European Researchers Night, the CERN exhibitions will be open late and special activities will be organised in Microcosm....

  13. Responsibilities for control room design in the USA

    International Nuclear Information System (INIS)

    Leary, J.E.; Barnhart, C.G.

    1980-01-01

    In the design and construction of nuclear power plants in the United States, the architect-engineering firm usually serves as the principal co-ordinator for the various parties involved. Recent events such as the Three Mile Island accident have focused attention on operability and human factors engineering in the design of the control room. This article describes current trends in control room design and the division of responsibility between the plant owner, the reactor vendor, and the architect-engineer. (author)

  14. PS Main Control Room (partial view)

    CERN Multimedia

    1974-01-01

    Jean-Pierre Potier (turning buttons) and Bertran Frammery (telephoning) on shift. The 26 GeV Synchrotron and later also its related machines (Linacs 1,2,3; PS-Booster; LEP-Injector Linacs and Electron-Positron Accumulator; Antiproton Accumulator, Antiproton Collector, Low Energy Antiproton Ring and more recently Antiproton Decelerator) were all controlled from the PS control room situated on the Meyrin site. The SPS and LEP were controlled from a separat control centre on the Prevessin site. In 2005 all controls were transferred to the Prevessin centre.

  15. Function analysis and function assignment of NPP advanced main control room

    International Nuclear Information System (INIS)

    Zheng Mingguang; Xu Jijun

    2001-01-01

    The author addresses the requirements of function analysis and function assignment, which should be carried out in the design of main control room in nuclear power plant according to the design research of advanced main control room, then states its contents, functions, importance and necessity as well as how to implement these requirements and how to do design verification and validation in the design of advanced main control room of nuclear power plant

  16. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near......Emission of volatile organic compounds (VOCs) from materials is traditionally determined from tests carried out in small-scale test chambers. However, a difference in scale may lead to a difference in the measured emission rate in a small-scale test chamber and the actual emission rate in a full...

  17. Digital signal processing in power electronics control circuits

    CERN Document Server

    Sozanski, Krzysztof

    2013-01-01

    Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using

  18. Multinodal control room envelope model used for habitability analysis

    International Nuclear Information System (INIS)

    Blumberg, W.M.; Gore, D.E.

    1995-01-01

    This work analyzes the habitability of the control room envelope (CRE) during an off-normal ventilation system condition. The most limiting design basis accident utilized for this analysis is the postulated loss-of-coolant accident. The off-normal condition assumes two rooms within the CRE are at pressures that are lower than adjoining rooms outside the CRE. This pressure differential allows unfiltered in-leakage to enter the CRE through the doors and penetrations in these rooms. This paper quantifies the maximum unfiltered in-leakage

  19. A Control Room Design Support system using virtual reality

    International Nuclear Information System (INIS)

    Sakuma, Akira; Fukumoto, Akira; Hatanaka, Takahiro; Saijou, Nobuyuki; Masugi, Tsuyoshi

    1999-01-01

    To enhance the efficiency of design and evaluation of the control and monitoring system in the main control room of nuclear power plants, we have been developing a COntrol Room Design Support system (CORDS) using virtual reality technology. Using CORDS, vendor designers and customers can visually check and review human interface design of the proposed control and monitoring systems. The geometry of panels and consoles of the control and monitoring system represented as 3-dimensional static CG (computer graphics) models. Dynamic components, such as control switches, CRT displays and so on, are modeled as dynamic objects in the geometric CG model environment. CORDS is linked with real-time plant simulator. The dynamic objects respond to the corresponding process variables in the simulator, which enables visual evaluation of the response of the control and monitoring system for the various normal and abnormal plant status. The behavior of plant operators can be simulated in 3-dimensional CG control room environment. The operators can be displayed as CG figures and their motions are modeled and controlled based on plant operation manuals. A prototype of CORDS has constructed on a graphics workstation and two engineering workstations. (author)

  20. Developing control room operator selection procedures

    International Nuclear Information System (INIS)

    Bosshardt, M.J.; Bownas, D.A.

    1979-01-01

    PDRI is performing a two-year study to identify the tasks performed and attributes required in electric power generating plant operating jobs, and focusing on the control room operator position. Approximately 65 investor-owned utilities are participating in the study

  1. Robust digital controllers for uncertain chaotic systems: A digital redesign approach

    Energy Technology Data Exchange (ETDEWEB)

    Ababneh, Mohammad [Department of Controls, FMC Kongsberg Subsea, FMC Energy Systems, Houston, TX 77067 (United States); Barajas-Ramirez, Juan-Gonzalo [CICESE, Depto. De Electronica y Telecomunicaciones, Ensenada, BC, 22860 (Mexico); Chen Guanrong [Centre for Chaos Control and Synchronization, Department of Electronic Engineering, City University of Hong Kong (China); Shieh, Leang S. [Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005 (United States)

    2007-03-15

    In this paper, a new and systematic method for designing robust digital controllers for uncertain nonlinear systems with structured uncertainties is presented. In the proposed method, a controller is designed in terms of the optimal linear model representation of the nominal system around each operating point of the trajectory, while the uncertainties are decomposed such that the uncertain nonlinear system can be rewritten as a set of local linear models with disturbed inputs. Applying conventional robust control techniques, continuous-time robust controllers are first designed to eliminate the effects of the uncertainties on the underlying system. Then, a robust digital controller is obtained as the result of a digital redesign of the designed continuous-time robust controller using the state-matching technique. The effectiveness of the proposed controller design method is illustrated through some numerical examples on complex nonlinear systems--chaotic systems.

  2. Near-term improvements for nuclear power plant control room annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700

  3. Intrahospital teleradiology from the emergency room

    Science.gov (United States)

    Fuhrman, Carl R.; Slasky, B. S.; Gur, David; Lattner, Stefanie; Herron, John M.; Plunkett, Michael B.; Towers, Jeffrey D.; Thaete, F. Leland

    1993-09-01

    Off-hour operations of the modern emergency room presents a challenge to conventional image management systems. To assess the utility of intrahospital teleradiology systems from the emergency room (ER), we installed a high-resolution film digitizer which was interfaced to a central archive and to a workstation at the main reading room. The system was designed to allow for digitization of images as soon as the films were processed. Digitized images were autorouted to both destinations, and digitized images could be laser printed (if desired). Almost real time interpretations of nonselected cases were performed at both locations (conventional film in the ER and a workstation in the main reading room), and an analysis of disagreements was performed. Our results demonstrate that in spite of a `significant' difference in reporting, `clinically significant differences' were found in less than 5% of cases. Folder management issues, preprocessing, image orientation, and setting reasonable lookup tables for display were identified as the main limitations to the systems' routine use in a busy environment. The main limitation of the conventional film was the identification of subtle abnormalities in the bright regions of the film. Once identified on either system (conventional film or soft display), all abnormalities were visible and detectable on both display modalities.

  4. REVIEW OF NRC APPROVED DIGITAL CONTROL SYSTEMS ANALYSIS

    International Nuclear Information System (INIS)

    Markman, D.W.

    1999-01-01

    Preliminary design concepts for the proposed Subsurface Repository at Yucca Mountain indicate extensive reliance on modern, computer-based, digital control technologies. The purpose of this analysis is to investigate the degree to which the U. S. Nuclear Regulatory Commission (NRC) has accepted and approved the use of digital control technology for safety-related applications within the nuclear power industry. This analysis reviews cases of existing digitally-based control systems that have been approved by the NRC. These cases can serve as precedence for using similar types of digitally-based control technologies within the Subsurface Repository. While it is anticipated that the Yucca Mountain Project (YMP) will not contain control systems as complex as those required for a nuclear power plant, the review of these existing NRC approved applications will provide the YMP with valuable insight into the NRCs review process and design expectations for safety-related digital control systems. According to the YMP Compliance Program Guidance, portions of various NUREGS, Regulatory Guidelines, and nuclear IEEE standards the nuclear power plant safety related concept would be applied to some of the designs on a case-by-case basis. This analysis will consider key design methods, capabilities, successes, and important limitations or problems of selected control systems that have been approved for use in the Nuclear Power industry. An additional purpose of this analysis is to provide background information in support of further development of design criteria for the YMP. The scope and primary objectives of this analysis are to: (1) Identify and research the extent and precedence of digital control and remotely operated systems approved by the NRC for the nuclear power industry. Help provide a basis for using and relying on digital technologies for nuclear related safety critical applications. (2) Identify the basic control architecture and methods of key digital control

  5. Nuclear power plant control room ventilation system design for meeting general criterion 19

    International Nuclear Information System (INIS)

    Murphy, K.G.; Campe, K.M.

    1975-01-01

    The requirement for protection of control room personnel against radiation is specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. The evaluation of a control room design, especially its emergency ventilation system, with respect to radiation protection primarily consists of determining the radiation doses to control room personnel under accident conditions. The accident dose assessment involves modeling and evaluation of radiological source terms, atmospheric transport of airborne activity, and protection features of the control room ventilation system. Some of the assumptions and conservatisms used in the dose analyses are based on the technical review experience of existing or proposed control room designs. A review of over 50 control room designs has revealed a great variety of design concepts, not all of which seem to have been based on radiation protection criteria. A summary of the basic control room protection requirements, design features, dose acceptance criteria, and an outline of the methods used by the Regulatory staff for accident dose evaluation are presented. (U.S.)

  6. Guidelines on ergonomic aspects of control rooms

    Science.gov (United States)

    Mitchell, C. M.; Bocast, A. K.; Stewart, L. J.

    1983-01-01

    The anthropometry, workstation design, and environmental design of control rooms are outlined. The automated interface and VDTs and displays and various modes of communication between the system and the human operator using VDTs are discussed. The man in the loop is examined, the single controller single task framework and multiple controller multiple tasks issues are considered.

  7. Man-machine considerations in nuclear power plant control room design

    International Nuclear Information System (INIS)

    Tennant, D.V.

    1987-01-01

    Although human factors is a subject that has been around for a number of years, this area of design has only recently become known to the power industry. As power plants have grown in size and complexity, the instrumentation required to control and monitor plant processes has increased tremendously. This has been especially true in nuclear power facilities. Although operators are better trained and qualified, very little consideration has been devoted to man-machine interface and the limitations of human operators. This paper explores the historic aspects and design philosophy associated with nuclear plant control rooms. Current problems and solutions are explored along with the components of a control room review. Finally, a survey of future advances in control room design are offered. This paper is concerned with instrumentation, controls, and displays

  8. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    O'Hara, J.; Brown, W.; Granda, T.; Baker, C.

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  9. Development of control room design in French PWR nuclear power plants

    International Nuclear Information System (INIS)

    Guesnier, G.

    1996-01-01

    The layouts of the control rooms of the French nuclear power stations have undergone great development in the period 1970-1990. The control rooms, with an architecture similar to that of the oil fired power stations, were similar to those of the 1300 MW blocks in which the human factor was emphasised. For the selection of a computerised control room for the N4 series, comprehensive functional and ergonomical validation on a full simulator was required. (author) 3 figs., 7 refs

  10. On the simulation of transients and accidents in PWRs with digital instrumentation and control using an LQR digital controller

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.; Oliva, J.J. Rivero

    2015-01-01

    New nuclear power plant designs are including integrated I and C digital systems for protection, control, alarming and monitoring. Existing operating nuclear power plants, as is the case of Angra 1 nuclear power plant, have to consider the replacement of their I and C analog systems by digital systems for retrofitting their facilities. However, before replacing the analog control loops by digital ones it is necessary to design and evaluate their performance, which requires modeling of the plant and its control system with extensive simulations under several normal and abnormal operation conditions. This paper discusses the use of a linear quadratic regulator (LQR) digital controller for evaluating the plant stability behavior before the actuation of the reactor protection system. The objective is to evaluate the effect of digital controllers on plant behavior for several transients and accident conditions. For this purpose, a numerical model was developed and implemented as a MatlabTM tool. This paper discusses an adequate framework in order to simulate a set of transients and accidents that constitute the design basis in the final safety analysis report of PWR power plants to evaluate the performance of digital controllers such as LQR regulators.(author)

  11. HuRECA: Human Reliability Evaluator for Computer-based Control Room Actions

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Lee, Seung Jun; Jang, Seung Cheol

    2011-01-01

    As computer-based design features such as computer-based procedures (CBP), soft controls (SCs), and integrated information systems are being adopted in main control rooms (MCR) of nuclear power plants, a human reliability analysis (HRA) method capable of dealing with the effects of these design features on human reliability is needed. From the observations of human factors engineering verification and validation experiments, we have drawn some major important characteristics on operator behaviors and design-related influencing factors (DIFs) from the perspective of human reliability. Firstly, there are new DIFs that should be considered in developing an HRA method for computer-based control rooms including especially CBP and SCs. In the case of the computer-based procedure rather than the paper-based procedure, the structural and managerial elements should be considered as important PSFs in addition to the procedural contents. In the case of the soft controllers, the so-called interface management tasks (or secondary tasks) should be reflected in the assessment of human error probability. Secondly, computer-based control rooms can provide more effective error recovery features than conventional control rooms. Major error recovery features for computer-based control rooms include the automatic logic checking function of the computer-based procedure and the information sharing feature of the general computer-based designs

  12. Design of a Control Room for Jordan Research and Training Reactor (JRTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun; Suh, Sang Moon; Lee, Hyun Chul; Park, Je Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Since the main role of JRTR(Jordan Research and Training Reactor) operating personnel is safe and reliable operation of the reactor, MCR(Main Control Room) and SCR(Supplementary Control Room) must provide them with sufficient information and controls needed to optimize their performance. Before the TMI accident, control room were generally designed just with intuitive common sense, without using any proper HFE(human factors engineering) practices. Many results derived from the analysis of TMI accident showed that a more comprehensive and systematic approaches to develop MCR design requirements were needed. Moreover changes of operators' role as a decision maker from a physical controller in rapid improvement of control system which resulted in higher automation clearly needed more featured regulatory requirements and guidelines. So many regulatory and industrial guidance for control room design have been developed by relevant institution and regulatory bodies. In this paper, a conceptual design of the JRTR control room in the effort of satisfying current regulatory requirements and guidelines are presented. And some information display design is also presented

  13. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only...... at resonance frequencies, but more or less at all frequencies. A time based room correction system named CABS (Controlled Acoustic Bass System) has been developed and is able to create a homogeneous sound field in the whole room at low frequencies by proper placement of multiple loudspeakers. A normal setup...... from the rear wall, and thereby leaving only the plane wave in the room. With a room size of (7.8 x 4.1 x 2.8) m. it is possible to prevent modal frequencies up to 100 Hz. An investigation has shown that the sound transmitted to a neighbour room also will be reduced if CABS is used. The principle...

  14. Control room habitability assessment and in-leakage test for Korean NPP - 15510

    International Nuclear Information System (INIS)

    Song, D.S.; Lee, J.B.; Ha, S.J.; Seong, J.J.

    2015-01-01

    The assessment of control room habitability for Wolsung unit 1 was performed based on GL 2003-01 and Reg. Guide 1.197. The control room habitability program including Control Room Envelope (CRE) in-leakage test procedures, self assessment guidance, CRE boundary control program, CRE maintenance/sealing program was developed for Wolsung unit 1. The integrated CRE test was performed utilizing ASTM E741. There are two operating modes of pressurization and isolation for CRE ventilation test, and four tests were performed using each of the control room HVAC sub-trains. The control room HVAC system lineup of pressurization mode test was based upon a lineup that encompassed the design basis radiological analyses. The other control room HVAC system lineup of isolation mode test was based on an operation mode that considers toxic gas. The in-leakage testing was performed in accordance with CRE in-leakage test procedures. In the pressurization mode, measured unfiltered in-leakage rates for train A and train B were 0 CFM and 405 CFM respectively. In the isolation mode, measured unfiltered in-leakage rates for train A and train B were 1,739 CFM and 1,502 CFM, respectively. Maximum concentration of ammonia at the control room HVAC intake is calculated to be 0.027 g/m 3 (39 ppm), and satisfied the toxicity limit of 300 ppm. The test result shows that the measured unfiltered in-leakage is bounded by the regulatory criteria assumed in the design basis radiological analyses. (authors)

  15. Virtual reality applied in the ergonomic evaluation of nuclear power plant control room

    International Nuclear Information System (INIS)

    Gatto, Leandro Barbosa da Silveira

    2012-01-01

    A nuclear power plant control room is a complex system that controls a nuclear and thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear power plant safety and influence the operator activity. The operator activity presents complexity features and shows a series of mechanisms absents from the human factors guidelines, important to the evaluation and update of control rooms. The ergonomics approach considers the operation strategies, the interaction between the operators, the operator-system interaction, and interaction between operators and support groups. The main objective of this paper is propose the modeling of a nuclear control room, with the support of a game engine core. This tool will be used in the ergonomic evaluation of nuclear control room, generating information and data that will make possible the adequacy of control rooms features to the legal requirements of the regulating agency, assisting the nuclear licensing. (author)

  16. Computer codes for evaluation of control room habitability (HABIT)

    International Nuclear Information System (INIS)

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs

  17. Lessons learned in digital upgrade projects digital control system implementation at US nuclear power stations

    International Nuclear Information System (INIS)

    Kelley, S.; Bolian, T. W.

    2006-01-01

    AREVA NP has gained significant experience during the past five years in digital upgrades at operating nuclear power stations in the US. Plants are seeking modernization with digital technology to address obsolescence, spare parts availability, vendor support, increasing age-related failures and diminished reliability. New systems offer improved reliability and functionality, and decreased maintenance requirements. Significant lessons learned have been identified relating to the areas of licensing, equipment qualification, software quality assurance and other topics specific to digital controls. Digital control systems have been installed in non safety-related control applications at many utilities within the last 15 years. There have also been a few replacements of small safety-related systems with digital technology. Digital control systems are proving to be reliable, accurate, and easy to maintain. Digital technology is gaining acceptance and momentum with both utilities and regulatory agencies based upon the successes of these installations. Also, new plants are being designed with integrated digital control systems. To support plant life extension and address obsolescence of critical components, utilities are beginning to install digital technology for primary safety-system replacement. AREVA NP analyzed operating experience and lessons learned from its own digital upgrade projects as well as industry-wide experience to identify key issues that should be considered when implementing digital controls in nuclear power stations

  18. Programmable Digital Controller

    Science.gov (United States)

    Wassick, Gregory J.

    2012-01-01

    An existing three-channel analog servo loop controller has been redesigned for piezoelectric-transducer-based (PZT-based) etalon control applications to a digital servo loop controller. This change offers several improvements over the previous analog controller, including software control over proportional-integral-derivative (PID) parameters, inclusion of other data of interest such as temperature and pressure in the control laws, improved ability to compensate for PZT hysteresis and mechanical mount fluctuations, ability to provide pre-programmed scanning and stepping routines, improved user interface, expanded data acquisition, and reduced size, weight, and power.

  19. At ISR Main Control Room

    CERN Multimedia

    1983-01-01

    After 13 years the exploitation of the Intersecting Storage Rings as a beam-beam collider went to an end. In this last year the demands were very exacting, both in terms of operating time and diversified running conditions (Annual Report 1983 p. 123). Before dismantelement the photographer made a last tour, see photos 8310889X --> 8310667X. This photo shows the Main Control Room.

  20. Safety aspects on the Asea-Atom BWR 75 control room design

    International Nuclear Information System (INIS)

    Gemst, Paul van; Pedersen, Tor.

    1978-01-01

    The control room is an integrated part of the total plant layout and is located in a special building, known as the control building. The problems of designing a control room meeting all safety requirements and at the same time allowing for modifications to meet special customer specifications are described. (author)

  1. Human factors issues in digital system design and implementation

    International Nuclear Information System (INIS)

    Galletti, Greg S.

    1998-01-01

    A goal of the U.S. Nuclear Regulatory Commission (NRC) is to ensure safety in the application of digital equipment upgrades to nuclear power plant control rooms and local control stations. One of the areas of specific interest is the integration of digital technology into existing analog control, display, and information systems and the implications of such integration for operators in regard to their use of this new equipment to safely operate the plant. This paper is a discussion of human performance issues related to the introduction of such digital equipment into operating nuclear power plants. (author)

  2. Control room systems design for nuclear power plants

    International Nuclear Information System (INIS)

    1995-07-01

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs

  3. Control room systems design for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This publication provides a resource for those who are involved in researching, managing, conceptualizing, designing, manufacturing or backfitting power plant control room systems. It will also be useful to those responsible for performing reviews or evaluations of the design and facilities associated with existing power plant control room systems. The ultimate worth of the publication, however, will depend upon how well it can support its users. Readers are invited to provide comments and observations to the IAEA, Division of Nuclear Power. If appropriate, the report will subsequently be re-issued, taking such feedback into account. Refs, figs and tabs.

  4. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    Scarola, K.

    1987-01-01

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80 TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  5. The development of an advanced computerised control room

    International Nuclear Information System (INIS)

    Haugset, K.

    1988-01-01

    Control room improvements by use of computer technology is a major activity within the OECD Halden Reactor Project. The goal is to improve operational efficiency and safety by supplying the operator with the information relevant for the specific operational situation, assisting him both in identifying plant state, plan operational strategies and implement such plans. The research activity consists of development of specific operator support systems, validation of such systems under realistic conditions and integration under the scope of an advanced control room concept. The work is carried out in close cooperation with the many member organisations. (author) 2 figs., 8 refs

  6. Research on control function switch of nuclear power plant control room

    International Nuclear Information System (INIS)

    Mei Shibo; Mao Ting; Cheng Bo; Zhang Gang

    2014-01-01

    The nuclear power plant provides main control room (MCR) to the unit operators for the plant monitoring and control, and provides the remote shutdown station (RSS) as the back-up control room, which is used only when MCR is unavailable. The RSS could be used to monitor and control the plant, bring the plant into shutdown state and remove the residual heat. The command from MCR and RSS is blocked by each other and can not be executed at the same time. The operation mode switch function between MCR and RSS is carried out by MCR/RSS mode switches. The operation mode switch scheme of CPR1000, ERP and AP1000 were compared and researched, and some design bases for new nuclear power plant were submitted in this paper. These design bases could be referred during the design of control function switch for the new nuclear power plants, in order to put forward a more practical, simple, safe and convenient scheme. (authors)

  7. Stress, performance, and control room operations

    International Nuclear Information System (INIS)

    Fontaine, C.W.

    1990-01-01

    The notion of control room operator performance being detrimentally affected by stress has long been the focus of considerable conjecture. It is important to gain a better understanding of the validity of this concern for the development of effective severe-accident management approaches. This paper illustrates the undeniable negative impact of stress on a wide variety of tasks. A computer-controlled simulated work environment was designed in which both male and female operators were closely monitored during the course of the study for both stress level (using the excretion of the urine catecholamines epinephrine and norepinephrine as an index) and job performance. The experimental parameters employed by the study when coupled with the subsequent statistical analyses of the results allow one to make some rather striking comments with respect to how a given operator might respond to a situation that he or she perceives to be psychologically stressful (whether the stress be externally or internally generated). The findings of this study clearly indicated that stress does impact operator performance on tasks similar in nature to those conducted by control room operators and hence should be seriously considered in the development of severe-accident management strategies

  8. Ergonomic requirements to control room design - evaluation method

    International Nuclear Information System (INIS)

    Hinz, W.

    1985-01-01

    The method of evaluation introduced is the result of work carried out by the sub-committee 'Control Room Design' of the Engineering Standards Committee in DIN Standards, Ergonomy. This committee compiles standards for the design of control rooms (instrumentation and control) for the monitoring and operation of process engineering cycles. With the agreement of the committee - whom we wish to take the opportunity of thanking at this point for their constructive collaboration - a planned partial standard will be introduced thematically in the following, in order that knowledge gained from the discussion can be included in further work on the subject. The matter in question is a procedure for the qualitative evaluation of the duties to be performed under the control of operators in order that an assessment can be made of existing control concepts or such concepts as are to be found in the draft phase. (orig./GL) [de

  9. Application of digital control in Japanese PWR Plants

    International Nuclear Information System (INIS)

    Taguchi, S.; Kondo, Y.; Teranishi, S.; Matsumiya, M.; Takashima, M.; Nagai, T.

    1986-01-01

    More reliable and flexible control system to improve the plant availability and operability is constantly demanded. In order to answer the demands, digital control systems are being applied to Japanese PWR plants. Microprocessor-based digital control systems are widely used in other industries and show good performance. The digital control system has been already applied to the chemical and volume control system and the radioactive waste disposal system in the operating plants. These systems have been working as expected and demonstrating good performances. The digital control system for the reactor control system, which is the main control system of the PWR plants, is being developed. The design of the system has been already finished and the verification/validation process is now in progress

  10. Fault tolerant digital control systems for boiling water reactors

    International Nuclear Information System (INIS)

    Chakraborty, S.; Cash, N.R.

    1986-01-01

    In a Boiling Water Reactor nuclear power plant, the power generation control function is divided into several systems, each system controlling only a part of the total plant. Presently, each system is controlled by conventional analog or digital logic circuits with little interaction for coordinated control. The advent of microprocessors has allowed the development of distributed fault-tolerant digital controls. The objective is to replace these conventional controls with fault-tolerant digital controls connected together with digital communication links to form a fully integrated nuclear power plant control system

  11. An Embedded Based Digital Controller for Thermal Process

    Directory of Open Access Journals (Sweden)

    A. Lakshmi Sangeetha

    2008-01-01

    Full Text Available This paper describes a low cost virtual instrumentation (VI system to monitor and control the electrically heated water bath temperature. The PIC16F877 based digital microcontroller is used as thermostat which controls and monitors the temperature. The digital controller also allows the user to modify the sensor (PT100 calibration data values if necessary. The developed programmable on/off control function provides on-line display of measuring temperature, set point as well as the control function output plots through the parallel port. This bus interaction is realized in Visual Basic/Assembly Language and uses a 16 bit, 10 ms sampling analog-to-digital converter (ADS 7805 for monitoring and controlling the parameters of the temperature local digital controller.

