WorldWideScience

Sample records for digital coherent receiver

  1. Anatomy of a digital coherent receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    , orthonormaliation, chromatic dispersion compensation/nonlinear compensation, resampling a nd timing recovery, polarization demultiplexing and equalization, frequency and phase recovery, digital demodulation. We also describe novel subsystems of a digital coherent receiver: modulation format recognition......Digital coherent receivers have gained significant attention in the last decade. The reason for this is that coherent detection, along with digital signal processing (DSP) allows for substantial increase of the channel capacity by employing advanced detection techniques. In this paper, we first...

  2. Digital processing optical transmission and coherent receiving techniques

    CERN Document Server

    Binh, Le Nguyen

    2013-01-01

    With coherent mixing in the optical domain and processing in the digital domain, advanced receiving techniques employing ultra-high speed sampling rates have progressed tremendously over the last few years. These advances have brought coherent reception systems for lightwave-carried information to the next stage, resulting in ultra-high capacity global internetworking. Digital Processing: Optical Transmission and Coherent Receiving Techniques describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines. The

  3. Analysis of parallel optical sampling rate and ADC requirements in digital coherent receivers

    DEFF Research Database (Denmark)

    Lorences Riesgo, Abel; Galili, Michael; Peucheret, Christophe

    2012-01-01

    We comprehensively assess analog-to-digital converter requirements in coherent digital receiver schemes with parallel optical sampling. We determine the electronic requirements in accordance with the properties of the free running local oscillator.......We comprehensively assess analog-to-digital converter requirements in coherent digital receiver schemes with parallel optical sampling. We determine the electronic requirements in accordance with the properties of the free running local oscillator....

  4. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  5. Chromatic Dispersion Estimation in Digital Coherent Receivers

    DEFF Research Database (Denmark)

    Soriano, Ruben Andres; Hauske, Fabian N.; Guerrero Gonzalez, Neil

    2011-01-01

    Polarization-diverse coherent demodulation allows to compensate large values of accumulated linear distortion by digital signal processing. In particular, in uncompensated links without optical dispersion compensation, the parameter of the residual chromatic dispersion (CD) is vital to set...

  6. Reconfigurable Digital Coherent Receiver for Metro-Access Networks Supporting Mixed Modulation Formats and Bit-rates

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil; Arlunno, Valeria

    2013-01-01

    A single, reconfigurable, digital coherent receiver is proposed and experimentally demonstrated for converged wireless and optical fiber transport. The capacity of reconstructing the full transmitted optical field allows for the demodulation of mixed modulation formats and bit-rates. We performed...

  7. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    Science.gov (United States)

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  8. Design of a 1 Tb/s superchannel coherent receiver

    NARCIS (Netherlands)

    Millar, D.S.; Maher, R.; Lavery, D.; Koike-Akino, T.; Pajovic, M.; Alvarado, A.; Paskov, M.; Kojima, K.; Parsons, K.; Thomsen, B.C.; Savory, S.J.; Bayvel, P.

    2016-01-01

    We describe the design of a trained and pilot-aided digital coherent receiver, capable of detecting a 1 Tb/s superchannel with a single optical front-end. Algorithms for receiver training are described, which calculate the equalizer coefficients, subchannel SNRs, and centroids of the transmitted

  9. Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission is successfu...... drives an adaptive digital CD equalizer. © 2011 Optical Society of America.......We experimentally demonstrate a digital signal processing (DSP)-based optical performance monitoring (OPM) algorithm for inservice monitoring of chromatic dispersion (CD) in coherent transport networks. Dispersion accumulated in 40 Gbit/s QPSK signal after 80 km of fiber transmission...

  10. Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso

    2011-01-01

    The performance of optical phase-modulated (PM) radio-over-fiber (RoF) links assisted with coherent detection and digital signal processing (PM-Coh) is analyzed and experimentally demonstrated for next-generation wireless-over-fiber systems. PM-Coh offers high linearity for transparent transport ...

  11. Design of coherent receiver optical front end for unamplified applications.

    Science.gov (United States)

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-01-30

    Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

  12. Experimental demonstration of a format-flexible single-carrier coherent receiver using data-aided digital signal processing.

    Science.gov (United States)

    Elschner, Robert; Frey, Felix; Meuer, Christian; Fischer, Johannes Karl; Alreesh, Saleem; Schmidt-Langhorst, Carsten; Molle, Lutz; Tanimura, Takahito; Schubert, Colja

    2012-12-17

    We experimentally demonstrate the use of data-aided digital signal processing for format-flexible coherent reception of different 28-GBd PDM and 4D modulated signals in WDM transmission experiments over up to 7680 km SSMF by using the same resource-efficient digital signal processing algorithms for the equalization of all formats. Stable and regular performance in the nonlinear transmission regime is confirmed.

  13. Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers

    DEFF Research Database (Denmark)

    Borkowski, Robert; Johannisson, Pontus; Wymeersch, Henk

    2014-01-01

    We perform an experimental investigation of a maximum likelihood-based (ML-based) algorithm for bulk chromatic dispersion estimation for digital coherent receivers operating in uncompensated optical networks. We demonstrate the robustness of the method at low optical signal-to-noise ratio (OSNR...

  14. Turbo Equalization for Digital Coherent Receivers

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Caballero Jambrina, Antonio; Borkowski, Robert

    2014-01-01

    . In this paper, it is demonstrated that Turbo Equalization routines can be used to mitigate performance degradations stemming from optical fiber propagation effects both in optical fiber dispersion managed and unmanaged coherent detection links. The effectiveness of this solution is analyzed both numerically...

  15. Wide-band coherent receiver development for enhanced surveillance

    International Nuclear Information System (INIS)

    Simpson, M.L.; Richards, R.K.; Hutchinson, D.P.

    1998-03-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced coherent IR heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Recent progress in wide band IR detectors and high speed electronics has significantly enhanced the measurement capabilities of coherent receivers. In addition, developments in new HgCdTe and quantum well IR photodetector (QWIP) focal plane arrays are providing the possibility of both active and passive coherent imaging. In this paper the authors discuss the implications of these new enabling technologies to the IR remote sensing community for enhanced surveillance. Coherent receivers, as opposed to direct or thermal detection, provide multiple dimensions of information about a scene or target in a single detector system. Combinations of range, velocity, temperature, and chemical species information are all available from a coherent heterodyne receiver. They present laboratory data showing measured noise equivalent power (NEP) of new QWIP detectors with heterodyne bandwidths greater than 7 GHz. For absorption measurements, a wide band coherent receiver provides the capability of looking between CO 2 lines at off-resonance peaks and thus the measurement of lines normally inaccessible with conventional heterodyne or direct detection systems. Also described are differential absorption lidar (DIAL) and Doppler laboratory measurements using an 8 x 8 HgCdTe focal plane array demonstrating the snapshot capability of coherent receiver detector arrays for enhanced chemical plume and moving hardbody capture. Finally they discuss a variety of coherent receiver configurations that can suppress (or enhance) sensitivity of present active remote sensing systems to speckle, glint, and other measurement anomalies

  16. Radio over fiber link with adaptive order n‐QAM optical phase modulated OFDM and digital coherent detection

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Borkowski, Robert; Guerrero Gonzalez, Neil

    2011-01-01

    Successful digital coherent demodulation of asynchronous optical phase‐modulated adaptive order QAM (4, 16, and 64) orthogonal frequency division multiplexing signals is achieved by a single reconfigurable digital receiver after 78 km of optical deployed fiber transmission....

  17. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    spectrum narrowing tolerance 112-Gb/s DP-QPSK optical coherent systems using digital adaptive equalizer. The demonstrated results show that off-line DSP algorithms are able to reduce the bit error rate (BER) penalty induced by signal spectrum narrowing. Third, we also investigate bi...... wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR......In this thesis, digital signal processing (DSP) algorithms are studied to compensate for physical layer impairments in optical fiber coherent communication systems. The physical layer impairments investigated in this thesis include optical fiber chromatic dispersion, polarization demultiplexing...

  18. Superior Coherent Receivers for AF Relaying with Distributed Alamouti Code

    KAUST Repository

    Khan, Fahd Ahmed

    2012-01-01

    Coherent receivers are derived for a pilot-symbol aided distributed Alamouti-coded system with imperfect channel state information. The derived coherent receivers do not perform channel estimation but rather use the received pilot signals for decoding. The derived receiver metrics use the statistics of the channel to give improved performance. The performance is further improved by using the decision history. Simulation results show that a performance gain of up to 1.8 dB can be achieved for the new receivers with decision history as compared with the conventional mismatched coherent receiver. © 2011 IEEE.

  19. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.

    Science.gov (United States)

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  20. Customizable Digital Receivers for Radar

    Science.gov (United States)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  1. GHz wireless On-off-Keying link employing all photonic RF carrier generation and digital coherent detection

    DEFF Research Database (Denmark)

    Sambaraju, Rakesh; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Gb/s wireless signals at 82, 88 and 100 GHz carrier frequencies are successfully generated by heterodyne mixing of two optical carriers. A photonic detection technique with optical coherent receiver and digital signal processing is implemented for signal demodulation....

  2. Differential on-on keying: A robust non-coherent digital modulation scheme

    KAUST Repository

    Kaddoum, Georges

    2015-05-01

    A robust digital modulation scheme, called differential on-on keying (DOOK), is presented in this paper which outperforms the conventional on-off keying (OOK). In this scheme, a sinusoidal signal is transmitted during the first half of the bit duration while a replica or an inverted version of the sinusoidal signal is transmitted during the second half for logic one or logic zero, respectively. Non-coherent receiver correlates the two halves of the received signal over half bit duration to construct a decision variable. Bit error performance is analyzed over AWGN and Rayleigh fading channels and compared to the conventional OOK.

  3. Differential on-on keying: A robust non-coherent digital modulation scheme

    KAUST Repository

    Kaddoum, Georges; Ahmed, Mohammed F. A.; Al-Naffouri, Tareq Y.

    2015-01-01

    A robust digital modulation scheme, called differential on-on keying (DOOK), is presented in this paper which outperforms the conventional on-off keying (OOK). In this scheme, a sinusoidal signal is transmitted during the first half of the bit duration while a replica or an inverted version of the sinusoidal signal is transmitted during the second half for logic one or logic zero, respectively. Non-coherent receiver correlates the two halves of the received signal over half bit duration to construct a decision variable. Bit error performance is analyzed over AWGN and Rayleigh fading channels and compared to the conventional OOK.

  4. Coherent time-stretch transformation for real-time capture of wideband signals.

    Science.gov (United States)

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  5. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    Science.gov (United States)

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  6. Advanced Equalization Techniques for Digital Coherent Optical Receivers

    DEFF Research Database (Denmark)

    Arlunno, Valeria

    approach based on joint encoding and equalization technique, known as Turbo Equalization (TE). This scheme is demonstrated to be powerful in transmission impairments mitigation for high order modulations formats, such as 16 Quadrature Amplitude Modulation (QAM), considered a key technology for high speed...... a lower complexity convolutional code compared to state of the art reports. Furthermore, in order to fulfill the strict constrains of spectral efficiency, this thesis shows the application of digital adaptive equalizer for reconfigurable and Ultra Dense Wavelength Division Multiplexing (U......-over-Fiber (RoF) transmission system for a stand alone case and mixed modulation mixed bit rates transmission scheme. In conclusion, this PhD thesis demonstrates the flexibility, upgrade-ability and robustness offered by rising advanced digital signal processing techniques, for future high-speed, high...

  7. Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front-end are ......In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front...

  8. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  9. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  10. Optical Coherent Receiver Enables THz Wireless Bridge

    DEFF Research Database (Denmark)

    Yu, Xianbin; Liu, Kexin; Zhang, Hangkai

    2016-01-01

    We experimentally demonstrated a 45 Gbit/s 400 GHz photonic wireless communication system enabled by an optical coherent receiver, which has a high potential in fast recovery of high data rate connections, for example, in disaster....

  11. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed

  12. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  13. Development of wide band digital receiver for atmospheric radars using COTS board based SDR

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Digital receiver extracts the received echo signal information, and is a potential subsystem for atmospheric radar, also referred to as wind profiling radar (WPR), which provides the vertical profiles of 3-dimensional wind vector in the atmosphere. This paper presents the development of digital receiver using COTS board based Software Defined Radio technique, which can be used for atmospheric radars. The developmental work is being carried out at National Atmospheric Research Laboratory (NARL), Gadanki. The digital receiver consists of a commercially available software defined radio (SDR) board called as universal software radio peripheral B210 (USRP B210) and a personal computer. USRP B210 operates over a wider frequency range from 70 MHz to 6 GHz and hence can be used for variety of radars like Doppler weather radars operating in S/C bands, in addition to wind profiling radars operating in VHF, UHF and L bands. Due to the flexibility and re-configurability of SDR, where the component functionalities are implemented in software, it is easy to modify the software to receive the echoes and process them as per the requirement suitable for the type of the radar intended. Hence, USRP B210 board along with the computer forms a versatile digital receiver from 70 MHz to 6 GHz. It has an inbuilt direct conversion transceiver with two transmit and two receive channels, which can be operated in fully coherent 2x2 MIMO fashion and thus it can be used as a two channel receiver. Multiple USRP B210 boards can be synchronized using the pulse per second (PPS) input provided on the board, to configure multi-channel digital receiver system. RF gain of the transceiver can be varied from 0 to 70 dB. The board can be controlled from the computer via USB 3.0 interface through USRP hardware driver (UHD), which is an open source cross platform driver. The USRP B210 board is connected to the personal computer through USB 3.0. Reference (10 MHz) clock signal from the radar master oscillator

  14. Intermediate Frequency Digital Receiver Based on Multi-FPGA System

    Directory of Open Access Journals (Sweden)

    Chengchang Zhang

    2016-01-01

    Full Text Available Aiming at high-cost, large-size, and inflexibility problems of traditional analog intermediate frequency receiver in the aerospace telemetry, tracking, and command (TTC system, we have proposed a new intermediate frequency (IF digital receiver based on Multi-FPGA system in this paper. Digital beam forming (DBF is realized by coordinated rotation digital computer (CORDIC algorithm. An experimental prototype has been developed on a compact Multi-FPGA system with three FPGAs to receive 16 channels of IF digital signals. Our experimental results show that our proposed scheme is able to provide a great convenience for the design of IF digital receiver, which offers a valuable reference for real-time, low power, high density, and small size receiver design.

  15. Digital terrestrial broadcasting receiver in the U.K; Eikoku chijoha digital hoso jushinki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Digital terrestrial broadcasting is broadcasted in parallel with existing UHF analog broadcasting, whereas each of allocated channel frequencies can transmit five to six programs simultaneously. Each home can receive a number of programs with the existing antenna without a need of installing a new satellite antenna or cable. Among the countries of the world running forward to digitization of broadcasting all at once, the U.K. develops advancing movements and leads the world by starting the digital terrestrial broadcasting. In addition to the digitized broadcasting of conventional analog broadcasting programs, the `Ondigitals` (broadcasting operators) have started newly the pay broadcasting. Toshiba has been selected as one of the six developers and manufacturers of digital terrestrial broadcasting receivers, and has developed the digital terrestrial broadcasting receiver DTB2000. For the modulation system, the orthogonal frequency division multiplex (OFDM) was chosen as a system being strong against ghost and most suitable for digital terrestrial broadcasting. In addition, the receiver is equipped with software download function by using the broadcasting waves, and the common interface being the communication specification specified in the DVB (digital video broadcasting) to provide future function expandability. (translated by NEDO)

  16. Ultra-compact coherent receiver with serial interface for pluggable transceiver.

    Science.gov (United States)

    Itoh, Toshihiro; Nakajima, Fumito; Ohno, Tetsuichiro; Yamanaka, Shogo; Soma, Shunichi; Saida, Takashi; Nosaka, Hideyuki; Murata, Koichi

    2014-09-22

    An ultra-compact integrated coherent receiver with a volume of 1.3 cc using a quad-channel transimpedance amplifier (TIA)-IC chip with a serial peripheral interface (SPI) is demonstrated for the first time. The TIA with the SPI and photodiode (PD) bias circuits, a miniature dual polarization optical hybrid, an octal-PD and small optical coupling system enabled the realization of the compact receiver. Measured transmission performance with 32 Gbaud dual-polarization quadrature phase shift keying signal is equivalent to that of the conventional multi-source agreement-based integrated coherent receiver with dual channel TIA-ICs. By comparing the bit-error rate (BER) performance with that under continuous SPI access, we also confirmed that there is no BER degradation caused by SPI interface access. Such an ultra-compact receiver is promising for realizing a new generation of pluggable transceivers.

  17. Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver.

    Science.gov (United States)

    Fu, Songnian; Xu, Zuying; Lu, Jianing; Jiang, Hexun; Wu, Qiong; Hu, Zhouyi; Tang, Ming; Liu, Deming; Chan, Calvin Chun-Kit

    2018-03-19

    We propose a blind and fast modulation format identification (MFI) enabled by the digital frequency-offset (FO) loading technique for hitless coherent transceiver. Since modulation format information is encoded to the FO distribution during digital signal processing (DSP) at the transmitter side (Tx), we can use the fast Fourier transformation based FO estimation (FFT-FOE) method to obtain the FO distribution of individual data block after constant modulus algorithm (CMA) pre-equalization at the receiver side, in order to realize non-data-aided (NDA) and fast MFI. The obtained FO can be also used for subsequent FO compensation (FOC), without additional complexity. We numerically investigate and experimentally verify the proposed MFI with high accuracy and fast format switching among 28 Gbaud dual-polarization (DP)-4/8/16/64QAM, time domain hybrid-4/16QAM, and set partitioning (SP)-128QAM. In particular, the proposed MFI brings no performance degradation, in term of tolerance of amplified spontaneous emission (ASE) noise, laser linewidth, and fiber nonlinearity. Finally, a hitless coherent transceiver enabled by the proposed MFI with switching-block of only 2048 symbols is demonstrated over 1500 km standard single mode fiber (SSMF) transmission.

  18. Experimental Adaptive Digital Performance Monitoring for Optical DP-QPSK Coherent Receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zhang, Xu; Zibar, Darko

    2011-01-01

    We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module.......We report on a successful experimental demonstration of a digital optical performance monitoring (OPM) yielding satisfactory estimation accuracy along with adaptive impairment equalization. No observable penalty is measured when equalizer is driven by monitoring module....

  19. Fast digitization and digital receiver technology

    International Nuclear Information System (INIS)

    Kimball, Ralph C.

    2002-01-01

    The potentially lucrative wireless market has led to technological advances in mixed signal devices such as high speed, high resolution A/D and D/A converters. This same market has also driven the development of high performance multi-channel digital receiver and digital transmitter ICs. Similarly, advances in semiconductor processes, coupled with the need for reduced time-to-market, has led to the development of large, enhanced performance, in-circuit programmable logic devices. A review of the key characteristics of these mixed-signal, signal processing and programmable logic devices is presented. The application of these devices and technologies to the instrumentation of Accelerators and Storage Rings is discussed and presented by way of examples. Issues relating to the requirements associated with real-time processing, I/O throughput, reconfigurability, reliability, maintainability and packaging requirements are also addressed

  20. Coherent imaging with incoherent light in digital holographic microscopy

    Science.gov (United States)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  1. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning

    International Nuclear Information System (INIS)

    Watanabe, Kaho; Ohshima, Masashi; Nomura, Takanori

    2014-01-01

    The simultaneous measurement method of a refractive index distribution and a thickness distribution using low-coherence digital holography with a vertical scanning is proposed. The proposed method consists of a combination of digital holography and low-coherence interferometry. The introduction of a datum plane enables the measurement of both a refractive index distribution and a thickness distribution. By the optical experiment, the potential of the proposed method is confirmed. (paper)

  2. MMIC tuned front-end for a coherent optical receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A. M.; Ebskamp, F.

    1993-01-01

    A low-noise transformer tuned optical front-end for a coherent optical receiver is described. The front-end is based on a GaInAs/InP p-i-n photodiode and a full custom designed GaAs monolithic microwave integrated circuit (MMIC). The measured equivalent input noise current density is between 5-16 p...

  3. Novel half-coherent receivers for amplify-and-forward relaying

    KAUST Repository

    Khan, Fahd Ahmed

    2012-06-01

    Consider a system in which the signal is transmitted from the source to the destination via an amplify-and-forward relay. For such a system, we derive in this paper, novel receivers that have complete knowledge of either the source-relay link or the relay-destination link. These receivers are termed as, \\'half-coherent receivers\\' as they have channel-state-information (CSI) of only one of two links. These receivers can be very useful in a system in which only the relay can afford high complexity by having a channel estimation module and the destination is unable to support channel estimation or a system in which only the destination can afford higher complexity and includes the channel estimation module. The analytical bit-error-rate (BER) performances of the proposed receivers are derived for Rician fading. Numerical results show considerable performance gains of the new receivers, especially at low signal-to-noise ratio. © 2012 IEEE.

  4. Digital-data receiver synchronization method and apparatus

    Science.gov (United States)

    Smith, Stephen F [Loudon, TN; Turner, Gary W [Clinton, TN

    2009-09-08

    Digital data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  5. Capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    Science.gov (United States)

    Chung, Hye Won; Guha, Saikat; Zheng, Lizhong

    2017-07-01

    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.

  6. Towards full band colorless reception with coherent balanced receivers.

    Science.gov (United States)

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-04-23

    In addition to linear compensation of fiber channel impairments, coherent receivers also provide colorless selection of any desired data channel within multitude of incident wavelengths, without the need of a channel selecting filter. In this paper, we investigate the design requirements for colorless reception using a coherent balanced receiver, considering both the optical front end (OFE) and the transimpedance amplifier (TIA). We develop analytical models to predict the system performance as a function of receiver design parameters and show good agreement against numerical simulations. At low input signal power, an optimum local oscillator (LO) power is shown to exist where the thermal noise is balanced with the residual LO-RIN beat noise. At high input signal power, we show the dominant noise effect is the residual self-beat noise from the out of band (OOB) channels, which scales not only with the number of OOB channels and the common mode rejection ratio (CMRR) of the OFE, but also depends on the link residual chromatic dispersion (CD) and the orientation of the polarization tributaries relative to the receiver. This residual self-beat noise from OOB channels sets the lower bound for the LO power. We also investigate the limitations imposed by overload in the TIA, showing analytically that the DC current scales only with the number of OOB channels, while the differential AC current scales only with the link residual CD, which induces high peak-to-average power ratio (PAPR). Both DC and AC currents at the input to the TIA set the upper bounds for the LO power. Considering both the OFE noise limit and the TIA overload limit, we show that the receiver operating range is notably narrowed for dispersion unmanaged links, as compared to dispersion managed links. © 2012 Optical Society of America

  7. Synthesis of digital locomotive receiver of automatic locomotive signaling

    Directory of Open Access Journals (Sweden)

    K. V. Goncharov

    2013-02-01

    Full Text Available Purpose. Automatic locomotive signaling of continuous type with a numeric coding (ALSN has several disadvantages: a small number of signal indications, low noise stability, high inertia and low functional flexibility. Search for new and more advanced methods of signal processing for automatic locomotive signaling, synthesis of the noise proof digital locomotive receiver are essential. Methodology. The proposed algorithm of detection and identification locomotive signaling codes is based on the definition of mutual correlations of received oscillation and reference signals. For selecting threshold levels of decision element the following criterion has been formulated: the locomotive receiver should maximum set the correct solution for a given probability of dangerous errors. Findings. It has been found that the random nature of the ALSN signal amplitude does not affect the detection algorithm. However, the distribution law and numeric characteristics of signal amplitude affect the probability of errors, and should be considered when selecting a threshold levels According to obtained algorithm of detection and identification ALSN signals the digital locomotive receiver has been synthesized. It contains band pass filter, peak limiter, normalizing amplifier with automatic gain control circuit, analog to digital converter and digital signal processor. Originality. The ALSN system is improved by the way of the transfer of technical means to modern microelectronic element base, more perfect methods of detection and identification codes of locomotive signaling are applied. Practical value. Use of digital technology in the construction of the locomotive receiver ALSN will expand its functionality, will increase the noise immunity and operation stability of the locomotive signal system in conditions of various destabilizing factors.

  8. A 40-GBd QPSK/16-QAM integrated silicon coherent receiver

    NARCIS (Netherlands)

    Verbist, J.; Zhang, J.; Moeneclaey, B.; Soenen, W.; Van Weerdenburg, J.J.A.; Van Uden, R.; Okonkwo, C.M.; Bauwelinck, J.; Roelkens, G.; Yin, X.

    2016-01-01

    Through co-design of a dual SiGe transimpedance amplifier and an integrated silicon photonic circuit, we realized for the first time an ultra-compact and low-power silicon single-polarization coherent receiver operating at 40 GBd. A bit-error rate of <3.8× 10-3 was obtained for an optical

  9. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  10. FFT Based VLSI Digital One Bit Electronic Warfare Receiver

    National Research Council Canada - National Science Library

    Chien-In, Henry

    1998-01-01

    ... (1 GHz) digital receiver designed for electronic warfare applications. The receiver can process two simultaneous signals and has the potential for fabrication on a single multi-chip module (MCM...

  11. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    Science.gov (United States)

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  12. Digital holography for coherent fiber beam combining with a co-propagative scheme.

    Science.gov (United States)

    Antier, Marie; Larat, Christian; Lallier, Eric; Bourderionnet, Jérôme; Primot, Jérôme; Brignon, Arnaud

    2014-09-22

    We present a technique for passive coherent fiber beam combining based on digital holography. In this method, the phase errors between the fibers are compensated by the diffracted phase-conjugated -1 order of a digital hologram. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. It does not require any phase calculation algorithm and its correction is collective. This concept is experimentally demonstrated with three fibers at 1.55 μm. A residual phase error of λ/20 is measured.

  13. Novel coherent receivers for AF distributed STBC using disintegrated channel estimation

    KAUST Repository

    Khan, Fahd Ahmed; Chen, Yunfei; Alouini, Mohamed-Slim

    2011-01-01

    For a single relay network, disintegrated channel estimation (DCE), where the source-relay channel is estimated at the relay and the relay-destination channel is estimated at the destination, gives better performance than the cascaded channel estimation. We derive novel receivers for the relay network with disintegrated channel estimation. The derived receivers do not require channel estimation at the destination, as they use the received pilot signals and the source-relay channel estimate for decoding directly. We also consider the effect of quantized source-relay channel estimate on the performance of the designed receivers. Simulation results show that a performance gain of up to 2.2 dB can be achieved by the new receivers, compared with the conventional mismatched coherent receiver with DCE. © 2011 IEEE.

  14. Novel coherent receivers for AF distributed STBC using disintegrated channel estimation

    KAUST Repository

    Khan, Fahd Ahmed

    2011-05-01

    For a single relay network, disintegrated channel estimation (DCE), where the source-relay channel is estimated at the relay and the relay-destination channel is estimated at the destination, gives better performance than the cascaded channel estimation. We derive novel receivers for the relay network with disintegrated channel estimation. The derived receivers do not require channel estimation at the destination, as they use the received pilot signals and the source-relay channel estimate for decoding directly. We also consider the effect of quantized source-relay channel estimate on the performance of the designed receivers. Simulation results show that a performance gain of up to 2.2 dB can be achieved by the new receivers, compared with the conventional mismatched coherent receiver with DCE. © 2011 IEEE.

  15. Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology

    Science.gov (United States)

    Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.

    2004-11-01

    Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of ±10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.

  16. Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    2011-01-01

    The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

  17. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    Science.gov (United States)

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  18. Control of coherent information via on-chip photonic–phononic emitter–receivers

    Science.gov (United States)

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  19. Radio beacon synchronization in coherent receivers for nanosatellite applications

    OpenAIRE

    Camps Llorente, Daniel; Piera González, Joan

    2017-01-01

    This document presents a study about the Radio beacon synchronization in coherent receivers for nanosatellite applications. First of all, it is studied the history of these nanosatellites and their actual role in the Aerospace industry, considering their low cost compared to bigger satellites and also because of their availability for all types of companies and people (as universities). These nanosatellites have a wide range of applications, and lots of them depend on the imagination of the u...

  20. Linear and Nonlinear Impairment Compensation in Coherent Optical Transmission with Digital Signal Processing

    DEFF Research Database (Denmark)

    Porto da Silva, Edson

    Digital signal processing (DSP) has become one of the main enabling technologies for the physical layer of coherent optical communication networks. The DSP subsystems are used to implement several functionalities in the digital domain, from synchronization to channel equalization. Flexibility...... nonlinearity compensation, (II) spectral shaping, and (III) adaptive equalization. For (I), original contributions are presented to the study of the nonlinearity compensation (NLC) with digital backpropagation (DBP). Numerical and experimental performance investigations are shown for different application...... scenarios. Concerning (II), it is demonstrated how optical and electrical (digital) pulse shaping can be allied to improve the spectral confinement of a particular class of optical time-division multiplexing (OTDM) signals that can be used as a building block for fast signaling single-carrier transceivers...

