WorldWideScience

Sample records for digital computer simulation

  1. Digital control computer upgrade at the Cernavoda NPP simulator

    International Nuclear Information System (INIS)

    Ionescu, T.

    2006-01-01

    The Plant Process Computer equips some Nuclear Power Plants, like CANDU-600, with Centralized Control performed by an assembly of two computers known as Digital Control Computers (DCC) and working in parallel for safely driving of the plan at steady state and during normal maneuvers but also during abnormal transients when the plant is automatically steered to a safe state. The Centralized Control means both hardware and software with obligatory presence in the frame of the Full Scope Simulator and subject to changing its configuration with specific requirements during the plant and simulator life and covered by this subsection

  2. Dynamic simulation of hvdc transmission systems on digital computers

    Energy Technology Data Exchange (ETDEWEB)

    Hingorani, N G; Hay, J L; Crosbie, R E

    1966-05-01

    A digital computer technique is based on the fact that the operation of an hvdc converter consists of similar consecutive processes, each process having features which are common to all processes. Each bridge converter of an hvdc system is represented by a central process, and repetitive use of the latter simulates continuous converter operation. This technique may be employed to obtain the waveforms of transient or steady state voltages and currents anywhere in the dc system. To illustrate the method, an hvdc link is considered; the link which connects two independent ac systems conprises two converters with their control systems, and a dc transmission line. As an example, the transient behavior of the system is examined following changes in the current settings of the control system.

  3. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    Science.gov (United States)

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  4. Empirical method for simulation of water tables by digital computers

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Fenske, P.R.

    1975-09-01

    An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada

  5. SNOW: a digital computer program for the simulation of ion beam devices

    International Nuclear Information System (INIS)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented

  6. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    Science.gov (United States)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  7. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    International Nuclear Information System (INIS)

    Hou, Xue Yan; Li, Shu; Li, Qing

    2011-01-01

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier

  8. Six-degree-of-freedom missile simulation using the ADI AD 100 digital computer and ADSIM simulation language

    Science.gov (United States)

    Zwaanenburg, Koos

    1989-01-01

    The use of an AD 100 computer and the ADSIM language in the six-degree-of-freedom digital simulation of an air-to-ground missile is illustrated. The missile is launched from a moving platform, typically a helicopter, and is capable of striking a mobile target up to 10 kilometers away. The missile could be any tactical missile. The performance numbers of the AD 100 show that it is possible to implement a high performance missile model in a real-time simulation without the problems associated with an implementation on a general purpose computer using FORTRAN.

  9. Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    Directory of Open Access Journals (Sweden)

    Mingjie Yang

    Full Text Available PURPOSE: This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF, a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. METHODS: The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. RESULTS: The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. CONCLUSIONS: According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.

  10. Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    Science.gov (United States)

    Yang, Mingjie; Zeng, Cheng; Guo, Song; Pan, Jie; Han, Yingchao; Li, Zeqing; Li, Lijun; Tan, Jun

    2014-01-01

    This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.

  11. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  12. TRANP - a computer code for digital simulation of steady - state and transient behavior of a pressurizer water reactor primary circuit

    International Nuclear Information System (INIS)

    Chalhoub, E.S.

    1980-09-01

    A digital computer code TRANP was developed to simulate the steady-state and transient behavior of a pressurizer water reactor primary circuit. The development of this code was based on the combining of three codes already developed for the simulation of a PWR core, a pressurizer, a steam generator and a main coolant pump, representing the primary circuit components. (Author) [pt

  13. The digital computer

    CERN Document Server

    Parton, K C

    2014-01-01

    The Digital Computer focuses on the principles, methodologies, and applications of the digital computer. The publication takes a look at the basic concepts involved in using a digital computer, simple autocode examples, and examples of working advanced design programs. Discussions focus on transformer design synthesis program, machine design analysis program, solution of standard quadratic equations, harmonic analysis, elementary wage calculation, and scientific calculations. The manuscript then examines commercial and automatic programming, how computers work, and the components of a computer

  14. Digital computers in action

    CERN Document Server

    Booth, A D

    1965-01-01

    Digital Computers in Action is an introduction to the basics of digital computers as well as their programming and various applications in fields such as mathematics, science, engineering, economics, medicine, and law. Other topics include engineering automation, process control, special purpose games-playing devices, machine translation and mechanized linguistics, and information retrieval. This book consists of 14 chapters and begins by discussing the history of computers, from the idea of performing complex arithmetical calculations to the emergence of a modern view of the structure of a ge

  15. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Science.gov (United States)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  16. Quality comparison between DEF-10 digital image from simulation technique and Computed Tomography (CR) technique in industrial radiography

    International Nuclear Information System (INIS)

    Siti Nur Syatirah Ismail

    2012-01-01

    The study was conducted to make comparison of digital image quality of DEF-10 from the techniques of simulation and computed radiography (CR). The sample used is steel DEF-10 with thickness of 15.28 mm. In this study, the sample is exposed to radiation from X-ray machine (ISOVOLT Titan E) with certain parameters. The parameters used in this study such as current, volt, exposure time and distance are specified. The current and distance of 3 mA and 700 mm respectively are specified while the applied voltage varies at 140, 160, 180 and 200 kV. The exposure time is reduced at a rate of 0, 20, 40, 60 and 80 % for each sample exposure. Digital image of simulation produced from aRTist software whereas digital image of computed radiography produced from imaging plate. Therefore, both images were compared qualitatively (sensitivity) and quantitatively (Signal to-Noise Ratio; SNR, Basic Spatial Resolution; SRb and LOP size) using Isee software. Radiographic sensitivity is indicated by Image Quality Indicator (IQI) which is the ability of the CR system and aRTist software to identify IQI of wire type when the time exposure is reduced up to 80% according to exposure chart ( D7; ISOVOLT Titan E). The image of the thinnest wire diameter achieved by radiograph from simulation and CR are the wire numbered 7 rather than the wire numbered 8 required by the standard. In quantitative comparison, this study shows that the SNR values decreases with reducing exposure time. SRb values increases for simulation and decreases for CR when the exposure time decreases and the good image quality can be achieved at 80% reduced exposure time. The high SNR and SRb values produced good image quality in CR and simulation techniques respectively. (author)

  17. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging

    International Nuclear Information System (INIS)

    Gong Xing; Glick, Stephen J.; Liu, Bob; Vedula, Aruna A.; Thacker, Samta

    2006-01-01

    Although conventional mammography is currently the best modality to detect early breast cancer, it is limited in that the recorded image represents the superposition of a three-dimensional (3D) object onto a 2D plane. Recently, two promising approaches for 3D volumetric breast imaging have been proposed, breast tomosynthesis (BT) and CT breast imaging (CTBI). To investigate possible improvements in lesion detection accuracy with either breast tomosynthesis or CT breast imaging as compared to digital mammography (DM), a computer simulation study was conducted using simulated lesions embedded into a structured 3D breast model. The computer simulation realistically modeled x-ray transport through a breast model, as well as the signal and noise propagation through a CsI based flat-panel imager. Polyenergetic x-ray spectra of Mo/Mo 28 kVp for digital mammography, Mo/Rh 28 kVp for BT, and W/Ce 50 kVp for CTBI were modeled. For the CTBI simulation, the intensity of the x-ray spectra for each projection view was determined so as to provide a total average glandular dose of 4 mGy, which is approximately equivalent to that given in conventional two-view screening mammography. The same total dose was modeled for both the DM and BT simulations. Irregular lesions were simulated by using a stochastic growth algorithm providing lesions with an effective diameter of 5 mm. Breast tissue was simulated by generating an ensemble of backgrounds with a power law spectrum, with the composition of 50% fibroglandular and 50% adipose tissue. To evaluate lesion detection accuracy, a receiver operating characteristic (ROC) study was performed with five observers reading an ensemble of images for each case. The average area under the ROC curves (A z ) was 0.76 for DM, 0.93 for BT, and 0.94 for CTBI. Results indicated that for the same dose, a 5 mm lesion embedded in a structured breast phantom was detected by the two volumetric breast imaging systems, BT and CTBI, with statistically

  18. Digital optical computer II

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.

    1991-12-01

    OptiComp is currently completing a 32-bit, fully programmable digital optical computer (DOC II) that is designed to operate in a UNIX environment running RISC microcode. OptiComp's DOC II architecture is focused toward parallel microcode implementation where data is input in a dual rail format. By exploiting the physical principals inherent to optics (speed and low power consumption), an architectural balance of optical interconnects and software code efficiency can be achieved including high fan-in and fan-out. OptiComp's DOC II program is jointly sponsored by the Office of Naval Research (ONR), the Strategic Defense Initiative Office (SDIO), NASA space station group and Rome Laboratory (USAF). This paper not only describes the motivational basis behind DOC II but also provides an optical overview and architectural summary of the device that allows the emulation of any digital instruction set.

  19. Computing Logarithms Digit-by-Digit

    Science.gov (United States)

    Goldberg, Mayer

    2005-01-01

    In this work, we present an algorithm for computing logarithms of positive real numbers, that bears structural resemblance to the elementary school algorithm of long division. Using this algorithm, we can compute successive digits of a logarithm using a 4-operation pocket calculator. The algorithm makes no use of Taylor series or calculus, but…

  20. Digital design and computer architecture

    CERN Document Server

    Harris, David

    2010-01-01

    Digital Design and Computer Architecture is designed for courses that combine digital logic design with computer organization/architecture or that teach these subjects as a two-course sequence. Digital Design and Computer Architecture begins with a modern approach by rigorously covering the fundamentals of digital logic design and then introducing Hardware Description Languages (HDLs). Featuring examples of the two most widely-used HDLs, VHDL and Verilog, the first half of the text prepares the reader for what follows in the second: the design of a MIPS Processor. By the end of D

  1. An introduction to digital computing

    CERN Document Server

    George, F H

    2014-01-01

    An Introduction to Digital Computing provides information pertinent to the fundamental aspects of digital computing. This book represents a major step towards the universal availability of programmed material.Organized into four chapters, this book begins with an overview of the fundamental workings of the computer, including the way it handles simple arithmetic problems. This text then provides a brief survey of the basic features of a typical computer that is divided into three sections, namely, the input and output system, the memory system for data storage, and a processing system. Other c

  2. Digital computer structure and design

    CERN Document Server

    Townsend, R

    2014-01-01

    Digital Computer Structure and Design, Second Edition discusses switching theory, counters, sequential circuits, number representation, and arithmetic functions The book also describes computer memories, the processor, data flow system of the processor, the processor control system, and the input-output system. Switching theory, which is purely a mathematical concept, centers on the properties of interconnected networks of ""gates."" The theory deals with binary functions of 1 and 0 which can change instantaneously from one to the other without intermediate values. The binary number system is

  3. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  4. Digital Forensics in Cloud Computing

    Directory of Open Access Journals (Sweden)

    PATRASCU, A.

    2014-05-01

    Full Text Available Cloud Computing is a rather new technology which has the goal of efficiently usage of datacenter resources and offers them to the users on a pay per use model. In this equation we need to know exactly where and how a piece of information is stored or processed. In today's cloud deployments this task is becoming more and more a necessity and a must because we need a way to monitor user activity, and furthermore, in case of legal actions, we must be able to present digital evidence in a way in which it is accepted. In this paper we are going to present a modular and distributed architecture that can be used to implement a cloud digital forensics framework on top of new or existing datacenters.

  5. Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to introduce a new device that allows for patient-specific imaging-dose modulation in conventional and cone-beam CT. The device is called a digital beam attenuator (DBA). The DBA modulates an x-ray beam by varying the attenuation of a set of attenuating wedge filters across the fan angle. The ability to modulate the imaging dose across the fan beam represents another stride in the direction of personalized medicine. With the DBA, imaging dose can be tailored for a given patient anatomy, or even tailored to provide signal-to-noise ratio enhancement within a region of interest. This modulation enables decreases in: dose, scatter, detector dynamic range requirements, and noise nonuniformities. In addition to introducing the DBA, the simulation framework used to study the DBA under different configurations is presented. Finally, a detailed study on the choice of the material used to build the DBA is presented. Methods: To change the attenuator thickness, the authors propose to use an overlapping wedge design. In this design, for each wedge pair, one wedge is held stationary and another wedge is moved over the stationary wedge. The composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. To validate the DBA concept and study design changes, a simulation environment was constructed. The environment allows for changes to system geometry, different source spectra, DBA wedge design modifications, and supports both voxelized and analytic phantom models. A study of all the elements from atomic number 1 to 92 were evaluated for use as DBA filter material. The amount of dynamic range and tube loading for each element were calculated for various DBA designs. Tube loading was calculated by comparing the attenuation of the DBA at its minimum attenuation position to a filtered non-DBA acquisition. Results: The design and parametrization of DBA implemented FFMCT has been introduced. A simulation

  6. Simulation of quantum computers

    NARCIS (Netherlands)

    De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  7. Simulation of quantum computers

    NARCIS (Netherlands)

    Raedt, H. De; Michielsen, K.; Hams, A.H.; Miyashita, S.; Saito, K.

    2000-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  8. Flight Trainer Digital Computer Study

    Science.gov (United States)

    1951-03-21

    b’e "ä"dö|rtedr rfoS^ hfe "digital airplane simulator is .dependent on the accTuracy demanded for representing airp2ane^mo±i6h---as4 on the method...analogue- quantity such as- a vQ.lt:äfa.:e’ .süit;*.v £jr- äc\\t„ü’at.ing an, inst’riMen’t’.i. Since in gene /paiL " ~ instruments, v^𔃻

  9. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  10. Simulation of dynamic behaviour of a digital displacement motor using transient 3d computational fluid dynamics analysis

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    . Movement of the low and high pressure valves is coupled to fluid forces and valve actuation is included to control the valve movement according to the pressure cycle of the digital displacement motor. The fluid domain is meshed using a structured/unstructured non-conformal mesh, which is updated throughout...

  11. Augmenting digital displays with computation

    Science.gov (United States)

    Liu, Jing

    As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion

  12. Contribution to the aid to computer-aided design. Simulation of digital and logical sets. The CHAMBOR software

    International Nuclear Information System (INIS)

    Mansuy, Guy

    1973-01-01

    This report presents a simulation software which belongs to a set of software aimed at the design, analysis, test and tracing of electronic and logical assemblies. This software simulates the operation in time, and considers the propagation of signals through the network elements, with taking the delay created by each of them into account. The author presents some generalities (modules, description, library, simulation of a network in function of time), proposes a general and then a detailed description of the software: data interpretation, processing of dynamic data and network simulation, display of results on a graphical workstation

  13. Digital Simulation in the Geosciences

    Directory of Open Access Journals (Sweden)

    Alexandr A. Lobanov

    2014-09-01

    Full Text Available This article provides an analysis of methods for digital modeling in the area of Earth Sciences. The author illustrates the difference between digital modeling in radio communication and that in the area of Earth Sciences. The article examines the integration aspect of digital models, demonstrates the advantages of digital over analog models, and illustrates that digital models are discrete. The author outlines the characteristics of digital modeling and illustrates the logical structure of digital models.

  14. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  15. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  16. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  17. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  18. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  19. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  20. Computer Simulation of Reading.

    Science.gov (United States)

    Leton, Donald A.

    In recent years, coding and decoding have been claimed to be the processes for converting one language form to another. But there has been little effort to locate these processes in the human learner or to identify the nature of the internal codes. Computer simulation of reading is useful because the similarities in the human reception and…

  1. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  2. Digital Genesis: Computers, Evolution and Artificial Life

    OpenAIRE

    Taylor, Tim; Dorin, Alan; Korb, Kevin

    2015-01-01

    The application of evolution in the digital realm, with the goal of creating artificial intelligence and artificial life, has a history as long as that of the digital computer itself. We illustrate the intertwined history of these ideas, starting with the early theoretical work of John von Neumann and the pioneering experimental work of Nils Aall Barricelli. We argue that evolutionary thinking and artificial life will continue to play an integral role in the future development of the digital ...

  3. Computer security simulation

    International Nuclear Information System (INIS)

    Schelonka, E.P.

    1979-01-01

    Development and application of a series of simulation codes used for computer security analysis and design are described. Boolean relationships for arrays of barriers within functional modules are used to generate composite effectiveness indices. The general case of multiple layers of protection with any specified barrier survival criteria is given. Generalized reduction algorithms provide numerical security indices in selected subcategories and for the system as a whole. 9 figures, 11 tables

  4. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Computing fundamentals digital literacy edition

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    Computing Fundamentals has been tailor made to help you get up to speed on your Computing Basics and help you get proficient in entry level computing skills. Covering all the key topics, it starts at the beginning and takes you through basic set-up so that you'll be competent on a computer in no time.You'll cover: Computer Basics & HardwareSoftwareIntroduction to Windows 7Microsoft OfficeWord processing with Microsoft Word 2010Creating Spreadsheets with Microsoft ExcelCreating Presentation Graphics with PowerPointConnectivity and CommunicationWeb BasicsNetwork and Internet Privacy and Securit

  6. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  7. Digital simulation of power electronic systems

    International Nuclear Information System (INIS)

    Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.

    1981-01-01

    The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de

  8. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  9. Digitized adiabatic quantum computing with a superconducting circuit.

    Science.gov (United States)

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  10. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  11. Security Information System Digital Simulation

    OpenAIRE

    Tao Kuang; Shanhong Zhu

    2015-01-01

    The study built a simulation model for the study of food security information system relay protection. MATLAB-based simulation technology can support the analysis and design of food security information systems. As an example, the food security information system fault simulation, zero-sequence current protection simulation and transformer differential protection simulation are presented in this study. The case studies show that the simulation of food security information system relay protect...

  12. Digital computer operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Colley, R.W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state

  13. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  14. Will the digital computer transform classical mathematics?

    Science.gov (United States)

    Rotman, Brian

    2003-08-15

    Mathematics and machines have influenced each other for millennia. The advent of the digital computer introduced a powerfully new element that promises to transform the relation between them. This paper outlines the thesis that the effect of the digital computer on mathematics, already widespread, is likely to be radical and far-reaching. To articulate this claim, an abstract model of doing mathematics is introduced based on a triad of actors of which one, the 'agent', corresponds to the function performed by the computer. The model is used to frame two sorts of transformation. The first is pragmatic and involves the alterations and progressive colonization of the content and methods of enquiry of various mathematical fields brought about by digital methods. The second is conceptual and concerns a fundamental antagonism between the infinity enshrined in classical mathematics and physics (continuity, real numbers, asymptotic definitions) and the inherently real and material limit of processes associated with digital computation. An example which lies in the intersection of classical mathematics and computer science, the P=NP problem, is analysed in the light of this latter issue.

  15. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  16. Computer radiography - indirect digital radiography

    International Nuclear Information System (INIS)

    Jezierski, G.

    2008-01-01

    Implementation of the new European standards for industrial radiography with the use of storage phosphor imaging plates will result in the arousing of interest among numerous laboratories in non-destructive testing with application of the new method of testing to replace conventional radiography used so far, i.e. film radiography. Computer radiography is quite commonly used for medical radiography, where the fundamental problem consists in reduction of the radiation dose during the examination of a patient. However, it must be kept in mind that industrial applications have a little bit different requirements when compared with medical radiography. The article describes only new method for radiographic testing. (author)

  17. Computationally efficient methods for digital control

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.; Kataria, N.; Brewer, F.

    2008-01-01

    The problem of designing a digital controller is considered with the novelty of explicitly taking into account the computation cost of the controller implementation. A class of controller emulation methods inspired by numerical analysis is proposed. Through various examples it is shown that these

  18. Computer Simulation of Multidimensional Archaeological Artefacts

    Directory of Open Access Journals (Sweden)

    Vera Moitinho de Almeida

    2012-11-01

    Our project focuses on the Neolithic lakeside site of La Draga (Banyoles, Catalonia. In this presentation we will begin by providing a clear overview of the major guidelines used to capture and process 3D digital data of several wooden artefacts. Then, we shall present the use of semi-automated relevant feature extractions. Finally, we intend to share preliminary computer simulation issues.

  19. Temporal digital subtraction radiography with a personal computer digital workstation

    International Nuclear Information System (INIS)

    Kircos, L.; Holt, W.; Khademi, J.

    1990-01-01

    Technique have been developed and implemented on a personal computer (PC)-based digital workstation to accomplish temporal digital subtraction radiography (TDSR). TDSR is useful in recording radiologic change over time. Thus, this technique is useful not only for monitoring chronic disease processes but also for monitoring the temporal course of interventional therapies. A PC-based digital workstation was developed on a PC386 platform with add-in hardware and software. Image acquisition, storage, and processing was accomplished using 512 x 512 x 8- or 12-bit frame grabber. Software and hardware were developed to accomplish image orientation, registration, gray scale compensation, subtraction, and enhancement. Temporal radiographs of the jaws were made in a fixed and reproducible orientation between the x-ray source and image receptor enabling TDSR. Temporal changes secondary to chronic periodontal disease, osseointegration of endosseous implants, and wound healing were demonstrated. Use of TDSR for chest imaging was also demonstrated with identification of small, subtle focal masses that were not apparent with routine viewing. The large amount of radiologic information in images of the jaws and chest may obfuscate subtle changes that TDSR seems to identify. TDSR appears to be useful as a tool to record temporal and subtle changes in radiologic images

  20. Digital Simulation Games for Social Studies Classrooms

    Science.gov (United States)

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  1. Interpretation of radiograms using digital computers

    International Nuclear Information System (INIS)

    Kuzin, M.I.; Den'shchikov, K.K.; Sal'man, M.M.; Pechennikov, L.M.

    1986-01-01

    The potentialities of the use of a combined method of interactive and automated processing of radiograms with the help of digital computers (DC) are discussed. The data obtained have shown that DC-assissted interpretation of radiograms makes it possible to detect small formations in the chest undectable in a routine X-ray examination. However there can occur undesirable false detection of pathology resulting from algorithm sensitivity

  2. Digital optical interconnects for photonic computing

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.; Zeise, Frederick F.

    1994-05-01

    A 32-bit digital optical computer (DOC II) has been implemented in hardware utilizing 8,192 free-space optical interconnects. The architecture exploits parallel interconnect technology by implementing microcode at the primitive level. A burst mode of 0.8192 X 1012 binary operations per sec has been reliably demonstrated. The prototype has been successful in demonstrating general purpose computation. In addition to emulating the RISC instruction set within the UNIX operating environment, relational database text search operations have been implemented on DOC II.

  3. Digital dice computational solutions to practical probability problems

    CERN Document Server

    Nahin, Paul J

    2013-01-01

    Some probability problems are so difficult that they stump the smartest mathematicians. But even the hardest of these problems can often be solved with a computer and a Monte Carlo simulation, in which a random-number generator simulates a physical process, such as a million rolls of a pair of dice. This is what Digital Dice is all about: how to get numerical answers to difficult probability problems without having to solve complicated mathematical equations. Popular-math writer Paul Nahin challenges readers to solve twenty-one difficult but fun problems, from determining the

  4. DIGITAL SIMULATIONS FOR IMPROVING EDUCATION: Learning Through Artificial Teaching Environments

    OpenAIRE

    Reviewed by Özlem OZAN

    2009-01-01

    DIGITAL SIMULATIONS FOR IMPROVING EDUCATION:Learning Through Artificial Teaching EnvironmentsGibson, David, Ed.D.; Information Science Reference, Hershey, PA,SBN-10: 1605663239, ISBN-13: 9781605663234, p.514 Jan 2009Reviewed byÖzlem OZANFaculty of Education, Eskişehir Osmangazi University,Eskisehir-TURKEYSimulations in education, both for children and adults,become popular with the development of computer technology, because they are fun and engaging and allow learners to internalize knowledg...

  5. Analysis of computational vulnerabilities in digital repositories

    Directory of Open Access Journals (Sweden)

    Valdete Fernandes Belarmino

    2015-04-01

    Full Text Available Objective. Demonstrates the results of research that aimed to analyze the computational vulnerabilities of digital directories in public Universities. Argues the relevance of information in contemporary societies like an invaluable resource, emphasizing scientific information as an essential element to constitute scientific progress. Characterizes the emergence of Digital Repositories and highlights its use in academic environment to preserve, promote, disseminate and encourage the scientific production. Describes the main software for the construction of digital repositories. Method. The investigation identified and analyzed the vulnerabilities that are exposed the digital repositories using Penetration Testing running. Discriminating the levels of risk and the types of vulnerabilities. Results. From a sample of 30 repositories, we could examine 20, identified that: 5% of the repositories have critical vulnerabilities, 85% high, 25% medium and 100% lowers. Conclusions. Which demonstrates the necessity to adapt actions for these environments that promote informational security to minimizing the incidence of external and / or internal systems attacks.Abstract Grey Text – use bold for subheadings when needed.

  6. Digital optical computers at the optoelectronic computing systems center

    Science.gov (United States)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  7. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  8. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  9. Ship maneuvering digital simulator; Simulador digital de manobras de navios

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, Jesse Rebello; Tannuri, Eduardo Aoun; Oshiro, Anderson Takehiro [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2008-07-01

    This paper reports on two case studies making use of a digital simulator to investigate the maneuvering motions of ships in canals with shallow and restricted waters. The first case study corresponds to a maneuvering analysis conducted for the Port of Rio Grande (RS - Brazil), whose aim was to assess the potential impact upon maneuvers of the presence of a large offshore platform (the PETROBRAS P-53) which is to remain docked for several months at the Port to complete its construction. The second study made use of the simulator to evaluate the maneuvering conditions along the approach route and maneuvering basin of the Port of Ponta do Felix (PR - Brazil). The simulator includes a complete mathematical model of the ship dynamics in the horizontal plane when subjected to wind and current forces. It also comprises detailed models for the action of thrusters and propellers, both fixed and azimuth, employed to control maneuvers and dynamically position ships, as well as rudders and tugboats. He models used by the simulator allow for the effects of shallow and restricted waters, including the increase in resistance and lateral forces, increase in additional mass and the appearance of lateral and vertical suction (squatting). The simulator is implemented via an interactive interface through which the user is able to apply control actions (rudder angle, main engine, thrusters and tugboats) in real time during maneuvers, thereby reproducing to some extent the action of a pilot. (author)

  10. Computer Simulation of Mutagenesis.

    Science.gov (United States)

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  11. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  12. Fel simulations using distributed computing

    NARCIS (Netherlands)

    Einstein, J.; Biedron, S.G.; Freund, H.P.; Milton, S.V.; Van Der Slot, P. J M; Bernabeu, G.

    2016-01-01

    While simulation tools are available and have been used regularly for simulating light sources, including Free-Electron Lasers, the increasing availability and lower cost of accelerated computing opens up new opportunities. This paper highlights a method of how accelerating and parallelizing code

  13. Digital architecture, wearable computers and providing affinity

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    as the setting for the events of experience. Contemporary architecture is a meta-space residing almost any thinkable field, striving to blur boundaries between art, architecture, design and urbanity and break down the distinction between the material and the user or inhabitant. The presentation for this paper...... will, through research, a workshop and participation in a cumulus competition, focus on the exploration of boundaries between digital architecture, performative space and wearable computers. Our design method in general focuses on the interplay between the performing body and the environment – between...

  14. Development of the FIFI digital simulation language and an up-to-date users guide

    International Nuclear Information System (INIS)

    Hopkinson, A.

    1976-03-01

    The report describes some recent improvements to the FIFI digital simulation language following its conversion to FORTRAN IV for use on ICL 4-70 computers and including a stand alone guide for users. (author)

  15. Process simulation in digital camera system

    Science.gov (United States)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  16. Portable Digital Radiography and Computed Tomography Manual

    Energy Technology Data Exchange (ETDEWEB)

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  17. CANDU Digital Control Computer upgrade options

    International Nuclear Information System (INIS)

    De Jong, M.S.; De Grosbois, J.; Qian, T.