  12. A Study on Large Display Panel Design for the Countermeasures against Team Errors within the Main Control Room of APR-1400

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The personal aspect of human errors has been mainly overcome by virtue of the education and training. However, in the system aspect, the education and training system needs to be reconsidered for more effective reduction of human errors affected from various systems hazards. Traditionally the education and training systems are mainly not focused on team skills such as communication, situational awareness, and coordination, etc. but individual knowledge, skill, and attitude. However, the team factor is one of the crucial issues to reduce the human errors in most industries. In this study, we identify the emerging types of team errors, especially, in digitalized control room of nuclear power plants such as the APR-1400 main control room. Most works in nuclear industry are to be performed by a team of more than two persons. Even though the individual errors can be detected and recovered by the qualified others and/or the well trained team, it is rather seldom that the errors by team could be easily detected and properly recovered by the team itself. Note that the team is defined as two or more people who are appropriately interacting with each other, and the team is a dependent aggregate, which accomplishes a valuable goal. Team error is one of the typical organizational errors that may occur during performing operations in nuclear power plants. The large display panel is a representative feature of digitalized control room. As a group-view display, the large display panel provides plant overview to the operators. However, in terms of team performance and team errors, the large display panel is on a discussion board still because the large display panel was designed just a concept of passive display. In this study, we will propose revised large display panel which is integrated with several alternative interfaces against feasible team errors.

  13. A Study on Large Display Panel Design for the Countermeasures against Team Errors within the Main Control Room of APR-1400

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Lee, Yong Hee

    2015-01-01

    The personal aspect of human errors has been mainly overcome by virtue of the education and training. However, in the system aspect, the education and training system needs to be reconsidered for more effective reduction of human errors affected from various systems hazards. Traditionally the education and training systems are mainly not focused on team skills such as communication, situational awareness, and coordination, etc. but individual knowledge, skill, and attitude. However, the team factor is one of the crucial issues to reduce the human errors in most industries. In this study, we identify the emerging types of team errors, especially, in digitalized control room of nuclear power plants such as the APR-1400 main control room. Most works in nuclear industry are to be performed by a team of more than two persons. Even though the individual errors can be detected and recovered by the qualified others and/or the well trained team, it is rather seldom that the errors by team could be easily detected and properly recovered by the team itself. Note that the team is defined as two or more people who are appropriately interacting with each other, and the team is a dependent aggregate, which accomplishes a valuable goal. Team error is one of the typical organizational errors that may occur during performing operations in nuclear power plants. The large display panel is a representative feature of digitalized control room. As a group-view display, the large display panel provides plant overview to the operators. However, in terms of team performance and team errors, the large display panel is on a discussion board still because the large display panel was designed just a concept of passive display. In this study, we will propose revised large display panel which is integrated with several alternative interfaces against feasible team errors

  14. Feasibility of touch-less control of operating room lights.

    Science.gov (United States)

    Hartmann, Florian; Schlaefer, Alexander

    2013-03-01

    Today's highly technical operating rooms lead to fairly complex surgical workflows where the surgeon has to interact with a number of devices, including the operating room light. Hence, ideally, the surgeon could direct the light without major disruption of his work. We studied whether a gesture tracking-based control of an automated operating room light is feasible. So far, there has been little research on control approaches for operating lights. We have implemented an exemplary setup to mimic an automated light controlled by a gesture tracking system. The setup includes a articulated arm to position the light source and an off-the-shelf RGBD camera to detect the user interaction. We assessed the tracking performance using a robot-mounted hand phantom and ran a number of tests with 18 volunteers to evaluate the potential of touch-less light control. All test persons were comfortable with using the gesture-based system and quickly learned how to move a light spot on flat surface. The hand tracking error is direction-dependent and in the range of several centimeters, with a standard deviation of less than 1 mm and up to 3.5 mm orthogonal and parallel to the finger orientation, respectively. However, the subjects had no problems following even more complex paths with a width of less than 10 cm. The average speed was 0.15 m/s, and even initially slow subjects improved over time. Gestures to initiate control can be performed in approximately 2 s. Two-thirds of the subjects considered gesture control to be simple, and a majority considered it to be rather efficient. Implementation of an automated operating room light and touch-less control using an RGBD camera for gesture tracking is feasible. The remaining tracking error does not affect smooth control, and the use of the system is intuitive even for inexperienced users.

  15. 49 CFR 192.631 - Control room management.

    Science.gov (United States)

    2010-10-01

    ... control room who monitors and controls all or part of a pipeline facility through a SCADA system. Each... sections 1, 4, 8, 9, 11.1, and 11.3 of API RP 1165 are not practical for the SCADA system used; (2) Conduct... or SCADA displays; (3) Test and verify an internal communication plan to provide adequate means for...

  16. Changes in control room at Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Kecklund, Lena

    2005-09-01

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  17. First-of-A-Kind Control Room Modernization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This project plan describes a comprehensive approach to the design of an end-state concept for a modernized control room for Palo Verde. It describes the collaboration arrangement between the DOE LWRS Program Control Room Modernization Project and the APS Palo Verde Nuclear Generating Station. It further describes the role of other collaborators, including the Institute for Energy Technology (IFE) and the Electric Power Research Institute (EPRI). It combines advanced tools, methodologies, and facilities to enable a science-based approach to the validation of applicable engineering and human factors principles for nuclear plant control rooms. It addresses the required project results and documentation to demonstrate compliance with regulatory requirements. It describes the project tasks that will be conducted in the project, and the deliverable reports that will be developed through these tasks. This project plan will be updated as new tasks are added and as project milestones are completed. It will serve as an ongoing description on the project both for project participants and for industry stakeholders.

  18. Digital control programmer for temperature control

    International Nuclear Information System (INIS)

    Rajore, S.B.; Kumar, S.V.

    1993-01-01

    This report describes a PC based digital control programmer for controlling and programming temperature of a high vacuum resistance heating furnace and the software developed to control power using PID algorithm. It also describes the amplifier specially developed to suit the input requirement of the non-standard W5 thermocouple and the software and hardware protections introduced in the system. (author). 5 refs., 8 figs., 1 appendix

  19. What's getting in the way of teamwork in our nuclear control rooms?

    International Nuclear Information System (INIS)

    Harrington, D.K.

    1991-01-01

    Nuclear control room crews, like teams of any kind, develop their own unique personalities, or ways of getting things done. These personalities contain both good news and bad news when it comes to teamwork, and evolve from the beliefs and attitudes of the individual supervisors and operators. These beliefs and attitudes translate into behaviors that contribute to, or become barriers to, the teamwork so vital in today's modem nuclear control room. The writer, a consultant who has worked with control room crews at twelve US nuclear plants over the past five years in developing teamwork skills, describes his experiences, observations, and successes with the use of videotape to help operators change or modify their behavior to make them more effective as members of a control room team

  20. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  1. Optimization of the main control room habitability system in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Guanghui; Zhao Xinyan

    2013-01-01

    This article describes the optimization of main control room habitability system in nuclear power plant. It also describes the design shortage in terms of habitability in the main control room. Through modification and optimization, habitable conditions are met for personnel staying in the emergency area of the main control room for a period of time, with an aim to take accident intervention measures smoothly and reduce the accident loss and radioactive contamination as low as possible. (authors)

  2. Digital-image processing improves man-machine communication at a nuclear reactor

    International Nuclear Information System (INIS)

    Cook, S.A.; Harrington, T.P.; Toffer, H.

    1982-01-01

    The application of digital image processing to improve man-machine communication in a nuclear reactor control room is illustrated. At the Hanford N Reactor, operated by UNC Nuclear Industries for the United States Department of Energy, in Richland, Washington, digital image processing is applied to flow, temperature, and tube power data. Color displays are used to present the data in a clear and concise fashion. Specific examples are used to demonstrate the capabilities and benefits of digital image processing of reactor data. N Reactor flow and power maps for routine reactor operations and for perturbed reactor conditions are displayed. The advantages of difference mapping are demonstrated. Image processing techniques have also been applied to results of analytical reactor models; two examples are shown. The potential of combining experimental and analytical information with digital image processing to produce predictive and adaptive reactor core models is discussed. The applications demonstrate that digital image processing can provide new more effective ways for control room personnel to assess reactor status, to locate problems and explore corrective actions. 10 figures

  3. Resolution of digital instrumentation and control and human factors technical and regulatory issues for new plants and for modernization of operating plants

    International Nuclear Information System (INIS)

    Naser, J.A.; Torok, R.C.; Canavan, K.T.

    2008-01-01

    There are several technical and regulatory issues in the areas of digital I and C, human factors, and control rooms needing generic resolution. If they are not generically resolved, they can contribute to protracted regulatory reviews for operating plant license amendments and substantial delays and increased costs for new plant COL approvals. Therefore; a coordinated, proactive program has been established to resolve key issues. Both Industry and NRC have roles in resolving these key issues and addressing them in future design efforts and regulatory reviews. The Industry initiative is led by the NEI Digital I and C and Human Factors Working Group. NRC has established Task Working Groups under the NRC Digital I and C Steering Committee to address the issues and interact with Industry. EPRI is providing technical input and resolution leadership for some of the issues being addressed in three of the task working groups. For the Highly Integrated Control Room - Human Factors Task area, EPRI has taken the lead in developing draft industry position technical reports for the following three issues: 1) Minimum inventory of human system interfaces, 2) Computerized procedures and associated topics of automation and soft controls, and 3) Methodology to determine the acceptability of manual operator actions response times for a BTP 7-19 software common cause failure. For the Diversity and Defense-in-Depth area, EPRI has taken the lead in developing two draft industry position technical papers on the following topics: 1) Integrating defensive measures and diversity attributes to protect against digital common cause failures and 2) Susceptibility of digital devices and components to common cause failures. For the Risk Informing area, EPRI has taken the lead in developing two draft industry position technical papers on the following topics: 1) Clarifying how to use current methods to model digital systems in a PRA and 2) Application of PRA to specific digital I and C issues

  4. Implementation and Analysis for APR1400 Soft Control System

    International Nuclear Information System (INIS)

    2015-01-01

    Due to the rapid advancement of digital technology, the definite technical advantages of digital control system compared to analog control system are accelerating the implementation of advanced distributed digital control system in the nuclear power plant. One of the major advantages of digital control system is the capability of Soft Control System. The design of Soft Control System for Advanced Power Reactor 1400 (APR1400) plant of Man-Machine Interface System (MMIS) is based on full digital technologies to enhance reliability, operability and maintainability. Computer-based compact workstation has been adopted in the APR1400 Main Control Room (MCR) to provide convenient working environment. This paper introduces the approaches and methodologies of Soft Control System for the Advanced Control Room (ACR). This paper also explains major design features for operation and display of the Soft Control System and its implementation to cope with regulatory requirements. (authors)

  5. Control room concept for remote maintenance in high radiation areas

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures

  6. CEBAF Control Room Renovation

    International Nuclear Information System (INIS)

    Michael Spata; Anthony Cuffe; Thomas Oren

    2005-01-01

    The Machine Control Center (MCC) at Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was constructed in the early 1990s and based on proven technology of that era. Through our experience over the last 15 years and in our planning for the facilities 12 GeV upgrade we reevaluated the control room environment to capitalize on emerging visualization and display technologies and improve on work-flow processes and ergonomic attributes. The renovation was performed in two phases during the summer of 2004, with one phase occurring during machine operations and the latter, more extensive phase, occurring during our semi-annual shutdown period. The new facility takes advantage of advances in display technology, analog and video signal management, server technology, ergonomic workspace design, lighting engineering, acoustic ceilings and raised flooring solutions to provide a marked improvement in the overall environment of machine operations

  7. High Performance Low Cost Digitally Controlled Power Conversion Technology

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes

    2008-01-01

    in order to reduce the power consumption of servers and datacenters. The work presented in this thesis includes digital control methods for switch-mode converters implemented in microcontrollers, digital signal controllers and field programmable gate arrays. Microcontrollers are cheap devices that can...... be used for real-time control of switch-mode converters. Software design in the assembly language of the microcontroller is important because of the limited resources of the microcontroller. Microcontrollers are best suited for power electronics applications with low bandwidth requirements because...... the execution time of the software algorithm that realises the digital control law will constitute a considerable delay in the control loop. Digital signal controllers are powerful devices capable of performing arithmetic functions much faster than a microcontroller can. Digital signal controllers are well...

  8. Human Reliability analysis for digitized nuclear power plants: Case study on the LingAo II nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yan Hua; Zhang, Li [Institute of Human Factors Engineering AND Safety Management, Hunan Institute of Technology, Hengyang (China); Dai, Cao; Li, Peng Cheng; Qing, Tao [Human Factors Institute, University of South China, Hengyang (China)

    2017-03-15

    The main control room (MCR) in advanced nuclear power plants (NPPs) has changed from analog to digital control system (DCS). Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  9. Human Reliability Analysis for Digitized Nuclear Power Plants: Case Study on the LingAo II Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yanhua Zou

    2017-03-01

    Full Text Available The main control room (MCR in advanced nuclear power plants (NPPs has changed from analog to digital control system (DCS. Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  10. Development of digital safety system logic and control

    International Nuclear Information System (INIS)

    Nishikawa, H.; Sakamoto, H.

    1995-01-01

    Advanced-BWR (ABWR) uses total digital control and instrumentation (C and I) system. In particular, ABWR adopts a newly developed safety system using advanced digital technology. In the presentation the digital safety system design, manufacturing and factory validation test method are shortly overviewed. The digital safety system consists of micro-processor based digital controllers, data and information transmission by optical fibers and human-machine interface using color flat displays. This new developed safety system meet the nuclear safety requirements such as high reliability, independence of divisions, operability and maintainability. (2 refs., 4 figs., 1 tab.)

  11. Control room design with new automation structures. Leitwartengestaltung bei neuen Automatisierungsstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Gilson, W

    1984-01-01

    This brochure is concerned with the configuration of modern control rooms, taking new automation structures into account. The configuration of control rooms is treated taking note of new process control systems from the point of view of the requirements and performance, which is well known from process and powerstation technology. Apart from general technical and ergonomic considerations, aspects of work load and work stress are dealt with in detail.

  12. Control room concept for remote maintenance in high radiation areas

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures

  13. Survey of control-room design practices with respect to human factors engineering

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1980-01-01

    Human factors engineering is an interdisciplinary speciality concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. This emphasis has been applied to most military and space systems in the past 30 y. A review of five nuclear power-plant control rooms, reported in the November-December 1977 issue of Nuclear Safety, revealed that human factors principles of design have generally not been incorporated in present-generation control rooms. This article summarizes the findings of a survey of 20 control-board designers from a mix of nuclear steam-supply system and architect-engineering firms. The interviews with these designers probed design methods currently used in developing control rooms. From these data it was concluded that there is currently no consistent, formal, uniform concern for the human factors aspects of control-room design on the part of the design organizations, the utilities, or the Nuclear Regulatory Commission. Although all the parties involved are concerned with human factors issues, this responsibility is not focused, and human factors yardsticks, or design standards, specific to power plants have not been evolved and applied in the development and verification of control-room designs from the standpoint of the man-machine interface

  14. Role Allocations and Communications of Operators during Emergency Operation in Advanced Main Control Rooms

    International Nuclear Information System (INIS)

    Lee, June Seung

    2009-01-01

    The advanced main control room (MCR) in GEN III + nuclear power plants has been designed by adapting modern digital I and C techniques and an advanced man machine interface system (MMIS). Large Display Panels (LDPs) and computer based workstations are installed in the MCR. A Computerized Procedure System (CPS) and Computerized Operation Support System (COSS) with high degrees of automation are supplied to operators. Therefore, it is necessary to set up new operation concepts in advanced MCRs that are different from those applied in conventional MCRs regarding role allocations and communications of operators. The following presents a discussion of the main differences between advanced MCRs and conventional MCRs from the viewpoint of role allocations and communications. Efficient models are then proposed on the basis of a task analysis on a series of emergency operation steps

  15. Design And Implementation Of Smart Living Room Wireless Control For Safety Purpose

    OpenAIRE

    Aeindra Myint Lwin; Zaw Min Min Htun; Hla Myo Tun

    2015-01-01

    Abstract This research presents the microcontroller controlled smart living room system using Bluetooth wireless technology from mobile phone.An android apk is created in mobile for controlling the living room system. A 16F877A microcontroller is interfaced serially to a bluetooth module transceiver. It is used for controlling fan speed control dim light control lighting ONOFF and window angle control. An arduino controller is used for keypad control door security. It is connected to DC motor...

  16. Technical and regulatory challenges for digital instrumentation and control and control room systems in nuclear plants

    International Nuclear Information System (INIS)

    Torok, R.; Naser, J.; Harris, T.; Keithline, K.

    2006-01-01

    There are several unsettled technical and licensing issues in the areas of instrumentation and control (I and C), human factors, and updated control room designs that need coordinated, proactive industry attention. Some of these issues are already causing protracted regulatory reviews for existing plants, and left untreated, may cause substantial delays and increased costs for new plant combined construction and operating license approvals. Both industry and the NRC will have roles in resolving the key issues and addressing them in future design efforts and regulatory reviews. Where action is needed, the industry will want to minimize costs and risks by defining industry consensus solutions with corresponding technical bases. NEI has formed a working group to coordinate industry efforts and communications with NRC staff. The working group will also help determine priorities and coordinate both new and existing plant resources. EPRI will provide technical input and guidance for the working group. In order to be able to conduct reviews in a timely fashion, the NRC will likely need to enhance and expand staff resources as existing plants are upgraded and new plant reviews become more active. The industry initiative began with a workshop sponsored by EPRI and NEI on March 28-29, 2006, which led to the creation of the NEI working group. The working group has now identified and prioritized important generic issues, established resolution paths and schedules, and identified the roles of various stakeholders including utility companies, EPRI, NEI, vendors and the NRC. Through the course of this initiative I and C issues for both existing and new plants are being addressed. This paper describes the key I and C related technical and regulatory issues and their implications for new and operating plants, and provides a status report on the efforts to resolve them. (authors)

  17. White Paper for Virtual Control Room

    Science.gov (United States)

    Little, William; Tully-Hanson, Benjamin

    2015-01-01

    The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.

  18. Digital control systems. Verteilte Prozessleitsysteme

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    With a distinct description of the systems properties thin regulation shall provide a latter transparency for the use of digital control systems. The application of the new technique shall be facilitated, incitations for the further development shall be given and the compatibility of the systems shall be advanced. Moreover, the regulation can be used as criteria catalogue for the evaluation of digital systems.

  19. The application of human engineering in control room of HFETR

    International Nuclear Information System (INIS)

    Yang Shuchun; Shan Songlin

    2003-01-01

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  20. The application of human engineering in control room of HFETR

    Energy Technology Data Exchange (ETDEWEB)

    Shuchun, Yang; Songlin, Shan [Nuclear Power Inst. of China, Chengdu (China)

    2003-07-01

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  1. Interactive Room Support for Complex and Distributed Design Projects

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Gundersen, Kristian Kroyer; Mogensen, Preben Holst

    2001-01-01

    We are investigating the design of digital 3D interaction technology embedded in a physical environment. We take as point of departure cemplex, collaborative industrial design projects involving heterogeneous sets of documents, and physical as well as digital 3D models. The paper introduces our...... interaction devices being experimented with in the interactive room environment. The interactive room technologies have all been designed with the requirement that they must seamlessly integrate both into the physical and into the digital work environment while providing new affordances for industrial design...

  2. Enhancing the NCSU PULSTAR reactor control room with human factors considerations

    International Nuclear Information System (INIS)

    Glover, B.L.; Pupons, D.E.; Perez, P.B.

    1993-01-01

    The North Carolina PULSTAR research reactor was constructed to support teaching, training, and research. The training provided is not limited to academic students but encompasses plant operators, managers, engineers, designers, and supporting organizations in the nuclear industry. Our facility is under-going design changes to maximize teaching effectiveness and continued safe operation by providing current technology in the control room. The opportunity for the enhancements is a result of the generosity of neighboring utilities and the US Department of Energy instrumentation upgrade funds. Our objective, to provide a control room environment that conforms to selected industry practices, required human factors input. A human factors course, offered jointly between the industrial engineering and the psychology departments, included the PULSTAR control room enhancement as a case study

  3. Digital redesign of anti-wind-up controller for cascaded analog system.

    Science.gov (United States)

    Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M

    2003-01-01

    The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.

  4. The role of the control room operator

    International Nuclear Information System (INIS)

    Williams, M.C.

    A control room operator at an Ontario Hydro nuclear power plant operates a reactor-turbine unit according to approved procedures within imposed constraints to meet the objectives of the organization. A number of operating and administrative tasks make up this role. Control room operators spend approximately six percent of their time physically operating equipment exclusive of upset conditions, and another one percent operating in upset conditions. Testing occupies five percent of an operator's time. Operators must be trained to recognize the entire spectrum of inputs available to them and use them all effectively. Any change in system or unit state is always made according to an approved procedure. Extensive training is required; operators must be taught and pracised in what to do, and must know the reasons behind their actions. They are expected to memorize emergency procedures, to know when to consult operating procedures, and to have sufficient understanding and practice to perform these procedures reliably

  5. Integrated digital control and man-machine interface for complex remote handing systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1987-01-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer systems control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  6. Integrated digital control and man-machine interface for complex remote handling systems

    International Nuclear Information System (INIS)

    Rowe, J.C.; Spille, R.F.; Zimmermann, S.D.

    1986-12-01

    The Advanced Integrated Maintenance System (AIMS) is part of a continuing effort within the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory to develop and extend the capabilities of remote manipulation and maintenance technology. The AIMS is a totally integrated approach to remote handling in hazardous environments. State-of-the-art computer systems connected through a high-speed communication network provide a real-time distributed control system that supports the flexibility and expandability needed for large integrated maintenance applications. A Man-Machine Interface provides high-level human interaction through a powerful color graphics menu-controlled operator console. An auxiliary control system handles the real-time processing needs for a variety of support hardware. A pair of dedicated fiber-optic-linked master/slave computer system control the Advanced Servomanipulator master/slave arms using powerful distributed digital processing methods. The FORTH language was used as a real-time operating and development environment for the entire system, and all of these components are integrated into a control room concept that represents the latest advancements in the development of remote maintenance facilities for hazardous environments

  7. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES

    International Nuclear Information System (INIS)

    O'HARA, J.M.; BROWN, W.

    2004-01-01

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics

  8. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  9. The cyclical monitoring system for digital power supplies at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian

    2009-01-01

    Based on available digital PS testing system and long-distance monitoring hardwares, the cyclical monitoring system for digital power supplies (PS) was developed at SSRF. Two models, i.e.long-distance cyclical monitoring and local cyclical monitoring, were established. The software developed in LabVIEW language was applied to the two models without any user interface modification. The user interface is simple. The system is suitable for debugging the digital PSs during long-distance monitoring and examining the performance. The long-distance model imitates the digital PSs' status for fault analysis and communication between the digital PS and the centre control room. The local model simultaneously examines stability of 18 new PSs for 24 h, monitors the PS controller, and detects malfunction. Parameters and status of the controller can be stored in Excel or Text file. The two models have been used at SSRF for monitoring the digital PSs. (authors)

  10. Digital Communication and Modulation

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    Fundamental principles in modern digital communication system like modems and wire- and wireless transmission over physical channels. Class room sessions and projects. Semester: Spring 2010 Extent: 7.5 ects Class size: 9......Fundamental principles in modern digital communication system like modems and wire- and wireless transmission over physical channels. Class room sessions and projects. Semester: Spring 2010 Extent: 7.5 ects Class size: 9...

  11. Digital Communication and Modulation

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    Fundamental principles in modern digital communication system like modems and wire- and wireless transmission over physical channels. Class room sessions and projects. Semester: Autumn 2010 Extent: 7.5 ects Class size: 18......Fundamental principles in modern digital communication system like modems and wire- and wireless transmission over physical channels. Class room sessions and projects. Semester: Autumn 2010 Extent: 7.5 ects Class size: 18...

  12. Virtual Training of Compressor Control Room, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MYMIC will analyze, design, develop and evaluate the Virtual Control Room – Compressor Station (VCoR-CS) training system. VCoR-CS will provide procedural training to...

  13. Research study on the effects of illumination on performance of control room tasks

    International Nuclear Information System (INIS)

    Silverman, E.B.; Horst, R.L.; Parris, H.L.; O'Brien, J.

    1990-01-01

    The illumination in the control rooms of many operating nuclear plants falls below the levels specified in the NUREG-0700 guidelines. However, these guidelines are based on human perception and performance data which were acquired under laboratory conditions and with tasks very different from those typically found in control rooms. The objective of the present studies was to gather empirical data regarding the levels of illumination sufficient for performing tasks analogous to those performed in control rooms. Several tasks were designed to engage the perceptual and cognitive processes that are representative of actual control room performance. In a computerized laboratory test-bed, subjects scanned edgewise meters, examined hard-copy X-Y plots to discern the value of the displayed function at specific coordinates, and proofread hard-copy plant procedures. In a power plant control room simulator, data were likewise collected in a meter reading task and similar tasks representing elements of specific job-performance measures. For each task, response time and accuracy were measured under a range of illumination levels. Subjective comfort ratings were also obtained for each illumination level. The results from both settings indicated that with decreasing illumination, increased errors and/or longer response times occurred only for levels below ten footcandles, if at all. These data suggest that adequate performance in control room tasks can be achieved at illumination levels below those recommended in NUREG-0700

  14. Control rooms and man-machine interface in nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    The importance of man-machine interface for ensuring safe and reliable operation of nuclear power plants has always been recognized. Since the early 1970's, the concepts of operator support and human factors have been increasingly used to better define the role of control rooms. In the late 1970's, the lessons learned from experience considerably accelerated the development of recommendations and regulatory requirements governing the resources and data available to operators in nuclear power plant control rooms, and specified the expertise required to assist them in case of need. This document summarizes the steps which have been taken and are being planned around the world to improve the man-machine interface for safe and economic power generation. It intends to present to the reader useful examples on some selected control room design and man-machine interface practices for operation and surveillance of nuclear power plants. 53 refs, 94 figs, 27 tabs

  15. The Halden Reactor Project workshop meeting on control room development

    International Nuclear Information System (INIS)

    Miberg, Ann Britt; Green, Marie; Haukenes, Hanne; Larsen, Marit; Seim, Lars Aage; Veland, Oeystein

    1999-03-01

    The 'Control Room Development' workshop was organised in. Halden, November 5-6, 1998. The purpose of the workshop was to bring forward recommendations for the future use of HAMMLAB with respect to control room development. The workshop comprised thirteen presentations summarising current issues and status in control room development projects and related projects. Following the presentations, five working groups were formed. The purpose of the working groups was to establish a set of recommendations for the future use of HAMMLAB. Each working group developed a set of recommendations. The outcomes of the working groups' discussions were summarised in plenum by the working group chairs. During the workshop, all participants excluding the Halden Project staff were asked to fill in a questionnaire indicating which research topics they found most interesting to pursue in future HAMMLAB research. The purpose of this report is to summarise the workshop participants' presentations, the working groups' discussions, and the recommendations given by the workshop participants concerning the future use of HAMMLAB (author) (ml)

  16. Engineering Process Monitoring for Control Room Operation

    OpenAIRE

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close coll...