  1. Low-cost digital GPS receiver with software carrier detection

    Science.gov (United States)

    Wolf, M. H.

    1988-08-01

    The satellite navigation system global positioning system (GPS) will play a major role in the field of navigation. It will be able to compete with all previously existing radio navigation systems. Low-cost receivers will be built for a number of civilian users, such as general aviation, sea and land navigation. To permit production at low cost for the civil market, a new technique for a C/A (course and acquisition) code receiver has been developed. All the signal detecting and processing is carried out with the digital signal processing software in a Texas Instruments TMS 320C10. The advantage of this method is that complex functions can be effected in a computer program instead of in analog or digital circuits. This reduces the costs of the parts used in the receiver and also avoids calibration. Taken together, these two features greatly reduce the price of a navigation set. This paper discusses the underlying principles leading to this new receiver.

  2. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    Science.gov (United States)

    2016-04-21

    emulated by a cascade of fiber beam splitters . Fig. 4(a) depicts the transmitter, which consisted of two cascaded Mach- Zehnder modulators (MZMs) that...Sons, Inc., Hoboken, New Jersey, 2006). 5. D. O. Caplan, "Laser communication transmitter and receiver design ," J. Opt. Fiber. Commun. 4(4-5), 225...and A. E. Willner, eds. (Elsevier, 2013). 7. S. B. Alexander, Optical Communication Receiver Design (SPIE, 1997). 8. D. M. Boroson, "A survey of

  3. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC

    International Nuclear Information System (INIS)

    Vernik, Igor V; Kirichenko, Dmitri E; Dotsenko, Vladimir V; Miller, Robert; Webber, Robert J; Shevchenko, Pavel; Talalaevskii, Andrei; Gupta, Deepnarayan; Mukhanov, Oleg A

    2007-01-01

    We have demonstrated a digital receiver performing direct digitization of radio-frequency signals over a wide frequency range from kilohertz to gigahertz. The complete system, consisting of a cryopackaged superconductor all-digital receiver (ADR) chip followed by room-temperature interface electronics and a field programmable gate array (FPGA) based post-processing module, has been developed. The ADR chip comprises a low-pass analog-to-digital converter (ADC) delta modulator with phase modulation-demodulation architecture together with digital in-phase and quadrature mixer and a pair of digital decimation filters. The chip is fabricated using a 4.5 kA cm -2 process and is cryopackaged using a commercial-off-the-shelf cryocooler. Experimental results in HF, VHF, UHF and L bands and their analysis, proving consistent operation of the cryopackaged ADR chip up to 24.32 GHz clock frequency, are presented and discussed

  4. Reconfigurable digital receiver design and application for instantaneous polarimetric measurement

    NARCIS (Netherlands)

    Wang, Z.; Krasnov, O.A.; Babur, G.P.; Ligthart, L.P.; Van der Zwan, F.

    2011-01-01

    This paper presents the development of a reconfigurable receiver to undertake challenging signal processing tasks for a novel polarimetric radar system. The field-programmable gate arrays (FPGAs)-based digital receiver samples incoming signals at intermediate frequency (IF) and processes signals

  5. Tuned Optical Front-End MMIC Amplifiers for a Coherent Optical Receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A M

    1992-01-01

    Two low noise tuned optical front-end GaAs MESFET MMIC amplifiers for a coherent optical CPFSK (Continuous Phase Frequency Shift Keying) receiver are presented. The receiver operates at 2.5 Gbit/s at an IF of approx. 9 GHz. The front-ends are based on full-custom designed MMICs and a commercially...... available GaInAs/InP pin photo diode. The procedure for measuring the transimpedance and the equivalent input noise current density is outlined in this paper and demonstrated using one of the MMICs. The MMICs were fabricated using the Plessey F20 process by GEC-Marconi through the ESPRIT programme EUROCHIP...

  6. Digital Photonic Receivers for Wireless and Wireline Optical Fiber Transmission Links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil

    services. The experimental demonstration supported the following transmissions systems: a baseband, 5 Gbps, intensity modulation system employing a directly modulated vertical cavity surface emitting laser (VCSEL), a baseband 20 Gbps non-return-to-zero quadrature phase-shift keying (NRZ-QPSK) system...... receivers in hybrid wireless and wireline optical fiber transmission links. Furthermore, the digital signal processing framework presented in this thesis can be extended to design probabilistic-based digital photonic receivers that can find applications in cognitive heterogeneous reconfigurable optical...

  7. A 3-5GHz UWB CMOS Receiver with Digital Control Technique

    DEFF Research Database (Denmark)

    Han, Bo; Liu, Mengmeng; Ge, Ning

    2010-01-01

    This article presents a CMOS receiver that works for 3-5GHz low band SC-UWB. The receiver contains PLL, Mixer, and VGA. Double down conversion is adopted in the receiver to overcome the orthogonal clock design difficulty; digital assisted RF control method is used to increase the stability...

  8. Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission

    NARCIS (Netherlands)

    Fludger, C.R.S.; Duthel, T.; Borne, van den D.; Schulien, C.; Schmidt, E.D.; Wuth, T.; Geyer, J.C.; Man, de E.; Khoe, G.D.; Waardt, de H.

    2008-01-01

    We discuss the use of a coherent digital receiver for the compensation of linear transmission impairments and polarization demultiplexing in a transmission system compatible with a future 100-Gb/s Ethernet standard. We present experimental results on the transmission performance of 111 Gbit/s

  9. Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length

    Science.gov (United States)

    Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.

    2012-01-01

    Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.

  10. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  11. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    Science.gov (United States)

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio

  12. Equalization of FBG-induced group-delay ripples penalties using a coherent receiver and digital signal processing

    NARCIS (Netherlands)

    Veljanovski, V.; Al Fiad, M.S.A.S.; Borne, van den D.; Jansen, S.L.; Wuth, T.

    2009-01-01

    We show the mitigation of fiber Bragg gratings induced group delay ripple penalties through the use of coherent detection and electronic equalizer. For 111-Gb/s POLMUX-RZDQPSK only a negligible penalty is observed after 10 cascaded FBGs.

  13. Receiving efficiency of monostatic pulsed coherent lidars. I - Theory. II - Applications

    Science.gov (United States)

    Zhao, Yanzeng; Post, Madison J.; Hardesty, Michael

    1990-01-01

    Pulsed coherent radars' receiving efficiency, eta, is presently investigated as a function of range z on the basis of a theory which relates eta(z) to both the transmitted laser intensity and the point-source receiving efficiency; this efficiency is calculated by a backward method employing the back-propagated local oscillator (BPLO) approach. The theory is applied to the ideal case, in order to study system optimization when both the transmitted and the BPLO fields at the antenna are Gaussian. In the second part of this work, eta(z) is calculated for various conditions of the NOAA/ERL Wave Propagation Laboratory CO2 Doppler lidar; the sensitivity of eta(z) to transmitted laser beam quality, telescope focal setting, telescope power, scanner astigmatism, and system misalignment.

  14. A BUNCH TO BUCKET PHASE DETECTOR USING DIGITAL RECEIVER TECHNOLOGY

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; HAYES, T.; LE, T.N.; SMITH, K.

    2003-01-01

    Transferring high-speed digital signals to a Digital Signal Processor is limited by the IO bandwidth of the DSP. A digital receiver circuit is used to translate high frequency W signals to base-band. The translated output frequency is close to DC and the data rate can be reduced, by decimation, before transfer to the DSP. By translating both the longitudinal beam (bunch) and RF cavity pick-ups (bucket) to DC, a DSP can be used to measure their relative phase angle. The result can be used as an error signal in a beam control servo loop and any phase differences can be compensated

  15. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    Science.gov (United States)

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  16. Wireless receiver architectures and design antennas, RF, synthesizers, mixed signal, and digital signal processing

    CERN Document Server

    Rouphael, Tony J

    2014-01-01

    Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver's analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, s

  17. Optical timing receiver for the NASA Spaceborne Ranging System. Part II: high precision event-timing digitizer

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, Branko; Turko, Bojan

    1978-08-01

    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the timeresolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to the time-resolution capabilities, and to develop a very low time walk timing discriminator and a high-resolution event-timing digitizer to be used in the high-resolution spaceborne laser ranging system receiver. This part of the report describes the development of a high precision event-timing digitizer. The event-timing digitizer is basically a combination of a very accurate high resolution real time digital clock and an interval timer. The timing digitizer is a high resolution multiple stop clock, counting the time up to 131 days in 19.5 ps increments.

  18. Digital compensation of receiver clipping for DVB reception on low-power mobile

    NARCIS (Netherlands)

    Linnartz, J.P.M.G.; Rietman, R.

    2007-01-01

    Battery life-time is a critical issue for digital television (DVB) viewing on mobile phones. The number of quantization steps used in the analog-to-digital converter (ADC) is an important factor in the total power consumption of a DVB receiver. The OFDM signals require a large resolution of the ADC.

  19. 112 Gbit/s single-polarization silicon coherent receiver with hybrid-integrated BiCMOS linear TIA

    NARCIS (Netherlands)

    Verbist, J.; Zhang, J.; Moeneclaey, B.; van Weerdenburg, J.; van Uden, R.; Okonkwo, C.; Yin, X.; Bauwelinck, J.; Roelkens, G.

    2015-01-01

    We report the design, fabrication and verification of a single-polarization silicon coherent receiver with a low-power linear TIA array. Error-free operation assuming FEC is shown at bitrates of 112 Gbit/s (28 Gbaud 16-QAM) and 56 Gbit/s (28 Gbaud QPSK).

  20. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  1. Adaptive Jamming Suppression in Coherent FFH System Using Weighted Equal Gain Combining Receiver over Fading Channels with Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Yishan He

    2015-01-01

    Full Text Available Fast frequency hopping (FFH is commonly used as an antijamming communication method. In this paper, we propose efficient adaptive jamming suppression schemes for binary phase shift keying (BPSK based coherent FFH system, namely, weighted equal gain combining (W-EGC with the optimum and suboptimum weighting coefficient. We analyze the bit error ratio (BER of EGC and W-EGC receivers with partial band noise jamming (PBNJ, frequency selective Rayleigh fading, and channel estimation errors. Particularly, closed-form BER expressions are presented with diversity order two. Our analysis is verified by simulations. It is shown that W-EGC receivers significantly outperform EGC. As compared to the maximum likelihood (ML receiver in conventional noncoherent frequency shift keying (FSK based FFH, coherent FFH/BPSK W-EGC receivers also show significant advantages in terms of BER. Moreover, W-EGC receivers greatly reduce the hostile jammers’ jamming efficiency.

  2. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  3. Digital coherent detection research on Brillouin optical time domain reflectometry with simplex pulse codes

    International Nuclear Information System (INIS)

    Hao Yun-Qi; Ye Qing; Pan Zheng-Qing; Cai Hai-Wen; Qu Rong-Hui

    2014-01-01

    The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)

  4. Iterative Signal Processing for Mitigation of Analog-to-Digital Converter Clipping Distortion in Multiband OFDMA Receivers

    Directory of Open Access Journals (Sweden)

    Markus Allén

    2012-01-01

    Full Text Available In modern wideband communication receivers, the large input-signal dynamics is a fundamental problem. Unintentional signal clipping occurs, if the receiver front-end with the analog-to-digital interface cannot respond to rapidly varying conditions. This paper discusses digital postprocessing compensation of such unintentional clipping in multiband OFDMA receivers. The proposed method iteratively mitigates the clipping distortion by exploiting the symbol decisions. The performance of the proposed method is illustrated with various computer simulations and also verified by concrete laboratory measurements with commercially available analog-to-digital hardware. It is shown that the clipping compensation algorithm implemented in a turbo decoding OFDM receiver is able to remove almost all the clipping distortion even under significant clipping in fading channel circumstances. That is to say, it is possible to nearly recover the receiver performance to the level, which would be achieved in the equivalent nonclipped situation.

  5. The New Digital-Receiver-Based System for Antiproton Beam Diagnostics

    CERN Document Server

    Angoletta, Maria Elena; Ludwig, M; Marqversen, O; Pedersen, F

    2001-01-01

    An innovative system to measure antiproton beam intensity, momentum spread and mean momentum in CERN's Antiproton Decelerator (AD) is described. This system is based on a state-of-the-art Digital Receiver (DRX) board, consisting of 8 Digital Down-Converter (DDC) chips and one Digital Signal Processor (DSP). An ultra-low-noise, wide-band AC beam transformer (0.2 MHz - 30 MHz) is used to measure AC beam current modulation. For bunched beams, the intensity is obtained by measuring the amplitude of the fundamental and second RF Fourier components. On the magnetic plateaus the beam is debunched for stochastic or electron cooling and longitudinal beam properties (intensity, momentum spread and mean momentum) are measured by FFT-based spectral analysis of Schottky signals. The system thus provides real time information characterising the machine performance; it has been used for troubleshooting and to fine-tune the AD, thus achieving further improved performances. This system has been operating since May 2000 and ty...

  6. Experimental 2.5-Gb/s QPSK WDM phase-modulated radio-over-fiber link with digital demodulation by a K-means algorithm

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Caballero Jambrina, Antonio

    2010-01-01

    Highest reported bit rate of 2.5 Gb/s for optically phase modulated radio-over-fiber (RoF) link, employing digital coherent detection, is demonstrated. Demodulation of 3$,times,$ 2.5 Gb/s quadrature phase-shift keying modulated wavelength-division-multiplexed RoF channels is achieved after 79 km ...... of transmission through deployed fiber. Error-free performance (bit-error rate corresponding to $10^{{-}4}$) is achieved using a digital coherent receiver in combination with a $K$-means algorithm for radio-frequency phase recovery....

  7. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  8. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  9. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

    Science.gov (United States)

    Milne, Elizabeth; White, Sarah; Campbell, Ruth; Swettenham, John; Hansen, Peter; Ramus, Franck

    2006-01-01

    Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control,…

  10. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig

    2014-09-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  11. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.

    2014-01-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  12. Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon

    Science.gov (United States)

    Xi, Teli; Dou, Jiazhen; Di, Jianglei; Li, Ying; Zhang, Jiwei; Ma, Chaojie; Zhao, Jianlin

    2017-06-01

    Short-coherence in-line phase-shifting digital holographic microscopy based on Michelson interferometer is proposed to measure internal structure in silicon. In the configuration, a short-coherence infrared laser is used as the light source in order to avoid the interference formed by the reference wave and the reflected wave from the front surface of specimen. At the same time, in-line phase-shifting configuration is introduced to overcome the problem of poor resolution and large pixel size of the infrared camera and improve the space bandwidth product of the system. A specimen with staircase structure is measured by using the proposed configuration and the 3D shape distribution are given to verify the effectiveness and accuracy of the method.

  13. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  14. Vertical‐cavity surface‐emitting laser based digital coherent detection for multigigabit long reach passive optical links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2011-01-01

    We report on experimental demonstration of digital coherent detection based on a directly modulated vertical‐cavity surface‐emitting laser with bit rate up to 10 Gbps. This system allows a cooler‐less, free running, and unamplified transmission without optical dispersion compensation up to 105 km...... at 5 Gbps long reach passive optical links. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2462–2464, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26331...

  15. Re-configurable digital receiver for optically envelope detected half cycle BPSK and MSK radio-on-fiber signals

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Prince, Kamau; Zibar, Darko

    2011-01-01

    We present the first known integration of a digital receiver into optically envelope detection radio-on-fiber systems. We also present a re-configurable scheme for two different types of optically envelope detected wireless signals while keeping the complexity of used optical components low. Our...... novel digital receiver consists of a digital signal processing unit integrating functions such as filtering, peak-powers detection, symbol synchronization and signal demodulation for optically envelope detected half-cycle binary phase-shift-keying and minimum-shift-keying signals. Furthermore, radio......-frequency signal down-conversion is not required in our proposed approach; simplifying evens more the optical receiver front-end. We experimentally demonstrate error-free optical transmission (bit-error rate corresponding to 10−3 related to FEC-compatible levels) for both 416.6 Mbit/s half-cycle binary phase...

  16. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  17. Reducing the Digital Divide among Children Who Received Desktop or Hybrid Computers for the Home

    Directory of Open Access Journals (Sweden)

    Gila Cohen Zilka

    2016-06-01

    Full Text Available Researchers and policy makers have been exploring ways to reduce the digital divide. Parameters commonly used to examine the digital divide worldwide, as well as in this study, are: (a the digital divide in the accessibility and mobility of the ICT infrastructure and of the content infrastructure (e.g., sites used in school; and (b the digital divide in literacy skills. In the present study we examined the degree of effectiveness of receiving a desktop or hybrid computer for the home in reducing the digital divide among children of low socio-economic status aged 8-12 from various localities across Israel. The sample consisted of 1,248 respondents assessed in two measurements. As part of the mixed-method study, 128 children were also interviewed. Findings indicate that after the children received desktop or hybrid computers, changes occurred in their frequency of access, mobility, and computer literacy. Differences were found between the groups: hybrid computers reduce disparities and promote work with the computer and surfing the Internet more than do desktop computers. Narrowing the digital divide for this age group has many implications for the acquisition of skills and study habits, and consequently, for the realization of individual potential. The children spoke about self improvement as a result of exposure to the digital environment, about a sense of empowerment and of improvement in their advantage in the social fabric. Many children expressed a desire to continue their education and expand their knowledge of computer applications, the use of software, of games, and more. Therefore, if there is no computer in the home and it is necessary to decide between a desktop and a hybrid computer, a hybrid computer is preferable.

  18. Store-operate-coherence-on-value

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer; Ohmacht, Martin; Steinmacher-Burow, Burkhard

    2014-11-18

    A system, method and computer program product for performing various store-operate instructions in a parallel computing environment that includes a plurality of processors and at least one cache memory device. A queue in the system receives, from a processor, a store-operate instruction that specifies under which condition a cache coherence operation is to be invoked. A hardware unit in the system runs the received store-operate instruction. The hardware unit evaluates whether a result of the running the received store-operate instruction satisfies the condition. The hardware unit invokes a cache coherence operation on a cache memory address associated with the received store-operate instruction if the result satisfies the condition. Otherwise, the hardware unit does not invoke the cache coherence operation on the cache memory device.

  19. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  20. A non-correlator-based digital communication system using interleaved chaotic differential peaks keying (I-CDPK) modulation and chaotic synchronization

    International Nuclear Information System (INIS)

    Chien, T.-I; Hung, Y.-C.; Liao, T.-L.

    2006-01-01

    This paper presents a novel non-correlator-based digital communication system with the application of interleaved chaotic differential peaks keying (I-CDPK) modulation technique. The proposed communication system consists of four major modules: I-CDPK modulator (ICM), frequency modulation (FM) transmitter, FM receiver and I-CDPK demodulator (ICDM). In the ICM module, there are four components: a chaotic circuit to generate the chaotic signals, A/D converter, D/A converter and a digital processing mechanism to control all signal flows and performs I-CDPK modulation corresponding to the input digital bits. For interleaving every input digital bit set, every state of the chaotic system is used to represent one portion of it, but only a scalar state variable (i.e. the system output) is sent to the ICDM's chaotic circuit through both FM transmitter and FM receiver. An observer-based chaotic synchronization scheme is designed to synchronize the chaotic circuits of the ICM and ICDM. Meanwhile, the bit detector in ICDM is devoted to recover the transmitted input digital bits. Some numerical simulations of an illustrative communication system are given to demonstrate its theoretical effectiveness. Furthermore, the performance of bit error rate of the proposed system is analyzed and compared with those of the correlator-based communication systems adopting coherent binary phase shift keying (BPSK) and coherent differential chaotic shift keying (DCSK) schemes

  1. Volitional Control of Neuromagnetic Coherence

    Directory of Open Access Journals (Sweden)

    Matthew D Sacchet

    2012-12-01

    Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.

  2. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  3. All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Zibar, Darko

    2010-01-01

    with record receiver sensitivity of -36 dBm after transmission over 40 km standard single mode fiber. Digital signal processing compensates for frequency offset between the transmitter and the local oscillator VCSELs, and for chromatic dispersion. This system allows for uncooled VCSEL operation and fully...

  4. Canadiana.org: One of Canada's oldest and newest digitization initiatives

    Directory of Open Access Journals (Sweden)

    Brian Bell

    2008-06-01

    Full Text Available Canadiana.org is a new independent, non-profit, alliance of partners, includingLibrary and Archives Canada, from all parts of Canada's cultural, heritage,research, broadcasting and publishing communities, chartered to raise funds,receive donations and grants and to act as the overall coordinator and facilitatorfor digitization initiatives and related enduring access services and preservationinfrastructures. Working with Library and Archives Canada under the frameworkof the Canadian Digital Information Strategy, Canadiana.org has a 'masterplan' to facilitate a coherent national digital information strategy. The communityhas developed a bilingual metadata toolkit to suit most types of material as anoption for those who need it. The community also supports a powerful bilingualpublic access Indexing and Discovery Portal system (right now brandedAlouetteCanada to enhance the searching and discovery of local digitalcollections of all types across the country.

  5. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    Science.gov (United States)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  6. Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2008-01-01

    A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....

  7. Equalization Enhanced Phase Noise in Coherent Optical Systems with Digital Pre- and Post-Processing

    Directory of Open Access Journals (Sweden)

    Aditya Kakkar

    2016-03-01

    Full Text Available We present an extensive study of equalization enhanced phase noise (EEPN in coherent optical system for all practical electronic dispersion compensation configurations. It is shown that there are only eight practicable all-electronic impairment mitigation configurations. The non-linear and time variant analysis reveals that the existence and the cause of EEPN depend on the digital signal processing (DSP schemes. There are three schemes that in principle do not cause EEPN. Analysis further reveals the statistical equivalence of the remaining five system configurations resulting in EEPN. In three of them, EEPN is due to phase noise of the transmitting laser, while in the remaining two, EEPN is caused by the local oscillator. We provide a simple look-up table for the system designer to make an informative decision regarding practicable configuration choice and design.

  8. 47 CFR 15.122 - Closed caption decoder requirements for digital television receivers and converter boxes.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Closed caption decoder requirements for digital television receivers and converter boxes. 15.122 Section 15.122 Telecommunication FEDERAL COMMUNICATIONS... code spaces C2, C3, and G3 is optional. All unsupported graphic symbols in the G3 code space are to be...

  9. A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.

    Science.gov (United States)

    Devalla, Sripad Krishna; Chin, Khai Sing; Mari, Jean-Martial; Tun, Tin A; Strouthidis, Nicholas G; Aung, Tin; Thiéry, Alexandre H; Girard, Michaël J A

    2018-01-01

    To develop a deep learning approach to digitally stain optical coherence tomography (OCT) images of the optic nerve head (ONH). A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We studied the effect of compensation, number of training images, and performance comparison between glaucoma and healthy subjects. For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the RPE, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity, specificity, IU, and accuracy (mean) were 0.84 ± 0.03, 0.92 ± 0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. Our algorithm performed significantly better when compensated images were used for training (P deep learning algorithm can simultaneously stain the neural and connective tissues of the ONH, offering a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management.

  10. Experimental demonstration of a real-time high-throughput digital DC blocker for compensating ADC imperfections in optical fast-OFDM receivers.

    Science.gov (United States)

    Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian

    2016-06-27

    Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.

  11. The Impact of Interference on GNSS Receiver Observables – A Running Digital Sum Based Simple Jammer Detector

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan

    2014-09-01

    Full Text Available A GNSS-based navigation system relies on externally received information via a space-based Radio Frequency (RF link. This poses susceptibility to RF Interference (RFI and may initiate failure states ranging from degraded navigation accuracy to a complete signal loss condition. To guarantee the integrity of the received GNSS signal, the receiver should either be able to function in the presence of RFI without generating misleading information (i.e., offering a navigation solution within an accuracy limit, or the receiver must detect RFI so that some other means could be used as a countermeasure in order to ensure robust and accurate navigation. Therefore, it is of utmost importance to identify an interference occurrence and not to confuse it with other signal conditions, for example, indoor or deep urban canyon, both of which have somewhat similar impact on the navigation performance. Hence, in this paper, the objective is to investigate the effect of interference on different GNSS receiver observables in two different environments: i. an interference scenario with an inexpensive car jammer, and ii. an outdoor-indoor scenario without any intentional interference. The investigated observables include the Automatic Gain Control (AGC measurements, the digitized IF (Intermediate Frequency signal levels, the Delay Locked Loop and the Phase Locked Loop discriminator variances, and the Carrier-to-noise density ratio (C/N0 measurements. The behavioral pattern of these receiver observables is perceived in these two different scenarios in order to comprehend which of those observables would be able to separate an interference situation from an indoor scenario, since in both the cases, the resulting positioning accuracy and/or availability are affected somewhat similarly. A new Running Digital Sum (RDS -based interference detection method is also proposed herein that can be used as an alternate to AGC-based interference detection. It is shown in this paper

  12. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  13. Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640 ± 20 nm) on the repair of third-degree burns in rats.

    Science.gov (United States)

    Neves, Silvana Maria Véras; Nicolau, Renata Amadei; Filho, Antônio Luiz Martins Maia; Mendes, Lianna Martha Soares; Veloso, Ana Maria

    2014-01-01

    Recent studies have demonstrated the efficacy of coherent light therapy from the red region of the electromagnetic spectrum on the tissue-healing process. This study analysed the effect of non-coherent light therapy (light-emitting diode-LED) with or without silver sulfadiazine (sulpha) on the healing process of third-degree burns. In this study, 72 rats with third-degree burns were randomly divided into six groups (n = 12): Gr1 (control), Gr2 (non-contact LED), Gr3 (contact LED), Gr4 (sulfadiazine), Gr5 (sulfadiazine + non-contact LED) and Gr6 (sulfadiazine + contact LED). The groups treated with LED therapy received treatment every 48 h (λ = 640 ± 20 nm, 110 mW, 16 J/cm(2); 41 s with contact and 680 s without contact). The digital photometric and histomorphometric analyses were conducted after the burn occurred. The combination of sulpha and LED (contact or non-contact) improved the healing of burn wounds. These results demonstrate that the combination of silver sulfadiazine with LED therapy (λ = 640 ± 20 nm, 4 J/cm(2), without contact) improves healing of third-degree burn wounds, significantly reduces the lesion area and increases the granulation tissue, increases the number of fibroblasts, promotes collagen synthesis and prevents burn infections by accelerating recovery.

  14. Transcoding the digital : how metaphors matter in new media

    NARCIS (Netherlands)

    van den Boomen, M.V.T.

    2014-01-01

    This study traces the role of metaphors in digital praxis. Digital praxis refers to a more or less coherent set of everyday practices – acts, habits, routines – that involve the manipulation, modification, and construction of digital-symbolical objects. Examples of these digital-symbolical objects

  15. On Radar Resolution in Coherent Change Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.

  16. Multiple-Symbol, Partially Coherent Detection of MPSK

    Science.gov (United States)

    Simon, Marvin K.; Divsalar, Dariush

    1994-01-01

    Proposed method of reception of multiple-phase-shift-keyed (MPSK) radio signals involves multiple-symbol, partially coherent detection. Instead of attempting to determine phase of transmitted signal during each symbol period as in coherent detection, receiver acquires signal data during multiple-symbol observation interval, then produces maximum-likelihood-sequence estimate of phases transmitted during interval. Combination of coherent-reception and incoherent-reception decision rules are used.

  17. Coherent laser vision system

    International Nuclear Information System (INIS)

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  18. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  19. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  20. Characterization of a symbol rate timing recovery technique for a 2B1Q digital receiver

    Science.gov (United States)

    Aboulnasr, T.; Hage, M.; Sayar, B.; Aly, S.

    1994-02-01

    This paper presents a study of several implementations of the Mueller and Muller symbol rate timing recovery algorithm for ISDN transmission over digital subscriber loops (DSL). Implementations of this algorithm using various estimates of a specified timing function are investigated. It will be shown that despite the fact that all of the estimates considered are derived based on one set of conditions, their performance varies widely in a real system. The intrinsic properties of these estimates are first analyzed, then their performance on real subscriber loops is studied through extensive simulations of a practical digital receiver. The effect of various system parameters such as channel distortion and additive noise are included. Possible sources of convergence problems are also identified and corrective action proposed.

  1. Real time 1.55 μm VCSEL-based coherent detection link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Parekh, D.; Jensen, Jesper Bevensee

    2012-01-01

    This paper presents an experimental demonstration of VCSEL-based PON with simplified real-time coherent receiver at 2.5 Gbps. Receiver sensitivity of −37 dBm is achieved proving splitting ratio up to 2048 after 17 km fiber transmission.......This paper presents an experimental demonstration of VCSEL-based PON with simplified real-time coherent receiver at 2.5 Gbps. Receiver sensitivity of −37 dBm is achieved proving splitting ratio up to 2048 after 17 km fiber transmission....