    1997-01-01

    This paper reviews the evolution of Digital Control Computers (DCC) in CANDU power plants to the present day. Much of this evolution has been to meeting changing control or display requirements as well as the replacement of obsolete, or old and less reliable technology with better equipment that is now available. The current work at AECL and Canadian utilities to investigate DCC upgrade options, alternatives, and strategies are examined. The dependence of a particular upgrade strategy on the overall plant refurbishment plans are also discussed. Presently, the upgrade options range from replacement of individual obsolete system components, to replacement of the entire DCC hardware without changing the software, to complete replacement of the DCCs with a functionally equivalent system using new control computer equipment and software. Key issues, constraints and objectives associated with these DCC upgrade options are highlighted. (author)

  18. A comparison of hardware description languages. [describing digital systems structure and behavior to a computer

    Science.gov (United States)

    Shiva, S. G.

    1978-01-01

    Several high level languages which evolved over the past few years for describing and simulating the structure and behavior of digital systems, on digital computers are assessed. The characteristics of the four prominent languages (CDL, DDL, AHPL, ISP) are summarized. A criterion for selecting a suitable hardware description language for use in an automatic integrated circuit design environment is provided.

  19. Computer simulation of oxides

    International Nuclear Information System (INIS)

    Rowley, A.

    1998-01-01

    An ionic interaction model is developed which accounts for the effects of the ionic environment upon the electron densities of both cations and anions through changes in their size and shape and is transferable between materials. These variations are represented by additional dynamical variables which are handled within the model using the techniques of the Car-Parrinello method. The model parameters are determined as far as possible by input from external ab initio electronic structure calculations directed at examining the individual effects of the ionic environment upon the ions, particularly the oxide ion. Techniques for the evaluation of dipolar and quadrupolar Ewald sums in non-cubic simulation cells and the calculation of the pressure due to the terms in the potential are presented. This model is applied to the description of the perfect crystal properties and phonon dispersion curves of MgO. Consideration of the high symmetry phonon modes allows parameterization of the remaining model parameters in an unambiguous fashion. The same procedure is used to obtain parameters for CaO. These two parameter sets are examined to determine how they may be used to generate the parameters for SrO and simple scaling relationships based on ionic radii and polarizabilities are formulated. The transferability of the model to Cr 2 O 3 is investigated using parameters generated from the alkaline earth oxides. The importance of lower symmetry model terms, particularly quadrupolar interactions, at the low symmetry ion sites in the crystal structure is demonstrated. The correct ground-state crystal structure is predicted and the calculated surface energies and relaxation phenomena are found to agree well with previous ab initio studies. The model is applied to GeO 2 as a strong test of its applicability to ion environments far different from those encountered in MgO. An good description of the crystal structures is obtained and the interplay of dipolar and quadrupolar effects is

  20. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  1. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  2. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    Science.gov (United States)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  3. Low cost highly available digital control computer

    International Nuclear Information System (INIS)

    Silvers, M.W.

    1986-01-01

    When designing digital controllers for critical plant control it is important to provide several features. Among these are reliability, availability, maintainability, environmental protection, and low cost. An examination of several applications has lead to a design that can be produced for approximately $20,000 (1000 control points). This design is compatible with modern concepts in distributed and hierarchical control. The canonical controller element is a dual-redundant self-checking computer that communicates with a cross-strapped, electrically isolated input/output system. The input/output subsystem comprises multiple intelligent input/output cards. These cards accept commands from the primary processor which are validated, executed, and acknowledged. Each card may be hot replaced to facilitate sparing. The implementation of the dual-redundant computer architecture is discussed. Called the FS-86, this computer can be used for a variety of applications. It has most recently found application in the upgrade of San Francisco's Bay Area Rapid Transit (BART) train control currently in progress and has been proposed for feedwater control in a boiling water reactor

  4. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  5. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Digital Da Vinci computers in the arts and sciences

    CERN Document Server

    Lee, Newton

    2014-01-01

    Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media

  7. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  8. Computer Simulation of Multidimensional Archaeological Artefacts

    Directory of Open Access Journals (Sweden)

    Vera Moitinho de Almeida

    2013-11-01

    Full Text Available The main purpose of this ongoing research is to understand possible function(s of archaeological artefacts through Reverse Engineering processes. In addition, we intend to provide new data, as well as possible explications of the archaeological record according to what it expects about social activities and working processes, by simulating the potentialities of such actions in terms of input-output relationships. Our project focuses on the Neolithic lakeside site of La Draga (Banyoles, Catalonia. In this presentation we will begin by providing a clear overview of the major guidelines used to capture and process 3D digital data of several wooden artefacts. Then, we shall present the use of semi-automated relevant feature extractions. Finally, we intend to share preliminary computer simulation issues.

  9. A generic digitization framework for the CDF simulation

    International Nuclear Information System (INIS)

    Kowalkowski, J.; Paterno, M.

    2001-01-01

    Digitization from GEANT tracking requires a predictable sequence of steps to produce raw simulated detector readout information. The authors have developed a software framework that simplifies the development and integration of digitizers by separating the coordination activities (sequencing and dispatching) from the actual digitization process. This separation allows the developers of digitizers to concentrate on digitization. The framework provides the sequencing infrastructure and a digitizer model, which means that all digitizers are required to follow the same sequencing rules and provide an interface that fits the model

  10. Computer simulation in cell radiobiology

    International Nuclear Information System (INIS)

    Yakovlev, A.Y.; Zorin, A.V.

    1988-01-01

    This research monograph demonstrates the possible ways of using stochastic simulation for exploring cell kinetics, emphasizing the effects of cell radiobiology. In vitro kinetics of normal and irradiated cells is the main subject, but some approaches to the simulation of controlled cell systems are considered as well: the epithelium of the small intestine in mice taken as a case in point. Of particular interest is the evaluation of simulation modelling as a tool for gaining insight into biological processes and hence the new inferences from concrete experimental data, concerning regularities in cell population response to irradiation. The book is intended to stimulate interest among computer science specialists in developing new, more efficient means for the simulation of cell systems and to help radiobiologists in interpreting the experimental data

  11. A portable software tool for computing digitally reconstructed radiographs

    International Nuclear Information System (INIS)

    Chaney, Edward L.; Thorn, Jesse S.; Tracton, Gregg; Cullip, Timothy; Rosenman, Julian G.; Tepper, Joel E.

    1995-01-01

    Purpose: To develop a portable software tool for fast computation of digitally reconstructed radiographs (DRR) with a friendly user interface and versatile image format and display options. To provide a means for interfacing with commercial and custom three-dimensional (3D) treatment planning systems. To make the tool freely available to the Radiation Oncology community. Methods and Materials: A computer program for computing DRRs was enhanced with new features and rewritten to increase computational efficiency. A graphical user interface was added to improve ease of data input and DRR display. Installer, programmer, and user manuals were written, and installation test data sets were developed. The code conforms to the specifications of the Cooperative Working Group (CWG) of the National Cancer Institute (NCI) Contract on Radiotherapy Treatment Planning Tools. Results: The interface allows the user to select DRR input data and image formats primarily by point-and-click mouse operations. Digitally reconstructed radiograph formats are predefined by configuration files that specify 19 calculation parameters. Enhancements include improved contrast resolution for visualizing surgical clips, an extended source model to simulate the penumbra region in a computed port film, and the ability to easily modify the CT numbers of objects contoured on the planning computed tomography (CT) scans. Conclusions: The DRR tool can be used with 3D planning systems that lack this functionality, or perhaps improve the quality and functionality of existing DRR software. The tool can be interfaced to 3D planning systems that run on most modern graphics workstations, and can also function as a stand-alone program

  12. Can Digital Computers Support Ancient Mathematical Consciousness?

    Directory of Open Access Journals (Sweden)

    Aaron Sloman

    2018-05-01

    Full Text Available This paper poses, discusses, but does not definitively answer, the following questions: What sorts of reasoning machinery could the ancient mathematicians, and other intelligent animals, be using for spatial reasoning, before the discovery of modern logical mechanisms? “Diagrams in minds” perhaps? How and why did natural selection produce such machinery? Is there a single package of biological abilities for spatial reasoning, or did different sorts of mathematical competence evolve at different times, forming a “layered” system? Do the layers develop in individuals at different stages? Which components are shared with other intelligent species? Does some or all of the machinery exist at or before birth in humans and if not how and when does it develop, and what is the role of experience in its development? How do brains implement such machinery? Could similar machines be implemented as virtual machines on digital computers, and if not what sorts of non-digital “Super Turing” mechanisms could replicate the required functionality, including discovery of impossibility and necessity? How are impossibility and necessity represented in brains? Are chemical mechanisms required? How could such mechanisms be specified in a genome? Are some not specified in the genome but products of interaction between genome and environment? Does Turing’s work on chemical morphogenesis published shortly before he died indicate that he was interested in this problem? Will the answers to these questions vindicate Immanuel Kant’s claims about the nature of mathematical knowledge, including his claim that mathematical truths are non-empirical, synthetic and necessary? Perhaps it’s time for discussions of consciousness to return to the nature of ancient mathematical consciousness, and related aspects of everyday human and non-human intelligence, usually ignored by consciousness theorists.

  13. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  14. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  15. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  16. Computational simulator of robotic manipulators

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Campos, Tarcisio P.R.

    1995-01-01

    Robotic application for industrial plants is discussed and a computational model for a mechanical manipulator of three links is presented. A neural network feed-forward type has been used to model the dynamic control of the manipulator. A graphic interface was developed in C programming language as a virtual world in order to visualize and simulate the arm movements handling radioactive waste environment. (author). 7 refs, 5 figs

  17. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  18. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  19. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  20. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  1. SIDAS - a block-diagram programming system for the interactive digital simulation of dynamic systems

    International Nuclear Information System (INIS)

    Moll, H.; Burkhardt, H.

    1978-01-01

    The paper describes a block-oriented digital simulation system. Some applications clarify the basic structure and operation. The main features of the system are: Easy handling and manipulation through interactive graphical input/output, operational flexibility through successive simulation runs and online modification of parameters, direct access to all facilities of a medium-sized computing system. (orig.) [de

  2. Atucha II nuclear power plant digital simulation

    International Nuclear Information System (INIS)

    Santome, D.; Rovere, L.A.T.

    1987-01-01

    This paper describes the start-up of a digital simulation code apt to be performed in real time of Atucha II nuclear power plant, foreseeing its subsequent usage in a Basic Principles Simulator. Adaptability and modification of existing routines and development of modules in order to incorporate the necessary variables dynamics to couple the different modes, were the main tasks. The mathematical model used allows the representation of the following sub-systems: a) a reactor's core point model, which comprehends the neutronic kinetics, fission and decaying powers, thermal transfer and Xe-poisoning calculation; b) pressurizer, which considers two sub-systems that may or may not be in thermodynamic equilibrium, both in two phases; c) coolants and moderators bonds considering separate moderator loops with the aim of introducing asymmetric perturbations; d) secondary sub-subsystem, which includes the feed water loop, pumps, steam generators and control valves; e) steam generators; f) control and safety systems, including power control, steam generators levels, moderator's temperature primary loop system, limitations and protection. (Author)

  3. Method of simulating dose reduction for digital radiographic systems

    International Nuclear Information System (INIS)

    Baath, M.; Haakansson, M.; Tingberg, A.; Maansson, L. G.

    2005-01-01

    The optimisation of image quality vs. radiation dose is an important task in medical imaging. To obtain maximum validity of the optimisation, it must be based on clinical images. Images at different dose levels can then either be obtained by collecting patient images at the different dose levels sought to investigate - including additional exposures and permission from an ethical committee - or by manipulating images to simulate different dose levels. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems. The method uses information about the detective quantum efficiency and noise power spectrum at the original and simulated dose levels to create an image containing filtered noise. When added to the original image this results in an image with noise which, in terms of frequency content, agrees with the noise present in an image collected at the simulated dose level. To increase the validity, the method takes local dose variations in the original image into account. The method was tested on a computed radiography system and was shown to produce images with noise behaviour similar to that of images actually collected at the simulated dose levels. The method can, therefore, be used to modify an image collected at one dose level so that it simulates an image of the same object collected at any lower dose level. (authors)

  4. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  5. Quality assurance of computed and digital radiography systems

    International Nuclear Information System (INIS)

    Walsh, C.; Gorman, D.; Byrne, P.; Larkin, A.; Dowling, A.; Malone, J. F.

    2008-01-01

    Computed radiography (CR) and digital radiography (DR) are replacing traditional film screen radiography as hospitals move towards digital imaging and picture archiving and communication systems (PACS). Both IPEM and KCARE have recently published quality assurance and acceptance testing guidelines for DR. In this paper, the performance of a range of CR and DR systems is compared. Six different manufacturers are included. Particular attention is paid to the performance of the systems under automatic exposure control (AEC). The patient is simulated using a range of thicknesses of tissue equivalent material. Image quality assessment was based on detector assessment protocols and includes pixel value measures as well as subjective assessment using Leeds Test Objects. The protocols for detector assessment cover a broad range of tests and in general detectors (whether DR or CR) performed satisfactorily. The chief limitation in performing these tests was that not all systems provided ready access to pixel values. Subjective tests include the use of the Leeds TO20. As part of this work, suggested reference values are provided to calculate the TO20 image quality factor. One consequence of moving from film screen to digital technologies is that the dynamic range of digital detectors is much wider, and increased exposures are no longer evident from changes in image quality. As such, AEC is a key parameter for CR and DR. Dose was measured using a standard phantom as a basic means of comparing systems. In order to assess the AEC performance, exit doses were also measured while varying phantom thickness. Signal-to-noise ratios (SNRs) were calculated on a number of systems where pixel values were available. SNR was affected by the selection of acquisition protocol. Comparisons between different technologies and collation of data will help refine acceptance thresholds and contribute to optimising dose and image quality. (authors)

  6. Cloud computing and digital media fundamentals, techniques, and applications

    CERN Document Server

    Li, Kuan-Ching; Shih, Timothy K

    2014-01-01

    Cloud Computing and Digital Media: Fundamentals, Techniques, and Applications presents the fundamentals of cloud and media infrastructure, novel technologies that integrate digital media with cloud computing, and real-world applications that exemplify the potential of cloud computing for next-generation digital media. It brings together technologies for media/data communication, elastic media/data storage, security, authentication, cross-network media/data fusion, interdevice media interaction/reaction, data centers, PaaS, SaaS, and more.The book covers resource optimization for multimedia clo

  7. Computer simulation of hopper flow

    International Nuclear Information System (INIS)

    Potapov, A.V.; Campbell, C.S.

    1996-01-01

    This paper describes two-dimensional computer simulations of granular flow in plane hoppers. The simulations can reproduce an experimentally observed asymmetric unsteadiness for monodispersed particle sizes, but also could eliminate it by adding a small amount of polydispersity. This appears to be a result of the strong packings that may be formed by monodispersed particles and is thus a noncontinuum effect. The internal stress state was also sampled, which among other things, allows an evaluation of common assumptions made in granular material models. These showed that the internal friction coefficient is far from a constant, which is in contradiction to common models based on plasticity theory which assume that the material is always at the point of imminent yield. Furthermore, it is demonstrated that rapid granular flow theory, another common modeling technique, is inapplicable to this problem even near the exit where the flow is moving its fastest. copyright 1996 American Institute of Physics

  8. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  9. A Computational Framework for Bioimaging Simulation

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508

  10. A Computational Framework for Bioimaging Simulation.

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  11. A Computational Framework for Bioimaging Simulation.

    Directory of Open Access Journals (Sweden)

    Masaki Watabe

    Full Text Available Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  12. The establishment of Digital Image Capture System(DICS) using conventional simulator

    International Nuclear Information System (INIS)

    Oh, Tae Sung; Park, Jong Il; Byun, Young Sik; Shin, Hyun Kyoh

    2004-01-01

    The simulator is used to determine patient field and ensure the treatment field, which encompasses the required anatomy during patient normal movement such as during breathing. The latest simulator provide real time display of still, fluoroscopic and digitalized image, but conventional simulator is not yet. The purpose of this study is to introduce digital image capture system(DICS) using conventional simulator and clinical case using digital captured still and fluoroscopic image. We connect the video signal cable to the video terminal in the back up of simulator monitor, and connect the video jack to the A/D converter. After connection between the converter jack and computer, We can acquire still image and record fluoroscopic image with operating image capture program. The data created with this system can be used in patient treatment, and modified for verification by using image processing software. (j.e. photoshop, paintshop) DICS was able to establish easy and economical procedure. DCIS image was helpful for simulation. DICS imaging was powerful tool in the evaluation of the department specific patient positioning. Because the commercialized simulator based of digital capture is very expensive, it is not easily to establish DICS simulator in the most hospital. DICS using conventional simulator enable to utilize the practical use of image equal to high cost digitalized simulator and to research many clinical cases in case of using other software program.

  13. Digital Ethics: Computers, Photographs, and the Manipulation of Pixels.

    Science.gov (United States)

    Mercedes, Dawn

    1996-01-01

    Summarizes negative aspects of computer technology and problems inherent in the field of digital imaging. Considers the postmodernist response that borrowing and alteration are essential characteristics of the technology. Discusses the implications of this for education and research. (MJP)

  14. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  15. 20170312 - Computer Simulation of Developmental ...

    Science.gov (United States)

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  16. Research methods of simulate digital compensators and autonomous control systems

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The peculiarity of the present stage of development of the production is the need to control and regulate a large number of process parameters, the mutual influence on each other that when using single-circuit systems significantly reduces the quality of the transition process, resulting in significant costs of raw materials and energy, reduce the quality of the products. Using a stand-alone digital control system eliminates the correlation of technological parameters, to give the system the desired dynamic and static properties, improve the quality of regulation. However, the complexity of the configuration and implementation of procedures (modeling compensators autonomous systems of this type, associated with the need to perform a significant amount of complex analytic transformation significantly limit the scope of their application. In this regard, the approach based on the decompo sition proposed methods of calculation and simulation (realization, consisting in submitting elements autonomous control part digital control system in a series parallel connection. The above theoretical study carried out in a general way for any dimension systems. The results of computational experiments, obtained during the simulation of the four autonomous control systems, comparative analysis and conclusions on the effectiveness of the use of each of the methods. The results obtained can be used in the development of multi-dimensional process control systems.

  17. Computer processing techniques in digital radiography research

    International Nuclear Information System (INIS)

    Pickens, D.R.; Kugel, J.A.; Waddill, W.B.; Smith, G.D.; Martin, V.N.; Price, R.R.; James, A.E. Jr.

    1985-01-01

    In the Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, and the Center for Medical Imaging Research, Nashville, TN, there are several activities which are designed to increase the information available from film-screen acquisition as well as from direct digital acquisition of radiographic information. Two of the projects involve altering the display of images after acquisition, either to remove artifacts present as a result of the acquisition process or to change the manner in which the image is displayed to improve the perception of details in the image. These two projects use methods which can be applied to any type of digital image, but are being implemented with images digitized from conventional x-ray film. One of these research endeavors involves mathematical alteration of the image to correct for motion artifacts or registration errors between images that will be subtracted. Another applies well-known image processing methods to digital radiographic images to improve the image contrast and enhance subtle details in the image. A third project involves the use of dual energy imaging with a digital radiography system to reconstruct images which demonstrate either soft tissue details or the osseous structures. These projects are discussed in greater detail in the following sections of this communication

  18. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    Science.gov (United States)

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  19. U(1) Wilson lattice gauge theories in digital quantum simulators

    Science.gov (United States)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  20. Purex optimization by computer simulation

    International Nuclear Information System (INIS)

    Campbell, T.G.; McKibben, J.M.

    1980-08-01

    For the past 2 years computer simulation has been used to study the performance of several solvent extraction banks in the Purex facility at the Savannah River Plant in Aiken, South Carolina. Individual process parameters were varied about their normal base case values to determine their individual effects on concentration profiles and end-stream compositions. The data are presented in graphical form to show the extent to which product losses, decontamination factors, solvent extraction bank inventories of fissile materials, and other key properties are affected by process changes. Presented in this way, the data are useful for adapting flowsheet conditions to a particular feed material or product specification, and for evaluating nuclear safety as related to bank inventories

  1. Computer simulation of chemical nucleation

    International Nuclear Information System (INIS)

    Turner, J.S.

    1979-01-01

    The problem of nucleation at chemical instabilities is investigated by means of microscopic computer simulation. The first-order transition of interest involves a new kind of nucleation arising from chemical transformations rather than physical forces. Here it is the chemical state of matter, and not matter itself, which is spatially localized to form the nucleus for transition between different chemical states. First, the concepts of chemical instability, nonequilibrium phase transition, and dissipative structure are reviewed briefly. Then recently developed methods of reactive molecular dynamics are used to study chemical nucleation in a simple model chemical reactions. Finally, the connection of these studies to nucleation and condensation processes involving physical and chemical interactions is explored. (orig.)

  2. Hardware replacements and software tools for digital control computers

    International Nuclear Information System (INIS)

    Walker, R.A.P.; Wang, B-C.; Fung, J.

    1996-01-01

    Technological obsolescence is an on-going challenge for all computer use. By design, and to some extent good fortune, AECL has had a good track record with respect to the march of obsolescence in CANDU digital control computer technology. Recognizing obsolescence as a fact of life, AECL has undertaken a program of supporting the digital control technology of existing CANDU plants. Other AECL groups are developing complete replacement systems for the digital control computers, and more advanced systems for the digital control computers of the future CANDU reactors. This paper presents the results of the efforts of AECL's DCC service support group to replace obsolete digital control computer and related components and to provide friendlier software technology related to the maintenance and use of digital control computers in CANDU. These efforts are expected to extend the current lifespan of existing digital control computers through their mandated life. This group applied two simple rules; the product, whether new or replacement should have a generic basis, and the products should be applicable to both existing CANDU plants and to 'repeat' plant designs built using current design guidelines. While some exceptions do apply, the rules have been met. The generic requirement dictates that the product should not be dependent on any brand technology, and should back-fit to and interface with any such technology which remains in the control design. The application requirement dictates that the product should have universal use and be user friendly to the greatest extent possible. Furthermore, both requirements were designed to anticipate user involvement, modifications and alternate user defined applications. The replacements for hardware components such as paper tape reader/punch, moving arm disk, contact scanner and Ramtek are discussed. The development of these hardware replacements coincide with the development of a gateway system for selected CANDU digital control

  3. Computer Aided Teaching of Digital Signal Processing.

    Science.gov (United States)

    Castro, Ian P.

    1990-01-01

    Describes a microcomputer-based software package developed at the University of Surrey for teaching digital signal processing to undergraduate science and engineering students. Menu-driven software capabilities are explained, including demonstration of qualitative concepts and experimentation with quantitative data, and examples are given of…

  4. MATLAB simulation for an experimental setup of digital feedback control

    International Nuclear Information System (INIS)

    Zheng Lifang; Liu Songqiang

    2005-01-01

    This paper describes the digital feedback simulation using MATLAB for an experimental accelerator control setup. By analyzing the plant characteristic in time-domain and frequency-domain, a guideline for design of digital filter and PID controller is derived. (authors)

  5. Fully integrated digital GAMMA camera-computer system

    International Nuclear Information System (INIS)

    Berger, H.J.; Eisner, R.L.; Gober, A.; Plankey, M.; Fajman, W.

    1985-01-01

    Although most of the new non-nuclear imaging techniques are fully digital, there has been a reluctance in nuclear medicine to abandon traditional analog planar imaging in favor of digital acquisition and display. The authors evaluated a prototype digital camera system (GE STARCAM) in which all of the analog acquisition components are replaced by microprocessor controls and digital circuitry. To compare the relative effects of acquisition matrix size on image quality and to ascertain whether digital techniques could be used in place of analog imaging, Tc-99m bone scans were obtained on this digital system and on a comparable analog camera in 10 patients. The dedicated computer is used for camera setup including definition of the energy window, spatial energy correction, and spatial distortion correction. The display monitor, which is used for patient positioning and image analysis, is 512/sup 2/ non-interlaced, allowing high resolution imaging. Data acquisition and processing can be performed simultaneously. Thus, the development of a fully integrated digital camera-computer system with optimized display should allow routine utilization of non-analog studies in nuclear medicine and the ultimate establishment of fully digital nuclear imaging laboratories

  6. Developing Digital Immigrants' Computer Literacy: The Case of Unemployed Women

    Science.gov (United States)

    Ktoridou, Despo; Eteokleous-Grigoriou, Nikleia

    2011-01-01

    Purpose: The purpose of this study is to evaluate the effectiveness of a 40-hour computer course for beginners provided to a group of unemployed women learners with no/minimum computer literacy skills who can be characterized as digital immigrants. The aim of the study is to identify participants' perceptions and experiences regarding technology,…

  7. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  8. [Analog gamma camera digitalization computer system].

    Science.gov (United States)

    Rojas, G M; Quintana, J C; Jer, J; Astudillo, S; Arenas, L; Araya, H

    2004-01-01

    Digitalization of analogue gamma cameras systems, using special acquisition boards in microcomputers and appropriate software for acquisition and processing of nuclear medicine images is described in detail. Microcomputer integrated systems interconnected by means of a Local Area Network (LAN) and connected to several gamma cameras have been implemented using specialized acquisition boards. The PIP software (Portable Image Processing) was installed on each microcomputer to acquire and preprocess the nuclear medicine images. A specialized image processing software has been designed and developed for these purposes. This software allows processing of each nuclear medicine exam, in a semiautomatic procedure, and recording of the results on radiological films. . A stable, flexible and inexpensive system which makes it possible to digitize, visualize, process, and print nuclear medicine images obtained from analogue gamma cameras was implemented in the Nuclear Medicine Division. Such a system yields higher quality images than those obtained with analogue cameras while keeping operating costs considerably lower (filming: 24.6%, fixing 48.2% and developing 26%.) Analogue gamma camera systems can be digitalized economically. This system makes it possible to obtain optimal clinical quality nuclear medicine images, to increase the acquisition and processing efficiency, and to reduce the steps involved in each exam.

  9. Discrete Event Simulation Computers can be used to simulate the ...

    Indian Academy of Sciences (India)

    IAS Admin

    people who use computers every moment of their waking lives, others even ... How is discrete event simulation different from other kinds of simulation? ... time, energy consumption .... Schedule the CustomerDeparture event for this customer.

  10. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  11. Digitalization and networking of analog simulators and portal images

    Energy Technology Data Exchange (ETDEWEB)

    Pesznyak, C.; Zarand, P.; Mayer, A. [Uzsoki Hospital, Budapest (Hungary). Inst. of Oncoradiology

    2007-03-15

    Background: Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R and V (Record and Verify) system is required. Material and Methods: Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Results: Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. Conclusion: The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R and V system. (orig.)

  12. Digitalization and networking of analog simulators and portal images.

    Science.gov (United States)

    Pesznyák, Csilla; Zaránd, Pál; Mayer, Arpád

    2007-03-01

    Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R&V (Record & Verify) system is required. Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R&V system.

  13. Handwritten Digits Recognition Using Neural Computing

    Directory of Open Access Journals (Sweden)

    Călin Enăchescu

    2009-12-01

    Full Text Available In this paper we present a method for the recognition of handwritten digits and a practical implementation of this method for real-time recognition. A theoretical framework for the neural networks used to classify the handwritten digits is also presented.The classification task is performed using a Convolutional Neural Network (CNN. CNN is a special type of multy-layer neural network, being trained with an optimized version of the back-propagation learning algorithm.CNN is designed to recognize visual patterns directly from pixel images with minimal preprocessing, being capable to recognize patterns with extreme variability (such as handwritten characters, and with robustness to distortions and simple geometric transformations.The main contributions of this paper are related to theoriginal methods for increasing the efficiency of the learning algorithm by preprocessing the images before the learning process and a method for increasing the precision and performance for real-time applications, by removing the non useful information from the background.By combining these strategies we have obtained an accuracy of 96.76%, using as training set the NIST (National Institute of Standards and Technology database.

