Sample records for diffusive structural optical

  1. Diffusive, Structural, Optical, and Electrical Properties of Defects in Semiconductors

    CERN Multimedia

    Wagner, F E


    Electronic properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photoluminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect, that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness", the present approach is to use radioactive isotopes as a tracer. Moreover, the recoil energies involved in $\\beta$ and $\\gamma$-decays can be used to create intrinsic isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. The understanding and the co...

  2. Influence of Au diffusion on structural, electrical and optical characteristics of CdTe thin films

    International Nuclear Information System (INIS)

    Dzhafarov, T D; Caliskan, M


    Diffusion of Au and its effects on structural, electrical and optical properties of CdTe films fabricated by the close-spaced sublimation technique have been investigated. Diffusion of Au was studied in the range 400-550 deg. C using energy dispersive x-ray fluorescence analysis. Au-doped and un-doped CdTe films were characterized by x-ray diffraction (XRD), electrical and optical absorption measurements. The temperature dependence of the diffusion coefficient of Au in CdTe films is described as D = 4.4 x 10 -7 exp(-0.54 eV/kT). The mechanism of Au diffusion in polycrystalline CdTe films is attributed to the fast migration of Au along grain boundaries with simultaneous penetration into grains and settling on Cd-vacancies. It is supposed that the weak influence of Au diffusion on XRD patterns of CdTe films can be explained by dispersal of Au atoms preferentially on Cd-vacancies owing to proximity of the covalent radius of Au and Cd. Au atoms, placed on Cd-vacancies (Au Cd ) during fast cooling from diffusion temperature to room temperature, show an acceptor behaviour with an energy level about of E v + 0.2 eV. The nature of this level is discussed

  3. Emission, Structure and Optical Properties of Overfire Soot from Buoyant Turbulent Diffusion Flames (United States)

    Koylu, Umit Ozgur

    The present study investigated soot and carbon monoxide emissions, and evaluated the optical properties of soot, in the overfire region of buoyant turbulent diffusion flames burning in still air. Soot and carbon monoxide emissions, and the corresponding correlation between these emissions, were studied experimentally. The optical properties of soot were investigated both experimentally and theoretically. The experiments involved gas (acetylene, propylene, ethylene, propane, methane) and liquid (toluene, benzene, n-heptane, iso-propanol, ethanol, methanol) fuels. The investigation was limited to the fuel-lean (overfire) region of buoyant turbulent diffusion flames burning in still air. Measurements included flame heights, characteristic flame residence times, carbon monoxide and soot concentrations, mixture fractions, ex-situ soot structure parameters (primary particle sizes, number of primary particles in aggregates, fractal dimensions), and in-situ optical cross sections (differential scattering, total scattering, and absorption) of soot in the overfire region of buoyant turbulent diffusion flames, emphasizing conditions in the long residence time regime where these properties are independent of position in the overfire region and flame residence time. The predictions of optical cross sections for polydisperse aggregates were based on Rayleigh-Debye-Gans theory for fractal aggregates; the predictions of this theory were evaluated by combining the TEM structure and the light scattering/extinction measurements. Carbon monoxide concentrations and mixture fractions were correlated in the overfire region of gas- and liquid -fueled turbulent diffusion flames. Soot volume fraction state relationships were observed for liquid fuels, supporting earlier observations for gas fuels. A strong correlation between carbon monoxide and soot concentrations was established in the fuel-lean region of both gas- and liquid-fueled turbulent diffusion flames. The structure and emission

  4. Diffusion tensor optical coherence tomography (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.


    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  5. Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography

    International Nuclear Information System (INIS)

    Tret'yakov, Evgeniy V; Shuvalov, Vladimir V; Shutov, I V


    An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 - 3 min) image reconstruction of the details of objects with a complicated inner structure. (laser biology and medicine)

  6. Acousto-optic-assisted diffuse optical tomography

    NARCIS (Netherlands)

    Bratchenia, A.; Molenaar, Robert; van Leeuwen, Ton; Kooyman, R.P.H.


    We introduce and experimentally demonstrate acousto-optic-assisted diffuse optical tomography (DOT) using a holography-based acousto-optic setup. The method is based on probing a scattering medium with a localized acoustical modulation of the phase of the scattered light. The optical properties of

  7. Light diffusing fiber optic chamber (United States)

    Maitland, Duncan J.


    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  8. 3D-surface reconstruction method for diffuse optical tomography phantoms and tissues using structured and polarized light (United States)

    Baum, K.; Hartmann, R.; Bischoff, T.; Himmelreich, F.; Heverhagen, J. T.


    In recent years optical methods became increasingly popular for pre-clinical research and small animal imaging. One main field in biomedical optics research is the diffuse optical tomography (DOT). Many new systems were invented for small animal imaging and breast cancer detection. In combination with the progress in the development of optical markers, optical detectors and near infrared light sources, these new systems have become a formidable source of information. Most of the systems detect the transmitted light which passes through an object and one observes the intensity variations on the detector side. The biggest challenge for all diffuse optical tomography systems is the enormous scattering of light in tissues and tissue-like phantoms resulting in loss of image information. Many systems work with contact gels and optical fibers that have direct contact with the object to neglect the light path between surface and detector. Highly developed mathematic models and reconstruction algorithms based on FEM and Monte Carlo simulations describe the light transport inside tissues and determine differences in absorption and scattering coefficients inside. The proposed method allows a more exact description of the orientation of surface elements from semi-transparent objects towards the detector. Using Polarization Difference Imaging (PDI) in combination with structured light 3D-scanning, it is possible to separate information from the surface from that of the subsurface. Thus, the actual surface shape can be determined. Furthermore, overlaying byproducts caused by inter-reflections and multiple scattering can be filtered from the basic image information with this method. To enhance the image quality, the intensity dispersion between surface and camera is calculated and the creation of 3D-FEM-meshes simplified.

  9. Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, S. [SoloPower, Inc., 5981 Optical Ct., San Jose, CA 95138 (United States); Bacaksiz, E., E-mail: [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Parlak, M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Yilmaz, S.; Polat, I.; Altunbas, M. [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuerksoy, M.; Topkaya, R. [Department of Physics, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey); Ozdogan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey)


    Highlights: {yields} Cadmium sulphide thin films were deposited by vacuum evaporation. {yields} Elemental Mn was deposited onto CdS thin films by using electron beam evaporation and annealed under vacuum at different temperatures. {yields} Structural, optical and magnetic studies of Mn-doped CdS have been investigated. {yields} X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. {yields} Magnetic measurements show that Mn-doped CdS thin films exhibit a ferromagnetism behavior at room temperature. - Abstract: The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 deg. C to 400 deg. C in step of 50 deg. C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. The incorporation of Mn did not cause any change in the texture but reduced the peak intensity and lead to a smaller crystallite size. Investigation of surface morphology using atomic force microscopy confirmed the decrease in the grain size with the Mn diffusion. In addition, a more uniform grain size distribution was observed in the doped films. X-ray photoelectron spectroscopy analysis showed that Mn atoms on the surface of the films were bounded to either sulphur or oxygen atoms. Auger electron spectroscopy of the diffusion-doped CdS sample at 350 deg. C indicated that the atomic Mn concentration was higher close to the surface region and Mn was distributed with a steadily decreasing profile through the bulk of the film with an average atomic concentration value around few

  10. Massively parallel diffuse optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, John V.; Pitts, Todd A.


    Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of the respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.

  11. In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy (United States)

    Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris


    We have combined two optical techniques to enable simultaneous assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in midinfrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. Namely, while PPTR is highly sensitive to depth distribution of selected absorbers, DRS provides spectral information and thus enables differentiation between various chromophores. The accuracy and robustness of the inverse analysis is thus considerably improved compared to use of either technique on its own. Our analysis approach is simultaneous multi-dimensional fitting of the measured PPTR signals and DRS with predictions from a numerical model of light-tissue interaction (a.k.a. inverse Monte Carlo). By using a three-layer skin model (epidermis, dermis, and subcutis), we obtain a good match between the experimental and modeling data. However, dividing the dermis into two separate layers (i.e., papillary and reticular dermis) helps to bring all assessed parameter values within anatomically and physiologically plausible intervals. Both the quality of the fit and the assessed parameter values depend somewhat on the assumed scattering properties for skin, which vary in literature and likely depend on subject's age and gender, anatomical site, etc. In our preliminary experience, simultaneous fitting of the scattering properties is possible and leads to considerable improvement of the fit. The described approach may thus have a potential for simultaneous determination of absorption and scattering properties of human skin in vivo.

  12. Greedy algorithms for diffuse optical tomography reconstruction (United States)

    Dileep, B. P. V.; Das, Tapan; Dutta, Pranab K.


    Diffuse optical tomography (DOT) is a noninvasive imaging modality that reconstructs the optical parameters of a highly scattering medium. However, the inverse problem of DOT is ill-posed and highly nonlinear due to the zig-zag propagation of photons that diffuses through the cross section of tissue. The conventional DOT imaging methods iteratively compute the solution of forward diffusion equation solver which makes the problem computationally expensive. Also, these methods fail when the geometry is complex. Recently, the theory of compressive sensing (CS) has received considerable attention because of its efficient use in biomedical imaging applications. The objective of this paper is to solve a given DOT inverse problem by using compressive sensing framework and various Greedy algorithms such as orthogonal matching pursuit (OMP), compressive sampling matching pursuit (CoSaMP), and stagewise orthogonal matching pursuit (StOMP), regularized orthogonal matching pursuit (ROMP) and simultaneous orthogonal matching pursuit (S-OMP) have been studied to reconstruct the change in the absorption parameter i.e, Δα from the boundary data. Also, the Greedy algorithms have been validated experimentally on a paraffin wax rectangular phantom through a well designed experimental set up. We also have studied the conventional DOT methods like least square method and truncated singular value decomposition (TSVD) for comparison. One of the main features of this work is the usage of less number of source-detector pairs, which can facilitate the use of DOT in routine applications of screening. The performance metrics such as mean square error (MSE), normalized mean square error (NMSE), structural similarity index (SSIM), and peak signal to noise ratio (PSNR) have been used to evaluate the performance of the algorithms mentioned in this paper. Extensive simulation results confirm that CS based DOT reconstruction outperforms the conventional DOT imaging methods in terms of

  13. Vertical diffuse attenuation coefficient (Kd) based optical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The optical classification of the different water types provides vital input for studies related to primary productivity, water clarity and determination of euphotic depth. Image data of the IRS-. P3 MOS-B, for Path 90 of 27th February, 1998 was used for deriving vertical diffuse attenuation coefficient (Kd) and an optical ...

  14. Vertical diffuse attenuation coefficient (Kd) based optical ...

    Indian Academy of Sciences (India)

    The optical classification of the different water types provides vital input for studies related to primary productivity, water clarity and determination of euphotic depth. Image data of the IRS- P3 MOS-B, for Path 90 of 27th February, 1998 was used for deriving vertical diffuse attenuation Coeffcient () and an optical ...

  15. Surface diffusion studies by optical diffraction techniques

    International Nuclear Information System (INIS)

    Xiao, X.D.


    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect

  16. Diffusion dynamics in an advanced optical trap (United States)

    Tatarkova, Svetlana A.; Dholakia, Kishan


    Stochastic processes play a key role in the communications inside the cells, cell mitosis and membrane channel regulation. It has been suggested that the molecular transport mechanism can be based on rectified thermal diffusion in a Brownian ratchet. A two-dimensional optical potential of circular symmetry created by a Bessel light beam is an ideal playground to study these phenomena. This optical field can be tilted to create a periodic (washboard) potential of imperfect Brownian ratchet. The tilt variation induces a directed transport of microparticles or biomolecules across the potential barriers when biomolecules attached non-covalently to these microparticles. In the central maximum of Bessel beam particles can be guided due to radiation pressure. Our data offer a new venue for understanding of cooperative phenomena in biology.

  17. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Young; Lee, In Ho; Song, Chang June [Chungnam National University Hospital, Daejeon (Korea, Republic of); Hwang, Hee Youn [Eulji University Hospital, Daejeon(Korea, Republic of)


    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  18. Multispectral diffuse optical tomography of finger joints (United States)

    Lighter, Daniel; Filer, Andrew; Dehghani, Hamid


    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial inflammation. The current treatment paradigm for earlier, more aggressive therapy places importance on development of functional imaging modalities, capable of quantifying joint changes at the earliest stages. Diffuse optical tomography (DOT) has shown great promise in this regard, due to its cheap, non-invasive, non-ionizing and high contrast nature. Underlying pathological activity in afflicted joints leads to altered optical properties of the synovial region, with absorption and scattering increasing. Previous studies have used these optical changes as features for classifying diseased joints from healthy. Non-tomographic, single wavelength, continuous wave (CW) measurements of trans-illuminated joints have previously reported achieving this with specificity and sensitivity in the range 80 - 90% [1]. A single wavelength, frequency domain DOT system, combined with machine learning techniques, has been shown to achieve sensitivity and specificity in the range of 93.8 - 100% [2]. A CW system is presented here which collects data at 5 wavelengths, enabling reconstruction of pathophysiological parameters such as oxygenation and total hemoglobin, with the aim of identifying localized hypoxia and angiogenesis associated with inflammation in RA joints. These initial studies focus on establishing levels of variation in recovered parameters from images of healthy controls.

  19. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion. (United States)

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji


    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  20. Fundamental study on diffuse reflective optical tomography

    International Nuclear Information System (INIS)

    Endoh, R; Suzuki, A; Fujii, M; Nakayama, K


    We report a simulation study on diffuse reflective optical computed tomography, in which continuous-wave sources and detectors are placed on the plane surface of a semi-infinite body. We adopted a simple Tikhonov regularization in the inverse problem and demonstrated the feasibility of three-dimensional reconstruction of the absorption coefficient change. The spatial resolution of the reconstructed image was shown to be degrading markedly with the depth. The regularization parameter should be chosen appropriately considering the trade-off between the reconstructed image noise and the spatial resolution. We analysed the dependence of the spatial resolution of the reconstructed image on the regularization parameter and the depth, and also the behaviour of the reconstructed image noise on the regularization parameter and the depth

  1. Broadband diffuse optical characterization of elastin for biomedical applications. (United States)

    Konugolu Venkata Sekar, Sanathana; Beh, Joo Sin; Farina, Andrea; Dalla Mora, Alberto; Pifferi, Antonio; Taroni, Paola


    Elastin is a key structural protein of dynamic connective tissues widely found in the extracellular matrix of skin, arteries, lungs and ligaments. It is responsible for a range of diseases related to aging of biological tissues. The optical characterization of elastin can open new opportunities for its investigation in biomedical studies. In this work, we present the absorption spectra of elastin using a broadband (550-1350nm) diffuse optical spectrometer. Distortions caused by fluorescence and finite bandwidth of the laser source on estimated absorption were effectively accounted for in measurements and data analysis and compensated. A comprehensive summary and comparison between collagen and elastin is presented, highlighting distinct features for its accurate quantification in biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Peak-locking error reduction by birefringent optical diffusers (United States)

    Kislaya, Ankur; Sciacchitano, Andrea


    The use of optical diffusers for the reduction of peak-locking errors in particle image velocimetry is investigated. The working principle of the optical diffusers is based on the concept of birefringence, where the incoming rays are subject to different deflections depending on the light direction and polarization. The performances of the diffusers are assessed via wind tunnel measurements in uniform flow and wall-bounded turbulence. Comparison with best-practice image defocusing is also conducted. It is found that the optical diffusers yield an increase of the particle image diameter up to 10 µm in the sensor plane. Comparison with reference measurements showed a reduction of both random and systematic errors by a factor of 3, even at low imaging signal-to-noise ratio.

  3. Emergent spatial synaptic structure from diffusive plasticity. (United States)

    Sweeney, Yann; Clopath, Claudia


    Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis. (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan


    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  5. Vertical diffuse attenuation coefficient (Kd) based optical ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    mary production and diffuse attenuation coeffi- cient (Austin 1981; Sathyendranath et al 2000). The Indian IRS-P3 ... oceanic and coastal production of phytoplank- ton (Tyler 1975; Pennock and Sharp 1986). As a result basic ... cient to the plant pigment content. The term dif- fuse attenuation coefficient, most commonly used.