  2. 10 Gb/s Real-Time All-VCSEL Low Complexity Coherent scheme for PONs

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Cheng, Ning; Jensen, Jesper Bevensee

    2012-01-01

    Real time demodulation of a 10 Gb/s all-VCSEL based coherent PON link with a simplified coherent receiver scheme is demonstrated. Receiver sensitivity of −33 dBm is achieved providing high splitting ratio and link reach....

  3. Challenges and Opportunities of Using Digital Storytelling as a Trauma Narrative Intervention for Traumatized Children

    Directory of Open Access Journals (Sweden)

    Kim M. Anderson

    2015-07-01

    Full Text Available This article address the challenges and opportunities of implementing a web-based Digital Storytelling (DS curriculum to supplement the trauma narrative component of Trauma-Focused Cognitive Behavioral Therapy (TF-CBT for traumatized youth, ages 9-17, receiving mental health services at a rural domestic violence (DV agency. Digital storytelling, as the term suggests, combines storytelling with technology that integrates a mixture of digital images, text, audio narration, and music. Ultimately, implementing the DS curriculum empowered youth to process and develop their trauma stories in a multi-sensory, accessible and coherent manner. In doing so, they gained tools (writing, narrating, illustrating, and ultimately assembling their own stories to form adaptive responses regarding their family violence experiences in its immediate aftermath and possibly over time. Agency implications are discussed regarding training, technical, and confidentiality issues related to the implementation of a web-based DS curriculum.

  4. Evaluation of white-to-white distance and anterior chamber depth measurements using the IOL Master, slit-lamp adapted optical coherence tomography and digital photographs in phakic eyes.

    Science.gov (United States)

    Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra

    2015-01-01

    The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (pphotographs (pphotographs (p>0.05). All measurements were correlated (Spearman pphotographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.

  5. Two-way QKD with single-photon-added coherent states

    Science.gov (United States)

    Miranda, Mario; Mundarain, Douglas

    2017-12-01

    In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys' security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.

  6. Low-level software for the pentek 6510 digital receiver board applied to the new AD beam measurement system

    CERN Document Server

    Angoletta, Maria Elena

    2002-01-01

    The new beam measurement system for the CERN Antiproton Decelerator heavily relies on a Pentek 6510 Digital Receiver (DRX) board. The new system goal is to extract beam parameters from pickup signals. Its digital implementation allows for higher precision, easier management of the hardware as well as modification and improvement with no hardware change. In this scheme, this innovative VME DRX board is responsible for parallel data acquisition, independent digital down conversion and processing of up to 4 digitised inputs. The in-house- developed low-level code (LLC), running on the board, takes care of several tasks, such as interfacing with the Real Time Task (RTT), data processing and board managing. The RTT runs on a PowerPC VME board and controls the DRX board as a master. The LLC is a state machine developed in C and Assembler, which services several interrupts and performs the FFT of complex input data. The DRX low-level system developed is highly modular and easily adaptable to other processing scenari...

  7. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  8. Surpassing digital holography limits by lensless object scanning holography.

    Science.gov (United States)

    Micó, Vicente; Ferreira, Carlos; García, Javier

    2012-04-23

    We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and coherent artifacts averaging due to the coherent addition of the multiple partially overlapping bandpass images. And DOF extension is performed by digital refocusing to different object's sections. Experimental results showing an impressive image quality improvement are reported for a one-dimensional reflective resolution test target. © 2012 Optical Society of America

  9. Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation

    Science.gov (United States)

    Hu, X.; Maiti, R.; Liu, X.; Gerhardt, L. C.; Lee, Z. S.; Byers, R.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J.

    2016-03-01

    Bio-mechanical properties of the human skin deformed by external forces at difference skin/material interfaces attract much attention in medical research. For instance, such properties are important design factors when one designs a healthcare device, i.e., the device might be applied directly at skin/device interfaces. In this paper, we investigated the bio-mechanical properties, i.e., surface strain, morphological changes of the skin layers, etc., of the human finger-pad and forearm skin as a function of applied pressure by utilizing two non-invasive techniques, i.e., optical coherence tomography (OCT) and digital image correlation (DIC). Skin deformation results of the human finger-pad and forearm skin were obtained while pressed against a transparent optical glass plate under the action of 0.5-24 N force and stretching naturally from 90° flexion to 180° full extension respectively. The obtained OCT images showed the deformation results beneath the skin surface, however, DIC images gave overall information of strain at the surface.

  10. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  11. Advances in coherent optical modems and 16-QAM transmission with feedforward carrier recovery

    Science.gov (United States)

    Noé, Reinhold; Hoffmann, Sebastian; Wördehoff, Christian; Al-Bermani, Ali; El-Darawy, Mohamed

    2011-01-01

    Polarization multiplexing and quadrature phase shift keying (QPSK) both double spectral efficiency. Combined with synchronous coherent polarization diverse intradyne receivers this modulation format is ultra-robust and cost-efficient. A feedforward carrier recovery is required in order to tolerate phase noise of normal DFB lasers. Signal processing in the digital domain permits compensation of at least chromatic and polarization mode dispersion. Some companies have products on the market, others are working on them. For 100 GbE transmission, 50 GHz channel spacing is sufficient. 16ary quadrature amplitude modulation (16-QAM) is attractive to double capacity once more, possibly in a modulation format flexible transponder which is switched down to QPSK only if system margin is too low. For 16-QAM the phase noise problem is sharply increased. However, also here a feedforward carrier recovery has been implemented. A number of carrier phase angles is tested in parallel, and the recovered data is selected for that phase angle where squared distance of recovered data to the nearest constellation point, averaged over a number of symbols, is minimum. An intradyne/selfhomodyne synchronous coherent 16-QAM experiment (2.5 Gb/s, 81 km) is presented.

  12. Optimization of Passive Coherent Receiver System Placement

    Science.gov (United States)

    2013-09-01

    spheroid object with a constant radar cross section (RCS). Additionally, the receiver and transmitters are assumed to be notional isotropic antennae...software- defined radio for equatorial plasma instability studies,” Radio Science, vol. 48, pp. 1–11. Aug. 2013. [2] P. C. Zhang and B. Y. Li, “Passive

  13. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    Science.gov (United States)

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  14. Remote metrology by comparative digital holography

    International Nuclear Information System (INIS)

    Baumbach, Torsten; Osten, Wolfgang; Kopylow, Christoph von; Jueptner, Werner

    2006-01-01

    A method for the remote comparison of objects with regard to their shape or response to a load is presented. The method allows interferometric sensitivity for comparing objects with different microstructure. In contrast to the well-known incoherent techniques based on inverse fringe projection this new approach uses the coherent optical wave field of the master object as a mask for the illumination of the sample object. The coherent mask is created by digital holography to allow instant access to the complete optical information of the master object at any place desired. The mask is reconstructed by a spatial light modulator (SLM). The optical reconstruction of digital holograms with SLM technology allows modification of reconstructed wavefronts with respect to improvement of image quality, the skilled introduction of additional information about the object (augmented reality), and the alignment of the master and test object

  15. High collimated coherent illumination for reconstruction of digitally calculated holograms: design and experimental realization

    Science.gov (United States)

    Morozov, Alexander; Dubinin, German; Dubynin, Sergey; Yanusik, Igor; Kim, Sun Il; Choi, Chil-Sung; Song, Hoon; Lee, Hong-Seok; Putilin, Andrey; Kopenkin, Sergey; Borodin, Yuriy

    2017-06-01

    Future commercialization of glasses-free holographic real 3D displays requires not only appropriate image quality but also slim design of backlight unit and whole display device to match market needs. While a lot of research aimed to solve computational issues of forming Computer Generated Holograms for 3D Holographic displays, less focus on development of backlight units suitable for 3D holographic display applications with form-factor of conventional 2D display systems. Thereby, we report coherent backlight unit for 3D holographic display with thickness comparable to commercially available 2D displays (cell phones, tablets, laptops, etc.). Coherent backlight unit forms uniform, high-collimated and effective illumination of spatial light modulator. Realization of such backlight unit is possible due to holographic optical elements, based on volume gratings, constructing coherent collimated beam to illuminate display plane. Design, recording and measurement of 5.5 inch coherent backlight unit based on two holographic optical elements are presented in this paper.

  16. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    Science.gov (United States)

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  17. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  18. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  19. Digital Materialisms: Frameworks for Digital Media Studies

    OpenAIRE

    Casemajor, Nathalie

    2015-01-01

    Since the 1980s, digital materialism has received increasing interest in the field of media studies. Materialism as a theoretical paradigm assumes that all things in the world are tied to physical processes and matter. Yet within digital media studies, the understanding of what should be the core object of a materialist analysis is debated. This paper proposes to untangle some of the principal theoretical propositions that compose the field of digital materialism. It outlines six frameworks t...

  20. Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol

    International Nuclear Information System (INIS)

    Chen, I-C; Hwang Tzonelih; Li C-M

    2008-01-01

    On the basis of the modified four-coherent-state post-selection quantum key distribution protocol (Namiki and Hirano 2006 Preprint quant-ph/0608144v1), two 1-out-of-2 quantum oblivious transfer (QOT 2 1 ) protocols are proposed. The first proposed protocol (called the receiver-based QOT 2 1 protocol) requires the coherent states to be prepared by the receiver, whereas the second protocol (called the sender-based QOT 2 1 protocol) allows the coherent states to be generated by the sender. The main advantages of the proposed protocols are that (i) no quantum bit commitment schemes and the assumption of quantum memory are needed; (ii) less communication cost between participants is required, i.e. the receiver-based QOT 2 1 protocol requires only one quantum communication and one classical communication and the sender-based QOT 2 1 protocol requires only one quantum communication between participants during protocol execution; and (iii) the utilization of quantum states is very efficient, wherein the receiver-based and the sender-based QOT 2 1 protocols use only two coherent pulses and one coherent pulse respectively for sending the sender's two messages

  1. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  2. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  3. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  4. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  5. Modems for emerging digital cellular-mobile radio system

    Science.gov (United States)

    Feher, Kamilo

    1991-01-01

    Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.

  6. Frontal-posterior coherence and cognitive function in older adults.

    Science.gov (United States)

    Fleck, Jessica I; Kuti, Julia; Brown, Jessica; Mahon, Jessica R; Gayda-Chelder, Christine

    2016-12-01

    The reliable measurement of brain health and cognitive function is essential in mitigating the negative effects associated with cognitive decline through early and accurate diagnosis of change. The present research explored the relationship between EEG coherence for electrodes within frontal and posterior regions, as well as coherence between frontal and posterior electrodes and performance on standard neuropsychological measures of memory and executive function. EEG coherence for eyes-closed resting-state EEG activity was calculated for delta, theta, alpha, beta, and gamma frequency bands. Participants (N=66; mean age=67.15years) had their resting-state EEGs recorded and completed a neuropsychological battery that assessed memory and executive function, two cognitive domains that are significantly affected during aging. A positive relationship was observed between coherence within the frontal region and performance on measures of memory and executive function for delta and beta frequency bands. In addition, an inverse relationship was observed for coherence between frontal and posterior electrode pairs, particularly within the theta frequency band, and performance on Digit Span Sequencing, a measure of working memory. The present research supports a more substantial link between EEG coherence, rather than spectral power, and cognitive function. Continued study in this area may enable EEG to be applied broadly as a diagnostic measure of cognitive ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Equalizer complexity of mode division multiplexed coherent receivers

    NARCIS (Netherlands)

    Inan, B.; Spinnler, B.; Ferreira, F.; Lobato, A.; Adhikari, S.; Sleiffer, V.A.J.M.; Borne, van den D.; Hanik, N.; Jansen, S.L.

    2012-01-01

    We show that OFDM requires the lowest equalizer complexity for crosstalk compensation in a mode-division-multiplexing receiver. For a 2000-km transmission distance and less than 10% ODFM-specific overhead, the modal dispersion must be below 12 ps/km

  8. Implementing EW Receivers Based on Large Point Reconfigured FFT on FPGA Platforms

    Directory of Open Access Journals (Sweden)

    He Chen

    2011-12-01

    Full Text Available This paper presents design and implementation of digital receiver based on large point fast Fourier transform (FFT suitable for electronic warfare (EW applications. When implementing the FFT algorithm on field-programmable gate array (FPGA platforms, the primary goal is to maximize throughput and minimize area. This algorithm adopts two-dimension, parallel and pipeline stream mode and implements the reconfiguration of FFT's points. Moreover, a double-sequence-separation FFT algorithm has been implemented in order to achieve faster real time processing in broadband digital receivers. The performance of the hardware implementation on the FPGA platforms of broadband digital receivers has been analyzed in depth. It reaches the requirement of high-speed digital signal processing, and reveals the designing this kind of digital signal processing systems on FPGA platforms. Keywords: digital receivers, field programmable gate array (FPGA, fast Fourier transform (FFT, large point reconfigured, signal processing system.

  9. Implementation Of Code And Carrier Tracking Loops For Software GPS Receivers

    Directory of Open Access Journals (Sweden)

    Win Kay Khaing

    2015-06-01

    Full Text Available Abstract GPS is playing in very important role in our modern mobile societies. Software approach is very flexible rather than the traditional hardware receivers. The soft-GPS receiver includes two portions hardware and software. In hardware portion an antenna filter down-converter from RF Radio Frequency to IF Intermediate Frequency and an ADC Analog to Digital Converter are included. In software portion signal processing such as acquisition tracking and navigation that runs on general purpose processor is included. The GPS signal is taken from N-FUELS Full Educational Library of Signals for Navigation signal simulator. The heart of soft-GPS receiver is the synchronization processes such as acquisition and tracking. In tracking there are two main loops for code and carrier tracking. The objective of this paper is to analyse and find the optimum discriminator function for the code tracking loop in soft-GPS receivers. The delay lock loop DLL is a well-known technique to track the codes for GNSS spread spectrum systems. This paper also presents non-coherent square law DLLs and the impacts of some parameters on DLL discriminators such as number of samples per chip early-late spacing different C No values where C denotes the signal power and No is the noise spectral density and the impact of with or without front-end device. The results of discriminator outputs are illustrated by using S-curves. Testing results with the real GPS signal are also described. This optimized discriminator functions can be implemented in any soft-GPS receivers.

  10. Principles of optical fibre communication techniques: Noncoherent and coherent

    International Nuclear Information System (INIS)

    Jain, V.K.

    1990-01-01

    In this paper a brief historical description of optical fibre communication system (OFCS) has been presented and the main characteristics of the basic components used in it are summarized. Introduction of noncoherent and coherent (homodyne and heterodyne) system is given. In coherent OFCS, source linewidth requirement, phase and polarization - diversity and combined phase and polarization - diversity receivers are described. (author). 16 refs, 8 figs, 1 tab

  11. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  12. Stokes Space-Based Optical Modulation Format Recognition for Digital Coherent Receivers

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We present a technique for modulation format recognition for heterogeneous reconfigurable optical networks. The method is based on Stokes space signal representation and uses a variational Bayesian expectation maximization machine learning algorithm. Differentiation between diverse common coheren...

  13. Impaired coherence of life narratives of patients with schizophrenia.

    Science.gov (United States)

    Allé, Mélissa C; Potheegadoo, Jevita; Köber, Christin; Schneider, Priscille; Coutelle, Romain; Habermas, Tilmann; Danion, Jean-Marie; Berna, Fabrice

    2015-08-10

    Self-narratives of patients have received increasing interest in schizophrenia since they offer unique material to study patients' subjective experience related to their illness, in particular the alteration of self that accompanies schizophrenia. In this study, we investigated the life narratives and the ability to integrate and bind memories of personal events into a coherent narrative in 27 patients with schizophrenia and 26 controls. Four aspects of life narratives were analyzed: coherence with cultural concept of biography, temporal coherence, causal-motivational coherence and thematic coherence. Results showed that in patients cultural biographical knowledge is preserved, whereas temporal coherence is partially impaired. Furthermore, causal-motivational and thematic coherence are significantly impaired: patients have difficulties explaining how events have modeled their identity, and integrating different events along thematic lines. Impairment of global causal-motivational and thematic coherence was significantly correlated with patients' executive dysfunction, suggesting that cognitive impairment observed in patients could affect their ability to construct a coherent narrative of their life by binding important events to their self. This study provides new understanding of the cognitive deficits underlying self-disorders in patients with schizophrenia. Our findings suggest the potential usefulness of developing new therapeutic interventions to improve autobiographical reasoning skills.

  14. A digital signal processing system for coherent laser radar

    Science.gov (United States)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  15. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    Science.gov (United States)

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  16. Initial results for compressive sensing in electronic support receiver systems

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-04-01

    Full Text Available determined by the antenna and microwave system comprising the transmitter and receiver, while the instantaneous bandwidth is mainly determined by the Analog-to-Digital Converter (ADC) in the receiver. A radar can thus operate at any frequency within its... Electronic/Electromagnetic Support Measures (ESM) was used historically [1], [2]. Modern ES receiver systems are based on digital receivers allowing powerful signal processing techniques to be used [3], [4]. Recent developments in sampling technology...

  17. Silicon CMOS optical receiver circuits with integrated thin-film compound semiconductor detectors

    Science.gov (United States)

    Brooke, Martin A.; Lee, Myunghee; Jokerst, Nan Marie; Camperi-Ginestet, C.

    1995-04-01

    While many circuit designers have tackled the problem of CMOS digital communications receiver design, few have considered the problem of circuitry suitable for an all CMOS digital IC fabrication process. Faced with a high speed receiver design the circuit designer will soon conclude that a high speed analog-oriented fabrication process provides superior performance advantages to a digital CMOS process. However, for applications where there are overwhelming reasons to integrate the receivers on the same IC as large amounts of conventional digital circuitry, the low yield and high cost of the exotic analog-oriented fabrication is no longer an option. The issues that result from a requirement to use a digital CMOS IC process cut across all aspects of receiver design, and result in significant differences in circuit design philosophy and topology. Digital ICs are primarily designed to yield small, fast CMOS devices for digital logic gates, thus no effort is put into providing accurate or high speed resistances, or capacitors. This lack of any reliable resistance or capacitance has a significant impact on receiver design. Since resistance optimization is not a prerogative of the digital IC process engineer, the wisest option is thus to not use these elements, opting instead for active circuitry to replace the functions normally ascribed to resistance and capacitance. Depending on the application receiver noise may be a dominant design constraint. The noise performance of CMOS amplifiers is different than bipolar or GaAs MESFET circuits, shot noise is generally insignificant when compared to channel thermal noise. As a result the optimal input stage topology is significantly different for the different technologies. It is found that, at speeds of operation approaching the limits of the digital CMOS process, open loop designs have noise-power-gain-bandwidth tradeoff performance superior to feedback designs. Furthermore, the lack of good resisters and capacitors

  18. Remote interferometry by digital holography for shape control

    Science.gov (United States)

    Baumbach, Torsten; Osten, Wolfgang; Falldorf, Claas; Jueptner, Werner P. O.

    2002-06-01

    Modern production requires more and more effective methods for the inspection and quality control at the production place. Outsourcing and globalization result in possible large distances between co-operating partners. This may cause serious problems with respect to the just-in-time exchange of information and the response to possible violations of quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. A possible solution for these problems can be delivered by a technique that stores optically the full 3D information of the objects to be compared and where the data can be transported over large distances. In this paper we describe the progress in implementing a new technique for the direct comparison of the shape and deformation of two objects with different microstructure where it is not necessary that both samples are located at the same place. This is done by creating a coherent mask for the illumination of the sample object. The coherent mask is created by Digital Holography to enable the instant access to the complete optical information of the master object at any wanted place. The transmission of the digital master holograms to this place can be done via digital telecommunication networks. The comparison can be done in a digital or analogue way. Both methods result in a disappearance of the object shape and the appearance of the shape or deformation difference between the two objects only. The analogue reconstruction of the holograms with a liquid crystal spatial light modulator can be done by using the light modulator as an intensity modulator or as an phase modulator. The reconstruction technique and the space bandwidth of the light modulator will influence the quality of the result. Therefore the paper describes the progress in applying modern spatial light modulators and digital cameras for the effective storage and optical reconstruction of coherent masks.

  19. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    International Nuclear Information System (INIS)

    CHASE, B.; CITTERIO, M.; LANNI, F.; MAKOWIECKI, D.; RADEKA, S.; RESCIA, S.; TAKAI, H.

    1999-01-01

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail

  20. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    International Nuclear Information System (INIS)

    CHASE, R.L.; CITTERIO, M.; LANNI, F.; MAKOWIECKI, D.; RADEKA, V.; RESCIA, S.; TAKAI, H.; BAN, J.; PARSONS, J.; SIPPACH, W.

    2000-01-01

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail

  1. Adaption of the Michelson interferometer for a better understanding of the temporal coherence in lasers

    Science.gov (United States)

    Illarramendi, M. A.; Zubia, J.; Arrue, J.; Ayesta, I.

    2017-08-01

    In this work, we show a design of a laboratory exercise in which a digital camera has been coupled to a Michelson interferometer based on free-propagation arms. By using the camera, our students measure the evolution of the interference patterns as a function of the difference between the optical paths of the arms. In this way, they obtain the corresponding reduction of the contrast of the fringes. The analysis of the results allows one to calculate the coherence length, and also to relate the temporal coherence of the employed laser with its spectral line profile. The exercise has been carried out with two lasers, which present different coherence lengths.

  2. Incoherent improvement of the spatial resolution in digital holography

    International Nuclear Information System (INIS)

    Garcia-Sucerquia, J.; Herrera-Ramirez, J.; Castaneda, R.

    2005-10-01

    We report on a technique for increasing the spatial resolution of digitally recorded and reconstructed holograms of macroscopic objects, via the reduction of the contrast of the speckle noise present in the coherent imaging techniques. The contrast of the speckle noise is reduced through the superposition on an intensity basis of digitally reconstructed holograms of the same static scene. The reconstruction of a very poor contrasted object illustrates the performance of the technique. (author)

  3. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  4. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  5. Novel receivers for AF relaying with distributed STBC using cascaded and disintegrated channel estimation

    KAUST Repository

    Khan, Fahd Ahmed

    2012-04-01

    New coherent receivers are derived for a pilot-symbol-aided distributed space-time block-coded system with imperfect channel state information which do not perform channel estimation at the destination by using the received pilot signals directly for decoding. The derived receivers are based on new metrics that use distribution of the channels and the noise to achieve improved symbol-error-rate (SER) performance. The SER performance of the derived receivers is further improved by utilizing the decision history in the receivers. The decision history is also incorporated in the existing Euclidean metric to improve its performance. Simulation results show that, for 16-quadrature-amplitude-modulation in a Rayleigh fading channel, a performance gain of up to 2.5 dB can be achieved for the new receivers compared with the conventional mismatched coherent receiver. © 2012 IEEE.

  6. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    Science.gov (United States)

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  7. Digital synchronization and communication techniques

    Science.gov (United States)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  8. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    Science.gov (United States)

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reconfigurable digital receiver for 8PSK subcarrier multiplexed and 16QAM single carrier phase‐modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Yu, Xianbin

    2011-01-01

    A reconfigurable digital receiver based on the k‐means algorithm is proposed for phase‐modulated subcarrier multiplexed (SCM) and quadrature amplitude‐modulated single carrier, phase‐modulated radio‐over‐fiber links. We report successful demodulation after 40 km single mode fiber transmission wit...... with three 50 Mbaud 8PSK SCM signals and a 312.5 Mbaud 16QAM single carrier. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1015–1018, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25905...

  10. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  11. Application of Soft Computing in Coherent Communications Phase Synchronization

    Science.gov (United States)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.

  12. Novel half-coherent receivers for amplify-and-forward relaying

    KAUST Repository

    Khan, Fahd Ahmed; Chen, Yunfei; Alouini, Mohamed-Slim

    2012-01-01

    Consider a system in which the signal is transmitted from the source to the destination via an amplify-and-forward relay. For such a system, we derive in this paper, novel receivers that have complete knowledge of either the source-relay link

  13. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  14. Digital Television, Convergence, and the Public: Another Digital Divide?

    Directory of Open Access Journals (Sweden)

    Jason Smith

    2009-06-01

    Full Text Available While 85 percent of Americans pay to receive television signals through satellite or cable companies, 15 percent still receive their television using over-the-air signals. With the elminination of analog television signals, the 15 percent of households have had to make significant changes in their viewing technology. These households tend to be elderly, poor, minority and rural. Signal coverage areas will be cut back, since government assumed a viewer would have an antenna on a 30 foot pole. Few do, and governmental programs delibertely hid this engineering fact. It is argued that digitalism has neglected the public use of the airways and created yet one more digital divide.

  15. Digital transverse beam dampers from the Brookhaven AGS

    International Nuclear Information System (INIS)

    Smith, G.A.; Castillo, V.; Roser, T.; Van Asselt, W.; Witkover, R.; Wong, V.

    1995-01-01

    A wide band, digital damper system has been developed and is in use at the Brookhaven Alternating Gradient Synchrotron (AGS). The system consists of vertical and horizontal capacitive pickups, analog and digital processing electronics, four 500 Watt wide band power amplifiers, and two pairs of strip line beam kickers. The system is currently used to damp transverse coherent instabilities and injection errors, in both planes, for protons and all species of heavy ions. This paper discusses the system design and operation, particularly with regard to stabilization of the high intensity proton beam. The analog and digital signal processing techniques used to achieve optimum results are discussed. Operational data showing the effect of the damping are presented

  16. Reduced complexity digital back-propagation methods for optical communication systems

    NARCIS (Netherlands)

    Napoli, A.; Maalej, Z.; Sleiffer, V.A.J.M.; Kuschnerov, M.; Rafique, D.; Timmers, E.; Spinnler, B.; Rahman, T.; Coelho, L.D.; Hanik, N.

    2014-01-01

    Next-generation optical communication systems will continue to push the ( bandwidth $cdot$ distance) product towards its physical limit. To address this enormous demand, the usage of digital signal processing together with advanced modulation formats and coherent detection has been proposed to

  17. A Magnetic Resonance Imaging Receiver Design Based on NI PXIe-7966R

    Directory of Open Access Journals (Sweden)

    HU Jin-jie

    2017-12-01

    Full Text Available A magnetic resonance imaging receiver design based on NI PXIe-7966R is proposed, with which the magnetic resonance signals are sampled directly and down-converted digitally, the raw data are uploaded and the magnetic resonance image are restored. The system-level digital signal processing (DSP development tools offered by NI LabVIEW field programmable gate array (FPGA was used for FPGA function modeling, simulation and automatic code generation of hardware description language (HDL. It was very flexible during the digital down conversion (DDC designing. The sampling rate of this module was 50 Mbps, and the receiver bandwidth could be varied between 100 Hz and 1 MHz. The experimental results showed that the receiver design is a high performance magnetic resonance receiver solution.

  18. Communications receivers principles and design

    CERN Document Server

    Rohde, Ulrich L; Zahnd, Hans

    2017-01-01

    This thoroughly updated guide offers comprehensive explanations of the science behind today’s radio receivers along with practical guidance on designing, constructing, and maintaining real-world communications systems. You will explore system planning, antennas and antenna coupling, amplifiers and gain control, filters, mixers, demodulation, digital communication, and the latest software defined radio (SDR) technology. Written by a team of telecommunication experts, Communications Receivers: Principles and Design, Fourth Edition, features technical illustrations, schematic diagrams, and detailed examples. Coverage includes: • Basic radio considerations • Radio receiver characteristics • Receiver system planning • Receiver implementation considerations • RF and baseband techniques for Software-Defined Radios • Transceiver SDR considerations • Antennas and antenna coupling • Mixers • Frequency sources and control • Ancillary receiver circuits • Performance measurement

  19. Implementing a DVB-T/H Receiver on a Software-Defined Radio Platform

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2009-01-01

    Full Text Available Digital multimedia broadcasting is available in more and more countries with various forms. One of the most successful forms is Digital Video Broadcasting for Terrestrial (DVB-T, which has been deployed in most countries of the world for years. In order to bring the digital multimedia broadcasting services to battery-powered handheld receivers in a mobile environment, Digital Video Broadcasting for Handheld (DVB-H has been formally adopted by ETSI. More advanced and complex digital multimedia broadcasting systems are under development, for example, the next generation of DVB-T, a.k.a. DVB-T2. Current commercial DVB-T/H receivers are usually built upon dedicated application-specific integrated circuits (ASICs. However, ASICs are not flexible for incoming evolved standards and less overall-area efficient since they cannot be efficiently reused and shared among different radio standards, when we integrate a DVB-T/H receiver into a mobile phone. This paper presents an example implementation of a DVB-T/H receiver on the prototype of Infineon Technologies' Software-Defined Radio (SDR platform called MuSIC (Multiple SIMD Cores, which is a DSP-centered and accelerator-assisted architecture and aims at battery-powered mass-market handheld terminals.