  17. Subjective task complexity in the control room

    International Nuclear Information System (INIS)

    Braarud, Per Oeivind

    2000-05-01

    Understanding of what makes a control room situation difficult to handle is important when studying operator performance, both with respect to prediction as well as improvement of the human performance. Previous exploratory work on complexity showed a potential for prediction and explanation of operator performance. This report investigates in further detail the theoretical background and the structure of operator rated task complexity. The report complements the previous work on complexity to make a basis for development of operator performance analysis tools. The first part of the report outlines an approach for studying the complexity of the control room crew's work. The approach draws upon man-machine research as well as problem solving research. The approach identifies five complexity-shaping components: 'task work characteristics', 'teamwork characteristics', 'individual skill', 'teamwork skill', and 'interface and support systems'. The crew's work complexity is related to concepts of human performance quality and human error. The second part of the report is a post-hoc exploratory analysis of four empirical HRP studies, where operators' conception of the complexity of control room work is assessed by questionnaires. The analysis deals with the structure of complexity questionnaire ratings, and the relationship between complexity ratings and human performance measures. The main findings from the analysis of structure was the identification of three task work factors which were named Masking, Information load and Temporal demand, and in addition the identification of one interface factor which was named Navigation. Post-hoc analysis suggests that operator's subjective complexity, which was assessed by questionnaires, is related to workload, task and system performance, and operator's self-rated performance. (Author). 28 refs., 47 tabs

  18. Study on the task categorization of main control room in NPP

    International Nuclear Information System (INIS)

    Fang Zhou; Ma Zhicai; Ma Xusheng; Zheng Mingguang

    2005-01-01

    The paper states the importance and trendy requirements of Main Control Room (MCR) in nuclear power plant and introduces how to implement the human factor engineering principle in the design of advanced main control room. It mainly focuses on the purpose and functions, strategy and methodology, scope and contents of the MCR task categorization. The preliminary MCR task categorization is performed according to these principles. (authors)

  19. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    Science.gov (United States)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment

  20. Digital Controller For Acoustic Levitation

    Science.gov (United States)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  1. Baseline Study Methodology for Future Phases of Research on Nuclear Power Plant Control Room Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bower, Gordon Ross [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, Rachael Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    In order to provide a basis for industry adoption of advanced technologies, the Control Room Upgrades Benefits Research Project will investigate the benefits of including advanced technologies as part of control room modernization This report describes the background, methodology, and research plan for the first in a series of full-scale studies to test the effects of advanced technology in NPP control rooms. This study will test the effect of Advanced Overview Displays in the partner Utility’s control room simulator

  2. Reviewing the impact of advanced control room technology

    International Nuclear Information System (INIS)

    Wilhelmsen, C.A.; Gertman, D.I.; Ostrom, L.T.; Nelson, W.R.; Galyean, W.J.; Byers, J.C.

    1992-01-01

    Progress to date on assessing the nature of the expected changes in human performance and risk associated with the introduction of digital control, instrumentation, and display systems is presented. Expected changes include the shift toward more supervisory tasks, development of intervention strategies, and reallocation of function between human and machine. Results are reported in terms of the scope of new technology, human performance issues, and crews experience with digital control systems in a variety of industries petrochemical and aerospace. Plans to conduct a limited Probabilistic Risk Assessment/Human Reliability Assessment (PRA/HRA) comparison between a conventional NUREG-1150 series plant and that same plant retrofit with distributed control and advanced instrumentation and display are also presented. Changes needed to supplement existing HRA modeling methods and quantification techniques are discussed

  3. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  4. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-01-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative–intended to catalog final products–rather than formative–intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  5. Criteria for the design of the control room complex for a nuclear power generating station

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This Standard addresses the central control room of a nuclear power generating station and the overall complex in which this room is housed. It is not intended to cover special or normally unattended control rooms, such as those provided for radioactive waste handling or for emergency shutdown operations. The nuclear power generating station control room complex provides a protective envelope for plant operating personnel and for instrument and control equipment vital to the operation of the plant during normal and abnormal conditions. In this capacity, the control room complex must be designed and constructed to meet the following criteria contained in Appendix A of 10CFR50, General Design criteria for Nuclear Power Plants: (1) Criterion 2: design bases for protection against natural phenomena; (2) Criterion 3: fire protection; (3) Criterion 4: environmental and missile design bases; (4) Criterion 5: sharing of structures, systems and components (multiunit stations only); and (5) Criterion 19: control room

  6. Digitizing instrumentation and control systems in nuclear power plants. DAtF autumn meeting Leittec '96, October 8, 1996 in Koenigswinter

    International Nuclear Information System (INIS)

    Aleite, W.

    1997-01-01

    Recently, digitization for upgrading and retrofitting of instrumentation and control systems has been extended to German nuclear power plants, and initial action to commence modification started with a very suitable system, the limiters of the Neckar-1 reactor unit of GKN. This action is generally welcomed. Systems of the control room of relevance to safety -even if not belonging to priority classes - are systems for process information for example, or operator guidance, as well as diagnostic systems for inspection and maintenance. (orig./DG) [de

  7. Aircraft digital flight control technical review

    Science.gov (United States)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  8. Review of international standards related to the design for control rooms on nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, Masashi; Yoshikawa, Hidekazu; Fujita, Yushi

    2005-01-01

    The improvement of Human-Machine Interface (HMI) design for control rooms on nuclear power plants (NPP) has been accomplished world wide, especially after the TMI-2 accident. The design process and guidelines are standardized in IEC60964 and supplemental standards as international standard. However, technological update is required due to the increased use of computerized control and monitoring equipment and systems in control rooms on NPP in recent years. Standards are becoming more important for computerized control rooms because there is more freedom to design than conventional hardware based system. For computerized control rooms, standards for hardware and software of HMI systems should be also considered. Standards and guidelines for computerized control rooms on NPP have been developed recently in each body such as IEC, ISO, and IEEE etc. Therefore, reviewing these standards and guidelines related to control rooms design of NPP can be useful not only for revision of the international standards such as IEC60964, but also for users of the standards and guidelines. In this paper, we reviewed the international standards related to the design for control rooms, in the two aspects of HMI design and hardware and software design, considering the undergoing revision work and their application. (author)

  9. 47 CFR 73.9001 - Redistribution control of digital television broadcasts.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Redistribution control of digital television... RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast Television Redistribution Control § 73.9001 Redistribution control of digital television broadcasts. Licensees of TV broadcast stations may utilize the...

  10. A digital joint controller for manipulators

    International Nuclear Information System (INIS)

    Holt, E.J.; Palmer, D.E.B.

    1993-01-01

    Nuclear Electric's hydraulic heavy duty manipulators are used at a number of Magnox Power Stations for a wide variety of tasks. In recent years there has been a trend towards the use of manipulators for tasks requiring increasing precision of tip positioning. In order to meet this requirement, a digital controller has been designed to replace the analogue controller board used in almost all manipulator control systems. The new controller allows the programming of a wide range of closed loop control algorithms. Position and drive signal data may be passed to and from the controller by digital means, allowing direct connection to a graphical display system and/or a computer executing a guidance algorithm. The hardware and software design are outlined and performance in the laboratory and the field is reported. (author)

  11. Hardware replacements and software tools for digital control computers

    International Nuclear Information System (INIS)

    Walker, R.A.P.; Wang, B-C.; Fung, J.

    1996-01-01

    Technological obsolescence is an on-going challenge for all computer use. By design, and to some extent good fortune, AECL has had a good track record with respect to the march of obsolescence in CANDU digital control computer technology. Recognizing obsolescence as a fact of life, AECL has undertaken a program of supporting the digital control technology of existing CANDU plants. Other AECL groups are developing complete replacement systems for the digital control computers, and more advanced systems for the digital control computers of the future CANDU reactors. This paper presents the results of the efforts of AECL's DCC service support group to replace obsolete digital control computer and related components and to provide friendlier software technology related to the maintenance and use of digital control computers in CANDU. These efforts are expected to extend the current lifespan of existing digital control computers through their mandated life. This group applied two simple rules; the product, whether new or replacement should have a generic basis, and the products should be applicable to both existing CANDU plants and to 'repeat' plant designs built using current design guidelines. While some exceptions do apply, the rules have been met. The generic requirement dictates that the product should not be dependent on any brand technology, and should back-fit to and interface with any such technology which remains in the control design. The application requirement dictates that the product should have universal use and be user friendly to the greatest extent possible. Furthermore, both requirements were designed to anticipate user involvement, modifications and alternate user defined applications. The replacements for hardware components such as paper tape reader/punch, moving arm disk, contact scanner and Ramtek are discussed. The development of these hardware replacements coincide with the development of a gateway system for selected CANDU digital control

  12. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    International Nuclear Information System (INIS)

    Berg, O.

    1997-01-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs

  13. Human-machine interface aspects and use of computer-based operator support systems in control room upgrades and new control room designs for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Berg, O [Institutt for Energiteknikk, OECD Halden Reactor Project (Netherlands)

    1997-07-01

    At the Halden Project efforts are made to explore the possibilities through design, development and validation of Computer-based Operator Support Systems (COSSes) which can assist the operators in different operational situations, ranging from normal operation to disturbance and accident conditions. The programme comprises four main activities: 1) verification and validation of safety critical software systems; 2) man-machine interaction research emphasizing improvements in man-machine interfaces on the basis of human factors studies; 3) computerized operator support systems assisting the operator in fault detection/diagnosis and planning of control actions; and 4) control room development providing a basis for retrofitting of existing control rooms and for the design of advanced concepts. The paper presents the status of this development programme, including descriptions of specific operator support functions implemented in the simulator-based, experimental control room at Halden (HAMMLAB, HAlden Man-Machine LABoratory). These operator aids comprise advanced alarms systems, diagnostic support functions, electronic procedures, critical safety functions surveillance and accident management support systems. The different operator support systems development at the Halden Project are tested and evaluated in HAMMLAB with operators from the Halden Reactor, and occasionally from commercial NPPs, as test subjects. These evaluations provide data on the merits of different operator support systems in an advanced control room setting, as well as on how such systems should be integrated to enhance operator performance. The paper discusses these aspects and the role of computerized operator support systems in plant operation based on the experience from this work at the Halden Project. 15 refs, 5 figs.

  14. Enhancing training in the main control room

    International Nuclear Information System (INIS)

    McGuigan, K.; O'Leary, K.; Canavan, K.

    2004-01-01

    In 2003 Pickering B Nuclear of Ontario Power Generation installed a Desktop Simulator (DTS) in the Main Control Room (MCR) for training purposes. This paper will outline why this training enhancement was undertaken and the approach taken to secure its use in an active MCR environment while minimizing distractions to plant operations. (author)

  15. Noble gas control room accident filtration system for severe accident conditions (N-CRAFT)

    International Nuclear Information System (INIS)

    Hill, Axel; Stiepani, Cristoph; Drechsler, Michael

    2015-01-01

    Severe accidents might cause the release of airborne radioactive substances to the environment of the NPP either due to containment leakages or due to intentional filtered containment venting. In the latter case aerosols and iodine are retained, however noble gases are not retainable by the FCVS or by conventional air filtration systems like HEPA filters and iodine absorbers. Radioactive noble gases nevertheless dominate the activity release depending on the venting procedure and the weather conditions. To prevent unacceptable contamination of the control room atmosphere by noble gases, AREVA GmbH has developed a noble gas control room accident filtration system (CRAFT) which can supply purified fresh air to the control room without time limitation. The retention process is based on dynamic adsorption of noble gases on activated carbon. The system consists of delay lines (carbon columns) which are operated by a continuous and simultaneous adsorption and desorption process. CRAFT allows minimization of the dose rate inside the control room and ensures low radiation exposure to the staff by maintaining the control room environment suitable for prolonged occupancy throughout the duration of the accident. CRAFT consists of a proven modular design either transportable or permanently installed. (author)

  16. Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report

    International Nuclear Information System (INIS)

    Peterson, L.R.; Preston-Smith, J.; Savage, J.W.; Rousseau, W.F.

    1981-01-01

    A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment

  17. Assessment of control room habitability and unfiltered air inleakage test of the OPR 1000 NPP

    International Nuclear Information System (INIS)

    Song, Dong Soo; Lee, Jong Beom; Ha, Sang Jun; Huh, Seong Cheol

    2015-01-01

    The assessment of control room habitability for Hanbit unit 5 was performed based on GL 2003-01 and Regulatory Guide 1.197. The integrated control room envelope (CRE) test was performed utilizing ASTM E741. Four tests were performed using each of the control room HVAC subtrains. The control room heating, ventilating, and air conditioning (HVAC) system lineup of pressurization mode test was based upon a lineup that encompassed the design basis radiological analyses. The other control room HVAC system lineup of isolation mode test was based on an operation mode that considers toxic gas. The measured inleakage for the isolation test mode remains within the toxicity limit. Radiation effect analysis showed that the measured inleakage satisfied the regulatory criteria, and the inleakage would not result in control room operator dose exceeding 50 mSv whole body and 500 mSv thyroid except train A pressurization test mode. The thyroid dose due to maximum measured unfiltered inleakage of 8976 lpm for train A is corresponding to 700 mSv. Modifications to the CRE boundary and control room HVAC system should be done to demonstrate that the measured unfiltered inleakage for train A pressurization test mode is bounded by the regulatory criteria assumed in the design basis radiological analyses. (author)

  18. Control room unfiltered in-leakage limit analysis of design-basis LOCA for Lungmen ABWR plant

    International Nuclear Information System (INIS)

    Tsai Chihming; Chang Chinjang; Yuann Yngruey

    2014-01-01

    In USNRC's Generic Letter 2003-01, 'Control Room Habitability,' it requests utilities provide information to demonstrate that the control room at each of their respective facilities complies with the current licensing and design bases, and applicable regulatory requirements, and that suitable design, maintenance and testing control measures are in place for maintaining this compliance. In particular, each utility is required to perform the control room in-leakage test to demonstrate that the unfiltered in-leakage rate is within that assumed in the licensing analyses. It must be ensured that the control room envelope habitability, in terms of radiation dose, is maintained during normal operations as well as design basis accidents. In view of this, a dose analysis has been performed to establish the control room unfiltered in-leakage limit which can be used as an acceptance criterion for the in-leakage test. The analysis in this study is for Lungmen ABWR plant. The plant has twin units, with each unit having its own control room. The TID-4844 source terms and associated methodology are used. The USNRC RADTRAD v3.03 code is employed for the transport calculation of radioactive materials in different paths, including control room in-leakage path. The radiological criterion on protection of the operators specified in 10 CFR 50, Appendix A, General Design Criterion 19 is followed. It's demonstrated that the performance of Lungmen control room with 500 cfm unfiltered in-leakage air could meet the radiological habitability acceptance criteria in case of radiation hazards. (author)

  19. Implementation considerations for digital control systems in power plants: Final report

    International Nuclear Information System (INIS)

    Shah, S.C.; Lehman, L.L.; Sarchet, M.M.

    1988-09-01

    Conversion of nuclear power plants fron analog to digital control systems will require careful design, testing, and integration of the control algorithms, the software which implements the algorithms, the digital instrumentation, the digital communications network, and analog/digital device interfaces. Digital control systems are more flexible than their analog counterparts, and therefore greater attention must be paid by the customer to all stages of the control system design process. This flexibility also provides the framework for development of significant safety and reliability are inherant aspects of the chosen design processes. Digital control algorithms are capable of improving their performance by on-line self-tuning of the control parameters. It is therefore incumbant on system designers to choose self-tuning algorithms for power plant control. Implementation of these algorithms in software required a careful software design and development process to minimize errors in interpretation of the engineering design and prevent the inclusion of programming errors during software production. Digital control system and communications software must exhibit sufficient ''fault tolerance'' to maintain some level of safe plant operation or execute a safe plant shutdown in the event of both hard equipment failures and the appearance of software design faults. A number of standardized digital communications protocols are available to designers of digital control systems. These standardized digital communications protocols provide reliable fault tolerant communication between all digital elements of the plant control system and can be implemented redundantly to further enhance power plant operational safety. 5 refs., 11 figs., 1 tab

  20. Method for control-room display design

    International Nuclear Information System (INIS)

    Montmayeul, R.

    1988-01-01

    This document describes a method for control-room displays design. It can be used either for isolated display to add to an existing system either for the design of a full system of operator aids. The method is a top-down design with steps of possible iteration. The emphasis is put on display design rather than on system design; system aspects are just mentioned. Advantages of using a method are described [fr

  1. Digital electro-hydraulic control system for nuclear turbine

    International Nuclear Information System (INIS)

    Yokota, Yutaka; Tone, Youichi; Ozono, Jiro

    1985-01-01

    The unit capacity of steam turbines for nuclear power generation is very large, accordingly their unexpected stop disturbs power system, and the lowering of their capacity ratio exerts large influence on power generation cost. Therefore, very high reliability is required for turbine EHC controllers which directly control the turbines for nuclear power generation. In order to meet such requirement, Toshiba Corp. has developed high reliability type analog tripled turbine EHC controllers, and delivered them to No. 3 plant in the Fukushima No. 2 Nuclear Power Station and No. 1 plant in the Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. At present, the trial operation is under way. The development of digital EHC controllers was begun in 1976, and through the digital EHC for a test turbine and that for a small turbine, the digital EHC controllers for the turbines for nuclear power generation were developed. In this paper, the function, constitution, features and maintenance of the digital tripled EHC controllers for the turbines for nuclear power generation, the application of new technology to them, and the confirmation of the control function by simulation are reported. (Kako, I.)

  2. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  3. Using the digital reactor control systems at NPP

    International Nuclear Information System (INIS)

    Schirl, G.; Hertel, J.

    2006-01-01

    A conception of application of the digital reactor control systems (RCS) at NPP is presented. The digital RCS architecture and safety ensuring are considered. The strategy and algorithm of the operating NPP equipping with the new digital RCS are given too [ru

  4. Ergonomics and control room design

    International Nuclear Information System (INIS)

    Williams, J.C.; Story, D.T.

    1987-01-01

    The application of ergonomic principles to the design process and some aspects of the Sizewell B control room is discussed. Also outlined is the management process which ensures that these principles are applied systematically throughout the design development activity and highlights the functional requirements which must also be met in the creation of a total man-machine system package which meets all the technical design criteria. The ergonomics requirements are part of this process and extend into all aspects of design ranging from such matters as workplace organization to environmental factors, social engineering, communications and aesthetics. (author)

  5. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, Casey Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bower, Gordon Ross [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, Rachael Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); LeBlanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  6. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    International Nuclear Information System (INIS)

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-01-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator's eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  7. Closed-loop approach for situation awareness of medical devices and operating room infrastructure

    Directory of Open Access Journals (Sweden)

    Rockstroh Max

    2015-09-01

    Full Text Available In recent years, approaches for information and control integration in the digital operating room have emerged. A major step towards an intelligent operating room and a cooperative technical environment would be autonomous adaptation of medical devices and systems to the surgical workflow. The OR staff should be freed from information seeking and maintenance tasks. We propose a closed-loop concept integrating workflow monitoring, processing and (semi-automatic interaction to bridge the gap between OR integration of medical devices and workflow-related information management.

  8. An alternative atmospheric diffusion model for control room habitability assessments

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.

    1990-01-01

    The US Nuclear Regulatory (NRC) staff uses procedures to evaluate control room designs for compliance with General Design Criterion 19 of the Code of Federal Regulations, Appendix A, 10 CRF Part 50. These procedures deal primarily with radiation protection. However, other hazardous materials, for example, chlorine, pose a potential threat to control room habitability. The NRC is considering changes in their current procedures to update methods and extend their applicability. Two changes to the current procedures are suggested: using a puff diffusion model to estimate concentrations at air intakes and using a new method to estimate diffusion coefficients

  9. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  10. Nuclear power plant control room task analysis. Pilot study for pressurized water reactors

    International Nuclear Information System (INIS)

    Barks, D.B.; Kozinsky, E.J.; Eckel, S.

    1982-05-01

    The purposes of this nuclear plant task analysis pilot study: to demonstrate the use of task analysis techniques on selected abnormal or emergency operation events in a nuclear power plant; to evaluate the use of simulator data obtained from an automated Performance Measurement System to supplement and validate data obtained by traditional task analysis methods; and to demonstrate sample applications of task analysis data to address questions pertinent to nuclear power plant operational safety: control room layout, staffing and training requirements, operating procedures, interpersonal communications, and job performance aids. Five data sources were investigated to provide information for a task analysis. These sources were (1) written operating procedures (event-based); (2) interviews with subject matter experts (the control room operators); (3) videotapes of the control room operators (senior reactor operators and reactor operators) while responding to each event in a simulator; (4) walk-/talk-throughs conducted by control room operators for each event; and (5) simulator data from the PMS

  11. Digital regulation of a phase controlled power converter

    International Nuclear Information System (INIS)

    Schultheiss, C.; Haque, T.

    1995-01-01

    The Relativistic Heavy Ion Collider, now in construction at Brookhaven National Laboratory, will use phase controlled power converters for the main dipole and quadrupole magnet strings. The rectifiers in these power supplies will be controlled by a digital regulator based on the TI 320C30 Digital Signal Processor (DSP). The DSP implements the current loop, the voltage loop, and a system to actively reduce the sub-harmonic ripple components. Digital firing circuits consisting of a phase locked lop and counters are used to fire the SCRs. Corrections for the sub-harmonic reduction are calculated by the DSP and stored in registers in the firing circuit. These corrections are added in hardware, to the over-all firing count provided by the DSP. the resultant count is compared to a reference counter to fire the SCRs. This combination of a digital control system and the digital firing circuits allows the correction of the sub-harmonics in a real-time sense. A prototype of the regulator has been constructed, and the preliminary testing indicates a sub-harmonic reduction of 60 dB

  12. A wireless reflectance pulse oximeter with digital baseline control for unfiltered photoplethysmograms.

    Science.gov (United States)

    Li, Kejia; Warren, Steve

    2012-06-01

    Pulse oximeters are central to the move toward wearable health monitoring devices and medical electronics either hosted by, e.g., smart phones or physically embedded in their design. This paper presents a small, low-cost pulse oximeter design appropriate for wearable and surface-based applications that also produces quality, unfiltered photo-plethysmograms (PPGs) ideal for emerging diagnostic algorithms. The design's "filter-free" embodiment, which employs only digital baseline subtraction as a signal compensation mechanism, distinguishes it from conventional pulse oximeters that incorporate filters for signal extraction and noise reduction. This results in high-fidelity PPGs with thousands of peak-to-peak digitization levels that are sampled at 240 Hz to avoid noise aliasing. Electronic feedback controls make these PPGs more resilient in the face of environmental changes (e.g., the device can operate in full room light), and data stream in real time across either a ZigBee wireless link or a wired USB connection to a host. On-board flash memory is available for store-and-forward applications. This sensor has demonstrated an ability to gather high-integrity data at fingertip, wrist, earlobe, palm, and temple locations from a group of 48 subjects (20 to 64 years old).

  13. Impact of smartphone digital photography, email, and media communication on emergency room visits post-hypospadias repair.

    Science.gov (United States)

    Chua, Michael E; Saunders, Megan A; Bowlin, Paul R; Ming, Jessica M; Lopes, Roberto Iglesias; Farhat, Walid A; Dos Santos, Joana

    2017-01-01

    Advances in communication technology are shaping our medical practice. To date, there is no clear evidence that this mode of communication will have any effect on unnecessary postoperative emergency room (ER) visits. We aim to evaluate the effect of email and media communication with application of smartphone digital photography on post-hypospadias repair ER visit rates. This prospective cohort study included all patients who underwent hypospadias repair performed by a single surgeon from October 2014 to November 2015. Patients were categorized into two groups: Group A consented for smartphone photography and email communication and Group B declined. Reason for ER visits within 30 days postoperatively was assessed by another physician, who was blinded of patient group assignment. The reasons were categorized as: unnecessary ER visit, indicated ER visit, or visit unrelated to hypospadias surgery. Chi-square test and T-test were used for statistical analysis. Relative risk (RR) and corresponding 95% confidence interval (CI) were also calculated. Statistical significance was set at pcommunication with the use of smartphone digital photography significantly reduced the number of unnecessary ER visits for post-hypospadias wound checks.

  14. Design of nuclear power plant control rooms: some findings and possible improvements

    International Nuclear Information System (INIS)

    Bohr, E.

    1984-01-01

    Major findings are described of a study on the present status and possible improvements in the design of nuclear power plant control rooms according to ergonomic principles and criteria. The findings have been acquired by observing the performance of control room operators, by interviewing operators and management personnel, and by analysing major characteristics of the man-machine interface. The methods currently used for developing and designing control rooms have also been examined. The results of the study indicate that there is a growing awareness and consideration of physical factors affecting performance. More attention should be paid to the essential cognitive characteristics of work in the control room with the aim of avoiding unnecessary hindrances and possible errors. Examples are given of some of these problems, and approaches, ways and means for solving or mitigating them are indicated. A more deliberate consideration of factors affecting operator performance and reliability is suggested, based on a systems ergonomics approach. Analyses of critical tasks would be a major feature of this approach. Its main objective is to ensure that operators are able to carry out their tasks reliably. (author)

  15. Control console for the X-ray room; Consola de control para la sala de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A

    1998-07-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  16. 75 FR 67450 - Pipeline Safety: Control Room Management Implementation Workshop

    Science.gov (United States)

    2010-11-02

    ... regulations to address human factors and other aspects of control room management for certain pipelines where controllers use supervisory control and data acquisition (SCADA) systems. Under the final rule, pipeline... Washington, DC on October 22, 2010. Jeffrey D. Wiese, Associate Administrator for Pipeline Safety. [FR Doc...