  6. Effect of eddy diffusivity ratio on underwater optical scintillation index. (United States)

    Elamassie, Mohammed; Uysal, Murat; Baykal, Yahya; Abdallah, Mohamed; Qaraqe, Khalid


    The performance of underwater optical wireless communication systems is severely affected by the turbulence that occurs due to the fluctuations in the index of refraction. Most previous studies assume a simplifying, yet inaccurate, assumption in the turbulence spectrum model that the eddy diffusivity ratio is equal to unity. It is, however, well known that the eddy diffusivities of temperature and salt are different from each other in most underwater environments. In this paper, we obtain a simplified spatial power spectrum model of turbulent fluctuations of the seawater refraction index as an explicit function of eddy diffusivity ratio. Using the derived model, we obtain the scintillation index of optical plane and spherical waves and investigate the effect of the eddy diffusivity ratio.

  7. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Mingze Li


    Full Text Available Diffuse optical tomography (DOT and fluorescence molecular tomography (FMT are two attractive imaging techniques for in vivo physiological and psychological research. They have distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical applications are included. Future challenges and perspective on optical tomography are discussed.

  8. Multiple Andreev reflections in diffusive SNS structures

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Kutchinsky, Jonatan; Hansen, Jørn Bindslev


    We report new measurements on subgap energy structures originating from multiple Andreev reflections in mesoscopic SNS junctions. The junctions were fabricated in a planar geometry with high-transparency superconducting contacts of Al deposited on highly diffusive and surface delta-doped n...

  9. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Anusha; Srinivasan, Sivasubramanian [Khoo Teck Puat Hospital, Singapore (Singapore)


    We read with great interest, the case report on ischemic optic neuropathy (1). We would like to add a few points concerning the blood supply of the optic nerve and the correlation with the development of post-operative ischemic neuropathy. Actually, the perioperative or post-operative vision loss (postoperative ischemic neuropathy) is most likely due to ischemic optic neuropathy. Ischemic optic neuropathy (2) is classified as an anterior ischemic optic neuropathy (AION) and posterior ischemic optic neuropathy (PION). This classification is based on the fact that blood supply (2) to the anterior segment of the optic nerve (part of the optic nerve in the scleral canal and the optic disc) is supplied by short posterior ciliary vessels or anastamotic ring branches around the optic nerve. The posterior part of the optic canal is relatively less perfused, and is supplied by ophthalmic artery and central fibres are perfused by a central retinal artery. So, in the post-operative period, the posterior part of the optic nerve is more vulnerable for ischemia, especially, after major surgeries (3), one of the theories being hypotension or anaemia (2) and resultant decreased perfusion. The onset of PION is slower than the anterior ischemic optic neuropathy. AION on the other hand, is usually spontaneous (idiopathic) or due to arteritis, and is usually sudden in its onset. The reported case is most likely a case of PION. The role of imaging, especially the diffusion weighted magnetic resonance imaging, is very important because the ophthalmoscopic findings in early stages of PION is normal, and it may delay the diagnosis. On the other hand, edema of the disc is usually seen in the early stages of AION.

  10. Diffusion zinc plating of structural steels

    International Nuclear Information System (INIS)

    Kazakovskaya, Tatiana; Goncharov, Ivan; Tukmakov, Victor; Shapovalov, Vyacheslav


    The report deals with the research on diffusion zinc plating of structural steels when replacing their cyanide cadmium plating. The results of the experiments in the open air, in vacuum, in the inert atmosphere, under various temperatures (300 - 500 deg.C) for different steel brands are presented. It is shown that diffusion zinc plating in argon or nitrogen atmosphere ensures obtaining the qualitative anticorrosion coating with insignificant change of mechanical properties of steels. The process is simple, reliable, ecology pure and cost-effective. (authors)

  11. 3-D anisotropic neutron diffusion in optically thick media with optically thin channels

    International Nuclear Information System (INIS)

    Trahan, Travis J.; Larsen, Edward W.


    Standard neutron diffusion theory accurately approximates the neutron transport process for optically thick, scattering-dominated systems in which the angular neutron flux is a weak (nearly linear) function of angle. Therefore, standard diffusion theory is not directly applicable for Very High Temperature Reactor (VHTR) cores, which contain numerous narrow, axially-oriented, nearly-voided coolant channels. However, we have derived a new, accurate diffusion equation for such problems, which contains nonstandard anisotropic diffusion coefficients near and within the channels, but which reduces to the standard diffusion approximation away from the channels. The new diffusion approximation significantly improves the accuracy of VHTR diffusion simulations, while having lower computational cost than higher-order transport methods. (author)

  12. Information diffusion in structured online social networks (United States)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui


    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  13. An extended analytical approach for diffuse optical imaging. (United States)

    Erkol, H; Nouizi, F; Unlu, M B; Gulsen, G


    In this work, we introduce an analytical method to solve the diffusion equation in a cylindrical geometry. This method is based on an integral approach to derive the Green's function for specific boundary conditions. Using our approach, we obtain comprehensive analytical solutions with the Robin boundary condition for diffuse optical imaging in both two and three dimensions. The solutions are expressed in terms of the optical properties of tissue and the amplitude and position of the light source. Our method not only works well inside the tissue but provides very accurate results near the tissue boundaries as well. The results obtained by our method are first compared with those obtained by a conventional analytical method then validated using numerical simulations. Our new analytical method allows not only implementation of any boundary condition for a specific problem but also fast simulation of light propagation making it very suitable for iterative image reconstruction algorithms.

  14. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system


    Johansson, Johannes D.; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut


    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in hei...

  15. Diffuse optical tomography using semiautomated coregistered ultrasound measurements (United States)

    Mostafa, Atahar; Vavadi, Hamed; Uddin, K. M. Shihab; Zhu, Quing


    Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light localization and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided by coregistered US. Experienced operators can manually measure these lesion parameters; however, training and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction results using the proposed procedure were compared with those reconstructed using extracted tumor information from an experienced user. Mean optical absorption obtained from manual measurement was 0.21±0.06 cm-1 for malignant and 0.12±0.06 cm-1 for benign cases, whereas for the proposed method it was 0.24±0.08 cm-1 and 0.12±0.05 cm-1, respectively.

  16. Mapping distributed brain function and networks with diffuse optical tomography (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.


    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  17. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka


    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  18. Diffuse optical imaging using spatially and temporally modulated light (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.


    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  19. Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sidek, S. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Medical Imaging Unit, Faculty of Medicine, Universiti Teknologi MARA, Selangor (Malaysia); Ramli, N. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Rahmat, K., E-mail: [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia); Ramli, N.M.; Abdulrahman, F. [Department of Ophthalmology, Faculty of Medicine, University Malaya, Kuala Lumpur (Malaysia); Tan, L.K. [Department of Biomedical Imaging, University Malaya, Research Imaging Centre, Faculty of Medicine, University Malaya (Malaysia)


    Objectives: To evaluate whether MR diffusion tensor imaging (DTI) of the optic nerve and optic radiation in glaucoma patients provides parameters to discriminate between mild and severe glaucoma and to determine whether DTI derived indices correlate with retinal nerve fibre layer (RNFL) thickness. Methods: 3-Tesla DTI was performed on 90 subjects (30 normal, 30 mild glaucoma and 30 severe glaucoma subjects) and the FA and MD of the optic nerve and optic radiation were measured. The categorisation into mild and severe glaucoma was done using the Hodapp–Parrish–Anderson (HPA) classification. RNFL thickness was also assessed on all subjects using OCT. Receiver operating characteristic (ROC) analysis and Spearman's correlation coefficient was carried out. Results: FA and MD values in the optic nerve and optic radiation decreased and increased respectively as the disease progressed. FA at the optic nerve had the highest sensitivity (87%) and specificity (80%). FA values displayed the strongest correlation with RNFL thickness in the optic nerve (r = 0.684, p ≤ 0.001) while MD at the optic radiation showed the weakest correlation with RNFL thickness (r = −0.360, p ≤ 0.001). Conclusions: The high sensitivity and specificity of DTI-derived FA values in the optic nerve and the strong correlation between DTI-FA and RNFL thickness suggest that these parameters could serve as indicators of disease severity.

  20. Photoacoustic tomography guided diffuse optical tomography for small-animal model (United States)

    Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao


    Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.

  1. Diffused holographic information storage and retrieval using photorefractive optical materials (United States)

    McMillen, Deanna Kay

    Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and

  2. On the diffusion of innovations: A structural perspective

    DEFF Research Database (Denmark)

    Ostoic, Antonio Rivero


    Working paper describing structural models for the analysis of the diffusion of innovations and mechanisms for adoption. Additionally, some milestones in the study of innovation diffusion are given and a discussion of this matter....

  3. Determination of the Diffusion Parameters of an Optically Thin Scattering Sample Through Time-resolved Transmission

    NARCIS (Netherlands)

    Aas, Mehdi; IJzerman, W.L.; Vissenberg, Gilles; Vos, Willem L.; Lagendijk, Ad


    The color-converting phosphor diffusers in white LEDs are optically thin and hence are hard to characterize. We show that separating of direct from diffuse transmission in time-resolved experiments results in less than 20% error in determining the diffusion parameters using the diffusion

  4. Moisture diffusivity in structure of random fractal fiber bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fanglong, E-mail: [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)


    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  5. Moisture diffusivity in structure of random fractal fiber bed

    International Nuclear Information System (INIS)

    Zhu, Fanglong; Zhou, Yu; Feng, Qianqian; Xia, Dehong


    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  6. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    International Nuclear Information System (INIS)

    Konovalov, A B; Vlasov, V V


    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)

  7. Optical feedback structures and methods of making (United States)



    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  8. Controlling frontal photopolymerization with optical attenuation and mass diffusion (United States)

    Hennessy, Matthew G.; Vitale, Alessandra; Matar, Omar K.; Cabral, João T.


    Frontal photopolymerization (FPP) is a versatile directional solidification process that can be used to rapidly fabricate polymer network materials by selectively exposing a photosensitive monomer bath to light. A characteristic feature of FPP is that the monomer-to-polymer conversion profiles take on the form of traveling waves that propagate into the unpolymerized bulk from the illuminated surface. Practical implementations of FPP require detailed knowledge about the conversion profile and speed of these traveling waves. The purpose of this theoretical study is to (i) determine the conditions under which FPP occurs and (ii) explore how optical attenuation and mass transport can be used to finely tune the conversion profile and propagation kinetics. Our findings quantify the strong optical attenuation and slow mass transport relative to the rate of polymerization required for FPP. The shape of the traveling wave is primarily controlled by the magnitude of the optical attenuation coefficients of the neat and polymerized material. Unexpectedly, we find that mass diffusion can increase the net extent of polymerization and accelerate the growth of the solid network. The theoretical predictions are found to be in excellent agreement with experimental data acquired for representative systems.

  9. Characteristics of Optical Diffusers for Light-Emitting Diodes Backlight Unit Prepared by Melt-Extrusion Process (United States)

    Kim, Hyo Jin; Kim, Dong Won; Kim, Seong Woo


    Using extrusion compounding followed by compression molding processes, polycarbonate-based optical diffusers with uniform dispersion of diffusing particles could be prepared for application in direct-lit LED backlight unit. Inorganic porous silica and organic silicone microsphere particles were employed as diffusing agents. The inclusion of diffusing particles up to 3 wt % substantially improved the luminance uniformity with respect to both location and viewing angle, and the effect was shown to be more prominent for the silicone particles. Alternatively, inorganic silica particles could yield diffusers with enhanced absolute luminance and thermal resistance property. The thermo-mechanical property of the elastic modulus was revealed to be improved upon addition of diffusing particles of silica and silicone with cross-linked structure.

  10. Low-cost diffuse optical tomography for the classroom (United States)

    Minagawa, Taisuke; Zirak, Peyman; Weigel, Udo M.; Kristoffersen, Anna K.; Mateos, Nicolas; Valencia, Alejandra; Durduran, Turgut


    Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology, neurology, and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues, basics of medical tomography, and the concepts of multiple scattering and absorption. Here, we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources, the detectors (photo-diodes), a mechanical 2D scanning platform, and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software, and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.

  11. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Svenmarker, Pontus, E-mail: [Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Centre for Microbial Research (UCMR), Umeå University, SE-901 87 Umeå (Sweden); Xu, Can T.; Liu, Haichun; Wu, Xia; Andersson-Engels, Stefan [Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden)


    We report on improved image detectability for fluorescence diffuse optical tomography using upconverting nanoparticles doped with rare-earth elements. Core-shell NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+}@NaYF{sub 4} upconverting nanoparticles were synthesized through a stoichiometric method. The Yb{sup 3+}/Er{sup 3+} sensitizer-activator pair yielded two anti-Stokes shifted fluorescence emission bands at 540 nm and 660 nm, here used to a priori estimate the fluorescence source depth with sub-millimeter precision. A spatially varying regularization incorporated the a priori fluorescence source depth estimation into the tomography reconstruction scheme. Tissue phantom experiments showed both an improved resolution and contrast in the reconstructed images as compared to not using any a priori information.

  12. Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of breast cancer (United States)

    Ntziachristos, Vasilis


    Diffuse Optical Tomography (DOT) in the Near Infrared NIR offers the potential to perform non-invasive three- dimensional quantified imaging of large-organs in vivo. The technique targets tissue intrinsic chromophores such as oxy- and deoxy-hemoglobin and the uptake of optical contrast agents. This work considers the DOT application in studying the vascularization, hemoglobin saturation and Indocyanine Green (ICG) uptake of breast tumors in-vivo as measures of angiogenesis, blood vessel permeability and oxygen delivery and consumption. To realize this work an optical tomographer based on the single-photon-counting time- correlated technique was coupled to a Magnetic Resonance Imaging (MRI) scanner. All patients entered the study were also scheduled for biopsy; hence histopathological information was also available as the ``Gold Standard'' for the diagnostic performance. The feasibility of Diffuse Optical Tomography to image tissue in-vivo is demonstrated by direct comparison of contrast-enhanced MRI and DOT images obtained from the same breast under identical geometrical and physiological conditions. Additionally, the effect of tissue optical background heterogeneity on the imaging performance is studied using simulations. We also present optimization schemes that yield superior reconstruction and spectroscopic capacity when probing the intrinsic and extrinsic contrast of highly heterogeneous optical media. The simultaneous examination also pioneers a hybrid diagnostic modality where MRI and image-guided localized diffuse optical spectroscopy (DOS) information are concurrently available. The approach employs the MR structural and functional information as a-priori knowledge and thus improves the quantification ability of the optical method. We have employed DOS and localized DOS to quantify optical properties of tissue in two and three wavelengths and obtain functional properties of malignant, benign and normal breast lesions. Generally, cancers exhibited higher

  13. Optical diffusion performance of nanophosphor-based materials for use in medical imaging (United States)

    Liaparinos, Panagiotis F.


    Recent technologies, such as nanotechnology, provide new opportunities for next generation scintillation devices and instruments. New nanophosphor-based materials seem to be promising for further improvements in optical diffusion studies. In medical imaging, detector technology has found widespread use, offering improved signal capabilities. However, in spite of many spectacular innovations and the significant research in chemical synthesis on the detective material, improvement in signal quality is still an issue requiring further progress. Here, a sophisticated analysis is shown within the framework of Mie scattering theory and Monte Carlo simulation which demonstrates the optimum structural and optical properties of nanophosphors that are significantly promising in manufacture for further signal modulation improvement. A variety of structural and optical properties were examined: (1) phosphors of grain size (1 to 1000 nm), (2) packing density (50% to 99%), (3) light wavelength (400 to 700 nm), and (4) refractive index of nanophosphor (real part: 1.4-2.0, imaginary part: 10-6). Results showed that for a specific thickness of nanophosphor layer, the compromise between spatial resolution and sensitivity can be achieved by optimizing the structural (200 nm≤grain diameter≤800 nm) and optical properties of the nanophosphor (1.7≤refractiveindex≤2.0). Finally, high optical modulation was accomplished employing grains of high refractive index and size above 200 nm.