  14. Computational intelligence in digital forensics forensic investigation and applications

    CERN Document Server

    Choo, Yun-Huoy; Abraham, Ajith; Srihari, Sargur

    2014-01-01

    Computational Intelligence techniques have been widely explored in various domains including forensics. Analysis in forensic encompasses the study of pattern analysis that answer the question of interest in security, medical, legal, genetic studies and etc. However, forensic analysis is usually performed through experiments in lab which is expensive both in cost and time. Therefore, this book seeks to explore the progress and advancement of computational intelligence technique in different focus areas of forensic studies. This aims to build stronger connection between computer scientists and forensic field experts.   This book, Computational Intelligence in Digital Forensics: Forensic Investigation and Applications, is the first volume in the Intelligent Systems Reference Library series. The book presents original research results and innovative applications of computational intelligence in digital forensics. This edited volume contains seventeen chapters and presents the latest state-of-the-art advancement ...

  15. A Non-Linear Digital Computer Model Requiring Short Computation Time for Studies Concerning the Hydrodynamics of the BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, F; Vayssier, G

    1969-05-15

    This non-linear model serves as one of the blocks in a series of codes to study the transient behaviour of BWR or PWR type reactors. This program is intended to be the hydrodynamic part of the BWR core representation or the hydrodynamic part of the PWR heat exchanger secondary side representation. The equations have been prepared for the CSMP digital simulation language. By using the most suitable integration routine available, the ratio of simulation time to real time is about one on an IBM 360/75 digital computer. Use of the slightly different language DSL/40 on an IBM 7044 computer takes about four times longer. The code has been tested against the Eindhoven loop with satisfactory agreement.

  16. Who Owns Your Computer? [digital rights management

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Matt; Frincke, Deb A.

    2006-03-01

    Sony's much debated choice to use rootkit-like technology to protect intellectual property highlights the increasingly blurry line between who can, should, or does control the interaction between among a computational device, an algorithm embodied in software, and the data upon which it acts. Article discusses educational aspects of the situation.

  17. Leaders in Computing Changing the digital world

    CERN Document Server

    IT, BCS -The Chartered Institute for; Booch, Grady; Torvalds, Linus; Wozniak, Steve; Cerf, Vint; Spärck Jones, Karen; Berners-Lee, Tim; Wales, Jimmy; Shirley, Stephanie

    2011-01-01

    This collection of interviews provides a fascinating insight into the thoughts and ideas of influential figures from the world of IT and computing, such as Sir Tim Berners-Lee, Donald Knuth, Linus Torvalds, Jimmy Wales and Steve Wozniak. It gives an excellent overview of important developments in this diverse field over recent years.

  18. Framework for utilizing computational devices within simulation

    Directory of Open Access Journals (Sweden)

    Miroslav Mintál

    2013-12-01

    Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.

  19. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  20. From Digital Imaging to Computer Image Analysis of Fine Art

    Science.gov (United States)

    Stork, David G.

    An expanding range of techniques from computer vision, pattern recognition, image analysis, and computer graphics are being applied to problems in the history of art. The success of these efforts is enabled by the growing corpus of high-resolution multi-spectral digital images of art (primarily paintings and drawings), sophisticated computer vision methods, and most importantly the engagement of some art scholars who bring questions that may be addressed through computer methods. This paper outlines some general problem areas and opportunities in this new inter-disciplinary research program.

  1. Battlefield awareness computers: the engine of battlefield digitization

    Science.gov (United States)

    Ho, Jackson; Chamseddine, Ahmad

    1997-06-01

    To modernize the army for the 21st century, the U.S. Army Digitization Office (ADO) initiated in 1995 the Force XXI Battle Command Brigade-and-Below (FBCB2) Applique program which became a centerpiece in the U.S. Army's master plan to win future information wars. The Applique team led by TRW fielded a 'tactical Internet' for Brigade and below command to demonstrate the advantages of 'shared situation awareness' and battlefield digitization in advanced war-fighting experiments (AWE) to be conducted in March 1997 at the Army's National Training Center in California. Computing Devices is designated the primary hardware developer for the militarized version of the battlefield awareness computers. The first generation of militarized battlefield awareness computer, designated as the V3 computer, was an integration of off-the-shelf components developed to meet the agressive delivery requirements of the Task Force XXI AWE. The design efficiency and cost effectiveness of the computer hardware were secondary in importance to delivery deadlines imposed by the March 1997 AWE. However, declining defense budgets will impose cost constraints on the Force XXI production hardware that can only be met by rigorous value engineering to further improve design optimization for battlefield awareness without compromising the level of reliability the military has come to expect in modern military hardened vetronics. To answer the Army's needs for a more cost effective computing solution, Computing Devices developed a second generation 'combat ready' battlefield awareness computer, designated the V3+, which is designed specifically to meet the upcoming demands of Force XXI (FBCB2) and beyond. The primary design objective is to achieve a technologically superior design, value engineered to strike an optimal balance between reliability, life cycle cost, and procurement cost. Recognizing that the diverse digitization demands of Force XXI cannot be adequately met by any one computer hardware

  2. Analysis of electronic circuits using digital computers

    International Nuclear Information System (INIS)

    Tapu, C.

    1968-01-01

    Various programmes have been proposed for studying electronic circuits with the help of computers. It is shown here how it possible to use the programme ECAP, developed by I.B.M., for studying the behaviour of an operational amplifier from different point of view: direct current, alternating current and transient state analysis, optimisation of the gain in open loop, study of the reliability. (author) [fr

  3. Nanoelectromechanical Switches for Low-Power Digital Computing

    Directory of Open Access Journals (Sweden)

    Alexis Peschot

    2015-08-01

    Full Text Available The need for more energy-efficient solid-state switches beyond complementary metal-oxide-semiconductor (CMOS transistors has become a major concern as the power consumption of electronic integrated circuits (ICs steadily increases with technology scaling. Nano-Electro-Mechanical (NEM relays control current flow by nanometer-scale motion to make or break physical contact between electrodes, and offer advantages over transistors for low-power digital logic applications: virtually zero leakage current for negligible static power consumption; the ability to operate with very small voltage signals for low dynamic power consumption; and robustness against harsh environments such as extreme temperatures. Therefore, NEM logic switches (relays have been investigated by several research groups during the past decade. Circuit simulations calibrated to experimental data indicate that scaled relay technology can overcome the energy-efficiency limit of CMOS technology. This paper reviews recent progress toward this goal, providing an overview of the different relay designs and experimental results achieved by various research groups, as well as of relay-based IC design principles. Remaining challenges for realizing the promise of nano-mechanical computing, and ongoing efforts to address these, are discussed.

  4. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  5. Digital Geometry Algorithms Theoretical Foundations and Applications to Computational Imaging

    CERN Document Server

    Barneva, Reneta

    2012-01-01

    Digital geometry emerged as an independent discipline in the second half of the last century. It deals with geometric properties of digital objects and is developed with the unambiguous goal to provide rigorous theoretical foundations for devising new advanced approaches and algorithms for various problems of visual computing. Different aspects of digital geometry have been addressed in the literature. This book is the first one that explicitly focuses on the presentation of the most important digital geometry algorithms. Each chapter provides a brief survey on a major research area related to the general volume theme, description and analysis of related fundamental algorithms, as well as new original contributions by the authors. Every chapter contains a section in which interesting open problems are addressed.

  6. Method for Lumped Parameter simulation of Digital Displacement pumps/motors based on CFD

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power pumps/motors offers improved efficiency and performance compared to traditional variable displacement pump/motors. These improvements are made possible by using efficient electronically controlled seat valves and careful design of the flow geometry. To optimize...... the design and control of digital displacement machines, there is a need for simulation models, preferably models with low computational cost. Therefore, a low computational cost generic lumped parameter model of digital displacement machine is presented, including a method for determining the needed model...... parameters based on steady CFD results, in order to take detailed geometry information into account. The response of the lumped parameter model is compared to a computational expensive transient CFD model for an example geometry....

  7. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  8. Computer Simulation of a Hardwood Processing Plant

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  9. Digital doorway computer literacy through unassisted learning in South Africa

    CSIR Research Space (South Africa)

    Smith, R

    2006-02-01

    Full Text Available The Digital Doorway is a joint project between the Department of Science and Technology (DST) and the Meraka Institute, with a vision of making a fundamental difference to computer literacy and associated skills in Africa. Underpinning this project...

  10. Comput digital and Jan Hus as defender of the faith

    Czech Academy of Sciences Publication Activity Database

    Šroněk, Michal

    2013-01-01

    Roč. 61, č. 1 (2013), s. 2-22 ISSN 0049-5123 Institutional support: RVO:68378033 Keywords : Jan Hus * comput digital * utraquist iconography Subject RIV: AL - Art, Architecture, Cultural Heritage http://www.umeni-art.cz/cz/issue-detail.aspx?v=issue-issue-1712

  11. Proceedings: Distributed digital systems, plant process computers, and networks

    International Nuclear Information System (INIS)

    1995-03-01

    These are the proceedings of a workshop on Distributed Digital Systems, Plant Process Computers, and Networks held in Charlotte, North Carolina on August 16--18, 1994. The purpose of the workshop was to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 100 representatives of electric utilities, equipment manufacturers, engineering service organizations, and government agencies. The workshop consisted of three days of presentations, exhibitions, a panel discussion and attendee interactions. Original plant process computers at the nuclear power plants are becoming obsolete resulting in increasing difficulties in their effectiveness to support plant operations and maintenance. Some utilities have already replaced their plant process computers by more powerful modern computers while many other utilities intend to replace their aging plant process computers in the future. Information on recent and planned implementations are presented. Choosing an appropriate communications and computing network architecture facilitates integrating new systems and provides functional modularity for both hardware and software. Control room improvements such as CRT-based distributed monitoring and control, as well as digital decision and diagnostic aids, can improve plant operations. Commercially available digital products connected to the plant communications system are now readily available to provide distributed processing where needed. Plant operations, maintenance activities, and engineering analyses can be supported in a cost-effective manner. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  12. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  13. Development of a computer-aided digital reactivity computer system for PWRs

    International Nuclear Information System (INIS)

    Chung, S.-K.; Sung, K.-Y.; Kim, D.; Cho, D.-Y.

    1993-01-01

    Reactor physics tests at initial startup and after reloading are performed to verify nuclear design and to ensure safety operation. Two kinds of reactivity computers, analog and digital, have been widely used in the pressurized water reactor (PWR) core physics test. The test data of both reactivity computers are displayed only on the strip chart recorder, and these data are managed by hand so that the accuracy of the test results depends on operator expertise and experiences. This paper describes the development of the computer-aided digital reactivity computer system (DRCS), which is enhanced by system management software and an improved system for the application of the PWR core physics test

  14. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  15. Filtration theory using computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Corey, I. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.

  16. Computer simulation of bounded plasmas

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The problems of simulating a one-dimensional bounded plasma system using particles in a gridded space are systematically explored and solutions to them are given. Such problems include the injection of particles at the boundaries, the solution of Poisson's equation, and the inclusion of an external circuit between the confining boundaries. A recently discovered artificial cooling effect is explained as being a side-effect of quiet injection, and its potential for causing serious but subtle errors in bounded simulation is noted. The methods described in the first part of the thesis are then applied to the simulation of an extension of the Pierce diode problem, specifically a Pierce diode modified by an external circuit between the electrodes. The results of these simulations agree to high accuracy with theory when a theory exists, and also show some interesting chaotic behavior in certain parameter regimes. The chaotic behavior is described in detail

  17. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    Science.gov (United States)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  18. Nuclear cratering on a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R W; Stubbs, T F; Cherry, J T [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  19. Nuclear cratering on a digital computer

    International Nuclear Information System (INIS)

    Terhune, R.W.; Stubbs, T.F.; Cherry, J.T.

    1970-01-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  20. Quantum simulations with noisy quantum computers

    Science.gov (United States)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  1. Computer simulations of anomalous transport

    International Nuclear Information System (INIS)

    Lee, W.W.; Okuda, H.

    1980-07-01

    Numerical plasma simulations have been carried out to study: (1) the turbulent spectrum and anomalous plasma transport associated with a steady state electrostatic drift turbulence; and (2) the anomalous energy transport of electrons due to shear-Alfven waves in a finite-β plasma. For the simulation of the steady state drift turbulence, it is observed that, in the absence of magnetic shear, the turbulence is quenched to a low level when the rotational transform is a rational number, while the turbulent level remains high for an irrational rotational transform

  2. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  3. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  4. Augmented Reality Simulations on Handheld Computers

    Science.gov (United States)

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  5. Computer Simulation in Information and Communication Engineering

    CERN Multimedia

    Anton Topurov

    2005-01-01

    CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...

  6. Computer Simulations, Disclosure and Duty of Care

    Directory of Open Access Journals (Sweden)

    John Barlow

    2006-05-01

    Full Text Available Computer simulations provide cost effective methods for manipulating and modeling 'reality'. However they are not real. They are imitations of a system or event, real or fabricated, and as such mimic, duplicate or represent that system or event. The degree to which a computer simulation aligns with and reproduces the ‘reality’ of the system or event it attempts to mimic or duplicate depends upon many factors including the efficiency of the simulation algorithm, the processing power of the computer hardware used to run the simulation model, and the expertise, assumptions and prejudices of those concerned with designing, implementing and interpreting the simulation output. Computer simulations in particular are increasingly replacing physical experimentation in many disciplines, and as a consequence, are used to underpin quite significant decision-making which may impact on ‘innocent’ third parties. In this context, this paper examines two interrelated issues: Firstly, how much and what kind of information should a simulation builder be required to disclose to potential users of the simulation? Secondly, what are the implications for a decision-maker who acts on the basis of their interpretation of a simulation output without any reference to its veracity, which may in turn comprise the safety of other parties?

  7. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  8. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    where x increases from zero to N, the saturation value. Box 1. Matrix Meth- ... such as Laplace transforms and non-linear differential equa- tions with .... atomic bomb project in the. US in the early ... his work on game theory and computers.

  9. Scenario-Based Digital Forensics Challenges in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Erik Miranda Lopez

    2016-10-01

    Full Text Available The aim of digital forensics is to extract information to answer the 5Ws (Why, When, Where, What, and Who from the data extracted from the evidence. In order to achieve this, most digital forensic processes assume absolute control of digital evidence. However, in a cloud environment forensic investigation, this is not always possible. Additionally, the unique characteristics of cloud computing create new technical, legal and architectural challenges when conducting a forensic investigation. We propose a hypothetical scenario to uncover and explain the challenges forensic practitioners face during cloud investigations. Additionally, we also provide solutions to address the challenges. Our hypothetical case scenario has shown that, in the long run, better live forensic tools, development of new methods tailored for cloud investigations and new procedures and standards are indeed needed. Furthermore, we have come to the conclusion that forensic investigations biggest challenge is not technical but legal.

  10. Design and simulation of a totally digital image system for medical image applications

    International Nuclear Information System (INIS)

    Archwamety, C.

    1987-01-01

    The Totally Digital Imaging System (TDIS) is based on system requirements information from the Radiology Department, University of Arizona Health Science Center. This dissertation presents the design of this complex system, the TDIS specification, the system performance requirements, and the evaluation of the system using the computer-simulation programs. Discrete-event simulation models were developed for the TDIS subsystems, including an image network, imaging equipment, storage migration algorithm, data base archive system, and a control and management network. The simulation system uses empirical data generation and retrieval rates measured at the University Medical Center hospital. The entire TDIS system was simulated in Simscript II.5 using a VAX 8600 computer system. Simulation results show the fiber-optical-image network to be suitable; however, the optical-disk-storage system represents a performance bottleneck

  11. Digital Simulation-Based Training: A Meta-Analysis

    Science.gov (United States)

    Gegenfurtner, Andreas; Quesada-Pallarès, Carla; Knogler, Maximilian

    2014-01-01

    This study examines how design characteristics in digital simulation-based learning environments moderate self-efficacy and transfer of learning. Drawing on social cognitive theory and the cognitive theory of multimedia learning, the meta-analysis psychometrically cumulated k?=?15 studies of 25 years of research with a total sample size of…

  12. REACTOR: a computer simulation for schools

    International Nuclear Information System (INIS)

    Squires, D.

    1985-01-01

    The paper concerns computer simulation of the operation of a nuclear reactor, for use in schools. The project was commissioned by UKAEA, and carried out by the Computers in the Curriculum Project, Chelsea College. The program, for an advanced gas cooled reactor, is briefly described. (U.K.)

  13. Learning and instruction with computer simulations

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.

    1991-01-01

    The present volume presents the results of an inventory of elements of such a computer learning environment. This inventory was conducted within a DELTA project called SIMULATE. In the project a learning environment that provides intelligent support to learners and that has a simulation as its

  14. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  15. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  16. Simulations of Probabilities for Quantum Computing

    Science.gov (United States)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  17. Computer simulations applied in materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La{sub 2}Zr{sub 2}O{sub 7} pyrochlores; first principle calculations of defects formation energies in the Y{sub 2}(Ti,Sn,Zr){sub 2}O{sub 7} pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO{sub 2}; composition defect maps for A{sup 3+}B{sup 3+}O{sub 3} perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)

  18. Computational simulation of radiographic film

    International Nuclear Information System (INIS)

    Goncalves, Elicardo A. de S.; Santos, Marcio H. dos; Anjos, Marcelino J.; Oliveira, Luis F. de

    2013-01-01

    The composition of a radiographic film gives its values of speed, spatial resolution and base density. The technical knowledge allows to predict how a film with a known composition works, and simulate how this film will work with changes in composition and exposure. In this paper, characterization of films composed by different emulsions was realized, in a way to know the characteristic curve, and to study how the format, organization and concentration of silver salt crystals set the radiographic film images.This work aims to increase an existing simulator, where parallel programming was used to simulate X-ray fluorescence processes. The setup of source and X-ray interactions with objects stills the same, and the detector constructed in this work was placed to form images. At first, considering the approach that the film is a square matrix where each element has a specific quantity of silver grains, that each grain fills a specific area, and that each interaction to radiation transforms a salt silver grain in to metallic silver grain (black grain), we have a blackening standard, and it should show how is the behavior of a optic density in a specific area of the film. Each matrix element has a degree of blackening, and it is proportional to the black grains area. (author)

  19. Computer simulations applied in materials

    International Nuclear Information System (INIS)

    2003-01-01

    This workshop takes stock of the simulation methods applied to nuclear materials and discusses the conditions in which these methods can predict physical results when no experimental data are available. The main topic concerns the radiation effects in oxides and includes also the behaviour of fission products in ceramics, the diffusion and segregation phenomena and the thermodynamical properties under irradiation. This document brings together a report of the previous 2002 workshop and the transparencies of 12 presentations among the 15 given at the workshop: accommodation of uranium and plutonium in pyrochlores; radiation effects in La 2 Zr 2 O 7 pyrochlores; first principle calculations of defects formation energies in the Y 2 (Ti,Sn,Zr) 2 O 7 pyrochlore system; an approximate approach to predicting radiation tolerant materials; molecular dynamics study of the structural effects of displacement cascades in UO 2 ; composition defect maps for A 3+ B 3+ O 3 perovskites; NMR characterization of radiation damaged materials: using simulation to interpret the data; local structure in damaged zircon: a first principle study; simulation studies on SiC; insertion and diffusion of He in 3C-SiC; a review of helium in silica; self-trapped holes in amorphous silicon dioxide: their short-range structure revealed from electron spin resonance and optical measurements and opportunities for inferring intermediate range structure by theoretical modelling. (J.S.)

  20. Computer processing of the scintigraphic image using digital filtering techniques

    International Nuclear Information System (INIS)

    Matsuo, Michimasa

    1976-01-01

    The theory of digital filtering was studied as a method for the computer processing of scintigraphic images. The characteristics and design techniques of finite impulse response (FIR) digital filters with linear phases were examined using the z-transform. The conventional data processing method, smoothing, could be recognized as one kind of linear phase FIR low-pass digital filtering. Ten representatives of FIR low-pass digital filters with various cut-off frequencies were scrutinized from the frequency domain in one-dimension and two-dimensions. These filters were applied to phantom studies with cold targets, using a Scinticamera-Minicomputer on-line System. These studies revealed that the resultant images had a direct connection with the magnitude response of the filter, that is, they could be estimated fairly well from the frequency response of the digital filter used. The filter, which was estimated from phantom studies as optimal for liver scintigrams using 198 Au-colloid, was successfully applied in clinical use for detecting true cold lesions and, at the same time, for eliminating spurious images. (J.P.N.)

  1. A Computer- Based Digital Signal Processing for Nuclear Scintillator Detectors

    International Nuclear Information System (INIS)

    Ashour, M.A.; Abo Shosha, A.M.

    2000-01-01

    In this paper, a Digital Signal Processing (DSP) Computer-based system for the nuclear scintillation signals with exponential decay is presented. The main objective of this work is to identify the characteristics of the acquired signals smoothly, this can be done by transferring the signal environment from random signal domain to deterministic domain using digital manipulation techniques. The proposed system consists of two major parts. The first part is the high performance data acquisition system (DAQ) that depends on a multi-channel Logic Scope. Which is interfaced with the host computer through the General Purpose Interface Board (GPIB) Ver. IEEE 488.2. Also, a Graphical User Interface (GUI) has been designed for this purpose using the graphical programming facilities. The second of the system is the DSP software Algorithm which analyses, demonstrates, monitoring these data to obtain the main characteristics of the acquired signals; the amplitude, the pulse count, the pulse width, decay factor, and the arrival time

  2. Hydraulic logic gates: building a digital water computer

    Science.gov (United States)

    Taberlet, Nicolas; Marsal, Quentin; Ferrand, Jérémy; Plihon, Nicolas

    2018-03-01

    In this article, we propose an easy-to-build hydraulic machine which serves as a digital binary computer. We first explain how an elementary adder can be built from test tubes and pipes (a cup filled with water representing a 1, and empty cup a 0). Using a siphon and a slow drain, the proposed setup combines AND and XOR logical gates in a single device which can add two binary digits. We then show how these elementary units can be combined to construct a full 4-bit adder. The sequencing of the computation is discussed and a water clock can be incorporated so that the machine can run without any exterior intervention.

  3. Computer graphics in heat-transfer simulations

    International Nuclear Information System (INIS)

    Hamlin, G.A. Jr.

    1980-01-01

    Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges

  4. Computer simulation of gear tooth manufacturing processes

    Science.gov (United States)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  5. Digital computed radiography in industrial X-ray testing

    International Nuclear Information System (INIS)

    Osterloh, K.; Onel, Y.; Zscherpel, U.; Ewert, U.

    2001-01-01

    Computed radiography is used for X-ray testing in many industrial applications. There are different systems depending on the application, e.g. fast systems for detection of material inhomogeneities and slower systems with higher local resolution for detection of cracks and fine details, e.g. in highly stressed areas or in welded seams. The method is more dynamic than film methods, and digital image processing is possible during testing [de

  6. Cluster computing software for GATE simulations

    International Nuclear Information System (INIS)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-01-01

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values

  7. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  8. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  9. A digital simulation of a pressurizer in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sato, E.F.

    1980-11-01

    A model for pressurizer digital simulation of a PWR nuclear power plant during transients, considering all pressurizer control features, is presented. The pressurizer is divided into two regions separated by a water-vapor interface and non-equilibrium conditions are considered. The particular thermodynamic process followed during insurge and outsurges is determined at each instant of analysis without any previous assumption. The pressure behavior is defined by an explicit equation in any of four possible pressurizer thermodynamic conditions. Thermodynamic properties of steam and water are computed by ASME subroutines and the mathematical formulation presented in this study was programed in FORTRAN IV for a Burroughs-6700 digital computer system. This program was employed to simulate the Shippingport Atomic Power Station and Almirante Alvaro Alberto Nuclear Power Plant - Unit 1 pressurizers. The test results compared with experimental or vendor data show the validity of this analysis method. (Author) [pt

  10. Computer Code for Nanostructure Simulation

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  11. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  12. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  13. Computer simulation of defect cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Eiichi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    In order to elucidate individual element process of various defects and defect clusters of used materials under irradiation environments, interatomic potential with reliability was investigated. And for comparison with experimental results, it is often required to adopt the temperature effect and to investigate in details mechanism of one dimensional motion of micro conversion loop and so forth using the molecular dynamic (MD) method. Furthermore, temperature effect is also supposed for stable structure of defects and defect clusters, and many problems relating to alloy element are also remained. And, simulation on photon life at the defects and defect clusters thought to be important under comparison with equipment can also be supposed an improvement of effectiveness due to relation to theses products. In this paper, some topics in such flow was extracted to explain them. In particular, future important problems will be potential preparation of alloy, structure, dynamic behavior and limited temperature of intralattice atomic cluster. (G.K.)

  14. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  15. Advanced distributed simulation technology: Digital Voice Gateway Reference Guide

    Science.gov (United States)

    Vanhook, Dan; Stadler, Ed

    1994-01-01

    The Digital Voice Gateway (referred to as the 'DVG' in this document) transmits and receives four full duplex encoded speech channels over the Ethernet. The information in this document applies only to DVG's running firmware of the version listed on the title page. This document, previously named Digital Voice Gateway Reference Guide, BBN Systems and Technologies Corporation, Cambridge, MA 02138, was revised for revision 2.00. This new revision changes the network protocol used by the DVG, to comply with the SINCGARS radio simulation (For SIMNET 6.6.1). Because of the extensive changes to revision 2.00 a separate document was created rather than supplying change pages.

  16. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  17. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  18. Computer Simulations of Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  19. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  20. SIMULACIÓN DE CONTROLADORES DIGITALES SIMULATION OF DIGITAL CONTROLLERS

    Directory of Open Access Journals (Sweden)

    Carlos Álvarez G

    2009-12-01

    Full Text Available El presente trabajo tiene como objetivo la implementación de controladores digitales en un entorno de simulación controlado, para esto se desarrolla una plataforma de hardware que permite ejecutar los programas en lenguaje C generados en una estación de trabajo. Estos programas corresponden al controlador y a la planta que son generados por un software que genera dichos programas a partir de sus parámetros de modelación aplicando teoría de control digital sobre procesos reales.This paper describes an implementation of digital controllers in a simulation environment for including a hardware platform for running programs generated on a workstation. These programs for both the controller and the plant are generated by software based on parameters using digital control theory for real processes.

  1. An integrated computational tool for precipitation simulation

    Science.gov (United States)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  2. Computational proximity excursions in the topology of digital images

    CERN Document Server

    Peters, James F

    2016-01-01

    This book introduces computational proximity (CP) as an algorithmic approach to finding nonempty sets of points that are either close to each other or far apart. Typically in computational proximity, the book starts with some form of proximity space (topological space equipped with a proximity relation) that has an inherent geometry. In CP, two types of near sets are considered, namely, spatially near sets and descriptivelynear sets. It is shown that connectedness, boundedness, mesh nerves, convexity, shapes and shape theory are principal topics in the study of nearness and separation of physical aswell as abstract sets. CP has a hefty visual content. Applications of CP in computer vision, multimedia, brain activity, biology, social networks, and cosmology are included. The book has been derived from the lectures of the author in a graduate course on the topology of digital images taught over the past several years. Many of the students have provided important insights and valuable suggestions. The topics in ...

  3. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  4. Software Engineering for Scientific Computer Simulations

    Science.gov (United States)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  5. Computer simulation of fatigue under diametrical compression

    OpenAIRE

    Carmona, H. A.; Kun, F.; Andrade Jr., J. S.; Herrmann, H. J.