  17. Development of task analysis method for operator tasks in main control room of an advanced nuclear power plant

    International Nuclear Information System (INIS)

    Lin Chiuhsiangloe; Hsieh Tsungling

    2016-01-01

    Task analysis methods provide an insight for quantitative and qualitative predictions of how people will use a proposed system, though the different versions have different emphases. Most of the methods can attest to the coverage of the functionality of a system and all provide estimates of task performance time. However, most of the tasks that operators deal with in a digital work environment in the main control room of an advanced nuclear power plant require high mental activity. Such mental tasks overlap and must be dealt with at the same time; most of them can be assumed to be highly parallel in nature. Therefore, the primary aim to be addressed in this paper was to develop a method that adopts CPM-GOMS (cognitive perceptual motor-goals operators methods selection rules) as the basic pattern of mental task analysis for the advanced main control room. A within-subjects experiment design was used to examine the validity of the modified CPM-GOMS. Thirty participants participated in two task types, which included high- and low-compatibility types. The results indicated that the performance was significantly higher on the high-compatibility task type than on the low-compatibility task type; that is, the modified CPM-GOMS could distinguish the difference between high- and low-compatibility mental tasks. (author)

  18. Research on digital PID control algorithm for HPCT

    International Nuclear Information System (INIS)

    Zeng Yi; Li Rui; Shen Tianjian; Ke Xinhua

    2009-01-01

    Digital PID applied in high-precision HPCT (High-precision current transducer) based on Digital Signal Processor (DSP) TMS320F2812 and special D/A converter was researched. By using increment style PID Control algorithm, the stability and precision of high-precision HPCT output voltage is improved. On basis of deeply analysing incremental digital PID, the scheme model of HPCT is proposed, the feasibility simulation using Matlab is given. Practical hardware circuit verified the incremental PID has closed-loop control process in tracking HPCT output voltage. (authors)

  19. Computationally efficient methods for digital control

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.; Kataria, N.; Brewer, F.

    2008-01-01

    The problem of designing a digital controller is considered with the novelty of explicitly taking into account the computation cost of the controller implementation. A class of controller emulation methods inspired by numerical analysis is proposed. Through various examples it is shown that these

  20. Digital Signal Processing and Control for the Study of Gene Networks

    Science.gov (United States)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  1. [Controlling systems for operating room managers].

    Science.gov (United States)

    Schüpfer, G; Bauer, M; Scherzinger, B; Schleppers, A

    2005-08-01

    Management means developing, shaping and controlling of complex, productive and social systems. Therefore, operating room managers also need to develop basic skills in financial and managerial accounting as a basis for operative and strategic controlling which is an essential part of their work. A good measurement system should include financial and strategic concepts for market position, innovation performance, productivity, attractiveness, liquidity/cash flow and profitability. Since hospitals need to implement a strategy to reach their business objectives, the performance measurement system has to be individually adapted to the strategy of the hospital. In this respect the navigation system developed by Gälweiler is compared to the "balanced score card" system of Kaplan and Norton.

  2. new developments for control room habitability evaluation and analysis. Panel Discussion

    International Nuclear Information System (INIS)

    Cozens, Kurt O.; Harvey, Robert B. Jr.; Hayes, John J. Jr.; Jarosz, Gregory; Lagus, Peter L.; Taplett, Kenneth J.; Schultz, Stephen P.

    2001-01-01

    In 2000, the Nuclear Energy Institute (NEI), nuclear utilities, and the U.S. Nuclear Regulatory Commission (NRC) embarked on a series of working meetings designed to develop means to assess the post-accident performance of control room ventilation systems to ensure required control room habitability (CRH). Through monthly meeting interactions beginning in January 2000, teams from the industry and the NRC have been working to develop an industry approach for assessment of existing systems. New system evaluation techniques are being developed that will allow for evaluation and/or identification of potential performance improvement options. NRC review of the documentation of this approach, as well as broad industry comment, was performed in the first part of 2001. This session will examine technical development topics covering licensing, analysis, testing, and control room refurbishment. NRC, NEI, utility, vendor, and consultant presentations will be followed by a panel session that will explore both process and technical recommendations for improvements. Since the mid-1980's, the NRC has communicated concerns on the inadequacies of control room designs relating to CRH requirements. In the mid-1990's, testing of some control room envelopes indicated that key assumptions supporting the radiological dose analysis might be incorrect. In 1998, the NRC held a public workshop to address CRH concerns. In late 1999, the NRC and the industry agreed to work together on issues affecting CRH and develop the NEI 99-03 guidance document for resolving those issues. This NEI 99-03 industry document defines a process for licensees to assess a plant's design and licensing bases for CRH to ensure that they are established and maintained throughout the life of the plant. The assessment process describes a comparative approach to determine if the plant configuration and operation are consistent with the CRH licensing basis and analysis. The process includes evaluation, testing, and

  3. Human factors engineering control-room-design review/audit report: Palo Verde Nuclear Generating Station, Arizona Public Service Company

    International Nuclear Information System (INIS)

    Savage, J.W.; Lappa, D.A.

    1981-01-01

    A human factors engineering design review of the Palo Verde control room simulator was performed at the site on September 15 through September 17, 1981. Observed human factors design discrepancies were given priority ratings. This report summarizes the team's observations of the control room design and layout and of the control room operators' interface with the control room environment. A list of the human factors strengths observed in the Palo Verde control room simulator is given

  4. Advanced control room evaluation: General approach and rationale

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Wachtel, J.

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs

  5. Digital signal processing in power system protection and control

    CERN Document Server

    Rebizant, Waldemar; Wiszniewski, Andrzej

    2011-01-01

    Digital Signal Processing in Power System Protection and Control bridges the gap between the theory of protection and control and the practical applications of protection equipment. Understanding how protection functions is crucial not only for equipment developers and manufacturers, but also for their users who need to install, set and operate the protection devices in an appropriate manner. After introductory chapters related to protection technology and functions, Digital Signal Processing in Power System Protection and Control presents the digital algorithms for signal filtering, followed

  6. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  7. Digital control for the Penn State Breazeale reactor

    International Nuclear Information System (INIS)

    Raiskums, G.A.

    1991-01-01

    Digital control has been an integral part of Canada deuterium uranium (CANDU) nuclear power reactor technology since the 1960s. Much of the high CANDU production reliability can be attributed to the fault-tolerant and flexible control algorithms achievable with digital control. Atomic Energy of Canada Limited (AECL) has now transported this technology to research reactors, using industrial-grade microcomputers to solve equipment aging and spares obsolescence problems so prevalent at older installations. The open architecture of the Intel 8086-based computers provides for wide availability and reasonably priced, quality hardware from numerous sources. AECL recently supplied the Pennsylvania State University Breazeale Reactor (PSBR) with a new console containing a digital control and monitoring system. The reactor safety system (RSS) was also replaced with hardwired relay logic and truly analog state-of-the-art wide range nuclear instrumentation supplied by AECL's subcontractor, Gamma-Metrics. Retaining analog hardware for the mandated RSS functions was key to minimizing licensing efforts and the extensive verification and validation that would be required for safety system software. This paper elaborates on the digital control and monitoring portion of the PSBR console replacement, with emphasis on the key system objectives

  8. Study on comprehensive evaluation model for nuclear power plant control room layout

    International Nuclear Information System (INIS)

    Zhu Yiming; Liu Yuan; Fan Huixian

    2010-01-01

    A comprehensive evaluation model for layout of the main control room of nuclear power plants was proposed. Firstly the design scope and principle for the layout of the main control room were defined based on the standards, and then the index system for the comprehensive evaluation was established. Finally, comprehensive evaluation was carried out for the layout design by applying the fuzzy comprehensive evaluation method in the index system. (authors)

  9. Digital control in LLRF system for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhang, Tianjue; Wang, Chuan

    2016-05-21

    As a driven accelerator, the CYCIAE-100 cyclotron is designed by China Institute of Atomic Energy for the Beijing Radio Ion-beam Facility project. The cyclotron RF system is designed to use two RF power sources of 100 kW to drive two half-wavelength cavities respectively. Two Dee accelerating electrodes are kept separately from each other inside the cyclotron, while their accelerating voltages are maintained in phase by the efforts of LLRF control. An analog–digital hybrid LLRF system has been developed to achieve cavity tuning control, dee voltage amplitude and phase stabilization etc. The analog subsystems designs are focused on RF signal up/down conversion, tuning control, and dee voltage regulation. The digital system provides an RF signal source, aligns the cavity phases and maintains a Finite State Machine. The digital parts combine with the analog functions to provide the LLRF control. A brief system hardware introduction will be given in this paper, followed by the review of several major characteristics of the digital control in the 100 MeV cyclotron LLRF system. The commissioning is also introduced, and most of the optimization during the process was done by changing the digital parts.

  10. Response Times of Operators in a Control Room

    DEFF Research Database (Denmark)

    Platz, O.; Rasmussen, Jens; Skanborg, Preben Zacho

    A statistical analysis was made of operator response times recorded in the control room of a research reactor during the years 1972-1974. A homogeneity test revealed that the data consist of a mixture of populations. A small but statistically significant difference is found between day and night...

  11. Digitally Controlled Converter with Dynamic Change of Control Law and Power Throughput

    DEFF Research Database (Denmark)

    Nesgaard, Carsten; Andersen, Michael Andreas E.; Nielsen, Nils

    2003-01-01

    the substitution of analog controllers with their digital counterparts are considered. The outline of the paper is divided into two segments – the first being an experimental analysis of the timing behavior by means of code optimization – the second being an examination of the dynamics of incorporating two control......With the continuous development of faster and cheaper microprocessors the field of applications for digital control is constantly expanding. Based on this trend the paper at hand describes the analysis and implementation of multiple control laws within the same controller. Also, implemented within...

  12. Palo Verde receives new control room simulator

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A new control room simulator was delivered to Arizona Public Service Company's Palo Verde nuclear generating station in late August. The system, the second simulator on site, will be used for training beginning in January 1994, said David C. Brown, manager of the simulator upgrade project. Having two simulators will ease the current tight training schedule, and allow expansion of instruction to personnel other than licensed operators

  13. The changing sensory room

    DEFF Research Database (Denmark)

    2018-01-01

    In 2017 the kindergarten The Milky Way in the city Vejle in Denmark made a sensory room that has the special ability change whenever wanted by the children and social educators. Kjetil Sandvik (to the right) from Copenhagen University and Klaus Thestrup from Aarhus University reflects upon what...... they saw, took part in and talked with the social educators about. Jacob Knudsen from VIFIN filmed the two gentlemen and organised the project. it is a room composed around common experiments, many self-made objects, open narrative structures. and a combination of digital and analogue elements....

  14. Look into the PS Main Control Room (partial view)

    CERN Multimedia

    1974-01-01

    Jean-Pierre Potier at work. The 26 GeV Synchrotron and later also its related machines (Linacs 1,2,3; PS-Booster, LEP-Injector Linacs and Electron-Positron Accumulator; Antiproton Accumulator, Antiproton Collector, Low Energy Antiproton Ring and more recently Antiproton Decelerator) were all controlled from the PS control room situated at the Meyrin site. The SPS and LEP were controlled from a separat control centre on the Prevessin site. In 2005 all controls were transferred to the Prevessin centre.

  15. Recent development of nuclear power in Japan and instrumentation and control system and control room equipment for advanced light water reactors

    International Nuclear Information System (INIS)

    Wakayama, N.

    1992-01-01

    This paper was provided for the 13th IAEA/IWG-NPPCI Meeting and aims to introduce an outline of recent development of nuclear power in Japan and some topics in the field of nuclear power plant control and instrumentation. Forty units of nuclear power plants are in operation in Japan and five units of BWRs and six PWRs are under construction. Construction of prototype FBR Monju have almost completed an construction of High-Temperature Engineering Test Reactor, HTTR, started in March 1991. In parallel of those, extensive effort has been carried out to develop the third generation LWRs which are called Advanced BWR (ABWR) and Advanced PWR (APWR). Two Advanced BWRs are under safety review for construction. Instrumentation and control system of these Advanced LWRs adopts integrated digital I and C system, optical multiplexing signal transmission, fault tolerant control systems and software logic for reactor protection and safety systems and enhances plant control performance and provides human-friendly operation and maintenance environments. Main control room of these Advanced LWRs, comprised with large display panels and advanced console, has special futures such as one-man sit-down operation, human friendly man-machine interface, high level automation in operation and maintenance. (author). 7 refs, 9 figs, 1 tab

  16. A computerized main control room for NPP: Development and investigation

    International Nuclear Information System (INIS)

    Anokhin, A. N.; Marshall, E. C.; Rakitin, I. D.; Slonimsky, V. M.

    2006-01-01

    An ergonomics assessment of the control room at Leningrad Nuclear Power Plant has been undertaken as part of an international project funded by the EU TACIS program. The project was focused on the upgrading of the existing control facilities and the installation of a validation facility to evaluate candidate refurbishment proposals before their implementation at the plant. The ergonomics methodology applied in the investigation was wide ranging and included an analysis of reported events, extensive task analysis (including novel techniques) and validation studies using experienced operators. The paper addresses the potential difficulties for the human operator associated with fully computerized interfaces and shows how the validation facility and the outcomes from ergonomics assessment will be used to minimise any adverse impact on performance that may be caused by proposed control room changes. (authors)

  17. Market and Labour Control in Digital Capitalism

    Directory of Open Access Journals (Sweden)

    Philipp Staab

    2016-11-01

    Full Text Available Theorists of post capitalism have recently argued for a more or less inevitable end to capitalism. They assume that private accumulation is systematically blocked by the inability of capitalist corporations to create revenues by setting prices as they lose control over the reproduction of their commodities and that in this process, capitalist labour will eventually disappear. Drawing on a case study of Amazon and thoughts on the policies of other leading digital corporations, we challenge these assumptions. Key corporate players of digitization are trying to become powerful monopolies and have partly succeeded in doing so, using the network effects and scaling opportunities of digital goods and building socio-technical ecosystems. These strategies have led to the development of in part isomorphic structures, hence creating a situation of oligopolistic market competition. We draw on basic assumptions of monopoly capital theory to argue that in this situation labour process rationalization becomes key to the corporation’s competitive strategies. We see the expansion of digital control and the organizational structures applied by key corporate players of the digital economy as evidence for the expansion of capitalist labour, not its reduction.

  18. Psychological factors of professional success of nuclear power plant main control room operators

    Directory of Open Access Journals (Sweden)

    Kosenkov A.A.

    2014-12-01

    Full Text Available Aim: to conduct a comparative analysis of the psychological characteristics of the most and least successful main control room operators. Material and Methods. Two NPP staff groups: the most and least successful main control room operators, who worked in routine operating conditions, were surveyed. Expert evaluation method has been applied to identify the groups. The subjects were administered the Minnesota Multiphasic Personality Inventory (MMPI, Cattell's Sixteen Personality Factor Questionnaire (16PF form A and Raven's Progressive Matrices test. Results. Numerous significant psychological differences between the groups of most and least successful control room operators were obtained: the best operators were significantly more introverted and correctly solved more logical tasks with smaller percentage of mistakes under time pressure than worst ones. Conclusions: 1. The psychodiagnostic methods used in the study were adequate to meet research objective 2. Tendency to introversion, as well as developed the ability to solve logic problems undertime pressure, apparently, are important professional qualities for control room operators. These indicators should be considered in the process of psychological selection and professional guidance of nuclear power plant operators.

  19. Digital Control of External Devices through the Parallel Port of a ...

    African Journals Online (AJOL)

    Digital Control of External Devices through the Parallel Port of a Computer Using Visual Basic. ... Nigerian Journal of Technology ... Keywords: device controller, digital switching, digital interfacing, visual basic, computer parallel port ...

  20. Upgrading the Reactor Power Control Concept with a Modern Digital Control System

    International Nuclear Information System (INIS)

    Laengle, M.; Schildheuer, R.

    2011-01-01

    Within the framework of a retrofit project, a reactor power instrumentation and control system (REALL) - consisting of a limiting system and the respective reactor control systems - was retrofitted and modernized in a 1450-MW-nuclear-power-plant in Baden-Wuerttemberg. The REALL process control functions were implemented within a modern and completely digitized control system that has been designed for use in safety I and C applications. Along with the installation of the digital control system, the associated hardware was adapted to today's state of the art. At the same time, the given potential for improvement, as revealed during the plant's operation so far, was taken into account in the programming. In order to provide for transparent and quality-assured project management, the implementation was based on a stage plan consisting of several steps, along with specific milestones. Final commissioning of the modern digital control system took place during the 2008 plant overhaul. Despite the complex commissioning procedure, it was possible to avoid a major prolongation of the plant's downtime and to keep within a rough 4-week timeframe that had originally been defined for the plant overhaul to adequate structuring of the project, goal-oriented implementation of preparatory infrastructural measures and adequate scheduling of the coordinated activities of the installation and commissioning teams entrusted with the commissioning of the digital control system during the overhaul activities. (author)

  1. Multichannel active control of random noise in a small reverberant room

    DEFF Research Database (Denmark)

    Laugesen, Søren; Elliott, Stephen J.

    1993-01-01

    An algorithm for multichannel adaptive IIR (infinite impulse response) filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy are init...... with the primary noise field generated by a panel excited by a loudspeaker in an adjoining room. These results show that far better performances are provided by IIR and FIR filters when the primary source has a lightly damped dynamic behavior which the active controller must model...

  2. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    Almerico, F.; Machiels, A.J.; Ornberg, S.C.; Lahti, G.P.

    1985-01-01

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  3. A work process and information flow description of control room operations

    International Nuclear Information System (INIS)

    Davey, E.; Matthews, G.

    2007-01-01

    The control room workplace is the location from which all plant operations are supervised and controlled on a shift-to-shift basis. The activities comprising plant operations are structured into a number of work processes, and information is the common currency that is used to convey work requirements, communicate business and operating decisions, specify work practice, and describe the ongoing plant and work status. This paper describes the motivation for and early experience with developing a work process and information flow model of CANDU control room operations, and discusses some of the insights developed from model examination that suggest ways in which changes in control centre work specification, organization of resources, or asset layout could be undertaken to achieve operational improvements. (author)

  4. Uncertainty analysis for parameters of CFAST in the main control room fire scenario

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanhong; Guo, Yun; Peng, Changhong [Univ. of Science and Technology of China No. 96, Anhui (China). School of Nuclear Science and Technology

    2017-07-15

    The fire accident is one of important initial events in the nuclear power plant. Moreover, the fire development process is extremely difficult and complex to predict accurately. As a result, the plant internal fire accidents have become one of the most realistic threat on the safety of the nuclear power plants. The main control room contains all the control and monitoring equipment that operators need. Once it is on fire, hostile environments would greatly impact on the safety of human operations. Therefore, fire probability safety analysis on the main control room has become a significant task. By using CFAST and Monte Carlo sampling method as a tool for fire modeling to simulate main control room on fire, we can examine uncertainty analysis for the important parameters of CFAST.

  5. Control system of digital x-ray systems by quality parameters

    International Nuclear Information System (INIS)

    Balashov, S.V.; Kovalenko, Yu.N.

    2013-01-01

    The paper proposed a control system of X-ray digital equipment on quality indicators. Two basic parameters were determined: image quality and patients' radiation load. A method for monitoring these indicators is proposed. The criterion of equipment suitability is to obtain control digital X-ray images of diagnostically acceptable quality at a fixed low entrance dose in the plane of the digital detector. It is shown that the control system of X-ray digital equipment based on indicators of quality is the most appropriate in situations of deficit of financial resources, since minimizing the costs for the purchase and running of control systems, does not require highly skilled technical personnel, and reduces the duration of the equipment inspection. (authors)

  6. Application of digital control techniques for satellite medium power DC-DC converters

    Science.gov (United States)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  7. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  8. Optimal sampling period of the digital control system for the nuclear power plant steam generator water level control

    International Nuclear Information System (INIS)

    Hur, Woo Sung; Seong, Poong Hyun

    1995-01-01

    A great effort has been made to improve the nuclear plant control system by use of digital technologies and a long term schedule for the control system upgrade has been prepared with an aim to implementation in the next generation nuclear plants. In case of digital control system, it is important to decide the sampling period for analysis and design of the system, because the performance and the stability of a digital control system depend on the value of the sampling period of the digital control system. There is, however, currently no systematic method used universally for determining the sampling period of the digital control system. Generally, a traditional way to select the sampling frequency is to use 20 to 30 times the bandwidth of the analog control system which has the same system configuration and parameters as the digital one. In this paper, a new method to select the sampling period is suggested which takes into account of the performance as well as the stability of the digital control system. By use of the Irving's model steam generator, the optimal sampling period of an assumptive digital control system for steam generator level control is estimated and is actually verified in the digital control simulation system for Kori-2 nuclear power plant steam generator level control. Consequently, we conclude the optimal sampling period of the digital control system for Kori-2 nuclear power plant steam generator level control is 1 second for all power ranges. 7 figs., 3 tabs., 8 refs. (Author)

  9. Control room habitability Analysis and Testing for Wolsong Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. B. [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In response to this recommendation, KHNP has established CRH program and performed tracer gas in leakage tests. These activities are described herein including the emergency ventilation system analysis, acceptance criteria calculation for the test and Control Room Envelope (CRE) discrimination, and the results of the tracer gas tests are presented. CRH analysis including unfiltered in leakage tests according to the methodology in ASTM E741 was performed for Wolsong Unit 1. The results show that the integrity of the control room of Wolsong Unit 1 is in good condition to maintain the reactor in a safe condition under accident conditions, which complies with the US NRC regulatory guides 1.78, 1.196 and 1.197.

  10. Inside the LEP control room at start-up

    CERN Multimedia

    1989-01-01

    Physicists grouped around a screen in the LEP control room at the strat-up of LEP on 14 July 1989. The emotion of the moment is clear. Carlo Rubbia, Director-General of CERN at the time, is in the centre and on his left, Herwig Schopper, former Director-General of the Organization.

  11. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  12. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy)

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important

  13. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    International Nuclear Information System (INIS)

    Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M.

    2012-01-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important

  14. Control room design and human factors using a virtual reality based tool for design, test and training

    International Nuclear Information System (INIS)

    Lirvall, Peter

    1998-02-01

    This report describes a user-centred approach to control room design adopted by IFE for the nuclear industry. The novelty of this approach is the development of a Control Room Philosophy, and the use of Virtual Reality (VR) technology as a tool in the design process, integrated with a specially developed Design Documentation System (DDS) and a process display prototyping tool PICASSO-3. The control room philosophy identifies all functional aspects of a control centre, to define the baseline principles and guidelines for the design. The use of VR technology enables end-users of the control room design (e.g. control room operators) to specify their preferred design of the new control room, and to replace the need for a physical mock-up to test and evaluate the proposed design. The DDS, integrated with the VR design tool, guides the control room operators, through a structured approach, to document the proposed design in a complete design specification. The VR tool, specially developed by IFE, is called the VR based Design, Test and Training tool (VR DTandT). It is not only intended to visualise the design, but also to test and evaluate the design. When the design is implemented, the same model is re-used as a VR based training simulator for operators. A special feature in the VR DTandT tool is that the verification and validation (VandV) tests, concerning human factors, are according to the regulative standards for nuclear control rooms

  15. Proceedings: Electromagnetic interference control in modern digital instrumentation and control upgrades

    International Nuclear Information System (INIS)

    1993-06-01

    A workshop on Electro-Magnetic Interference (EMI) Control in Modern Digital Instrumentation ampersand Control System Upgrade was held in Baltimore on September 10-11, 1992 to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 70 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, and government agencies. The workshop consists of four sessions: (1) Organizational EMC Perspectives, (2) EMI Environment, Case Histories ampersand Solutions, (3) EMC in Digital Instrumentation ampersand Control Systems, and (4) EMI Utility Needs. A group discussion followed the presentations to identify utility needs. Individual papers have been cataloged separately

  16. Cognitive requirements in the redesign of a TRIGA RC-1 control room: The role of the operators' evaluations

    International Nuclear Information System (INIS)

    Visciola, M.; Bagnara, S.; Ruggeri, R.

    1986-01-01

    When a control room undergoes to a redesign process it is of crucial importance to analyze how operators critically review it and which improvements they suggest. This is even more critical when presumably the same people will operate in the new 'redesigned' control room: Consistency in the mental models possessed by the operators of the plant functions and of their control should be emphasized. Consistency in the mental models can be assumed when redesign follows well-established guidelines drawn from experiences and studies carried out in very similar situations. However, this condition is not fulfilled when a nuclear research control room has to be redesigned, since available guidelines (e.g.; NUREG-0700) are based on studies conducted on nuclear power plant control rooms. These two types of facilities are of much difference as for activities performed in the control room, goals to be aimed at, costs and risks. As a consequence, the available guidelines cannot be safely applied to such a situation as the redesign of a TRIGA RC-1 control room. So, data have to be collected in order to allow the operators to efficiently and easily adapt to the new control room by consistently 'updating' their mental models. In the present study, these data have been collected through structured interviews, which consisted of a modified version of EPRI. The results can be summarized as follows: 1) The operators critically reviewed the present control room and underlined the lack of 'transparency' of the control system as for the plant's conditions and for the feedbacks about their own activities. 2) The operators' work analysis showed that they spend much of their time out of the control room. This means that, if the operators have to stay in the control room, they should be allowed to perform more and higher-level activities than those presently required, to prevent understimulation. So, the redesign should or allow and support the central control and maintenance, and other

  17. Calculation of Digital Control Circuits using Scilab Environment

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2015-09-01

    Full Text Available The paper presents the computing of digital control circuits using Scilab environment. It exemplifies the influence of the sampling time in case of a transfer system described by a PT3 element composed of one PT1 and one PT2 element. For a continuous control system, the transfer function in z is computed and replaced with a digital control system. The presented calculation, done in Scilab, highlights the test responses of the process evidencing the systems performances.

  18. Some aspects of digital I and C and digital human-system interface upgrades in nuclear power plants

    International Nuclear Information System (INIS)

    Mandic, D.

    2005-01-01

    Digital I and C technology introduces some new terms and new processes like software life cycle, process computer configuration control, digital human-system interface (HSI), software V and V (Verification and Validation), software common mode failure potential, software documentation, etc. Based on the experience from NEK, and other NPPs and published reports from other organizations, this paper sheds light on challenging tasks related to some aspects of the digital I and C upgrades and especially the NPP MCR/MCB HSI (Nuclear Power Plant Main Control Room / Main Control Board Human-System Interface) upgrade. The Ref. [1], EPRI Report TR-1008122 was used as a guidance to analyze original NEK MCR/MCB HSI design (1970s), to describe migration from the original MCR/MCB HSI design to the 2005 AS-BUILT status and to propose the authors vision for the key planning aspects for I and C upgrades and MCR modernization. This paper submits the justified proposal for the endpoint vision and the migration path applicable to NEK MCR/MCB HSI modernization, as well as some of the possible risks and lessons learned. (author)

  19. Digital control for nuclear reactors - lessons learned

    International Nuclear Information System (INIS)

    Bernard, J.A.; Aviles, B.N.; Lanning, D.D.