  14. Use of diffusive optical fibers for plant lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, T.; Kitaya, Y.; Fujiwara, K. [Chiba Univ., Matsudo (Japan); Kino, S.; Kinowaki, M. [Topy Green Ltd., Tokyo (Japan)


    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.

  15. Controlling photonic structures using optical forces


    Wiederhecker, Gustavo S.; Chen, Long; Gondarenko, Alexander; Lipson, Michal


    The downscaling of optical systems to the micro and nano-scale results in very compliant systems with nanogram-scale masses, which renders them susceptible to optical forces. Here we show a specially designed resonant structure for enabling efficient static control of the optical response with relatively weak repulsive and attractive optical forces. Using attractive gradient optical forces we demonstrate a static mechanical deformation of up to 20 nanometers in the resonator structure. This d...

  16. Structural, optical spectroscopy, optical conductivity, dielectric ...

    Indian Academy of Sciences (India)


    different methods of preparation [36-41]. The electrical insulator materials with low refractive index and low absorption are needed for various optical devices, such as low loss waveguides, resonators, photonic crystals, distributed Bragg reflectors, light-emitting diodes, passive splitters, biosensors, attenuators and filters ...

  17. Time evolution of negative binomial optical field in a diffusion channel

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Wu Pan-Pan; Shan Chuan-Jia; Liu Ji-Bing; Fan Hong-Yi


    We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition. (paper)

  18. Ion diffusion related to structure in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.


    A model first developed by Zwanzig to derive transport coefficients in cold dense fluids directly from the Green-Kubo time correlation formulae allows one to relate macroscopic diffusion coefficients to the local fluid structure. Applications to various ionic diffusion processes in molten salts are reviewed. Consequences of partial structural quenching are also discussed. (author). 28 refs, 3 tabs

  19. System for diffusing light from an optical fiber or light guide (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [


    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  20. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre


    Majumdar, M. R. Dutta; Das, Debasish


    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  1. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.


    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  2. Mapping effective connectivity within cortical networks with diffuse optical tomography. (United States)

    Hassanpour, Mahlega S; Eggebrecht, Adam T; Peelle, Jonathan E; Culver, Joseph P


    Understanding how cortical networks interact in response to task demands is important both for providing insight into the brain's processing architecture and for managing neurological diseases and mental disorders. High-density diffuse optical tomography (HD-DOT) is a neuroimaging technique that offers the significant advantages of having a naturalistic, acoustically controllable environment and being compatible with metal implants, neither of which is possible with functional magnetic resonance imaging. We used HD-DOT to study the effective connectivity and assess the modulatory effects of speech intelligibility and syntactic complexity on functional connections within the cortical speech network. To accomplish this, we extend the use of a generalized psychophysiological interaction (PPI) analysis framework. In particular, we apply PPI methods to event-related HD-DOT recordings of cortical oxyhemoglobin activity during auditory sentence processing. We evaluate multiple approaches for selecting cortical regions of interest and for modeling interactions among these regions. Our results show that using subject-based regions has minimal effect on group-level connectivity maps. We also demonstrate that incorporating an interaction model based on estimated neural activity results in significantly stronger effective connectivity. Taken together our findings support the use of HD-DOT with PPI methods for noninvasively studying task-related modulations of functional connectivity.

  3. Modeling complex diffusion mechanisms in L12-structured compounds

    International Nuclear Information System (INIS)

    Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.


    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L1 2 -structured compounds.

  4. Modeling complex diffusion mechanisms in L1 2 -structured compounds (United States)

    Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.


    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L12-structured compounds.

  5. Oxygenation level and hemoglobin concentration in experimental tumor estimated by diffuse optical spectroscopy (United States)

    Orlova, A. G.; Kirillin, M. Yu.; Volovetsky, A. B.; Shilyagina, N. Yu.; Sergeeva, E. A.; Golubiatnikov, G. Yu.; Turchin, I. V.


    Using diffuse optical spectroscopy the level of oxygenation and hemoglobin concentration in experimental tumor in comparison with normal muscle tissue of mice have been studied. Subcutaneously growing SKBR-3 was used as a tumor model. Continuous wave fiber probe diffuse optical spectroscopy system was employed. Optical properties extraction approach was based on diffusion approximation. Decreased blood oxygen saturation level and increased total hemoglobin content were demonstrated in the neoplasm. The main reason of such differences between tumor and norm was significant elevation of deoxyhemoglobin concentration in SKBR-3. The method can be useful for diagnosis of tumors as well as for study of blood flow parameters of tumor models with different angiogenic properties.

  6. Combination of broadband diffuse optical spectroscopy with magnetic resonance imaging (United States)

    Merritt, Sean Isaiah

    Broadband diffuse optical spectroscopy (DOS) is an emerging optical technique used to measure absorption and scattering of bulk tissue non-invasively within the near-infrared (600--1050 nm). The ultimate aim of my advisors group is for broadband DOS to become an established medical diagnostic technique used clinically on various tissue types including breast, muscle and bone. The specific goal for my research is to use established magnetic resonance (MR) techniques for the purpose of continued development and validation of broadband DOS. The initial studies carried out were a validation of broadband DOS through a direct comparison with MRI. Both techniques are sensitive to signals produced by water and lipids in tissue. There is also sensitivity to blood flow, which MRI measures using exogenous contrast agents and broadband DOS is sensitive through measurement of total hemoglobin content (THC) and tissue oxygen saturation (StO2). These validation studies were compared initially in a rat tumor model in which both techniques were used simultaneously. A qualitative correlation was found between the MR images of water content and blood perfusion compared with the DOS water and THC values. A more quantitative comparison was made between measuring absolute water and lipid content in phantoms and in human tissue, which showed a strong correlation. The in vivo study also validated that broadband DOS was interrogating bone marrow in the tibia. The second half of this thesis is focused on developing new capabilities of broadband DOS and the MRI literature is used as a guide. When a water molecule hydrogen bonds to another molecule, the absorption spectrum in the near-infrared which is due to the vibrational overtone of the OH bond will change. The expected changes were observed in tissue and an algorithm was developed to fit for a tissue bound water parameter. Also, as tissue temperature changes, the fraction of water bound to other water molecules changes and can be used to

  7. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    International Nuclear Information System (INIS)

    Etienne, Emilien; Lenne, Pierre-Francois; Sturgis, James N.; Rigneault, Herve


    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries,reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ∼50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes,permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry orthe FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichiacoli illustrates the capabilities of the technique

  8. Towards real-time functional human brain imaging with diffuse optical tomography (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Culver, Joseph; Dehghani, Hamid


    A framework for efficient formulation of the inverse model in diffuse optical tomography, incorporating parallel computing is proposed. Based on 24 subjects, a tenfold speed increase and a hundredfold memory efficiency is reported, whilst maintaining reconstruction quality.

  9. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study


    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Dalla Mora, Alberto


    International audience; Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thu...

  10. Structural controls and mechanisms of diffusion in natural silicate melts (United States)

    Henderson, P.; Nolan, J.; Cunningham, G. C.; Lowry, R. K.


    The diffusion properties of Na, Cs, Ba, Fe and Eu ions have been determined experimentally for a pantellerite melt and of these ions plus Li, Mn and Co in pitchstone melt, using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,200 1,400° C. In addition, Eu diffusion in a basaltic and an andesitic melt was determined. Diffusion of all cations follows an Arrhenius relationship, activation energy values being high for diffusion in the pantellerite melt (e.g. Eu: 100 kcal mol-1) except in the case of Na (24.3 kcal mol-1). Activation energies of diffusion in the pitchstone melt are similar to values recorded earlier for andesitic and basaltic melts. The new data are used, along with previously published data for diffusion in other composition melts, to examine the compositional and structural controls on diffusion. The range of diffusivities shows a marked change with melt composition; over two orders of magnitude for a basaltic melt, and nearly four orders for a pantellerite melt (both at 1,300° C). Diffusivity of all cations (except Li and Na) correlates positively with the proportion of network modifying cations. In the case of Li and Na the correlation is negative but the diffusivity of these ions correlates positively with the proportion of Na or of Na + K ions in the bulk melt. Diffusion behaviour in the pantellerite melt departs from the relationships shown by the data for other melt compositions, which could be partly explained by trivalent ions (such as Fe) occupying network forming positions. The diffusivity of alkali metal ions is strongly dependent on ionic radius, but this is not the case with the divalent and trivalent ions; diffusivity of these ions remains relatively constant with change in radius but decreases with increase in ionic charge. A compensation diagram shows four distinct but parallel trends for the majority of the cations in four melt types but the data for Li and Na plot on a separate

  11. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G


    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  12. Topographic localization of brain activation in diffuse optical imaging using spherical wavelets (United States)

    Abdelnour, F.; Schmidt, B.; Huppert, T. J.


    Diffuse optical imaging is a non-invasive technique that uses near-infrared light to measure changes in brain activity through an array of sensors placed on the surface of the head. Compared to functional MRI, optical imaging has the advantage of being portable while offering the ability to record functional changes in both oxy- and deoxy-hemoglobin within the brain at a high temporal resolution. However, the reconstruction of accurate spatial images of brain activity from optical measurements represents an ill-posed and underdetermined problem that requires regularization. These reconstructions benefit from incorporating prior information about the underlying spatial structure and function of the brain. In this work, we describe a novel image reconstruction approach which uses surface-based wavelets derived from structural MRI to incorporate high-resolution anatomical and structural prior information about the brain. This surface-based approach is used to approximate brain activation patterns through the reconstruction and presentation of topographical (two-dimensional) maps of brain activation directly onto the folded surface of the cortex. The set of wavelet coefficients is directly estimated by a truncated singular-value decomposition based pseudo-inversion of the wavelet projection of the optical forward model. We use a reconstruction metric based on Shannon entropy which quantifies the sparse loading of the wavelet coefficients and is used to determine the optimal truncation and regularization of this inverse model. In this work, examples of the performance of this model are illustrated for several cases of numerical simulation and experimental data with comparison to functional magnetic resonance imaging.

  13. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    DEFF Research Database (Denmark)

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.


    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged...... object is composed of an approximately homogeneous background with clearly distinguishable embedded inhomogeneities. An algorithm for finding the maximum a posteriori estimate for the absorption and diffusion coefficients is introduced assuming an edge-preferring prior and an additive Gaussian...... measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments...

  14. AFM Imaging of Natural Optical Structures

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva


    Full Text Available The research in this field is focused to the investigation of biological structures with superior optical features. The study presents atomic force microscopy of biological optical structures on butterfly wings. The bright blue and dark black color scales exhibit the different topography. These scales were compared to the visually the same color scales of other two species of butterflies. The histograms of heights distribution are presented and show similar results for the scales of one color for different species.

  15. Geometrically complex 3D-printed phantoms for diffuse optical imaging. (United States)

    Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C


    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

  16. Magnetic resonance diffusion tensor imaging of optic nerve and optic radiation in healthy adults at 3T

    Directory of Open Access Journals (Sweden)

    Hong-Hong Sun


    Full Text Available AIM: To investigate the diffusion characteristics of water of optic nerve and optic radiation in healthy adults and its related factors by diffusion tensor imaging (DTI at 3T.METHODS: A total of 107 healthy volunteers performed head conventional MRI and bilateral optic nerve and optic radiation DTI. The primary data of DTI was processed by post-processing software of DTI studio 2.3, obtaining fractional anisotropy value, mean diffusivity value, principal engine value, orthogonal engine value by measuring, and analyzed by the SPSS13.0 statistical software.RESULTS:The bilateral optic nerve and optic radiation fibers presented green color in directional encoded color (DEC maps and presented high signal in fractional anisotropy (FA maps. The FA value of the left optic nerve was 0.598±0.069 and the right was 0.593±0.065; the mean diffusivity (MD value of the left optic nerve was (1.324±0.349×10-3mm2/s and the right was (1.312±0.350×10-3mm2/s; the principal engine value (λ‖ of the left optic nerve was (2.297±0.522×10-3mm2/s and the right was (2.277±0.526×10-3mm2/s; the orthogonal engine value (λ⊥ of the left optic nerve was (0.838±0.285×10-3mm2/s and the right was (0.830±0.280×10-3mm2/s; the FA value of the left optic radiation was 0.636±0.057 and the right was 0.628±0.056; the mean diffusivity (MD value of the left optic radiation was (0.907±0.103×10-3mm2/s and the right was (0.889±0.125×10-3mm2/s; the principal eigenvalue (λ‖ of the left optic radiation was (1.655±0.210×10-3mm2/s and the right was (1.614±0.171×10-3mm2/s; the orthogonal enginvalue (λ⊥ of the left optic radiation was (0.531±0.103×10﹣3mm2/s and the right was (0.524±0.152×10-3mm2/s. There was no obvious difference between the FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the bilateral optic nerve (P>0.05 and no obvious difference between male and female group. The FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the

  17. Magnetic resonance diffusion tensor imaging of optic nerve and optic radiation in healthy adults at 3T. (United States)

    Sun, Hong-Hong; Wang, Dong; Zhang, Qiu-Juan; Bai, Zhi-Lan; He, Ping


    To investigate the diffusion characteristics of water of optic nerve and optic radiation in healthy adults and its related factors by diffusion tensor imaging (DTI) at 3T. A total of 107 healthy volunteers performed head conventional MRI and bilateral optic nerve and optic radiation DTI. The primary data of DTI was processed by post-processing software of DTI studio 2.3, obtaining fractional anisotropy value, mean diffusivity value, principal engine value, orthogonal engine value by measuring, and analyzed by the SPSS13.0 statistical software. The bilateral optic nerve and optic radiation fibers presented green color in directional encoded color (DEC) maps and presented high signal in fractional anisotropy (FA) maps. The FA value of the left optic nerve was 0.598±0.069 and the right was 0.593±0.065; the mean diffusivity (MD) value of the left optic nerve was (1.324±0.349)×10(-3)mm(2)/s and the right was (1.312±0.350)×10(-3)mm(2)/s; the principal engine value (λ‖) of the left optic nerve was (2.297±0.522)×10(-3)mm(2)/s and the right was (2.277±0.526)×10(-3)mm(2)/s; the orthogonal engine value (λ⊥) of the left optic nerve was (0.838±0.285)×10(-3)mm(2)/s and the right was (0.830±0.280)×10(-3)mm(2)/s; the FA value of the left optic radiation was 0.636±0.057 and the right was 0.628±0.056; the mean diffusivity (MD) value of the left optic radiation was (0.907±0.103)×10(-3)mm(2)/s and the right was (0.889±0.125)×10(-3)mm(2)/s; the principal eigenvalue (λ‖) of the left optic radiation was (1.655±0.210)×10(-3)mm(2)/s and the right was (1.614±0.171)×10(-3)mm(2)/s; the orthogonal enginvalue (λ⊥) of the left optic radiation was (0.531±0.103)×10(-3)mm(2)/s and the right was (0.524±0.152)×10(-3)mm(2)/s. There was no obvious difference between the FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the bilateral optic nerve (P>0.05) and no obvious difference between male and female group. The FA, MD, λ‖, λ⊥ of the bilateral

  18. Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography. (United States)

    Deng, Bin; Lundqvist, Mats; Fang, Qianqian; Carp, Stefan A


    Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant vs. benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area vs. the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the

  19. Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy (United States)

    Lee, Jangwoen; Kim, Jae G.; Mahon, Sari B.; Mukai, David; Yoon, David; Boss, Gerry R.; Patterson, Steven E.; Rockwood, Gary; Isom, Gary; Brenner, Matthew


    A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes.