    2006-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the ...

  6. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    Magallanes, J.F.

    1984-01-01

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.) [es

  7. Comparison of piping models for digital power plant simulators

    International Nuclear Information System (INIS)

    Sowers, G.W.

    1979-08-01

    Two piping models intended for use in a digital power plant simulator are compared. One is a finite difference approximation to the partial differential equation called PIPE, and the other is a function subroutine that acts as a delay operator called PDELAY. The two models are compared with respect to accuracy and execution time. In addition, the stability of the PIPE model is determined. The PDELAY model is found to execute faster than the PIPE model with comparable accuracy

  8. Centralized digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.

    1987-01-01

    A hardware and software design for the centralized control of a research nuclear reactor by a digital computer are presented, as well as an investigation of automatic-feedback control. Current reactor-control philosophies including redundancy, inherent safety in failure, and conservative-yet-operational scram initiation were used as the bases of the design. The control philosophies were applied to the power-monitoring system, the fuel-temperature monitoring system, the area-radiation monitoring system, and the overall system interaction. Unlike the single-function analog computers currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control-rod movements to conform with operator requests, automatically log the required physical parameters during reactor operation, perform the required system tests, and monitor facility safety and security. Reactor power control is based on signals received from ion chambers located near the reactor core. Absorber-rod movements are made to control the rate of power increase or decrease during power changes and to control the power level during steady-state operation. Additionally, the system incorporates a rudimentary level of artificial intelligence

  9. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  10. Computation of the glandular radiation dose in digital tomosynthesis of the breast

    International Nuclear Information System (INIS)

    Sechopoulos, Ioannis; Suryanarayanan, Sankararaman; Vedantham, Srinivasan; D'Orsi, Carl; Karellas, Andrew

    2007-01-01

    Tomosynthesis of the breast is currently a topic of intense interest as a logical next step in the evolution of digital mammography. This study reports on the computation of glandular radiation dose in digital tomosynthesis of the breast. Previously, glandular dose estimations in tomosynthesis have been performed using data from studies of radiation dose in conventional planar mammography. This study evaluates, using Monte Carlo methods, the normalized glandular dose (D g N) to the breast during a tomosynthesis study, and characterizes its dependence on breast size, tissue composition, and x-ray spectrum. The conditions during digital tomosynthesis imaging of the breast were simulated using a computer program based on the Geant4 toolkit. With the use of simulated breasts of varying size, thickness and tissue composition, the D g N to the breast tissue was computed for varying x-ray spectra and tomosynthesis projection angle. Tomosynthesis projections centered about both the cranio-caudal (CC) and medio-lateral oblique (MLO) views were simulated. For each projection angle, the ratio of the glandular dose for that projection to the glandular dose for the zero degree projection was computed. This ratio was denoted the relative glandular dose (RGD) coefficient, and its variation under different imaging parameters was analyzed. Within mammographic energies, the RGD was found to have a weak dependence on glandular fraction and x-ray spectrum for both views. A substantial dependence on breast size and thickness was found for the MLO view, and to a lesser extent for the CC view. Although RGD values deviate substantially from unity as a function of projection angle, the RGD averaged over all projections in a complete tomosynthesis study varies from 0.91 to 1.01. The RGD results were fit to mathematical functions and the resulting equations are provided

  11. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...

  12. Using Computer Simulations in Chemistry Problem Solving

    Science.gov (United States)

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  13. Computer simulations of the random barrier model

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2002-01-01

    A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...

  14. Macromod: Computer Simulation For Introductory Economics

    Science.gov (United States)

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  15. Computer Graphics Simulations of Sampling Distributions.

    Science.gov (United States)

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  16. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  17. Computational algorithms for simulations in atmospheric optics.

    Science.gov (United States)

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  18. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, Kevan

    1986-01-01

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  19. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  20. Interoceanic canal excavation scheduling via computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baldonado, Orlino C [Holmes and Narver, Inc., Los Angeles, CA (United States)

    1970-05-15

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  1. Interoceanic canal excavation scheduling via computer simulation

    International Nuclear Information System (INIS)

    Baldonado, Orlino C.

    1970-01-01

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  2. Accuracy of a computed tomography scanning procedure to manufacture digital models.

    NARCIS (Netherlands)

    Darroudi, A.M.; Kuijpers-Jagtman, A.M.; Ongkosuwito, E.M.; Suttorp, C.M.; Bronkhorst, E.M.; Breuning, K.H.

    2017-01-01

    INTRODUCTION: Accurate articulation of the digital dental casts is crucial in orthodontic diagnosis and treatment planning. We aimed to determine the accuracy of manufacturing digital dental casts from computed tomography scanning of plaster casts regarding linear dimensions and interarch

  3. D Digital Simulation of Minnan Temple Architecture CAISSON'S Craft Techniques

    Science.gov (United States)

    Lin, Y. C.; Wu, T. C.; Hsu, M. F.

    2013-07-01

    Caisson is one of the important representations of the Minnan (southern Fujian) temple architecture craft techniques and decorative aesthetics. The special component design and group building method present the architectural thinking and personal characteristics of great carpenters of Minnan temple architecture. In late Qing Dynasty, the appearance and style of caissons of famous temples in Taiwan apparently presented the building techniques of the great carpenters. However, as the years went by, the caisson design and craft techniques were not fully inherited, which has been a great loss of cultural assets. Accordingly, with the caisson of Fulong temple, a work by the well-known great carpenter in Tainan as an example, this study obtained the thinking principles of the original design and the design method at initial period of construction through interview records and the step of redrawing the "Tng-Ko" (traditional design, stakeout and construction tool). We obtained the 3D point cloud model of the caisson of Fulong temple using 3D laser scanning technology, and established the 3D digital model of each component of the caisson. Based on the caisson component procedure obtained from interview records, this study conducted the digital simulation of the caisson component to completely recode and present the caisson design, construction and completion procedure. This model of preserving the craft techniques for Minnan temple caisson by using digital technology makes specific contribution to the heritage of the craft techniques while providing an important reference for the digital preservation of human cultural assets.

  4. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  5. Use of digital computing devices in systems important to safety

    International Nuclear Information System (INIS)

    1986-01-01

    The incorporation of digital computing devices in systems important to safety now is progressing fast in several countries, including Canada, France, Federal Republic of Germany, Japan, USA. There are now reactors with microprocessors in some trip systems. The major functions of those systems are: reactor trip initiation, display, monitoring, testing, re-calibration of detectors. The benefits of moving to a fully computerized shut-down system should be improved reliability, greater flexibility, better man-machine interface, improved testing, higher reactor output and lower overall cost. With the introduction of computer devices in systems important to safety, plant availability and safety are improved because disturbances are treated before they lead to safety action, in this way helping the operator to avoid errors. The Meeting presentations were divided into sessions devoted to the following topics: Needs for the use of digital devices (DCD) in safety important systems (SIS) (5 papers); Problems raised by the integration SIS in the NPP control (7 papers); Description and presentation of DCD of SIS (6 papers); Results of experiences in engineering, manufacture, qualification operation of DCD hardware and software (5 papers). A separate abstract was prepared for each of these papers

  6. NEWLIN: A digital computer program for the linearisation of sets of algebraic and first order differential equations

    International Nuclear Information System (INIS)

    Hopkinson, A.

    1969-05-01

    The techniques normally used for linearisation of equations are not amenable to general treatment by digital computation. This report describes a computer program for linearising sets of equations by numerical evaluations of partial derivatives. The program is written so that the specification of the non-linear equations is the same as for the digital simulation program, FIFI, and the linearised equations can be punched out in form suitable for input to the frequency response program FRP2 and the poles and zeros program ZIP. Full instructions for the use of the program are given and a sample problem input and output are shown. (author)

  7. A Computer Program to Model Passive Acoustic Antisubmarine Search Using Monte Carlo Simulation Techniques.

    Science.gov (United States)

    1983-09-01

    duplicate a continuous function on a digital computer, and thus the machine representatic- of the GMA is only a close approximation of the continuous...error process. Thus, the manner in which the GMA process is digitally replicated has an effect on the results of the simulation. The parameterization of...Information Center 2 Cameron Station Alexandria, Virginia 22314 2. Libary , Code 0142 2 Naval Postgraduate School Monterey, California 93943 3. Professor

  8. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  9. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  10. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  11. Topics in computer simulations of statistical systems

    International Nuclear Information System (INIS)

    Salvador, R.S.

    1987-01-01

    Several computer simulations studying a variety of topics in statistical mechanics and lattice gauge theories are performed. The first study describes a Monte Carlo simulation performed on Ising systems defined on Sierpinsky carpets of dimensions between one and four. The critical coupling and the exponent γ are measured as a function of dimension. The Ising gauge theory in d = 4 - epsilon, for epsilon → 0 + , is then studied by performing a Monte Carlo simulation for the theory defined on fractals. A high statistics Monte Carlo simulation for the three-dimensional Ising model is presented for lattices of sizes 8 3 to 44 3 . All the data obtained agrees completely, within statistical errors, with the forms predicted by finite-sizing scaling. Finally, a method to estimate numerically the partition function of statistical systems is developed

  12. Computational fluid dynamics for sport simulation

    CERN Document Server

    2009-01-01

    All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.

  13. The Domain Shared by Computational and Digital Ontology: A Phenomenological Exploration and Analysis

    Science.gov (United States)

    Compton, Bradley Wendell

    2009-01-01

    The purpose of this dissertation is to explore and analyze a domain of research thought to be shared by two areas of philosophy: computational and digital ontology. Computational ontology is philosophy used to develop information systems also called computational ontologies. Digital ontology is philosophy dealing with our understanding of Being…

  14. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners

    Science.gov (United States)

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results. PMID:24083133

  15. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners.

    Science.gov (United States)

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results.

  16. Computational plasticity algorithm for particle dynamics simulations

    Science.gov (United States)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  17. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  18. 'I'm good, but not that good': digitally-skilled young people's identity in computing

    Science.gov (United States)

    Wong, Billy

    2016-12-01

    Computers and information technology are fast becoming a part of young people's everyday life. However, there remains a difference between the majority who can use computers and the minority who are computer scientists or professionals. Drawing on 32 semi-structured interviews with digitally skilled young people (aged 13-19), we explore their views and aspirations in computing, with a focus on the identities and discourses that these youngsters articulate in relation to this field. Our findings suggest that, even among digitally skilled young people, traditional identities of computing as people who are clever but antisocial still prevail, which can be unattractive for youths, especially girls. Digitally skilled youths identify with computing in different ways and for different reasons. Most enjoy doing computing but few aspired to being a computer person. Implications of our findings for computing education are discussed especially the continued need to broaden identities in computing, even for the digitally skilled.

  19. Computer simulation of displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-06-01

    More than 500 displacement cascades in copper have been generated with the computer simulation code MARLOWE over an energy range pertinent to both fission and fusion neutron spectra. Three-dimensional graphical depictions of selected cascades, as well as quantitative analysis of cascade shapes and sizes and defect densities, illustrate cascade behavior as a function of energy. With increasing energy, the transition from production of single compact damage regions to widely spaced multiple damage regions is clearly demonstrated

  20. Computer simulation of complexity in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Sato, Tetsuya

    1998-01-01

    By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)

  1. Application of the PRBS/FFT technique to digital simulations

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1977-01-01

    This paper describes a method for obtaining a small-signal frequency response from a digital dynamic simulation. It employs a modified form of the PRBS/FFT technique, whereby a system is perturbed by a pseudo-random binary sequence and its response is analyzed using a fast Fourier transform-based program. Two applications of the technique are described; one involves a set of two coupled, second-order, ordinary differential equations; the other is a set of non-linear partial differential equations describing the thermohydraulic behaviour of water boiling in a fuel channel. (author)

  2. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  3. Migrating Home Computer Audio Waveforms to Digital Objects: A Case Study on Digital Archaeology

    Directory of Open Access Journals (Sweden)

    Mark Guttenbrunner

    2011-03-01

    Full Text Available Rescuing data from inaccessible or damaged storage media for the purpose of preserving the digital data for the long term is one of the dimensions of digital archaeology. With the current pace of technological development, any system can become obsolete in a matter of years and hence the data stored in a specific storage media might not be accessible anymore due to the unavailability of the system to access the media. In order to preserve digital records residing in such storage media, it is necessary to extract the data stored in those media by some means.One early storage medium for home computers in the 1980s was audio tape. The first home computer systems allowed the use of standard cassette players to record and replay data. Audio cassettes are more durable than old home computers when properly stored. Devices playing this medium (i.e. tape recorders can be found in working condition or can be repaired, as they are usually made out of standard components. By re-engineering the format of the waveform and the file formats, the data on such media can then be extracted from a digitised audio stream and migrated to a non-obsolete format.In this paper we present a case study on extracting the data stored on an audio tape by an early home computer system, namely the Philips Videopac+ G7400. The original data formats were re-engineered and an application was written to support the migration of the data stored on tapes without using the original system. This eliminates the necessity of keeping an obsolete system alive for enabling access to the data on the storage media meant for this system. Two different methods to interpret the data and eliminate possible errors in the tape were implemented and evaluated on original tapes, which were recorded 20 years ago. Results show that with some error correction methods, parts of the tapes are still readable even without the original system. It also implies that it is easier to build solutions while original

  4. Accelerating Climate Simulations Through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  5. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  6. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  7. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  8. Some computer applications and digital image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Lowinger, T.

    1981-01-01

    Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms

  9. Design and implementation of the modified signed digit multiplication routine on a ternary optical computer.

    Science.gov (United States)

    Xu, Qun; Wang, Xianchao; Xu, Chao

    2017-06-01

    Multiplication with traditional electronic computers is faced with a low calculating accuracy and a long computation time delay. To overcome these problems, the modified signed digit (MSD) multiplication routine is established based on the MSD system and the carry-free adder. Also, its parallel algorithm and optimization techniques are studied in detail. With the help of a ternary optical computer's characteristics, the structured data processor is designed especially for the multiplication routine. Several ternary optical operators are constructed to perform M transformations and summations in parallel, which has accelerated the iterative process of multiplication. In particular, the routine allocates data bits of the ternary optical processor based on digits of multiplication input, so the accuracy of the calculation results can always satisfy the users. Finally, the routine is verified by simulation experiments, and the results are in full compliance with the expectations. Compared with an electronic computer, the MSD multiplication routine is not only good at dealing with large-value data and high-precision arithmetic, but also maintains lower power consumption and fewer calculating delays.

  10. Mitigating the effects of system resolution on computer simulation of Portland cement hydration

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2008-01-01

    CEMHYD3D is an advanced, three-dimensional computer model for simulating the hydration processes of cement, in which the microstructure of the hydrating cement paste is represented by digitized particles in a cubic domain. However, the system resolution (which is determined by the voxel size) has a

  11. Computer and Video Games in Family Life: The Digital Divide as a Resource in Intergenerational Interactions

    Science.gov (United States)

    Aarsand, Pal Andre

    2007-01-01

    In this ethnographic study of family life, intergenerational video and computer game activities were videotaped and analysed. Both children and adults invoked the notion of a digital divide, i.e. a generation gap between those who master and do not master digital technology. It is argued that the digital divide was exploited by the children to…

  12. A Monte Carlo-based model for simulation of digital chest tomo-synthesis

    International Nuclear Information System (INIS)

    Ullman, G.; Dance, D. R.; Sandborg, M.; Carlsson, G. A.; Svalkvist, A.; Baath, M.

    2010-01-01

    The aim of this work was to calculate synthetic digital chest tomo-synthesis projections using a computer simulation model based on the Monte Carlo method. An anthropomorphic chest phantom was scanned in a computed tomography scanner, segmented and included in the computer model to allow for simulation of realistic high-resolution X-ray images. The input parameters to the model were adapted to correspond to the VolumeRAD chest tomo-synthesis system from GE Healthcare. Sixty tomo-synthesis projections were calculated with projection angles ranging from + 15 to -15 deg. The images from primary photons were calculated using an analytical model of the anti-scatter grid and a pre-calculated detector response function. The contributions from scattered photons were calculated using an in-house Monte Carlo-based model employing a number of variance reduction techniques such as the collision density estimator. Tomographic section images were reconstructed by transferring the simulated projections into the VolumeRAD system. The reconstruction was performed for three types of images using: (i) noise-free primary projections, (ii) primary projections including contributions from scattered photons and (iii) projections as in (ii) with added correlated noise. The simulated section images were compared with corresponding section images from projections taken with the real, anthropomorphic phantom from which the digital voxel phantom was originally created. The present article describes a work in progress aiming towards developing a model intended for optimisation of chest tomo-synthesis, allowing for simulation of both existing and future chest tomo-synthesis systems. (authors)

  13. Developing Digital Simulations and its Impact on Physical Education of Pre-Service Teachers

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2006-08-01

    Full Text Available The creation of digital simulations through the use of computers improved physical education of pre-service teachers. The method which was based on up-to-date studies focuses on the visualization of the body's movements in space. The main program of the research concentrated on building curriculum for teaching physical education through computerized presentations. The pre-service teachers reported about their progress in a variety of physical skills and their motivation in both kinds of learning was enhanced.

  14. A digital simulation of message traffic for natural disaster warning communications satellite

    Science.gov (United States)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  15. Computer simulation games in population and education.

    Science.gov (United States)

    Moreland, R S

    1988-01-01

    Computer-based simulation games are effective training tools that have several advantages. They enable players to learn in a nonthreatening manner and develop strategies to achieve goals in a dynamic environment. They also provide visual feedback on the effects of players' decisions, encourage players to explore and experiment with options before making final decisions, and develop players' skills in analysis, decision making, and cooperation. 2 games have been developed by the Research Triangle Institute for public-sector planning agencies interested in or dealing with developing countries. The UN Population and Development Game teaches players about the interaction between population variables and the national economy and how population policies complement other national policies, such as education. The BRIDGES Education Planning Game focuses on the effects education has on national policies. In both games, the computer simulates the reactions of a fictional country's socioeconomic system to players' decisions. Players can change decisions after seeing their effects on a computer screen and thus can improve their performance in achieving goals.

  16. New Computer Simulations of Macular Neural Functioning

    Science.gov (United States)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  17. Simulation and computation in health physics training

    International Nuclear Information System (INIS)

    Lakey, S.R.A.; Gibbs, D.C.C.; Marchant, C.P.

    1980-01-01

    The Royal Naval College has devised a number of computer aided learning programmes applicable to health physics which include radiation shield design and optimisation, environmental impact of a reactor accident, exposure levels produced by an inert radioactive gas cloud, and the prediction of radiation detector response in various radiation field conditions. Analogue computers are used on reduced or fast time scales because time dependent phenomenon are not always easily assimilated in real time. The build-up and decay of fission products, the dynamics of intake of radioactive material and reactor accident dynamics can be effectively simulated. It is essential to relate these simulations to real time and the College applies a research reactor and analytical phantom to this end. A special feature of the reactor is a chamber which can be supplied with Argon-41 from reactor exhaust gases to create a realistic gaseous contamination environment. Reactor accident situations are also taught by using role playing sequences carried out in real time in the emergency facilities associated with the research reactor. These facilities are outlined and the training technique illustrated with examples of the calculations and simulations. The training needs of the future are discussed, with emphasis on optimisation and cost-benefit analysis. (H.K.)

  18. Exploration of operator method digital optical computers for application to NASA

    Science.gov (United States)

    1990-01-01

    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  19. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  20. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  1. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  2. Computer simulations of a rough sphere fluid

    International Nuclear Information System (INIS)

    Lyklema, J.W.

    1978-01-01

    A computer simulation is described on rough hard spheres with a continuously variable roughness parameter, including the limits of smooth and completely rough spheres. A system of 500 particles is simulated with a homogeneous mass distribution at 8 different densities and for 5 different values of the roughness parameter. For these 40 physically different situations the intermediate scattering function for 6 values of the wave number, the orientational correlation functions and the velocity autocorrelation functions have been calculated. A comparison has been made with a neutron scattering experiment on neopentane and agreement was good for an intermediate value of the roughness parameter. Some often made approximations in neutron scattering experiments are also checked. The influence of the variable roughness parameter on the correlation functions has been investigated and three simple stochastic models studied to describe the orientational correlation function which shows the most pronounced dependence on the roughness. (Auth.)

  3. Computational simulation of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos; Ventikos, Yiannis

    2005-08-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.

  4. A computer simulation of auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ragheb, M S; Bakr, M H.S. [Dept. Of Accellerators and Ion Sources, Division of Basic Nuclear Sciences, NRC, Atomic Energy Authority, (Egypt)

    1997-12-31

    A simulation study of Auger electron spectroscopy was performed to reveal how far the dependency between the different parameters governing the experimental behavior affects the peaks. The experimental procedure followed by the AC modulation technique were reproduced by means of a computer program. It generates the assumed output Auger electron peaks, exposes them to a retarding AC modulated field and collects the resulting modulated signals. The program produces the lock-in treatment in order to demodulate the signals revealing the Auger peaks. It analyzes the spectrum obtained giving the peak positions and energies. Comparison between results of simulation and the experimental data showed good agreement. The peaks of the spectrum obtained depend upon the amplitude, frequency and resolution of the applied modulated signal. The peak shape is effected by the rise time, the slope and the starting potential of the retarding field. 4 figs.

  5. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...

  6. Computer simulation of replacement sequences in copper

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Schwartz, D.W.; Ariyasu, R.G.; Cascadden, S.E.

    1978-01-01

    Results of computer simulations of , , and replacement sequences in copper are presented, including displacement thresholds, focusing energies, energy losses per replacement, and replacement sequence lengths. These parameters are tabulated for six interatomic potentials and shown to vary in a systematic way with potential stiffness and range. Comparisons of results from calculations made with ADDES, a quasi-dynamical code, and COMENT, a dynamical code, show excellent agreement, demonstrating that the former can be calibrated and used satisfactorily in the analysis of low energy displacement cascades. Upper limits on , , and replacement sequences were found to be approximately 10, approximately 30, and approximately 14 replacements, respectively. (author)

  7. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, L.S.; Menezes, A.F.; Cardoso, M.A.C. [Programa de Engenharia Nuclear/COPPE (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Batista, D.V.S. [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer-Secao de Fisica Medica, Praca Cruz Vermelha, 23-Centro, 20230-130 Rio de Janeiro, RJ (Brazil); Cardoso, S.C. [Departamento de Fisica Nuclear, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Bloco A-Sala 307, CP 68528, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear/COPPE (Brazil); Departamento de Engenharia Nuclear/Escola Politecnica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear, R. Gal. Severiano 90, sala 409, 22294-900 Rio de Janeiro, RJ (Brazil)

    2012-01-15

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of {sup 60}Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. - Highlights: Black-Right-Pointing-Pointer We use a method to optimize the CT image conversion in voxel model for MCNP simulation. Black-Right-Pointing-Pointer We present a methodology to compress a DICOM image before conversion to input file. Black-Right-Pointing-Pointer To validate this study an idealized radiosurgery applied to the Alderson phantom was used.

  8. Computer holography: 3D digital art based on high-definition CGH

    International Nuclear Information System (INIS)

    Matsushima, K; Arima, Y; Nishi, H; Yamashita, H; Yoshizaki, Y; Ogawa, K; Nakahara, S

    2013-01-01

    Our recent works of high-definition computer-generated holograms (CGH) and the techniques used for the creation, such as the polygon-based method, silhouette method and digitized holography, are summarized and reviewed in this paper. The concept of computer holography is proposed in terms of integrating and crystalizing the techniques into novel digital art.

  9. Computer simulation of orthognathic surgery with video imaging

    Science.gov (United States)

    Sader, Robert; Zeilhofer, Hans-Florian U.; Horch, Hans-Henning

    1994-04-01

    Patients with extreme jaw imbalance must often undergo operative corrections. The goal of therapy is to harmonize the stomatognathic system and an aesthetical correction of the face profile. A new procedure will be presented which supports the maxillo-facial surgeon in planning the operation and which also presents the patient the result of the treatment by video images. Once an x-ray has been digitized it is possible to produce individualized cephalometric analyses. Using a ceph on screen, all current orthognathic operations can be simulated, whereby the bony segments are moved according to given parameters, and a new soft tissue profile can be calculated. The profile of the patient is fed into the computer by way of a video system and correlated to the ceph. Using the simulated operation the computer calculates a new video image of the patient which presents the expected postoperative appearance. In studies of patients treated between 1987-91, 76 out of 121 patients were able to be evaluated. The deviation in profile change varied between .0 and 1.6mm. A side effect of the practical applications was an increase in patient compliance.

  10. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  11. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  12. Computer simulations for the nano-scale

    International Nuclear Information System (INIS)

    Stich, I.

    2007-01-01

    A review of methods for computations for the nano-scale is presented. The paper should provide a convenient starting point into computations for the nano-scale as well as a more in depth presentation for those already working in the field of atomic/molecular-scale modeling. The argument is divided in chapters covering the methods for description of the (i) electrons, (ii) ions, and (iii) techniques for efficient solving of the underlying equations. A fairly broad view is taken covering the Hartree-Fock approximation, density functional techniques and quantum Monte-Carlo techniques for electrons. The customary quantum chemistry methods, such as post Hartree-Fock techniques, are only briefly mentioned. Description of both classical and quantum ions is presented. The techniques cover Ehrenfest, Born-Oppenheimer, and Car-Parrinello dynamics. The strong and weak points of both principal and technical nature are analyzed. In the second part we introduce a number of applications to demonstrate the different approximations and techniques introduced in the first part. They cover a wide range of applications such as non-simple liquids, surfaces, molecule-surface interactions, applications in nano technology, etc. These more in depth presentations, while certainly not exhaustive, should provide information on technical aspects of the simulations, typical parameters used, and ways of analysis of the huge amounts of data generated in these large-scale supercomputer simulations. (author)

  13. Reproducibility in Computational Neuroscience Models and Simulations

    Science.gov (United States)

    McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.

    2016-01-01

    Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845

  14. A Review of Freely Available Quantum Computer Simulation Software

    OpenAIRE

    Brandhorst-Satzkorn, Johan

    2012-01-01

    A study has been made of a few different freely available Quantum Computer simulators. All the simulators tested are available online on their respective websites. A number of tests have been performed to compare the different simulators against each other. Some untested simulators of various programming languages are included to show the diversity of the quantum computer simulator applications. The conclusion of the review is that LibQuantum is the best of the simulators tested because of ea...

  15. Estimation of reliability on digital plant protection system in nuclear power plants using fault simulation with self-checking

    International Nuclear Information System (INIS)

    Lee, Jun Seok; Kim, Suk Joon; Seong, Poong Hyun

    2004-01-01

    Safety-critical digital systems in nuclear power plants require high design reliability. Reliable software design and accurate prediction methods for the system reliability are important problems. In the reliability analysis, the error detection coverage of the system is one of the crucial factors, however, it is difficult to evaluate the error detection coverage of digital instrumentation and control system in nuclear power plants due to complexity of the system. To evaluate the error detection coverage for high efficiency and low cost, the simulation based fault injections with self checking are needed for digital instrumentation and control system in nuclear power plants. The target system is local coincidence logic in digital plant protection system and a simplified software modeling for this target system is used in this work. C++ based hardware description of micro computer simulator system is used to evaluate the error detection coverage of the system. From the simulation result, it is possible to estimate the error detection coverage of digital plant protection system in nuclear power plants using simulation based fault injection method with self checking. (author)

  16. Computer Simulation of Developmental Processes and ...

    Science.gov (United States)

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  17. A Computer Simulation of Auroral Arc Formation.