    1992-01-01

    Lessons learned during the course of the now decade-old MIT program on the digital control of nuclear reactors are enumerated. Relative to controller structure, these include the importance of a separate safety system, the need for signal validation, the role of supervisory algorithms, the significance of command validation, and the relevance of automated reasoning. Relative to controller implementation, these include the value of nodal methods to the creation of real-time reactor physics and thermal hydraulic models, the advantages to be gained from the use of real-time system models, and the importance of a multi-tiered structure to the simultaneous achievement of supervisory, global, and local control. Block diagrams are presented of proposed controllers and selected experimental and simulation-study results are shown. In addition, a history is given of the MIT program on reactor digital control

  20. Digital Resonant Controller based on Modified Tustin Discretization Method

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2016-11-01

    Full Text Available Resonant controllers are used in power converter voltage and current control due to their simplicity and accuracy. However, digital implementation of resonant controllers introduces problems related to zero and pole mapping from the continuous to the discrete time domain. Namely, some discretization methods introduce significant errors in the digital controller resonant frequency, resulting in the loss of the asymptotic AC reference tracking, especially at high resonant frequencies. The delay compensation typical for resonant controllers can also be compromised. Based on the existing analysis, it can be concluded that the Tustin discretization with frequency prewarping represents a preferable choice from the point of view of the resonant frequency accuracy. However, this discretization method has a shortcoming in applications that require real-time frequency adaptation, since complex trigonometric evaluation is required for each frequency change. In order to overcome this problem, in this paper the modified Tustin discretization method is proposed based on the Taylor series approximation of the frequency prewarping function. By comparing the novel discretization method with commonly used two-integrator-based proportional-resonant (PR digital controllers, it is shown that the resulting digital controller resonant frequency and time delay compensation errors are significantly reduced for the novel controller.

  1. Technical quality control - constancy controls for digital mammography systems

    International Nuclear Information System (INIS)

    Pedersen, K.; Landmark, I.D.; Bredholt, K.; Hauge, I.H.R.

    2009-04-01

    To ensure the quality of mammographic images, so-called constancy control tests are performed frequently. The report contains a programme for constancy control of digital mammography systems, encompassing the mammography unit, computed radiography (CR) systems, viewing conditions and displays, printers, and procedures for data collection for patient dose calculations. (Author)

  2. Ergonomics in the licensing and evaluation of nuclear reactors control room; A ergonomia no licenciamento e na avaliacao de salas de controle de reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac Jose Antonio Luquetti dos [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Vidal, Mario Cesar Rodriguez [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia de Producao

    2002-07-01

    A nuclear control room is a complex system that controls a thermodynamic process used to produce electrical energy. The operators interact with the control room through interfaces that have significant implications to nuclear plant safety and influence the operator activity. The TMI (Three Mile Island) accident demonstrated that only the anthropometric aspects were not enough for an adequate nuclear control room design. The studies showed that the accident was aggravated because the designers had not considered adequately human factor aspects. After TMI accident, the designers introduce in the nuclear control room development only human factors standards and human factors guidelines. The ergonomics approaches was not considered. Our objective is introduce in nuclear control room design and nuclear control room evaluation, a methodology that. includes human factors standards, human factors guidelines and ergonomic approaches, the operator activity analysis. (author)

  3. MAS2-8 radar and digital control unit

    Science.gov (United States)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  4. Research on design method of main control room intake air radioactive monitoring

    International Nuclear Information System (INIS)

    Li Lei; Sun Yu; Wang Jiaoya; Liu Hongtao

    2014-01-01

    According to the design of the main control room intake gamma radiation dose rate monitoring channels in CPR1000 project and the study of relevant regulations and standards, a design method of main control room air inlet radioactive monitoring was presented. The measured object, equipment layout and chain operation were described. The threshold setting was explored using a calculation model established by MCNP software. The advantages, disadvantages and improvement ideas of this design were presented on the basis of calculation results. (authors)

  5. Parameters-adjustable front-end controller in digital nuclear measurement system

    International Nuclear Information System (INIS)

    Hao Dejian; Zhang Ruanyu; Yan Yangyang; Wang Peng; Tang Changjian

    2013-01-01

    Background: One digitizer is used to implement a digital nuclear measurement for the acquisition of nuclear information. Purpose: A principle and method of a parameter-adjustable front-end controller is presented for the sake of reducing the quantitative errors while getting the maximum ENOB (effective number of bits) of ADC (analog-to-digital converter) during waveform digitizing, as well as reducing the losing counts. Methods: First of all, the quantitative relationship among the radiation count rate (n), the amplitude of input signal (V in ), the conversion scale of ADC (±V) and the amplification factor (A) was derived. Secondly, the hardware and software of the front-end controller were designed to fulfill matching the output of different detectors, adjusting the amplification linearly through the control of channel switching, and setting of digital potentiometer by CPLD (Complex Programmable Logic Device). Results: (1) Through the measurement of γ-ray of Am-241 under our digital nuclear measurement set-up with CZT detector, it was validated that the amplitude of output signal of detectors of RC feedback type could be amplified linearly with adjustable amplification by the front-end controller. (2) Through the measurement of X-ray spectrum of Fe-5.5 under our digital nuclear measurement set-up with Si-PIN detector, it was validated that the front-end controller was suitable for the switch resetting type detectors, by which high precision measurement under various count rates could be fulfilled. Conclusion: The principle and method of the parameter-adjustable front-end controller presented in this paper is correct and feasible. (authors)

  6. Digital control of plasma position in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Emami, M.; Babazadeh, A.R.; Roshan, M.V.; Memarzadeh, M.; Habibi, H. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of). Nuclear Fusion Research Center. Plasma Physics Lab.

    2002-03-01

    Plasma position control is one of the important issues in the design and operation of tokamak fusion research device. Since a tokamak is basically an electrical system consisting of power supplies, coils, plasma and eddy currents, a model in which these components are treated as an electrical circuits is used in designing Damavand plasma position control system. This model is used for the simulation of the digital control system and its parameters have been verified experimentally. In this paper, the performance of a high-speed digital controller as well as a simulation study and its application to the Damavand tokamak is discussed. (author)

  7. HYBRID ALARM SYSTEMS: COMBINING SPATIAL ALARMS AND ALARM LISTS FOR OPTIMIZED CONTROL ROOM OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; J.J. Persensky

    2012-07-01

    The US Department of Energy (DOE) is sponsoring research, development, and deployment on Light Water Reactor Sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current nuclear power plants. One of the main areas of focus is control room modernization. Within control room modernization, alarm system upgrades present opportunities to meet the broader goals of the LWRS project in demonstrating the use and safety of the advanced instrumentation and control (I&C) technologies and the short-term and longer term objectives of the plant. In this paper, we review approaches for and human factors issues behind upgrading alarms in the main control room of nuclear power plants.

  8. Skill retention and control room operator competency

    International Nuclear Information System (INIS)

    Stammers, R.B.

    1981-12-01

    The problem of skill retention in relation to the competency of control room operators is addressed. Although there are a number of related reviews of the literature, this particular topic has not been examined in detail before. The findings of these reviews are summarised and their implications for the area discussed. The limited research on skill retention in connection with process control is also reviewed. Some topics from cognitive and instructional psychology are also raised. In particular overlearning is tackled and the potential value of learning strategies is assessed. In conclusion the important topic of measurement of performance is introduced and a number of potentially valuable training approaches are outlined. (author)

  9. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    International Nuclear Information System (INIS)

    Hanes, L. F.; Naser, J.

    2006-01-01

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  10. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  11. Evaluation for the habitability of the main control room and the performance of the smoke control system at NPP

    International Nuclear Information System (INIS)

    Ji, M. H.; Hong, S. R.; Sung, C. K.

    2002-01-01

    In addition to the indoor air conditioning, the habitability of the main control room for the operators at Nuclear Power Plants (NPP) has to be ensured with a strict design requirements to protect the workers from the radiation exposure, hazardous chemicals, and the smoke with toxic combustion products. With this context, the internal pressure of the control room envelope shall be sustained at slightly higher pressure than the atmospheric pressure. At this paper, the internal pressure of the control room envelope was analyzed by use of the evaluation program, CONTANW that was developed by the NIST. On the basis of design values, the performance status of the smoke control system was also checked by the program, CFAST that was released by the NIST to confirm the dynamic smoke behaviors

  12. Virtual instrument for controlling and monitoring digitalized power supply in SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Chen Huanguang; Chinese Academy of Sciences, Beijing; Xu Ruinian; Shen Tianjian; Li Deming

    2006-01-01

    The Shanghai Synchrotron Radiation Facility (SSRF) needs extremely precise power supplies for their various magnets. A digital controller is being developed for the power converters of the SSRF power supply (PS). In the digital controller, a fully digital pulse-width modulator (PWM) directly controls the power unit insulated gate bipolar transistor (IGBT) of the PS. A program in LabVIEW language has been developed to control and monitor the digital PS via serial communication (RS232) from a PC and to modify its parameters as well. In this article, the software design of the virtual instrument for controlling and monitoring digitalized PS and its associated functions are described, and the essential elements of the program graphical main-VI and sub-VI source code are presented and explained. The communication protocol and the structure of the developed system are also included in this article. (authors)

  13. Commentary on nuclear power plant control room habitability - including a review of related LERs (1981-1983)

    International Nuclear Information System (INIS)

    Moeller, D.W.; Kotra, J.P.

    1985-01-01

    A review of Licensee Event Reports filed by the operator of commercial nuclear power plants from 1981 through 1983 has revealed that approximately 3% pertain to systems that maintain or monitor control room habitability. Dominant contributors were deficiencies in normal and emergency trains of heating, ventilation, air conditioning and air cleaning systems (45%), deficiencies in atmospheric monitors for toxic and radioactive substances (27%) and deficiencies in fire protection systems (13%). To correct the situation revealed by these analyses and by information provided from other sources, it is recommended that the NRC incorporate into its program plan the development of information that anticipates the conditions within a control room during emergencies, and that criteria for habitability within the control room be better defined. In addition, it is suggested than an improved protocol for testing control room air-related systems be developed, that the required thickness and number of layers of charcoal adsorption beds for control room air cleaning systems be re-evaluated, and that steps be taken to improve the quality of heating, ventilating, air conditioning and air cleaning components. It is also recommended that greater emphasis be placed on maintaining nuclear power plant control rooms in a habitable condition during emergencies so that the operators can remain there and safely shut down the plant, in contrast to placing reliance on the use of remote shutdown panels or auxiliary control facilities

  14. The reactor power control system based on digital control in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Chong; Zhou Jianliang; Tan Ping

    2010-01-01

    The PLC (Programmable Logical Controller), digital communication and redundant techniques are applied in the rod control and position indication system(namely the reactor power control system) to perform the power control in the 300 MW reactor automatically and integrally in Qinshan Phase I project. This paper introduces the features, digital design methods of hardware of the instrumentation and control system (I and C) in the reactor power control. It is more convenient for the information exchange by human-machine interface (HMI), operation and maintenance, and the system reliability has been greatly improved after the project being reconstructed. (authors)

  15. Further improvement of human-machine interface for ABWR main control room

    International Nuclear Information System (INIS)

    Makino, S.

    2001-01-01

    Tokyo Electric Power Company (TEPCO) has developed main control room panels based on progress in C and I technology. ABWR type main control room panels (ABWR MCR PNLs) are categorized as third generation type domestic BWR MCR, that is, they are were developed step by step based on operating experience with the first and the second generation BWR. ABWR type main control room panels were applied to Kashiwazaki-Kariwa Nuclear Power Station Units Number 6 and 7 (K-6/7) for the first time. K-6/7 are the first advanced BWR (ABWR), which started commercial operation in November 1996 and July 1997, respectively. The concept of ABWR MCR design was verified through wooden mock-up panels, start-up tests and commercial operation. Though the K-6/7 design has borne fruit, we are planning to refine and standardize the design based on the following concepts: to maintain the plant operation and monitoring style of ABWR MCR PNLs; to introduce brand-new HMI technology and devices; to incorporate operators' advice in the design. This paper outlines the features and improvements of the K6/7 MCR PNLs design. (author)

  16. The Control Room Upgrade in Oskarshamn 2 Modernization Project Lesson Learned from Ongoing Human Factor design

    International Nuclear Information System (INIS)

    Thomas, Gunnarsson; Magnus, Eliasson

    2011-01-01

    Due to recent changes in Swedish commercial nuclear safety system requirements, OKG decided to make the changes required by the new safety requirements, apply for a 30-year license extension, and to concurrently make changes for a major power uprate; this project is called the Plant Life Extension project (PLEX). It was decided, in addition to several plant modifications, to re build the old control room to a new modern screen-based control room located in the same space as the old one, and with the same number of operators. This paper explains the approach taken when modernizing the control room as a part of the Oskarshamn 2 Modernization project PLEX, the results, and the lessons learned from this ongoing work. The combination of changes results in a modernization project that is expected to increase output power by approximately 50 MWe through increased efficiency and to result in an increase in thermal power from 1800 MWt to 2300 MWt (28%) and electrical power from 620 MWe to 840 MWe due to the power uprate. The license to operate OKG2 expires in 2012 The PLEX project is one of the most ambitious nuclear power plant modernization projects ever implemented, world-wide. The application of human factors engineering (HFE) and control room and HSI design is a complex challenge. The original main control room from 1975 in Oskarshamn 2, was quite compact and provided a fairly good overview of the process. New requirements for enhanced safety and other design changes in the process systems and instrumentation led to a step-wise installation of new information and control equipment in the control room. Since the control room was quite limited in space, the control room grew larger, and the new equipment was installed farther away from the operator workplaces into an adjacent control room. This was even the case for the new safety systems. These systems were functioning well separately as such, but in some cases their interfaces were inconsistent, leading to increased

  17. Design type testing for digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Bastl, W.; Mohns, G.

    1997-01-01

    The design type qualification of digital safety instrumentation and control is outlined. Experience shows that the concepts discussed, derived from codes, guidelines and standards, achieve useful results. It has likewise become clear that the systematics of design type qualification of the hardware components is also applicable to the software components. Design type qualification of the software, a premiere, could be performed unexpectedly smoothly. The hardware design type qualification proved that the hardware as a substrate of functionality and reliability is an issue that demands full attention, as compared to conventional systems. Another insight is that design qualification of digital instrumentation and control systems must include plant-independent systems tests. Digital instrumentation and control systems simply work very differently from conventional control systems, so that this testing modality is inevitable. (Orig./CB) [de

  18. SIMULACIÓN DE CONTROLADORES DIGITALES SIMULATION OF DIGITAL CONTROLLERS

    Directory of Open Access Journals (Sweden)

    Carlos Álvarez G

    2009-12-01

    Full Text Available El presente trabajo tiene como objetivo la implementación de controladores digitales en un entorno de simulación controlado, para esto se desarrolla una plataforma de hardware que permite ejecutar los programas en lenguaje C generados en una estación de trabajo. Estos programas corresponden al controlador y a la planta que son generados por un software que genera dichos programas a partir de sus parámetros de modelación aplicando teoría de control digital sobre procesos reales.This paper describes an implementation of digital controllers in a simulation environment for including a hardware platform for running programs generated on a workstation. These programs for both the controller and the plant are generated by software based on parameters using digital control theory for real processes.

  19. Improving safety margins for control room habitability, through heating/ventilation/air conditioning modifications

    International Nuclear Information System (INIS)

    Beach, D.R.; Fillingim, W.; Bell, G.; Eurich, R.G.

    1989-01-01

    The Fort Calhoun power station began operation in September 1973. Since that time, modifications to the plant have required the addition of a substantial number of electrical and control components in the control room, which has resulted in an increased heat load in this area. Additionally, NUREG-0737, Item III.D.3.4, imposed requirements on the ventilating system related to protection of personnel from the effects of toxic and radioactive gas releases, which were not considered in the original design. Omaha Public Power District (OPPD) has recently undertaken a major modification to the Fort Calhoun station control room ventilating system to improve the safety margins for control room habitability. The goals of the modification were to achieve adequate cooling capacity with fully redundant equipment, improve habitability under accident conditions, and eliminate several potential problems related to steam line break and equipment qualification. Additionally, the scope of the project grew as design problems emerged

  20. MATLAB simulation for an experimental setup of digital feedback control

    International Nuclear Information System (INIS)

    Zheng Lifang; Liu Songqiang

    2005-01-01

    This paper describes the digital feedback simulation using MATLAB for an experimental accelerator control setup. By analyzing the plant characteristic in time-domain and frequency-domain, a guideline for design of digital filter and PID controller is derived. (authors)

  1. Randomized controlled trial on promoting influenza vaccination in general practice waiting rooms.

    Directory of Open Access Journals (Sweden)

    Christophe Berkhout

    Full Text Available Most of general practitioners (GPs use advertising in their waiting rooms for patient's education purposes. Patients vaccinated against seasonal influenza have been gradually lessening. The objective of this trial was to assess the effect of an advertising campaign for influenza vaccination using posters and pamphlets in GPs' waiting rooms.Registry based 2/1 cluster randomized controlled trial, a cluster gathering the enlisted patients of 75 GPs aged over 16 years. The trial, run during the 2014-2015 influenza vaccination campaign, compared patient's awareness from being in 50 GPs' standard waiting rooms (control group versus that of waiting in 25 rooms from GPs who had received and exposed pamphlets and one poster on influenza vaccine (intervention group, in addition to standard mandatory information. The main outcome was the number of vaccination units delivered in pharmacies. Data were extracted from the SIAM-ERASME claim database of the Health Insurance Fund of Lille-Douai (France. The association between the intervention (yes/no and the main outcome was assessed through a generalized estimating equation. Seventy-five GPs enrolled 10,597 patients over 65 years or suffering from long lasting diseases (intervention/control as of 3781/6816 patients from October 15, 2014 to February 28, 2015. No difference was found regarding the number of influenza vaccination units delivered (Relative Risk (RR = 1.01; 95% Confidence interval: 0.97 to 1.05; p = 0.561.Effects of the monothematic campaign promoting vaccination against influenza using a poster and pamphlets exposed in GPs' waiting rooms could not be demonstrated.

  2. A model of a control-room crew

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Beveridge, R.L.

    1986-01-01

    This paper discusses the development of a model of a control-room crew based on observations of crews and concepts developed by cognitive psychologists. The model can help define, among other things, the requirements for SPDS or other operator aids. The paper discusses the relationship of the shift supervisor, the control board operators, the control and instrumentation systems and the written procedures in the control of the plant during normal and abnormal plant transients. These relationships cover the communications between crew members, use of the control equipment by the board operators, use of information, such as the SPDS, by the shift supervisor and integration of crew actions by the use of the procedures. Also discussed are the potential causes of erroneous actions by the crew in accident situations. The model is at this time purely qualitative, but it can be considered to be the basis for the development of a mathematical model

  3. Evaluation of human factors in interface design in main control rooms

    International Nuclear Information System (INIS)

    Hwang, S.-L.; Liang, S.-F.M.; Liu, T.-Y.Y.; Yang, Y.-J.; Chen, P.-Y.; Chuang, C.-F.

    2009-01-01

    An evaluation of human factors in a new nuclear power plant was conducted prior to the beginning of any business operations. After the task analysis and observation of training, two stages of interviews were carried out with the operators in the Fourth Nuclear Power Plant (NPP4). The main concerns identified were problems resulting from the operating interface of the display and controls in the main control room, usability of procedures, and the layout of the main control room. The latent human errors and suggestions were listed, and the top three problems were analyzed. The operators indicated that the alarm design issues and the critical problem of the operating mode with the VDU were worth further study in order to provide suggestions for a new interface design for future power plants.

  4. The development of ZPRL digital control system

    International Nuclear Information System (INIS)

    Hsu, Jin-Den; Yang, Sheau-Yieh; Shieh, Der-Jhy.

    1992-01-01

    Zero Power Reactor at Lung-Tan (ZPRL) is a small open-pool type research reactor located at Lung-Tan, Taiwan. The reactor achieved its first criticality in 1971. An analog control system has been used for almost over 20 years and the power regulating function is found gradually out of order. Therefore, we decided to develop a digital control system to replace the existing analog one. A prototype system has been developed and under on-line test now. The proposed ZPRL digital control system consists of three personal computers. These computers are used as (1) operator console, (2) data acquisition and control system, and (3) auxiliary and backup system. The operator console contains all the man-machine interface functions in the form of graphic display. The data acquisition and control system converts the analog signals into digital ones and feeds to the other two computers. The auxiliary and backup system normally emulates a strip chart recorder for the linear and logarithmic neutron powers and also acts as a transient recorder to keep the trace of the operating conditions on demand or when the reactor scrams. On-line test shows that the system does assure a satisfactory performance. It is not only as good as the analog system but also has the advantages of flexibility, testibility, and a user friendly man-machine interface. (author)

  5. Formulation of a strategy for monitoring control integrity in critical digital control systems

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  6. Room air conditioner load control under summer comfort constraint

    OpenAIRE

    Da Silva , David; Brancaccio , M; Duplessis , Bruno; Adnot , J

    2010-01-01

    International audience; Load control options interest is growing because it can represent a response to future network investments and to congestion problems. In this frame, the present paper gives a methodology to quantify the value of load control for heat pumps (room air conditioners), in small tertiary and residential buildings, considering the occupant's comfort and the electrical grid needs for load shift. This methodology was applied to a small office building where simulations were ma...

  7. NFL Films music scoring stage and control room space

    Science.gov (United States)

    Berger, Russ; Schrag, Richard C.; Ridings, Jason J.

    2003-04-01

    NFL Films' new 200,000 sq. ft. corporate headquarters is home to an orchestral scoring stage used to record custom music scores to support and enhance their video productions. Part of the 90,000 sq. ft. of sound critical technical space, the music scoring stage and its associated control room are at the heart of the audio facilities. Driving the design were the owner's mandate for natural light, wood textures, and an acoustical environment that would support small rhythm sections, soloists, and a full orchestra. Being an industry leader in cutting-edge video and audio formats, the NFLF required that the technical spaces allow the latest in technology to be continually integrated into the infrastructure. Never was it more important for a project to hold true to the adage of ``designing from the inside out.'' Each audio and video space within the facility had to stand on its own with regard to user functionality, acoustical accuracy, sound isolation, noise control, and monitor presentation. A detailed look at the architectural and acoustical design challenges encountered and the solutions developed for the performance studio and the associated control room space will be discussed.

  8. Digital Fractional Order Controllers Realized by PIC Microprocessor: Experimental Results

    OpenAIRE

    Petras, I.; Grega, S.; Dorcak, L.

    2003-01-01

    This paper deals with the fractional-order controllers and their possible hardware realization based on PIC microprocessor and numerical algorithm coded in PIC Basic. The mathematical description of the digital fractional -order controllers and approximation in the discrete domain are presented. An example of realization of the particular case of digital fractional-order PID controller is shown and described.

  9. Experience in the review of utility control room design review and safety parameter display system programs

    International Nuclear Information System (INIS)

    Moore, V.A.

    1985-01-01

    The Detailed Control Room Design Review (DCRDR) and the Safety Parameter Display System (SPDS) had their origins in the studies and investigations conducted as the result of the TMI-2 accident. The President's Commission (Kemeny Commission) critized NRC for not examining the man-machine interface, over-emphasizing equipment, ignoring human beings, and tolerating outdated technology in control rooms. The Commission's Special Inquiry Group (Rogovin Report) recommended greater application of human factors engineering including better instrumentation displays and improved control room design. The NRC Lessons Learned Task Force concluded that licensees should review and improve control rooms using NRC Human engineering guidelines, and install safety parameter display systems (then called the safety staff vector). The TMI Action Plan Item I.D.1 and I.D.2 were based on these recommendations

  10. Design of the control room of the N4-type PWR: main features and feedback operating experience

    International Nuclear Information System (INIS)

    Peyrouton, J.M.; Guillas, J.; Nougaret, Ch.

    2004-01-01

    This article presents the design, specificities and innovating features of the control room of the N4-type PWR. A brief description of control rooms of previous 900 MW and 1300 MW -type PWR allows us to assess the change. The design of the first control room dates back to 1972, at that time 2 considerations were taken into account: first the design has to be similar to that of control rooms for thermal plants because plant operators were satisfied with it and secondly the normal operating situation has to be privileged to the prejudice of accidental situations just as it was in a thermal plant. The turning point was the TMI accident that showed the weight of human factor in accidental situations in terms of pilot team, training, procedures and the ergonomics of the work station. The impact of TMI can be seen in the design of 1300 MW-type PWR. In the beginning of the eighties EDF decided to launch a study for a complete overhaul of the control room concept, the aim was to continue reducing the human factor risk and to provide a better quality of piloting the plant in any situation. The result is the control room of the N4-type PWR. Today the cumulated feedback experience of N4 control rooms represents more than 20 years over a wide range of situations from normal to incidental, a survey shows that the N4 design has fulfilled its aims. (A.C.)

  11. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2013-01-01

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  12. Life-critical digital flight control systems

    Science.gov (United States)

    Mcwha, James

    1990-01-01

    Digital autopilot systems were first used on commercial airplanes in the late 1970s. The A-320 airplane was the first air transport airplane with a fly-by-wire primary flight control system. On the 767-X (777) airplane Boeing will install all fly-by-wire flight controls. Activities related to safety, industry status and program phases are discussed.

  13. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  14. Quality control, mean glandular dose estimate and room shielding calculation in mammography

    International Nuclear Information System (INIS)

    Rakotomalala, H.M.