  20. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  1. An intelligent despeckling method for swept source optical coherence tomography images of skin

    Science.gov (United States)

    Adabi, Saba; Mohebbikarkhoran, Hamed; Mehregan, Darius; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for different steps of the procedure to be used in designed Artificial Neural Network decider that select the best denoising technique for each segment of the image. Results of training shows the dominant filter is BM3D from the last category.

  2. Imaging RF Phased Array Receivers using Optically-Coherent Up-conversion for High Beam-Bandwidth Processing

    Science.gov (United States)

    2017-03-01

    It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that

  3. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    Science.gov (United States)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  4. Coherent Smith-Purcell radiation: Theories and simulations

    International Nuclear Information System (INIS)

    Donohue, J.T.; Gardelle, J.

    2008-01-01

    Smith-Purcell (SP) radiation has been observed many times over the past fifty years, and several theories have been proposed to explain it. However, it is only quite recently that Andrews, Brau and collaborators made a considerable advance in understanding how coherent SP radiation may be produced from an initially continuous beam. Their work received support from 2-D simulations which were performed using the Particle-in-Cell (PIC) code 'MAGIC'. Here we present a review of our 2-D simulations of coherent SP and discuss how they relate to the model of Andrews and Brau. We also describe briefly a SP experiment in the microwave domain using a sheet beam that is planned for 2008

  5. Two-wire Interface for Digital Microphones

    NARCIS (Netherlands)

    Groothedde, Wouter; Klumperink, Eric A.M.; Nauta, Bram; Eschauzier, Rudolphe Gustave Hubertus; van Rijn, Nico

    2003-01-01

    A two-wire interface for a digital microphone circuit includes a power line and a ground line. The interface utilizes the ground line as a "voltage active line" to transmit both clock and data signals between the digital microphone circuit and a receiving circuit. The digital microphone circuit

  6. Two-Wire interface for digital microphones

    NARCIS (Netherlands)

    Groothedde, Wouter; Klumperink, Eric A.M.; Nauta, Bram; Eschauzier, Rudolphe Gustave Hubertus; van Rijn, Nico

    2005-01-01

    A two-wire interface for a digital microphone circuit includes a power line and a ground line. The interface utilizes the ground line as a "voltage active line" to transmit both clock and data signals between the digital microphone circuit and a receiving circuit. The digital microphone circuit

  7. Polarization demultiplexing in stokes space for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Yi, Xingwen; Yang, Qi; Luo, Ming; Zhang, Jing; Chen, Lei; Qiu, Kun

    2013-02-11

    We propose a polarization demultiplexing method for coherent optical PDM-OFDM based on Stokes space, without inserting training symbols. The proposed approach performs well for different modulation formats of OFDM subcarrier, and shows comparable performances with that of conventional methods, but with a fast convergence speed and reduced overhead. The OFDM signal in the time domain cannot satisfy the conditions of SS-PDM accurately. Therefore, we first digitally convert the received OFDM signals to the frequency domain using fast Fourier transform (FFT). Each subcarrier of the OFDM signal has a much lower speed and narrower bandwidth, the polarization effects that it experiences can be treated as flat. Consequently, we can apply the polarization demultiplexing in Stokes space (SS-PDM) on per subcarrier basis. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960km SSMF respectively. We also compare the results with those of training symbols. Finally, we analyze of the convergence speed of this method.

  8. Generation and coherent detection of QPSK signal using a novel method of digital signal processing

    Science.gov (United States)

    Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui

    2018-02-01

    We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.

  9. The new CAS-DIS digital ionosonde

    Directory of Open Access Journals (Sweden)

    Wang Shun

    2013-04-01

    Full Text Available A high quality digital ionosonde called the Chinese Academy of Sciences digital ionosonde (CAS-DIS has been developed for investigations of the ionosphere. Two important features are used for the CAS-DIS; first, the technique of analog down-conversion has been replaced by the new approach of digital down-conversion technology. Secondly, to solve the problem of large instantaneous receiving bandwidth in digital receivers, an analog narrowband tracking filter is used for the CAS-DIS. The center frequency of the filter tracks the carrier frequency transmitted in real-time, to ensure that the frequency components are filtered out of the effective bandwidth. This report describes the system architecture of the CAS-DIS, its main features, and its test results for ionosphere detection. 

  10. Speckle reduction process based on digital filtering and wavelet compounding in optical coherence tomography for dermatology

    Science.gov (United States)

    Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.

    2015-07-01

    Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.

  11. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  12. High Rate Digital Demodulator ASIC

    Science.gov (United States)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  13. The application of cost-effective lasers in coherent UDWDM-OFDM-PON aided by effective phase noise suppression methods.

    Science.gov (United States)

    Liu, Yue; Yang, Chuanchuan; Yang, Feng; Li, Hongbin

    2014-03-24

    Digital coherent passive optical network (PON), especially the coherent orthogonal frequency division multiplexing PON (OFDM-PON), is a strong candidate for the 2nd-stage-next-generation PON (NG-PON2). As is known, OFDM is very sensitive to the laser phase noise which severely limits the application of the cost-effective distributed feedback (DFB) lasers and more energy-efficient vertical cavity surface emitting lasers (VCSEL) in the coherent OFDM-PON. The current long-reach coherent OFDM-PON experiments always choose the expensive external cavity laser (ECL) as the optical source for its narrow linewidth (usuallyOFDM-PON and study the possibility of the application of the DFB lasers and VCSEL in coherent OFDM-PON. A typical long-reach coherent ultra dense wavelength division multiplexing (UDWDM) OFDM-PON has been set up. The numerical results prove that the OBE method can stand severe phase noise of the lasers in this architecture and the DFB lasers as well as VCSEL can be used in coherent OFDM-PON. In this paper, we have also analyzed the performance of the RF-pilot-aided (RFP) phase noise suppression method in coherent OFDM-PON.

  14. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  15. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  16. Principles of digital communication and coding

    CERN Document Server

    Viterbi, Andrew J

    2009-01-01

    This classic by two digital communications experts is geared toward students of communications theory and to designers of channels, links, terminals, modems, or networks used to transmit and receive digital messages. 1979 edition.

  17. Digital Native and Digital Immigrant Use of Scholarly Network for Doctoral Learners

    Directory of Open Access Journals (Sweden)

    Ronald Berman

    2014-01-01

    Full Text Available The Doctoral Community Network (DC is a learner driven, scholarly community designed to help online doctoral learners successfully complete their dissertation and program of study. While digital natives grew up in an environment immersed in technology, digital immigrants adapted to this environment through their ability to learn and adjust to new technologies. With several thousand Doctoral Community Network users, it was not known to what extent digital immigrants had embraced the technology. A study of 988 users determined that digital immigrants used the Doctoral Community Network more often and for a larger variety of purposes than digital natives did. Specifically, digital immigrants log-on more frequently, view leadership content at higher rates, read more blogs, use more doctoral community network research resources, and send and receive more peer messages than digital natives do. This research supports existing literature that found that digital immigrants possess higher levels of social reliance than digital natives while contradicting other literature that found that digital natives tend to use the internet for social networking and blog diaries at higher rates.

  18. Modeling and Simulation of a Non-Coherent Frequency Shift Keying Transceiver Using a Field Programmable Gate Array (FPGA)

    National Research Council Canada - National Science Library

    Voskakis, Konstantinos

    2008-01-01

    ...) receiver-transmitter in a Field Programmable Gate Array (FPGA). After introducing the theory behind the Non- Coherent BFSK demodulation implemented at the receiver, the design of transmitter and receiver is illustrated...

  19. Radiographic film digitizing devices

    International Nuclear Information System (INIS)

    McFee, W.H.

    1988-01-01

    Until recently, all film digitizing devices for use with teleradiology or picture archiving and communication systems used a video camera to capture an image of the radiograph for subsequent digitization. The development of film digitizers that use a laser beam to scan the film represents a significant advancement in digital technology, resulting in improved image quality compared with video scanners. This paper discusses differences in resolution, efficiency, reliability, and the cost between these two types of devices. The results of a modified receiver operating characteristic comparison study of a video scanner and a laser scanner manufactured by the same company are also discussed

  20. Optimization of the coherence function estimation for multi-core central processing unit

    Science.gov (United States)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  1. Coherent Detection for 1550 nm, 5 Gbit/s VCSEL Based 40 km Bidirectional PON Transmission

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes Lopez, Roberto; Zibar, Darko

    2011-01-01

    Coherent detection of directly modulated 1550nm VCSELs in 5Gbit/s bidirectional 40km SSMF PON-links is presented. Receiver sensitivity of –37.3dBm after transmission is achieved with 30dB system margin, corresponding to 1:1024 passive powersplitting.......Coherent detection of directly modulated 1550nm VCSELs in 5Gbit/s bidirectional 40km SSMF PON-links is presented. Receiver sensitivity of –37.3dBm after transmission is achieved with 30dB system margin, corresponding to 1:1024 passive powersplitting....

  2. Use of early tactile stimulation in rehabilitation of digital nerve injuries.

    Science.gov (United States)

    Cheng, A S

    2000-01-01

    Digital nerves are the most frequently injured peripheral nerve. To improve the recovery of functional sensibility of digital nerve injuries, a prospective randomized controlled study was conducted to see the effect of using early tactile stimulation in rehabilitation of digital nerve injuries. Two specific tactile stimulators were made and prescribed for patients with digital nerve-injury. Twenty-four participants with 32 digital nerve injuries received the prescribed tactile stimulators (experimental group), and another 25 participants with 33 digital nerve injuries received only routine conventional therapy (control group). A significant difference (p sensibility in digital nerve injuries without combined nerve, tendon, and bone injuries.

  3. Reducing the Digital Divide among Children Who Received Desktop or Hybrid Computers for the Home

    Science.gov (United States)

    Zilka, Gila Cohen

    2016-01-01

    Researchers and policy makers have been exploring ways to reduce the digital divide. Parameters commonly used to examine the digital divide worldwide, as well as in this study, are: (a) the digital divide in the accessibility and mobility of the ICT infrastructure and of the content infrastructure (e.g., sites used in school); and (b) the digital…

  4. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  5. DS-CDMA Receiver Based on a Five-Port Technology

    Directory of Open Access Journals (Sweden)

    Elvino S. Sousa

    2005-07-01

    Full Text Available High data rates, low-power consumption, and low complexity will be the most important parameters in the design of the next-generation mobile terminals. In this paper we are introducing a new paradigm in the design of direct sequence spread spectrum receiver by combining analog and digital signal processing. The main difference with respect to the conventional all-digital receiver design approach is that the proposed mixed analog/digital processing results in a symbol rate sampling rather than the high-rate subchip sampling. Analog signal despreading is the key part of the proposed receiver solution, which is based on a five-port device, a passive RF square-law-type device. It is used to perform two important tasks at the same time, namely, the direct conversion and analog despreading. To achieve lower complexity, the proposed receiver uses rectangular instead of pulse-matched despreading at the cost of only a small performance degradation. Also, we propose a new noncoherent pseudonoise (PN code tracking scheme based on error signal generated through the L1 norm. This results in comparable or even better PN code tracking performance than L2 norm circuitry, using less complex hardware. Further, we explore how this technology can be applied in the design of DS-CDMA RAKE receiver for mobile terminals. Depending on how the pilot signal is multiplexed, we propose two types of RAKE receivers. It is shown that under Rayleigh fading channel such receiver structures offer robustness and high performance, while maintaining the low complexity achievable through the five-port device.

  6. UWB delay and multiply receiver

    Energy Technology Data Exchange (ETDEWEB)

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  7. Digital Holographic Capture and Optoelectronic Reconstruction for 3D Displays

    Directory of Open Access Journals (Sweden)

    Damien P. Kelly

    2010-01-01

    Full Text Available The application of digital holography as a viable solution to 3D capture and display technology is examined. A review of the current state of the field is presented in which some of the major challenges involved in a digital holographic solution are highlighted. These challenges include (i the removal of the DC and conjugate image terms, which are features of the holographic recording process, (ii the reduction of speckle noise, a characteristic of a coherent imaging process, (iii increasing the angular range of perspective of digital holograms (iv and replaying captured and/or processed digital holograms using spatial light modulators. Each of these challenges are examined theoretically and several solutions are put forward. Experimental results are presented that demonstrate the validity of the theoretical solutions.

  8. Coherent Structures and Intermittency in Plasma Turbulence

    International Nuclear Information System (INIS)

    Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2008-01-01

    The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.

  9. The UTMOST: A Hybrid Digital Signal Processor Transforms the Molonglo Observatory Synthesis Telescope

    Science.gov (United States)

    Bailes, M.; Jameson, A.; Flynn, C.; Bateman, T.; Barr, E. D.; Bhandari, S.; Bunton, J. D.; Caleb, M.; Campbell-Wilson, D.; Farah, W.; Gaensler, B.; Green, A. J.; Hunstead, R. W.; Jankowski, F.; Keane, E. F.; Krishnan, V. Venkatraman; Murphy, Tara; O'Neill, M.; Osłowski, S.; Parthasarathy, A.; Ravi, V.; Rosado, P.; Temby, D.

    2017-10-01

    The Molonglo Observatory Synthesis Telescope (MOST) is an 18000 m2 radio telescope located 40 km from Canberra, Australia. Its operating band (820-851 MHz) is partly allocated to telecommunications, making radio astronomy challenging. We describe how the deployment of new digital receivers, Field Programmable Gate Array-based filterbanks, and server-class computers equipped with 43 Graphics Processing Units, has transformed the telescope into a versatile new instrument (UTMOST) for studying the radio sky on millisecond timescales. UTMOST has 10 times the bandwidth and double the field of view compared to the MOST, and voltage record and playback capability has facilitated rapid implementaton of many new observing modes, most of which operate commensally. UTMOST can simultaneously excise interference, make maps, coherently dedisperse pulsars, and perform real-time searches of coherent fan-beams for dispersed single pulses. UTMOST operates as a robotic facility, deciding how to efficiently target pulsars and how long to stay on source via real-time pulsar folding, while searching for single pulse events. Regular timing of over 300 pulsars has yielded seven pulsar glitches and three Fast Radio Bursts during commissioning. UTMOST demonstrates that if sufficient signal processing is applied to voltage streams, innovative science remains possible even in hostile radio frequency environments.

  10. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  11. Surface Acoustic Wave Tag-Based Coherence Multiplexing

    Science.gov (United States)

    Youngquist, Robert C. (Inventor); Malocha, Donald (Inventor); Saldanha, Nancy (Inventor)

    2016-01-01

    A surface acoustic wave (SAW)-based coherence multiplexing system includes SAW tags each including a SAW transducer, a first SAW reflector positioned a first distance from the SAW transducer and a second SAW reflector positioned a second distance from the SAW transducer. A transceiver including a wireless transmitter has a signal source providing a source signal and circuitry for transmitting interrogation pulses including a first and a second interrogation pulse toward the SAW tags, and a wireless receiver for receiving and processing response signals from the SAW tags. The receiver receives scrambled signals including a convolution of the wideband interrogation pulses with response signals from the SAW tags and includes a computing device which implements an algorithm that correlates the interrogation pulses or the source signal before transmitting against the scrambled signals to generate tag responses for each of the SAW tags.

  12. Superior Coherent Receivers for AF Relaying with Distributed Alamouti Code

    KAUST Repository

    Khan, Fahd Ahmed; Alouini, Mohamed-Slim; Chen, Yunfei

    2012-01-01

    for decoding. The derived receiver metrics use the statistics of the channel to give improved performance. The performance is further improved by using the decision history. Simulation results show that a performance gain of up to 1.8 dB can be achieved

  13. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  14. Periodic modulation of motor-unit activity in extrinsic hand muscles during multidigit grasping.

    Science.gov (United States)

    Johnston, Jamie A; Winges, Sara A; Santello, Marco

    2005-07-01

    We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10-20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL-FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping.

  15. Two-dimensional coherence analysis of magnetic and gravity data from the Cascer Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    QEB, Inc. has completed a two-dimensional coherence analysis of gravity and magnetic data from the Casper, Wyoming NTMS quadrangle. Magnetic data from an airborne survey were reduced to produce a Residual Magnetic map, and gravity data obtained from several sources were reduced to produce a Complete Bouguer Gravity map. Both sets of data were upward continued to a plane one kilometer above the surface; and then, to make the magnetic and gravity data comparable, the magnetic data were transformed to pseudo-gravity data by the application of Poisson's relationship for rocks that are both dense and magnetic relative to the surrounding rocks. A pseudo-gravity map was then produced and an analysis made of the two-dimensional coherence between the upward continued Bouguer gravity and the pseudo-gravity data. Based on the results of the coherence analysis, digital filters were designed to either pass or reject wavelength bands with high coherence

  16. Digitization of conventional radiographs

    International Nuclear Information System (INIS)

    Wenz, W.; Buitrago-Tellez, C.; Blum, U.; Hauenstein, K.H.; Gufler, H.; Meyer, E.; Ruediger, K.

    1992-01-01

    The diagnostic value of a digitization system for analogue films based on a charge-coupled-device (CCD) scanner with adjustable resolution of 2.5 or 5 lp/mm was assessed. Some 110 skeletal radiographs, 50 contrast studies, including 25 of patients with Crohn's disease, and 70 abdominal plain films before and after successful lithotripsy for renal stones were digitized. Receiver operating characteristic (ROC) studies showed improved detection of cortical and trabecular defects with contrast-optimized digitized films. Edge enhancement algorithms yielded no additional information. Inflammatory lesions of Crohn's disease were detected equally well by conventional films and digitized images. A statistically significant improvement (p [de

  17. Multiple symbol partially coherent detection of MPSK

    Science.gov (United States)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  18. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    Science.gov (United States)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  19. Study of the Calibration Channel Width for a Digital Sideband Separating System for SIS 2SB Receiver

    Science.gov (United States)

    Khudchenko, Andrey; Finger, R.; Baryshev, A. M.; Mena, F. P.; Rodriguez, R.; Hesper, R.; Fuentes, R.; Bronfman, L.

    2018-01-01

    A Digital Sideband Separating (DSS) system has been recently applied to a full 2SB receiver, i.e., one with the analog IF hybrid still in place. This concept allows reaching IRR level around 45 dB and it presents additional advantages in calibration stability compared to the case when no IF hybrid is present. If implemented in multipixel cameras, the DSS system relaxes the requirements for the IRR level of the analog receiver substantially enabling to reach at least an IRR of 30 dB with relatively simple hardware. It would be ideal for spectral line surveys since it practically eliminates the line confusion in addition to rejecting the atmospheric noise in the image band. Therefore, the DSS system is a potential option for a future ALMA upgrade. Here we present our study on an important practical question: how wide should the calibration-channel width in order to reach a desired IRR level? This parameter determines, for a large part, the calibration speed of the DSS system and influences the back-end architecture. We estimate that for currently installed ALMA bands (B3-B8), the channel width of the DSS system can be at least 45 MHz to reach a 30db IRR level in entire band.

  20. Discrimination of optical coherent states using a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, C.; Andersen, Ulrik Lund; Leuchs, G.

    2010-01-01

    The discrimination of non-orthogonal quantum states with reduced or without errors is a fundamental task in quantum measurement theory. In this work, we investigate a quantum measurement strategy capable of discriminating two coherent states probabilistically with significantly smaller error...... probabilities than can be obtained using non-probabilistic state discrimination. We find that appropriate postselection of the measurement data of a photon number resolving detector can be used to discriminate two coherent states with small error probability. We compare our new receiver to an optimal...

  1. Digital colposcopy: ready for use? An overview of literature.

    Science.gov (United States)

    Louwers, J A; Kocken, M; ter Harmsel, W A; Verheijen, R H M

    2009-01-01

    The aims of this review were to summarise the various methods of digital colposcopy and to provide an overview of their efficacy. We conducted a literature search and focused on papers that described a technique for colposcopy, other than conventional colposcopy, and compared this with conventional colposcopy and/or histology and included digitalisation of the process. All papers have been classified in one of the following categories: digital imaging and telecolposcopy, spectroscopy, computerised colposcopy, optical coherence tomography and confocal microcolposcopy. Among the most promising developments is spectroscopy, allowing a more or less automated analysis and interpretation of the colposcopic image.

  2. Coherent MUSIC technique for range/angle information retrieval: Application to a frequency modulated continuous wave MIMO radar

    NARCIS (Netherlands)

    Belfiori, F.; Rossum, W. van; Hoogeboom, P.

    2014-01-01

    A coherent two-dimensional (2D) multiple signal classification (MUSIC) processing for the simultaneous estimation of angular and range target positions has been presented. A 2D spatial smoothing technique is also introduced to cope with the coherent behaviour of the received echoes, which may result

  3. From digital positivism and administrative big data analytics towards critical digital and social media research!

    OpenAIRE

    Fuchs, Christian

    2017-01-01

    This essay argues for a paradigm shift in the study of the Internet and digital/social media. Big data analytics is the dominant paradigm. It receives large amounts of funding, is administrative and a form of digital positivism. Critical social media research is an alternative approach that combines critical social media theory, critical digital methods and critical-realist social media research ethics. Strengthening the second approach is a material question of power in academia.

  4. ZBrush Digital Sculpting Human Anatomy

    CERN Document Server

    Spencer, Scott

    2010-01-01

    Taking into account that many of today?s digital artists?particularly 3D character animators?lack foundational artistic instruction, this book teaches anatomy in a coherent and succinct style. A clear writing style explains how to sculpt an accurate human figure, starting with the skeleton and working out to muscle, fat, and skin. Insightful explanations enable you to quickly and easily create and design characters that can be used in film, game, or print, and allows you to gain a strong understanding of the foundational artistic concepts.

  5. Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization.

    Science.gov (United States)

    Chen, Chen; Zhuge, Qunbi; Plant, David V

    2011-04-11

    This paper presents a new channel estimation/equalization algorithm for coherent OFDM (CO-OFDM) digital receivers, which enables the elimination of the cyclic prefix (CP) for OFDM transmission. We term this new system as the zero-guard-interval (ZGI)-CO-OFDM. ZGI-CO-OFDM employs an overlapped frequency-domain equalizer (OFDE) to compensate both chromatic dispersion (CD) and polarization mode dispersion (PMD) before the OFDM demodulation. Despite the zero CP overhead, ZGI-CO-OFDM demonstrates a superior PMD tolerance than the previous reduced-GI (RGI)-CO-OFDM, which is verified under several different PMD conditions. Additionally, ZGI-CO-OFDM can improve the channel estimation accuracy under high PMD conditions by using a larger intra-symbol frequency-averaging (ISFA) length as compared to RGI-CO-OFDM. ZGI-CO-OFDM also enables the use of ever smaller fast Fourier transform (FFT) sizes (i.e. OFDM. We show that ZGI-CO-OFDM requires reasonably small additional computation effort (~13.6%) compared to RGI-CO-OFDM for 112-Gb/s transmission over a 1600-km dispersion-uncompensated optical link. © 2011 Optical Society of America

  6. Adapting Controlled-source Coherence Analysis to Dense Array Data in Earthquake Seismology

    Science.gov (United States)

    Schwarz, B.; Sigloch, K.; Nissen-Meyer, T.

    2017-12-01

    Exploration seismology deals with highly coherent wave fields generated by repeatable controlled sources and recorded by dense receiver arrays, whose geometry is tailored to back-scattered energy normally neglected in earthquake seismology. Owing to these favorable conditions, stacking and coherence analysis are routinely employed to suppress incoherent noise and regularize the data, thereby strongly contributing to the success of subsequent processing steps, including migration for the imaging of back-scattering interfaces or waveform tomography for the inversion of velocity structure. Attempts have been made to utilize wave field coherence on the length scales of passive-source seismology, e.g. for the imaging of transition-zone discontinuities or the core-mantle-boundary using reflected precursors. Results are however often deteriorated due to the sparse station coverage and interference of faint back-scattered with transmitted phases. USArray sampled wave fields generated by earthquake sources at an unprecedented density and similar array deployments are ongoing or planned in Alaska, the Alps and Canada. This makes the local coherence of earthquake data an increasingly valuable resource to exploit.Building on the experience in controlled-source surveys, we aim to extend the well-established concept of beam-forming to the richer toolbox that is nowadays used in seismic exploration. We suggest adapted strategies for local data coherence analysis, where summation is performed with operators that extract the local slope and curvature of wave fronts emerging at the receiver array. Besides estimating wave front properties, we demonstrate that the inherent data summation can also be used to generate virtual station responses at intermediate locations where no actual deployment was performed. Owing to the fact that stacking acts as a directional filter, interfering coherent wave fields can be efficiently separated from each other by means of coherent subtraction. We

  7. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Directory of Open Access Journals (Sweden)

    Bushuev F.

    2016-10-01

    Full Text Available The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East are presented in the article. The results were obtained using a radio engineering complex (RC of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.

  8. Optical timing receiver for the NASA laser ranging system. Part I. Constant-fraction discriminator

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1975-01-01

    Position-resolution capabilities of the NASA laser ranging system are essentially determined by time-resolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device, primarily a standard of microchannel-plate-type photomultiplier or an avalanche photodiode detector, a timing discriminator, a high-precision time-interval digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the time-interval digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to their time-resolution capabilities, and to design a very low time walk timing discriminator and a high-precision time digitizer which will be used in the laser ranging system receiver. (auth)

  9. Wide Range Digitizer for Chem-Bio LIDAR

    National Research Council Canada - National Science Library

    Green, Norman; Moon, Raphael

    2004-01-01

    .... Typically, receiver amplifier gain is adjusted from time-to-time so that signal amplitude applied to the digitizer is not too large, resulting in a signal clipping, nor too small, resulting in poor digitizer resolution...

  10. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  11. On the impact of receiver imperfections on the MMSE-IRC receiver performance in 5G networks

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2014-01-01

    The usage of Minimum Mean Square Error - Interference Rejection Combining (MMSE-IRC) receivers is expected to be a significant performance booster in the ultra-dense deployment of small cells envisioned by an upcoming 5th generation (5G) Radio Access Technology (RAT). However, hardware limitation...... simulation results confirm that a realistic MMSE-IRC receiver can achieve throughput gains close to ideal, provided a reasonably high resolution Analog-to-Digital Converter (ADC) as well as a supportive radio frame format design are used....

  12. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  13. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  14. Independent component analysis based digital signal processing in coherent optical fiber communication systems

    Science.gov (United States)

    Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi

    2018-02-01

    In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.

  15. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    Science.gov (United States)

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  16. GPU Acceleration of DSP for Communication Receivers.

    Science.gov (United States)

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  17. Joint IQ Skew and Chromatic Dispersion Estimation for Coherent Optical Communication Receivers

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Porto da Silva, Edson; Piels, Molly

    2016-01-01

    A low-complexity scanning method for joint estimation of receiver IQ skew and chromatic dispersion is proposed. This method shows less than 1 ps skew error for a 1200-km 32-GBd DP-16QAM optical transmission experiment.......A low-complexity scanning method for joint estimation of receiver IQ skew and chromatic dispersion is proposed. This method shows less than 1 ps skew error for a 1200-km 32-GBd DP-16QAM optical transmission experiment....

  18. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW

  19. Compressed Sensing-Based Direct Conversion Receiver

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek; Arildsen, Thomas; Larsen, Torben

    2012-01-01

    Due to the continuously increasing computational power of modern data receivers it is possible to move more and more processing from the analog to the digital domain. This paper presents a compressed sensing approach to relaxing the analog filtering requirements prior to the ADCs in a direct......-converted radio signals. As shown in an experiment presented in the article, when the proposed method is used, it is possible to relax the requirements for the quadrature down-converter filters. A random sampling device and an additional digital signal processing module is the price to pay for these relaxed...