    Science.gov (United States)

    Wagner, John Scott

    Recent satellite measurements have revealed two intriguing features associated with the formation of auroral arcs. The first is that an auroral arc is produced by a sheet of electrons accelerated along a geomagnetic field -aligned potential drop, and the second is that these electrons carry a field-aligned, upward directed electric current. In order to explain these measurements, a self-consistent, time dependent, computer simulation of auroral arc formation has been developed. The simulation demonstrates for the first time that a stable V-shaped potential structure, called an auroral double layer, develops spontaneously as a result of an ion shielded electron current sheet interacting with a conducting ionosphere. The double layer accelerates current-carrying electrons into the upper atmosphere at auroral energies. The double layer potential depends critically on the drift speed of the current-carrying electrons and on the temperature of the ambient shielding ions. Localized double layers occur near the ionosphere when the geomagnetic field is assumed to be uniform, but when a converging magnetic field is introduced, the double layer becomes extended due to the presence of an additional population of electrons trapped between the magnetic mirror and the double layer potential. The simulated auroral current sheet is subject to auroral curl and fold type deformations due to unstable Kelvin-Helmholtz waves. The previous incompletely understood auroral fold producing mechanism is described.

  18. Computer simulation of fatigue under diametrical compression

    International Nuclear Information System (INIS)

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings

  19. Computer Simulation of the UMER Gridded Gun

    CERN Document Server

    Haber, Irving; Friedman, Alex; Grote, D P; Kishek, Rami A; Reiser, Martin; Vay, Jean-Luc; Zou, Yun

    2005-01-01

    The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in...

  20. Experimental validation of a computer simulation of radiographic film

    International Nuclear Information System (INIS)

    Goncalves, Elicardo A. de S.; Azeredo, Raphaela; Assis, Joaquim T.; Anjos, Marcelino J. dos; Oliveira, Davi F.; Oliveira, Luis F. de

    2015-01-01

    In radiographic films, the behavior of characteristic curve is very important for the image quality. Digitization/visualization are always performed by light transmission and the characteristic curve is known as a behavior of optical density in function of exposure. In a first approach, in a Monte-Carlo computer simulation trying to build a Hurter-Driffield curve by a stochastic model, the results showed the same known shape, but some behaviors, like the influence of silver grain size, are not expected. A real H and D curve was build exposing films, developing and measuring the optical density. When comparing model results with a real curve, trying to fit them and estimating some parameters, a difference in high exposure region shows a divergence between the models and the experimental data. Since the optical density is a function of metallic silver generated by chemical development, direct proportion was considered, but the results suggests a limitation in this proportion. In fact, when the optical density was changed by another way to measure silver concentration, like x-ray fluorescence, the new results agree with the models. Therefore, overexposed films can contain areas with different silver concentrations but it can't be seen due to the fact that optical density measurement is limited. Mapping the silver concentration in the film area can be a solution to reveal these dark images, and x-ray fluorescence has shown to be the best way to perform this new way to digitize films. (author)

  1. Experimental validation of a computer simulation of radiographic film

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Elicardo A. de S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil). Laboratorio de Instrumentacao e Simulacao Computacional Cientificas Aplicadas; Azeredo, Raphaela, E-mail: raphaelaazeredo@yahoo.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica Armando Dias Tavares. Programa de Pos-Graduacao em Fisica; Assis, Joaquim T., E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Anjos, Marcelino J. dos; Oliveira, Davi F.; Oliveira, Luis F. de, E-mail: marcelin@uerj.br, E-mail: davi.oliveira@uerj.br, E-mail: lfolive@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica Armando Dias Tavares. Departamento de Fisica Aplicada e Termodinamica

    2015-07-01

    In radiographic films, the behavior of characteristic curve is very important for the image quality. Digitization/visualization are always performed by light transmission and the characteristic curve is known as a behavior of optical density in function of exposure. In a first approach, in a Monte-Carlo computer simulation trying to build a Hurter-Driffield curve by a stochastic model, the results showed the same known shape, but some behaviors, like the influence of silver grain size, are not expected. A real H and D curve was build exposing films, developing and measuring the optical density. When comparing model results with a real curve, trying to fit them and estimating some parameters, a difference in high exposure region shows a divergence between the models and the experimental data. Since the optical density is a function of metallic silver generated by chemical development, direct proportion was considered, but the results suggests a limitation in this proportion. In fact, when the optical density was changed by another way to measure silver concentration, like x-ray fluorescence, the new results agree with the models. Therefore, overexposed films can contain areas with different silver concentrations but it can't be seen due to the fact that optical density measurement is limited. Mapping the silver concentration in the film area can be a solution to reveal these dark images, and x-ray fluorescence has shown to be the best way to perform this new way to digitize films. (author)

  2. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    International Nuclear Information System (INIS)

    Lee, D.; Kim, D.; Choi, S.; Kim, H.-J.; Choi, S.; Lee, H.

    2017-01-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  3. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    Science.gov (United States)

    Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.

    2017-04-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  4. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    Energy Technology Data Exchange (ETDEWEB)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  5. Cluster computing for lattice QCD simulations

    International Nuclear Information System (INIS)

    Coddington, P.D.; Williams, A.G.

    2000-01-01

    Full text: Simulations of lattice quantum chromodynamics (QCD) require enormous amounts of compute power. In the past, this has usually involved sharing time on large, expensive machines at supercomputing centres. Over the past few years, clusters of networked computers have become very popular as a low-cost alternative to traditional supercomputers. The dramatic improvements in performance (and more importantly, the ratio of price/performance) of commodity PCs, workstations, and networks have made clusters of off-the-shelf computers an attractive option for low-cost, high-performance computing. A major advantage of clusters is that since they can have any number of processors, they can be purchased using any sized budget, allowing research groups to install a cluster for their own dedicated use, and to scale up to more processors if additional funds become available. Clusters are now being built for high-energy physics simulations. Wuppertal has recently installed ALiCE, a cluster of 128 Alpha workstations running Linux, with a peak performance of 158 G flops. The Jefferson Laboratory in the US has a 16 node Alpha cluster and plans to upgrade to a 256 processor machine. In Australia, several large clusters have recently been installed. Swinburne University of Technology has a cluster of 64 Compaq Alpha workstations used for astrophysics simulations. Early this year our DHPC group constructed a cluster of 116 dual Pentium PCs (i.e. 232 processors) connected by a Fast Ethernet network, which is used by chemists at Adelaide University and Flinders University to run computational chemistry codes. The Australian National University has recently installed a similar PC cluster with 192 processors. The Centre for the Subatomic Structure of Matter (CSSM) undertakes large-scale high-energy physics calculations, mainly lattice QCD simulations. The choice of the computer and network hardware for a cluster depends on the particular applications to be run on the machine. Our

  6. Implementation of a pressurized water reactor simulator for teaching on a mini-computer

    International Nuclear Information System (INIS)

    Tallec, Michele.

    1982-06-01

    This paper presents the design of a pressurized water reactor power plant simulator using a mini-computer. This simulator is oriented towards teaching. It operates real-time simulations and many parameters can be changed by the student during execution of the digital code. First, a state variable model of the dynamic behavior of the plant is derived from the physical laws. The second part presents the problems associated with the use of a mini-computer for the resolution of a large differential system, notably the problems of memory-space availability, execution time and numerical integration. Finally, it contains the description of the control deck outlay used to interfer with the digital code, and of the the conditions that can be changed during an excution [fr

  7. Computer Simulation of Electron Positron Annihilation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, y

    2003-10-02

    With the launching of the Next Linear Collider coming closer and closer, there is a pressing need for physicists to develop a fully-integrated computer simulation of e{sup +}e{sup -} annihilation process at center-of-mass energy of 1TeV. A simulation program acts as the template for future experiments. Either new physics will be discovered, or current theoretical uncertainties will shrink due to more accurate higher-order radiative correction calculations. The existence of an efficient and accurate simulation will help us understand the new data and validate (or veto) some of the theoretical models developed to explain new physics. It should handle well interfaces between different sectors of physics, e.g., interactions happening at parton levels well above the QCD scale which are described by perturbative QCD, and interactions happening at much lower energy scale, which combine partons into hadrons. Also it should achieve competitive speed in real time when the complexity of the simulation increases. This thesis contributes some tools that will be useful for the development of such simulation programs. We begin our study by the development of a new Monte Carlo algorithm intended to perform efficiently in selecting weight-1 events when multiple parameter dimensions are strongly correlated. The algorithm first seeks to model the peaks of the distribution by features, adapting these features to the function using the EM algorithm. The representation of the distribution provided by these features is then improved using the VEGAS algorithm for the Monte Carlo integration. The two strategies mesh neatly into an effective multi-channel adaptive representation. We then present a new algorithm for the simulation of parton shower processes in high energy QCD. We want to find an algorithm which is free of negative weights, produces its output as a set of exclusive events, and whose total rate exactly matches the full Feynman amplitude calculation. Our strategy is to create

  8. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    Science.gov (United States)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense

  9. Lung surgery assisted by multidetector-row computed tomographic simulation

    International Nuclear Information System (INIS)

    Oizumi, Hiroyuki; Endoh, Makoto; Ota, Hiroshi; Takeda, Shinichi; Suzuki, Jun; Fukaya, Ken; Chiba, Masato; Sadahiro, Mitsuaki

    2009-01-01

    We describe the benefits of lung resection simulation using multidetector computed tomography (MDCT). Since 2004, the 1.0-mm slice digital imaging and communications in medicine (DICOM) server has been used for storing data obtained using 64-row MDCT. We observed that an abnormality could not be visualized from the pleural surface in 10 nodules of 18 lesions undergoing wedge lung resection. These 10 nodules were resected through simulation using a three-dimensional (3D) volume-rendering method by considering parameters such as the position, depth, or distance from the interlobar abnormalities, etc., without the need for any marking methods. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. However, in the initial 10 patients of this series, the preoperative identification of 2 small arterial branches was unsuccessful when this method was used. Therefore, it is important to carefully examine the original data in all 3 views, id est (i.e.), axial, sagittal, and coronal views. The visualization of venous branches in affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. We divided the cases of thoracoscopic lung segmentectomy into 3 groups (level 1: simple, level 2: intermediate, and level 3: complex) on the basis of the technical complexity. Only level 1 segmentectomies were performed without MDCT simulation. Further, level 2 and 3 segmentectomies could be successfully performed because of the introduction of MDCT simulation in 25 of 35 patients. Thus, this simulation technique may be useful during a thoracoscopic procedure for lung surgery. (author)

  10. The use of digital games and simulators in veterinary education: an overview with examples.

    Science.gov (United States)

    de Bie, M H; Lipman, L J A

    2012-01-01

    In view of current technological possibilities and the popularity of games, the interest in games for educational purposes is remarkably on the rise. This article outlines the (future) use of (digital) games and simulators in several disciplines, especially in the veterinary curriculum. The different types of game-based learning (GBL)-varying from simple interactive computer board games to more complex virtual simulation strategies-will be discussed as well as the benefits, possibilities, and limitations of the educational use of games. The real breakthrough seems to be a few years away. Technological developments in the future might diminish the limitations and stumbling blocks that currently exist. Consequently, educational games will play a new and increasingly important role in the future veterinary curriculum, providing an attractive and useful way of learning.

  11. Reproducibility of computer-aided detection system in digital mammograms

    International Nuclear Information System (INIS)

    Kim, Seung Ja; Cho, Nariya; Cha, Joo Hee; Chung, Hye Kyung; Lee, Sin Ho; Cho, Kyung Soo; Kim, Sun Mi; Moon, Woo Kyung

    2005-01-01

    To evaluate the reproducibility of the computer-aided detection (CAD) system for digital mammograms. We applied the CAD system (ImageChecker M1000-DM, version 3.1; R2 Technology) to full field digital mammograms. These mammograms were taken twice at an interval of 10-45 days (mean:25 days) for 34 preoperative patients (breast cancer n=27, benign disease n=7, age range:20-66 years, mean age:47.9 years). On the mammograms, lesions were visible in 19 patients and these were depicted as 15 masses and 12 calcification clusters. We analyzed the sensitivity, the false positive rate (FPR) and the reproducibility of the CAD marks. The broader sensitivities of the CAD system were 80% (12 of 15), 67%(10 of 15) for masses and those for calcification clusters were 100% (12 of 12). The strict sensitivities were 50% (15 of 30) and 50% (15 of 30) for masses and 92% (22 of 24) and 79% (19 of 24) for the clusters. The FPR for the masses was 0.21-0.22/image, the FPR for the clusters was 0.03-0.04/image and the total FPR was 0.24-0.26/image. Among 132 mammography images, the identical images regardless of the existence of CAD marks were 59% (78 of 132), and the identical images with CAD marks were 22% (15 of 69). The reproducibility of the CAD marks for the true positive mass was 67% (12 of 18) and 71% (17 of 24) for the true positive cluster. The reproducibility of CAD marks for the false positive mass was 8% (4 of 53), and the reproducibility of CAD marks for the false positive clusters was 14% (1 of 7). The reproducibility of the total mass marks was 23% (16 of 71), and the reproducibility of the total cluster marks was 58% (18 of 31). CAD system showed higher sensitivity and reproducibility of CAD marks for the calcification clusters which are related to breast cancer. Yet the overall reproducibility of CAD marks was low; therefore, the CAD system must be applied considering this limitation

  12. Computer simulation of probability of detection

    International Nuclear Information System (INIS)

    Fertig, K.W.; Richardson, J.M.

    1983-01-01

    This paper describes an integrated model for assessing the performance of a given ultrasonic inspection system for detecting internal flaws, where the performance of such a system is measured by probability of detection. The effects of real part geometries on sound propagations are accounted for and the noise spectra due to various noise mechanisms are measured. An ultrasonic inspection simulation computer code has been developed to be able to detect flaws with attributes ranging over an extensive class. The detection decision is considered to be a binary decision based on one received waveform obtained in a pulse-echo or pitch-catch setup. This study focuses on the detectability of flaws using an amplitude thresholding type. Some preliminary results on the detectability of radially oriented cracks in IN-100 for bore-like geometries are given

  13. Computer simulation of backscattered alpha particles

    International Nuclear Information System (INIS)

    Sanchez, A. Martin; Bland, C.J.; Timon, A. Fernandez

    2000-01-01

    Alpha-particle spectrometry forms an important aspect of radionuclide metrology. Accurate measurements require corrections to be made for factors such as self-absorption within the source and backscattering from the backing material. The theory of the latter phenomenon has only received limited attention. Furthermore the experimental verification of these theoretical results requires adequate counting statistics for a variety of sources with different activities. These problems could be resolved by computer simulations of the various interactions which occur as alpha-particles move through different materials. The pioneering work of Ziegler and his coworkers over several years, has provided the sophisticated software (SRIM) which has enabled us to obtain the results presented here. These results are compared with theoretical and experimental values obtained previously

  14. Computer simulation of a magnetohydrodynamic dynamo II

    International Nuclear Information System (INIS)

    Kageyama, Akira; Sato, Tetsuya.

    1994-11-01

    We performed a computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell. Extensive parameter runs are carried out changing the electrical resistivity. It is found that the total magnetic energy can grow more than ten times larger than the total kinetic energy of the convection motion when the resistivity is sufficiently small. When the resistivity is relatively large and the magnetic energy is comparable or smaller than the kinetic energy, the convection motion maintains its well-organized structure. However, when the resistivity is small and the magnetic energy becomes larger than the kinetic energy, the well-organized convection motion is highly disturbed. The generated magnetic field is organized as a set of flux tubes which can be divided into two categories. The magnetic field component parallel to the rotation axis tends to be confined inside the anticyclonic columnar convection cells. On the other hand, the component perpendicular to the rotation axis is confined outside the convection cells. (author)

  15. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  16. Design an optimal controller for nuclear reactor using a digital computer

    International Nuclear Information System (INIS)

    Saleh, F.M.A.

    1986-01-01

    An attempt is carried out to design an optimal controller, for a model nuclear reactor at one hand, and a model nuclear power plant at another hand using a digital computer. The design philosophy adopted was to specify the system dynamics in terms of a desired system transfer function, and realizing the design synthesis through state-variable feedback technique, thus ensuring both stability and optimization in the state space sense. The control design was also tested by carrying out digital simulation transient response runs (step, ramp, impulse, etc.) and agreement between the predicted desirable response and actual response of the overall design was achieved. Furthermore the performance of the controller is verified against a reference non-linear model for purposes of assessing the accuracy of the linearized approximation model. The results show that state-variable feedback policy can rank as an effective optimal technique for designing control algorithm for an on-line computer of a nuclear power plant. 41 figs. 43 refs

  17. Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?

    Energy Technology Data Exchange (ETDEWEB)

    Braun, S. [Visual Analysis AG, Muenchen (Germany)

    2001-07-01

    Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)

  18. Digital simulation of an enrichment process for solutions by means of an advection-diffusion chamber

    International Nuclear Information System (INIS)

    Artucio, G.; Suarez, R.; Uruguay Catholic University)

    1995-01-01

    An ab-initio digital simulation of the space-time dynamics of the concentration field of a solute in an advection-diffusion chamber is done. Some questions related to the digital simulation of the concentration field using the analytical solution obtained in a previous paper are discussed

  19. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  20. Computer simulation of dynamic processes on accelerators

    International Nuclear Information System (INIS)

    Kol'ga, V.V.

    1979-01-01

    The problems of computer numerical investigation of motion of accelerated particles in accelerators and storages, an effect of different accelerator systems on the motion, determination of optimal characteristics of accelerated charged particle beams are considered. Various simulation representations are discussed which describe the accelerated particle dynamics, such as the enlarged particle method, the representation where a great number of discrete particle is substituted for a field of continuously distributed space charge, the method based on determination of averaged beam characteristics. The procedure is described of numerical studies involving the basic problems, viz. calculation of closed orbits, establishment of stability regions, investigation of resonance propagation determination of the phase stability region, evaluation of the space charge effect the problem of beam extraction. It is shown that most of such problems are reduced to solution of the Cauchy problem using a computer. The ballistic method which is applied to solution of the boundary value problem of beam extraction is considered. It is shown that introduction into the equation under study of additional members with the small positive regularization parameter is a general idea of the methods for regularization of noncorrect problems [ru

  1. Associative Memory Computing Power and Its Simulation

    CERN Document Server

    Volpi, G; The ATLAS collaboration

    2014-01-01

    The associative memory (AM) system is a computing device made of hundreds of AM ASICs chips designed to perform “pattern matching” at very high speed. Since each AM chip stores a data base of 130000 pre-calculated patterns and large numbers of chips can be easily assembled together, it is possible to produce huge AM banks. Speed and size of the system are crucial for real-time High Energy Physics applications, such as the ATLAS Fast TracKer (FTK) Processor. Using 80 million channels of the ATLAS tracker, FTK finds tracks within 100 micro seconds. The simulation of such a parallelized system is an extremely complex task if executed in commercial computers based on normal CPUs. The algorithm performance is limited, due to the lack of parallelism, and in addition the memory requirement is very large. In fact the AM chip uses a content addressable memory (CAM) architecture. Any data inquiry is broadcast to all memory elements simultaneously, thus data retrieval time is independent of the database size. The gr...

  2. Associative Memory computing power and its simulation

    CERN Document Server

    Ancu, L S; The ATLAS collaboration; Britzger, D; Giannetti, P; Howarth, J W; Luongo, C; Pandini, C; Schmitt, S; Volpi, G

    2014-01-01

    The associative memory (AM) system is a computing device made of hundreds of AM ASICs chips designed to perform “pattern matching” at very high speed. Since each AM chip stores a data base of 130000 pre-calculated patterns and large numbers of chips can be easily assembled together, it is possible to produce huge AM banks. Speed and size of the system are crucial for real-time High Energy Physics applications, such as the ATLAS Fast TracKer (FTK) Processor. Using 80 million channels of the ATLAS tracker, FTK finds tracks within 100 micro seconds. The simulation of such a parallelized system is an extremely complex task if executed in commercial computers based on normal CPUs. The algorithm performance is limited, due to the lack of parallelism, and in addition the memory requirement is very large. In fact the AM chip uses a content addressable memory (CAM) architecture. Any data inquiry is broadcast to all memory elements simultaneously, thus data retrieval time is independent of the database size. The gr...

  3. Computer simulation of sputtering: A review

    International Nuclear Information System (INIS)

    Robinson, M.T.; Hou, M.

    1992-08-01

    In 1986, H. H. Andersen reviewed attempts to understand sputtering by computer simulation and identified several areas where further research was needed: potential energy functions for molecular dynamics (MD) modelling; the role of inelastic effects on sputtering, especially near the target surface; the modelling of surface binding in models based on the binary collision approximation (BCA); aspects of cluster emission in MD models; and angular distributions of sputtered particles. To these may be added kinetic energy distributions of sputtered particles and the relationships between MD and BCA models, as well as the development of intermediate models. Many of these topics are discussed. Recent advances in BCA modelling include the explicit evaluation of the time in strict BCA codes and the development of intermediate codes able to simulate certain many-particle problems realistically. Developments in MD modelling include the wide-spread use of many-body potentials in sputtering calculations, inclusion of realistic electron excitation and electron-phonon interactions, and several studies of cluster ion impacts on solid surfaces

  4. Computer simulations of the mouse spermatogenic cycle

    Directory of Open Access Journals (Sweden)

    Debjit Ray

    2014-12-01

    Full Text Available The spermatogenic cycle describes the periodic development of germ cells in the testicular tissue. The temporal–spatial dynamics of the cycle highlight the unique, complex, and interdependent interaction between germ and somatic cells, and are the key to continual sperm production. Although understanding the spermatogenic cycle has important clinical relevance for male fertility and contraception, there are a number of experimental obstacles. For example, the lengthy process cannot be visualized through dynamic imaging, and the precise action of germ cells that leads to the emergence of testicular morphology remains uncharacterized. Here, we report an agent-based model that simulates the mouse spermatogenic cycle on a cross-section of the seminiferous tubule over a time scale of hours to years, while considering feedback regulation, mitotic and meiotic division, differentiation, apoptosis, and movement. The computer model is able to elaborate the germ cell dynamics in a time-lapse movie format, allowing us to trace individual cells as they change state and location. More importantly, the model provides mechanistic understanding of the fundamentals of male fertility, namely how testicular morphology and sperm production are achieved. By manipulating cellular behaviors either individually or collectively in silico, the model predicts causal events for the altered arrangement of germ cells upon genetic or environmental perturbations. This in silico platform can serve as an interactive tool to perform long-term simulation and to identify optimal approaches for infertility treatment and contraceptive development.

  5. Computer simulation of heterogeneous polymer photovoltaic devices

    International Nuclear Information System (INIS)

    Kodali, Hari K; Ganapathysubramanian, Baskar

    2012-01-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13–26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures. (paper)

  6. Computer simulation of heterogeneous polymer photovoltaic devices

    Science.gov (United States)

    Kodali, Hari K.; Ganapathysubramanian, Baskar

    2012-04-01

    Polymer-based photovoltaic devices have the potential for widespread usage due to their low cost per watt and mechanical flexibility. Efficiencies close to 9.0% have been achieved recently in conjugated polymer based organic solar cells (OSCs). These devices were fabricated using solvent-based processing of electron-donating and electron-accepting materials into the so-called bulk heterojunction (BHJ) architecture. Experimental evidence suggests that a key property determining the power-conversion efficiency of such devices is the final morphological distribution of the donor and acceptor constituents. In order to understand the role of morphology on device performance, we develop a scalable computational framework that efficiently interrogates OSCs to investigate relationships between the morphology at the nano-scale with the device performance. In this work, we extend the Buxton and Clarke model (2007 Modelling Simul. Mater. Sci. Eng. 15 13-26) to simulate realistic devices with complex active layer morphologies using a dimensionally independent, scalable, finite-element method. We incorporate all stages involved in current generation, namely (1) exciton generation and diffusion, (2) charge generation and (3) charge transport in a modular fashion. The numerical challenges encountered during interrogation of realistic microstructures are detailed. We compare each stage of the photovoltaic process for two microstructures: a BHJ morphology and an idealized sawtooth morphology. The results are presented for both two- and three-dimensional structures.

  7. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  8. Sonification of simulations in computational physics

    International Nuclear Information System (INIS)

    Vogt, K.

    2010-01-01

    Sonification is the translation of information for auditory perception, excluding speech itself. The cognitive performance of pattern recognition is striking for sound, and has too long been disregarded by the scientific mainstream. Examples of 'spontaneous sonification' and systematic research for about 20 years have proven that sonification provides a valuable tool for the exploration of scientific data. The data in this thesis stem from computational physics, where numerical simulations are applied to problems in physics. Prominent examples are spin models and lattice quantum field theories. The corresponding data lend themselves very well to innovative display methods: they are structured on discrete lattices, often stochastic, high-dimensional and abstract, and they provide huge amounts of data. Furthermore, they have no inher- ently perceptual dimension. When designing the sonification of simulation data, one has to make decisions on three levels, both for the data and the sound model: the level of meaning (phenomenological; metaphoric); of structure (in time and space), and of elements ('display units' vs. 'gestalt units'). The design usually proceeds as a bottom-up or top-down process. This thesis provides a 'toolbox' for helping in these decisions. It describes tools that have proven particularly useful in the context of simulation data. An explicit method of top-down sonification design is the metaphoric sonification method, which is based on expert interviews. Furthermore, qualitative and quantitative evaluation methods are presented, on the basis of which a set of evaluation criteria is proposed. The translation between a scientific and the sound synthesis domain is elucidated by a sonification operator. For this formalization, a collection of notation modules is provided. Showcases are discussed in detail that have been developed in the interdisciplinary research projects SonEnvir and QCD-audio, during the second Science By Ear workshop and during a

  9. Engineering Fracking Fluids with Computer Simulation

    Science.gov (United States)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  10. Computer aided site management. Site use management by digital mapping

    International Nuclear Information System (INIS)

    Chupin, J.C.

    1990-01-01

    The logistics program developed for assisting the Hague site management is presented. A digital site mapping representation and geographical data bases are used. The digital site map and its integration into a data base are described. The program can be applied to urban and rural land management aid. Technical administrative and economic evaluations of the program are summarized [fr

  11. Construction of a Digital Learning Environment Based on Cloud Computing

    Science.gov (United States)

    Ding, Jihong; Xiong, Caiping; Liu, Huazhong

    2015-01-01

    Constructing the digital learning environment for ubiquitous learning and asynchronous distributed learning has opened up immense amounts of concrete research. However, current digital learning environments do not fully fulfill the expectations on supporting interactive group learning, shared understanding and social construction of knowledge.…

  12. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  13. The role of computer simulation in nuclear technologies development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, V. V.; Ryazanov, D.K.; Tellin, A.I.

    2001-01-01

    In the report the role and purposes of computer simulation in nuclear technologies development is discussed. The authors consider such applications of computer simulation as nuclear safety researches, optimization of technical and economic parameters of acting nuclear plant, planning and support of reactor experiments, research and design new devices and technologies, design and development of 'simulators' for operating personnel training. Among marked applications the following aspects of computer simulation are discussed in the report: neutron-physical, thermal and hydrodynamics models, simulation of isotope structure change and damage dose accumulation for materials under irradiation, simulation of reactor control structures. (authors)

  14. The role of computer simulation in nuclear technology development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, VV.; Ryazanov, D.K.; Tellin, A.I.

    2000-01-01

    In the report, the role and purpose of computer simulation in nuclear technology development is discussed. The authors consider such applications of computer simulation as: (a) Nuclear safety research; (b) Optimization of technical and economic parameters of acting nuclear plant; (c) Planning and support of reactor experiments; (d) Research and design new devices and technologies; (f) Design and development of 'simulators' for operating personnel training. Among marked applications, the following aspects of computer simulation are discussed in the report: (g) Neutron-physical, thermal and hydrodynamics models; (h) Simulation of isotope structure change and dam- age dose accumulation for materials under irradiation; (i) Simulation of reactor control structures. (authors)

  15. Matrix-vector multiplication using digital partitioning for more accurate optical computing

    Science.gov (United States)

    Gary, C. K.