  20. Algebraic reconstruction and postprocessing in one-step diffuse optical tomography

    International Nuclear Information System (INIS)

    Konovalov, A B; Vlasov, V V; Mogilenskikh, D V; Kravtsenyuk, O V; Lyubimov, V V


    The photon average trajectory method is considered, which is used as an approximate method of diffuse optical tomography and is based on the solution of the Radon-like trajectory integral equation. A system of linear algebraic equations describing a discrete model of object reconstruction is once inverted by using a modified multiplicative algebraic technique. The blurring of diffusion tomograms is eliminated by using space-varying restoration and methods of nonlinear colour interpretation of data. The optical models of the breast tissue in the form of rectangular scattering objects with circular absorbing inhomogeneities are reconstructed within the framework of the numerical experiment from optical projections simulated for time-domain measurement technique. It is shown that the quality of diffusion tomograms reconstructed by this method is close to that of tomograms reconstructed by using Newton-like multistep algorithms, while the computational time is much shorter. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  1. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices. (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla


    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6  mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100  ps, ∼0.5  nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan


    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  3. Ultrafast Optical Signal Processing with Bragg Structures

    Directory of Open Access Journals (Sweden)

    Yikun Liu


    Full Text Available The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.

  4. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study. (United States)

    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Mora, Alberto Dalla


    Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.

  5. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography. (United States)

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish


    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.

  6. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel


    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  7. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis


    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  8. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla


    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.

  9. Towards the use of bioresorbable fibers in time-domain diffuse optics. (United States)

    Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel


    In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure-adaptive sparse denoising for diffusion-tensor MRI. (United States)

    Bao, Lijun; Robini, Marc; Liu, Wanyu; Zhu, Yuemin


    Diffusion tensor magnetic resonance imaging (DT-MRI) is becoming a prospective imaging technique in clinical applications because of its potential for in vivo and non-invasive characterization of tissue organization. However, the acquisition of diffusion-weighted images (DWIs) is often corrupted by noise and artifacts, and the intensity of diffusion-weighted signals is weaker than that of classical magnetic resonance signals. In this paper, we propose a new denoising method for DT-MRI, called structure-adaptive sparse denoising (SASD), which exploits self-similarity in DWIs. We define a similarity measure based on the local mean and on a modified structure-similarity index to find sets of similar patches that are arranged into three-dimensional arrays, and we propose a simple and efficient structure-adaptive window pursuit method to achieve sparse representation of these arrays. The noise component of the resulting structure-adaptive arrays is attenuated by Wiener shrinkage in a transform domain defined by two-dimensional principal component decomposition and Haar transformation. Experiments on both synthetic and real cardiac DT-MRI data show that the proposed SASD algorithm outperforms state-of-the-art methods for denoising images with structural redundancy. Moreover, SASD achieves a good trade-off between image contrast and image smoothness, and our experiments on synthetic data demonstrate that it produces more accurate tensor fields from which biologically relevant metrics can then be computed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Probing the DNA Structural Requirements for Facilitated Diffusion (United States)


    DNA glycosylases perform a genome-wide search to locate damaged nucleotides among a great excess of undamaged nucleotides. Many glycosylases are capable of facilitated diffusion, whereby multiple sites along the DNA are sampled during a single binding encounter. Electrostatic interactions between positively charged amino acids and the negatively charged phosphate backbone are crucial for facilitated diffusion, but the extent to which diffusing proteins rely on the double-helical structure DNA is not known. Kinetic assays were used to probe the DNA searching mechanism of human alkyladenine DNA glycosylase (AAG) and to test the extent to which diffusion requires B-form duplex DNA. Although AAG excises εA lesions from single-stranded DNA, it is not processive on single-stranded DNA because dissociation is faster than N-glycosidic bond cleavage. However, the AAG complex with single-stranded DNA is sufficiently stable to allow for DNA annealing when a complementary strand is added. This observation provides evidence of nonspecific association of AAG with single-stranded DNA. Single-strand gaps, bubbles, and bent structures do not impede the search by AAG. Instead, these flexible or bent structures lead to the capture of a nearby site of damage that is more efficient than that of a continuous B-form duplex. The ability of AAG to negotiate these helix discontinuities is inconsistent with a sliding mode of diffusion but can be readily explained by a hopping mode that involves microscopic dissociation and reassociation. These experiments provide evidence of relatively long-range hops that allow a searching protein to navigate around DNA binding proteins that would serve as obstacles to a sliding protein. PMID:25495964

  12. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. (United States)

    Hart, Vern P; Doyle, Timothy E


    A Monte Carlo method was derived from the optical scattering properties of spheroidal particles and used for modeling diffuse photon migration in biological tissue. The spheroidal scattering solution used a separation of variables approach and numerical calculation of the light intensity as a function of the scattering angle. A Monte Carlo algorithm was then developed which utilized the scattering solution to determine successive photon trajectories in a three-dimensional simulation of optical diffusion and resultant scattering intensities in virtual tissue. Monte Carlo simulations using isotropic randomization, Henyey-Greenstein phase functions, and spherical Mie scattering were additionally developed and used for comparison to the spheroidal method. Intensity profiles extracted from diffusion simulations showed that the four models differed significantly. The depth of scattering extinction varied widely among the four models, with the isotropic, spherical, spheroidal, and phase function models displaying total extinction at depths of 3.62, 2.83, 3.28, and 1.95 cm, respectively. The results suggest that advanced scattering simulations could be used as a diagnostic tool by distinguishing specific cellular structures in the diffused signal. For example, simulations could be used to detect large concentrations of deformed cell nuclei indicative of early stage cancer. The presented technique is proposed to be a more physical description of photon migration than existing phase function methods. This is attributed to the spheroidal structure of highly scattering mitochondria and elongation of the cell nucleus, which occurs in the initial phases of certain cancers. The potential applications of the model and its importance to diffusive imaging techniques are discussed.

  13. Kinetics of optically - and thermally - induced diffusion and dissolution of silver in evaporated As33S33.5Se33.5 amorphous films: their properties and structure

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Wágner, T.; Frumar, M.; Vlček, Milan; Frumarová, Božena


    Roč. 47, č. 2 (2006), s. 193-197 ISSN 0031-9090. [Solid State Chemistry VI. Praha, 13.09.2004-17.09.2004] Institutional research plan: CEZ:AV0Z40500505 Keywords : diffusion and dissolution * As-S-Se films Subject RIV: CA - Inorganic Chemistry Impact factor: 0.577, year: 2006

  14. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands (United States)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.


    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  15. Optical Structural Health Monitoring Device (United States)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.


    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  16. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors (United States)

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo


    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  17. Optical and structural study of BST multilayers

    Czech Academy of Sciences Publication Activity Database

    Železný, Vladimír; Chvostová, Dagmar; Pajasová, Libuše; Jelínek, Miroslav; Kocourek, Tomáš; Daniš, S.; Valvoda, V.


    Roč. 12, č. 3 (2010), 538-541 ISSN 1454-4164 R&D Projects: GA ČR GA202/07/0591 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z10100520 Keywords : ellipsometry * structure * ferroelectric multilayers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  18. Preparation and investigation of optical, structural, and ...

    Indian Academy of Sciences (India)

    331–341. Preparation and investigation of optical, structural, and morphological properties of nanostructured. ZnO:Mn thin films. E AMOUPOUR1,∗. , F E GHODSI2, H ANDARVA2 and. A ABDOLAHZADEH ZIABARI3. 1Department of Electronic Engineering, Roudsar & Amlash Branch,. Islamic Azad University, Roudsar, Iran.

  19. Problems in measurements of parameters of elements and structures in modern micro- and nanoelectronics considering TiN/Ti diffusion barrier structures as an example (United States)

    Smirnov, D. I.; Giniyatyllin, R. M.; Zyul'kov, I. Yu.; Medetov, N. A.; Gerasimenko, N. N.


    Results of a comprehensive analysis of process variables of TiN/Ti diffuse barrier structures used in modern microelectronics are presented. To provide reliable spectral ellipsometry results, which is a common technique for postprocess control of these structures during the testing stage of the manufacturing process, a comprehensive approach is suggested that consists in consistent processing of transmission electron microscopy and X-ray reflectometry data. The resulting data were used to calculate the variances of optical coefficients of spectral ellipsometry, which depend on features of the manufacturing process and are required for analysis of the parameters of manufactured diffuse barrier structures.

  20. Application of novel optical diffuser for urethral stricture treatment (Conference Presentation) (United States)

    Nguyen, Trung Hau; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook


    Optical fibers have frequently been used for photothermal laser therapy due to its efficiency to deliver laser energy directly to tissue. The aim of the current study was to develop a diffusing optical fiber to achieve radially uniform light irradiation for endoscopically treating urethral stricture. The optical diffuser was fabricated by micro-machining helical patterns on the fiber surface using CO2 laser light at 5 W. Visible light emission (632 nm) and spatial emissions (including polar, azimuthal, and longitudinal emissions) of the fiber tip were evaluated to validate the performance of the fabricated diffuser. Prior to tissue tests, numerical simulation on heat distribution was developed to estimate the degree of tissue coagulation depth during interstitial coagulation. Due to a high absorption coefficient by tissue water, 1470 nm laser was used for photothermal therapy treatment of urethral stricture to obtain a more precise depth profile. For in vitro tissue tests, porcine liver tissue was irradiated with three different power levels (3, 6, and 9 W) at various irradiation times. Porcine urethral tissue was also tested with the diffuser for 10 sec at 6 W to validate the feasibility of circumferential photothermal treatment. The treated tissue was stained with hematoxylin and eosin (H and E) and then imaged with an optical transmission microscope. The spatial emission characteristics of the diffusing optical fiber presented an almost uniform power distribution along the diffuser tip (less than 10% deviation) and around its circumference (less than 5% deviation). The peak temperature in simulation model at the tissue interface between the glass-cap and the tissue was 373 K that was higher than that at the distal end. The tissue tests showed that higher power levels resulted in lower coagulation thresholds (e.g., 1 sec at 9 W vs 8 sec at 3 W). Furthermore, the coagulation depth was approximately 20% thinner than the simulation results (p<0.001). The extent of

  1. A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems

    International Nuclear Information System (INIS)

    Mielke, Alexander


    In recent years the theory of the Wasserstein metric has opened up new treatments of diffusion equations as gradient systems, where the free energy or entropy take the role of the driving functional and where the space is equipped with the Wasserstein metric. We show on the formal level that this gradient structure can be generalized to reaction–diffusion systems with reversible mass-action kinetic. The metric is constructed using the dual dissipation potential, which is a quadratic functional of all chemical potentials including the mobilities as well as the reaction kinetics. The metric structure is obtained by Legendre transform from the dual dissipation potential. The same ideas extend to systems including electrostatic interactions or a correct energy balance via coupling to the heat equation. We show this by treating the semiconductor equations involving the electron and hole densities, the electrostatic potential, and the temperature. Thus, the models in Albinus et al (2002 Nonlinearity 15 367–83), which stimulated this work, have a gradient structure

  2. Spatiotemporal Diffusive Evolution and Fractal Structure of Ground Motion (United States)

    Suwada, Tsuyoshi


    The spatiotemporal diffusive evolution and fractal structure of ground motion have been investigated at the in-ground tunnel of the KEK B-Factory (KEKB) injector linear accelerator (linac). The slow dynamic fluctuating displacements of the tunnel floor are measured in real time with a new remote-controllable sensing system based on a laser-based alignment system. Based on spatiotemporal analyses with linear-regression models, which were applied in both the time and frequency domains to time-series data recorded over a period of approximately 8 months, both coherent and stochastic components in the displacements of the tunnel floor were clearly observed along the entire length of the linac. In particular, it was clearly observed that the stochastic components exhibited characteristic spatiotemporal diffusive evolution with the fractal structure and fractional dimension. This report describes in detail the experimental techniques and analyses of the spatiotemporal diffusive evolution of ground motion observed at the in-ground tunnel of the injector linac using a real-time remote-controllable sensing system.

  3. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.


    We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc

  4. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods (United States)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  5. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.


    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  6. Measurements of the Fe3+ diffusion coefficient in Fricke Xylenol gel using optical density measurements

    International Nuclear Information System (INIS)

    Nonato de Oliveira, Lucas; Sampaio, Francisco Glaildo Almeida; Moreira, Marcos Vasques; Almeida, Adelaide de


    In Fricke dosimetry, optical density measurements are performed some time after dosimeter irradiation. Values of the diffusion coefficient of Fe 3+ in Fricke Xylenol gel (FXG) are necessary for determining the spatial distribution of the absorbed dose from measurements of the optical density. Five sets of FXG dosimeters, kept at different constant temperatures, were exposed to collimated 6 MV photons. The optical density profile, proportional to the Fe 3+ concentration, at the boundary between irradiated and non-irradiated parts of each dosimeter was measured periodically over a period of 60 h. By comparing the experimental data with a function that accounts for the unobserved initial concentration profile of Fe 3+ in the FXG, we obtained diffusion coefficients 0.30±0.05, 0.40±0.05, 0.50±0.05, 0.60±0.05 and 0.80±0.05 mm 2 /h for the temperatures 283.0±0.5, 286.0±0.5, 289.0±0.5, 292.0±0.5, and 296.0±0.5 K, respectively. The activation energy of Fe 3+ diffusion in the gel, 0.54±0.06 eV, was determined from the temperature dependence of the diffusion coefficients. - Highlights: • A new analytical method to determine diffusion coefficients of ions in gels is proposed. • The method is applied for measurements of the diffusion coefficients of Fe 3+ ions in a Fricke gel dosimeter. • Activation energy of the Fe 3+ ions in the gel was found to be 0.54 ±0.06 eV

  7. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery. (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka


    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  8. Diffusion tensor imaging of the optic tracts in multiple sclerosis: association with retinal thinning and visual disability. (United States)

    Dasenbrock, Hormuzdiyar H; Smith, Seth A; Ozturk, Arzu; Farrell, Sheena K; Calabresi, Peter A; Reich, Daniel S


    Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (P=.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=.51, P=.003) and total-macular-volume reduction (r=.59, P=.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. Copyright © 2010 by the American Society of Neuroimaging.

  9. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters

    International Nuclear Information System (INIS)

    Mattea, F.; Romero, M.; Strumia, M.; Vedelago, J.; Quiroga, A.; Valente, M.


    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution representing a key factor for most of the therapeutic and diagnostic radiation techniques. Radiation-induced polymerization and crosslinking reactions that take place in the dosimeter have been studied for different monomers like acrylamide and N,N-methylene-bis acrylamide (Bis) and most recently for less toxic monomers like N-isopropylacrylamide and Bis. In this work a novel system based on itaconic acid and Bis is proposed, the radical polymerization or gel formation of these monomers has been already studied for the formation of an hydrogel for non dosimetric applications and their reactivity are comparable with the already mentioned systems. Although the 3D structure is maintained after the dosimeter has been irradiated, it is not possible to eliminate the diffusion of the reacted and monomer species in regions of dose gradients within the gel after irradiation. As a consequence the dose information of the dosimeters loose quality over time. The mobility within the gelatin structure of the already mentioned species is related to their chemical structure, and nature. In this work the effect of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species is studied. One of the acrylic acid groups of the itaconic acid molecule is modified to obtain molecules with similar reactivity but different molecular sizes. Dosimetric systems with these modified species, Bis, an antioxidant to avoid oxygen polymerization inhibition, water and gelatin are irradiated in an X-ray tomography at different doses, and the resulting dosimeters are characterized by Raman spectroscopy and optical absorbance to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the diffusion degree after being irradiated. (Author)

  10. Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Mattea, F.; Romero, M.; Strumia, M. [Instituto Multidisciplinario de Biologia Vegetal / CONICET, Universidad Nacional de Cordoba, Departamento de Quimica Organica, Ciudad Universitaria, 5000 Cordoba (Argentina); Vedelago, J. [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Quiroga, A. [Centro de Investigacion y Estudios de Matematica / CONICET, Oficina 318 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina); Valente, M., E-mail: [Instituto de Fisica E. Gaviola / CONICET, LIIFAMIRx, Oficina 102 FaMAF - UNC, 5000 Cordoba (Argentina)


    Polymer gel dosimeters have specific advantages for recording 3D radiation dose distribution representing a key factor for most of the therapeutic and diagnostic radiation techniques. Radiation-induced polymerization and crosslinking reactions that take place in the dosimeter have been studied for different monomers like acrylamide and N,N-methylene-bis acrylamide (Bis) and most recently for less toxic monomers like N-isopropylacrylamide and Bis. In this work a novel system based on itaconic acid and Bis is proposed, the radical polymerization or gel formation of these monomers has been already studied for the formation of an hydrogel for non dosimetric applications and their reactivity are comparable with the already mentioned systems. Although the 3D structure is maintained after the dosimeter has been irradiated, it is not possible to eliminate the diffusion of the reacted and monomer species in regions of dose gradients within the gel after irradiation. As a consequence the dose information of the dosimeters loose quality over time. The mobility within the gelatin structure of the already mentioned species is related to their chemical structure, and nature. In this work the effect of changes in the chemical structure of the monomers over the dosimetric sensitivity and over the post-irradiation diffusion of species is studied. One of the acrylic acid groups of the itaconic acid molecule is modified to obtain molecules with similar reactivity but different molecular sizes. Dosimetric systems with these modified species, Bis, an antioxidant to avoid oxygen polymerization inhibition, water and gelatin are irradiated in an X-ray tomography at different doses, and the resulting dosimeters are characterized by Raman spectroscopy and optical absorbance to study their feasibility and capabilities as dosimetric systems, and by optical-CT to analyze the diffusion degree after being irradiated. (Author)

  11. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation) (United States)

    Abookasis, David; Volkov, Boris; Kofman, Itamar


    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  12. Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography (United States)

    Zhou, Feifei; Mostafa, Atahar; Zhu, Quing


    We have developed the ultrasound (US)-guided diffuse optical tomography technique to assist US diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of patients with breast cancer. The technique was implemented using a hand-held hybrid probe consisting of a coregistered US transducer and optical source and detector fibers which couple the light illumination from laser diodes and photon detection to the photomultiplier tube detectors. With the US guidance, diffused light measurements were made at the breast lesion site and the normal contralateral reference site which was used to estimate the background tissue optical properties for imaging reconstruction. However, background optical properties were affected by the chest wall underneath the breast tissue. We have analyzed data from 297 female patients, and results have shown statistically significant correlation between the fitted optical properties (μa and μs‧) and the chest wall depth. After subtracting the background μa at each wavelength, the difference of computed total hemoglobin (tHb) between malignant and benign lesion groups has improved. For early stage malignant lesions, the area-under-the-receiver operator characteristic curve (AUC) has improved from 88.5% to 91.5%. For all malignant lesions, the AUC has improved from 85.3% to 88.1%. Statistical test has revealed the significant difference of the AUC improvements after subtracting background tHb values.