  20. Construction of the Barut–Girardello quasi coherent states for the Morse potential

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk [“Politehnica” University of Timişoara, Department of Physical Foundations of Engineering, 2 Vasile Pârvan Blvd., 300223 Timisoara (Romania); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D. F. 07738 (Mexico); Pop, Nicolina, E-mail: popnico2000@yahoo.com [“Politehnica” University of Timişoara, Department of Physical Foundations of Engineering, 2 Vasile Pârvan Blvd., 300223 Timisoara (Romania); Sajfert, Vjekoslav, E-mail: sajfertv@open.telekom.rs [Technical Faculty “M. Pupin” Zrenjanin, University of Novi Sad, Djure Djakovica bb, 23000 Zrenjanin (Serbia); Şimon, Simona, E-mail: simon_cristina@hotmail.com [“Politehnica” University of Timişoara, Faculty of Communication Sciences, 2A Traian Lalescu St, 300223 Timişoara (Romania)

    2013-12-15

    The Morse oscillator (MO) potential occupies a privileged place among the anharmonic oscillator potentials due to its applications in quantum mechanics to diatomic or polyatomic molecules, spectroscopy and so on. For this potential some kinds of coherent states (especially of the Klauder–Perelomov and Gazeau–Klauder kinds) have been constructed previously. In this paper we construct the coherent states of the Barut–Girardello kind (BG-CSs) for the MO potential, which have received less attention in the scientific literature. We obtain these CSs and demonstrate that they fulfil all conditions required by the coherent state. The Mandel parameter for the pure BG-CSs and Husimi’s and P-quasi distribution functions (for the mixed-thermal states) are also presented. Finally, we show that all obtained results for the BG-CSs of MO tend, in the harmonic limit, to the corresponding results for the coherent states of the one dimensional harmonic oscillator (CSs for the HO-1D). -- Highlights: •Construct the coherent states of the Barut–Girardello kind (BG-CSs) for the MO potential. •They fulfil all the conditions needed to a coherent state. •Present the Mandel parameter and Husimi’s and P-quasi distribution functions. •All results tend to those for the one dimensional harmonic oscillator in its harmonic limit.

  1. Overcoming the Challenges of BeiDou Receiver Implementation

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2014-11-01

    Full Text Available Global Navigation Satellite System (GNSS-based positioning is experiencing rapid changes. The existing GPS and the GLONASS systems are being modernized to better serve the current challenging applications under harsh signal conditions. These modernizations include increasing the number of transmission frequencies and changes to the signal components. In addition, the Chinese BeiDou Navigation Satellite system (BDS and the European Galileo are currently under development for global operation. Therefore, in view of these new upcoming systems the research and development of GNSS receivers has been experiencing a new upsurge. In this article, the authors discuss the main functionalities of a GNSS receiver in view of BDS. While describing the main functionalities of a software-defined BeiDou receiver, the authors also highlight the similarities and differences between the signal characteristics of the BeiDou B1 open service signal and the legacy GPS L1 C/A signal, as in general they both exhibit similar characteristics. In addition, the authors implement a novel acquisition technique for long coherent integration in the presence of NH code modulation in BeiDou D1 signal. Furthermore, a simple phase-preserved coherent integration based acquisition scheme is implemented for BeiDou GEO satellite acquisition. Apart from the above BeiDou-specific implementations, a novel Carrier-to-Noise-density ratio estimation technique is also implemented in the software receiver, which does not necessarily require bit synchronization prior to estimation. Finally, the authors present a BeiDou-only position fix with the implemented software-defined BeiDou receiver considering all three satellite constellations from BDS. In addition, a true multi-GNSS position fix with GPS and BDS systems is also presented while comparing their performances for a static stand-alone code phase-based positioning.

  2. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope

    Science.gov (United States)

    Shin, Sanghoon; Yu, Younghun

    2018-04-01

    For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.

  3. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  4. Partial coherence with application to the monotonicity problem of coherence involving skew information

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.

  5. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  6. Concurrent signal combining and channel estimation in digital communications

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM

    2011-08-30

    In the reception of digital information transmitted on a communication channel, a characteristic exhibited by the communication channel during transmission of the digital information is estimated based on a communication signal that represents the digital information and has been received via the communication channel. Concurrently with the estimating, the communication signal is used to decide what digital information was transmitted.

  7. The influence of cancer-related distress and sense of coherence on anxiety and depression in patients with hereditary cancer: a study of patients' sense of coherence 6 months after genetic counseling.

    Science.gov (United States)

    Siglen, Elen; Bjorvatn, Cathrine; Engebretsen, Lars Fredrik; Berglund, Gunilla; Natvig, Gerd Karin

    2007-10-01

    This study examines the association between Sense of Coherence and anxiety and depression amongst patients at risk of hereditary cancer receiving genetic counseling. When writing this article, 144 patients referred for genetic counseling due to a suspicion of hereditary cancer in the family were recruited for this multicentered longitudinal study on the psychosocial aspects of genetic counseling in Norway. A total of 96 (66%) patients responded to the follow-up survey distributed 6 months after genetic counseling. This survey included the Sense of Coherence-29 Scale, Impact of Event Scale, and Hospital Anxiety and Depression Scale. Multiple regression analyses were applied. Our results show association between cancer-related distress and symptoms of anxiety and depression. Sense of Coherence is significantly associated with both anxiety and depression. The hypothesis of Sense of Coherence buffering cancer-related distress and the possible impact of these findings for genetic counseling are discussed.

  8. Performance of the NASA Beacon Receiver for the Alphasat Aldo Paraboni TDP5 Propagation Experiment

    Science.gov (United States)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 gigahertz beacon signals. The system consists of a 1.2-meter K-band and a 0.6-meter Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 hertz sampling rate is implemented to characterize scintillation effects, with a 1-hertz measurement bandwidth dynamic range of 45 decibels. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  9. Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment

    Science.gov (United States)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2014-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  10. Carrier phase estimation for coherent equalization of 43-Gb/s POLMUX-NRZ-DQPSK transmission with 10.7-Gb/s NRZ neighbours

    NARCIS (Netherlands)

    Borne, van den D.; Fludger, C.R.S.; Duthel, T.; Wuth, T.; Schmidt, E.D.; Schulien, C.; Gottwald, E.; Khoe, G.D.; Waardt, de H.

    2007-01-01

    We show the influence of 10.7-Gb/s NRZ neighbors on 43-Gb/s polarization-multiplexed NRZ-DQPSK transmission combined with digital coherent equalization. The impact of XPM induced phase noise is reduced with an optimized carrier phase estimation (CPE) algorithm.

  11. Process and circuiting arrangement for the conversion of analog signals to digital signals and digital signals to analog signals

    International Nuclear Information System (INIS)

    Wintzer, K.

    1977-01-01

    Process for analog-to-digital and digital-to-analog conversion in telecommunication systems whose outstations each have an analog transmitter and an analog receiver. The invention illustrates a method of reducing the power demand of the converters at times when no conversion processes take place. (RW) [de

  12. Coherent Code Tracking for Spatial Transmit Diversity DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    R. W. Stewart

    2005-09-01

    Full Text Available Spatial transmit diversity schemes are now well integrated into third-generation cellular mobile communication system specifications. When DS-CDMA-based technology is deployed in typical macro- and microcell environments, multipath diversity and spatial diversity may be exploited simultaneously by a 2D RAKE receiver. The work presented in this paper focuses on taking advantage of spatial transmit diversity in synchronising the 2D RAKE structure. We investigate the use of coherent and noncoherent techniques for tracking the timing parameters of each multipath component. It is shown that both noncoherent and coherent techniques benefit from transmit diversity. Additionally the performance gap between these two techniques increases with the number of antennas.

  13. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).

    Science.gov (United States)

    Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J

    2015-01-01

    To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.

  14. Molecular Spectroscopy With a Compact 557-GHz Heterodyne Receiver

    DEFF Research Database (Denmark)

    Neumaier, Philipp F.-X.; Richter, Heiko; Stake, Jan

    2014-01-01

    We report on a heterodyne terahertz spectrometer based on a fully integrated 557-GHz receiver and a digital fast Fourier transform spectrometer. The receiver consists of a chain of multipliers and power amplifiers, followed by a heterostructure barrier varactor tripler that subharmonically pumps...... a membrane GaAs Schottky diode mixer. All sub-components are newly developed and optimized with regard to the overall receiver performance such as noise temperature, power consumption, weight and physical size. The receiver works at room temperature, has a double sideband noise temperature as low as 2000 K...

  15. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2016-01-01

    Full Text Available Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE. These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP and cerebral tissue oxygenation saturation (SctO2 were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (<0.0002 Hz in frequency, whereas they showed anti-phase coherence at time scales of around 2.5 h (~0.0001 Hz in frequency. Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia.

  16. 16 Gb/s QPSK Wireless-over-Fibre Link in 75-110GHz Band Employing Optical Heterodyne Generation and Coherent Detection

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2010-01-01

    We report on the first demonstration of QPSK based Wireless-over-Fibre link in 75-110GHz band with a record capacity of up to 16Gb/s. Photonic wireless signal generation by heterodyne beating of free-running lasers and baud-rate digital coherent detection are employed....

  17. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  18. Performance Analysis of Long-Reach Coherent Detection OFDM-PON Downstream Transmission Using m-QAM-Mapped OFDM Signal

    Science.gov (United States)

    Pandey, Gaurav; Goel, Aditya

    2017-12-01

    In this paper, orthogonal frequency division multiplexing (OFDM)-passive optical network (PON) downstream transmission is demonstrated over different lengths of fiber at remote node (RN) for different m-QAM (quadrature amplitude modulation)-mapped OFDM signal (m=4, 16, 32 and 64) transmission from the central office (CO) for different data rates (10, 20 30 and 40 Gbps) using coherent detection at the user end or optical network unit (ONU). Investigation is performed with different number of subcarriers (32, 64, 128, 512 and 1,024), back-to-back optical signal-to-noise ratio (OSNR) along with transmitted and received constellation diagrams for m-QAM-mapped coherent OFDM downstream transmission at different speeds over different transmission distances. Received optical power is calculated for different bit error rates (BERs) at different speeds using m-QAM-mapped coherent detection OFDM downstream transmission. No dispersion compensation is utilized in between the fiber span. Simulation results suggest the different lengths and data rates that can be used for different m-QAM-mapped coherent detection OFDM downstream transmission, and the proposed system may be implemented in next-generation high-speed PONs (NG-PONs).

  19. Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening.

    Science.gov (United States)

    Haas, Brian M; Kalra, Vivek; Geisel, Jaime; Raghu, Madhavi; Durand, Melissa; Philpotts, Liane E

    2013-12-01

    To compare screening recall rates and cancer detection rates of tomosynthesis plus conventional digital mammography to those of conventional digital mammography alone. All patients presenting for screening mammography between October 1, 2011, and September 30, 2012, at four clinical sites were reviewed in this HIPAA-compliant retrospective study, for which the institutional review board granted approval and waived the requirement for informed consent. Patients at sites with digital tomosynthesis were offered screening with digital mammography plus tomosynthesis. Patients at sites without tomosynthesis underwent conventional digital mammography. Recall rates were calculated and stratified according to breast density and patient age. Cancer detection rates were calculated and stratified according to the presence of a risk factor for breast cancer. The Fisher exact test was used to compare the two groups. Multivariate logistic regression was used to assess the effect of screening method, breast density, patient age, and cancer risk on the odds of recall from screening. A total of 13 158 patients presented for screening mammography; 6100 received tomosynthesis. The overall recall rate was 8.4% for patients in the tomosynthesis group and 12.0% for those in the conventional mammography group (P tomosynthesis reduced recall rates for all breast density and patient age groups, with significant differences (P tomosynthesis versus 5.2 per 1000 in patients receiving conventional mammography alone (P = .70). Patients undergoing tomosynthesis plus digital mammography had significantly lower screening recall rates. The greatest reductions were for those younger than 50 years and those with dense breasts. A nonsignificant 9.5% increase in cancer detection was observed in the tomosynthesis group. © RSNA, 2013.

  20. All-digital wavefront sensing for structured light beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-01-01

    Full Text Available the topology of neutral pairs of closely positioned phase singularities in speckle fields [21]. Apart from implementing Stokes polarimetry to investigate phase singularities, it can be used to study polarization singularities in coherent beams [22... together with digital holograms en- coded on a spatial light modulator (SLM). Since these holograms are dynamic, we can demon- strate for the first time Stokes polarimetry in real-time on propagating beams. We illustrate the robustness of our technique...

  1. Digital vascular imaging

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Engels, B.C.H.

    1981-01-01

    Digitalizing videosignals from an image intensifying TV-chain, followed by subtraction, contrast intensifying, and reformation to analogous signal deliver angiography pictures of high quality after intravenous injection of the contrast medium. As the examination is only little invasive it can be carried out on outdoor patients or in the polyclinics. The possibilities of the digital vessel imagination (DVI) are shown at vessel images of different parts of the body; a 36 cm image intensifyer which can be switched to 3 different sorts of operation and has a plumbicon-TV recording tube is used as receiver. (orig.) [de

  2. Digital Literacy and Metaphorical Models

    Directory of Open Access Journals (Sweden)

    Carolina Girón García

    2014-09-01

    Full Text Available It is an acknowledged fact that the appearance of new genres in cyberspace has shifted the main focus of instruction strategies nowadays. Learners of any field are challenged by the acquisition of a new type of literacy, digital literacy –how to read and write, or how to interact, in and through the Internet. In this line, websites often show expressions like "home", "visit", "down-load", "link", etc. which are used in a new sense that did not exist before the digital era. Such expressions constitute the manifestation of mental models that have been transferred from traditional conceptual domains onto the new knowledge domain of the Internet. These conceptual metaphors are some of the cognitive models that help in the conceptualization of new cybergenres. This paper points at describing how these cognitive models build our notion of diverse cybergenres in English – e.g. the weblog, the social network, the cybertask. Our aim here consists in detecting these metaphorical models as well as describing and classifying their conceptual mappings between domains. With that purpose, some digital materials are analyzed, so as to test the hypothesis that such mappings and models guide the user's representation of the genre, as a coherent structure.

  3. Fundamentals of GPS Receivers A Hardware Approach

    CERN Document Server

    Doberstein, Dan

    2012-01-01

    While much of the current literature on GPS receivers is aimed at those intimately familiar with their workings, this volume summarizes the basic principles using as little mathematics as possible, and details the necessary specifications and circuits for constructing a GPS receiver that is accurate to within 300 meters. Dedicated sections deal with the features of the GPS signal and its data stream, the details of the receiver (using a hybrid design as exemplar), and more advanced receivers and topics including time and frequency measurements. Later segments discuss the Zarlink GPS receiver chip set, as well as providing a thorough examination of the TurboRogue receiver, one of the most accurate yet made. Guiding the reader through the concepts and circuitry, from the antenna to the solution of user position, the book’s deployment of a hybrid receiver as a basis for discussion allows for extrapolation of the core ideas to more complex, and more accurate designs. Digital methods are used, but any analogue c...

  4. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  5. Cognitive processes associated with compulsive buying behaviours and related EEG coherence.

    Science.gov (United States)

    Lawrence, Lee Matthew; Ciorciari, Joseph; Kyrios, Michael

    2014-01-30

    The behavioural and cognitive phenomena associated with Compulsive Buying (CB) have been investigated previously but the underlying neurophysiological cognitive process has received less attention. This study specifically investigated the electrophysiology of CB associated with executive processing and cue-reactivity in order to reveal differences in neural connectivity (EEG Coherence) and distinguish it from characteristics of addiction or mood disorder. Participants (N=24, M=25.38 yrs, S.D.=7.02 yrs) completed the Sensitivity to Punishment Sensitivity to Reward Questionnaire and a visual memory task associated with shopping items. Sensitivities to reward and punishment were examined with EEG coherence measures for preferred and non-preferred items and compared to CB psychometrics. Widespread EEG coherence differences were found in numerous regions, with an apparent left shifted lateralisation for preferred and right shifted lateralisation for non-preferred items. Different neurophysiological networks presented with CB phenomena, reflecting cue reactivity and episodic memory, from increased arousal and attachment to items. © 2013 Published by Elsevier Ireland Ltd.

  6. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  7. Wavelet coherence analysis: A new approach to distinguish organic and functional tremor types.

    Science.gov (United States)

    Kramer, G; Van der Stouwe, A M M; Maurits, N M; Tijssen, M A J; Elting, J W J

    2018-01-01

    To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. In this pilot study, polymyography recordings were studied retrospectively of 26 Parkinsonian (PT), 26 functional (FT), 26 essential (ET), and 20 enhanced physiological (EPT) tremor patients. Per patient one segment of 20 s in duration, in which tremor was present continuously in the same posture, was selected. We studied several coherence and phase related parameters, and analysed all possible muscle combinations of the flexor and extensor muscles of the upper and fore arm. The area under the receiver operating characteristic curve (AUC-ROC) was applied to compare WCA and standard coherence analysis to distinguish tremor subtypes. The percentage of time with significant coherence (PTSC) and the number of periods without significant coherence (NOV) proved the most discriminative parameters. FT could be discriminated from organic (PT, ET, EPT) tremor by high NOV (31.88 vs 21.58, 23.12 and 10.20 respectively) with an AUC-ROC of 0.809, while standard coherence analysis resulted in an AUC-ROC of 0.552. EMG-EMG WCA analysis might provide additional variables to distinguish functional from organic tremor. WCA might prove to be of additional value to discriminate between tremor types. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  9. A rigorous analysis of digital pre-emphasis and DAC resolution for interleaved DAC Nyquist-WDM signal generation in high-speed coherent optical transmission systems

    Science.gov (United States)

    Weng, Yi; Wang, Junyi; He, Xuan; Pan, Zhongqi

    2018-02-01

    The Nyquist spectral shaping techniques facilitate a promising solution to enhance spectral efficiency (SE) and further reduce the cost-per-bit in high-speed wavelength-division multiplexing (WDM) transmission systems. Hypothetically, any Nyquist WDM signals with arbitrary shapes can be generated by the use of the digital signal processing (DSP) based electrical filters (E-filter). Nonetheless, in actual 100G/ 200G coherent systems, the performance as well as DSP complexity are increasingly restricted by cost and power consumption. Henceforward it is indispensable to optimize DSP to accomplish the preferred performance at the least complexity. In this paper, we systematically investigated the minimum requirements and challenges of Nyquist WDM signal generation, particularly for higher-order modulation formats, including 16 quadrature amplitude modulation (QAM) or 64QAM. A variety of interrelated parameters, such as channel spacing and roll-off factor, have been evaluated to optimize the requirements of the digital-to-analog converter (DAC) resolution and transmitter E-filter bandwidth. The impact of spectral pre-emphasis has been predominantly enhanced via the proposed interleaved DAC architecture by at least 4%, and hence reducing the required optical signal to noise ratio (OSNR) at a bit error rate (BER) of 10-3 by over 0.45 dB at a channel spacing of 1.05 symbol rate and an optimized roll-off factor of 0.1. Furthermore, the requirements of sampling rate for different types of super-Gaussian E-filters are discussed for 64QAM Nyquist WDM transmission systems. Finally, the impact of the non-50% duty cycle error between sub-DACs upon the quality of the generated signals for the interleaved DAC structure has been analyzed.

  10. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  11. Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also......An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed...

  12. Suppression of 3D coherent noise by areal geophone array; Menteki jushinki array ni yoru sanjigen coherent noise no yokusei

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, R; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-05-01

    For improving the quality of data collected by reflection seismic exploration, a lattice was deployed at one point of a traverse line, and the data therefrom were used to study the 3D coherent noise suppression effect of the areal array. The test was conducted at a Japan National Oil Corporation test field in Kashiwazaki City, Niigata Prefecture. The deployed lattice had 144 vibration receiving points arrayed at intervals of 8m composing an areal array, and 187 vibration generating points arrayed at intervals of 20m extending over 6.5km. Data was collected at the vibration receiving points in the lattice, each point acting independently from the others, and processed for the composition of a large areal array, with the said data from plural vibration receiving points added up therein. As the result of analysis of the records covering the data collected at the receiving points in the lattice, it is noted that an enlarged areal array leads to a higher S/N ratio and that different reflection waves are emphasized when the array direction is changed. 1 ref., 6 figs.

  13. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  14. Digital Beamforming Scatterometer

    Science.gov (United States)

    Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul

    2009-01-01

    This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate

  15. Comparison of Adaptation between the Major Connectors Fabricated from Intraoral Digital Impressions and Extraoral Digital Impressions.

    Science.gov (United States)

    Gan, Ning; Ruan, Yaye; Sun, Jian; Xiong, Yaoyang; Jiao, Ting

    2018-01-11

    The objective was to compare the adaptation between the major connectors of removable partial dentures derived from intraoral digital impressions and extraoral digital impressions. Twenty-four volunteers were enrolled. Each volunteer received an intraoral digital impression and one extraoral digital impression digitized from conventional gypsum impression. A software was used to create the major connectors on digital impression datasets. After all the virtual major connectors designed from Group intraoral digital impressions (Group I) and Group extraoral digital impressions (Group E) were directly fabricated by 3D printing technique, the adaptation of the final major connectors in volunteers' mouths were measured. The adaptation ranged from 159.87 to 577.99 μm in Group I while from 120.83 to 536.17 μm in Group E. The adaptation of major connectors in Group I were found better at the midline palatine suture while the adaptation of major connectors in Group E were found better at the two sides of the palatal vault. In both groups, the highest accuracy in adaptation was revealed at the anterior margin of the major connectors. It is feasible to manufacture the major connectors by digital impression and 3D printing technique. Both the adaptation of the two kinds of digital impressions were clinical acceptable.

  16. Ionospheric Coherence Bandwidth Measurements in the Lower VHF Frequency Range

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2015-12-01

    The United States Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 820 - 1100 MHz. In this paper, we present simultaneous ionospheric coherence bandwidth and S4 scintillation index measurements in the 32 - 44 MHz frequency range collected during the ESCINT equatorial scintillation experiment. 40-MHz continuous wave (CW) and 32 - 44 MHz swept frequency signals were transmitted simultaneously to the RFProp receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in three separate campaigns during the 2014 and 2015 equinoxes. Results show coherence bandwidths as small as ~ 1 kHz for strong scintillation (S4 > 0.7) and indicate a high degree of ionospheric variability and irregularity on 10-m spatial scales. Spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities are also observed and are dominant at low elevation angles. The results are compared to previous measurements and available scaling laws.

  17. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  18. Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations

    Science.gov (United States)

    Chityala, Ravishankar; Vidal, Carola; Jones, Robert

    Optical Coherence Tomography (OCT) has seen broad application in dentistry including early carious lesion detection and imaging defects in resin composite restorations. This study investigates expanding the clinical usefulness by investigating methods to use OCT for obtaining three-dimensional (3D) digital impressions, which can be integrated to CAD/CAM manufacturing of indirect restorations. 3D surface topography `before' and `after' a cavity preparation was acquired by an intraoral cross polarization swept source OCT (CP-OCT) system with a Micro-Electro-Mechanical System (MEMS) scanning mirror. Image registration and segmentation methods were used to digitally construct a replacement restoration that modeled the original surface morphology of a hydroxyapatite sample. After high resolution additive manufacturing (e.g. polymer 3D printing) of the replacement restoration, micro-CT imaging was performed to examine the marginal adaptation. This study establishes the protocol for further investigation of integrating OCT with CAD/CAM of indirect dental restorations.

  19. Transceivers and receivers for quantum key distribution and methods pertaining thereto

    Science.gov (United States)

    DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.; Lentine, Anthony; Davids, Paul; Camacho, Ryan

    2018-02-27

    Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.

  20. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  1. Characterization of microcalcification: can digital monitor zooming replace magnification mammography in full-field digital mammography?

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Kwak, Jin Young; Son, Eun Ju; Youk, Ji Hyun; Choi, Seon Hyeong; Oh, Ki Keun; Han, Mooyoung

    2009-01-01

    The aim of this study was to compare the diagnostic accuracy and image quality of microcalcifications in zoomed digital contact mammography with digital magnification mammography. Three radiologists with different levels of experience in mammography reviewed 120 microcalcification clusters in 111 patients with a full-field digital mammography system relying on digital magnification mammogram (MAG) images and zoomed images from contact mammography (ZOOM) using commercially available zooming systems on monitors. Each radiologist estimated the probability of malignancy and rated the image quality and confidence rate. Performance was evaluated by sensitivity, specificity, positive predictive value, negative predictive value, and receiver operating characteristic (ROC) analysis. All three radiologists rated MAG images higher than ZOOM images for sensitivity with statistical significance (average value, 92% vs. 87%, P<0.05) and performance by ROC analysis improved with MAG imaging. The confidence rate for diagnosis decision and the assessment of lesion characteristics were also better in MAG images than in ZOOM images with statistical significance (P<0.0001). Digital magnification mammography can enhance diagnostic performance when characterizing microcalcifications. Images zoomed from digital contact mammography cannot serve as an alternative to direct magnification digital mammography. (orig.)

  2. Reflections on a digital upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Tadjalli, M.

    2013-07-01

    Upon receiving US NRC's approval in 2010, the first RPS/ESPS digital upgrade using TELEPERM® XS technology was successfully installed in Spring of 2011 at the first Unit of a three-unit station, followed by the 2nd Unit installation in spring of 2012. Both Units' systems have been operating flawlessly since installation. After about two years of operation, a reflection on digital upgrades and lessons learned, from a vendor perspective, provides valuable insight for the commercial nuclear power industry.

  3. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  4. Digital mineral logging system

    International Nuclear Information System (INIS)

    West, J.B.

    1980-01-01

    A digital mineral logging system acquires data from a mineral logging tool passing through a borehole and transmits the data uphole to an electronic digital signal processor. A predetermined combination of sensors, including a deviometer, is located in a logging tool for the acquisition of the desired data as the logging tool is raised from the borehole. Sensor data in analog format is converted in the logging tool to a digital format and periodically batch transmitted to the surface at a predetermined sampling rate. An identification code is provided for each mineral logging tool, and the code is transmitted to the surface along with the sensor data. The self-identifying tool code is transmitted to the digital signal processor to identify the code against a stored list of the range of numbers assigned to that type of tool. The data is transmitted up the d-c power lines of the tool by a frequency shift key transmission technique. At the surface, a frequency shift key demodulation unit transmits the decoupled data to an asynchronous receiver interfaced to the electronic digital signal processor. During a recording phase, the signals from the logging tool are read by the electronic digital signal processor and stored for later processing. During a calculating phase, the stored data is processed by the digital signal processor and the results are outputted to a printer or plotter, or both

  5. The Development of Digital Collections and Resources Organization Related Projects in Taiwan

    Directory of Open Access Journals (Sweden)

    Hsueh-Hua Chen

    2001-12-01

    Full Text Available With the development of Internet, digital libraries/museums have received worldwide attention and many developed countries are doing extensive researches on digital libraries/museums. In Taiwan, many institutions have digitized their rare collections. This paper introduces the recent development of digital projects in Taiwan, including: Digital Museum Project, National Digital Collection Project and National Culture Database Project, and also especially introduces some resources organization related projects. [Article content in Chinese

  6. Principles of digital and analog communications

    CERN Document Server

    Gibson, Jerry D

    1993-01-01

    This textbook for the first course in communications covers analog and digital systems and emphasizes digital communications. It covers data transmission, signal space, optimal receivers, and pulse code modulation, and includes readable treatments of coded modulation and continuous phase modulation. Advanced mathematics is kept to a minimum-Fourier series, Fourier transforms, linear systems, random variables, and stochastic process are described thoroughly. It includes data compression of speech and images and a full chapter coverage of information theory, rate distortion theory and coded modulation. It relates digital communications theory to current practice and covers digital communications over band-width constrained channels, including pulse shaping and equilization. -- Dieser Text bezieht sich auf eine vergriffene oder nicht verfügbare Ausgabe dieses Titels.

  7. Critical Digital Tourism Studies

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Munar, Ana María

    2013-01-01

    This paper advocates the need for a critical and cross-disciplinary research agenda on the field of digital technologies and tourism. The changing virtual landscape of tourism has received increased attention by tourism scholars. However, contemporary studies on information technologies (IT......) are approached mostly from a business administration perspective and informed by conceptual frameworks developed in management and marketing. IT studies in tourism are still at a stage similar to the first advocacy phase of tourism research in general (Jafari, 1990) and are seldom inspired by relevant...... to studying digital socio-technical systems and virtual mediation in tourism. Critical Digital Tourism Studies opens a new cross-disciplinary field where the sociality of virtual tourism interactions is examined (entailing the study of structures, social rules, ideologies, power relations, sustainability...

  8. Radiographic techniques for digital mammography

    International Nuclear Information System (INIS)

    Horita, Katsuhei

    2007-01-01

    Since the differences in X-ray absorption between various breast tissues are small, a dedicated X-ray system for examination of the breast and a high-contrast, high-resolution screen/film system (SFM) (light-receiving system) are employed for X-ray diagnosis. Currently, however, there is a strong trend toward digital imaging in the field of general radiography, and this trend is also reflected in the field of mammographic examination. In fact, approximately 70% of facilities purchasing new mammography systems are now selecting a digital mammography system (DRM). Given this situation, this report reviews the differences between SFM and DRM and discusses the radiographic techniques and quality assurance procedures for digital mammography. (author)

  9. Smart Antenna UKM Testbed for Digital Beamforming System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  10. Beyond digital interference cancellation

    NARCIS (Netherlands)

    Venkateswaran, V.