    1992-01-01

    Digital partitioning offers a flexible means of increasing the accuracy of an optical matrix-vector processor. This algorithm can be implemented with the same architecture required for a purely analog processor, which gives optical matrix-vector processors the ability to perform high-accuracy calculations at speeds comparable with or greater than electronic computers as well as the ability to perform analog operations at a much greater speed. Digital partitioning is compared with digital multiplication by analog convolution, residue number systems, and redundant number representation in terms of the size and the speed required for an equivalent throughput as well as in terms of the hardware requirements. Digital partitioning and digital multiplication by analog convolution are found to be the most efficient alogrithms if coding time and hardware are considered, and the architecture for digital partitioning permits the use of analog computations to provide the greatest throughput for a single processor.

  16. System for simulating fluctuation diagnostics for application to turbulence computations

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Nevins, W.M.

    2006-01-01

    Present-day nonlinear microstability codes are able to compute the saturated fluctuations of a turbulent fluid versus space and time, whether the fluid be liquid, gas, or plasma. They are therefore able to determine turbulence-induced fluid (or particle) and energy fluxes. These codes, however, must be tested against experimental data not only with respect to transport but also characteristics of the fluctuations. The latter is challenging because of limitations in the diagnostics (e.g., finite spatial resolution) and the fact that the diagnostics typically do not measure exactly the quantities that the codes compute. In this work, we present a system based on IDL registered analysis and visualization software in which user-supplied 'diagnostic filters' are applied to the code outputs to generate simulated diagnostic signals. The same analysis techniques as applied to the measurements, e.g., digital time-series analysis, may then be applied to the synthesized signals. Their statistical properties, such as rms fluctuation level, mean wave numbers, phase and group velocities, correlation lengths and times, and in some cases full S(k,ω) spectra, can then be compared directly to those of the measurements

  17. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  18. A hybrid computer simulation of reactor spatial dynamics

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1977-08-01

    The partial differential equations describing the one-speed spatial dynamics of thermal neutron reactors were converted to a set of ordinary differential equations, using finite-difference approximations for the spatial derivatives. The variables were then normalized to a steady-state reference condition in a novel manner, to yield an equation set particularly suitable for implementation on a hybrid computer. One Applied Dynamics AD/FIVE analog-computer console is capable of solving, all in parallel, up to 30 simultaneous differential equations. This corresponds roughly to eight reactor nodes, each with two active delayed-neutron groups. To improve accuracy, an increase in the number of nodes is usually required. Using the Hsu-Howe multiplexing technique, an 8-node, one-dimensional module was switched back and forth between the left and right halves of the reactor, to simulate a 16-node model, also in one dimension. These two versions (8 or 16 nodes) of the model were tested on benchmark problems of the loss-of-coolant type, which were also solved using the digital code FORSIM, with two energy groups and 26 nodes. Good agreement was obtained between the two solution techniques. (author)

  19. A computational model to generate simulated three-dimensional breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-02-15

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  20. A computational model to generate simulated three-dimensional breast masses

    International Nuclear Information System (INIS)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.

    2015-01-01

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  1. Integration of Digital Dental Casts in Cone-Beam Computed Tomography Scans

    OpenAIRE

    Rangel, Frits A.; Maal, Thomas J. J.; Bergé, Stefaan J.; Kuijpers-Jagtman, Anne Marie

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic ...

  2. The Digital Fingerprinting Analysis Concerning Google Calendar under Ubiquitous Mobile Computing Era

    Directory of Open Access Journals (Sweden)

    Hai-Cheng Chu

    2015-04-01

    Full Text Available Internet Communication Technologies (ICTs are making progress day by day, driven by the relentless need to utilize them for everything from leisure to business. This inevitable trend has dramatically changed contemporary digital behavior in all aspects. Undoubtedly, digital fingerprints will be at some point unwarily left on crime scenes creating digital information security incidents. On the other hand, corporates in the private sector or governments are on the edge of being exploited in terms of confidential digital information leakages. Some digital fingerprinting is volatile by its nature. Alternatively, once the power of computing devices is no longer sustainable, these digital traces could disappear forever. Due to the pervasive usage of Google Calendar and Safari browser among network communities, digital fingerprinting could be disclosed if forensics is carried out in a sound manner, which could be admitted in a court of law as probative evidences concerning certain cybercrime incidents.

  3. Digital subtraction cardiopulmonary angiography using FCR (Fuji computed radiography)

    International Nuclear Information System (INIS)

    Tanimura, Shigeo; Tomoyasu, Hiroshi; Banba, Jiro; Masaki, Mikio; Kanno, Yukio; Abe, Kazuo

    1987-01-01

    Digital subtraction cardiopulmonary angiography using FCR was performed on 46 patients including lung cancer, mediastinal tumor, giant bullous formation and others. The images of digital subtraction for pulmonary artery, pulmonary vein and thoracic aorta were studied by comparing to the conventional pulmonary angiogram. Good images of pulmonary artery due to digital subtraction were obtained in 80 % of the 45 cases. This method needed only half volume of contrast media compared to the conventional for obtaining good images and thus reduced side effect. Therefore this method seems to be an usefull pre-operative examination in various chest diseases, especially in case of lung cancer. (author)

  4. Simulation of a small computer of the TRA-1001 type on the BESM computer

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    1975-01-01

    Considered are the purpose and probable simulation ways of one computer by the other. The emulator (simulation program) is given for a small computer of TRA-1001 type on BESM-6 computer. The simulated computer basic elements are the following: memory (8 K words), central processor, input-output program channel, interruption circuit, computer panel. The work with the input-output devices, teletypes ASP-33, FS-1500 is also simulated. Under actual operation the emulator has been used for translating the programs prepared on punched cards with the aid of translator SLANG-1 by BESM-6 computer. The translator alignment from language COPLAN has been realized with the aid of the emulator

  5. Integration of digital dental casts in cone-beam computed tomography scans

    NARCIS (Netherlands)

    Rangel, F.A.; Maal, T.J.J.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all

  6. A generalized approach to computer synthesis of digital holograms

    Science.gov (United States)

    Hopper, W. A.

    1973-01-01

    Hologram is constructed by taking number of digitized sample points and blending them together to form ''continuous'' picture. New system selects better set of sample points resulting in improved hologram from same amount of information.

  7. Prototyping and Simulating Parallel, Distributed Computations with VISA

    National Research Council Canada - National Science Library

    Demeure, Isabelle M; Nutt, Gary J

    1989-01-01

    ...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...

  8. Supporting hypothesis generation by learners exploring an interactive computer simulation

    NARCIS (Netherlands)

    van Joolingen, Wouter R.; de Jong, Ton

    1992-01-01

    Computer simulations provide environments enabling exploratory learning. Research has shown that these types of learning environments are promising applications of computer assisted learning but also that they introduce complex learning settings, involving a large number of learning processes. This

  9. COMPUTER LEARNING SIMULATOR WITH VIRTUAL REALITY FOR OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Valeria V. Gribova

    2013-01-01

    Full Text Available A toolset of a medical computer learning simulator for ophthalmology with virtual reality and its implementation are considered in the paper. The simulator is oriented for professional skills training for students of medical universities. 

  10. QDENSITY—A Mathematica quantum computer simulation

    Science.gov (United States)

    Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank

    2009-03-01

    This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples

  11. News from the Library: A one-stop-shop for computing literature: ACM Digital Library

    CERN Multimedia

    CERN Library

    2011-01-01

    The Association for Computing Machinery, ACM, is the world’s largest educational and scientific computing society. Among others, the ACM provides the computing field's premier Digital Library and serves its members and the computing profession with leading-edge publications, conferences, and career resources.   ACM Digital Library is available to the CERN community. The most popular journal here at CERN is Communications of the ACM. However, the collection offers access to a series of other valuable important academic journals such as Journal of the ACM and even fulltext of a series of classical books. In addition, users have access to the ACM Guide to Computing Literature, the most comprehensive bibliographic database focusing on computing, integrated with ACM’s full-text articles and including features such as ACM Author Profile Pages - which provides bibliographic and bibliometric data for over 1,000,000 authors in the field. ACM Digital Library is an excellent com...

  12. On the simulation of transients and accidents in PWRs with digital instrumentation and control using an LQR digital controller

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.; Oliva, J.J. Rivero

    2015-01-01

    New nuclear power plant designs are including integrated I and C digital systems for protection, control, alarming and monitoring. Existing operating nuclear power plants, as is the case of Angra 1 nuclear power plant, have to consider the replacement of their I and C analog systems by digital systems for retrofitting their facilities. However, before replacing the analog control loops by digital ones it is necessary to design and evaluate their performance, which requires modeling of the plant and its control system with extensive simulations under several normal and abnormal operation conditions. This paper discusses the use of a linear quadratic regulator (LQR) digital controller for evaluating the plant stability behavior before the actuation of the reactor protection system. The objective is to evaluate the effect of digital controllers on plant behavior for several transients and accident conditions. For this purpose, a numerical model was developed and implemented as a MatlabTM tool. This paper discusses an adequate framework in order to simulate a set of transients and accidents that constitute the design basis in the final safety analysis report of PWR power plants to evaluate the performance of digital controllers such as LQR regulators.(author)

  13. Computer simulation boosts automation in the stockyard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    Today's desktop computer and advanced software keep pace with handling equipment to reach new heights of sophistication with graphic simulation able to show precisely what is and could happen in the coal terminal's stockyard. The article describes an innovative coal terminal nearing completion on the Pacific coast at Lazaro Cardenas in Mexico, called the Petracalco terminal. Here coal is unloaded, stored and fed to the nearby power plant of Pdte Plutarco Elias Calles. The R & D department of the Italian company Techint, Italimpianti has developed MHATIS, a sophisticated software system for marine terminal management here, allowing analysis of performance with the use of graphical animation. Strategies can be tested before being put into practice and likely power station demand can be predicted. The design and operation of the MHATIS system is explained. Other integrated coal handling plants described in the article are that developed by the then PWH (renamed Krupp Foerdertechnik) of Germany for the Israel Electric Corporation and the installation by the same company of a further bucketwheel for a redesigned coal stockyard at the Port of Hamburg operated by Hansaport. 1 fig., 4 photos.

  14. Reducing the Digital Divide among Children Who Received Desktop or Hybrid Computers for the Home

    Directory of Open Access Journals (Sweden)

    Gila Cohen Zilka

    2016-06-01

    Full Text Available Researchers and policy makers have been exploring ways to reduce the digital divide. Parameters commonly used to examine the digital divide worldwide, as well as in this study, are: (a the digital divide in the accessibility and mobility of the ICT infrastructure and of the content infrastructure (e.g., sites used in school; and (b the digital divide in literacy skills. In the present study we examined the degree of effectiveness of receiving a desktop or hybrid computer for the home in reducing the digital divide among children of low socio-economic status aged 8-12 from various localities across Israel. The sample consisted of 1,248 respondents assessed in two measurements. As part of the mixed-method study, 128 children were also interviewed. Findings indicate that after the children received desktop or hybrid computers, changes occurred in their frequency of access, mobility, and computer literacy. Differences were found between the groups: hybrid computers reduce disparities and promote work with the computer and surfing the Internet more than do desktop computers. Narrowing the digital divide for this age group has many implications for the acquisition of skills and study habits, and consequently, for the realization of individual potential. The children spoke about self improvement as a result of exposure to the digital environment, about a sense of empowerment and of improvement in their advantage in the social fabric. Many children expressed a desire to continue their education and expand their knowledge of computer applications, the use of software, of games, and more. Therefore, if there is no computer in the home and it is necessary to decide between a desktop and a hybrid computer, a hybrid computer is preferable.

  15. Significant decimal digits for energy representation on short-word computers

    International Nuclear Information System (INIS)

    Sartori, E.

    1989-01-01

    The general belief that single precision floating point numbers have always at least seven significant decimal digits on short word computers such as IBM is erroneous. Seven significant digits are required however for representing the energy variable in nuclear cross-section data sets containing sharp p-wave resonances at 0 Kelvin. It is suggested that either the energy variable is stored in double precision or that cross-section resonances are reconstructed to room temperature or higher on short word computers

  16. Digital fluorography and computed tomography in a department of neuroradiology - a comparative study

    International Nuclear Information System (INIS)

    Fawcitt, R.A.; Freer, C.; Jarvis, H.; Occleshaw, J.V.; Isherwood, I.

    1984-01-01

    Digital Subtraction Angiography (DSA) has the ability to display the intracranial circulation following an intravenous or intra-arterial injection of contrast medium. A study was performed in 57 patients with neurological disorders undergoing DSA, either by Digital Intravenous Injection Angiography (DIVA) or Digital Intra-arterial Injection Angiography (DART) to assess the ability of DIVA to replace DART, the latter being carried out by digital fluorography or by conventional film screen methods, and also to establish the role of DSA in relation to Computed Tomography. (U.K.)

  17. A short introduction to digital simulations in electrochemistry: simulating the Cottrell experiment in NI LabVIEW

    Directory of Open Access Journals (Sweden)

    Soma Vesztergom

    2018-05-01

    Full Text Available A brief introduction to the use of digital simulations in electrochemistry is given by a detailed description of the simulation of Cottrell’s experiment in the LabVIEW programming language. A step-by-step approach is followed and different simulation techniques (explicit and implicit Euler, Runge–Kutta and Crank–Nicolson methods are applied. The applied techniques are introduced and discussed on the basis of Padé approximants. The paper might be found useful by undergraduate and graduate students familiarizing themselves with the digital simulation of electrochemical problems, as well as by university lecturers involved with the teaching of theoretical electrochemistry.

  18. Accuracy of digital peripical radiography and cone-beam computed tomography in detecting external root resorption

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, Adriana Gabriela [Division of Dental Diagnostic Science, Rutgers School of Dental Medicine, Newark (United States); Geha, Hassem; Sankar, Vidya; Mcmahan, Clyde Alex; Noujeim, Marcel [University of Texas Health Science Center San Antonio, San Antonio (United States); Teixeira, Fabrico B. [Dept. of Endodontics, University of Iowa, Iowa City (United States)

    2015-09-15

    The purpose of this study was to evaluate and compare the efficacy of cone-beam computed tomography (CBCT) and digital intraoral radiography in diagnosing simulated small external root resorption cavities. Cavities were drilled in 159 roots using a small spherical bur at different root levels and on all surfaces. The teeth were imaged both with intraoral digital radiography using image plates and with CBCT. Two sets of intraoral images were acquired per tooth: orthogonal (PA) which was the conventional periapical radiograph and mesioangulated (SET). Four readers were asked to rate their confidence level in detecting and locating the lesions. Receiver operating characteristic (ROC) analysis was performed to assess the accuracy of each modality in detecting the presence of lesions, the affected surface, and the affected level. Analysis of variation was used to compare the results and kappa analysis was used to evaluate interobserver agreement. A significant difference in the area under the ROC curves was found among the three modalities (P=0.0002), with CBCT (0.81) having a significantly higher value than PA (0.71) or SET (0.71). PA was slightly more accurate than SET, but the difference was not statistically significant. CBCT was also superior in locating the affected surface and level. CBCT has already proven its superiority in detecting multiple dental conditions, and this study shows it to likewise be superior in detecting and locating incipient external root resorption.

  19. Digital I and C system pre-tests using plant specific simulators

    International Nuclear Information System (INIS)

    Holl, B.; Probst, H.; Wischert, W.

    2006-01-01

    The paper focuses on strategic aspects of the implementation of modern digital instrumentation and control system (I and C) in nuclear power plant (NPP) training simulators and points out the way to identify the most appropriate implementation method of the digital I and C system in the simulator development environment which fulfils the requirement imposed by the nuclear power plants. This regards mainly training aspects, simulator as a test bed for design verification and validation (V and V), and software maintenance aspects with respect to future evolutions of the digital I and C system. (author)

  20. [Clinical analysis of 12 cases of orthognathic surgery with digital computer-assisted technique].

    Science.gov (United States)

    Tan, Xin-ying; Hu, Min; Liu, Chang-kui; Liu, Hua-wei; Liu, San-xia; Tao, Ye

    2014-06-01

    This study was to investigate the effect of the digital computer-assisted technique in orthognathic surgery. Twelve patients from January 2008 to December 2011 with jaw malformation were treated in our department. With the help of CT and three-dimensional reconstruction technique, 12 patients underwent surgical treatment and the results were evaluated after surgery. Digital computer-assisted technique could clearly show the status of the jaw deformity and assist virtual surgery. After surgery all patients were satisfied with the results. Digital orthognathic surgery can improve the predictability of the surgical procedure, and to facilitate patients' communication, shorten operative time, and reduce patients' pain.

  1. Digital Workflow for Computer-Guided Implant Surgery in Edentulous Patients: A Case Report.

    Science.gov (United States)

    Oh, Ji-Hyeon; An, Xueyin; Jeong, Seung-Mi; Choi, Byung-Ho

    2017-12-01

    The purpose of this article was to describe a fully digital workflow used to perform computer-guided flapless implant placement in an edentulous patient without the use of conventional impressions, models, or a radiographic guide. Digital data for the workflow were acquired using an intraoral scanner and cone-beam computed tomography (CBCT). The image fusion of the intraoral scan data and CBCT data was performed by matching resin markers placed in the patient's mouth. The definitive digital data were used to design a prosthetically driven implant position, surgical template, and computer-aided design and computer-aided manufacturing fabricated fixed dental prosthesis. The authors believe this is the first published case describing such a technique in computer-guided flapless implant surgery for edentulous patients. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Dose-image quality study in digital chest radiography using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.; Yoriyaz, H.

    2008-01-01

    One of the main preoccupations of diagnostic radiology is to guarantee a good image-sparing dose to the patient. In the present study, Monte Carlo simulations, with MCNPX code, coupled with an adult voxel female model (FAX) were performed to investigate how image quality and dose in digital chest radiography vary with tube voltage (80-150 kV) using air-gap technique and a computed radiography system. Calculated quantities were normalized to a fixed value of entrance skin exposure (ESE) of 0.0136 R. The results of the present analysis show that the image quality for chest radiography with imaging plate is improved and the dose reduced at lower tube voltage

  3. Computer program user's manual for FIREFINDER digital topographic data verification library dubbing system

    Science.gov (United States)

    Ceres, M.; Heselton, L. R., III

    1981-11-01

    This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.

  4. Teaching Computer Organization and Architecture Using Simulation and FPGA Applications

    OpenAIRE

    D. K.M. Al-Aubidy

    2007-01-01

    This paper presents the design concepts and realization of incorporating micro-operation simulation and FPGA implementation into a teaching tool for computer organization and architecture. This teaching tool helps computer engineering and computer science students to be familiarized practically with computer organization and architecture through the development of their own instruction set, computer programming and interfacing experiments. A two-pass assembler has been designed and implemente...

  5. CILT2000: Ubiquitous Computing--Spanning the Digital Divide.

    Science.gov (United States)

    Tinker, Robert; Vahey, Philip

    2002-01-01

    Discusses the role of ubiquitous and handheld computers in education. Summarizes the contributions of the Center for Innovative Learning Technologies (CILT) and describes the ubiquitous computing sessions at the CILT2000 Conference. (Author/YDS)

  6. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  7. The Use of Computer Simulation Gaming in Teaching Broadcast Economics.

    Science.gov (United States)

    Mancuso, Louis C.

    The purpose of this study was to develop a broadcast economic computer simulation and to ascertain how a lecture-computer simulation game compared as a teaching method with a more traditional lecture and case study instructional methods. In each of three sections of a broadcast economics course, a different teaching methodology was employed: (1)…

  8. The visual simulators for architecture and computer organization learning

    OpenAIRE

    Nikolić Boško; Grbanović Nenad; Đorđević Jovan

    2009-01-01

    The paper proposes a method of an effective distance learning of architecture and computer organization. The proposed method is based on a software system that is possible to be applied in any course in this field. Within this system students are enabled to observe simulation of already created computer systems. The system provides creation and simulation of switch systems, too.

  9. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  10. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  11. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    Science.gov (United States)

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  12. Challenges & Roadmap for Beyond CMOS Computing Simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Arun F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frank, Michael P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Simulating HPC systems is a difficult task and the emergence of “Beyond CMOS” architectures and execution models will increase that difficulty. This document presents a “tutorial” on some of the simulation challenges faced by conventional and non-conventional architectures (Section 1) and goals and requirements for simulating Beyond CMOS systems (Section 2). These provide background for proposed short- and long-term roadmaps for simulation efforts at Sandia (Sections 3 and 4). Additionally, a brief explanation of a proof-of-concept integration of a Beyond CMOS architectural simulator is presented (Section 2.3).

  13. A computer program for planimetric analysis of digitized images

    DEFF Research Database (Denmark)

    Lynnerup, N; Lynnerup, O; Homøe, P

    1992-01-01

    bones as seen on X-rays. By placing the X-rays on a digitizer tablet and tracing the outline of the cell system, the area was calculated by the program. The calculated data and traced images could be stored and printed. The program is written in BASIC; necessary hardware is an IBM-compatible personal...

  14. Peri-implant assessment via cone beam computed tomography and digital periapical radiography: an ex vivo study

    Directory of Open Access Journals (Sweden)

    Nicolau Silveira-Neto

    Full Text Available OBJECTIVES: This research evaluated detail registration in peri-implant bone using two different cone beam computer tomography systems and a digital periapical radiograph. METHODS: Three different image acquisition protocols were established for each cone beam computer tomography apparatus, and three clinical situations were simulated in an ex vivo fresh pig mandible: buccal bone defect, peri-implant bone defect, and bone contact. Data were subjected to two analyses: quantitative and qualitative. The quantitative analyses involved a comparison of real specimen measures using a digital caliper in three regions of the preserved buccal bone – A, B and E (control group – to cone beam computer tomography images obtained with different protocols (kp1, kp2, kp3, ip1, ip2, and ip3. In the qualitative analyses, the ability to register peri-implant details via tomography and digital periapical radiography was verified, as indicated by twelve evaluators. Data were analyzed with ANOVA and Tukey’s test (α=0.05. RESULTS: The quantitative assessment showed means statistically equal to those of the control group under the following conditions: buccal bone defect B and E with kp1 and ip1, peri-implant bone defect E with kp2 and kp3, and bone contact A with kp1, kp2, kp3, and ip2. Qualitatively, only bone contacts were significantly different among the assessments, and the p3 results differed from the p1 and p2 results. The other results were statistically equivalent. CONCLUSIONS: The registration of peri-implant details was influenced by the image acquisition protocol, although metal artifacts were produced in all situations. The evaluators preferred the Kodak 9000 3D cone beam computer tomography in most cases. The evaluators identified buccal bone defects better with cone beam computer tomography and identified peri-implant bone defects better with digital periapical radiography.

  15. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  16. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  17. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  18. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  19. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  20. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  1. Integrated computer aided design simulation and manufacture

    OpenAIRE

    Diko, Faek

    1989-01-01

    Computer Aided Design (CAD) and Computer Aided Manufacture (CAM) have been investigated and developed since twenty years as standalone systems. A large number of very powerful but independent packages have been developed for Computer Aided Design,Aanlysis and Manufacture. However, in most cases these packages have poor facility for communicating with other packages. Recently attempts have been made to develop integrated CAD/CAM systems and many software companies a...

  2. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  3. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    Science.gov (United States)

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  4. 77 FR 50726 - Software Requirement Specifications for Digital Computer Software and Complex Electronics Used in...

    Science.gov (United States)

    2012-08-22

    ... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...

  5. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    Science.gov (United States)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  6. Quantum computer gate simulations | Dada | Journal of the Nigerian ...

    African Journals Online (AJOL)

    A new interactive simulator for Quantum Computation has been developed for simulation of the universal set of quantum gates and for construction of new gates of up to 3 qubits. The simulator also automatically generates an equivalent quantum circuit for any arbitrary unitary transformation on a qubit. Available quantum ...

  7. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  8. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    The concepts, principles and implementation of simulated Annealing as a modem heuristic technique is presented. Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing ...

  9. The challenge of quantum computer simulations of physical phenomena

    International Nuclear Information System (INIS)

    Ortiz, G.; Knill, E.; Gubernatis, J.E.

    2002-01-01

    The goal of physics simulation using controllable quantum systems ('physics imitation') is to exploit quantum laws to advantage, and thus accomplish efficient simulation of physical phenomena. In this Note, we discuss the fundamental concepts behind this paradigm of information processing, such as the connection between models of computation and physical systems. The experimental simulation of a toy quantum many-body problem is described

  10. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    Science.gov (United States)

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  11. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    Science.gov (United States)

    2008-06-01

    of unknown pathology , all other ROIs generated from that specific subject’s reconstructed volumes were excluded from the KB. For scheme B, all the FPs...query ROI of unknown pathology , all other ROIs generated from that specific subject’s reconstructed volumes were excluded from the KB. For scheme B...Qian, L. Li, and L.P. Clarke, "Image feature extraction for mass detection in digital mammography: Influence of wavelet analysis." Med. Phys. 26

  12. Computer simulation of grain growth in HAZ

    Science.gov (United States)

    Gao, Jinhua

    Two different models for Monte Carlo simulation of normal grain growth in metals and alloys were developed. Each simulation model was based on a different approach to couple the Monte Carlo simulation time to real time-temperature. These models demonstrated the applicability of Monte Carlo simulation to grain growth in materials processing. A grain boundary migration (GBM) model coupled the Monte Carlo simulation to a first principle grain boundary migration model. The simulation results, by applying this model to isothermal grain growth in zone-refined tin, showed good agreement with experimental results. An experimental data based (EDB) model coupled the Monte Carlo simulation with grain growth kinetics obtained from the experiment. The results of the application of the EDB model to the grain growth during continuous heating of a beta titanium alloy correlated well with experimental data. In order to acquire the grain growth kinetics from the experiment, a new mathematical method was developed and utilized to analyze the experimental data on isothermal grain growth. Grain growth in the HAZ of 0.2% Cu-Al alloy was successfully simulated using the EDB model combined with grain growth kinetics obtained from the experiment and measured thermal cycles from the welding process. The simulated grain size distribution in the HAZ was in good agreement with experimental results. The pinning effect of second phase particles on grain growth was also simulated in this work. The simulation results confirmed that by introducing the variable R, degree of contact between grain boundaries and second phase particles, the Zener pinning model can be modified as${D/ r} = {K/{Rf}}$where D is the pinned grain size, r the mean size of second phase particles, K a constant, f the area fraction (or the volume fraction in 3-D) of second phase.

  13. Increasing the computational efficient of digital cross correlation by a vectorization method

    Science.gov (United States)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  14. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  15. Sophistication of computational science and fundamental physics simulations

    International Nuclear Information System (INIS)

    Ishiguro, Seiji; Ito, Atsushi; Usami, Shunsuke; Ohtani, Hiroaki; Sakagami, Hitoshi; Toida, Mieko; Hasegawa, Hiroki; Horiuchi, Ritoku; Miura, Hideaki

    2016-01-01

    Numerical experimental reactor research project is composed of the following studies: (1) nuclear fusion simulation research with a focus on specific physical phenomena of specific equipment, (2) research on advanced simulation method to increase predictability or expand its application range based on simulation, (3) visualization as the foundation of simulation research, (4) research for advanced computational science such as parallel computing technology, and (5) research aiming at elucidation of fundamental physical phenomena not limited to specific devices. Specifically, a wide range of researches with medium- to long-term perspectives are being developed: (1) virtual reality visualization, (2) upgrading of computational science such as multilayer simulation method, (3) kinetic behavior of plasma blob, (4) extended MHD theory and simulation, (5) basic plasma process such as particle acceleration due to interaction of wave and particle, and (6) research related to laser plasma fusion. This paper reviews the following items: (1) simultaneous visualization in virtual reality space, (2) multilayer simulation of collisionless magnetic reconnection, (3) simulation of microscopic dynamics of plasma coherent structure, (4) Hall MHD simulation of LHD, (5) numerical analysis for extension of MHD equilibrium and stability theory, (6) extended MHD simulation of 2D RT instability, (7) simulation of laser plasma, (8) simulation of shock wave and particle acceleration, and (9) study on simulation of homogeneous isotropic MHD turbulent flow. (A.O.)