  13. One step linear reconstruction method for continuous wave diffuse optical tomography (United States)

    Ukhrowiyah, N.; Yasin, M.


    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  14. Estimate of reddening for T Pyx based on optical diffuse interstellar bands (DIBs) (United States)

    Shore, S. N.; Augusteijn, T.; Ederoclite, A.; Uthas, H.


    We report the first results for the latest outburst of the recurrent nova T Pyx from the FIES echelle spectrograph on the 2.6 m Nordic Optical Telescope (NOT) at La Palma from 3700-7200 A with a resolution of 67000. The first spectrum, obtained on 2011 Apr. 15.92 UT during the rise to maximum (V approx 9.5) with integration time of 600 sec with a S/N of 30 at 6000 A (continuum), was sufficiently well exposed to display some of the strongest optical diffuse interstellar bands (DIBs).

  15. Phase-contrast diffuse optical tomography for in vivo breast imaging: a two-step method

    International Nuclear Information System (INIS)

    Jiang Ruixin; Liang Xiaoping; Zhang Qizhi; Grobmyer, Stephen; Fajardo, Laurie L.; Jiang Huabei


    We present a two-step reconstruction method that can qualitatively and quantitatively improve the reconstruction of tissue refractive index (RI) distribution by phase-contrast diffuse optical tomography (PCDOT). In this two-step method, we first recover the distribution of tissue absorption and scattering coefficients by conventional diffuse optical tomography to obtain the geometrical information of lesions, allowing the incorporation of geometrical information as a priori in the PCDOT reconstruction using a locally refined mesh. The method is validated by a series of phantom experiments and evaluated using in vivo data from 42 human subjects. The results demonstrate clear contrast of RI between the lesion and the surroundings, making the image interpretation straightforward. The sensitivity and specificity from these 42 cases are both 81% when RI is used as an imaging parameter for distinguishing between malignant and benign lesions.

  16. Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers

    Directory of Open Access Journals (Sweden)

    Andrea Farina


    Full Text Available Based on recent developments in both single-photon detectors and timing electronic circuits, we designed a compact and cost effective time-domain diffuse optical tomography system operated at 1 Hz acquisition rate, based on eight silicon photomultipliers and an 8-channel time-to-digital converter. The compact detectors are directly hosted on the probe in a circular arrangement around a single light injection fiber, so to maximize light harvesting. Tomography is achieved exploiting the depth sensitivity that is encoded in the arrival time of detected photons. The system performances were evaluated on simulations to assess possible the limitations arising from the use of a single injection point, and then on phantoms and in vivo to prove the eligibility of these technologies for diffuse optical tomography.

  17. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  18. Changes of Radial Diffusivity and Fractional Anisotopy in the Optic Nerve and Optic Radiation of Glaucoma Patients

    Directory of Open Access Journals (Sweden)

    Tobias Engelhorn


    Full Text Available Purpose of this study was to evaluate with diffusion-tensor imaging (DTI changes of radial diffusivity (RD and fractional anisotropy (FA in the optic nerve (ON and optic radiation (OR in glaucoma and to determine whether changes in RD and FA correlate with disease severity. Therefore, glaucoma patients and controls were examined using 3T. Regions of interest were positioned on RD and FA maps, and mean values were calculated for ON and OR and correlated with optic nerve atrophy and reduced spatial-temporal contrast sensitivity (STCS of the retina. We found, that RD in glaucoma patients was significantly higher in the ON (0.74 ± 0.21 versus 0.58 ± 0.17⋅10−3 mm2 s−1; P0.77. In conclusion, DTI at 3 Tesla allows robust RD and FA measurements in the ON and OR. Hereby, the extent of RD increase and FA decrease in glaucoma correlate with established ophthalmological examinations.

  19. Molecular Diffuse Optical Tomography for Early Breast Cancer Detection and Characterization (United States)


    subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of...Specific examples are tumor Table 2: Peptide substrates synthesized in our lab (The dots indicate lysosomal endopeptidases that recognize the... Oleary , D. A. Boas, B. Chance et al., "Experimental Images of Heterogeneous Turbid Media By Frequency- Domain Diffusing-Photon Tomography," Optics Letters

  20. Brain Specificity of Diffuse Optical Imaging: Improvements from Superficial Signal Regression and Tomography


    Gregg, Nicholas M.; White, Brian R.; Zeff, Benjamin W.; Berger, Andrew J.; Culver, Joseph P.


    Functional near infrared spectroscopy (fNIRS) is a portable monitor of cerebral hemodynamics with wide clinical potential. However, in fNIRS, the vascular signal from the brain is often obscured by vascular signals present in the scalp and skull. In this paper, we evaluate two methods for improving in vivo data from adult human subjects through the use of high-density diffuse optical tomography (DOT). First, we test whether we can extend superficial regression methods (which utilize the multi...

  1. AOPs Are Not Additive: On the Biogeo-Optical Modeling of the Diffuse Attenuation Coefficient

    Directory of Open Access Journals (Sweden)

    Zhongping Lee


    Full Text Available Commonly we see the diffuse attenuation coefficient of downwelling irradiance (Kd expressed as a sum of the contributions of various constituents. We show here that, both theoretically and numerically, because Kd is an apparent optical property (AOP, this approach is not consistent with radiative transfer. We further advocate the application of models of Kd developed in past decades that are not only consistent with radiative transfer but also provide more accurate estimates, in particular for coastal turbid waters.

  2. Decoding Diffusivity in Multiple Sclerosis: Analysis of Optic Radiation Lesional and Non-Lesional White Matter (United States)

    Klistorner, Alexander; Vootakuru, Nikitha; Wang, Chenyu; Yiannikas, Con; Graham, Stuart L.; Parratt, John; Garrick, Raymond; Levin, Netta; Masters, Lynette; Lagopoulos, Jim; Barnett, Michael H.


    Objectives Diffusion tensor imaging (DTI) has been suggested as a new promising tool in MS that may provide greater pathological specificity than conventional MRI, helping, therefore, to elucidate disease pathogenesis and monitor therapeutic efficacy. However, the pathological substrates that underpin alterations in brain tissue diffusivity are not yet fully delineated. Tract-specific DTI analysis has previously been proposed in an attempt to alleviate this problem. Here, we extended this approach by segmenting a single tract into areas bound by seemingly similar pathological processes, which may better delineate the potential association between DTI metrics and underlying tissue damage. Method Several compartments were segmented in optic radiation (OR) of 50 relapsing-remitting MS patients including T2 lesions, proximal and distal parts of fibers transected by lesion and fibers with no discernable pathology throughout the entire length of the OR. Results Asymmetry analysis between lesional and non-lesional fibers demonstrated a marked increase in Radial Diffusivity (RD), which was topographically limited to focal T2 lesions and potentially relates to the lesional myelin loss. A relative elevation of Axial Diffusivity (AD) in the distal part of the lesional fibers was observed in a distribution consistent with Wallerian degeneration, while diffusivity in the proximal portion of transected axons remained normal. A moderate, but significant elevation of RD in OR non-lesional fibers was strongly associated with the global (but not local) T2 lesion burden and is probably related to microscopic demyelination undetected by conventional MRI. Conclusion This study highlights the utility of the compartmentalization approach in elucidating the pathological substrates of diffusivity and demonstrates the presence of tissue-specific patterns of altered diffusivity in MS, providing further evidence that DTI is a sensitive marker of tissue damage in both lesions and NAWM. Our

  3. Decoding diffusivity in multiple sclerosis: analysis of optic radiation lesional and non-lesional white matter.

    Directory of Open Access Journals (Sweden)

    Alexander Klistorner

    Full Text Available Diffusion tensor imaging (DTI has been suggested as a new promising tool in MS that may provide greater pathological specificity than conventional MRI, helping, therefore, to elucidate disease pathogenesis and monitor therapeutic efficacy. However, the pathological substrates that underpin alterations in brain tissue diffusivity are not yet fully delineated. Tract-specific DTI analysis has previously been proposed in an attempt to alleviate this problem. Here, we extended this approach by segmenting a single tract into areas bound by seemingly similar pathological processes, which may better delineate the potential association between DTI metrics and underlying tissue damage.Several compartments were segmented in optic radiation (OR of 50 relapsing-remitting MS patients including T2 lesions, proximal and distal parts of fibers transected by lesion and fibers with no discernable pathology throughout the entire length of the OR.Asymmetry analysis between lesional and non-lesional fibers demonstrated a marked increase in Radial Diffusivity (RD, which was topographically limited to focal T2 lesions and potentially relates to the lesional myelin loss. A relative elevation of Axial Diffusivity (AD in the distal part of the lesional fibers was observed in a distribution consistent with Wallerian degeneration, while diffusivity in the proximal portion of transected axons remained normal. A moderate, but significant elevation of RD in OR non-lesional fibers was strongly associated with the global (but not local T2 lesion burden and is probably related to microscopic demyelination undetected by conventional MRI.This study highlights the utility of the compartmentalization approach in elucidating the pathological substrates of diffusivity and demonstrates the presence of tissue-specific patterns of altered diffusivity in MS, providing further evidence that DTI is a sensitive marker of tissue damage in both lesions and NAWM. Our results suggest that, at

  4. Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Huanyu Wang


    Full Text Available Using molecular dynamics method, we investigate the diffusion property of lithium in different silicon structures and silicon structure's disorder extent during lithium's diffusion process. We find that the pathway and the incident angle between the direction of barrier and diffusion of lithium are also the essential factors to the lithium's diffusion property in silicon anode besides the barrier. Smaller incident angle could decrease the scattering of lithium in silicon structure effectively. Moreover, lithium diffuses easier in the Li-Si alloy structure of higher lithium concentration with deeper injection depth. The silicon's structure will be damaged gradually during the charge and discharge process. However, it will also recover to initial state to a great extent after relaxation. Therefore, the damage of lithium diffusion to silicon anode in the structure of low lithium concentration is reversible to a great degree. In addition, the silicon structure of crystal orientation perform better properties in both lithium's diffusivity and structural stability.

  5. Optical properties and structure of liquid water

    International Nuclear Information System (INIS)

    Magat, M.; Reinisch, L.


    Information about the structure of liquid water arises from various experimental methods (X-ray and neutron diffraction, neutron scattering, dielectric dispersion, molecular dynamics and so on...). However, optical measurements (and especially spectroscopic ones) are particularly important in this connection. Recent results concerning the refraction index, the electronic absorption spectrum, the vibrational infrared and Raman spectra, the intermolecular modes in the far infrared and Raman spectra, the dielectric relaxation spectrum and its junction with the far infrared spectrum, are given. Conclusions are drawn concerning the structure of water and its modifications with temperature. They are compared to the theoretical previsions of the different models proposed for water [fr

  6. Measurement of Retinalamin diffusion coefficient in human sclera by optical spectroscopy (United States)

    Genina, Elina A.; Bashkatov, Alexey N.; Zubkova, Elena A.; Kamenskikh, Tatiana G.; Tuchin, Valery V.


    The use of cytomedines (such as Retinalamin) in clinical practice has shown high effectiveness of the medicaments in ophthalmology. The study of diffusion of Retinalamin in scleral tissue is important for estimation of a drug dose delivered into inner tissue of eye, time of drug action, etc. In vitro measurements of spectral reflectance of sclera interacting with aqueous solution of Retinalamin have been carried out. Ten human sclera samples were included in the study. The results of the experiments have shown that penetration of Retinalamin into scleral tissue leads to the decrease of scleral reflectance due to optical immersion. Estimation of diffusion coefficient of studied solution has been made on the basis of analysis of optical reflectance dynamics of the sclera samples. The diffusion coefficient of Retinalamin in human scleral tissue was evaluated as (1.82±0.14)×10 -6 cm 2/s. The results are important for treatment of partial optic atrophy observed at primary open-angle glaucoma and others eye diseases.

  7. Space-Varying Iterative Restoration of Diffuse Optical Tomograms Reconstructed by the Photon Average Trajectories Method

    Directory of Open Access Journals (Sweden)

    Kravtsenyuk Olga V


    Full Text Available The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical trajectory for transfer of light energy, the photon average trajectory (PAT. The inverse problem of diffuse optical tomography is reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spatially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modified residual norm steepest descent algorithm, are used for deblurring. It is shown that a gain in spatial resolution can be obtained.

  8. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region (United States)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.


    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  9. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai


    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  10. Passive and active optical bit-pattern recognition structures for multiwavelength optical packet switching networks. (United States)

    Aljada, Muhsen; Alameh, Kamal


    Next generation High-Speed optical packet switching networks require components capable of recognising the optical header to enable on-the-fly accurate switching of incoming data packets to their destinations. This paper experimentally demonstrates a comparison between two different optical header recognition structures; A passive structure based on the use of Fiber Bragg Gratings (FBGs), whereas the active structure employs Opto-VLSI processors that synthesise dynamic wavelength profile through digital phase holograms. The structures are experimentally demonstrated at 10Gbps. Performance comparison between the two structures is also discussed. These optical header recognition structures are attractive for multiwavelength optical network and applications.

  11. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces (United States)

    Luther, M. R.