    2014-01-01

    This study focuses in the importance of Radiation Protection in mammography. A good control of the radiological risk depends on the dose optimization, room shielding calculation and the quality of equipment. The work was carried out in the three private medical centers called A, B, and C. Dosimetry estimates were made on the equipment of the three centers. Values has been compared with the Diagnostic Reference Levels established by the International Atomic Energy Agency (IAEA). Conformity control of the radiological devices has also been done with the Mammographic Quality Control Kit of the INSTN-Madagascar. Verifications of shields of the room containing the mammography equipment were done by theoretical calculations using the method provided by NCRP 147. [fr

  15. Use of control room simulators for training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    2004-09-01

    Safety analysis and operational experience consistently indicate that human error is the greatest contributor to the risk of a severe accident in a nuclear power plant. Subsequent to the Three Mile Island accident, major changes were made internationally in reducing the potential for human error through improved procedures, information presentation, and training of operators. The use of full scope simulators in the training of operators is an essential element of these efforts to reduce human error. The operators today spend a large fraction of their time training and retraining on the simulator. As indicated in the IAEA Safety Guide on Recruitment, Qualification and Training of Personnel for Nuclear Power Plants, NS-G-2.8, 2002, representative simulator facilities should be used for training of control room operators and shift supervisors. Simulator training should incorporate normal, abnormal and accident conditions. The ability of the simulator to closely represent the actual conditions and environment that would be experienced in a real situation is critical to the value of the training received. The objective of this report is to provide nuclear power plant (NPP) managers, training centre managers and personnel involved with control room simulator training with practical information they can use to improve the performance of their personnel. While the emphasis in this publication is on simulator training of control room personnel using full scope simulators, information is also provided on how organizations have effectively used control room simulators for training of other NPP personnel, including simulators other than full-scope simulators

  16. Demonstration of visualization techniques for the control room engineer in 2030

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Heussen, Kai; Strasser, Thomas

    2017-01-01

    Deliverable 8.1 reports results on analytics and visualizations of real time flexibility in support of voltage and frequency control in 2030+ power system. The investigation is carried out by means of relevant control room scenarios in order to derive the appropriate analytics needed for each spe...

  17. Control room annunciation - problem assessment and selection of improvement priorities

    International Nuclear Information System (INIS)

    Hartley, P.; Yaraskavitch, E.; Davey, E.

    1998-01-01

    In 1997, Pickering B undertook a project to examine current annunciation practice and identify improvement opportunities and priorities. The objectives and scope of the study were to: document the deficiencies with control room annunciation and the subsequent operational and financial impacts to station operations, develop an operations-based definition of the requirements for annunciation to adequately support control room staff, propose annunciation improvements based on a comparison of the annunciation deficiencies identified and the operational needs to be met, assess the relative operational impact, and financial benefits and costs of the improvement initiatives proposed, and recommend annunciation improvement priorities that offer a mix of operational and financial return for improvement investment. This paper discusses the rationale for the project, outlines the approaches applied in achieving the assessment objectives, reviews the key assessment findings and describes the improvement initiatives recommended. (author)

  18. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  19. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  20. Controlled laser biochemistry in room-temperature polar liquids by ultrashort laser pulses

    DEFF Research Database (Denmark)

    Gruzdev, Vitaly; Korkin, Dmitry; Mooney, Brian P.

    2018-01-01

    Traditional laser methods to control chemical modifications of biomolecules are not applicable under biologically relevant conditions. We report controlled modifications of peptides and insulin by femtosecond laser in water, methanol, and acetonitrile at room temperature...

  1. Evaluation of shielding capability of controlled area for CT examination room

    International Nuclear Information System (INIS)

    Suzuki, Shoichi; Asada, Yasuki; Nakai, Takayo; Takeuchi, Kichito; Kinoshita, Kazuo; Watanabe, Nobuyuki; Koga, Sukehiko

    2002-01-01

    With the revision of the law in April, 2001, the effective dose at the boundary of the controlled area was set at 1.3 mSv/3M. Whether the shielding capability of the CT room satisfied the provisions of the law or not was confirmed by actual measurements. Both thermo luminescence dosemeter (TLD) and electronic dosemeter were used to measure the radiation doses. The shielding capability of the gantry was studied both inside and outside the room for a week as a basic experiment. On the basis of the data thus obtained doses accumulated in 3 months were estimated. According to the results of 3 month-measurement, the doses outside the wall of the CT room were about 200μ Sv. This numerical value was comparable to the background level of the evaluation point. The results above assured that the shielding capability of the CT room satisfied the provisions of the law well. (author)

  2. Influence of room heating on ambulatory blood pressure in winter: a randomised controlled study.

    Science.gov (United States)

    Saeki, Keigo; Obayashi, Kenji; Iwamoto, Junko; Tanaka, Yuu; Tanaka, Noriyuki; Takata, Shota; Kubo, Hiroko; Okamoto, Nozomi; Tomioka, Kimiko; Nezu, Satoko; Kurumatani, Norio

    2013-06-01

    Previous studies have proposed that higher blood pressure (BP) in winter is an important cause of increased mortality from cardiovascular disease during the winter. Some observational and physiological studies have shown that cold exposure increases BP, but evidence from a randomised controlled study assessing the effectiveness of intensive room heating for lowering BP was lacking. The present study aimed to determine whether intensive room heating in winter decreases ambulatory BP as compared with weak room heating resulting in a 10°C lower target room temperature when sufficient clothing and bedclothes are available. We conducted a parallel group, assessor blinded, simple randomised controlled study with 1:1 allocation among 146 healthy participants in Japan from November 2009 to March 2010. Ambulatory BP was measured while the participants stayed in single experimental rooms from 21:00 to 8:00. During the session, participants could adjust the amount of clothing and bedclothes as required. Compared with the weak room heating group (mean temperature ± SD: 13.9 ± 3.3°C), systolic morning BP (mean BP 2 h after getting out of bed) of the intensive room heating group (24.2 ± 1.7°C) was significantly lower by 5.8 mm Hg (95% CI 2.4 to 9.3). Sleep-trough morning BP surges (morning BP minus lowest night-time BP) in the intensive room heating group were significantly suppressed to about two thirds of the values in the weak room heating group (14.3 vs 21.9 mm Hg; pheating decreased morning BP and the morning BP surge in winter.

  3. Design And Implementation Of Smart Living Room Wireless Control For Safety Purpose

    Directory of Open Access Journals (Sweden)

    Aeindra Myint Lwin

    2015-07-01

    Full Text Available Abstract This research presents the microcontroller controlled smart living room system using Bluetooth wireless technology from mobile phone.An android apk is created in mobile for controlling the living room system. A 16F877A microcontroller is interfaced serially to a bluetooth module transceiver. It is used for controlling fan speed control dim light control lighting ONOFF and window angle control. An arduino controller is used for keypad control door security. It is connected to DC motor control circuit and switching circuit for opening and closing of the door keypad for entering password and serial LCD for displaying the update status of the door.User can control the home appliances by using bluetooth connection from mobile phone in its range. User can adjust the dim light fan speed window angle and light bulbs from android apk. An internal EEPROM is built in 16F877A microcontroller and it stores the last requested data of the appliances. If userwants to recover the former conditions of the appliances he can recall them from android apk.

  4. Control room conceptual design of nuclear power plant with multiple modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Jia Qianqian; Qu Ronghong; Zhang Liangju

    2014-01-01

    A conceptual design of the control room layout for the nuclear power plant with multiple modular high temperature gas-cooled reactors has been developed. The modular high temperature gas-cooled reactors may need to be grouped to produce as much energy as a utility demands to realize the economic efficiency. There are many differences between the multi-modular plant and the current NPPs in the control room. These differences may include the staffing level, the human-machine interface design, the operation mode, etc. The potential challenges of the human factor engineering (HFE) in the control room of the multi-modular plant are analyzed, including the operation workload of the multi-modular tasks, how to help the crew to keep situation awareness of all modules, and how to support team work, the control of shared system between modules, etc. A concept design of control room for the multi-modular plant is presented based on the design aspect of HTR-PM (High temperature gas-cooled reactor pebble bed module). HFE issues are considered in the conceptual design of control room for the multi-modular plant and some design strategies are presented. As a novel conceptual design, verifications and validations are needed, and focus of further work is sketch out. (author)

  5. Three alternatives to a full scope control room simulator for nuclear power plants

    International Nuclear Information System (INIS)

    Roman, C.P.

    1988-01-01

    Many utilities are purchasing full scope control room simulators for training purposes. But, depending upon training requirements and finances, an alternative to a full scope control room simulator may be a viable option. Westinghouse has recently built and delivered two styles of alternative simulators. This paper discusses the design and operation of both of these simulators, including advantages and limitations of each design. In addition, the design of a hybrid system which combines features from both of these designs is presented

  6. Response times of operators in a control room

    International Nuclear Information System (INIS)

    Platz, O.; Rasmussen, J.; Skanborg, P.Z.

    1982-12-01

    A statistical analysis was made of operator response times recorded in the control room of a research reactor during the years 1972-1974. A homogeneity test revealed that the data consist of a mixture of populations. A small but statistically significant difference is found between day and night response times. Lognormal distributions are found to provide the best fit of the day and the night response times. (author)

  7. Design of control rooms. Collaboration between different actors during the design of new and modernized control rooms

    International Nuclear Information System (INIS)

    Johansson, Bjoern J. E.; Gonzalez, Natalia

    2012-01-01

    Swedish nuclear power industry is currently undergoing, as well as planning, a number of upgrades of their control rooms. When changes are made to an NPP, they are conducted within the frame of a design process. The design process controls a number of different domains, such as technical solutions etc, but also affects and is affected by the interactions between Man, Technology and Organisation (MTO). MTO is central for creating safe system solutions. However, in the design process, unplanned events often occur in comparison to what was originally planned. This work aimed to analyse the design process and the involved actors' roles using activity theory with the purpose of creating an understanding of the design process. Activity theory can be seen as a way of understanding individuals and groups and the context they create by analysing the structure and process that their activities are part of. It can therefore be a good tool for analysing the complexity of the design process of a control room. The study has shown that many actors are involved in the design process and that all of them partly drive their own agendas, which may lead to contradictions within the design process. Important conclusions are that it perhaps not is necessary to eliminate all contradictions, but it is important to be aware of them. It is considered, among the informants in the study, that a working communication exists between the actors in the design process, but it is also evident that there is no given method for this, something that also counts for MTO-questions and the communication regarding those. A number of recommendations on how to support the communication process are given. Although there were some difficulties in using activity theory, it is believed that it could be useful for creating an overview of the design process and its actors from different organisations. Activity networks could be bound together in different ways and this provided opportunities to identify possible

  8. Changes in control room at Swedish nuclear power plants; Kontrollrumsfoeraendringar vid svenska kaernkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    Kecklund, Lena [MTO Psykologi, Huddinge (Sweden)

    2005-09-15

    The Swedish nuclear power plants were commissioned during a period between 1972 and 1985 and the instrumentation and control equipment are basically from that period. For several years there have been plans made for changes in all the nuclear power plants and to a certain extent the changes in control equipment and monitoring rooms have also been implemented. The object of this project was to make a comprehensive review of the changes in control room design implemented in the Swedish nuclear power plants and to describe how the MTO- (Man-Technology-Organisation) and (Man-Machine-Interface) -issues have been integrated in the process. The survey is intended to give an overall picture of the changes in control room design and man-machine-interface made in the Swedish control rooms, in order to get a deeper knowledge of the change management process and its results as well as of the management of MTO-issues in these projects. The units included in this survey are: Oskarhamn reactor 2 and 3; Ringhals reactor 2, 3 and 4; Forsmark reactor 1, 2 and 3. The Oskarshamn 1 unit has not been included in this report as it has recently undergone an extensive modernisation program as well as a detailed inspection by the SKI (Swedish Nuclear Power Inspectorate). At Ringhals 2 the modernisation work is carried out at present and the unit is also subjected to extensive inspection activities carried out by SKI and is therefore not part of this survey. This report also includes a short description of relevant standards and requirements. Then follows a presentation of the results of the plant survey, presented as case studies for three companies OKG, Ringhals and FKA. Control room changes are summarized as well as the results on specific MTO issues which has been surveyed. In all the power companies there is a joint way of working with projects concerning plant modifications. This process is described for each company separately. In the concluding of the report the strengths and

  9. Digital control of wind tunnel magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  10. Modernization of control system using the digital control system

    International Nuclear Information System (INIS)

    Carrasco, J. A.; Fernandez, L.; Jimenez, A.

    2002-01-01

    Nowadays, all plant automation tendencies are based on the use of Digital Control System. In big industrial plants the control systems employed are Distributed Control Systems (DCS). The addition of these systems in nuclear power plants,implies an important adaptation process, because most of them were installed using analog control systems. This paper presents the objectives and the first results obtained, in a modernization project, focused in obtaining an engineering platform for making test and analysis of changes prior to their implementation in a nuclear plant. Modernization, Upgrade, DCS, Automation, Simulation, Training. (Author)

  11. Mental workload measurement in operator control room using NASA-TLX

    Science.gov (United States)

    Sugarindra, M.; Suryoputro, M. R.; Permana, A. I.

    2017-12-01

    The workload, encountered a combination of physical workload and mental workload, is a consequence of the activities for workers. Central control room is one department in the oil processing company, employees tasked with monitoring the processing unit for 24 hours nonstop with a combination of 3 shifts in 8 hours. NASA-TLX (NASA Task Load Index) is one of the subjective mental workload measurement using six factors, namely the Mental demand (MD), Physical demand (PD), Temporal demand (TD), Performance (OP), Effort (EF), frustration levels (FR). Measurement of a subjective mental workload most widely used because it has a high degree of validity. Based on the calculation of the mental workload, there at 5 units (DTU, NPU, HTU, DIST and OPS) at the control chamber (94; 83.33; 94.67; 81, 33 and 94.67 respectively) that categorize as very high mental workload. The high level of mental workload on the operator in the Central Control Room is a requirement to have high accuracy, alertness and can make decisions quickly

  12. Design of control rooms and ergonomics in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Modern power plant control rooms are characterized by automation of protection and control functions, subdivision according to functions, computer-aided information processing, and ergonomic design. Automation relieves the personnel of stress. Subdivision according to functions permits optimized procedures. Computer-aided information processing results in variable information output tailored to the actual needs. Ergonomic design assures qualified man-machine interaction. Of course, these characteristics will vary between power plants in dependence of unit power, mode of operation, and safety and availability requirements. (orig.) [de

  13. Evaluation of awareness concerning fire prevention and control methods among personnel of operating room in a hospital

    Directory of Open Access Journals (Sweden)

    2012-09-01

    Full Text Available Introduction: There are risk of fire accidents in Operating rooms during surgery. Experts estimate annually around 100 fire accidents occur in the operating rooms of United States’s hospitals. 10 to 20 of these accidents lead to severe injuries and about 1 to 2 lead to death. Despite such accidents rarely happen, but they can lead to serious injury or death of patients. .Material and Method: This Cross-sectional questionnaire based survey was conducted among several hospitals belonged to Shiraz University of Medical Sciences. In this study, all personnel of operating rooms were investigated. Questionnaire were used to collect information and the chi-square test was applied to examine the relationship between the Knowledge of operating room personels on fire prevention and control methods, jobs and work experience. For statistical analysis SPSS14 were used. .Result: In this study from 220 participants, about 19.72% had full awareness, 19.62% had partial knowledge, 19.37% had low awareness and 40.97% had no knowledge on fire prevention methods, concerning fire control methods. However, 76% of the participate had full awareness and 24% had no knowledge. Test result Statistically showed that the relationship between the awareness of operating room personnel to fire control methods and work experience were significant (P-value <0.05. But, the relationship between the knowledge of operating room to fire control methods and the type of jobs were not significant. Also no significant relationship were found between the level of awareness in operating room personnel to fire prevention methods, work experience and job title. .Conclusion: The results indicated that the operating room staff awareness of fire prevention and control methods are low. The results also showed that awareness of fires prevention are lower than the awareness of fire control among the studied personel. Regarding to the potential risk of fire in the operating room, it is suggested

  14. Two aspects of the technical and ergonomical evaluation of the advanced control-room of the new French PWR units

    International Nuclear Information System (INIS)

    Montmayeul, R.; Lestien, A.; Dien, Y.; Bozec, J.

    1987-01-01

    In 1981 EDF decided to design a computerized control-room to improve operations. The first unit will be put on the grid in 1991. In order to get a rapid feed-back of operating experience from the design of the new control-room, a full scope simulator has been built for validation by operating teams in 1987-1988. An evaluation plan has been designed. The evaluation goal is to show operation feasibility under any condition and evaluate ergonomy of the control-room. Various aspects have been defined for evaluation: workstation ergonomy, man-machine dialogue and workstation management, work distribution within an operating team, visual and medical aspects, work place and physical environment of the control-room. For each aspect hypothesis have been set up and will be validated. Validation is based on record of operators'actions, observations of behaviour during simulations and interviews. Several series of simulations under normal, incidental and accidental situations are planned. One of the most specific aspects of the new control-room is the computerized man-machine dialogue which needs workstation management actions to get information and actuate controls. Hypothesis concerning this aspect of the validation have been set up from design documentation, before any observation of work was possible, and was based on knowledge of potential problems of this kind of interface in process-control. The validation method is comparative between various simulations, between operators, between a computerized control-room and a classical one. Another aspect concerns the tasks allocation between shifts members and work organization in the control-room. For this part of the evaluation, hypothesis and experimental protocoles were made on the basis of a detailed analysis of work conditions in the present control-rooms. These two aspects of the control-room evaluation are presented. (author)

  15. Design of digital logic control for accelerator magnet power supply

    International Nuclear Information System (INIS)

    Long Fengli; Hu Wei; Cheng Jian

    2008-01-01

    For the accelerator magnet power supply, usually the Programmable Logic Controller (PLC) is used to server as the controller for logic protection and control. Along with the development of modern accelerator technology, it is a trend to use fully-digital control to the magnet power supply. It is possible to integrate the logic control part into the digital control component of the power supply, for example, the Field Programmable Gate Array (FPGA). The paper introduces to different methods which are designed for the logic protection and control for accelerator magnet power supplies with the FPGA as the control component. (authors)

  16. Use of the Human Centered Design concept when designing ergonomic NPP control rooms

    International Nuclear Information System (INIS)

    Skrehot, Petr A.; Houser, Frantisek; Riha, Radek; Tuma, Zdenek

    2015-01-01

    Human-Centered Design is a concept aimed at reconciling human needs on the one hand and limitations posed by the design disposition of the room being designed on the other hand. This paper describes the main aspects of application of the Human-Centered Design concept to the design of nuclear power plant control rooms. (orig.)

  17. Control Room Tasks During Refueling in Ringhals 1 Nuclear Power Plant - Operator performance during refuelling outages

    International Nuclear Information System (INIS)

    Stroebeck, Einar; Olausson, Jesper; Van Gemst, Paul

    1998-01-01

    This paper discusses the performance and tasks of the operators in the control room during refuelling outages. Analyses of such events have, during the last years, shown that the risk for nuclear accidents is not negligible compared with the risk at higher reactor power levels. Some experts have the opinion that, due to mistakes during an outage, the risk for such accidents during the outage and other accidents later on during power operation is higher than in other plant situations. The high risk level is mainly a result of errors at maintenance actions and supervision of lining up of safety systems. Most of the control rooms in existing NPPs were designed more than 10 years ago. At that time the activities and the tasks for the operators were not very well understood. Procedures for refuelling and other activities during the outages were not described very well. Often the utility organisation for refuelling outages was not established at the start of the control room design. Experience from operation during many years has shown that the performance of operators can be improved in existing plant, and thus risks be reduced, by upgrading the control room. These issues have been studied as a part of the modernisation project for Ringhals 1, an ABB Atom BWR owned by Vattenfall AB in Sweden. The paper will describe the working model for upgrading the control room and important issues to take care of with respect to refuelling outages. The identified issues will be used as the input for improving control room philosophy and the individual technical systems. (authors)

  18. Mass Alarms in Main Control Room Caused Condensate on the Instrumentation and Control Cards in Turbine Building

    International Nuclear Information System (INIS)

    Goo, Cheol-Soo

    2015-01-01

    A bunch of alarms and trouble lights on the main control room simultaneously turned on during inspection and exchange of the coolers of the turbine building at pressurized water reactor of the Hanbit nuclear power plant No. 6. The main cause was condensate on instrumentation cards of plant control system (PCS) installed at enclosures in the turbine building which have MUX cabinets to transmit signals between the main control room and local equipment. To control the temperature and humidity of the MUX cabinets, two coolers of the plant chilled water system supply air to the compact enclosures at turbine building where temperature and humidity is high in the summer. It is an unusual experience that mass alarms abnormally were occurred in the main control room during normal plant operation phases. Spurious signals with unknown cause at control and instrumentation system occasionally may have an unnecessary actuation of monitoring equipment and a plant scram even. One of the main causes is humidity by a rapid temperature change of the control and instrumentation cards. Dew on the instrumentation cards could form an abnormal short circuit in printed circuit board with the compact circuits and make any malfunction of the related system. Instrumentation and control cards with integrated circuits are vulnerable to high humidity and temperature where the system is enclosed in a small housing or enclosure surrounding with hash environment such as a turbine building. It was found that there was no functional degradation of the safety systems and no outsides releases of radioactive materials by this occurrence. (author)

  19. Using a digital signal processor as a data stream controller for digital subtraction angiography

    International Nuclear Information System (INIS)

    Meng, J.D.; Katz, J.E.

    1991-10-01

    High speed, flexibility, and good arithmetic abilities make digital signal processors (DSP) a good choice as input/output controllers for real time applications. The DSP can be made to pre-process data in real time to reduce data volume, to open early windows on what is being acquired and to implement local servo loops. We present an example of a DSP as an input/output controller for a digital subtraction angiographic imaging system. The DSP pre-processes the raw data, reducing data volume by a factor of two, and is potentially capable of producing real-time subtracted images for immediate display

  20. Attitude Control of a Satellite by using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Adirelle C. Santana

    2012-03-01

    Full Text Available This article has discussed the development of a three-axis attitude digital controller for an artificial satellite using a digital signal processor. The main motivation of this study is the attitude control system of the satellite Multi-Mission Platform, developed by the Brazilian National Institute for Space Research for application in different sort of missions. The controller design was based on the theory of the Linear Quadratic Gaussian Regulator, synthesized from the linearized model of the motion of the satellite, i.e., the kinematics and dynamics of attitude. The attitude actuators considered in this study are pairs of cold gas jets powered by a pulse width/pulse frequency modulator. In the first stage of the project development, a system controller for continuous time was studied with the aim of testing the adequacy of the adopted control. The next steps had included an analysis of discretization techniques, the setting time of sampling rate, and the testing of the digital version of the Linear Quadratic Gaussian Regulator controller in the MATLAB/SIMULINK. To fulfill the study, the controller was implemented in a digital signal processor, specifically the Blackfin BF537 from Analog Devices, along with the pulse width/pulse frequency modulator. The validation tests used a scheme of co-simulation, where the model of the satellite was simulated in MATLAB/SIMULINK, while the controller and modulator were processed in the digital signal processor with a tool called Processor-In-the-Loop, which acted as a data communication link between both environments.function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  1. Anthropometric Considerations in the Modernized Main Control Room: Application to a Virtual Nuclear Power Plant Control Panel

    International Nuclear Information System (INIS)

    Yang, Chih Wei; Cheng, Tsung Chieh; Lin, Chiuhsiang Joe

    2011-01-01

    This study investigates the anthropometric considerations in the main control room (MCR) application to a virtual nuclear power plant (NPP) control panel. Influences of working postures and physical demands on the operational performance are also discussed. Finally, the present research provides a case example to illustrate the influences of anthropometric considerations on the control panel design for MCR operators by applying virtual reality (VR) technology. The MCR design primarily evolved in different countries. The datasets available is usually insufficient or inconsistent for the end users. To solve the upper mentioned problem, this study put emphasis on applying VR technology to anthropometric considerations support control panel design in the modernized MCR. Although the concept of applying VR technology on anthropometric considerations in this paper is related to the MCR in NPPs, it could be easily applied for the purposes of any type of control room in a similar manner

  2. Anthropometric Considerations in the Modernized Main Control Room: Application to a Virtual Nuclear Power Plant Control Panel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chih Wei; Cheng, Tsung Chieh [Institute of Nuclear Energy Research, Taoyuan (China); Lin, Chiuhsiang Joe [Chung-Yuan Christian University, Chung Li (China)

    2011-08-15

    This study investigates the anthropometric considerations in the main control room (MCR) application to a virtual nuclear power plant (NPP) control panel. Influences of working postures and physical demands on the operational performance are also discussed. Finally, the present research provides a case example to illustrate the influences of anthropometric considerations on the control panel design for MCR operators by applying virtual reality (VR) technology. The MCR design primarily evolved in different countries. The datasets available is usually insufficient or inconsistent for the end users. To solve the upper mentioned problem, this study put emphasis on applying VR technology to anthropometric considerations support control panel design in the modernized MCR. Although the concept of applying VR technology on anthropometric considerations in this paper is related to the MCR in NPPs, it could be easily applied for the purposes of any type of control room in a similar manner.

  3. Controlled sharing of personal content using digital rights management

    NARCIS (Netherlands)

    Conrado, C.; Petkovic, M.; Veen, van der M.; Velde, van der W.H.

    2006-01-01

    This paper describes a system which allows controlled distribution of personal digital content by users. The system extends an existing Digital Rights Management system for the protection of commercial copyrighted content by essentially allowing users to become content providers. This fact, however,

  4. Ergonomic principles of control rooms in nuclear power plants. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Becker, G.; Bohr, E.; Thau, G.