  16. [Precision of digital impressions with TRIOS under simulated intraoral impression taking conditions].

    Science.gov (United States)

    Yang, Xin; Sun, Yi-fei; Tian, Lei; Si, Wen-jie; Feng, Hai-lan; Liu, Yi-hong

    2015-02-18

    To evaluate the precision of digital impressions taken under simulated clinical impression taking conditions with TRIOS and to compare with the precision of extraoral digitalizations. Six #14-#17 epoxy resin dentitions with extracted #16 tooth preparations embedded were made. For each artificial dentition, (1)a silicone rubber impression was taken with individual tray, poured with type IV plaster,and digitalized with 3Shape D700 model scanner for 10 times; (2) fastened to a dental simulator, 10 digital impressions for each were taken with 3Shape TRIOS intraoral scanner. To assess the precision, best-fit algorithm and 3D comparison were conducted between repeated scan models pairwise by Geomagic Qualify 12.0, exported as averaged errors (AE) and color-coded diagrams. Non-parametric analysis was performed to compare the precisions of digital impressions and model images. The color-coded diagrams were used to show the deviations distributions. The mean of AE for digital impressions was 7.058 281 μm, which was greater than that of 4.092 363 μm for the model images (Pimpressions were no more than 10 μm, which meant that the consistency between the digital impressions was good. The deviations distribution was uniform in the model images,while nonuniform in the digital impressions with greater deviations lay mainly around the shoulders and interproximal surfaces. Digital impressions with TRIOS are of good precision and up to the clinical standard. Shoulders and interproximal surfaces scanning are more difficult.

  17. Automatic design of optical systems by digital computer

    Science.gov (United States)

    Casad, T. A.; Schmidt, L. F.

    1967-01-01

    Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.

  18. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  19. Inovation of the computer system for the WWER-440 simulator

    International Nuclear Information System (INIS)

    Schrumpf, L.

    1988-01-01

    The configuration of the WWER-440 simulator computer system consists of four SMEP computers. The basic data processing unit consists of two interlinked SM 52/11.M1 computers with 1 MB of main memory. This part of the computer system of the simulator controls the operation of the entire simulator, processes the programs of technology behavior simulation, of the unit information system and of other special systems, guarantees program support and the operation of the instructor's console. An SM 52/11 computer with 256 kB of main memory is connected to each unit. It is used as a communication unit for data transmission using the DASIO 600 interface. Semigraphic color displays are based on the microprocessor modules of the SM 50/40 and SM 53/10 kit supplemented with a modified TESLA COLOR 110 ST tv receiver. (J.B.). 1 fig

  20. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  1. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  2. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  3. Computer aided system for segmentation and visualization of microcalcifications in digital mammograms

    International Nuclear Information System (INIS)

    Reljin, B.; Reljin, I.; Milosevic, Z.; Stojic, T.

    2009-01-01

    Two methods for segmentation and visualization of microcalcifications in digital or digitized mammograms are described. First method is based on modern mathematical morphology, while the second one uses the multifractal approach. In the first method, by using an appropriate combination of some morphological operations, high local contrast enhancement, followed by significant suppression of background tissue, irrespective of its radiology density, is obtained. By iterative procedure, this method highly emphasizes only small bright details, possible microcalcifications. In a multifractal approach, from initial mammogram image, a corresponding multifractal 'images' are created, from which a radiologist has a freedom to change the level of segmentation. An appropriate user friendly computer aided visualization (CAV) system with embedded two methods is realized. The interactive approach enables the physician to control the level and the quality of segmentation. Suggested methods were tested through mammograms from MIAS database as a gold standard, and from clinical praxis, using digitized films and digital images from full field digital mammograph. (authors)

  4. [The digital reprocessing of under- and overexposed x-ray films with a personal computer].

    Science.gov (United States)

    Fuhrmann, R; Diedrich, P

    1993-02-01

    An image processing work station for digitalizing and interactively manipulating under- and overexposed X-rays was set up by adding modules to an IBM compatible personal computer. Overexposed X-rays can be qualitatively enhanced by means of controlled manipulation of contrast and brightness and by means of the use of various digital filtering techniques. With underexposed X-rays an equalized grey scale can be achieved by means of regulating contrast and brightness. Digital filtering is not required. To assure a high degree of anatomical detail (periodontal ligament) in the digitalized image a maximum pixel of 0.1 mm was defined as a qualitative norm. Since in every digitalization process resolution is diminished, it proved best to select for interactive manipulation out of the total image only the section of interest.

  5. Computer Simulation of Angle-measuring System of Photoelectric Theodolite

    International Nuclear Information System (INIS)

    Zeng, L; Zhao, Z W; Song, S L; Wang, L T

    2006-01-01

    In this paper, a virtual test platform based on malfunction phenomena is designed, using the methods of computer simulation and numerical mask. It is used in the simulation training of angle-measuring system of photoelectric theodolite. Actual application proves that this platform supplies good condition for technicians making deep simulation training and presents a useful approach for the establishment of other large equipment simulation platforms

  6. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  7. Humans, computers and wizards human (simulated) computer interaction

    CERN Document Server

    Fraser, Norman; McGlashan, Scott; Wooffitt, Robin

    2013-01-01

    Using data taken from a major European Union funded project on speech understanding, the SunDial project, this book considers current perspectives on human computer interaction and argues for the value of an approach taken from sociology which is based on conversation analysis.

  8. Three Dimensional Digital Sieving of Asphalt Mixture Based on X-ray Computed Tomography

    OpenAIRE

    Chichun Hu; Jiexian Ma; M. Emin Kutay

    2017-01-01

    In order to perform three-dimensional digital sieving based on X-ray computed tomography images, the definition of digital sieve size (DSS) was proposed, which was defined as the minimum length of the minimum bounding squares of all possible orthographic projections of an aggregate. The corresponding program was developed to reconstruct aggregate structure and to obtain DSS. Laboratory experiments consisting of epoxy-filled aggregate specimens were conducted to investigate the difference betw...

  9. Computer Simulation Studies of Trishomocubane Heptapeptide of ...

    African Journals Online (AJOL)

    NICO

    Trishomocubane, molecular dynamics, Amber, CLASICO, β-turn, α-helical. 1. Introduction .... MD simulations of Ac-Ala3-Tris-Ala3-NHMe explicitly in MEOH. 3. Results and .... worthwhile to group all conformations into clusters according to.

  10. Tolerance analysis through computational imaging simulations

    Science.gov (United States)

    Birch, Gabriel C.; LaCasse, Charles F.; Stubbs, Jaclynn J.; Dagel, Amber L.; Bradley, Jon

    2017-11-01

    The modeling and simulation of non-traditional imaging systems require holistic consideration of the end-to-end system. We demonstrate this approach through a tolerance analysis of a random scattering lensless imaging system.

  11. Reproducibility of Computer-Aided Detection Marks in Digital Mammography

    International Nuclear Information System (INIS)

    Kim, Seung Ja; Moon, Woo Kyung; Cho, Nariya; Kim, Sun Mi; Im, Jung Gi; Cha, Joo Hee

    2007-01-01

    To evaluate the performance and reproducibility of a computeraided detection (CAD) system in mediolateral oblique (MLO) digital mammograms taken serially, without release of breast compression. A CAD system was applied preoperatively to the fulfilled digital mammograms of two MLO views taken without release of breast compression in 82 patients (age range: 33 83 years; mean age: 49 years) with previously diagnosed breast cancers. The total number of visible lesion components in 82 patients was 101: 66 masses and 35 microcalcifications. We analyzed the sensitivity and reproducibility of the CAD marks. The sensitivity of the CAD system for first MLO views was 71% (47/66) for masses and 80% (28/35) for microcalcifications. The sensitivity of the CAD system for second MLO views was 68% (45/66) for masses and 17% (6/35) for microcalcifications. In 84 ipsilateral serial MLO image sets (two patients had bilateral cancers), identical images, regardless of the existence of CAD marks, were obtained for 35% (29/84) and identical images with CAD marks were obtained for 29% (23/78). Identical images, regardless of the existence of CAD marks, for contralateral MLO images were 65% (52/80) and identical images with CAD marks were obtained for 28% (11/39). The reproducibility of CAD marks for the true positive masses in serial MLO views was 84% (42/50) and that for the true positive microcalcifications was 0% (0/34). The CAD system in digital mammograms showed a high sensitivity for detecting masses and microcalcifications. However, reproducibility of microcalcification marks was very low in MLO views taken serially without release of breast compression. Minute positional change and patient movement can alter the images and result in a significant effect on the algorithm utilized by the CAD for detecting microcalcifications

  12. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  13. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  14. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  15. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  16. Grid desktop computing for constructive battlefield simulation

    OpenAIRE

    Repetto, Alejandro Juan Manuel

    2009-01-01

    It is a fact that gaming technology is a state-of-the-art tool for military training, not only in low level simulations, e.g. flight training simulations, but also for strategic and tactical training. It is also a fact that users of this kind of technologies require increasingly more realistic representations of the real world. This functional reality threatens both hardware and software capabilities, making almost impossible to keep up with the requirements. Many optimizations have been perf...

  17. Ceramic Prototypes – Design, Computation, and Digital Fabrication

    Directory of Open Access Journals (Sweden)

    M. Bechthold

    2016-12-01

    Full Text Available Research in ceramic material systems at Harvard University has introduced a range of novel applications which combine digital manufacturing technologies and robotics with imaginative design and engineering methods. Prototypes showcase the new performative qualities of ceramics and the integration of this material in today’s construction culture. Work ranges from daylight control systems to structural applications and a robotic tile placement system. Emphasis is on integrating novel technologies with tried and true manufacturing methods. The paper describes two distinct studies – one on 3D print-ing of ceramics, the other on structural use of large format thin tiles.

  18. Computer Simulation of Digital Signal Modulation Techniques in Satellite Communications.

    Science.gov (United States)

    1985-09-01

    frequency bands ate shown in Figures 2. 4 and 2. 5 ( Ref . 6] Radio frequency (9F) I Infrared (IR) 0Ptc. Microwave %100cm 10cm 1 m lomm 100um l jjm 101...1c :N-4 V- O b-I E = - -. N .. - on : aA ft - : W- W 0 39 .. q w & C3 Q1 V 4 ++ 0 a WW2 *E4 ’-.0 E-- XC-e𔃾if - 1 T.V% .H .W -1 12’z = E - =.45.4

  19. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung Seon; Moon, Jeikwon

    2017-01-01

    Highlights: • Goal is to provide existing tech. with cutting function handling dismantling process. • Proposed tech. can handle various cutting situations in the dismantlement activities. • Proposed tech. can be implemented in existing graphical process simulation software. • Simulation results have demonstrated that the proposed technology achieves its goal. • Proposed tech. enlarges application of graphic simulation into dismantlement activity. - Abstract: This study proposes a methodology to simulate the cutting process in a digital manufacturing platform for the flexible planning of nuclear facility decommissioning. During the planning phase of decommissioning, visualization and verification using process simulation can be powerful tools for the flexible planning of the dismantling process of highly radioactive, large and complex nuclear facilities. However, existing research and commercial solutions are not sufficient for such a situation because complete segmented digital models for the dismantling objects such as the reactor vessel, internal assembly, and closure head must be prepared before the process simulation. The preparation work has significantly impeded the broad application of process simulation due to the complexity and workload. The methodology of process simulation proposed in this paper can flexibly handle various dismantling processes including repetitive object cuttings over heavy and complex structures using a digital manufacturing platform. The proposed methodology, which is applied to dismantling scenarios of a Korean nuclear power plant in this paper, is expected to reduce the complexity and workload of nuclear dismantling simulations.

  20. Hardware synthesis from DDL. [Digital Design Language for computer aided design and test of LSI

    Science.gov (United States)

    Shah, A. M.; Shiva, S. G.

    1981-01-01

    The details of the digital systems can be conveniently input into the design automation system by means of Hardware Description Languages (HDL). The Computer Aided Design and Test (CADAT) system at NASA MSFC is used for the LSI design. The Digital Design Language (DDL) has been selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. This paper addresses problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system.

  1. TMS320C25 Digital Signal Processor For 2-Dimensional Fast Fourier Transform Computation

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    1996-01-01

    The Fourier transform is one of the most important mathematical tool in signal processing and analysis, which converts information from the time/spatial domain into the frequency domain. Even with implementation of the Fast Fourier Transform algorithms in imaging data, the discrete Fourier transform execution consume a lot of time. Digital signal processors are designed specifically to perform computation intensive digital signal processing algorithms. By taking advantage of the advanced architecture. parallel processing, and dedicated digital signal processing (DSP) instruction sets. This device can execute million of DSP operations per second. The device architecture, characteristics and feature suitable for fast Fourier transform application and speed-up are discussed

  2. Test and control computer user's guide for a digital beam former test system

    Science.gov (United States)

    Alexovich, Robert E.; Mallasch, Paul G.

    1992-01-01

    A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.

  3. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    National Research Council Canada - National Science Library

    Singh, Swatee; Lo, Joseph

    2008-01-01

    The purpose of this study was to investigate feasibility of computer-aided detection of masses and calcification clusters in breast tomosynthesis images and obtain reliable estimates of sensitivity...

  4. How Many Times Should One Run a Computational Simulation?

    DEFF Research Database (Denmark)

    Seri, Raffaello; Secchi, Davide

    2017-01-01

    This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces statisti......This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces...

  5. Dose and risk evaluation in digital mammography using computer modeling

    International Nuclear Information System (INIS)

    Correa, Samanda Cristine Arruda; Souza, Edmilson Monteiro de; Silva, Humberto de Oliveira; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu; Magalhaes, Sarah Braga

    2010-01-01

    Digital mammography has been introduced in several countries in the last years. The new technology requires new optimising methods considering for instance the increased possibility of changing the absorbed dose, mainly in modern mammographic systems that allow the operator to choose the beam quality by varying the tube voltage, and filter and target materials. In this work, the Monte Carlo code MCNPX is used in order to investigate how the average glandular dose vary with tube voltage (23-32 kV) and anode-filter combination (Mo-Mo,Mo-Rh and Rh-Rh) in digital mammographic examinations. Furthermore, the risk of breast cancer incidence attributable to mammography exams was estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The results show that the risk of breast cancer incidence in women younger than 30 years of age tends to decrease significantly using Rh-Rh anode-filter combination and higher tube voltage. For women older than 50 years of age the variation of tube voltage, and anode-filter combination did not influence the risk values considerably. (author)

  6. Dose and risk evaluation in digital mammography using computer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Samanda Cristine Arruda; Souza, Edmilson Monteiro de, E-mail: scorrea@nuclear.ufrj.b, E-mail: emonteiro@nuclear.ufrj.b [Centro Universitario Estadual da Zona Oeste (CCMAT/UEZO), Rio de Janeiro, RJ (Brazil); Silva, Humberto de Oliveira, E-mail: hbetorj@gmail.co [Universidade Federal do Rio de Janeiro IF/UFRJ, RJ (Brazil). Inst. de Fisica; Silva, Ademir Xavier da; Lopes, Ricardo Tadeu; Magalhaes, Sarah Braga, E-mail: ademir@nuclear.ufrj.b, E-mail: ricardo@lin.ufrj.b, E-mail: smagalhaes@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2010-07-01

    Digital mammography has been introduced in several countries in the last years. The new technology requires new optimising methods considering for instance the increased possibility of changing the absorbed dose, mainly in modern mammographic systems that allow the operator to choose the beam quality by varying the tube voltage, and filter and target materials. In this work, the Monte Carlo code MCNPX is used in order to investigate how the average glandular dose vary with tube voltage (23-32 kV) and anode-filter combination (Mo-Mo,Mo-Rh and Rh-Rh) in digital mammographic examinations. Furthermore, the risk of breast cancer incidence attributable to mammography exams was estimated using the Biological Effects of Ionizing Radiations (BEIR) VII Committee Report. The results show that the risk of breast cancer incidence in women younger than 30 years of age tends to decrease significantly using Rh-Rh anode-filter combination and higher tube voltage. For women older than 50 years of age the variation of tube voltage, and anode-filter combination did not influence the risk values considerably. (author)

  7. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. On architectural acoustic design using computer simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process. The emphasis is put on the first three out of five phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference to the design of Bagsværd Church by Jørn Utzon. The paper...... discusses the advantages and disadvantages of the programme in each phase compared to the works of architects not using acoustic simulation programmes. The conclusion of the paper is that the application of acoustic simulation programs is most beneficial in the last of three phases but an application...

  9. Computer simulation of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Wagner, J.S.; Tajima, T.; Lee, L.C.; Wu, C.S.

    1983-01-01

    We study the generation of auroral kilometric radiation (AKR) using relativistic, electromagnetic, particle simulations. The AKR source region is modeled by two electron populations in the simulation: a cold (200 eV) Maxwellian component and a hot (5-20 keV) population possessing a loss-cone feature. The loss cone distribution is found to be unstable to the cyclotron maser instability. The fast extraordinary (X-mode) waves dominate the radiation and saturate when resonant particles diffuse into the loss-cone via turbulent scattering of the particles by the amplified X-mode radiation

  10. Interactive simulation of nuclear power systems using a dedicated minicomputer - computer graphics facility

    International Nuclear Information System (INIS)

    Tye, C.; Sezgen, A.O.

    1980-01-01

    The design of control systems and operational procedures for large scale nuclear power plant poses a difficult optimization problem requiring a lot of computational effort. Plant dynamic simulation using digital minicomputers offers the prospect of relatively low cost computing and when combined with graphical input/output provides a powerful tool for studying such problems. The paper discusses the results obtained from a simulation study carried out at the Computer Graphics Unit of the University of Manchester using a typical station control model for an Advanced Gas Cooled reactor. Particular reference is placed on the use of computer graphics for information display, parameter and control system optimization and techniques for using graphical input for defining and/or modifying the control system topology. Experience gained from this study has shown that a relatively modest minicomputer system can be used for simulating large scale dynamic systems and that highly interactive computer graphics can be used to advantage to relieve the designer of many of the tedious aspects of simulation leaving him free to concentrate on the more creative aspects of his work. (author)

  11. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  12. Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications

    International Nuclear Information System (INIS)

    Souza, E.M.; Correa, S.C.A.; Silva, A.X.; Lopes, R.T.; Oliveira, D.F.

    2008-01-01

    This work presents a methodology for digital radiography simulation for industrial applications using the MCNPX radiography tally. In order to perform the simulation, the energy-dependent response of a BaFBr imaging plate detector was modeled and introduced in the MCNPX radiography tally input. In addition, a post-processing program was used to convert the MCNPX radiography tally output into 16-bit digital images. Simulated and experimental images of a steel pipe containing corrosion alveoli and stress corrosion cracking were compared, and the results showed good agreement between both images

  13. The use of digital computers in CANDU shutdown systems

    International Nuclear Information System (INIS)

    Gilbert, R.S.; Komorowski, C.W.

    1986-01-01

    This paper summarizes the application of computers in CANDU shutdown systems. A general description of systems that are already in service is presented along with a description of a fully computerized shutdown system which is scheduled to enter service in 1987. In reviewing the use of computers in the shutdown systems there are three functional areas where computers have been or are being applied. These are (i) shutdown system monitoring, (ii) parameter display and testing and (iii) shutdown initiation. In recent years various factors (References 1 and 2) have influenced the development and deployment of systems which have addressed two of these functions. At the present time a system is also being designed which addresses all of these areas in a comprehensive manner. This fully computerized shutdown system reflects the previous design, and licensing experience which was gained in earlier applications. Prior to describing the specific systems which have been designed a short summary of CANDU shutdown system characteristics is presented

  14. The Design of an Undergraduate Degree Program in Computer & Digital Forensics

    Directory of Open Access Journals (Sweden)

    Gary C. Kessler

    2006-09-01

    Full Text Available Champlain College formally started an undergraduate degree program in Computer & Digital Forensics in 2003. The underlying goals were that the program be multidisciplinary, bringing together the law, computer technology, and the basics of digital investigations; would be available as on online and on-campus offering; and would have a process-oriented focus. Success of this program has largely been due to working closely with practitioners, maintaining activity in events related to both industry and academia, and flexibility to respond to ever-changing needs. This paper provides an overview of how this program was conceived, developed, and implemented; its evolution over time; and current and planned initiatives.

  15. Digital tomosynthesis parallel imaging computational analysis with shift and add and back projection reconstruction algorithms.

    Science.gov (United States)

    Chen, Ying; Balla, Apuroop; Rayford II, Cleveland E; Zhou, Weihua; Fang, Jian; Cong, Linlin

    2010-01-01

    Digital tomosynthesis is a novel technology that has been developed for various clinical applications. Parallel imaging configuration is utilised in a few tomosynthesis imaging areas such as digital chest tomosynthesis. Recently, parallel imaging configuration for breast tomosynthesis began to appear too. In this paper, we present the investigation on computational analysis of impulse response characterisation as the start point of our important research efforts to optimise the parallel imaging configurations. Results suggest that impulse response computational analysis is an effective method to compare and optimise imaging configurations.

  16. Comparison of radiographic technique by computer simulation

    International Nuclear Information System (INIS)

    Brochi, M.A.C.; Ghilardi Neto, T.

    1989-01-01

    A computational algorithm to compare radiographic techniques (KVp, mAs and filters) is developed based in the fixation of parameters that defines the images, such as optical density and constrast. Before the experience, the results were used in a radiography of thorax. (author) [pt

  17. Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E

    2017-01-01

    Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration....... The structural changes could be followed in real time, and in addition, an intermediate amorphous phase was identified. The computationally identified dehydrated structure (anhydrate) was slightly different from the experimentally known anhydrate structure suggesting that the simulated computational structure...

  18. Understanding Islamist political violence through computational social simulation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  19. Multidimensional computer simulation of Stirling cycle engines

    Science.gov (United States)

    Hall, Charles A.; Porsching, Thomas A.

    1992-01-01

    This report summarizes the activities performed under NASA-Grant NAG3-1097 during 1991. During that period, work centered on the following tasks: (1) to investigate more effective solvers for ALGAE; (2) to modify the plotting package for ALGAE; and (3) to validate ALGAE by simulating oscillating flow problems similar to those studied by Kurzweg and Ibrahim.

  20. Computer Simulation Studies of Trishomocubane Heptapeptide of ...

    African Journals Online (AJOL)

    As part of an extension on the cage peptide chemistry, the present work involves an assessment of the conformational profile of trishomocubane heptapeptide of the type Ac-Ala3-Tris-Ala3-NHMe using molecular dynamics (MD) simulations. All MD protocols were explored within the framework of a molecular mechanics ...

  1. Advanced Simulation and Computing Business Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  2. Role of computational efficiency in process simulation

    Directory of Open Access Journals (Sweden)

    Kurt Strand

    1989-07-01

    Full Text Available It is demonstrated how efficient numerical algorithms may be combined to yield a powerful environment for analysing and simulating dynamic systems. The importance of using efficient numerical algorithms is emphasized and demonstrated through examples from the petrochemical industry.

  3. Computer simulation of confined liquid crystal dynamics

    International Nuclear Information System (INIS)

    Webster, R.E.

    2001-11-01

    Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)

  4. Computer simulation of confined liquid crystal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R.E

    2001-11-01

    Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)

  5. Launch Site Computer Simulation and its Application to Processes

    Science.gov (United States)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  6. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  7. Monte Carlo simulations on SIMD computer architectures

    International Nuclear Information System (INIS)

    Burmester, C.P.; Gronsky, R.; Wille, L.T.

    1992-01-01

    In this paper algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carl updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures

  8. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... this information is discussed. The conclusion of the paper is that the application of acoustical simulation programs is most beneficial in the last of three phases but that an application of the program to the two first phases would be preferable and possible with an improvement of the interface of the program....

  9. Assessing Practical Skills in Physics Using Computer Simulations

    Science.gov (United States)

    Walsh, Kevin

    2018-01-01

    Computer simulations have been used very effectively for many years in the teaching of science but the focus has been on cognitive development. This study, however, is an investigation into the possibility that a student's experimental skills in the real-world environment can be judged via the undertaking of a suitably chosen computer simulation…

  10. Effect of computer game playing on baseline laparoscopic simulator skills.

    Science.gov (United States)

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  11. Computer Simulation of Turbulent Reactive Gas Dynamics

    Directory of Open Access Journals (Sweden)

    Bjørn H. Hjertager

    1984-10-01

    Full Text Available A simulation procedure capable of handling transient compressible flows involving combustion is presented. The method uses the velocity components and pressure as primary flow variables. The differential equations governing the flow are discretized by integration over control volumes. The integration is performed by application of up-wind differencing in a staggered grid system. The solution procedure is an extension of the SIMPLE-algorithm accounting for compressibility effects.

  12. Computer simulation of pitting potential measurements

    International Nuclear Information System (INIS)

    Laycock, N.J.; Noh, J.S.; White, S.P.; Krouse, D.P.

    2005-01-01

    A deterministic model for the growth of single pits in stainless steel has been combined with a purely stochastic model of pit nucleation. Monte-Carlo simulations have been used to compare the predictions of this model with potentiodynamic experimental measurements of the pitting potential. The quantitative agreement between model and experiment is reasonable for both 304 and 316 stainless steel, and the effects of varying surface roughness, solution chloride concentration and potential sweep rate have been considered

  13. Digitization

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    what a concept of digital media might add to the understanding of processes of mediatization and what the concept of mediatization might add to the understanding of digital media. It is argued that digital media open an array of new trajectories in human communication, trajectories which were...

  14. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  15. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  16. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    Science.gov (United States)

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  17. Simulation of quantum computation : A deterministic event-based approach

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, K; De Raedt, H

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  18. Simulation of Quantum Computation : A Deterministic Event-Based Approach

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, K. De; Raedt, H. De

    2005-01-01

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  19. Computer simulation system of neural PID control on nuclear reactor

    International Nuclear Information System (INIS)

    Chen Yuzhong; Yang Kaijun; Shen Yongping

    2001-01-01

    Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process

  20. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  1. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    Science.gov (United States)

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  2. Computer simulations of long-time tails: what's new?

    NARCIS (Netherlands)

    Hoef, van der M.A.; Frenkel, D.

    1995-01-01

    Twenty five years ago Alder and Wainwright discovered, by simulation, the 'long-time tails' in the velocity autocorrelation function of a single particle in fluid [1]. Since then, few qualitatively new results on long-time tails have been obtained by computer simulations. However, within the

  3. Factors cost effectively improved using computer simulations of ...

    African Journals Online (AJOL)

    LPhidza

    effectively managed using computer simulations in semi-arid conditions pertinent to much of sub-Saharan Africa. ... small scale farmers to obtain optimal crop yields thus ensuring their food security and livelihood is ... those that simultaneously incorporate and simulate processes involved throughout the course of crop ...

  4. Plant Closings and Capital Flight: A Computer-Assisted Simulation.

    Science.gov (United States)

    Warner, Stanley; Breitbart, Myrna M.