    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  12. Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid

    International Nuclear Information System (INIS)

    Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; Beek, Michiel van; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas


    Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples

  13. Magnetic resonance diffusion tensor imaging (MRDTI) of the optic nerve and optic radiations at 3T in children with neurofibromatosis type I (NF-1)

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Christopher G.; Nickerson, Joshua P. [University of Vermont School of Medicine-FAHC, Department of Radiology, Burlington, VT (United States); Bos, Aaron [University of Vermont School of Medicine, Burlington, VT (United States); Salmela, Michael B. [University of Minnesota School of Medicine, Department of Radiology, Minneapolis, MN (United States); Koski, Chris J. [James Madison University, Department of Political Sciences, Harrisonburg, VA (United States); Cauley, Keith A. [University of Massachusetts Memorial Medical Center, Department of Radiology, Worcester, MA (United States)


    Optic pathway glioma (OPG) is a characteristic hallmark of neurofibromatosis type I (NF-I). To evaluate the feasibility of magnetic resonance diffusion tensor imaging (MRDTI) at 3T to detect abnormalities of the optic nerves and optic radiations in children with NF-I. 3-T MRDTI was prospectively performed in 9 children with NF-I (7 boys, 2 girls, average age 7.8 years, range 3-17 years) and 44 controls (25 boys, 19 girls, average age 8.1 years, range 3-17 years). Fractional anisotropy (FA) and mean diffusivity were determined by region-of-interest analysis for the optic nerves and radiations. Statistical analysis compared controls to NF-I patients. Two NF-I patients had bilateral optic nerve gliomas, three had chiasmatic gliomas and four had unidentified neurofibromatosis objects (UNOs) along the optic nerve pathways. All NF-I patients had statistically significant decreases in FA and elevations in mean diffusivity in the optic nerves and radiations compared to age-matched controls. MRDTI can evaluate the optic pathways in children with NF-I. Statistically significant abnormalities were detected in the diffusion tensor metrics of the optic nerves and radiations in children with NF-I compared to age-matched controls. (orig.)

  14. Multi-scale structural analysis of gas diffusion layers (United States)

    Göbel, Martin; Godehardt, Michael; Schladitz, Katja


    The macroscopic properties of materials are strongly determined by their micro structure. Here, transport properties of gas diffusion layers (GDL) for fuel cells are considered. In order to simulate flow and thermal properties, detailed micro structural information is essential. 3D images obtained by high-resolution computed tomography using synchrotron radiation and scanning electron microscopy (SEM) combined with focused ion beam (FIB) serial slicing were used. A recent method for reconstruction of porous structures from FIB-SEM images and sophisticated morphological image transformations were applied to segment the solid structural components. The essential algorithmic steps for segmenting the different components in the tomographic data-sets are described and discussed. In this paper, two types of GDL, based on a non-woven substrate layer and a paper substrate layer were considered, respectively. More than three components are separated within the synchrotron radiation computed tomography data. That is, fiber system, polytetrafluoroethylene (PTFE) binder/impregnation, micro porous layer (MPL), inclusions within the latter, and pore space are segmented. The usage of the thus derived 3D structure data in different simulation applications can be demonstrated. Simulations of macroscopic properties such as thermal conductivity, depending on the flooding state of the GDL are possible.

  15. Multiple step algorithms for fluorescence -enhanced diffuse optical tomography; Algorithmes multi-etape pour la tomographie optique diffusive de fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, A.; Planat-Chretien, A.; Dinten, J.M.; Gliere, A


    A discussion on recent works on diffusive inverse problems is presented with a special focus n three-dimensional shape-based imaging methods and their application to small animal imaging by fluorescence-enhanced Diffuse Optical Tomography (DOT). Numerical approaches (Finite Element Method) for handling problems modelled by elliptic coupled PDEs is justified by the complexity of the geometry of the system but is known to be time-and memory-consuming. The use of an 'adjoint field technique' considerably speeds up the treatment and allows a full 3D resolution. Nevertheless, because of the ill-posing of the problem, the reconstruction scheme is sensitive to a priori knowledge on the parameters to be reconstructed. Multiple modality imaging techniques (DOT coupled with CT or MRI for example) is becoming of great interest for introducing a priori knowledge of the regions of interest (ROI) and justifies the use of shape-based methods that reduces the dimension of the system, by identifying a finite number of ROI (absorption, scattering and/or, in our case, fluorescent zones), and intrinsically regularizes the reconstruction of the desired parameters. This study led to the proposal of a multiple step, self regularized, reconstruction algorithm of the bio-distribution of molecular fluorescent probes specially designed for tumour targeting. We introduce the a priori knowledge of the ROI via a segmentation of the results performed with a first rough reconstruction of the fluorescent regions. The results are then refined along iterations of the segmentation/reconstruction scheme. Measurements were performed on calibrated objects (phantoms) as well as in vivo (nude mice) with a plane parallel plate tomographer using a CCD camera as a detection scheme. (authors)

  16. Diffuse scattering and partial disorder in complex structures

    Directory of Open Access Journals (Sweden)

    T. R. Welberry


    Full Text Available The study of single-crystal diffuse scattering (SCDS goes back almost to the beginnings of X-ray crystallography. Because SCDS arises from two-body correlations, it contains information about local (short-range ordering in the sample, information which is often crucial in the attempt to relate structure to function. This review discusses the state of the field, including detectors and data collection and the modelling of SCDS using Monte Carlo and ab initio techniques. High-quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing ever more detailed and quantitative analyses to be undertaken, and opening the way to approaches such as three-dimensional pair distribution function studies (3D-PDF and automated refinement of a disorder model, powerful techniques that require large volumes of low-noise data.

  17. In vivo, noninvasive functional measurements of bone sarcoma using diffuse optical spectroscopic imaging (United States)

    Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren


    Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.

  18. An inverse problem for one-dimensional diffusion equation in optical tomography

    Directory of Open Access Journals (Sweden)

    Mohamed Addam


    Full Text Available In this paper, we study the one-dimensional inverse problem for the diffusion equation based optical tomography. The objective of the present work is a mathematical and numerical analysis concerning one-dimensional inverse problem. In the first stage, the forward diffusion equation with boundary conditions is solved using an intermediate elliptic equation. We give the existence and the uniqueness results of the solution. An approximation of the photon density in frequency-domain is proposed using a Splines Galerkin method. In the second stage, we give theoretical results such as the stability and lipschitz-continuity of the forward solution and the Fréchet differentiability of the Dirichlet-to-Neumann nonlinear map with respect to the optical parameters. The Fréchet derivative is used to linearize the considered inverse problem. The Newton method based on the regularization technique will allow us to compute the approximate solutions of the inverse problem. Several test examples are used to verify high accuracy, effectiveness and good resolution properties for smooth and discontinuous optical property solutions.

  19. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise (United States)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang


    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  20. Simultaneous Absorptance and Thermal-Diffusivity Determination of Optical Components with Laser Calorimetry Technique (United States)

    Wang, Yanru; Li, Bincheng


    The laser calorimetry (LCA) technique is used to determine simultaneously the absorptances and thermal diffusivities of optical components. An accurate temperature model, in which both the finite thermal conductivity and the finite sample size are taken into account, is employed to fit the experimental temperature data measured with an LCA apparatus for a precise determination of the absorptance and thermal diffusivity via a multiparameter fitting procedure. The uniqueness issue of the multiparameter fitting is discussed in detail. Experimentally, highly reflective (HR) samples prepared with electron-beam evaporation on different substrates (BK7, fused silica, and Ge) are measured with LCA. For the HR-coated sample on a fused silica substrate, the absorptance is determined to be 15.4 ppm, which is close to the value of 17.6 ppm, determined with a simplified temperature model recommended in the international standard ISO11551. The thermal diffusivity is simultaneously determined via multiparameter fitting to be approximately 6.63 × 10-7 m2 · s-1 with a corresponding square variance of 4.8 × 10-4. The fitted thermal diffusivity is in reasonably good agreement with the literature value (7.5 × 10-7 m2 · s -1). Good agreement is also obtained for samples with BK7 and Ge substrates.

  1. Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods

    Directory of Open Access Journals (Sweden)

    Ling Yao


    Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.

  2. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: a comparison of classification methods

    NARCIS (Netherlands)

    Nachabe, R.; Evers, D.; Hendriks, B.H.W.; Lucassen, G.W.; Van der Voort, M.; Wesseling, J.; Rutgers, E. J.; Vrancken Peeters, M.J.; Hage, J.A.van der; Oldenbeng, H.S.; Ruers, T.


    We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma and ductal

  3. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods

    NARCIS (Netherlands)

    Nachabé, Rami; Evers, Daniel; Evers, Daniel J.; Hendriks, Benno H.W.; Lucassen, Gerald W.; Lucassen, Gerald; van der Voort, Marjolein; Rutgers, Emiel J.; Vrancken Peeters, Marie-Jeanne; van der Hage, Jos A.; Oldenburg, Hester S.; Wesseling, Jelle; Ruers, Theo J.M.


    We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma, and ductal

  4. Optical Band Gap and Thermal Diffusivity of Polypyrrole-Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite Layer

    Directory of Open Access Journals (Sweden)

    Amir Reza Sadrolhosseini


    Full Text Available A polypyrrole-nanoparticles reduced graphene oxide nanocomposite layer was prepared using electrochemical method. The prepared samples were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and UV-visible spectroscopy. The band gap of nanocomposite layers was calculated from UV-visible spectra and the thermal diffusivity of layers was measured using a photoacoustic technique. As experimental results, the optical band gap was in the range between 3.580 eV and 3.853 eV, and thermal diffusivity was increased with increasing the layer thickness from 2.873 cm2/s to 12.446 cm2/s.

  5. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy (United States)

    Rajaram, Narasimhan; Tunnell, James W.


    Abstract. Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively. PMID:22612140

  6. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy

    International Nuclear Information System (INIS)

    Farzam, Parisa; Zirak, Peyman; Durduran, Turgut; Binzoni, Tiziano


    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion. (paper)

  7. Brain activation and connectivity of social cognition using diffuse optical imaging (United States)

    Zhu, Banghe; Godavarty, Anuradha


    In the current research, diffuse optical imaging (DOI) is used for the first time towards studies related to sociocommunication impairments, which is a characteristic feature of autism. DOI studies were performed on normal adult volunteers to determine the differences in the brain activation (cognitive regions) in terms of the changes in the cerebral blood oxygenation levels in response to joint and non-joint attention based stimulus (i.e. socio-communicative paradigms shown as video clips). Functional connectivity models are employed to assess the extent of synchronization between the left and right pre-frontal regions of the brain in response to the above stimuli.

  8. Optimization of locations of diffusion spots in indoor optical wireless local area networks (United States)

    Eltokhey, Mahmoud W.; Mahmoud, K. R.; Ghassemlooy, Zabih; Obayya, Salah S. A.


    In this paper, we present a novel optimization of the locations of the diffusion spots in indoor optical wireless local area networks, based on the central force optimization (CFO) scheme. The users' performance uniformity is addressed by using the CFO algorithm, and adopting different objective function's configurations, while considering maximization and minimization of the signal to noise ratio and the delay spread, respectively. We also investigate the effect of varying the objective function's weights on the system and the users' performance as part of the adaptation process. The results show that the proposed objective function configuration-based optimization procedure offers an improvement of 65% in the standard deviation of individual receivers' performance.

  9. Note: A simple broad bandwidth undersampling frequency-domain digital diffuse optical spectroscopy system (United States)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren


    Near-Infrared frequency-domain technologies, such as Diffuse Optical Spectroscopy (DOS), have demonstrated growing potential in a number of clinical applications. The broader dissemination of this technology is limited by the complexity and cost of instrumentation. We present here a simple system constructed with off-the-shelf components that utilizes undersampling for digital frequency-domain dDOS measurements. Broadband RF sweeps (50-300 MHz) were digitally sampled at 25 MSPS; amplitude, phase, and optical property extractions were within 5% of network analyzer derived values. The use of undersampling for broad bandwidth dDOS provides a significant reduction in complexity, power consumption, and cost compared with high-speed ADCs and analog techniques.

  10. Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    NARCIS (Netherlands)

    Ruis, H.G.M.; Gruijthuijsen, van K.; Venema, P.; Linden, van der E.


    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special

  11. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids (United States)

    Liang, Yingjie; Chen, Wen


    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  12. Performance assessment of diffuse optical spectroscopic imaging instruments in a 2-year multicenter breast cancer trial (United States)

    Leproux, Anaïs; O'Sullivan, Thomas D.; Cerussi, Albert; Durkin, Amanda; Hill, Brian; Hylton, Nola; Yodh, Arjun G.; Carp, Stefan A.; Boas, David; Jiang, Shudong; Paulsen, Keith D.; Pogue, Brian; Roblyer, Darren; Yang, Wei; Tromberg, Bruce J.


    We present a framework for characterizing the performance of an experimental imaging technology, diffuse optical spectroscopic imaging (DOSI), in a 2-year multicenter American College of Radiology Imaging Network (ACRIN) breast cancer study (ACRIN-6691). DOSI instruments combine broadband frequency-domain photon migration with time-independent near-infrared (650 to 1000 nm) spectroscopy to measure tissue absorption and reduced scattering spectra and tissue hemoglobin, water, and lipid composition. The goal of ACRIN-6691 was to test the effectiveness of optically derived imaging endpoints in predicting the final pathologic response of neoadjuvant chemotherapy (NAC). Sixty patients were enrolled over a 2-year period at participating sites and received multiple DOSI scans prior to and during 3- to 6-month NAC. The impact of three sources of error on accuracy and precision, including different operators, instruments, and calibration standards, was evaluated using a broadband reflectance standard and two different solid tissue-simulating optical phantoms. Instruments showed <0.0010 mm-1 (10.3%) and 0.06 mm-1 (4.7%) deviation in broadband absorption and reduced scattering, respectively, over the 2-year duration of ACRIN-6691. These variations establish a useful performance criterion for assessing instrument stability. The proposed procedures and tests are not limited to DOSI; rather, they are intended to provide methods to characterize performance of any instrument used in translational optical imaging.

  13. Optical inspection of hidden MEMS structures (United States)

    Krauter, Johann; Gronle, Marc; Osten, Wolfgang


    Micro-electro-mechanical system's (MEMS) applications have greatly expanded over the recent years, and the MEMS industry has grown almost exponentially. One of the strongest drivers are the automotive and consumer markets. A 100% test is necessary especially in the production of automotive MEMS sensors since they are subject to safety relevant functions. This inspection should be carried out before dicing and packaging since more than 90% of the production costs are incurred during these steps. An electrical test is currently being carried out with each MEMS component. In the case of a malfunction, the defect can not be located on the wafer because the MEMS are no longer optically accessible due to the encapsulation. This paper presents a low coherence interferometer for the topography measurement of MEMS structures located within the wafer stack. Here, a high axial and lateral resolution is necessary to identify defects such as stuck or bent MEMS fingers. First, the boundary conditions for an optical inspection system will be discussed. The setup is then shown with some exemplary measurements.

  14. Adaptive optics for structured illumination microscopy. (United States)

    Débarre, Delphine; Botcherby, Edward J; Booth, Martin J; Wilson, Tony


    We implement wave front sensor-less adaptive optics in a structured illumination microscope. We investigate how the image formation process in this type of microscope is affected by aberrations. It is found that aberrations can be classified into two groups, those that affect imaging of the illumination pattern and those that have no influence on this pattern. We derive a set of aberration modes ideally suited to this application and use these modes as the basis for an efficient aberration correction scheme. Each mode is corrected independently through the sequential optimisation of an image quality metric. Aberration corrected imaging is demonstrated using fixed fluorescent specimens. Images are further improved using differential aberration imaging for reduction of background fluorescence.

  15. Porous Silicon Structures as Optical Gas Sensors

    Directory of Open Access Journals (Sweden)

    Igor A. Levitsky


    Full Text Available We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  16. Changing optical band structure with single photons (United States)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.