    1983-03-01

    This report describes the findings of a study on the present status and possible improvements in the design of nuclear power plant control rooms according to ergonomic principles and criteria. The findings have been acquired by observing the performance of control room operators, by interviewing operators and management personnel, and by analyzing major characteristics of the man-machine interface. The methods currently used for developing and designing control rooms have also been examined, and the pertinent scientific and technical literature has been reviewed. The results of the study indicate that there is a growing awareness and consideration of physical factors affecting operator performance and reliability whereas less attention is paid to the essential cognitive characteristics of work in the control room. The tasks of operators thus may contain avoidable hindrances and error possibilities that may adversely affect their contribution to reliable plant operation. Major areas of possible ergonomic advancements are set out in the study, and most of them are discussed in depth. Ergonomic requirements are identified for further improving the situation, and approaches, ways and means for solving of mitigating individual problems are indicated wherever possible. A more deliberate consideration of factors affecting operator performance and reliability is suggested, based on a systems ergonomics approach. Design objectives and criteria as well as specific design recommendations for individual areas are given separately. In conclusion, gaps in our existing knowledge are identified which require further research. (orig.) [de

  5. NSSS Component Control System Design of Integral Reactor

    International Nuclear Information System (INIS)

    Lee, Joon Koo; Kwon, Ho Je; Jeong, Kwong Il; Park, Heui Youn; Koo, In Soo

    2005-01-01

    MMIS(Man Machine Interface System) of an integral reactor is composed of a Control Room, Plant Protection System, Control System and Monitoring System which are related with the overall plant operation. MMIS is being developed with a new design concept and digital technology to reduce the Human Factor Error and improve the systems' safety, reliability and availability. And CCS(component control system) is also being developed with a new design concept and digital hardware technology A fully digitalized system and design concept are introduced in the NSSS CCS

  6. To stay or to go? Balancing the risk of reprocessing plant control room evacuation following a criticality alarm

    International Nuclear Information System (INIS)

    Love, Suzanne; McCrindle, David; Harris, Neil; Haworth, Justin

    2003-01-01

    Following a criticality alarm within the Magnox Separation Plant at Sellafield, there is a conflict of interest between the risks associated with complete evacuation versus continued manning of the control room. The historic emergency response policy would be to completely evacuate the control room upon a criticality alarm. If, however, the alarm was found to be false, the inevitable loss in control over the plant could have environmental, operational and radiological release consequences. Maintaining control room manning following a genuine alarm might, however, result in an avoidable high dose to an operator. Based upon the estimated dose equivalent to a control room operator for a range of criticality incident morphologies a risk analysis was undertaken. The results indicate that the differential risk between an operator who evacuates immediately and an operator who remains for a short time to complete diagnostic checks is very small. As a consequence a new emergency policy was therefore developed on plant which results in a relatively low risk to control room operators, but still allows control over the plant to be retained following a false criticality alarm. (author)

  7. Design of a Clean Room for Quality Control of an Environmental Sampling in KINAC

    International Nuclear Information System (INIS)

    Yoon, Jongho; Ahn, Gil Hoon; Seo, Hana; Han, Kitek; Park, Il Jin

    2014-01-01

    The objective of environmental sampling and analysis for safeguards is to characterize the nuclear materials handled and the activities conducted at the specific locations. The KINAC is responsible for the conclusions drawn from the analytical results provided by the analytical laboratories. To assure the KINAC of the continuity of the quality of the analytical results provided by the laboratories, the KINAC will implement a quality control(QC) programme. One of the QC programme is to prepare QC samples. The establishment of a clean room is needed to handle QC samples due to stringent control of contamination. The KINAC designed a clean facility with cleanliness of ISO Class 6, the Clean Room for Estimation and Assay of trace Nuclear materials(CREAN) to meet conflicting requirements of a clean room and for handling of nuclear materials according to Korean laws. The clean room will be expected to acquire of a radiation safety license under these conditions in this year and continue to improve it. The construction of the CREAN facility will be completed by the middle of 2015. In terms of QC programme, the establishment of a clean room is essential and will be not only very helpful for setting of quality control system for the national environmental sampling programme but also be applied for the environmental sample analysis techniques to the nuclear forensics

  8. Direct digital temperature control of the A-1 nuclear reactor

    International Nuclear Information System (INIS)

    Karpeta, C.

    1975-01-01

    The application is described of one of the modern control methods for designing an experimental digital temperature control system for heavy water moderated gas cooled reactors. The synthesis of the optimal stochastic regulator for reactor control in the area of the rated steady state was carried out using the method of dynamic programming and the Kalman filter technique. The analysis of the feedback circuit was conducted using control simulation on a universal digital computer. Results and experience are summed up. (author)

  9. Reliability Estimation for Digital Instrument/Control System

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaguang; Sydnor, Russell [U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

    2011-08-15

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method.

  10. Reliability Estimation for Digital Instrument/Control System

    International Nuclear Information System (INIS)

    Yang, Yaguang; Sydnor, Russell

    2011-01-01

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method

  11. Safety review for human factors engineering and control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Yang Mengzhuo

    1998-01-01

    Safety review for human factors engineering and control rooms of nuclear power plants (NPP) is in a forward position of science and technology, which began at American TMI severe accident and had been implemented in China. The importance and the significance of the safety review are expounded, the requirements of its scope and profundity are explained in detail. In addition, the situation of the technical document system for nuclear safety regulation on human factors engineering and control rooms of NPP in China is introduced briefly, on which the safety review is based

  12. Physical environment design criteria for the new control room in the ENEA TRIGA-RC1 plant

    International Nuclear Information System (INIS)

    Alberti, M.; Di Giulio, A.

    1986-01-01

    Parallelly to the plant modifications, many changes of the instrumentation in the Control Room (CR) were necessary in order to deal with the various aged components and the completion and integration needs turning out from the experience in reactor running. In the room, besides the control activity of the RC1 plant, continuous training and updating activities are currently performed which are intended for the operators working in the control rooms of nuclear power plants. The design of the physical environment of the new CR - carried out in a more general research project between ENEA and Politecnico di Milano - was based on the following fundamental criteria: - to ensure conditions fit for the performance of the suspervision, diagnosis and control tasks the operators are entrusted with; - to set up a model of control room for the more complex power plants. First of all a detailed analysis of the environmental conditions relating to microclimate, lighting and noise was accomplished. Afterwards, the goals to be attained were defined as well as the technical means necessary for providing the operators with comfortable working conditions

  13. Comparison between ultrasound guided technique and digital palpation technique for radial artery cannulation in adult patients: An updated meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Bhattacharjee, Sulagna; Maitra, Souvik; Baidya, Dalim K

    2018-03-22

    Possible advantages and risks associated with ultrasound guided radial artery cannulation in-comparison to digital palpation guided method in adult patients are not fully known. We have compared ultrasound guided radial artery cannulation with digital palpation technique in this meta-analysis. Meta-analysis of randomized controlled trials. Trials conducted in operating room, emergency department, cardiac catheterization laboratory. PubMed and Cochrane Central Register of Controlled Trials (CENTRAL) were searched (from 1946 to 20th November 2017) to identify prospective randomized controlled trials in adult patients. Two-dimensional ultrasound guided radial artery catheterization versus digital palpation guided radial artery cannulation. Overall cannulation success rate, first attempt success rate, time to cannulation and mean number of attempts to successful cannulation. Odds ratio (OR) and standardized mean difference (SMD) or mean difference (MD) with 95% confidence interval (CI) were calculated for categorical and continuous variables respectively. Data of 1895 patients from 10 studies have been included in this meta- analysis. Overall cannulation success rate was similar between ultrasound guided technique and digital palpation [OR (95% CI) 2.01 (1.00, 4.06); p = 0.05]. Ultrasound guided radial artery cannulation is associated with higher first attempt success rate of radial artery cannulation in comparison to digital palpation [OR (95% CI) 2.76 (186, 4.10); p guided technique with palpation technique. Radial artery cannulation by ultrasound guidance may increase the first attempt success rate but not the overall cannulation success when compared to digital palpation technique. However, results of this meta-analysis should be interpreted with caution due presence of heterogeneity. Copyright © 2018. Published by Elsevier Inc.

  14. Empirical investigation of workloads of operators in advanced control rooms

    International Nuclear Information System (INIS)

    Kim, Yochan; Jung, Wondea; Kim, Seunghwan

    2014-01-01

    This paper compares the workloads of operators in a computer-based control room of an advanced power reactor (APR 1400) nuclear power plant to investigate the effects from the changes in the interfaces in the control room. The cognitive-communicative-operative activity framework was employed to evaluate the workloads of the operator's roles during emergency operations. The related data were obtained by analyzing the tasks written in the procedures and observing the speech and behaviors of the reserved operators in a full-scope dynamic simulator for an APR 1400. The data were analyzed using an F-test and a Duncan test. It was found that the workloads of the shift supervisors (SSs) were larger than other operators and the operative activities of the SSs increased owing to the computer-based procedure. From these findings, methods to reduce the workloads of the SSs that arise from the computer-based procedure are discussed. (author)

  15. Multi-surface Interaction in the WILD Room

    DEFF Research Database (Denmark)

    Beaudouin-Lafon, Michel; Chapuis, Olivier; Eagan, James R.

    2012-01-01

    The WILD (wall-sized interaction with large datasets) room serves as a testbed for exploring the next generation of interactive systems by distributing interaction across diverse computing devices, enabling multiple users to easily and seamlessly create, share, and manipulate digital content...

  16. System design description for the CPDF Cascade Control Room: SDD-7

    International Nuclear Information System (INIS)

    1980-05-01

    The Cascade Control Room (CCR) is the nerve center of the Centrifuge Plant Demonstration Facility (CPDF). The components within the CCR monitor and control those variables necessary for the safe and efficient operation of the cascade during normal and emergency operation. The CCR interfaces with all the process systems and most of the support systems, receiving and transmitting data signals at frequent intervals during all phases of cascade operation. The main component in the CCR is the control room computer (CRC), which serves as the primary interface between the CCR and the process and support systems. The other components in the CCR are: (1) instrumentation cabinets; (2) operator control panel; (3) mass spectrometer - tails (MST); (4) mass spectrometer - product (MSP); (5) product light gas analyzer (PLGA); and (6) the operator. CCR instrumentation provides audible and visual alarms of abnormal events detected by process and utilities instrumentation or by the CRC. Records of alarms and process and utility variables are continuously generated in the CCR. Operator control functions are performed through the CRC or at the various instrument cabinets. Analysis of the current operating status of the plant is aided by the CRC and CCR instrumentation. 14 figs., 2 tabs

  17. The Program Cost of a Brief Video Intervention Shown in Sexually Transmitted Disease Clinic Waiting Rooms.

    Science.gov (United States)

    Gift, Thomas L; OʼDonnell, Lydia N; Rietmeijer, Cornelis A; Malotte, Kevin C; Klausner, Jeffrey D; Margolis, Andrew D; Borkowf, Craig B; Kent, Charlotte K; Warner, Lee

    2016-01-01

    Patients in sexually transmitted disease (STD) clinic waiting rooms represent a potential audience for delivering health messages via video-based interventions. A controlled trial at 3 sites found that patients exposed to one intervention, Safe in the City, had a significantly lower incidence of STDs compared with patients in the control condition. An evaluation of the intervention's cost could help determine whether such interventions are programmatically viable. The cost of producing the Safe in the City intervention was estimated using study records, including logs, calendars, and contract invoices. Production costs were divided by the 1650 digital video kits initially fabricated to get an estimated cost per digital video. Clinic costs for showing the video in waiting rooms included staff time costs for equipment operation and hardware depreciation and were estimated for the 21-month study observation period retrospectively. The intervention cost an estimated $416,966 to develop, equaling $253 per digital video disk produced. Per-site costs to show the video intervention were estimated to be $2699 during the randomized trial. The cost of producing and implementing Safe in the City intervention suggests that similar interventions could potentially be produced and made available to end users at a price that would both cover production costs and be low enough that the end users could afford them.

  18. A digital control and monitoring system for PWR waste-disposal systems

    International Nuclear Information System (INIS)

    Ueda, Toshiharu; Fuchigami, Kazuyuki; Shimozato, Masao; Takazawa, Kazuo

    1982-01-01

    Mitsubishi Electric has developed a digital control and monitoring system for PWR waste-disposal systems. This novel system has improved operability due to its automated operations and control, and integrated supervisory functions. The system includes other features to improve operability: sequence control by a control computer, direct-digital process control, integrated supervision of operation states by a supervisory computer and a high-speed dataway, and CRT interfacing between the computer and dataway. (author)

  19. Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach.

    Science.gov (United States)

    Dincel, Emre; Söylemez, Mehmet Turan

    2018-05-02

    In this paper, a digital PI-PD controller design method is proposed for arbitrary order systems with or without time-delay to achieve desired transient response in the closed-loop via dominant pole placement approach. The digital PI-PD controller design problem is solved by converting the original problem to the digital PID controller design problem. Firstly, parametrization of the digital PID controllers which assign dominant poles to desired location is done. After that the subset of digital PID controller parameters in which the remaining poles are located away from the dominant pole pair is found via Chebyshev polynomials. The obtained PID controller parameters are then transformed into the PI-PD controller parameters by considering the closed-loop controller zero and the design is completed. Success of the proposed design method is firstly demonstrated on an example transfer function and compared with the well-known PID controller methods from the literature through simulations. After that the design method is implemented on the fan and plate laboratory system in a real environment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Digital feed back control for radial beam position

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1989-09-01

    In the development of wide spread large scale distributed digital control systems, there is a requirement to automate small processes like radial beam control which will not only improve the beam quality but will also add local intelligence. Hence use is made here of digital control principles for such applications. The work concerned with the radial beam control discussed in this report has been developed for ISIS at RAL. The structure of the report is hence inclined more towards the local hardware system. The general feed back loop techniques can also be implemented for other control purpose. For instance, the author has successfully tested similar techniques to minimise the RF cavity tuning error, where the improvement in performance could not be matched by the analogue loop. A description of the RF cavity tuning programme and the associated experimental results will be published as a local paper for ISIS division. (author)

  1. The development of digital oscilloscope control software in nuclear measurement

    International Nuclear Information System (INIS)

    Pu Minghui; Tian Geng; Li Xianyou

    2004-01-01

    This essay presents the development of an all-purpose digital oscilloscope control software on Windows 95/98 OS. The background and method are discussed in detail, together with the function and characteristics of the software. With the use of this software, a single PC can control several digital oscilloscopes. Solution of main problems encountered in the development is also discussed. (authors)

  2. Digital remote control system for power supplies of particle channel magnetooptical elements

    International Nuclear Information System (INIS)

    Vetrov, P.B.; Ermolina, G.P.; Kuznetsov, V.S.; Mojbenko, A.N.

    1986-01-01

    Current control of magnetooptical elements of accelerator particle channels is based on control of reference voltage of current stabilizers. Advent of industrial multidigit (12 bits) integral analog-to-digital converters permitted to develop simple digital sources of reference voltage. A digital control system of 30 spatially remoted power supplies of magnetooptical elements of particle channels on the basis of the ''Elektronika-60'' microcomputer is described. The microcomputer is connected by the standard communication line (20 mA) with the SM-4 computer. The ''Summa'' crate is connected with the microcomputer through the branch driver. Digit data are transmitted by the multibranch trunk of sequential communication (Manchester-2 code) at the rate of 0.5 Mband. Feedback was realized by connection of analog signals through the distributed commutator to the measuring line with a digital voltmeter

  3. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

    NARCIS (Netherlands)

    Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

    2006-01-01

    Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

  4. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

    NARCIS (Netherlands)

    Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.

    2005-01-01

    Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

  5. A REVIEW OF HUMAN-SYSTEM INTERFACE DESIGN ISSUES OBSERVED DURING ANALOG-TO-DIGITAL AND DIGITAL-TO-DIGITAL MIGRATIONS IN U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, C.; Joe, J.

    2017-05-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is developing a scientific basis through targeted research and development (R&D) to support the U.S. nuclear power plant (NPP) fleet in extending their existing licensing period and ensuring their long-term reliability, productivity, safety, and security. Over the last several years, human factors engineering (HFE) professionals at the Idaho National Laboratory (INL) have supported the LWRS Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway across several U.S. commercial NPPs in analog-to-digital migrations (i.e., turbine control systems) and digital-to-digital migrations (i.e., Safety Parameter Display System). These efforts have included in-depth human factors evaluation of proposed human-system interface (HSI) design concepts against established U.S. Nuclear Regulatory Commission (NRC) design guidelines from NUREG-0700, Rev 2 to inform subsequent HSI design prior to transitioning into Verification and Validation. This paper discusses some of the overarching design issues observed from these past HFE evaluations. In addition, this work presents some observed challenges such as common tradeoffs utilities are likely to face when introducing new HSI technologies into NPP hybrid control rooms. The primary purpose of this work is to distill these observed design issues into general HSI design guidance that industry can use in early stages of HSI design.

  6. Re-envisioning the operator consoles for Dhruva control room

    International Nuclear Information System (INIS)

    Gaur, S.; Sridharan, P.; Nair, P.M.; Diwakar, M.P.; Gohel, N.; Pithawa, C.K.

    2012-01-01

    Control Room design is undergoing rapid changes with the progressive adoption of computerization and Automation. Advances in man-machine interfaces have further accelerated this trend. This paper presents the design and main features of Operator consoles (OC) for Dhruva control room developed using new technologies. The OCs have been designed so as not to burden the operator with information overload but to help him quickly assess the situation and timely take appropriate steps. The consoles provide minimalistic yet intuitive interfaces, context sensitive navigation, display of important information and progressive disclosure of situation based information. The use of animations, 3D graphics, and real time trends with the benefit of hardware acceleration to provide a resolution independent rich user experience. The use of XAML, an XML based Mark-up Language for User Interface definition and C for application logic resulted in complete separation of visual design, content, and logic. This also resulted in a workflow where separate teams could work on the UI and the logic of an application. The introduction of Model View View-Model has led to more testable and maintainable software. (author)

  7. Room acoustic analysis of blower unit and noise control plan in the typical steel industry

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Full Text Available Introduction: In the steel industry,air blowers used to supply compressed air are considered as sources of annoying noise. This study aims to acoustics analysis of theairblower workroomand sound source characteristics in order to present noise controlmeasuresinthe steel industry. .Material and Method: Measurement of noiselevel and its frequency analysis was performed usingsound levelmetermodelof CASELLA-Cell.450. Distribution of noise level in the investigated workroom in form of noise map was provided using Surfer software. In addition, acoustic analysis of workroom and control room was performed in view point of soundabsorption andinsulation. Redesignofdoor and window of controlroom and installation of soundabsorbing materialson theceiling of the workroom were proposed and the efficiency of these interventionswasestimated. .Result: The totalsound pressurelevelin the blower workroom was 95.4 dB(L and the dominant frequency was 2000Hz. Sound pressure level inside the room control was 80.1dB(A. The average absorption coefficient and reverberation time in the blower workroom was estimated equal to 0.082 Sab.m2 and 3.9 seconds respectively. These value in control room was 0.04 Sab.m2 and 3/4 seconds respectively. In control room, sound transmission loss between the two parts of the wall dividing was 13.7 dB(A. The average of noise dose in blower operators was 230%. With the installation of sound absorber on ceiling of workroom, average of absorption coefficient can increase to 0.33 Sab.m2 and sound transmission loss of the new designed door and window was estimated equal to 20dB. . Conclusion: The main cause of noise leakage in the control room was insufficient insulation properties of door and windows. By replacing the door and window and installation of sound absorbing on ceiling of workroom, the noise dose can reduce to 49.6%. New Improved door and window of control room can reduce noise dose to 69.65% solely.

  8. Conversion of a servomanipulator from analog to digital control

    International Nuclear Information System (INIS)

    Killough, S.M.; Martin, H.L.; Hamel, W.R.

    1986-01-01

    Oak Ridge National Laboratory (ORNL) has developed expertise in computer control of force-reflecting master/slave servomanipulators as a result of research for the Consolidated Fuel Reprocessing Program. These computer control capabilities have been applied to a commercially available servomanipulator, the TeleOperator Systems SM-229. All of the servo drive and control circuitry has been replaced with commercially available digital controls and amplifiers, and a customer software - package has been developed at ORNL. This conversion to digital computer control resulted in significant improvements in force-reflection characteristics, ease of operation, diagnostic capabilities, indexing features, and potential increased reliability. The system will be used at the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory (PPPL) for maintenance demonstrations

  9. Documenting control system functionality for digital control implementations

    International Nuclear Information System (INIS)

    Harber, J.; Borairi, M.; Tikku, S.; Josefowicz, A.

    2006-01-01

    In past CANDU designs, plant control was accomplished by a combination of digital control computers, analogue controllers, and hardwired relay logic. Functionality for these various control systems, each using different hardware, was documented in varied formats such as text based program specifications, relay logic diagrams, and other various specification documents. The choice of formats was influenced by the hardware used and often required different specialized skills for different applications. The programmable electronic systems in new CANDU designs are realized in a manner consistent with latest international standards (e.g., the IEC 61513 standard). New CANDU designs make extensive use of modern digital control technology, with the benefit that functionality can be implemented on a limited number of control platforms, reducing development and maintenance cost. This approach can take advantage of tools that allow the plant control system functional and performance requirements to be documented using graphical representations. Modern graphical methods supplemented by information databases can be used to provide a clear and comprehensive set of requirements for software and system development. Overview diagrams of system functionality provide a common understanding of the system boundaries and interfaces. Important requirements are readily traced through the development process. This improved reviewability helps to ensure consistency with the safety and and production design requirements of the system. Encapsulation of commonly used functions into custom-defined function blocks, such as typical motor control centre interfaces, process interlocks, median selects etc, eases the burden on designers to understand and analyze the detailed functionality of each instance of use of this logic. A library of encapsulated functions will be established for complex functions that are reused in the control logic development. By encapsulation and standardisation of such

  10. Digitally Controlled Point of Load Converter with Very Fast Transient Response

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2007-01-01

    voltage mode control and very fast transient response. The DiSOM modulator is combined with a digital PID compensator algorithm is implemented in a hybrid CPLD/FPGA and is used to control a synchronous Buck converter, which is used in typical Point of Load applications. The computational time is only......This paper presents a new Digital Self-Oscillating Modulator (DiSOM) that allows the duty cycle to be changed instantly. The DiSOM modulator is shown to have variable switching that is a function of the duty cycle. Compared to a more traditional digital PWM modulator based on a counter...... and comparator the DiSOM modulator allows the sampling frequency of the output voltage control loop to be higher than the switching frequency of the power converter, typically a DC/DC converter. The features of the DiSOM modulator makes it possible to design a digitally controlled DC/DC converter with linear...

  11. Performance-based evaluation of graphic displays for nuclear-power-plant control rooms

    International Nuclear Information System (INIS)

    Petersen, R.J.; Banks, W.W.; Gertman, D.I.

    1982-01-01

    This paper reports several methodologies for evaluating the perceptual and perceptual/decision making aspects of displays used in the control rooms of nuclear power plants. This NRC funded study focuses upon the Safety Parameter Display System (SPDS) and relates the utility of the display to objective performance and preference measures obtained in experimental conditions. The first condition is a traditional laboratory setting where classical experimental methodologies can be employed. The second condition is an interactive control room simulation where the operator's performance is assessed while he/she operates the simulator. The third condition is a rating scale designed to assess operator preferences and opinions regarding a variety of display formats. The goal of this study is the development of a cost-efficient display evaluation methodology which correlates highly with the operator's ability to control a plant

  12. Real time Intelligent Control Laboratory (RT-ICL) of PowerLabDK for smart grid technology development

    DEFF Research Database (Denmark)

    Ostergaard, Jacob; Wu, Qiuwei; Garcia-Valle, Rodrigo

    2012-01-01

    This paper presents the Intelligent Control Laboratory (ICL) of the PowerLabDK and describes examples of ongoing research work utilizing the ICL. The ICL is comprised of a real time digital simulator (RTDS) with 5 racks, a full scale SCADA system and experimental control room with a link to the B......This paper presents the Intelligent Control Laboratory (ICL) of the PowerLabDK and describes examples of ongoing research work utilizing the ICL. The ICL is comprised of a real time digital simulator (RTDS) with 5 racks, a full scale SCADA system and experimental control room with a link...

  13. NRC Information No. 89-44: Hydrogen storage on the roof of the control room

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    During the Region V Chemistry Team Inspection at the Trojan Nuclear Plant the week of April 17, 1989, the inspectors identified a potential safety problem concerning the location of the hydrogen storage facility. Hydrogen is used on pressurized water reactor (PWR) plants for (1) providing a cover gas in the volume control tank, and (2) for cooling the main turbine generator. At boiling water reactor (BWR) plants, hydrogen is also used for cooling the main turbine generator and for injection into the feed system for plants which have implemented hydrogen water chemistry. The Trojan hydrogen storage facility is located on the control room roof which is 30-inch-thick reinforced concrete. The Trojan plant hydrogen facility does not meet guidelines from the standpoint of (1) the separation distance needed between a hydrogen pipe break and the control room ventilation intake to prevent buildup of a flammable or explosive gas mixture inside the control room, and (2) the separation distance needed to prevent damage to safety-related structures resulting from the explosion of an 8,000-scf hydrogen tank

  14. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Science.gov (United States)

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...

  15. Analog and digital appliance technology for the control and monitoring of space HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Gyoeri, M

    1987-01-01

    Both analog and digital devices are expected to meet the required control functions. The analog control device meets this function by way of a complicated circuitry and wiring technology of varying sophistication. In the digital control by a preprogrammed microprocessor. Digital technology allows to use the copied programme in different devices. Any change in the control of a system can be implemented and met by a programme change in digital technology. In analog technology, this change involves a change in wiring. (orig./HW).

  16. A Business Case for Nuclear Plant Control Room Modernization

    International Nuclear Information System (INIS)

    Thomas, Ken; Lawrie, Sean; Niedermuller, Josef M.