    2010-01-01

    One of the major drawbacks towards the realization of MIMO and multi-sensor wireless communication systems is that multiple antennas at the receiver each have their own separate radio frequency (RF) front ends and analog to digital converter (ADC) units, leading to increased circuit size and power

  11. Measurement-device-independent quantum digital signatures

    Science.gov (United States)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  12. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  13. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  14. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  15. Digital inductive teaching method of strabismus

    OpenAIRE

    Zhao-Jiang Du; Peng Li; Li Wang

    2015-01-01

    AIM: To reform the traditional teaching modes of strabismus by using digital induction to enhance logic in teaching process.METHODS: The study was performed in the group of 20 eight-year program clinical undergraduates from the class of 2009 and 198 five-year program clinical undergraduates from the class of 2010. These students were divided into two groups receiving traditional and digital induction teaching over the same period respectively. After classes, questionnaire survey and classroom...

  16. Fully Integrated SAW-Less Discrete-Time Superheterodyne Receiver

    NARCIS (Netherlands)

    Madadi, I.

    2015-01-01

    There are nowadays strong business and technical demands to integrate radio- frequency (RF) receivers (RX) into a complete system-on-chip (SoC) realized in scaled digital processes technology. As a consequence, the RF circuitry has to function well in face of reduced power supply ( V DD ) while the

  17. Perceptions of digital marketing tools in new micro-enterprises

    OpenAIRE

    Isohella, L. (Lari); Oikarinen, E.-L. (Eeva-Liisa); Saarela, M. (Martti); Muhos, M. (Matti); Nikunen, T. (Tuulia)

    2017-01-01

    Abstract Digitalization is continuously forming our daily lives and routines. It offers us not only new and fascinating opportunities as consumers but also creates possibilities that were previously perceived as unavailable to companies. Digital marketing as a new medium in various business contexts has received much attention among researchers and practitioners. However, little research has been conducted on digital marketing in new micro-enterprises. Furthermore, the influence of human p...

  18. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  19. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-09-12

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  20. Laser Digital Cinema

    Science.gov (United States)

    Takeuchi, Eric B.; Flint, Graham W.; Bergstedt, Robert; Solone, Paul J.; Lee, Dicky; Moulton, Peter F.

    2001-03-01

    Electronic cinema projectors are being developed that use a digital micromirror device (DMDTM) to produce the image. Photera Technologies has developed a new architecture that produces truly digital imagery using discrete pulse trains of red, green, and blue light in combination with a DMDTM where in the number of pulses that are delivered to the screen during a given frame can be defined in a purely digital fashion. To achieve this, a pulsed RGB laser technology pioneered by Q-Peak is combined with a novel projection architecture that we refer to as Laser Digital CameraTM. This architecture provides imagery wherein, during the time interval of each frame, individual pixels on the screen receive between zero and 255 discrete pulses of each color; a circumstance which yields 24-bit color. Greater color depth, or increased frame rate is achievable by increasing the pulse rate of the laser. Additionally, in the context of multi-screen theaters, a similar architecture permits our synchronously pulsed RGB source to simultaneously power three screens in a color sequential manner; thereby providing an efficient use of photons, together with the simplifications which derive from using a single DMDTM chip in each projector.

  1. Compressed Sensing Methods in Radio Receivers Exposed to Noise and Interference

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek

    , there is a problem of interference, which makes digitization of radio receivers even more dicult. High-order low-pass lters are needed to remove interfering signals and secure a high-quality reception. In the mid-2000s a new method of signal acquisition, called compressed sensing, emerged. Compressed sensing...... the downconverted baseband signal and interference, may be replaced by low-order lters. Additional digital signal processing is a price to pay for this feature. Hence, the signal processing is moved from the analog to the digital domain. Filtering compressed sensing, which is a new application of compressed sensing...

  2. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Science.gov (United States)

    2010-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations. [69 FR 69331, Nov. 29, 2004] ...

  3. Digital communication device

    DEFF Research Database (Denmark)

    2005-01-01

    The invention concerns a digital communication device like a hearing aid or a headset. The hearing aid or headset has a power supply, a signal processing device, means for receiving a wireless signal and a receiver or loudspeaker, which produces an audio signal based on a modulated pulsed signal...... point is provided which is in electrical contact with the metal of the metal box and whereby this third connection point is connected to the electric circuitry of the communication device at a point having a stable and well defined electrical potential. In this way the electro-and magnetic radiation...

  4. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  5. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  6. Real-time dual-polarization transmission based on hybrid optical wireless communications

    Science.gov (United States)

    Sousa, Artur N.; Alimi, Isiaka A.; Ferreira, Ricardo M.; Shahpari, Ali; Lima, Mário; Monteiro, Paulo P.; Teixeira, António L.

    2018-01-01

    We present experimental work on a gigabit-capable and long-reach hybrid coherent UWDM-PON plus FSO system for supporting different applications over the same fiber infrastructure in the mobile backhaul (MBH) networks. Also, for the first time, we demonstrate a reconfigurable real-time DSP transmission/reception of DP-QPSK signals over standard single-mode fiber (SSMF) and FSO links. The receiver presented is based on a commercial field-programmable gate array (FPGA). The considered communication links are based on 20 UDWDM channels with 625 Mbaud and 2.5 GHz channel spacing. We are able to demonstrate the lowest sampling rate required for digital coherent PON by employing four 1.25 Gsa/s ADCs using an electrical front-end receiver that offers only 1 GHz analog bandwidth. We achieved this by implementing a phase and polarization diversity coherent receiver combined with the DP-QPSK modulation formats. The system performance is estimated in terms of receiver sensitivity. The results show the viability of coherent PON and flexible dual-polarization supported by software-defined transceivers for the MBH.

  7. Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode.

    Science.gov (United States)

    Chi, Yu-Chieh; Li, Yi-Cheng; Wang, Huai-Yung; Peng, Peng-Chun; Lu, Hai-Han; Lin, Gong-Ru

    2012-08-27

    Coherently injection-locked and directly modulated weak-resonant-cavity laser diode (WRC-FPLD) for back-to-back optical 16-quadrature-amplitude-modulation (QAM) and 52-subcarrier orthogonal frequency division multiplexing (OFDM) transmission with maximum bit rate up to 4 Gbit/s at carrier frequency of 2.5 GHz is demonstrated. The WRC-FPLD transmitter source is a specific design with very weak-resonant longitudinal modes to preserve its broadband gain spectral characteristics for serving as a colorless WDM-PON transmitter. Under coherent injection-locking, the relative-intensity noise (RIN) of the injection-locked WRC-FPLD can be suppressed to ?105 dBc/Hz and the error vector magnitude of the received optical OFDM data is greatly reduced with the amplitude error suppressed down 5.5%. Such a coherently injection-locked single-mode WRC-FPLD can perform both the back-to-back and the 25-km-SMF 16-QAM-52-OFDM transmissions with a symbol rate of 20-MSa/s in each OFDM subcarrier. After coherent injection locking, the BER of the back-to-back transmitted 16-QAM-52-OFDM data is reduced to 2.5 × 10(-5) at receiving power of ?10 dBm. After propagating along a 25-km-long SMF, a receiving power sensitivity of ?7.5 dBm is required to obtain a lowest BER of 2.5 × 10(-5), and a power penalty of 2.7 dB is observed when comparing with the back-to-back transmission.

  8. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  9. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  10. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  11. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  12. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  13. Consistency and stability of narrative coherence: An examination of personal narrative as a domain of adult personality.

    Science.gov (United States)

    Waters, Theodore E A; Köber, Christin; Raby, K Lee; Habermas, Tilmann; Fivush, Robyn

    2018-03-02

    Narrative theories of personality assume that individual differences in coherence reflect consistent and stable differences in narrative style rather than situational and event-specific differences (e.g., McAdams & McLean, 2013). However, this assumption has received only modest empirical attention. Therefore, we present two studies testing the theoretical assumption of a consistent and stable coherent narrative style. Study 1 focused on the two most traumatic and most positive life events of 224 undergraduates. These event-specific narratives were coded for three coherence dimensions: theme, context, and chronology (NaCCs; Reese et al., 2011). Study 2 focused on two life narratives told 4 years apart by 98 adults, which were coded for thematic, causal, and temporal coherence (Köber, Schmiedek, & Habermas, 2015). Confirmatory factor analysis in both studies revealed that individual differences in the coherence ratings were best explained by a model including both narrative style and event-/narration-specific latent variables. The ways in which we tell autobiographical narratives reflect a stable feature of individual differences. Further, they suggest that this stable element of personality is necessary, but not sufficient, in accounting for specific event and life narrative coherence. © 2018 Wiley Periodicals, Inc.

  14. Wide-band low-noise distributed front-end for multi-gigabit CPFSK receivers

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Ebskamp, F; Pedersen, Rune Johan Skullerud

    1994-01-01

    In this paper a distributed optical front-end amplifier for a coherent optical CPFSK receiver is presented. The measured average input noise current density is 20 pA/√(Hz) in a 3-13 GHz bandwidth. This is the lowest value reported for a distributed optical front-end in this frequency range....... The front-end is tested in a system set-up at a bit rate of 2.5 Gbit/s and a receiver sensitivity of -41.5 dBm is achieved at a 10-9 bit error rate...

  15. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  16. Receiver operating characteristic analysis of chest radiographs with computed radiography and conventional analog films

    International Nuclear Information System (INIS)

    Morioka, C.; Brown, K.; Dalter, S.; Milos, M.J.; Huang, H.K.; Kangarloo, H.; Boechat, I.M.; Batra, P.

    1988-01-01

    Receiver operating characteristic is used to compare the image quality of films obtained digitally using computed radiography (CR) and conventionally using analog film following fluoroscopic examination. Twenty-four cases, some with a solitary noncalcified nodule and/or pneumothorax, were collected. Ten radiologists have been tested viewing analog and CR digital films separately. Preliminary results indicate that there is no significant difference in the ability to detect either a pneumothorax or a solitary noncalcified nodule when comparing CR digital film with conventional analog film. A comparison of the CR digital image displayed on a 2,048-line monitor against analog and CR digital film is in progress

  17. Ping-Pong Beam Training with Hybrid Digital-Analog Antenna Arrays

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro; Carvalho, Elisabeth De; Andersen, Jørgen Bach

    2017-01-01

    In this article we propose an iterative training scheme that approximates optimal beamforming between two transceivers equipped with hybrid digital-analog antenna arrays. Inspired by methods proposed for digital arrays that exploit algebraic power iterations, the proposed training procedure...... is based on a series of alternate (ping-pong) transmissions between the two devices over a reciprocal channel. During the transmissions, the devices updates their digital beamformers by conjugation and normalization operations on the received digital signal, while the analog beamformers are progressively...

  18. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  19. The effects of gray scale image processing on digital mammography interpretation performance.

    Science.gov (United States)

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  20. Sense of coherence and its associations with psychosocial health: results of survey of the unemployed in Kaunas.

    Science.gov (United States)

    Stankūnas, Mindaugas; Kalediene, Ramune; Starkuviene, Skirmante

    2009-01-01

    OBJECTIVE. To evaluate the associations between sense of coherence and psychosocial health among unemployed adult population. MATERIAL AND METHODS. The data were collected during a cross-sectional study in 2005. There were 429 filled-in questionnaires received (response rate, 53.6%) from unemployed persons registered at the Kaunas Labor Market Office (Lithuania). For the assessment of the sense of coherence, a short 13-item version of the Orientation to Life Questionnaire was used. Long-term unemployment was defined as lasting 12 months or longer. Logistic regression was used to estimate the risk factors having influence on sense of coherence. The risk was evaluated using odds ratio (OR). RESULTS. The mean score for sense of coherence was 56.6+/-11.2 (min, 13; max, 91). Significantly higher sense of coherence was found among the short-term unemployed as compare to the long-term ones. Analysis showed that sense of coherence was significantly higher in males, more educated and less materially deprived groups. The findings indicated that persons with depression, suicide intentions, more intensive alcohol consumption (after the job loss), poor self-reported health, feelings of loneliness and shame, and poor relations with family reported lower sense of coherence. The risk of low sense of coherence was significantly higher for females (OR=2.97) and the long-term unemployed (OR=1.81). Nevertheless, higher education (OR=0.73) and income (OR=0.83) were the factors that significantly improved sense of coherence. CONCLUSIONS. Sense of coherence was low among the unemployed in Kaunas. Sense of coherence was lower among the unemployed with negative psychosocial health characteristics in comparison to the unemployed with positive characteristics.

  1. Virtually Dead: Digital Public Mortuary Archaeology

    Directory of Open Access Journals (Sweden)

    Howard Williams

    2015-12-01

    Full Text Available Over recent decades, the ethics, politics and public engagements of mortuary archaeology have received sustained scrutiny, including how we handle, write about and display the archaeological dead. Yet the burgeoning use of digital media to engage different audiences in the archaeology of death and burial have so far escaped attention. This article explores categories and strategies by which digital media create virtual communities engaging with mortuary archaeology. Considering digital public mortuary archaeology (DPMA as a distinctive theme linking archaeology, mortality and material culture, we discuss blogs, vlogs and Twitter as case studies to illustrate the variety of strategies by which digital media can promote, educate and engage public audiences with archaeological projects and research relating to death and the dead in the human past. The article then explores a selection of key critical concerns regarding how the digital dead are currently portrayed, identifying the need for further investigation and critical reflection on DPMA’s aims, objectives and aspired outcomes.

  2. Development of a platform-independent receiver control system for SISIFOS

    Science.gov (United States)

    Lemke, Roland; Olberg, Michael

    1998-05-01

    Up to now receiver control software was a time consuming development usually written by receiver engineers who had mainly the hardware in mind. We are presenting a low-cost and very flexible system which uses a minimal interface to the real hardware, and which makes it easy to adapt to new receivers. Our system uses Tcl/Tk as a graphical user interface (GUI), SpecTcl as a GUI builder, Pgplot as plotting software, a simple query language (SQL) database for information storage and retrieval, Ethernet socket to socket communication and SCPI as a command control language. The complete system is in principal platform independent but for cost saving reasons we are using it actually on a PC486 running Linux 2.0.30, which is a copylefted Unix. The only hardware dependent part are the digital input/output boards, analog to digital and digital to analog convertors. In the case of the Linux PC we are using a device driver development kit to integrate the boards fully into the kernel of the operating system, which indeed makes them look like an ordinary device. The advantage of this system is firstly the low price and secondly the clear separation between the different software components which are available for many operating systems. If it is not possible, due to CPU performance limitations, to run all the software in a single machine,the SQL-database or the graphical user interface could be installed on separate computers.

  3. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  4. Progress of Digital Communication Technology

    Science.gov (United States)

    Yamazaki, Satoshi; Asano, David K.

    In wireless communications, since transmitted signals are scattered from many objects, many propagation paths with different time delays are formed. When transmitting and receiving while moving in such an environment, received signals will be affected by intricate selective fading in both the frequency and time domains. In this technical note, first, the mechanism of fading phenomena is clarified, changes in previous phase compensation technology are surveyed, and a foundation for digital wireless-communications technology is provided.

  5. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  6. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  7. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  8. An emergent theory of digital library metadata enrich then filter

    CERN Document Server

    Stevens, Brett

    2015-01-01

    An Emergent Theory of Digital Library Metadata is a reaction to the current digital library landscape that is being challenged with growing online collections and changing user expectations. The theory provides the conceptual underpinnings for a new approach which moves away from expert defined standardised metadata to a user driven approach with users as metadata co-creators. Moving away from definitive, authoritative, metadata to a system that reflects the diversity of users’ terminologies, it changes the current focus on metadata simplicity and efficiency to one of metadata enriching, which is a continuous and evolving process of data linking. From predefined description to information conceptualised, contextualised and filtered at the point of delivery. By presenting this shift, this book provides a coherent structure in which future technological developments can be considered.

  9. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  10. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  11. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  12. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  13. Assessment of Snow Status Changes Using L-HH Temporal-Coherence Components at Mt. Dagu, China

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-09-01

    Full Text Available Multitemporal Phased Array type L-band Synthetic Aperture Radar (PALSAR horizontally transmitted and horizontally received (HH coherence data was decomposed into temporal-coherence, spatial-coherence, and thermal noise components. The multitemporal data spanned between February and May of 2008, and consisted of two pairs of interferometric SAR (InSAR images formed by consecutive repeat passes. With the analysis of ancillary data, a snow increase process and a snow decrease process were determined. Then, the multiple temporal-coherence components were used to study the variation of thawing and freezing statuses of snow because the components can mostly reflect the temporal change of the snow that occurred between two data acquisitions. Compared with snow mapping results derived from optical images, the outcomes from the snow increase process and the snow decrease process reached an overall accuracy of 71.3% and 79.5%, respectively. Being capable of delineating not only the areas with or without snow cover but also status changes among no-snow, wet snow, and dry snow, we have developed a critical means to assess the water resource in alpine areas.

  14. Eumetcast receiving station integration withinthe satellite image database interface (SAIDIN) system.

    OpenAIRE

    Chic, Òscar

    2010-01-01

    Within the tasks devoted to operational oceanography, Coastal Ocean Observatory at Institut de Ciències del Mar (CSIC) has acquired an European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Broadcast System for Environmental Data (EUMETCast reception system) to replace a satellite direct broadcast system that receives data via High Resolution Picture Transmission (HRPT). EUMETCast system can receive data based on standard Digital Video Broadcastin...

  15. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  16. Digital beam position monitor for the HAPPEX experiment

    International Nuclear Information System (INIS)

    Sherlon Kauffman; John Musson; Hai Dong; Lisa Kaufman; Arne Freyberger

    2005-01-01

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high precision (1um), high bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a RF receiver daughter board and a digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 3 MHz and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with resolution of 1um, 100 kHz output bandwidth, and overall latency of 1us. The results are available in both the analog and digital format

  17. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    Science.gov (United States)

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  18. Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by States

    Science.gov (United States)

    Shair, Syazreen Niza; Yusof, Aida Yuzi; Asmuni, Nurin Haniah

    2017-05-01

    Coherent mortality forecasting models have recently received increasing attention particularly in their application to sub-populations. The advantage of coherent models over independent models is the ability to forecast a non-divergent mortality for two or more sub-populations. One of the coherent models was recently developed by [1] known as the product-ratio model. This model is an extension version of the functional independent model from [2]. The product-ratio model has been applied in a developed country, Australia [1] and has been extended in a developing nation, Malaysia [3]. While [3] accounted for coherency of mortality rates between gender and ethnic group, the coherency between states in Malaysia has never been explored. This paper will forecast the mortality rates of Malaysian sub-populations according to states using the product ratio coherent model and its independent version— the functional independent model. The forecast accuracies of two different models are evaluated using the out-of-sample error measurements— the mean absolute forecast error (MAFE) for age-specific death rates and the mean forecast error (MFE) for the life expectancy at birth. We employ Malaysian mortality time series data from 1991 to 2014, segregated by age, gender and states.

  19. CAPILLARY NETWORK ALTERATIONS IN X-LINKED RETINOSCHISIS IMAGED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E

    2018-06-05

    To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.

  20. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  1. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  2. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    Science.gov (United States)

    2017-01-16

    hardware. An 8-channel ALSTAR array prototype was constructed and demonstrated to achieve 125.5 dB effective isotropic isolation between broadside...transmit and receive beams over a 100 MHz instantaneous band centered at 2.45 GHz. I. INTRODUCTION A phased array capable of Simultaneous Transmit and...Receive (STAR) could provide significant benefits for many applications including communications, radar, spectral sens- ing, and multifunctional systems

  3. Coherent x-rays from PEP

    International Nuclear Information System (INIS)

    Baird, S.; Nuhn, H.-D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C.

    1991-01-01

    This paper explores the use of a large-circumference, high-energy, electron-positron collider such as PEP to drive a free-electron laser (FEL), producing high levels of coherent power at short wavelengths. The author consider Self-Amplified Spontaneous Emission (SASE), in which electron bunches with low emittance, high peak current and small energy spread radiate coherently in a single passthrough a long undulator. As the electron beam passes down the undulator, its interaction with the increasingly intense spontaneous radiation causes a bunch density modulation at the optical wavelength, resulting in stimulated emissional growth of coherent power in a single pass. The need for optical-cavity mirrors, which place a lower limit on the wavelength of a conventional FEL oscillator, is avoided. The authors explore various combinations of electron-beam and undulator parameters, as well as special undulator designs and optical klystrons (OK), to reach high average or peak coherent power at wavelengths around 40 angstrom by achieving significant exponential gain or full saturation. Examples are presented for devices that achieve high peak coherent power (up to about 400 MW) with lower average coherent power (about 20 mW) and other devices which produce a few watts of average coherent power

  4. Digital Signal Processing in Beam Instrumentation Latest Trends and Typical Applications

    CERN Document Server

    Angoletta, Maria Elena

    2003-01-01

    The last decade has seen major improvements in digital hardware, algortithms and software, which have trickled down to the Beam Instrumentation (BI) area. An advantageous transition is taking place towards systems with an ever-stronger digital presence. Digital systems are assembled by means of a rather small number of basic building blocks, with improved speed, precision, signal-to-noise ratio, dynamic range, flexibility, and accompanied by a range of powerful and user-friendly development tools. The paper reviews current digital BI trends, including using Digital Signal Processors, Field Programmable Gate Arrays, Digital Receivers and General Purpose Processors as well as some useful processing algorithms. Selected digital applications are illustrated on control/feedback and beam diagnostics.

  5. Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy

    Science.gov (United States)

    Insero, G.; Clivati, C.; D'Ambrosio, D.; Cancio Pastor, P.; Verde, M.; Schunemann, P. G.; Zondy, J.-J.; Inguscio, M.; Calonico, D.; Levi, F.; De Natale, P.; Santambrogio, G.; Borri, S.

    2018-02-01

    We report on a metrological-grade mid-IR source with a 10-14 short-term instability for high-precision spectroscopy. Our source is based on the combination of a quantum cascade laser and a coherent radiation obtained by difference-frequency generation in an orientation-patterned gallium phosphide (OP-GaP) crystal. The pump and signal lasers are locked to an optical frequency comb referenced to the primary frequency standard via an optical fiber link. We demonstrate the robustness of the apparatus by measuring a vibrational transition around 6 μm on a metastable state of CO molecuels with 11 digits of precision.

  6. A Sigma-Delta ADC with Decimation and Gain Control Function for a Bluetooth Receiver in 130 nm Digital CMOS

    Directory of Open Access Journals (Sweden)

    Koh Jinseok

    2006-01-01

    Full Text Available We present a discrete-time second-order multibit sigma-delta ADC that filters and decimates by two the input data samples. At the same time it provides gain control function in its input sampling stage. A 4-tap FIR switched capacitor (SC architecture was chosen for antialiasing filtering. The decimation-by-two function is realized using divided-by-two clock signals in the antialiasing filter. Antialiasing, gain control, and sampling functions are merged in the sampling network using SC techniques. This compact architecture allows operating the preceding blocks at twice the ADC's clock frequency, thus improving the noise performance of the wireless receiver channel and relaxing settling requirements of the analog building blocks. The presented approach has been validated and incorporated in a commercial single-chip Bluetooth radio realized in a 1.5 V 130 nm digital CMOS process. The measured antialiasing filtering shows better than 75 dB suppression at the folding frequency band edge. A 67 dB dynamic range was measured with a sampling frequency of 37.5MHz.

  7. Research of optical coherence tomography microscope based on CCD detector

    Science.gov (United States)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  8. A Semiotic Reading of Digital Avatars and Their Role of Uncertainty Reduction in Digital Communication

    Directory of Open Access Journals (Sweden)

    Sercan Şengün

    2014-12-01

    Full Text Available This study tries to explain the role of digital avatars for communication in two distinct ways. In the first part it debates what kinds of meanings avatars have for their users. To answer this question based on semiotic theories of Saussure and Lacan, a new approach will be proposed. Saussure’s theory of signs and Lacan’s theory of chain of signifiers as an entry for self, will be merged to form a new viewpoint. In the second part, the role of avatars in the digital communication for the receivers will be approached by Berger’s uncertainty reduction theory.

  9. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...

  10. An anti-image interference quadrature IF architecture for satellite receivers

    Directory of Open Access Journals (Sweden)

    He Weidong

    2014-08-01

    Full Text Available Since Global Navigation Satellite System (GNSS signals span a wide range of frequency, wireless signals coming from other communication systems may be aliased and appear as image interference. In quadrature intermediate frequency (IF receivers, image aliasing due to in-phase and quadrature (I/Q channel mismatches is always a big problem. I/Q mismatches occur because of gain and phase imbalances between quadrature mixers and capacitor mismatches in analog-to-digital converters (ADC. As a result, the dynamic range and performance of a receiver are severely degraded. In this paper, several popular receiver architectures are summarized and the image aliasing problem is investigated in detail. Based on this analysis, a low-IF architecture is proposed for a single-chip solution and a novel and feasible anti-image algorithm is investigated. With this anti-image digital processing, the image reject ratio (IRR can reach approximately above 50 dB, which relaxes image rejection specific in front-end circuit designs and allows cheap and highly flexible analog front-end solutions. Simulation and experimental data show that the anti-image algorithm can work effectively, robustly, and steadily.

  11. Exploring coherent phenomena and energy discrimination in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Thomas

    2011-05-04

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  12. Exploring coherent phenomena and energy discrimination in X-ray imaging

    International Nuclear Information System (INIS)

    Koenig, Thomas

    2011-01-01

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  13. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  14. CERN: Digitally open, too

    CERN Multimedia

    Computer Security Team

    2013-01-01

    The Open Days are here!! From tomorrow onwards, we will be welcoming thousands of people to CERN. No barriers, no boundaries!   For decades, we have welcomed researchers and visitors from around the world to work at CERN, discuss physics research and attend our training sessions, lectures and conferences. This is how fundamental research should be conducted!!! But have you ever noticed how you are welcome at CERN in the digital world, too? Once you are affiliated and are registered with CERN, you receive a CERN computing account and e-mail address.  You can register your laptops, PCs and smartphones to use our (wireless) network, you can easily create your personal webpage, and profit from a vast disk space for file storage (AFS and DFS). CERN is indeed an Open Campus and not only during the Open Days. CERN is an Open Campus in the digital world. This digital Open Campus culture is exactly the reason why “computer security” has been dele...

  15. Coherent dual-frequency lidar system design for distance and speed measurements

    Science.gov (United States)

    Zheng, Xingyuan; Zhao, Changming; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi

    2018-01-01

    Lidars have a wide range of applications in military detection and civilian remote sensing. Coherent Dual-Frequency Lidar (CDFL) is a new concept of laser radar that is using electrical coherence instead of optical coherence. It uses laser with two coherent frequency components as transmitting wave. The method is based on the use of an optically-carried radio frequency (RF) signal, which is the frequency difference between the two components, which is specially designed for distance and speed measurements. It not only ensures the system has the characteristics of high spatial resolution, high ranging and velocity precision of laser radar, but also can use mature signal processing technology of microwave radar, and it is a research direction that attracts more concern in recent years. A CDFL detection system is constructed and field experiment is carried out. In the system, a narrow linewidth fiber laser with a wavelength of 1064nm is adopted. The dual-frequency laser with frequency difference of 200MHz and 200.6MHz is obtained by acousto-optic frequency shift and recombination. The maximum output power of dual frequency laser is 200mW. The receiver consists of all-fiber balanced InGaAs photo-detector and homemade analog signal processing board. The experimental results show that the distance resolution and velocity resolution of the system are 0.1m and 0.1m/s separately when the working distance is greater than 200m, and the spatial resolution is 0.5mrad.