    1989-01-01

    A course at Hampshire College was designed to simulate the decision-making environment in which constituencies in a medium-sized city would respond to the closing and relocation of a major corporate plant. The project, constructed as a role simulation with a computer component, is described. (MLW)

  5. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  6. Computer-Based Simulation Games in Public Administration Education

    Directory of Open Access Journals (Sweden)

    Kutergina Evgeniia

    2017-12-01

    Full Text Available Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently in Russia the use of computer-based simulation games in Master of Public Administration (MPA curricula is quite limited. Th is paper focuses on computer- based simulation games for students of MPA programmes. Our aim was to analyze outcomes of implementing such games in MPA curricula. We have done so by (1 developing three computer-based simulation games about allocating public finances, (2 testing the games in the learning process, and (3 conducting a posttest examination to evaluate the effect of simulation games on students’ knowledge of municipal finances. Th is study was conducted in the National Research University Higher School of Economics (HSE and in the Russian Presidential Academy of National Economy and Public Administration (RANEPA during the period of September to December 2015, in Saint Petersburg, Russia. Two groups of students were randomly selected in each university and then randomly allocated either to the experimental or the control group. In control groups (n=12 in HSE, n=13 in RANEPA students had traditional lectures. In experimental groups (n=12 in HSE, n=13 in RANEPA students played three simulation games apart from traditional lectures. Th is exploratory research shows that the use of computer-based simulation games in MPA curricula can improve students’ outcomes by 38 %. In general, the experimental groups had better performances on the post-test examination (Figure 2. Students in the HSE experimental group had 27.5 % better

  7. Accuracy and reliability of a novel method for fusion of digital dental casts and cone beam computed tomography scans

    NARCIS (Netherlands)

    Rangel, F.A.; Maal, T.J.J.; Bronkhorst, E.M.; Breuning, K.H.; Schols, J.G.J.H.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2013-01-01

    Several methods have been proposed to integrate digital models into Cone Beam Computed Tomography scans. Since all these methods have some drawbacks such as radiation exposure, soft tissue deformation and time-consuming digital handling processes, we propose a new method to integrate digital dental

  8. Digital quality control of the camera computer interface

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    1983-01-01

    A brief description is given of how the gamma camera-computer interface works and what kind of errors can occur. Quality control tests of the interface are then described which include 1) tests of static performance e.g. uniformity, linearity, 2) tests of dynamic performance e.g. basic timing, interface count-rate, system count-rate, 3) tests of special functions e.g. gated acquisition, 4) tests of the gamma camera head, and 5) tests of the computer software. The tests described are mainly acceptance and routine tests. Many of the tests discussed are those recommended by an IAEA Advisory Group for inclusion in the IAEA control schedules for nuclear medicine instrumentation. (U.K.)

  9. Guidelines for the documentation of digital computer programs - approved 1974

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This standard presents guidelines for the documentation of engineering and scientific computer programs. Good documentation promotes understanding, reduces duplication of effort, eases conversion to different computer environments and aids modification for extended applications. Good documentation is essential for implementation and effective use of programs obtained from other installations. Since the intention of this standard is to encourage better communication between the developer and user, it should be regarded as a guide rather than a set of rigid specifications. As a guide, it is sufficiently comprehensive to apply to large-scale programs intended for extensive external use. Not all features of this document are appropriate in all circumstances. In general, as the project complexity increases so does the need for more complete documentation. An organization may have special documentation requirements which supersede or extend these guidelines. This standard is a revision of ANS-STD.2-1967 and supersedes it

  10. Digital Entertainment: Zukunftstrends der Computer-Entertainment-Industrie

    OpenAIRE

    Janson, A.

    2002-01-01

    Die Computer Entertainment Industrie existiert seit den frühen siebziger Jahren und ist seitdem einem stetigen Wachstums- und Veränderungsprozess unterzogen. Mittlerweile weist die Branche nach aktuellen Schätzungen weltweit einen jährlichen Umsatz von 18 bis 25 Milliarden US Dollar auf und ist in Hinblick auf Entwicklungskosten, Nutzerzahlen und Renditen durchaus mit der internationalen Filmindustrie vergleichbar. Die Entwicklung von Hardwaretechnologien (Grafikkarten, innovative Eingabegerä...

  11. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  12. Computer models for fading channels with applications to digital transmission

    Science.gov (United States)

    Loo, Chun; Secord, Norman

    1991-11-01

    The authors describe computer models for Rayleigh, Rician, log-normal, and land-mobile-satellite fading channels. All computer models for the fading channels are based on the manipulation of a white Gaussian random process. This process is approximated by a sum of sinusoids with random phase angle. These models compare very well with analytical models in terms of their probability distribution of envelope and phase of the fading signal. For the land mobile satellite fading channel, results of level crossing rate and average fade duration are given. These results show that the computer models can provide a good coarse estimate of the time statistic of the faded signal. Also, for the land-mobile-satellite fading channel, the results show that a 3-pole Butterworth shaping filter should be used with the model. An example of the application of the land-mobile-satellite fading-channel model to predict the performance of a differential phase-shift keying signal is described.

  13. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    OpenAIRE

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the d...

  14. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  15. A review of computer-based simulators for ultrasound training.

    Science.gov (United States)

    Blum, Tobias; Rieger, Andreas; Navab, Nassir; Friess, Helmut; Martignoni, Marc

    2013-04-01

    Computer-based simulators for ultrasound training are a topic of recent interest. During the last 15 years, many different systems and methods have been proposed. This article provides an overview and classification of systems in this domain and a discussion of their advantages. Systems are classified and discussed according to the image simulation method, user interactions and medical applications. Computer simulation of ultrasound has one key advantage over traditional training. It enables novel training concepts, for example, through advanced visualization, case databases, and automatically generated feedback. Qualitative evaluations have mainly shown positive learning effects. However, few quantitative evaluations have been performed and long-term effects have to be examined.

  16. Computer based training simulator for Hunterston Nuclear Power Station

    International Nuclear Information System (INIS)

    Bowden, R.S.M.; Hacking, D.

    1978-01-01

    For reasons which are stated, the Hunterston-B nuclear power station automatic control system includes a manual over-ride facility. It is therefore essential for the station engineers to be trained to recognise and control all feasible modes of plant and logic malfunction. A training simulator has been built which consists of a replica of the shutdown monitoring panel in the Central Control Room and is controlled by a mini-computer. This paper highlights the computer aspects of the simulator and relevant derived experience, under the following headings: engineering background; shutdown sequence equipment; simulator equipment; features; software; testing; maintenance. (U.K.)

  17. Validation and computing and performance studies for the ATLAS simulation

    CERN Document Server

    Marshall, Z; The ATLAS collaboration

    2009-01-01

    We present the validation of the ATLAS simulation software pro ject. Software development is controlled by nightly builds and several levels of automatic tests to ensure stability. Computing validation, including CPU time, memory, and disk space required per event, is benchmarked for all software releases. Several different physics processes and event types are checked to thoroughly test all aspects of the detector simulation. The robustness of the simulation software is demonstrated by the production of 500 million events on the World-wide LHC Computing Grid in the last year.

  18. Accurate computer simulation of a drift chamber

    International Nuclear Information System (INIS)

    Killian, T.J.

    1980-01-01

    A general purpose program for drift chamber studies is described. First the capacitance matrix is calculated using a Green's function technique. The matrix is used in a linear-least-squares fit to choose optimal operating voltages. Next the electric field is computed, and given knowledge of gas parameters and magnetic field environment, a family of electron trajectories is determined. These are finally used to make drift distance vs time curves which may be used directly by a track reconstruction program. Results are compared with data obtained from the cylindrical chamber in the Axial Field Magnet experiment at the CERN ISR

  19. Accurate computer simulation of a drift chamber

    CERN Document Server

    Killian, T J

    1980-01-01

    The author describes a general purpose program for drift chamber studies. First the capacitance matrix is calculated using a Green's function technique. The matrix is used in a linear-least-squares fit to choose optimal operating voltages. Next the electric field is computed, and given knowledge of gas parameters and magnetic field environment, a family of electron trajectories is determined. These are finally used to make drift distance vs time curves which may be used directly by a track reconstruction program. The results are compared with data obtained from the cylindrical chamber in the Axial Field Magnet experiment at the CERN ISR. (1 refs).

  20. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  1. Computer simulation and automation of data processing

    International Nuclear Information System (INIS)

    Tikhonov, A.N.

    1981-01-01

    The principles of computerized simulation and automation of data processing are presented. The automized processing system is constructed according to the module-hierarchical principle. The main operating conditions of the system are as follows: preprocessing, installation analysis, interpretation, accuracy analysis and controlling parameters. The definition of the quasireal experiment permitting to plan the real experiment is given. It is pointed out that realization of the quasireal experiment by means of the computerized installation model with subsequent automized processing permits to scan the quantitative aspect of the system as a whole as well as provides optimal designing of installation parameters for obtaining maximum resolution [ru

  2. Use of computer graphics simulation for teaching of flexible sigmoidoscopy.

    Science.gov (United States)

    Baillie, J; Jowell, P; Evangelou, H; Bickel, W; Cotton, P

    1991-05-01

    The concept of simulation training in endoscopy is now well-established. The systems currently under development employ either computer graphics simulation or interactive video technology; each has its strengths and weaknesses. A flexible sigmoidoscopy training device has been designed which uses graphic routines--such as object oriented programming and double buffering--in entirely new ways. These programming techniques compensate for the limitations of currently available desk-top microcomputers. By boosting existing computer 'horsepower' with next generation coprocessors and sophisticated graphics tools such as intensity interpolation (Gouraud shading), the realism of computer simulation of flexible sigmoidoscopy is being greatly enhanced. The computer program has teaching and scoring capabilities, making it a truly interactive system. Use has been made of this ability to record, grade and store each trainee encounter in computer memory as part of a multi-center, prospective trial of simulation training being conducted currently in the USA. A new input device, a dummy endoscope, has been designed that allows application of variable resistance to the insertion tube. This greatly enhances tactile feedback, such as resistance during looping. If carefully designed trials show that computer simulation is an attractive and effective training tool, it is expected that this technology will evolve rapidly and be made widely available to trainee endoscopists.

  3. Architecture and Initial Development of a Digital Library Platform for Computable Knowledge Objects for Health.

    Science.gov (United States)

    Flynn, Allen J; Bahulekar, Namita; Boisvert, Peter; Lagoze, Carl; Meng, George; Rampton, James; Friedman, Charles P

    2017-01-01

    Throughout the world, biomedical knowledge is routinely generated and shared through primary and secondary scientific publications. However, there is too much latency between publication of knowledge and its routine use in practice. To address this latency, what is actionable in scientific publications can be encoded to make it computable. We have created a purpose-built digital library platform to hold, manage, and share actionable, computable knowledge for health called the Knowledge Grid Library. Here we present it with its system architecture.

  4. Stochastic Computer Simulation of Cermet Coatings Formation

    Directory of Open Access Journals (Sweden)

    Oleg P. Solonenko

    2015-01-01

    Full Text Available An approach to the modeling of the process of the formation of thermal coatings lamellar structure, including plasma coatings, at the spraying of cermet powders is proposed. The approach based on the theoretical fundamentals developed which could be used for rapid and sufficiently accurate prediction of thickness and diameter of cermet splats as well as temperature at interface “flattening quasi-liquid cermet particle-substrate” depending on the key physical parameters (KPPs: temperature, velocity and size of particle, substrate temperature, and concentration of finely dispersed solid inclusions uniformly distributed in liquid metal binder. The results are presented, which concern the development of the computational algorithm and the program complex for modeling the process of laying the splats in the coating with regard to the topology of its surface, which varies dynamically at the spraying, as well as the formation of lamellar structure and porosity of the coating. The results of numerical experiments are presented through the example of thermal spraying the cermet TiC-30 vol.% NiCr powder, illustrating the performance of the developed computational technology.

  5. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    Science.gov (United States)

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  6. Computational methods for coupling microstructural and micromechanical materials response simulations

    Energy Technology Data Exchange (ETDEWEB)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  7. Positive Wigner functions render classical simulation of quantum computation efficient.

    Science.gov (United States)

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  8. CUBESIM, Hypercube and Denelcor Hep Parallel Computer Simulation

    International Nuclear Information System (INIS)

    Dunigan, T.H.

    1988-01-01

    1 - Description of program or function: CUBESIM is a set of subroutine libraries and programs for the simulation of message-passing parallel computers and shared-memory parallel computers. Subroutines are supplied to simulate the Intel hypercube and the Denelcor HEP parallel computers. The system permits a user to develop and test parallel programs written in C or FORTRAN on a single processor. The user may alter such hypercube parameters as message startup times, packet size, and the computation-to-communication ratio. The simulation generates a trace file that can be used for debugging, performance analysis, or graphical display. 2 - Method of solution: The CUBESIM simulator is linked with the user's parallel application routines to run as a single UNIX process. The simulator library provides a small operating system to perform process and message management. 3 - Restrictions on the complexity of the problem: Up to 128 processors can be simulated with a virtual memory limit of 6 million bytes. Up to 1000 processes can be simulated

  9. 78 FR 47014 - Configuration Management Plans for Digital Computer Software Used in Safety Systems of Nuclear...

    Science.gov (United States)

    2013-08-02

    .... ML12354A524. 3. Revision 1 of RG 1.170, ``Test Documentation for Digital Computer Software used in Safety... is in ADAMS at Accession No. ML12354A531. 4. Revision 1 of RG 1.171, ``Software Unit Testing for... Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION...

  10. Phantom feet on digital radionuclide images and other scary computer tales

    International Nuclear Information System (INIS)

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.; Ponto, R.

    1989-01-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images

  11. Examining the Relationship between Digital Game Preferences and Computational Thinking Skills

    Science.gov (United States)

    Yildiz, Hatice Durak; Yilmaz, Fatma Gizem Karaoglan; Yilmaz, Ramazan

    2017-01-01

    The purpose of this study is to identify whether computational thinking skills among secondary school students differ depending on the type of digital games they play. The participants of this study were 202 secondary school students at 5th, 6th, 7th and 8th grades during 2016-2017 academic year. Correlational survey method was used during this…

  12. 78 FR 47015 - Software Requirement Specifications for Digital Computer Software Used in Safety Systems of...

    Science.gov (United States)

    2013-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Requirement Specifications for Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... issuing a revised regulatory guide (RG), revision 1 of RG 1.172, ``Software Requirement Specifications for...

  13. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    Science.gov (United States)

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  14. Computer Skills and Digital Media Uses among Young Students in Rio de Janeiro

    Science.gov (United States)

    Duarte, Rosalia; Cazelli, Sibele; Migliora, Rita; Coimbra, Carlos

    2013-01-01

    The main purpose of this paper is provide information relevant for the formulation of new policies for the integration of technology in education from the discussion of research results that analyse computer skills and digital media uses among students (between 12 to 18 years old) from schools in the city of Rio de Janeiro, Brazil. The schools…

  15. Low cost SCR lamp driver indicates contents of digital computer registers

    Science.gov (United States)

    Cliff, R. A.

    1967-01-01

    Silicon Controlled Rectifier /SCR/ lamp driver is adapted for use in integrated circuit digital computers where it indicates the contents of the various registers. The threshold voltage at which visual indication begins is very sharply defined and can be adjusted to suit particular system requirements.

  16. 10 CFR 73.54 - Protection of digital computer and communication systems and networks.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Protection of digital computer and communication systems and networks. 73.54 Section 73.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... security program as a component of the physical protection program. (c) The cyber security program must be...

  17. 77 FR 50723 - Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Safety...

    Science.gov (United States)

    2012-08-22

    ... regulations with respect to software verification and auditing of digital computer software used in the safety... Standards and Records,'' which requires, in part, that a quality assurance program be established and implemented to provide adequate assurance that systems and components important to safety will satisfactorily...

  18. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  19. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  20. Computational Simulations and the Scientific Method

    Science.gov (United States)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  1. Computer simulations of dendrimer-polyelectrolyte complexes.

    Science.gov (United States)

    Pandav, Gunja; Ganesan, Venkat

    2014-08-28

    We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.

  2. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  3. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  4. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  5. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software... revised regulatory guide (RG), revision 1 of RG 1.171, ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses American National Standards...

  6. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2012-08-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software...) is issuing for public comment draft regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1208 is proposed...

  7. Research on Digital Forensic Readiness Design in a Cloud Computing-Based Smart Work Environment

    Directory of Open Access Journals (Sweden)

    Sangho Park

    2018-04-01

    Full Text Available Recently, the work environments of organizations have been in the process of transitioning into smart work environments by applying cloud computing technology in the existing work environment. The smart work environment has the characteristic of being able to access information assets inside the company from outside the company through cloud computing technology, share information without restrictions on location by using mobile terminals, and provide a work environment where work can be conducted effectively in various locations and mobile environments. Thus, in the cloud computing-based smart work environment, changes are occurring in terms of security risks, such as an increase in the leakage risk of an organization’s information assets through mobile terminals which have a high risk of loss and theft and increase the hacking risk of wireless networks in mobile environments. According to these changes in security risk, the reactive digital forensic method, which investigates digital evidence after the occurrence of security incidents, appears to have a limit which has led to a rise in the necessity of proactive digital forensic approaches wherein security incidents can be addressed preemptively. Accordingly, in this research, we design a digital forensic readiness model at the level of preemptive prevention by considering changes in the cloud computing-based smart work environment. Firstly, we investigate previous research related to the cloud computing-based smart work environment and digital forensic readiness and analyze a total of 50 components of digital forensic readiness. In addition, through the analysis of the corresponding preceding research, we design seven detailed areas, namely, outside the organization environment, within the organization guideline, system information, terminal information, user information, usage information, and additional function. Then, we design a draft of the digital forensic readiness model in the cloud

  8. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  9. Computed tomographic simulation of craniospinal fields in pediatric patients: improved treatment accuracy and patient comfort.

    Science.gov (United States)

    Mah, K; Danjoux, C E; Manship, S; Makhani, N; Cardoso, M; Sixel, K E

    1998-07-15

    To reduce the time required for planning and simulating craniospinal fields through the use of a computed tomography (CT) simulator and virtual simulation, and to improve the accuracy of field and shielding placement. A CT simulation planning technique was developed. Localization of critical anatomic features such as the eyes, cribriform plate region, and caudal extent of the thecal sac are enhanced by this technique. Over a 2-month period, nine consecutive pediatric patients were simulated and planned for craniospinal irradiation. Four patients underwent both conventional simulation and CT simulation. Five were planned using CT simulation only. The accuracy of CT simulation was assessed by comparing digitally reconstructed radiographs (DRRs) to portal films for all patients and to conventional simulation films as well in the first four patients. Time spent by patients in the CT simulation suite was 20 min on average and 40 min maximally for those who were noncompliant. Image acquisition time was absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with portal and/or simulation films to within 5 mm in five of the eight cases. Discrepancies of > or =5 mm in the positioning of the inferior border of the cranial fields in the first three patients were due to a systematic error in CT scan acquisition and marker contouring which was corrected by modifying the technique after the fourth patient. In one patient, the facial shield had to be moved 0.75 cm inferiorly owing to an error in shield construction. Our analysis showed that CT simulation of craniospinal fields was accurate. It resulted in a significant reduction in the time the patient must be immobilized during the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization.

  10. Computed tomographic simulation of craniospinal fields in pediatric patients: improved treatment accuracy and patient comfort

    International Nuclear Information System (INIS)

    Mah, Katherine; Danjoux, Cyril E.; Manship, Sharan; Makhani, Nadiya; Cardoso, Marlene; Sixel, Katharina E.

    1998-01-01

    Purpose: To reduce the time required for planning and simulating craniospinal fields through the use of a computed tomography (CT) simulator and virtual simulation, and to improve the accuracy of field and shielding placement. Methods and Materials: A CT simulation planning technique was developed. Localization of critical anatomic features such as the eyes, cribriform plate region, and caudal extent of the thecal sac are enhanced by this technique. Over a 2-month period, nine consecutive pediatric patients were simulated and planned for craniospinal irradiation. Four patients underwent both conventional simulation and CT simulation. Five were planned using CT simulation only. The accuracy of CT simulation was assessed by comparing digitally reconstructed radiographs (DRRs) to portal films for all patients and to conventional simulation films as well in the first four patients. Results: Time spent by patients in the CT simulation suite was 20 min on average and 40 min maximally for those who were noncompliant. Image acquisition time was <10 min in all cases. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with portal and/or simulation films to within 5 mm in five of the eight cases. Discrepancies of ≥5 mm in the positioning of the inferior border of the cranial fields in the first three patients were due to a systematic error in CT scan acquisition and marker contouring which was corrected by modifying the technique after the fourth patient. In one patient, the facial shield had to be moved 0.75 cm inferiorly owing to an error in shield construction. Conclusions: Our analysis showed that CT simulation of craniospinal fields was accurate. It resulted in a significant reduction in the time the patient must be immobilized during the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall

  11. Computer simulation as an operational and training aid

    International Nuclear Information System (INIS)

    Lee, D.J.; Tottman-Trayner, E.

    1995-01-01

    The paper describes how the rapid development of desktop computing power, the associated fall in prices, and the advancement of computer graphics technology driven by the entertainment industry has enabled the nuclear industry to achieve improvements in operation and training through the use of computer simulation. Applications are focused on the fuel handling operations at Torness Power Station where visualization through computer modelling is being used to enhance operator awareness and to assist in a number of operational scenarios. It is concluded that there are significant benefits to be gained from the introduction of the facility at Torness as well as other locations. (author)

  12. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  13. Investigations into radiation damages of reactor materials by computer simulation

    International Nuclear Information System (INIS)

    Bronnikov, V.A.

    2004-01-01

    Data on the state of works in European countries in the field of computerized simulation of radiation damages of reactor materials under the context of the international projects ITEM (European Database for Multiscale Modelling) and SIRENA (Simulation of Radiation Effects in Zr-Nb alloys) - computerized simulation of stress corrosion when contact of Zr-Nb alloys with iodine are presented. Computer codes for the simulation of radiation effects in reactor materials were developed. European Database for Multiscale Modelling (EDAM) was organized using the results of the investigations provided in the ITEM project [ru

  14. Computer simulation of sensitization in stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Logan, R W

    1983-12-20

    Stainless steel containers are prime candidates for the containment of nuclear waste in tuff rock. The thermal history of a container involves exposure to temperatures of 500 to 600/sup 0/C when it is welded and possibly filled with molten waste glass, followed by hundreds of years exposure in the 100 to 300/sup 0/C range. The problems of short- and long-term sensitization in stainless steels have been addressed by two computer programs. The TTS program uses classical nucleation and growth theory plus experimental input to predict the onset of precipitation or sensitization under complex thermal histories. The FEMGB program uses quadratic finite-element methods to analyze diffusion processes and chromium depletion during precipitate growth. The results of studies using both programs indicate that sensitization should not be a problem in any of the austenitic stainless steels considered. However, more precise information on the process thermal cycles, especially during welding of the container, is needed. Contributions from dislocation pipe diffusion could promote long-term low-temperature sensitization.

  15. Quantitative evaluation of fault coverage for digitalized systems in NPPs using simulated fault injection method

    International Nuclear Information System (INIS)

    Kim, Suk Joon

    2004-02-01

    Even though digital systems have numerous advantages such as precise processing of data, enhanced calculation capability over the conventional analog systems, there is a strong restriction on the application of digital systems to the safety systems in nuclear power plants (NPPs). This is because we do not fully understand the reliability of digital systems, and therefore we cannot guarantee the safety of digital systems. But, as the need for introduction of digital systems to safety systems in NPPs increasing, the need for the quantitative analysis on the safety of digital systems is also increasing. NPPs, which are quite conservative in terms of safety, require proving the reliability of digital systems when applied them to the NPPs. Moreover, digital systems which are applied to the NPPs are required to increase the overall safety of NPPs. however, it is very difficult to evaluate the reliability of digital systems because they include the complex fault processing mechanisms at various levels of the systems. Software is another obstacle in reliability assessment of the systems that requires ultra-high reliability. In this work, the fault detection coverage for the digital system is evaluated using simulated fault injection method. The target system is the Local Coincidence Logic (LCL) processor in Digital Plant Protection System (DPPS). However, as the LCL processor is difficult to design equally for evaluating the fault detection coverage, the LCL system has to be simplified. The simulations for evaluating the fault detection coverage of components are performed by dividing into two cases and the failure rates of components are evaluated using MIL-HDBK-217F. Using these results, the fault detection coverage of simplified LCL system is evaluated. In the experiments, heartbeat signals were just emitted at regular interval after executing logic without self-checking algorithm. When faults are injected into the simplified system, fault occurrence can be detected by

  16. Coupling Computer-Aided Process Simulation and ...

    Science.gov (United States)

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  17. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  18. Predictive Toxicology and Computer Simulation of Male ...

    Science.gov (United States)

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) was used to profile the bioactivity of 54 chemicals with male developmental consequences across ~800 molecular and cellular features. The in vitro bioactivity on molecular targets could be condensed into 156 gene annotations in a bipartite network. These results highlighted the role of estrogen and androgen signaling pathways in male reproductive tract development, and importantly, broadened the list of molecular targets to include GPCRs, cytochrome-P450s, vascular remodeling proteins, and retinoic acid signaling. A multicellular agent-based model was used to simulate the complex interactions between morphoregulatory, endocrine, and environmental influences during genital tubercle (GT) development. Spatially dynamic signals (e.g., SHH, FGF10, and androgen) were implemented in the model to address differential adhesion, cell motility, proliferation, and apoptosis. Under control of androgen signaling, urethral tube closure was an emergent feature of the model that was linked to gender-specific rates of ventral mesenchymal proliferation and urethral plate endodermal apoptosis. A systemic parameter sweep was used to examine the sensitivity of crosstalk between genetic deficiency and envi

  19. Associative Memory computing power and its simulation.

    CERN Document Server

    Volpi, G; The ATLAS collaboration

    2014-01-01

    The associative memory (AM) chip is ASIC device specifically designed to perform ``pattern matching'' at very high speed and with parallel access to memory locations. The most extensive use for such device will be the ATLAS Fast Tracker (FTK) processor, where more than 8000 chips will be installed in 128 VME boards, specifically designed for high throughput in order to exploit the chip's features. Each AM chip will store a database of about 130000 pre-calculated patterns, allowing FTK to use about 1 billion patterns for the whole system, with any data inquiry broadcast to all memory elements simultaneously within the same clock cycle (10 ns), thus data retrieval time is independent of the database size. Speed and size of the system are crucial for real-time High Energy Physics applications, such as the ATLAS FTK processor. Using 80 million channels of the ATLAS tracker, FTK finds tracks within 100 $\\mathrm{\\mu s}$. The simulation of such a parallelized system is an extremely complex task when executed in comm...

  20. Using EDUCache Simulator for the Computer Architecture and Organization Course

    Directory of Open Access Journals (Sweden)

    Sasko Ristov

    2013-07-01

    Full Text Available The computer architecture and organization course is essential in all computer science and engineering programs, and the most selected and liked elective course for related engineering disciplines. However, the attractiveness brings a new challenge, it requires a lot of effort by the instructor, to explain rather complicated concepts to beginners or to those who study related disciplines. The usage of visual simulators can improve both the teaching and learning processes. The overall goal is twofold: 1~to enable a visual environment to explain the basic concepts and 2~to increase the student's willingness and ability to learn the material.A lot of visual simulators have been used for the computer architecture and organization course. However, due to the lack of visual simulators for simulation of the cache memory concepts, we have developed a new visual simulator EDUCache simulator. In this paper we present that it can be effectively and efficiently used as a supporting tool in the learning process of modern multi-layer, multi-cache and multi-core multi-processors.EDUCache's features enable an environment for performance evaluation and engineering of software systems, i.e. the students will also understand the importance of computer architecture building parts and hopefully, will increase their curiosity for hardware courses in general.