    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  17. Optical measurements of absorption changes in two-layered diffusive media

    International Nuclear Information System (INIS)

    Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E; Fantini, Sergio


    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ∼0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ∼4% for the superficial layer and ∼10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers

  18. Use of diffusion magnetic resonance imaging to correlate the developmental changes in grape berry tissue structure with water diffusion patterns. (United States)

    Dean, Ryan J; Stait-Gardner, Timothy; Clarke, Simon J; Rogiers, Suzy Y; Bobek, Gabriele; Price, William S


    Over the course of grape berry development, the tissues of the berry undergo numerous morphological transformations in response to processes such as water and solute accumulation and cell division, growth and senescence. These transformations are expected to produce changes to the diffusion of water through these tissues detectable using diffusion magnetic resonance imaging (MRI). To assess this non-invasive technique diffusion was examined over the course of grape berry development, and in plant tissues with contrasting oil content. In this study, the fruit of Vitis vinfera L. cv. Semillon at seven different stages of berry development, from four weeks post-anthesis to over-ripe, were imaged using diffusion tensor and transverse relaxation MRI acquisition protocols. Variations in diffusive motion between these stages of development were then linked to known events in the morphological development of the grape berry. Within the inner mesocarp of the berry, preferential directions of diffusion became increasingly apparent as immature berries increased in size and then declined as berries progressed through the ripening and senescence phases. Transverse relaxation images showed radial striation patterns throughout the sub-tissue, initiating at the septum and vascular systems located at the centre of the berry, and terminating at the boundary between the inner and outer mesocarp. This study confirms that these radial patterns are due to bands of cells of alternating width that extend across the inner mesocarp. Preferential directions of diffusion were also noted in young grape seed nucelli prior to their dehydration. These observations point towards a strong association between patterns of diffusion within grape berries and the underlying tissue structures across berry development. A diffusion tensor image of a post-harvest olive demonstrated that the technique is applicable to tissues with high oil content. This study demonstrates that diffusion MRI is a powerful and

  19. Fluorescence diffuse optical tomography: benefits of using the time-resolved modality

    International Nuclear Information System (INIS)

    Ducros, Nicolas


    Fluorescence diffuse optical tomography enables the three-dimensional reconstruction of fluorescence markers injected within a biological tissue, with light in the near infrared range. The simple continuous modality uses steady excitation light and operates from the measurements at different positions of the attenuation of the incident beam. This technique is low-cost, non-ionizing, and easy to handle, but subject to low resolution for thick tissues due to diffusion. Hopefully, the time-resolved modality, which provides the time of flight of any detected photon, could overcome this limitation and pave the way to clinical applications. This thesis aims at determining the best way to exploit the time resolved information and at quantifying the advantages of this modality over the standard continuous wave one. Model deviations must be carefully limited when ill-posed problems as fluorescence diffuse optical tomography are considered. As a result, we have first addressed the modelling part of the problem. We have shown that the photons density models to good approximation the measurable quantity that is the quantity measured by an actual acquisition set-up. Then, the moment-based reconstruction scheme has been thoroughly evaluated by means of a theoretical analysis of the moments properties. It was found that the moment-based approach requires high photon counts to be profitable compared to the continuous wave modality. Last, a novel wavelet-based approach, which enables an improved reconstruction quality, has been introduced. This approach has shown good ability to exploit the temporal information at lower photon counts. (author) [fr

  20. Probabilistic diffusion tractography reveals improvement of structural network in musicians.

    Directory of Open Access Journals (Sweden)

    Jianfu Li

    Full Text Available PURPOSE: Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. METHODS: Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. RESULTS: Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. CONCLUSIONS: We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  1. Probabilistic diffusion tractography reveals improvement of structural network in musicians. (United States)

    Li, Jianfu; Luo, Cheng; Peng, Yueheng; Xie, Qiankun; Gong, Jinnan; Dong, Li; Lai, Yongxiu; Li, Hong; Yao, Dezhong


    Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  2. Diffusion Region's Structure at the Subsolar Magnetopause with MMS Data (United States)

    Cozzani, G.; Retino, A.; Califano, F.; Alexandrova, A.; Catapano, F.; Fu, H.; Le Contel, O.; Khotyaintsev, Y. V.; Vaivads, A.; Ahmadi, N.; Lindqvist, P. A.; Breuillard, H.; Mirioni, L.; Ergun, R.; Torbert, R. B.; Giles, B. L.; Russell, C. T.; Nakamura, R.; Moore, T. E.; Fuselier, S. A.; Mauk, B.; Burch, J.


    Magnetic reconnection occurs in the magnetosphere in thin current sheets, where a change in the magneticfield topology leads to rapid conversion of magnetic energy into ion and electron energy. To allow for magneticfield reconfiguration, both ions and electrons have to become demagnetized in the ion and electron diffusionregions, respectively. MMS spacecraft observations at inter-spacecraft separation ˜ 10 km (correspondingto ˜ 5 d_e at the magnetopause) allow, for the first time, to make multi-point studies of the structure of theelectron diffusion region (EDR). We present MMS observations on January,27th 2017 of one magnetopausecrossing close to the subsolar point showing several signatures consistent with an EDR encounter nearbya magnetic field minimum. The proximity to the reconnection site is further substantiated by the FirstOrder Taylor Expansion (FOTE) method applied to the magnetic field data. Observations suggest that allspacecraft passed through the EDR. Despite of the small inter-spacecraft separation (7 km), the observationsshow important differences among spacecraft. We focus on the comparison between MMS3 and MMS4 sincethey show the most striking differences. MMS3 measures a stronger parallel electron heating and highercurrent densities than MMS4. Both satellites observe crescent-shaped electron distribution functions on themagnetospheric side but MMS4 observes them over a longer time interval. These observations suggest thatMMS3 is passing closer to the reconnection site than MMS4. The differences between the observations by thetwo spacecraft indicate that the EDR is rather structured over scales of a few electron inertial lengths. Wealso evaluate the Generalized Ohm's law and find that the electric field is mainly balanced by the divergenceof the electron pressure tensor while the electron inertia term is negligible.

  3. Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies.

    Directory of Open Access Journals (Sweden)

    Claus Lindner

    Full Text Available The in vivo optical and hemodynamic properties of the healthy (n = 22 and pathological (n = 2 human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS and diffuse correlation spectroscopy (DCS system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs' at three wavelengths (690, 785 and 830 nm to derive total hemoglobin concentration (THC and oxygen saturation (StO2. DCS measured the microvascular blood flow index (BFI. Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25-44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s, while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%, yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening.

  4. Optimum topology design for the concentrated force diffusion structure of strap-on launch vehicle

    Directory of Open Access Journals (Sweden)

    Mei Yong


    Full Text Available The thrust from the booster of strap-on launch vehicle is transmitted to the core via the strap-on linkage device, so the reinforced structure to diffusion the concentrated force should be employed in the installation site of this device. To improve the bearing-force characteristics of the concentrated force diffusion structure in strap-on linkage section and realize the lightweight design requirements, topology optimization under multiple load cases is conducted for the concentrated force diffusion structure in this study. The optimal configuration finally obtained can achieve 17.7% reduction in total weight of the structure. Meanwhile, results of strength analysis under standard load cases show the stress level of this design scheme of the concentrated force diffusion structure meet design requirements and the proposed topology optimization method is suitable for the design of the concentrated force diffusion structure in concept design phase.

  5. Optic radiation fiber tractography in glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging - initial experience.

    Directory of Open Access Journals (Sweden)

    Daniela Kuhnt

    Full Text Available OBJECTIVE: Up to now, fiber tractography in the clinical routine is mostly based on diffusion tensor imaging (DTI. However, there are known drawbacks in the resolution of crossing or kissing fibers and in the vicinity of a tumor or edema. These restrictions can be overcome by tractography based on High Angular Resolution Diffusion Imaging (HARDI which in turn requires larger numbers of gradients resulting in longer acquisition times. Using compressed sensing (CS techniques, HARDI signals can be obtained by using less non-collinear diffusion gradients, thus enabling the use of HARDI-based fiber tractography in the clinical routine. METHODS: Eight patients with gliomas in the temporal lobe, in proximity to the optic radiation (OR, underwent 3T MRI including a diffusion-weighted dataset with 30 gradient directions. Fiber tractography of the OR using a deterministic streamline algorithm based on DTI was compared to tractography based on reconstructed diffusion signals using HARDI+CS. RESULTS: HARDI+CS based tractography displayed the OR more conclusively compared to the DTI-based results in all eight cases. In particular, the potential of HARDI+CS-based tractography was observed for cases of high grade gliomas with significant peritumoral edema, larger tumor size or closer proximity of tumor and reconstructed fiber tract. CONCLUSIONS: Overcoming the problem of long acquisition times, HARDI+CS seems to be a promising basis for fiber tractography of the OR in regions of disturbed diffusion, areas of high interest in glioma surgery.

  6. Applications of hybrid diffuse optics for clinical management of adults after brain injury (United States)

    Kim, Meeri Nam

    Information about cerebral blood flow (CBF) is valuable for clinical management of patients after severe brain injury. Unfortunately, current modalities for monitoring brain are often limited by hurdles that include high cost, low throughput, exposure to ionizing radiation, probe invasiveness, and increased risk to critically ill patients when transportation out of their room or unit is required. A further limitation of current technologies is an inability to provide continuous bedside measurements that are often desirable for unstable patients. Here we explore the clinical utility of diffuse correlation spectroscopy (DCS) as an alternative approach for bedside CBF monitoring. DCS uses the rapid intensity fluctuations of near-infrared light to derive a continuous measure of changes in blood flow without ionizing radiation or invasive probing. Concurrently, we employ another optical technique, called diffuse optical spectroscopy (DOS), to derive changes in cerebral oxyhemoglobin ( HbO2) and deoxyhemoglobin (Hb) concentrations. Our clinical studies integrate DCS with DOS into a single hybrid instrument that simultaneously monitors CBF and HbO2/Hb in the injured adult brain. The first parts of this dissertation present the motivations for monitoring blood flow in injured brain, as well as the theory underlying diffuse optics technology. The next section elaborates on details of the hybrid instrumentation. The final chapters describe four human subject studies carried out with these methods. Each of these studies investigates an aspect of the potential of the hybrid monitor in clinical applications involving adult brain. The studies include: (1) validation of DCS-measured CBF against xenon-enhanced computed tomography in brain-injured adults; (2) a study of the effects of age and gender on posture-change-induced CBF variation in healthy subjects; (3) a study of the efficacy of DCS/DOS for monitoring neurocritical care patients during various medical interventions such

  7. Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring

    National Research Council Canada - National Science Library

    Paolozzi, Antonio; Gasbarri, Paolo


    Structural Health Monitoring (SHM) is a new frontier of non destructing testing. Often SHM is associated with fibre optic sensors whose signals can be used to identify the structure and consequently its damage...

  8. Spirallike structure in the conoscopic figures of optically active crystals (United States)

    Pikul', O. Yu.; Rudoi, K. A.; Livashvili, A. I.; Doronin, V. I.; Stroganov, V. I.


    This paper discusses a spirallike structure in the conoscopic figures of optically active crystals, differing from the Airy figure. The cause of the appearance of the spirallike structure is circularly polarized radiation.

  9. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers. (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Maruoka, Yasuhiro; Choyke, Peter L; Kobayashi, Hisataka


    Near-infrared photoimmunotherapy (NIR-PIT), a promising cancer therapy utilizing an antibody-photoabsorber conjugate (APC) and NIR light, which induces rapid necrotic cell death only in APC-bound cells. Effective NIR-PIT in mouse models has been achieved using superficial light illumination (SLI) with light emitting diodes (LEDs) or lasers, but in the clinical setting, fiber optic diffusers have been employed to deliver light to deeper tumors. However, the performance of NIR light in tissue delivered by fiber optic diffusers is poorly understood. Here, we investigated NIR-PIT using a cylindrical fiber optic diffuser in a mouse model of A431 tumors. NIR-PIT with 100 J/cm, the same light dose used in clinical trials of NIR-PIT, was applied after insertion of the diffuser within the tumor bed, and then both bioluminescence and fluorescence imaging were analyzed to assess the therapeutic efficacy. The diffuser can deliver adequate NIR light dose for effective NIR-PIT to the A431 tumor at a distance of approximately 1 cm around the light source at 100 J/cm. At 50 J/cm NIR light effective NIR-PIT was reduced to a distance of 5 - 7 mm diameter around the light source. These results indicate that the energy of interstitial light (measured in Joules/cm) administered via a fiber diffuser determines the depth of effective NIR-PIT around the diffuser and determines the spacing at which such diffusers should be placed to entirely cover the tumor. Thermal measurements demonstrate that interstitial light for NIR-PIT does not cause damage to the skin overlying the diffuser.

  10. MRI in Optic Neuritis: Structure, Function, Interactions

    DEFF Research Database (Denmark)

    Fuglø, Dan


    Optic neuritis (ON) is an acute inflammatory demyelinating condition of the optic nerve characterised by transient visual loss and eye pain. ON is the presenting symptom in 20% of patients with multiple sclerosis (MS) and the 15 year risk of developing MS after ON is about 50%. Decline in vision...... usually occurs over several days and is accompanied by eye pain. Patients start to recover 2 to 4 weeks after onset and most of the recovery typically occurs within 6 months. However, despite clinical recovery, patients develop atrophy of the optic nerve, which has been demonstrated using magnetic...... of the damage to the afferent visual pathway is needed. Optical coherence tomography (OCT) is a tissue imaging technique capable of measuring the RNFL thickness around the optic disc. We investigated the correlation between optic nerve lesion length, the RNFL thickness and the fMRI response in a group of 41...

  11. Structural, optical and morphological studies of undoped and Zn ...

    Indian Academy of Sciences (India)

    Structural, optical and morphological studies of undoped and Zn-doped CdSe QDs via aqueous route synthesis. N THIRUGNANAM D GOVINDARAJAN ... Undoped and Zn-doped CdSe quantum dots (QDs) were successfully synthesized by the chemical precipitation method. The structural, optical and morphological ...

  12. MRI-Guided Diffuse Optical Spectroscopy of Malignant and Benign Breast Lesions

    Directory of Open Access Journals (Sweden)

    Vasilis Ntziachristos


    Full Text Available We present the clinical implementation of a novel hybrid system that combines magnetic resonance imaging (MRI and near-infrared (NIR optical measurements for the noninvasive study of breast cancer in vivo. Fourteen patients were studied with a MR-NIR prototype imager and spectrometer. A diffuse optical tomographic scheme employed the MR images as a priori information to implement an image-guided NIR localized spectroscopic scheme. All patients who entered the study also underwent gadolinium-enhanced MRI and biopsy so that the optical findings were crossvalidated with MR readings and histopathology. The technique quantified the oxy-and deoxyhemoglobin of five malignant and nine benign breast lesions in vivo. Breast cancers were found with decreased oxygen saturation and higher blood concentration than most benign lesions. The average hemoglobin concentration ([H] of cancers was 0.130±0.100 mM, and the average hemoglobin saturation (Y was 60±9% compared to [H]=0.018±0.005 mM and Y=69±6% of background tissue. Fibroadenomas exhibited high hemoglobin concentration [H]=0.060±0.010 mM and mild decrease in oxygen saturation Y=67±2%. Cysts and other normal lesions were easily differentiated based on intrinsic contrast information. This novel optical technology can be a significant add-on in MR examinations and can be used to characterize functional parameters of cancers with diagnostic and treatment prognosis potential. It is foreseen that the technique can play a major role in functional activation studies of brain and muscle as well.

  13. Optical and microstructural characterisation of Au–Sn and Cu–Sn diffusive layers

    Energy Technology Data Exchange (ETDEWEB)

    Wronkowska, A.A., E-mail: [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85789 Bydgoszcz (Poland); Czerniak, G.; Wronkowski, A.; Skowroński, Ł. [Institute of Mathematics and Physics, University of Technology and Life Sciences, S. Kaliskiego 7, PL-85789 Bydgoszcz (Poland)


    Phase composition, crystallinity, optical and electrical properties were determined for Au–Sn and Cu–Sn ultra-thin films produced by sequential evaporating and co-depositing of metals on glass plates in a vacuum. Thickness of Sn films grown on top of Au(Cu) nanolayers (d{sub Au(Cu)} = 20 nm) was varied to obtain different atomic concentration ratios of Au(Cu)-rich diffusive samples up to 1:1. The samples were characterised using the XRD, SEM, spectroscopic ellipsometry and transmittance measurements. The XRD patterns indicated creation of AuSn and AuSn{sub 2} intermetallic phases at room temperature in both types of Au–Sn samples, formation of Cu{sub 6}Sn{sub 5} compound in bilayer Sn/Cu samples and Cu{sub 10}Sn{sub 3} intermetallic in the co-deposited Sn–Cu film. There was observed a substantial influence of morphology and phase composition on the effective complex dielectric functions and optical conductivity of the multiphase films, determined using the transmittance and variable angle spectroscopic ellipsometry measurements in the photon energy range of 0.6–6.5 eV. Adopting the Drude–Lorentz parameterisation approach to optical spectra enabled to extract contributions related to the free-carriers, interband transitions and plasmonic effects. The optical resistivity agreed reasonably with the dc-resistivity results, which changed approximately from 17.5 μΩ cm to 26 μΩ cm and from 24 μΩ cm to 96 μΩ cm for investigated Au–Sn and Cu–Sn systems, respectively.