    2016-01-01

    This paper presents a generic business case for implementation of technology that supports Control Room Modernization (CRM). The analysis presented in two forms; 1) a standalone technology upgrade, and 2) a technology upgrade that is built upon and incremental to a prior business case created for Mobile Work Packages (MWP). The business case contends that advanced communication and networking and analytical technologies will allow NPP to conduct control room operations with improved focus by reducing human factors and redundant manpower, and therefore operate with fewer errors. While some labor savings can be harvested in terms of overtime, the majority of savings are demonstrated as reduced time to take the plant off line and bring back on line in support of outages. The benefits are quantified to a rough order of magnitude that provides directional guidance to NPPs that are interested in developing a similar business case. This business case focuses on modernization of the operator control room and does not consider a complete overhaul and modernization of a plants instrument and control systems. While operators may be considering such an investment at their plants, the sizable capital investment required is not likely supported by a cost/benefit analysis alone. More likely, it is driven by obsolescence and reliability issues, and requires consideration of mechanical condition of plant systems, capital depreciation, financing, relicensing and overall viability of the plant asset over a 20-year horizon in a competitive market. Prior studies [REF] have indicated that such a modernization of plant I&C systems, alone or as part of a larger modernization effort, can yield very significant reductions in O&M costs. However, the depth of research and analysis required to develop a meaningful business case for a plant modernization effort is well beyond the scope of this study. While CRM as considered in this study can be easily integrated as part of grander plant

  17. A Business Case for Nuclear Plant Control Room Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Niedermuller, Josef M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    This paper presents a generic business case for implementation of technology that supports Control Room Modernization (CRM). The analysis presented in two forms; 1) a standalone technology upgrade, and 2) a technology upgrade that is built upon and incremental to a prior business case created for Mobile Work Packages (MWP). The business case contends that advanced communication and networking and analytical technologies will allow NPP to conduct control room operations with improved focus by reducing human factors and redundant manpower, and therefore operate with fewer errors. While some labor savings can be harvested in terms of overtime, the majority of savings are demonstrated as reduced time to take the plant off line and bring back on line in support of outages. The benefits are quantified to a rough order of magnitude that provides directional guidance to NPPs that are interested in developing a similar business case. This business case focuses on modernization of the operator control room and does not consider a complete overhaul and modernization of a plants instrument and control systems. While operators may be considering such an investment at their plants, the sizable capital investment required is not likely supported by a cost/benefit analysis alone. More likely, it is driven by obsolescence and reliability issues, and requires consideration of mechanical condition of plant systems, capital depreciation, financing, relicensing and overall viability of the plant asset over a 20-year horizon in a competitive market. Prior studies [REF] have indicated that such a modernization of plant I&C systems, alone or as part of a larger modernization effort, can yield very significant reductions in O&M costs. However, the depth of research and analysis required to develop a meaningful business case for a plant modernization effort is well beyond the scope of this study. While CRM as considered in this study can be easily integrated as part of grander plant

  18. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  19. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  20. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  1. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  2. A high-performance digital control system for TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Dutch, M.J.; Milne, P.G.; Means, R.W.

    1997-10-01

    The TCV hybrid analogue-digital plasma control system has been superseded by a high performance Digital Plasma Control System, DPCS, made possible by recent advances in off the shelf technology. We discuss the basic requirements for such a control system and present the design and specifications which were laid down. The nominal and final performances are presented and the complete design is given in detail. The integration of the new system into the current operation of the TCV tokamak is described. The procurement of this system has required close collaboration between the end-users and two commercial suppliers with one of the latter taking full responsibility for the system integration. The impact of this approach on the design and commissioning costs for the TCV project is presented. New possibilities offered by this new system are discussed, including possible work relevant to ITER plasma control development. (author) 3 figs., 5 refs

  3. A high-performance digital control system for TCV

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Dutch, M.J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Milne, P.G. [Pentland System Ltd., Livingstone (United Kingdom); Means, R.W. [HNC Software Inc., San Diego, CA (United States)

    1997-10-01

    The TCV hybrid analogue-digital plasma control system has been superseded by a high performance Digital Plasma Control System, DPCS, made possible by recent advances in off the shelf technology. We discuss the basic requirements for such a control system and present the design and specifications which were laid down. The nominal and final performances are presented and the complete design is given in detail. The integration of the new system into the current operation of the TCV tokamak is described. The procurement of this system has required close collaboration between the end-users and two commercial suppliers with one of the latter taking full responsibility for the system integration. The impact of this approach on the design and commissioning costs for the TCV project is presented. New possibilities offered by this new system are discussed, including possible work relevant to ITER plasma control development. (author) 3 figs., 5 refs.

  4. The measure and control system of mini-type radon room based on PC104

    International Nuclear Information System (INIS)

    Zhou Shumin; East China Inst. of Technology, Fuzhou; Tang Bin; Sun Yamin

    2005-01-01

    Radon room is one of the standard equipment which demarcates radon measure instrument. The paper discusses the dynamic method and mathematic model which keeps the radon consistence stability in radon room. The system is developed on PC104. The system can monitor the radon consistence and replenishment radon according the radon control parameter. (authors)

  5. Test and control computer user's guide for a digital beam former test system

    Science.gov (United States)

    Alexovich, Robert E.; Mallasch, Paul G.

    1992-01-01

    A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.

  6. Simple Digital Control of a Two-Stage PFC Converter Using DSPIC30F Microprocessor

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2010-01-01

    The use of dsPIC digital signal controllers (DSC) in Switch Mode Power Supply (SMPS) applications opens new perspectives for cheap and flexible digital control solutions. This paper presents the digital control of a two stage power factor corrector (PFC) converter. The PFC circuit is designed...... and built for 70W rated output power. Average current mode control for boost converter and current programmed control for forward converter are implemented on a dsPIC30F1010. Pulse Width Modulation (PWM) technique is used to drive the switching MOSFETs. Results show that digital solutions with ds...

  7. 3 GHz digital rf control at the superconducting Darmstadt electron linear accelerator: First results from the baseband approach and extensions for other frequencies

    Directory of Open Access Journals (Sweden)

    A. Araz

    2010-08-01

    Full Text Available The low level rf system for the superconducting Darmstadt electron linear accelerator (S-DALINAC developed 20 years ago and operating since converts the 3 GHz signals from the cavities down to the baseband and not to an intermediate frequency. While designing the new, digital rf control system this concept was kept: the rf module does the I/Q and amplitude modulation/demodulation while the low frequency board, housing an field programmable gate array analyzes and processes the signals. Recently, the flexibility of this concept was realized: By replacing the modulator/demodulators on the rf module, cavities operating at frequencies other than the one of the S-DALINAC can be controlled with only minor modifications: A 6 GHz version, needed for a harmonic bunching system at the S-DALINAC and a 324 MHz solution to be used on a room temperature cavity at GSI, are currently under design. This paper reviews the concept of the digital low level rf control loops in detail and reports on the results gained during first operation with a superconducting cavity.

  8. Results of control-room annunciator-systems evaluations

    International Nuclear Information System (INIS)

    Banks, W.W.

    1981-01-01

    Annunciator systems in nuclear power plants tax the operator's ability to cope with large amounts of information. Conventional annunciators do not provide the information in an acceptable way for efficient response, but computer-generated CRT displays have the potential for rectifying this situation. A multidisciplinary team of human factors engineers from EG and G Idaho conducted a study to (a) identify problem areas in reactor control rooms associated with annunciator display systems, (b) provide specific and generic solutions to the problems identified, and (c) provide recommendations and direction for future improvements and research focused on the man/display interface from a human factors engineering perspective

  9. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Bologna, S.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.; Yamane, N.

    1992-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow. (orig.)

  10. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.

    1990-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow

  11. Ergonomic configuration of control rooms in nuclear power stations

    International Nuclear Information System (INIS)

    Becker, G.

    1984-01-01

    Human possibilities and limits of performance can be taken into account by work configuration measures, in order to make the optimum contribution to the total output of the human being/machine system. The results of and considerations for the level ergonomic configuration of the control room, for the elements of the information carrier, for the structuring of the work field and for communication centres are introduced. (DG) [de

  12. Digital control system of a steam generator water level by LQG optimal method

    International Nuclear Information System (INIS)

    Lee, Yoon Joon

    1993-01-01

    A digital control system for the steam generator water level control is developed using LQG optimal design method. To describe the more realistic situaton, a feedwater valve actuator is assumed to be of the first order lagger and is included in the overall control system. By composing the digital control circuit in such a way that the overall control system consists of two sub-systems of feedwater station and feedback loop digital controller, the design procedure is divided into two independent steps. The feedwater station system is described in the error dynamics of an ordinary regulator system. The optimal gains are obtained by LQ method which imposes the constraints of the feedwater valve motion as well as on the output deviations. Developed also is a Kalman observer on account of the flow measurement uncertainty at low power. Then a digital controller on the feedback loop is designed so that the system maintains the same stability margins for all power ranges. The simulation results show thst the optimal digital system has a good control characteristics despite the adverse dynamics of a steam generator at low power. (Author)

  13. Development and implementation of an automated quantitative film digitizer quality control program

    Science.gov (United States)

    Fetterly, Kenneth A.; Avula, Ramesh T. V.; Hangiandreou, Nicholas J.

    1999-05-01

    A semi-automated, quantitative film digitizer quality control program that is based on the computer analysis of the image data from a single digitized test film was developed. This program includes measurements of the geometric accuracy, optical density performance, signal to noise ratio, and presampled modulation transfer function. The variability of the measurements was less than plus or minus 5%. Measurements were made on a group of two clinical and two laboratory laser film digitizers during a trial period of approximately four months. Quality control limits were established based on clinical necessity, vendor specifications and digitizer performance. During the trial period, one of the digitizers failed the performance requirements and was corrected by calibration.

  14. Digital TV-echelle spectrograph for simultaneous multielemental analysis using microcomputer control

    International Nuclear Information System (INIS)

    Davidson, J.B.; Case, A.L.

    1980-12-01

    A digital TV-echelle spectrograph with microcomputer control was developed for simultaneous multielemental analysis. The optical system is a commercially available unit originally equipped for film and photomultiplier (single element) readout. The film port was adapted for the intensifier camera. The camera output is digitized and stored in a microcomputer-controlled, 512 x 512 x 12 bit memory and image processor. Multiple spectra over the range of 200 to 800 nm are recorded in a single exposure. Spectra lasting from nanoseconds to seconds are digitized and stored in 0.033 s and displayed on a TV monitor. An inexpensive microcomputer controls the exposure, reads and displays the intensity of predetermined spectral lines, and calculates wavelengths of unknown lines. The digital addresses of unknown lines are determined by superimposing a cursor on the TV display. The microcomputer also writes into memory wavelength fiducial marks for alignment of the TV camera

  15. Experience with digital instrumentation and control systems for CANDU power plant modifications

    International Nuclear Information System (INIS)

    Basu, S.

    1997-01-01

    Over the last years, Ontario Hydro CANDU power plants have gone through many modifications. This includes modification from analog hardwired controls to digital and solid state controls and replacement of the existing digital controls with the latest hardware and software technology. Examples of digital modifications at Bruce A and other CANDU power plants are briefly described and categorized. Most of the I and C technology development has been supported by the CANDU Owners Group (COG) a consortium of Canadian nuclear utilities and the Atomic Energy Canada Limited (AECL). (author)

  16. Experience with digital instrumentation and control systems for CANDU power plant modifications

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S [Ontario Hydro, Toronto, ON (Canada)

    1997-07-01

    Over the last years, Ontario Hydro CANDU power plants have gone through many modifications. This includes modification from analog hardwired controls to digital and solid state controls and replacement of the existing digital controls with the latest hardware and software technology. Examples of digital modifications at Bruce A and other CANDU power plants are briefly described and categorized. Most of the I and C technology development has been supported by the CANDU Owners Group (COG) a consortium of Canadian nuclear utilities and the Atomic Energy Canada Limited (AECL). (author).

  17. Automation of extrusion of porous cable products based on a digital controller

    Science.gov (United States)

    Chostkovskii, B. K.; Mitroshin, V. N.

    2017-07-01

    This paper presents a new approach to designing an automated system for monitoring and controlling the process of applying porous insulation material on a conductive cable core, which is based on using structurally and parametrically optimized digital controllers of an arbitrary order instead of calculating typical PID controllers using known methods. The digital controller is clocked by signals from the clock length sensor of a measuring wheel, instead of a timer signal, and this provides the robust properties of the system with respect to the changing insulation speed. Digital controller parameters are tuned to provide the operating parameters of the manufactured cable using a simulation model of stochastic extrusion and are minimized by moving a regular simplex in the parameter space of the tuned controller.

  18. Uncertainty Analysis of In leakage Test for Pressurized Control Room Envelop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. B. [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In leakage tests for control room envelops(CRE) of newly constructed nuclear power plants are required to prove the control room habitability. Results of the in leakage tests should be analyzed using an uncertainty analysis. Test uncertainty can be an issue if the test results for pressurized CREs show low in leakage. To have a better knowledge of the test uncertainty, a statistical model for the uncertainty analysis is described here and a representative uncertainty analysis of a sample in leakage test is presented. A statistical method for analyzing the uncertainty of the in leakage test is presented here and a representative uncertainty analysis of a sample in leakage test was performed. By using the statistical method we can evaluate the test result with certain level of significance. This method can be more helpful when the difference of the two mean values of the test result is small.

  19. Uncertainty Analysis of In leakage Test for Pressurized Control Room Envelop

    International Nuclear Information System (INIS)

    Lee, J. B.

    2013-01-01

    In leakage tests for control room envelops(CRE) of newly constructed nuclear power plants are required to prove the control room habitability. Results of the in leakage tests should be analyzed using an uncertainty analysis. Test uncertainty can be an issue if the test results for pressurized CREs show low in leakage. To have a better knowledge of the test uncertainty, a statistical model for the uncertainty analysis is described here and a representative uncertainty analysis of a sample in leakage test is presented. A statistical method for analyzing the uncertainty of the in leakage test is presented here and a representative uncertainty analysis of a sample in leakage test was performed. By using the statistical method we can evaluate the test result with certain level of significance. This method can be more helpful when the difference of the two mean values of the test result is small

  20. Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

    International Nuclear Information System (INIS)

    Domingo, C.; Garcia-Fuste, M.J.; Morales, E.; Amgarou, K.; Terron, J.A.; Rosello, J.; Brualla, L.; Nunez, L.; Colmenares, R.; Gomez, F.; Hartmann, G.H.; Sanchez-Doblado, F.; Fernandez, F.

    2010-01-01

    A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above ∼8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

  1. Digital control in Finnish power industry applications and some research and development activities

    International Nuclear Information System (INIS)

    Haapanen, P.; Winter, M.

    1986-01-01

    First applications of digital control systems in Finnish power plants stem from a few years time. There are at present in operation two conventional peat fuelled district heating power plants and two others are under construction. In existing nuclear power plants digital control systems are not used. Feasibility studies of a new fifth nuclear power plant have been carried out and also preliminary design exercises on its control systems has been done. It seems that the use of a digital control system in this plant is an alternative worthy of consideration. The existing digital control applications and future plans for their use in the Finnish power industry are described. The rest of the paper is devoted to the reliability questions. Software reliability is a new problem area emanating from the use of programmable digital systems. A description of a cooperative project on these questions between VTT and OECD Halden Project is given. VTT has also developed an interactive computer program, RELVEC, for plant and control system reliability analysis. The structure and use of this system is described

  2. Comparison of Failure Analysis and Operating Experiences of Digital Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chan; Shin, Tae Young [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-08-15

    This study focuses on digital control systems that have the same functions but different designs. Some differences and common points between these two digital control systems are analyzed in terms of vulnerabilities in plant operation. In addition, this study confirms why unexpected outcomes can occur through a comparison of the system failure experiences with the analytic results of FMEA and FTA. This evaluation demonstrates that the digital system may have vulnerable components whose single failures can cause plant transients even if the system has a redundant structure according to its system design.

  3. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  4. Supplementary control points for reactor shutdown without access to the main control room (International Electrotechnical Commission Standard Publication 965:1989)

    International Nuclear Information System (INIS)

    Kubalek, J.; Hajek, B.

    1993-01-01

    This standard establishes the requirements for supplementary Control Points provided to enable the operating staff to shut down the reactor and maintain the plant in a safe shut-down condition when the main control room is no longer available. This standard covers the functional selection, design and organization of the man/machine interface. It also establishes requirements for procedures which systematically verify and validate the functional design of supplementary control points. The requirements reflect the application of human engineering principles as they apply to man/machine interface. This standard does not cover special emergency response centres (e.g. a Technical Support Centre). It also does not include the detailed equipment design. Unavailability of the main control room controls due to intentionally man-induced events is not considered

  5. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, Kevan

    1986-01-01

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  6. Control theory of digitally networked dynamic systems

    CERN Document Server

    Lunze, Jan

    2013-01-01

    The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic

  7. Nuclear power plant control room operators' performance research

    International Nuclear Information System (INIS)

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis

  8. Integrated application of human factors to a power plant control room information system

    International Nuclear Information System (INIS)

    Fish, H.C. Jr.; Gutierrez, R.

    1988-01-01

    The human factors plan was developed as a methodology to apply human factors from the conceptual design of the EPIC system to the functional verification conducted at the plant. An integral part of the Human Factors Plan was the Functional Verification Plan. Developed in parallel, this second plan and its resultant programs verified functional appropriateness of the SPDS display, NSSS displays, EOP displays, man-machine interfaces (MMI), and workstation designs. The functional verification process was performed at the hardware/software developer's factory and at the JAFNPP, following installation of the EPIC system. Because the EPIC system replaces existing control room equipment, it is important that human factors be applied in a systematic manner consistent with other control room displays and controls. To ensure that this goal was met, a human factors plan was developed

  9. Human factors design of nuclear power plant control rooms including computer-based operator aids

    International Nuclear Information System (INIS)

    Bastl, W.; Felkel, L.; Becker, G.; Bohr, E.

    1983-01-01

    The scientific handling of human factors problems in control rooms began around 1970 on the basis of safety considerations. Some recent research work deals with the development of computerized systems like plant balance calculation, safety parameter display, alarm reduction and disturbance analysis. For disturbance analysis purposes it is necessary to homogenize the information presented to the operator according to the actual plant situation in order to supply the operator with the information he most urgently needs at the time. Different approaches for solving this problem are discussed, and an overview is given on what is being done. Other research projects concentrate on the detailed analysis of operators' diagnosis strategies in unexpected situations, in order to obtain a better understanding of their mental processes and the influences upon them when such situations occur. This project involves the use of a simulator and sophisticated recording and analysis methods. Control rooms are currently designed with the aid of mock-ups. They enable operators to contribute their experience to the optimization of the arrangement of displays and controls. Modern control rooms are characterized by increasing use of process computers and CRT (Cathode Ray Tube) displays. A general concept for the integration of the new computerized system and the conventional control panels is needed. The technical changes modify operators' tasks, and future ergonomic work in nuclear plants will need to consider the re-allocation of function between man and machine, the incorporation of task changes in training programmes, and the optimal design of information presentation using CRTs. Aspects of developments in control room design are detailed, typical research results are dealt with, and a brief forecast of the ergonomic contribution to be made in the Federal Republic of Germany is given

  10. Digital control for turbogas units; Control digital para unidades turbogas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Beltran, Carlos Daniel

    1997-02-01

    The present thesis deals with the rehabilitation of the control system for the gas turbines W501 of the Gomez Palacio Combined Cycle Power Station in the state of Durango, Mexico. The first part of the development deals with a re-engineering process of software applied to the digital control system of the gas turbines of the Gomez Palacio Combined Cycle Power Station. This process was developed using concepts of several branches of engineering: a) involved the knowledge of the software engineering, using formal methods for the analysis of the original system and the redesign of the new system; b) The control engineering was used in the analysis of diverse control and automation strategies employed for gas turbines control, with the objective of verifying the type of instructions and existing routines within the software. The final product of this stage is a modulated programmatic system, based on structured design that is functionally a mirror image of the original system. The system obtained conformed by five main modules which are based on a model proposed originally for control by batch: i) Man Machine Interface, ii) Regulatory Control, iii) Protections, iv) Logic sequences and v) Supervision. The second stage of development was the improvement of the speed control of the turbine. When a turbogas unit is controlled, it must be taken into account several operation stages such as the starting, the control in stable state and the shut down. The real behavior of the turbine during the starting, and mainly the great number of backward movements produced, proposed by itself the search of a new controller who more closely maintained the acceleration specifications whereupon the turbine was designed. The development of a new control algorithm began with the analysis of the process, trying to identify which are the critical stages of this one and be able to evaluate in an objective form the advantages of an algorithm upon the other. It was continued with the

  11. A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey C.

    2017-03-01

    Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model for U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.

  12. Quasiinvariant Automatic Control Digital Systems of Inertia Objects

    OpenAIRE

    Lvov, Volodymyr; Andrieiev, Anatoliy

    2010-01-01

    The two-connected automatic control digital system (ACDS) and system of ACDS with combined control are examined. The two-connected and combined system of ACDS with work in the mode of tracking and stabilizing are analyzed. The discrete transfer function of two-connected and combined systems are obtained.

  13. Human factors inspection of current control room panel in Jose Cabrera NPP

    International Nuclear Information System (INIS)

    Almeida, P.; O'Hara, J.; Higgins, J.

    2002-01-01

    Within the process of renewal of Exploitation Permit of Jose Cabrera Nuclear Power Plant, UNION FENOSA GENERACIO, S. A. (UFG) has carried out an analysis and evaluation project regarding human factors implications of current control room panel arrangement. The project has been developed in two phases. In the first phase, leaded by EPRI and carried out by experts from SAIC, an independent review from a double viewpoint of human reliability and human factors was developed. In the second phase, a multidisciplinary team (composed by human factors, risk analysis, operation, engineering, training and instrumentation and controls experts) has developed a study on human factors implications of current panel arrangement, following the methodology pointed out in NUREG-0711. The project has been developed under the direction of Brookhaven National Laboratory (BNL), organisation that has authored the aforementioned methodology, with the participation of UFG and SOLUZIONA Ingenieria. For the development of the second study the following steps were taken: Firstly, the potential effects of panel arrangement on crew performance were identified its real evidence was analysed and the goals for the improvement of control room operation were established; following NUREG-0711. After this, several design alternatives that addressed these goals were identified and were analysed along three dimensions: human factors, risk analysis and economic costs. Finally the results of these evaluations were combined using a multi-attribute decision method to arrive at a recommended alternative as he best proposal to incorporate human factors criteria and good practices in the design of control room panels. (Author)

  14. A demonstrated method for upgrading existing control room interiors

    International Nuclear Information System (INIS)

    Brice, R.M.; Terrill, D.; Brice, R.M.

    1991-01-01

    The main control room (MCR) of any nuclear power plant can justifiably be called the most important area staffed by personnel in the entire facility. The interior workstation configuration, equipment arrangement, and staff placement all affect the efficiency and habitability of the room. There are many guidelines available that describe various human factor principles to use when upgrading the environment of the MCR. These involve anthropometric standards and rules for placement of peripheral equipment. Due to the variations in plant design, however, hard-and-fast rules have not and cannot be standardized for retrofits in any significant way. How then does one develop criteria for the improvement of a MCR? The purpose of this paper is to discuss, from the designer's point of view, a method for the collection of information, development of criteria, and creation of a final design for a MCR upgrade. This method is best understood by describing the successful implementation at Tennessee Valley Authority's Sequoyah nuclear plant

  15. Advanced control rooms and crew performance issues: Implications for human reliability

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Hall, R.E.

    1991-01-01

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs)

  16. Job satisfaction among control room operators of electrical systems.

    Science.gov (United States)

    Macaia, Amanda A Silva; Marqueze, Elaine C; Rotenberg, Lúcia; Fischer, Frida Marina; Moreno, Claudia R C

    2012-01-01

    Shift workers from control centers of electrical systems are a group that has received little attention in Brazil. This study aimed to compare workers' job satisfaction at five control centers of a Brazilian company electrical system, and according to their job titles. The Organization Satisfaction Index (OSI) questionnaire to assess job satisfaction was used. ANOVA was used to compare OSI means, according to job title and control center. The results showed that there is no difference in job satisfaction among job titles, but a significant difference was found according to the control center. A single organizational culture cannot be applied to several branches. It is required to implement actions that would result in job satisfaction improvements among workers of all studied control rooms centers. The high level of education of operators working in all centers might have contributed to the similar values of perceived satisfaction among distinct job titles.

  17. Control room habitability survey of licensed commercial nuclear power generating stations

    International Nuclear Information System (INIS)

    Driscoll, J.W.

    1988-10-01

    This document presents the results of a survey of control room habitability systems at twelve commercial nuclear generating stations. The survey, conducted by Argonne National Laboratory (ANL), is part of an NRC program initiated in response to concerns and recommendations of the Advisory Committee on Reactor Safeguards (ACRS). The major conclusion of the report is that the numerous types of potentially significant discrepancies found among the surveyed plants may be indicative of similar discrepancies throughout the industry. The report provides plant-specific and generalized findings regarding safety functions with respect to the consistency of the design, construction, operation and testing of control room habitability systems and corresponding Technical Specifications compared with descriptions provided in the license basis documentation including assumptions in the operator toxic gas concentration and radiation dose calculations. Calculations of operator toxic gas concentrations and radiation doses were provided in the license basis documentation and were not performed by the ANL survey team. Recommendation for improvements are provided in the report

  18. Simon van der Meer in the AA Control Room

    CERN Multimedia

    CERN PhotoLab

    1984-01-01

    Simon van der Meer, spiritus rector of the Antiproton Accumulator, in the AA Control Room. Inventor of stochastic cooling, on which the AA was based, and of the magnetic horn, with which the antiprotons were focused, he also wrote most of the software with which the AA was controlled, and spent uncountable numbers of hours in this chair to tickle the AA to top performance. 8 months after this picture was taken, he received, in October 1984, the Nobel prize, together with Carlo Rubbia, the moving force behind the whole Proton-Antiproton Collider project that led to the discovery, in 1983, of the W and Z intermediate bosons.

  19. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    Science.gov (United States)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  20. Cyber secure systems approach for NPP digital control systems

    Energy Technology Data Exchange (ETDEWEB)

    McCreary, T. J.; Hsu, A. [HF Controls Corporation, 16650 Westgrove Drive, Addison, TX 75001 (United States)

    2006-07-01

    Whether fossil or nuclear power, the chief operations goal is to generate electricity. The heart of most plant operations is the I and C system. With the march towards open architecture, the I and C system is more vulnerable than ever to system security attacks (denial of service, virus attacks and others), thus jeopardizing plant operations. Plant staff must spend large amounts of time and money setting up and monitoring a variety of security strategies to counter the threats and actual attacks to the system. This time and money is a drain on the financial performance of a plant and distracts valuable operations resources from their real goals: product. The pendulum towards complete open architecture may have swung too far. Not all aspects of proprietary hardware and software are necessarily 'bad'. As the aging U.S. fleet of nuclear power plants starts to engage in replacing legacy control systems, and given the on-going (and legitimate) concern about the security of present digital control systems, decisions about how best to approach cyber security are vital to the specification and selection of control system vendors for these upgrades. The authors maintain that utilizing certain resources available in today's digital technology, plant control systems can be configured from the onset to be inherently safe, so that plant staff can concentrate on the operational issues of the plant. The authors postulate the concept of the plant I and C being bounded in a 'Cyber Security Zone' and present a design approach that can alleviate the concern and cost at the plant level of dealing with system security strategies. Present approaches through various IT cyber strategies, commercial software, and even postulated standards from various industry/trade organizations are almost entirely reactive and simply add to cost and complexity. This Cyber Security Zone design demonstrates protection from the four classes of cyber security attacks: 1)Threat from