  16. Coherent states and rational surfaces

    International Nuclear Information System (INIS)

    Brody, Dorje C; Graefe, Eva-Maria

    2010-01-01

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  17. An Analytic Creativity Assessment Scale for Digital Game Story Design: Construct Validity, Internal Consistency and Interrater Reliability

    Science.gov (United States)

    Chuang, Tsung-Yen; Huang, Yun-Hsuan

    2015-01-01

    Mobile technology has rapidly made digital games a popular entertainment to this digital generation, and thus digital game design received considerable attention in both the game industry and design education. Digital game design involves diverse dimensions in which digital game story design (DGSD) particularly attracts our interest, as the…

  18. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  19. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  20. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  1. Gain with and without population inversion via vacuum-induced coherence in a V-type atom without external coherent driving

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Jinhui; Gao Jinyue

    2006-01-01

    In a three-level V-type atomic system without any external coherent driving, owing to the coherence that results from the vacuum of the radiation field, both the probe gain with and without population inversion can be achieved with very weak incoherent pumping. The gain is achieved in the absence of any external coherent driving field, so it is different from the gain without inversion in ordinary laser-driven schemes where a coherent driving field is necessary to create the coherence. The gain is also different from the conventional lasing gain because the population inversion is achieved via vacuum-induced coherence, which is dependent on the atomic coherence

  2. Getting Past the "Digital Divide"

    Science.gov (United States)

    McCollum, Sean

    2011-01-01

    In the last decade, "digital divide" has become a catchphrase for the stubborn disparity in IT resources between communities, especially in regard to education. Low-income, rural and minority populations have received special scrutiny as the technological "have-nots." This article presents success stories of educators who can work around obstacles…

  3. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other

  4. Natural History Specimen Digitization: Challenges and Concerns

    Directory of Open Access Journals (Sweden)

    Ana Vollmar

    2010-10-01

    Full Text Available A survey on the challenges and concerns invovled with digitizing natural history specimens was circulated to curators, collections managers, and administrators in the natural history community in the Spring of 2009, with over 200 responses received. The overwhelming barrier to digitizing collections was a lack of funding, based on a limited number of sources, leaving institutions mostly responsible for providing the necessary support. The uneven digitization landscape leads to a patchy accumulation of records at varying qualities, and based on different priorities, ulitimately influencing the data's fitness for use. The survey also found that although the kind of specimens found in collections and their storage can be quite varible, there are many similar challenges when digitizing including imaging, automated text scanning and parsing, geo-referencing, etc. Thus, better communication between domains could foster knowledge on digitization leading to efficiencies that could be disseminated through documentation of best practices and training.

  5. VCSEL Based Coherent PONs

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio

    2014-01-01

    We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly modula...

  6. Transform to Succeed: An Empirical Analysis of Digital Transformation in Firms

    OpenAIRE

    Sarah E. Stief; Anne Theresa Eidhoff; Markus Voeth

    2016-01-01

    Despite all progress firms are facing the increasing need to adapt and assimilate digital technologies to transform their business activities in order to pursue business development. By using new digital technologies, firms can implement major business improvements in order to stay competitive and foster new growth potentials. The corresponding phenomenon of digital transformation has received some attention in previous literature in respect to industries such as media and publishing. Neverth...

  7. A digital instantaneous frequency measurement technique utilising high speed analogue to digital converters and field programmable gate arrays

    CSIR Research Space (South Africa)

    Herselman, PLR

    2007-09-01

    Full Text Available In modern information and sensor systems, the timely estimation of the carrier frequency of received signals is of critical importance. This paper presents a digital instantaneous frequency measurement (DIFM) technique, which can measure the carrier...

  8. Phase-Based Adaptive Estimation of Magnitude-Squared Coherence Between Turbofan Internal Sensors and Far-Field Microphone Signals

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2015-01-01

    A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.

  9. Shannon Entropy-Based Wavelet Transform Method for Autonomous Coherent Structure Identification in Fluid Flow Field Data

    Directory of Open Access Journals (Sweden)

    Kartik V. Bulusu

    2015-09-01

    Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.

  10. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  11. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  12. Coherent Multistatic ISAR Imaging

    NARCIS (Netherlands)

    Dorp, Ph. van; Otten, M.P.G.; Verzeilberg, J.M.M.

    2012-01-01

    This paper presents methods for Coherent Multistatic Radar Imaging for Non Cooperative Target Recognition (NCTR) with a network of radar sensors. Coherent Multistatic Radar Imaging is based on an extension of existing monostatic ISAR algorithms to the multistatic environment. The paper describes the

  13. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  14. Development and validation of a short-lag spatial coherence theory for photoacoustic imaging

    Science.gov (United States)

    Graham, Michelle T.; Lediju Bell, Muyinatu A.

    2018-02-01

    We previously derived spatial coherence theory to be implemented for studying theoretical properties of ShortLag Spatial Coherence (SLSC) beamforming applied to photoacoustic images. In this paper, our newly derived theoretical equation is evaluated to generate SLSC images of a point target and a 1.2 mm diameter target and corresponding lateral profiles. We compared SLSC images simulated solely based on our theory to SLSC images created after beamforming acoustic channel data from k-Wave simulations of 1.2 mm-diameter disc target. This process was repeated for a point target and the full width at half the maximum signal amplitudes were measured to estimate the resolution of each imaging system. Resolution as a function of lag was comparable for the first 10% of the receive aperture (i.e., the short-lag region), after which resolution measurements diverged by a maximum of 1 mm between the two types of simulated images. These results indicate the potential for both simulation methods to be utilized as independent resources to study coherence-based photoacoustic beamformers when imaging point-like targets.

  15. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  16. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  17. Teachers' Perceptions of Digital Badges as Recognition of Professional Development

    Science.gov (United States)

    Jones, W. Monty; Hope, Samantha; Adams, Brianne

    2018-01-01

    This mixed methods study examined teachers' perceptions and uses of digital badges received as recognition of participation in a professional development program. Quantitative and qualitative survey data was collected from 99 K-12 teachers who were awarded digital badges in Spring 2016. In addition, qualitative data was collected through…

  18. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  19. Coherent states on Hilbert modules

    International Nuclear Information System (INIS)

    Ali, S Twareque; Bhattacharyya, T; Roy, S S

    2011-01-01

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  20. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  1. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  2. Exploring How Video Digital Storytelling Builds Relationship Experiences

    OpenAIRE

    Pera, R; Viglia, Giampaolo

    2016-01-01

    The purpose of the paper is to explore how digital storytelling enables a consumer relationship experience in online peer-to-peer communities. Within the value cocreation framework, digital storytelling is interpreted as an encounter communication practice where consumers adopt the role of storytellers and story receivers. This study adopts a qualitative multimethod approach to investigate the meanings contained in video stories and the linkage to relationship experience. A case study based o...

  3. EFFECTIVE 3D DIGITIZATION OF ARCHAEOLOGICAL ARTIFACTS FOR INTERACTIVE VIRTUAL MUSEUM

    Directory of Open Access Journals (Sweden)

    G. Tucci

    2012-09-01

    Full Text Available This paper presents a set of results of an on-going research on digital 3D reproduction of medium and small size archaeological artifacts which is intended to support the elaboration of a virtual and interactive exhibition environment, and also to provide a scientific archive of highly accurate models for specialists. After a short illustration of the background project and its finalities, we present the data acquisition through triangulation-based laser scanning and the post-processing methods we used to face the challenge of obtaining a large number of reliable digital copies at reasonable costs and within a short time frame, giving an account of the most recurrent problematic issues of the established work-flow and how they were solved (the careful placing of the artifacts to be digitized so to achieve the best results, the cleaning operations in order to build a coherent single polygon mesh, how to deal with unavoidable missing parts or defected textures in the generated model, etc..

  4. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DEFF Research Database (Denmark)

    Wittmann, Christoffer; Andersen, Ulrik Lund; Takeoka, Masahiro

    2010-01-01

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne...... detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver...

  5. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  6. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  7. Coherent systems with multistate components

    International Nuclear Information System (INIS)

    Caldarola, L.

    1980-01-01

    The basic rules of the Boolean algebra with restrictions on variables are briefly recalled. This special type of Boolean algebra allows one to handle fault trees of systems made of multistate (two or more than two states) components. Coherent systems are defined in the case of multistate components. This definition is consistent with that originally suggested by Barlow in the case of binary (two states) components. The basic properties of coherence are described and discussed. Coherent Boolean functions are also defined. It is shown that these functions are irredundant, that is they have only one base which is at the same time complete and irredundant. However, irredundant functions are not necessarily coherent. Finally a simplified algorithm for the calculation of the base of a coherent function is described. In the case that the function is not coherent, the algorithm can be used to reduce the size of the normal disjunctive form of the function. This in turn eases the application of the Nelson algorithm to calculate the complete base of the function. The simplified algorithm has been built in the computer program MUSTAFA-1. In a sample case the use of this algorithm caused a reduction of the CPU time by a factor of about 20. (orig.)

  8. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  9. Application of comparative digital holography for distant shape control

    Science.gov (United States)

    Baumbach, Torsten; Osten, Wolfgang; von Kopylow, Christoph; Juptner, Werner P. O.

    2004-09-01

    The comparison of two objects is of great importance in the industrial production process. Especially comparing the shape is of particular interest for maintaining calibration tools or controlling the tolerance in the deviation between a sample and a master. Outsourcing and globalization of production places can result in large distances between co-operating partners and might cause problems for maintaining quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. In this paper we describe the progress of implementing a novel technique for comparing directly two objects with different microstructure. The technique is based on the combination of comparative holography and digital holography. Comparing the objects can be done in two ways. One is the digital comparison in the computer and the other way is by using the analogue reconstruction of a master hologram with a spatial light modulator (SLM) as coherent mask for illuminating the test object. Since this mask is stored digitally it can be transmitted via telecommunication networks and this enables the access to the full optical information of the master object at any place wanted. Beside the basic principle of comparative digital holography (CDH), we will show in this paper the set-up for doing the analogue comparison of two objects with increased sensitivity in comparison to former measurements and the calibration of the SLM that is used for the experiments. We will give examples for the digital and the analogue comparison of objects including a verification of our results by another optical measurement technique.

  10. Graphene integrated circuits: new prospects towards receiver realisation.

    Science.gov (United States)

    Saeed, Mohamed; Hamed, Ahmed; Wang, Zhenxing; Shaygan, Mehrdad; Neumaier, Daniel; Negra, Renato

    2017-12-21

    This work demonstrates a design approach which enables the fabrication of fully integrated radio frequency (RF) and millimetre-wave frequency direct-conversion graphene receivers by adapting the frontend architecture to exploit the state-of-the-art performance of the recently reported wafer-scale CVD metal-insulator-graphene (MIG) diodes. As a proof-of-concept, we built a fully integrated microwave receiver in the frequency range 2.1-2.7 GHz employing the strong nonlinearity and the high responsivity of MIG diodes to successfully receive and demodulate complex, digitally modulated communication signals at 2.45 GHz. In addition, the fabricated receiver uses zero-biased MIG diodes and consumes zero dc power. With the flexibility to be fabricated on different substrates, the prototype receiver frontend is fabricated on a low-cost, glass substrate utilising a custom-developed MMIC process backend which enables the high performance of passive components. The measured performance of the prototype makes it suitable for Internet-of-Things (IoT) and Radio Frequency Identification (RFID) systems for medical and communication applications.

  11. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    Science.gov (United States)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  12. Quad channel software defined receiver for passive radar application

    Directory of Open Access Journals (Sweden)

    Pető Tamás

    2017-03-01

    Full Text Available In recent times the growing utilization of the electromagnetic environment brings the passive radar researches more and more to the fore. For the utilization of the wide range of illuminators of opportunity the application of wideband radio receivers is required. At the same time the multichannel receiver structure has also critical importance in target direction finding and interference suppression. This paper presents the development of a multichannel software defined receiver specifically for passive radar applications. One of the relevant feature of the developed receiver platform is its up-to-date SoC (System on hip based structure, which greatly enhance the integration and signal processing capacity of the system, all while keeping the costs low. The software defined operation of the discussed receiver system is demonstrated with using DVB-T (Digital Video Broadcast – Terrestrial signal as illuminator of opportunity. During this demonstration the multichannel capabilities of the realized system are also tested with real data using direction finding and beamforming algorithms.

  13. Synchrophasor-Based Online Coherency Identification in Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    ADEWOLE, A. C.

    2015-11-01

    Full Text Available This paper presents and investigates a new measurement-based approach in the identification of coherent groups in load buses and synchronous generators for voltage stability assessment application in large interconnected power systems. A hybrid Calinski-Harabasz criterion and k-means clustering algorithm is developed for the determination of the cluster groups in the system. The proposed method is successfully validated by using the New England 39-bus test system. Also, the performance of the voltage stability assessment algorithm using wide area synchrophasor measurements from the key synchronous generator in each respective cluster was tested online for the prediction of the system's margin to voltage collapse using a testbed comprising of a Programmable Logic Controller (PLC in a hardware-in-the-loop configuration with the Real-Time Digital Simulator (RTDS and Phasor Measurement Units (PMUs.

  14. Method of steering the gain of a multiple antenna global positioning system receiver

    Science.gov (United States)

    Evans, Alan G.; Hermann, Bruce R.

    1992-06-01

    A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.

  15. Systems of imaging digital systems in case of glaucoma

    International Nuclear Information System (INIS)

    Fernandez Argones, Liamet; Piloto Diaz, Ibrain; Coba Penna, Maria Josefa; Perez Tamayo, Bertila; Dominguez Randulfe, Marerneda; Trujillo Fonseca, Katia

    2009-01-01

    Now a day we can't consider the strict follow up in Glaucoma without the use of the digital analysis of image system of the optic nerve head and the retinal nerve fiber layer. This is a review about some contributions of Scanning Laser Polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, CA), Confocal Scanning Laser (Heidelberg Retina Tomograph HRT, Heidelberg Engineering Inc.) and Optical Coherence Tomography (Stratus OCT, Carl Zeiss Meditec, Alemania) in the diagnosis and follow up of Glaucoma. It's considered that objective measurement giving by them must be incorporate in the rigorous analysis of each glaucomatous patient

  16. Systems and methods for self-synchronized digital sampling

    Science.gov (United States)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  17. COHERENT Experiment: current status

    International Nuclear Information System (INIS)

    Akimov, D; Belov, V; Bolozdynya, A; Burenkov, A; Albert, J B; Del Valle Coello, M; D’Onofrio, M; Awe, C; Barbeau, P S; Cervantes, M; Becker, B; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Detwiler, J; Eberhardt, A; Dean, D; Dolgolenko, A G

    2017-01-01

    The COHERENT Collaboration is realizing a long term neutrino physics research program. The main goals of the program are to detect and study elastic neutrino-nucleus scattering (CEνNS). This process is predicted by Standard Model but it has never been observed experimentally because of the very low energy of the recoil nucleus. COHERENT is using different detector technologies: CsI[Na] and NaI scintillator crystals, a single-phase liquid Ar and a Ge detectors. The placement of all the detector setups is in the basement of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The current status of the COHERENT experimental program is presented. (paper)

  18. Coherence-driven argumentation to norm consensus

    NARCIS (Netherlands)

    Joseph, S.; Prakken, H.

    2009-01-01

    In this paper coherence-based models are proposed as an alternative to logic-based BDI and argumentation models for the reasoning of normative agents. A model is provided for how two coherence-based agents can deliberate on how to regulate a domain of interest. First a deductive coherence model

  19. Easy-to-Build Satellite Beacon Receiver for Propagation Experimentation at Millimeter Bands

    Directory of Open Access Journals (Sweden)

    F. Machado

    2014-04-01

    Full Text Available This paper describes the design and development of a digital satellite beacon receiver for propagation experimentation. Satellite beacons are frequently available for pointing large antennas, but such signals can be used for measuring rain attenuation and other phenomena as, for example, tropospheric scintillation. A fairly inexpensive beacon receiver has been built using off-the-shelf parts. This instrument is not at all bulky making it suitable for easy transportation. This article analyzes the receiver specifications, describes in detail its structure and presents some operational test results.

  20. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  1. A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Min Lequan

    2005-01-01

    Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decrypt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.

  2. A Digital Archives Framework for the Preservation of Cultural Artifacts with Technological Components

    Directory of Open Access Journals (Sweden)

    Guillaume Boutard

    2013-06-01

    Full Text Available The preservation of artistic works with technological components, such as musical works, is recognised as an issue by both the artistic community and the archival community. Preserving such works involves tackling the difficulties associated with digital information in general, but also raises its own specific problems, such as constantly evolving digital instruments embodied within software and idiosyncratic human-computer interactions. Because of these issues, standards in place for archiving digital information are not always suitable for the preservation of these works. The impact on the organisation and the descriptions of such archives need to be conceptualised in order to provide these technological components with readability, authenticity and intelligibility. While previous projects emphasized readability and authenticity, less effort has been dedicated to addressing intelligibility issues.The research into the specification of significant properties and its extension, namely significant knowledge, offers some grounds for reflecting on this question. Furthermore, the relevance of taking into account the creative process involved in the production of technological components offers an opportunity to redefine the status of technological agents in the performative aspect of digital records. Altogether, the research on significant knowledge and creative processes provide us with a conceptual framework that we propose to bring together with digital archives models to form a coherent framework.

  3. Optimal non-coherent data detection for massive SIMO wireless systems: A polynomial complexity solution

    KAUST Repository

    Alshamary, Haider Ali Jasim

    2016-01-04

    © 2015 IEEE. This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.

  4. Optimal non-coherent data detection for massive SIMO wireless systems: A polynomial complexity solution

    KAUST Repository

    Alshamary, Haider Ali Jasim; Al-Naffouri, Tareq Y.; Zaib, Alam; Xu, Weiyu

    2016-01-01

    © 2015 IEEE. This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.

  5. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  6. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  7. Control and monitoring of doses to patients in a team of digital mammography; Control y seguimiento de las dosis a pacientes en un equipo de mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-07-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  8. Digital Culture and Digital Library

    Directory of Open Access Journals (Sweden)

    Yalçın Yalçınkaya

    2016-12-01

    Full Text Available In this study; digital culture and digital library which have a vital connection with each other are examined together. The content of the research consists of the interaction of culture, information, digital culture, intellectual technologies, and digital library concepts. The study is an entry work to integrity of digital culture and digital library theories and aims to expand the symmetry. The purpose of the study is to emphasize the relation between the digital culture and digital library theories acting intersection of the subjects that are examined. Also the perspective of the study is based on examining the literature and analytical evaluation in both studies (digital culture and digital library. Within this context, the methodology of the study is essentially descriptive and has an attribute for the transmission and synthesis of distributed findings produced in the field of the research. According to the findings of the study results, digital culture is an inclusive term that describes the effects of intellectual technologies in the field of information and communication. Information becomes energy and the spectrum of the information is expanding in the vertical rise through the digital culture. In this context, the digital library appears as a new living space of a new environment. In essence, the digital library is information-oriented; has intellectual technology support and digital platform; is in a digital format; combines information resources and tools in relationship/communication/cooperation by connectedness, and also it is the dynamic face of the digital culture in time and space independence. Resolved with the study is that the digital libraries are active and effective in the formation of global knowing and/or mass wisdom in the process of digital culture.

  9. Exciter For X-Band Transmitter And Receiver

    Science.gov (United States)

    Johns, Carl E.

    1989-01-01

    Report describes developmental X-band exciter for X-band uplink subsystem of Deep Space Network. X-band transmitter-exciting signal expected to have fractional frequency stability of 5.2 X 10 to negative 15th power during 1,000-second integration period. Generates coherent test signals for S- and X-band Block III translator of Deep Space Network, Doppler-reference signal for associated Doppler-extractor system, first-local-oscillator signal for associated receiver, and reference signal for associated ranging subsystem. Tests of prototype exciter show controlling and monitoring and internal phase-correcting loops perform according to applicable design criteria. Measurements of stability of frequency and of single-sideband noise spectral density of transmitter-exciting signal made subsequently.

  10. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  11. Exergy of partially coherent thermal radiation

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2012-01-01

    Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.

  12. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  13. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  14. Sense of Coherence and Gambling: Exploring the Relationship Between Sense of Coherence, Gambling Behaviour and Gambling-Related Harm.

    Science.gov (United States)

    Langham, Erika; Russell, Alex M T; Hing, Nerilee; Gainsbury, Sally M

    2017-06-01

    Understanding why some people experience problems with gambling whilst others are able to restrict gambling to recreational levels is still largely unexplained. One potential explanation is through salutogenesis, which is a health promotion approach of understanding factors which move people towards health rather than disease. An important aspect of salutogenesis is sense of coherence. Individuals with stronger sense of coherence perceive their environment as comprehensible, manageable and meaningful. The present study examined the relationship of individuals' sense of coherence on their gambling behaviour and experience of gambling related harm. This exploratory study utilised an archival dataset (n = 1236) from an online, cross sectional survey of people who had experienced negative consequences from gambling. In general, a stronger sense of coherence was related to lower problem gambling severity. When gambling behaviour was controlled for, sense of coherence was significantly related to the experience of individual gambling harms. A strong sense of coherence can be seen as a protective factor against problematic gambling behaviour, and subsequent gambling related harms. These findings support the value of both primary and tertiary prevention strategies that strengthen sense of coherence as a harm minimisation strategy. The present study demonstrates the potential value of, and provides clear direction for, considering sense of coherence in order to understand gambling-related issues.

  15. Digital breast tomosynthesis versus digital mammography: a clinical performance study

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Baldan, Enrica; Bezzon, Elisabetta; Polico, Ilaria; Proietti, Alessandro; Toffoli, Aida; Toledano, Alicia; Di Maggio, Cosimo; La Grassa, Manuela; Pescarini, Luigi; Muzzio, Pier Carlo

    2010-01-01

    To compare the clinical performance of digital breast tomosynthesis (DBT) with that of full-field digital mammography (FFDM) in a diagnostic population. The study enrolled 200 consenting women who had at least one breast lesion discovered by mammography and/or ultrasound classified as doubtful or suspicious or probably malignant. They underwent tomosynthesis in one view [mediolateral oblique (MLO)] of both breasts at a dose comparable to that of standard screen-film mammography in two views [craniocaudal (CC) and MLO]. Images were rated by six breast radiologists using the BIRADS score. Ratings were compared with the truth established according to the standard of care and a multiple-reader multiple-case (MRMC) receiver-operating characteristic (ROC) analysis was performed. Clinical performance of DBT compared with that of FFDM was evaluated in terms of the difference between areas under ROC curves (AUCs) for BIRADS scores. Overall clinical performance with DBT and FFDM for malignant versus all other cases was not significantly different (AUCs 0.851 vs 0.836, p = 0.645). The lower limit of the 95% CI or the difference between DBT and FFDM AUCs was -4.9%. Clinical performance of tomosynthesis in one view at the same total dose as standard screen-film mammography is not inferior to digital mammography in two views. (orig.)

  16. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  17. Digital terrestrial television broadcasting technology and system

    CERN Document Server

    2015-01-01

    Now under massive deployment worldwide, digital terrestrial television broadcasting (DTTB) offers one of the most attractive ways to deliver digital TV over the VHF/UHF band. Written by a team of experts for specialists and non-specialists alike, this book serves as a comprehensive guide to DTTB. It covers the fundamentals of channel coding and modulation technologies used in DTTB, as well as receiver technology for synchronization, channel estimation, and equalization. It also covers the recently introduced Chinese DTTB standard, using the SFN network in Hong Kong as an example.

  18. Spatially and temporally resolved diagnostics of dense sprays using gated, femtosecond, digital holography

    Science.gov (United States)

    Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek

    2017-08-01

    This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.

  19. Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit

    Science.gov (United States)

    Baranauskas, Dalius (Inventor); Baranauskas, Gytis (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor); Lim, Boon H. (Inventor)

    2017-01-01

    According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.

  20. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  1. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  2. Receiver bandwidth effects on complex modulation and detection using directly modulated lasers.

    Science.gov (United States)

    Yuan, Feng; Che, Di; Shieh, William

    2016-05-01

    Directly modulated lasers (DMLs) have long been employed for short- and medium-reach optical communications due to their low cost. Recently, a new modulation scheme called complex modulated DMLs has been demonstrated showing a significant optical signal to noise ratio sensitivity enhancement compared with the traditional intensity-only detection scheme. However, chirp-induced optical spectrum broadening is inevitable in complex modulated systems, which may imply a need for high-bandwidth receivers. In this Letter, we study the impact of receiver bandwidth effects on the performance of complex modulation and coherent detection systems based on DMLs. We experimentally demonstrate that such systems exhibit a reasonable tolerance for the reduced receiver bandwidth. For 10 Gbaud 4-level pulse amplitude modulation signals, the required electrical bandwidth is as low as 8.5 and 7.5 GHz for 7% and 20% forward error correction, respectively. Therefore, it is feasible to realize DML-based complex modulated systems using cost-effective receivers with narrow bandwidth.

  3. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  4. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  5. Characterisation of dispersive systems using a coherer

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2002-01-01

    Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.

  6. [The sense of coherence and the quality of life of patients treated for breast cancer].

    Science.gov (United States)

    Motyka, Marek; Dziubak, Małgorzata; Patrycja, Jedrusik

    2014-01-01

    For women, breast cancer causes great mental stress and affects their functioning in the somatic and psychosocial domain both during the process of diagnostics and therapy, and for a long period of time after the received treatment. A high sense of coherence leads to being better at coping with stress and a can promote the quality of life. The objective of this study was to evaluate the effect of the sense of coherence on the satisfaction with life of post-mastectomy patients, and also on the time which passes between noticing the first symptoms of the disease and reporting to a doctor, and on the timely execution of medical recommendations. The study involved 60 women, age between 30 and 70 years, after a mastectomy procedure due to diagnosed breast cancer. The study used the method of diagnostic survey. The following tools were applied: the Satisfaction with Life Scale (SWLS--E. Diener et al.), the 13-item Sense of Coherence Scale (SOC 13), and a short questionnaire developed by the author. No statistically significant association was found between the level of the sense of coherence and the timely execution of medical recommendations, and the level of the satisfaction with life of the subjects p > 0.05. However, the existence of a statistically significant association was demonstrated between the sense of coherence and the time of reporting to a doctor after noticing disturbing symptoms p < 0.05.

  7. HF coherent backscatter in the ionosphere: In situ measurements of SuperDARN backscatter with e-POP RRI

    Science.gov (United States)

    Perry, G. W.; James, H. G.; Hussey, G. C.; Howarth, A. D.; Yau, A. W.

    2017-12-01

    We report in situ polarimetry measurements of HF scattering obtained by the Enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) during a coherent backscatter scattering event detected by the Saskatoon Super Dual Auroral Radar Network (SuperDARN). On April 1, 2015, e-POP conducted a 4 minute coordinated experiment with SuperDARN Saskatoon, starting at 3:38:44 UT (21:38:44 LT). Throughout the experiment, SuperDARN was transmitting at 17.5 MHz and e-POP's ground track moved in a northeastward direction, along SuperDARN's field-of-view, increasing in altitude from 331 to 352 km. RRI was tuned to 17.505 MHz, and recorded nearly 12,000 SuperDARN radar pulses during the experiment. In the first half of the experiment, radar pulses recorded by RRI were "well behaved": they retained their transmitted amplitude envelope, and their pulse-to-pulse polarization characteristics were coherent - Faraday rotation was easily measured. During the second half of the experiment the pulses showed clear signs of scattering: their amplitude envelopes became degraded and dispersed, and their pulse-to-pulse polarization characteristics became incoherent - Faraday rotation was difficult to quantify. While these pulses were being received by RRI, SuperDARN Saskatoon detected a latitudinal band of coherent backscatter at e-POP's location, indicating that the scattered pulses measured by RRI may be a signature of HF backscatter. In this presentation, we will outline the polarimetric details of the scattered pulses, and provide an analytic interpretation of RRI's measurements to give new insight into the nature of HF coherent backscatter mechanism taking place in the terrestrial ionosphere.

  8. Digital Collections, Digital Libraries & the Digitization of Cultural Heritage Information.

    Science.gov (United States)

    Lynch, Clifford

    2002-01-01

    Discusses digital collections and digital libraries. Topics include broadband availability; digital rights protection; content, both non-profit and commercial; digitization of cultural content; sustainability; metadata harvesting protocol; infrastructure; authorship; linking multiple resources; data mining; digitization of reference works;…

  9. H. Sapiens Digital: From Digital Immigrants and Digital Natives to Digital Wisdom

    Science.gov (United States)

    Prensky, Marc

    2009-01-01

    As we move further into the 21st century, the digital native/digital immigrant paradigm created by Marc Prensky in 2001 is becoming less relevant. In this article, Prensky suggests that we should focus instead on the development of what he calls "digital wisdom." Arguing that digital technology can make us not just smarter but truly wiser, Prensky…

  10. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  11. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  12. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  13. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    Science.gov (United States)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  14. Digital Collections, Digital Libraries and the Digitization of Cultural Heritage Information.

    Science.gov (United States)

    Lynch, Clifford

    2002-01-01

    Discusses the development of digital collections and digital libraries. Topics include digitization of cultural heritage information; broadband issues; lack of compelling content; training issues; types of materials being digitized; sustainability; digital preservation; infrastructure; digital images; data mining; and future possibilities for…

  15. Coherence of light. 2. ed.

    International Nuclear Information System (INIS)

    Perina, J.

    1985-01-01

    This book puts the theory of coherence of light on a rigorous mathematical footing. It deals with the classical and quantum theories and with their inter-relationships, including many results from the author's own research. Particular attention is paid to the detection of optical fields, using the correlation functions, photocount statistics and coherent state. Radiometry with light fields of arbitrary states of coherence is discussed and the coherent state methods are demonstrated by photon statistics of radiation in random and nonlinear media, using the Heisenberg-Langevin and Fokker-Planck approaches to the interaction of radiation with matter. Many experimental and theoretical results are compared. A full list of references to theoretical and experimental literature is provided. The book is intended for researchers and postgraduate students in the fields of quantum optics, quantum electronics, statistical optics, nonlinear optics, optical communication and optoelectronics. (Auth.)

  16. Observations of the vertical structure of turbulent oscillatory boundary layers above fixed roughness beds using a prototype wideband coherent Doppler profiler: 1. The oscillatory component of the flow

    Science.gov (United States)

    Hay, Alex E.; Zedel, Len; Cheel, Richard; Dillon, Jeremy

    2012-03-01

    Results are presented from an experimental investigation of rough turbulent oscillatory boundary layers using a prototype wideband bistatic coherent Doppler profiler. The profiler operates in the 1.2 MHz to 2.3 MHz frequency band and uses software-defined radio technologies for digital control of the frequency content and shape of the transmit pulse and for digital complex demodulation of the received signals. Velocity profiles are obtained at sub-millimeter range resolution and 100 Hz profiling rates (each profile being an ensemble average of 10 pulse pairs). The measurements were carried out above beds of fixed sand or gravel particles, with median grain diameters of 0.37 mm and 3.9 mm, respectively, oscillating sinusoidally at a 10 s period through excursions of 0.75 m to 1.5 m. The resulting vertical profiles of horizontal velocity magnitude and phase, with the vertical axis scaled by ℓ = κu∗m/ω, are comparable to similarly scaled profiles obtained using laser Doppler anemometry by Sleath (1987) and Jensen (1988). A key objective of the comparisons between the previous experiments and those reported here was to establish how close to the bed reliable velocity measurements can be made with the sonar. This minimum distance above the bed is estimated to be 5 ± 1 mm, a value approaching the 3 to 4 mm limit set by the path of least time.

  17. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  18. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers

  19. Models of coherent exciton condensation

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, P B [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Keeling, J M J [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Marchetti, F M [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Simons, B D [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom); Szymanska, M H [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2004-09-08

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers.

  20. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  1. Interference due to coherence swapping

    Indian Academy of Sciences (India)

    particle is, its interaction with the beam splitter does not reveal this information .... If one shines a strong linearly polarised monochromatic laser beam, or a quasi .... to be a hindrance to coherence, can be suitably designed to create coherence.

  2. Text Coherence in Translation

    Science.gov (United States)

    Zheng, Yanping

    2009-01-01

    In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…

  3. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  4. A 16 b 2 GHz digital-to-analog converter in 0.18 μm CMOS with digital calibration technology

    International Nuclear Information System (INIS)

    Yang Weidong; Pu Jie; Zhang Ruitao; Chen Chao; Zang Jiandong; Li Tiehu; Luo Pu

    2015-01-01

    This paper presents a 16-bit 2 GSPS digital-to-analog converter (DAC) in 0.18 μm CMOS technology. This DAC is implemented using time division multiplex access system architecture in the digital domain. The input data is received with a two-channel LVDS interface. The DLL technology is introduced to meet the timing requirements between phases of the LVDS data and the data sampling clock. A FIFO is designed to absorb the phase difference between the data clock and DAC system clock. A delay controller is integrated to adjust the phase relationship between the high speed digital clock and analog clock, obtaining a sampling rate of 2 GSPS. The current source mismatch at higher bits is calibrated in the digital domain. Test results show that the DAC achieves 74.02 dBC SFDR at analog output of 36 MHz, and DNL less than ±2.1 LSB and INL less than ±4.3 LSB after the chip is calibrated. (paper)

  5. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  6. The digital backend of FAST

    Science.gov (United States)

    Yu, Xinying; Zhang, Xia; Duan, Ran; li, di; Hao, Jie

    2015-08-01

    The receiver system is an important part of FAST (Five-hundred-meter Aperture Spherical Radio Telescope) and plays a key role in determining the performance of the telescope.This research covers three major aspects: establishment of system synchronization and timestamps, field-programmable gate array (FPGA)-based data transmission and analysis, and the rear receiver monitoring system. We intend to combine the use of GPS and a frequency standard instrument with network access to Unix timestamps to form actual timestamps. The data are stored with timestamps that contain integer and fractional seconds to be precise and headers, which are primarily intended to distinguish the data from each other.The data analysis procedures includes converting the timestamp information to real-time information, and merging the 8 channels’ data conversion results into frequency and energy data using corresponding conversion formulae. We must develop tailored monitoring software for the FAST receiver to customize the data format and perform data transmission. Signals on the front-end and back-end of the receiver can be monitored and controlled by adjusting the parameters on the software to increase the flexibility of the receiver.Most operations are performed on FPGA board, which can be shown from the figure, including the analog-to-digital conversion (ADC), fast Fourier transform (FFT), and pulse per second (1PPS) and Unix timestamp access operations.When analog data arrive, we initialize two ADCs at a sampling rate of 3Gsps, following by 8-channel FFT parallel processing.In collaboration with the Institute of Automation, we have developed a custom FPGA board which we call "FDB"("FAST Digital Backend"). The board is integrated with two Virtex-6 and one Virtex-5 high-speed Xilinx chips. The main function of the two Virtex-6 devices is to run the FFT and PFB programs, whereas the main function of Virtex-5 is configuration of the board.This research is indispensable for realizing the

  7. Digital control and data acquisition system for the QUIET experiment

    International Nuclear Information System (INIS)

    Bogdan, Mircea; Kapner, Dan; Samtleben, Dorothea; Vanderlinde, Keith

    2007-01-01

    We present the Digital Control and Data Acquisition System (DCDAQ) for Phase I of the Q/U Imaging Experiment (QUIET), arrays of 91 W-band and 19 Q-band receivers, placed on 1.4 m telescopes, in Chajnantor, Chile to measure the polarization of the cosmic microwave background. QUIET uses custom-built electronics boards that control and monitor its polarimeters. Each of these boards is digitally addressable, so that the DCDAQ can set and monitor any of the 1600 biases needed to operate the 91 receivers. The DCDAQ consists of a controller and up to 13 custom-made 32-channel ADC cards. Local FPGAs allow real-time data processing for each channel. This immediate data reduction is necessary, as it is planned to scale this technology beyond Phase I. The DCDAQ system is implemented with this future in mind and can easily be scaled to operate 1000 receivers

  8. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  9. Joint angle and Doppler frequency estimation of coherent targets in monostatic MIMO radar

    Science.gov (United States)

    Cao, Renzheng; Zhang, Xiaofei

    2015-05-01

    This paper discusses the problem of joint direction of arrival (DOA) and Doppler frequency estimation of coherent targets in a monostatic multiple-input multiple-output radar. In the proposed algorithm, we perform a reduced dimension (RD) transformation on the received signal first and then use forward spatial smoothing (FSS) technique to decorrelate the coherence and obtain joint estimation of DOA and Doppler frequency by exploiting the estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. The joint estimated parameters of the proposed RD-FSS-ESPRIT are automatically paired. Compared with the conventional FSS-ESPRIT algorithm, our RD-FSS-ESPRIT algorithm has much lower complexity and better estimation performance of both DOA and frequency. The variance of the estimation error and the Cramer-Rao Bound of the DOA and frequency estimation are derived. Simulation results show the effectiveness and improvement of our algorithm.

  10. Quantum-classical interface based on single flux quantum digital logic

    Science.gov (United States)

    McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.

    2018-04-01

    We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

  11. Automated seismic waveform location using Multichannel Coherency Migration (MCM)-I. Theory

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Rost, Sebastian; Nowacki, Andy; Yuan, Sanyi

    2018-03-01

    With the proliferation of dense seismic networks sampling the full seismic wavefield, recorded seismic data volumes are getting bigger and automated analysis tools to locate seismic events are essential. Here, we propose a novel Multichannel Coherency Migration (MCM) method to locate earthquakes in continuous seismic data and reveal the location and origin time of seismic events directly from recorded waveforms. By continuously calculating the coherency between waveforms from different receiver pairs, MCM greatly expands the available information which can be used for event location. MCM does not require phase picking or phase identification, which allows fully automated waveform analysis. By migrating the coherency between waveforms, MCM leads to improved source energy focusing. We have tested and compared MCM to other migration-based methods in noise-free and noisy synthetic data. The tests and analysis show that MCM is noise resistant and can achieve more accurate results compared with other migration-based methods. MCM is able to suppress strong interference from other seismic sources occurring at a similar time and location. It can be used with arbitrary 3D velocity models and is able to obtain reasonable location results with smooth but inaccurate velocity models. MCM exhibits excellent location performance and can be easily parallelized giving it large potential to be developed as a real-time location method for very large datasets.

  12. Using convolutional decoding to improve time delay and phase estimation in digital communications

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM

    2010-01-26

    The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.

  13. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  14. Panama City 2003 Acoustic Coherence Experiments: Low Frequency Bottom Penetration Fluctuation Measurements in a Multipath Environment

    Science.gov (United States)

    Meredith, Roger W.; Kennedy, E. Ted; Malley, Dexter; Fisher, Robert A.; Brown, Robert; Stanic, Steve

    2004-11-01

    This paper is part of a series of papers describing acoustic coherence and fluctuations measurements made by the Naval Research Laboratory in the Gulf of Mexico near Panama City Beach, FL during June 2003. This paper presents low frequency (1-10 kHz) buried hydrophone measurements and preliminary results for two source-receiver ranges with grazing angles less than two degrees (realtive to the direct-path to the seafloor at the receiver location). Results focus on fluctuations after acoustic penetration into the sediment. These fluctuations are correlated with environmental influences.

  15. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  16. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    Science.gov (United States)

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  17. CMOS Receiver Front-ends for Gigabit Short-Range Optical Communications

    CERN Document Server

    Aznar, Francisco; Calvo Lopez, Belén

    2013-01-01

    This book describes optical receiver solutions integrated in standard CMOS technology, attaining high-speed short-range transmission within cost-effective constraints.  These techniques support short reach applications, such as local area networks, fiber-to-the-home and multimedia systems in cars and homes. The authors show how to implement the optical front-end in the same technology as the subsequent digital circuitry, leading to integration of the entire receiver system in the same chip.  The presentation focuses on CMOS receiver design targeting gigabit transmission along a low-cost, standardized plastic optical fiber up to 50m in length.  This book includes a detailed study of CMOS optical receiver design – from building blocks to the system level. Reviews optical communications, including long-haul transmission systems and emerging applications focused on short-range; Explains necessary fundamentals, such as characteristics of a data signal, system requirements affecting receiver design and key par...

  18. 77 FR 68075 - Mechanical and Digital Phonorecord Delivery Compulsory License

    Science.gov (United States)

    2012-11-15

    ... Copyright Office received a joint motion filed on behalf of the Recording Industry Association of America, Inc., National Music Publishers Association, Digital Media Association, and Music Reports, Inc...

  19. 75 FR 7370 - Closed Captioning of Video Programming; Closed Captioning Requirements for Digital Television...

    Science.gov (United States)

    2010-02-19

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 79 [CG Docket No. 05-231; ET Docket No. 99-254; FCC 08-255] Closed Captioning of Video Programming; Closed Captioning Requirements for Digital Television... Captioning of Video Programming; Closed Captioning Requirements for Digital Television Receivers, Declaratory...

  20. INFORMATIVITY OF SPECTRAL OPTICAL COHERENT TOMOGRAPHY IN AGGRESSIVE POSTERIOR RETINOPATHY OF PREMATURITY

    Directory of Open Access Journals (Sweden)

    A. V. Tereshchenko

    2017-01-01

    Full Text Available The purpose: to evaluate the informativity of optical coherence tomography in patients with aggressive posterior retinopathy of prematurity. Patients and methods. spectral optical coherence tomography using portable device iVue-100 with a removable camera (Optovue, USA was held in 32 children (64 eyes with aggressive posterior retinopathy of prematurity with a gestational period 26–31 week. Results. Children with aggressive posterior retinopathy of prematurity at the stage of early clinical manifestations, in addition to the indication that the immaturity of the retina, according to the spectral optical coherence tomography revealed only a few areas of epiretinal proliferation, which are not visualized with a digital retinoscopy and binocular indirect ophthalmoscopy. When the process is more pronounced in children with retinopathy of prematurity aggressive rear stage manifestation already determined multiple zones epiretinal proliferation as a "mushroom" and "flake" conglomerates with rear zone hyaloid membrane had an uneven seal. Coarser structural disorders of the retina and the vitreoretinal interface have been identified in patients with advancedstage aggressive posterior retinopathy of prematurity. We determined the shaft extraretinal proliferation as a "comb", as well as portions of epiretinal proliferation on the border of vascularized and avascular retina, which tended to merge, and the formation of massive hyperreflection complexes, lifted back hyaloid membrane, which was not only uneven sealed, but in some places is stratified. Conclusion. Despite the complexity of the procedure and the complexity of its implementation, the data obtained are particularly valuable and informative because they allow to complement the clinical picture and objectify it. It helps to choose the optimal tactics and improvement of a differentiated approach to the treatment of aggressive posterior retinopathy of prematurity.

  1. Design of a Combined Beacon Receiver and Digital Radiometer for 40 GHz Propagation Measurements at the Madrid Deep Space Communications Complex

    Science.gov (United States)

    Zemba, Michael; Nessel, James; Morabito, David

    2017-01-01

    NASA Glenn Research Center (GRC) and the Jet Propulsion Laboratory (JPL) have jointly developed an atmospheric propagation terminal to measure and characterize propagation phenomena at 40 GHz at the Madrid Deep Space Communications Complex (MDSCC) in Robledo de Chavela, Spain. The hybrid Q-band system utilizes a novel design which combines a 40 GHz beacon receiver and digital radiometer into the same RF front-end and observes the 39.402 GHz beacon of the European Space Agencys Alphasat Aldo Paraboni TDP5 experiment. Atmospheric measurements include gaseous absorption, rain fade, and scintillation. The radiometric measurement is calibrated by means of an included noise diode as well as tipping calibration. The goals of these measurements are to assist MDSCC mission operations as the facility increasingly supports Ka-band missions, as well as to contribute to the development and improvement of International Telecommunications Union (ITU) models for prediction of communications systems performance within the Q-band through the Aldo Paraboni Experiment. Herein, we provide an overview of the system design, characterization, and plan of operations which commenced at the MDSCC beginning in March 2017.

  2. Coherent State Quantization and Moment Problem

    Directory of Open Access Journals (Sweden)

    J. P. Gazeau

    2010-01-01

    Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.

  3. DIGITAL GAME-BASED LANGUAGE LEARNING IN FOREIGN LANGUAGE TEACHER EDUCATION

    OpenAIRE

    ALYAZ, Yunus; GENC, Zubeyde Sinem

    2016-01-01

    New technologies including digital game-based language learning have increasingly received attention. However, their implementation is far from expected and desired levels due to technical, instructional, financial and sociological barriers. Previous studies suggest that there is a strong need to establish courses in order to support adaptation of game-based learning pedagogy through helping teachers experience digital games themselves before they are expected to use them in teaching. This st...

  4. Laser diode technology for coherent communications

    Science.gov (United States)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  5. Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex

    International Nuclear Information System (INIS)

    Fidler, Andrew F; Caram, Justin R; Hayes, Dugan; Engel, Gregory S

    2012-01-01

    Observations of long-lived coherence between excited states in several photosynthetic antenna complexes has motivated interest in developing a more detailed understanding of the role of the protein matrix in guiding the underlying dynamics of the system. These experiments suggest that classical rate laws may not provide an adequate description of the energy transfer process and that quantum effects must be taken into account to describe the near unity transfer efficiency in these systems. Recently, it has been shown that coherences between different pairs of excitons dephase at different rates. These details should provide some insight about the underlying electronic structure of the complex and its coupling to the protein bath. Here we show that a simple model can account for the different dephasing rates as well as the most current available experimental evidence of excitonic coherences in the Fenna–Matthews–Olson complex. The differences in dephasing rates can be understood as arising largely from differences in the delocalization and shared character between the underlying electronic states. We also suggest that the anomalously low dephasing rate of the exciton 1–2 coherence is enhanced by non-secular effects. (paper)

  6. Digital Humanities and networked digital media

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital...... materials centred on the digitisation of non-digital, finite works, corpora and oeuvres. The second section discusses “the big tent” of contemporary digital humanities. It is argued that there can be no unifying interpretation of digital humanities above the level of studying digital materials with the help...... of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials...

  7. Emotional reactions of different interface formats: Comparing digital and traditional board games

    Directory of Open Access Journals (Sweden)

    Yu-Min Fang

    2016-03-01

    Full Text Available Some games provide both traditional board games and digital versions at the same time in the market. Why the rise of virtual games has not forced traditional physical board games to disappear? Do traditional physical games evoke different emotional reactions and interpersonal relationships? This article explored the subjects’ preferences toward traditional and digital versions of the same game and investigated social interaction while playing games. Based on Norman’s three emotional design levels—visceral, behavioral, and reflective levels—this study examined players’ satisfaction degree. This study also applied Positive and Negative Affect Schedule to measure subjects’ emotional reactions. Monopoly and Jenga games were selected as stimuli. A total of 77 subjects received tests of three different interface formats (physical, desktop, and tablet and then filled out the questionnaire. The findings successfully evidenced the significant differences between digital and traditional board games. The statistical results indicated that satisfaction degrees of digital games declined in visceral, behavioral, and reflective levels. Traditional games not only evoked users’ stronger emotional reactions but also received higher preferences. Traditional games could improve interpersonal relationships as well.

  8. Current Trend Towards Using Soft Computing Approaches to Phase Synchronization in Communication Systems

    Science.gov (United States)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    1999-01-01

    This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.

  9. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  10. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    Science.gov (United States)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  11. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  12. Optical timing receiver for the NASA Spaceborne Ranging System. Part I. Dual peak-sensing timing discriminator

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.; Zizka, G.

    1978-01-01

    Position-resolution capabilities of the NASA Spaceborne Laser Ranging System are essentially determined by the time-resolution capabilities of its optical timing receiver. The optical timing receiver consists of a fast photoelectric device; (e.g., photomultiplier or an avalanche photodiode detector), a timing discriminator, a high-precision event-timing digitizer, and a signal-processing system. The time-resolution capabilities of the receiver are determined by the photoelectron time spread of the photoelectric device, the time walk and resolution characteristics of the timing discriminator, and the resolution of the event-timing digitizer. It is thus necessary to evaluate available fast photoelectronic devices with respect to their time-resolution capabilities, to design a very low time walk timing discriminator and to develop a high-resolution event-timing digitizer which will be used in the high-resolution spaceborne laser ranging system receiver. The development of a new dual-peak sensing timing discriminator is described. The amplitude dependent time walk is less than +-150 psec for a 100:1 dynamic range of Gaussian-shaped input signals having pulse widths between 11 and 17 nsec. The unit produces 800 mV negative output pulses, each 10 nsec wide, and 3V positive pulses with widths of 15 nsec. The time delay through the discriminator is approximately 37 nsec. In this discriminator the input signal is processed by a peak-crossing circuit which produces a bipolar pulse having its zero-crossing point at the peak of the input signal. All essential functions in the discriminator are performed by means of tunnel diodes with backward diodes as nonlinear loads. The discriminator is designed to be CAMAC compatible to a conventional time-interval unit or a high-precision event timing digitizer. The adjustment procedure for obtaining minimum time walk is also given

  13. Empowering the digitally excluded: learning initiatives for (invisible groups

    Directory of Open Access Journals (Sweden)

    Jane Seale

    2012-12-01

    Full Text Available There is growing evidence that some digitally excluded groups of learners are receiving more attention than others. Discussions regarding why some digitally excluded learners are more visible than others and therefore worthy of more committed digital inclusion interventions raises important questions about how we define and conceptualise digital inclusion and digital inclusion practice; particularly in relation to empowerment. In this article, we draw on a range of research, practice and policy literature to examine two important questions: what is empowerment and in whose hands does empowerment lie? We argue that empowerment involves making informed choices about technology use, but that learners often require support- human intervention- to make these choices. However, current digital inclusion research has failed to produce a detailed critique of what constitutes empowering support from educational institutions and their staff. A lack of open and reflexive accounts of practice means that we are no closer to identifying and understanding the kinds of empowering practices that are required to challenge the kinds of prejudices, stereotypes, risk-aversiveness and low aspirations associated with the most invisible of digitally excluded learners.

  14. A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment

    OpenAIRE

    Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.

    2012-01-01

    We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...

  15. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  16. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  17. A method for characterization of coherent backgrounds in real time and its application in gravitational wave data analysis

    International Nuclear Information System (INIS)

    Daw, E J; Hewitson, M R

    2008-01-01

    Many experiments, and in particular gravitational wave detectors, produce continuous streams of data whose frequency representations contain discrete, relatively narrowband coherent features at high amplitude. We discuss the application of digital Fourier transforms (DFTs) to characterization of these features, hereafter frequently referred to as lines. Application of DFTs to continuously produced time-domain data is achieved through an algorithm, hereafter referred to as EFC , for efficient time-domain determination of the Fourier coefficients of a data set. We first define EFC and discuss parameters relating to the algorithm that determine its properties and action on the data. In gravitational wave interferometers, these lines are commonly due to parasitic sources of coherent background interference coupling into the instrument. Using GEO 600 data, we next demonstrate that time-domain subtraction of lines can proceed without detrimental effects either on features at frequencies separated from that of the subtracted line, or on features at the frequency of the line but having different stationarity properties

  18. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  19. Coherent Anti-Stokes and Coherent Stokes in Raman Scattering by Superconducting Nanowire Single-Photon Detector for Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Annepu Venkata Naga Vamsi

    2016-01-01

    Full Text Available We have reported the measurement of temperature by using coherent anti-Stroke and coherent Stroke Raman scattering using superconducting nano wire single-photon detector. The measured temperatures by both methods (Coherent Anti-Raman scattering & Coherent Stroke Raman scattering and TC 340 are in good accuracy of ± 5 K temperature range. The length of the pipe line under test can be increased by increasing the power of the pump laser. This methodology can be widely used to measure temperatures at instantaneous positions in test pipe line or the entire temperature of the pipe line under test.

  20. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

    Science.gov (United States)

    Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin

    2010-07-01

    The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.

  1. Speckles generated by skewed, short-coherence light beams

    International Nuclear Information System (INIS)

    Brogioli, D; Salerno, D; Ziano, R; Mantegazza, F; Croccolo, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called ‘skewed coherence beam’, i.e. a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. Moreover, we show that the heterodyne signal is not affected by multiple scattering. We suggest that the phenomenon presented here can be used as a means of carrying out heterodyne scattering measurement with any short-coherence radiation, including x-rays. (paper)

  2. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  3. Coherent states for polynomial su(2) algebra

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Inomata, Akira

    2007-01-01

    A class of generalized coherent states is constructed for a polynomial su(2) algebra in a group-free manner. As a special case, the coherent states for the cubic su(2) algebra are discussed. The states so constructed reduce to the usual SU(2) coherent states in the linear limit

  4. Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol

    Science.gov (United States)

    Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan

    2017-07-01

    Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.

  5. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  6. Digital advertising in cross-channel communications

    Directory of Open Access Journals (Sweden)

    A. V. Mordovin

    2017-01-01

    Full Text Available Advertising has passed a long way of development and today it is no longer limited to the printed press, static billboards, radio and television commercials. Digital technology has started a completely new era of digital advertising, which allows marketers and advertisers to target audiences with great precision. To meet the needs and expectations of customers who gain new personal experience through involvement in the process of continuous network communication advertisers make use of digital technologies that continue to develop intensively. Based on technological advances, new advertising technologies employ tracking methods to produce tailor-made advertisements that meet specific needs of customers, and new advertising platforms that can host new types of ads with dynamic content provide endless opportunities for marketers and advertisers. This paper will explore the key trends in the segment of digital advertising. In the process of this research methods of desk research and expert interviews were used. The received results can be used for updating of strategy and structure of marketing communications of the enterprises, their marketing budgets; in the educational process and for the further deepening of scientific and applied research.

  7. Coherent imaging at FLASH

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Duesterer, S; Treusch, R; Barty, A; Benner, W H; Bogan, M J; Frank, M; Hau-Riege, S P; Woods, B W; Boutet, S; Cavalleri, A; Hajdu, J; Iwan, B; Seibert, M M; Timneanu, N; Marchesini, S; Sakdinawat, A; Sokolowski-Tinten, K

    2009-01-01

    We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.

  8. The Effect of Choosing versus Receiving Feedback on College Students' Performance

    Science.gov (United States)

    Cutumisu, Maria; Schwartz, Daniel L.

    2016-01-01

    This study examines the effect of choosing versus receiving feedback on the learning performance of n = 98 post-secondary students from California on a digital poster design task. The study employs a yoked experimental design where college students are randomly assigned to play a choice-based assessment game, Posterlet, in one of two conditions,…

  9. Special relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Raogudimetla, V. S.

    1994-01-01

    There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the

  10. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  11. Interference Rejection in Receivers by Frequency Translated Low‿Pass Filtering and Digitally Enhanced Harmonic‿Rejection Mixing

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Ru, Z.; Moseley, N.A.; Nauta, Bram

    2011-01-01

    Software-Defined Radio (SDR) and Cognitive Radio (CR) concepts have recently drawn considerable interest. These radio concepts built on digital signal processing to realize flexibly programmable radio transceivers, which can adapt in a smart way to their environment. As CMOS is the mainstream IC

  12. Media Sosial Instagram sebagai Sarana Sosialisasi Kebijakan Penyiaran Digital

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2017-05-01

    Full Text Available This research tests the hypothesis that social media (Instagram is used as an effective medium to disseminate and educate people on issue of migration and digital TV. It is a three-week experimental research to 79 students as respondents based on video animation and text related to digital broadcasting. Instagram is chosen in term of interactive and audio-visual characteristics. The result shows that there is non-significant difference on students’ knowledge after treatment. The Chi Square test shows that Asymptotic significance is 0.646 (greater than 0,05. It indicates that there is no significant difference of knowledge before and after receiving a message about digital TV via Instagram.

  13. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  14. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  15. Indications of Optical Coherence Tomography in Keratoplasties: Literature Review

    Directory of Open Access Journals (Sweden)

    Thiago Trindade Nesi

    2012-01-01

    Full Text Available Optical coherence tomography (OCT of the anterior segment, in particular corneal OCT, has become a reliable tool for the cornea specialist, as it provides the acquisition of digital images at high resolution with a noncontact technology. In penetrating or lamellar keratoplasties, OCT can be used to assess central corneal thickness and pachymetry maps, as well as precise measurements of deep stromal opacities, thereby guiding the surgeon to choose the best treatment option. OCT has also been used to evaluate the keratoplasty postoperative period, for early identification of possible complications, such as secondary glaucoma or donor disc detachments in endothelial keratoplasties. Intraoperatively, OCT can be used to assess stromal bed regularity and transparency in anterior lamellar surgeries, especially for those techniques in which a bare Descemet’s membrane is the goal. The purpose of this paper is to review and discuss the role of OCT as a diagnostic tool in various types of keratoplasties.

  16. Kramers-Kronig PAM Transceiver and Two-Sided Polarization-Multiplexed Kramers-Kronig Transceiver

    Science.gov (United States)

    Antonelli, Cristian; Mecozzi, Antonio; Shtaif, Mark

    2018-01-01

    We propose two transceiver schemes based on Kramers Kronig (KK) detection. One targets low-cost high-throughput applications and uses PAM transmission in combination with direct detection and digital reconstruction of the optical phase. This scheme allows digital compensation of chromatic dispersion and provides a significant improvement in terms of spectral efficiency, compared to conventional PAM transmission. The second scheme targets high-channel-count coherent systems with the aim of simplifying the receiver complexity by reducing the optical components count.

  17. Control and monitoring of doses to patients in a team of digital mammography

    International Nuclear Information System (INIS)

    Agulla Otero, M.; Torres Cabrera, R.; Hernando Gonzalez, I.

    2013-01-01

    In recent years is widespread use of imaging devices digital mammography. One of the advantages associated with this scanning is the ability to access a large amount of information contained in the headwaters of own digital images. The exploitation of this information allows the calculation of doses received by patients. This paper describes the methodology employed for this purpose and are presented the results of the control and monitoring of doses given in a digital mammography equipment. (Author)

  18. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  19. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  20. A highly unscientific guide to civil-military coherence

    DEFF Research Database (Denmark)

    Zartsdahl, Peter Horne

    2017-01-01

    Coordinating external instruments is easy. In this EU-CIVCAP newsletter editorial, we provide a highly unscientific guide to succesful civil-military coherence. A User's Guide to Coherence; and extensive collection of buzzwords.......Coordinating external instruments is easy. In this EU-CIVCAP newsletter editorial, we provide a highly unscientific guide to succesful civil-military coherence. A User's Guide to Coherence; and extensive collection of buzzwords....