  14. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang


    This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579

  15. Study of magnetic thin films by polarized neutron reflectivity. Off-specular diffusion on periodical structures

    International Nuclear Information System (INIS)

    Ott, F.


    Theoretical (Zeeman energy effects) and experimental (beam polarisation problems) progress have been made in the understanding of polarized neutron reflectivity with polarisation analysis. It has been shown that modelization and numerical simulations makes it possible to avoid to have to systematically measure a full set of reflectivity curves for each field and temperature condition. It has been possible to determine a magnetic profile as a function of the field in a magnetic bilayer system by using only a few points in the reciprocal space. This technique allows to considerable reduce the experiment time. In single nickel layer systems, we have shown that it is possible to induce magnetic rotation inhomogeneities when these systems are subjects to deformation strains. The effect are related to magneto-elastic constants gradients. In trilayer systems, with a ME constant modulation, we have been able to induce large magnetic rotation gradients. A new magneto-optic technique to measure the magnetization direction without rotating the magnetic field has been developed. The field of neutron reflectivity has been extended to off-specular studies. It has been possible to account quantitatively of the off-specular diffusion on 2-D model systems (prepared by optical lithography). This new technique should make it possible in the future to determine magnetic structures with a in-depth as well as lateral resolution. (author)

  16. Synthesis, structure, optical property, and electronic structure of Ba7AgGa5Se15

    International Nuclear Information System (INIS)

    Yin, Wenlong; He, Ran; Feng, Kai; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng


    Graphical abstract: -- Highlights: •A new quaternary chalcogenide Ba 7 AgGa 5 Se 15 was synthesized. •It adopts a new structure type in the space group P31c of the trigonal system. •The structure contains a three-dimensional framework built from GaSe 4 and AgSe 4 tetrahedra. •Ba 7 AgGa 5 Se 15 is a direct semiconductor with the band gap of 2.60 (2) eV. •The electronic structure was calculated to explain the optical properties. -- Abstract: A new quaternary chalcogenide Ba 7 AgGa 5 Se 15 was synthesized by solid state reaction. It crystallizes in a new structure type in the noncentrosymmetric space group P31c of the trigonal system. In the structure, three Ga2Se 4 tetrahedra and one Ga1Se 4 tetrahedron are connected to each other by corner-sharing to form [Ga 4 Se 10 ] 8− anion clusters, which are further connected to AgSe 4 tetrahedra by corner-sharing to form a three-dimensional framework with Ba, Se7, and isolated Ga3Se 4 tetrahedra residing in the cavities. The optical band gap of 2.60 (2) eV for Ba 7 AgGa 5 Se 15 was deduced from the diffuse reflectance spectrum. From a band structure calculation, Ba 7 AgGa 5 Se 15 is a direct semiconductor and the transition between Se and Ba plays an important role in the band gap

  17. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.


    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  18. Thermal/structural/optical integrated design for optical window of a high-speed aerial optical camera (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Shi, Kui; Wu, Dengshan; Qiao, Mingrui


    In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 149.6 nm, which is under PV <=1 4λ .The simulation result meets the requirements of optical design very well. The above study can be used as an important reference for other optical window designs.

  19. Gauss-Newton method for image reconstruction in diffuse optical tomography

    International Nuclear Information System (INIS)

    Schweiger, Martin; Arridge, Simon R; Nissilae, Ilkka


    We present a regularized Gauss-Newton method for solving the inverse problem of parameter reconstruction from boundary data in frequency-domain diffuse optical tomography. To avoid the explicit formation and inversion of the Hessian which is often prohibitively expensive in terms of memory resources and runtime for large-scale problems, we propose to solve the normal equation at each Newton step by means of an iterative Krylov method, which accesses the Hessian only in the form of matrix-vector products. This allows us to represent the Hessian implicitly by the Jacobian and regularization term. Further we introduce transformation strategies for data and parameter space to improve the reconstruction performance. We present simultaneous reconstructions of absorption and scattering distributions using this method for a simulated test case and experimental phantom data

  20. Efficient method for near real-time diffuse optical tomography of the human brain (United States)

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid


    Previous studies have showed only regions with a sensitivity higher that 1% of the maximum value can affect the recovery result for diffuse optical tomography (DOT). Two methods of efficient sensitivity map generation based on Finite Element Models (FEM) are developed based on (1) reduced sensitivity matrix and (2) parallelisation process. Time and memory efficiency of these processes are evaluated and compared with conventional methods. It is shown that the computational time for a full head model containing 200k nodes is reduced from 3 hours to 48 minutes and the required memory is reduced from 5.5 GB to 0.5 GB. For a range of mesh densities up to 320k nodes, the required memory is improved by ~1000% and computational time by ~400% to allow near real-time image recovery.

  1. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans (United States)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.


    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  2. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya


    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  3. High range free space optic transmission using new dual diffuser modulation technique

    Directory of Open Access Journals (Sweden)

    Rahman A.K


    Full Text Available Free space optical communication fsoc is vulnerable with fluctuating atmospheric. This paper focus analyzes the finding of new technique dual diffuser modulation (ddm to mitigate the atmospheric turbulence effect. The performance of fsoc under the presence of atmospheric turbulence will cause the laser beam keens to (a beam wander, (b beam spreading and (c scintillation. The most deteriorate the fsoc is scintillation where it affected the wavefront cause to fluctuating signal and ultimately receiver can turn into saturate or loss signal. Ddm approach enhances the detecting bit ‘1’ and bit ‘0’ and improves the power received to combat with turbulence effect. The performance focus on signal-to-noise (snr and bit error rate (ber where the numerical result shows that the ddm technique able to improves the range where estimated approximately 40% improvement under weak turbulence and 80% under strong turbulence.

  4. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography (United States)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli


    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  5. Diffuse optical characterization of an exercising patient group with peripheral artery disease (United States)

    Putt, Mary; Chandra, Malavika; Yu, Guoqiang; Xing, Xiaoman; Han, Sung Wan; Lech, Gwen; Shang, Yu; Durduran, Turgut; Zhou, Chao; Yodh, Arjun G.; Mohler, Emile R.


    Abstract. Peripheral artery disease (PAD) is a common condition with high morbidity. While measurement of tissue oxygen saturation (StO2) has been demonstrated, this is the first study to assess both StO2 and relative blood flow (rBF) in the extremities of PAD patients. Diffuse optics is employed to measure hemodynamic response to treadmill and pedal exercises in 31 healthy controls and 26 patients. For StO2, mild and moderate/severe PAD groups show pronounced differences compared with controls. Pre-exercise mean StO2 is lower in PAD groups by 9.3% to 10.6% compared with means of 63.5% to 66.2% in controls. For pedal, relative rate of return of StO2 to baseline is more rapid in controls (p<0.05). Patterns of rBF also differ among groups. After both exercises, rBF tend to occur at depressed levels among severe PAD patients compared with healthy (p<0.05); post-treadmill, rBF tend to occur at elevated levels among healthy compared with severe PAD patients (p<0.05). Additionally, relative rate of return to baseline StO2 is more rapid among subjects with reduced levels of depression in rBF (p=0.041), even after adjustment for ankle brachial index. This suggests a physiologic connection between rBF and oxygenation that can be measured using diffuse optics, and potentially employed as an evaluative tool in further studies. PMID:23708193

  6. Dynamic studies of small animals with a four-color diffuse optical tomography imager

    International Nuclear Information System (INIS)

    Schmitz, Christoph H.; Graber, Harry L.; Pei Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu Yong; Barbour, Randall L.


    We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals

  7. Vaginal hemodynamic changes during sexual arousal in a rat model by diffuse optical spectroscopy (Conference Presentation) (United States)

    Jeong, Hyeryun; Seong, Myeongsu; Lee, Hyun-Suk; Park, Kwangsung; Kim, Jae Gwan


    Not only men suffer from sexual dysfunction, but the number of women who have sexual dysfunction rises. Therefore, it is necessary to develop an objective diagnostic technique to examine the sexual dysfunction of female patients, who are afflicted with the disorders. For this purpose, we developed a diffuse optical spectroscopy (DOS) probe to measure the change of oxy-, deoxy-, and total hemoglobin concentration along with blood flow from vaginal wall of female rats. A cylindrical stainless steel DOS probe with a diameter of 3 mm was designed for the vaginal wall of rats which consisted of two lasers (785 and 850nm) and two spectrometers with a separation of 2 mm. A thermistor was placed on the top of the probe to measure the temperature change from vaginal wall during experiments. A modified Beer-Lambert's law is utilized to acquire the changes of oxy-, deoxy-, and total hemoglobin, and blood flow information is obtained by diffuse speckle contrast analysis technique. For the experiments, Sprague Dawley ( 400 g) female rats were divided into two groups (control and vaginal dryness model). Vaginal oxygenation, blood flow and temperature were continuously monitored before and after sexual around induced by apomorphine. After the measurement, histologic examination was performed to support the results from DOS probe in the vaginal wall. The hemodynamic information acquired by the DOS probe can be utilized to establish an objective and accurate standard of the female sexual disorders.

  8. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz


    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  9. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui


    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  10. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics (United States)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.


    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  11. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics. (United States)

    Kennedy, Gordon T; Lentsch, Griffin R; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B; Durkin, Anthony J


    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions

  12. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography. (United States)

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn


    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up.

  13. Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging (United States)

    Leproux, Anaïs; Kim, You Me; Min, Jun Won; McLaren, Christine E.; Chen, Wen-Pin; O'Sullivan, Thomas D.; Lee, Seung-ha; Chung, Phil-Sang; Tromberg, Bruce J.


    Young patients with dense breasts have a relatively low-positive biopsy rate for breast cancer (˜1 in 7). South Korean women have higher breast density than Westerners. We investigated the benefit of using a functional and metabolic imaging technique, diffuse optical spectroscopic imaging (DOSI), to help the standard of care imaging tools to distinguish benign from malignant lesions in premenopausal Korean women. DOSI uses near-infrared light to measure breast tissue composition by quantifying tissue concentrations of water (ctH2O), bulk lipid (ctLipid), deoxygenated (ctHHb), and oxygenated (ctHbO2) hemoglobin. DOSI spectral signatures specific to abnormal tissue and absent in healthy tissue were also used to form a malignancy index. This study included 19 premenopausal subjects (average age 41±9), corresponding to 11 benign and 10 malignant lesions. Elevated lesion to normal ratio of ctH2O, ctHHb, ctHbO2, total hemoglobin (THb=ctHHb+ctHbO2), and tissue optical index (ctHHb×ctH2O/ctLipid) were observed in the malignant lesions compared to the benign lesions (p90% sensitivity and specificity. Malignant lesions showed significantly higher metabolism and perfusion than benign lesions. DOSI spectral features showed high discriminatory power for distinguishing malignant and benign lesions in dense breasts of the Korean population.

  14. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process. (United States)

    Jang, Hansol; Lim, Gukbin; Hong, Keum-Shik; Cho, Jaedu; Gulsen, Gultekin; Kim, Chang-Seok


    Diffuse optical tomography (DOT) has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM) DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM) DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D) pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  15. Effect of Shot Noise on Simultaneous Sensing in Frequency Division Multiplexed Diffuse Optical Tomographic Imaging Process

    Directory of Open Access Journals (Sweden)

    Hansol Jang


    Full Text Available Diffuse optical tomography (DOT has been studied for use in the detection of breast cancer, cerebral oxygenation, and cognitive brain signals. As optical imaging studies have increased significantly, acquiring imaging data in real time has become increasingly important. We have developed frequency-division multiplexing (FDM DOT systems to analyze their performance with respect to acquisition time and imaging quality, in comparison with the conventional time-division multiplexing (TDM DOT. A large tomographic area of a cylindrical phantom 60 mm in diameter could be successfully reconstructed using both TDM DOT and FDM DOT systems. In our experiment with 6 source-detector (S-D pairs, the TDM DOT and FDM DOT systems required 6.18 and 1 s, respectively, to obtain a single tomographic data set. While the absorption coefficient of the reconstruction image was underestimated in the case of the FDM DOT, we experimentally confirmed that the abnormal region can be clearly distinguished from the background phantom using both methods.

  16. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links (United States)

    Burrell, Derek J.; Middlebrook, Christopher T.


    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  17. Diffuse phase transition, piezoelectric and optical study of Bi0·5Na0 ...

    Indian Academy of Sciences (India)

    Abstract. Bismuth sodium titanate, Bi0·5Na0·5TiO3 (BNT) is considered to be an excellent candidate for a key material of lead-free dielectric ceramics. In this study, we propose the dielectric and optical study of single phase. BNT powder prepared by solid-state reaction route. The phase formation and structural study were ...

  18. Spin Echo Attenuation of Restricted Diffusion as a Discord of Spin Phase Structure (United States)

    Stepišnik, Janez


    By using the particle probability density we analyze the spin echo attenuation of particles, diffusing in a bounded region. It provides a means to expand a nonuniform spin phase distribution into a series of waves that characterize the geometry and boundary conditions of confinement. Random motion disrupts the initial phase structure created by applied gradients and consequently discords its structure waves. By assuming the spin phase fluctuation and/or the randomness of spin phase distribution in the subensemble as a Gaussian stochastic process, we derive a new analytical expression for the echo attenuation related to the particle velocity correlation. For a diffusion in porous structure we get the expression featuring the same "diffusive diffraction" patterns as those being found and explained by P. T. Callaghan and A. Coy ("Principles of Nuclear Magnetic Resonance Microscopy," Oxford Univ. Press, Oxford (1991);J. Chem. Phys.101, 4599-4609 (1994)) with the use of propagator theory. With the new approach we cast a new light on the phenomena and derive analitically how the diffusive diffractions appear when the sequence of finite or even modulated gradients are applied. The method takes into account the non-Markovian character of restricted diffusion, and therefore the echo dependence on the diffusion lengths and on the strength of applied gradient differs from the results of authors assuming the Markovian diffusion either by dealing with the diffusion propagators or by the computer simulation of Fick's diffusion.

  19. Breast Tissue Composition and Its Dependence on Demographic Risk Factors for Breast Cancer: Non-Invasive Assessment by Time Domain Diffuse Optical Spectroscopy (United States)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo


    Background Breast tissue composition is recognized as a strong and independent risk factor for breast cancer. It is a heritable feature, but is also significantly affected by several other elements (e.g., age, menopause). Nowadays it is quantified by mammographic density, thus requiring the use of ionizing radiation. Optical techniques are absolutely non-invasive and have already proved effective in the investigation of biological tissues, as they are sensitive to tissue composition and structure. Methods Time domain diffuse optical spectroscopy was performed at 7 wavelengths (635-1060 nm) on 200 subjects to derive their breast tissue composition (in terms of water, lipid and collagen content), blood parameters (total hemoglobin content and oxygen saturation level), and information on the microscopic structure (scattering amplitude and power). The dependence of all optically-derived parameters on age, menopausal status, body mass index, and use of oral contraceptives, and the correlation with mammographic density were investigated. Results Younger age, premenopausal status, lower body mass index values, and use of oral contraceptives all correspond to significantly higher water, collagen and total hemoglobin content, and lower lipid content (always p < 0.05 and often p < 10-4), while oxygen saturation level and scattering parameters show significant dependence only on some conditions. Even when age-adjusted groups of subjects are compared, several optically derived parameters (and in particular always collagen and total hemoglobin content) remain significantly different. Conclusions Time domain diffuse optical spectroscopy can probe non-invasively breast tissue composition and physiologic blood parameters, and provide information on tissue structure. The measurement is suitable for in vivo studies and monitoring of changes in breast tissue (e.g., with age, lifestyle, chemotherapy, etc.) and to gain insight into related processes, like the origin of cancer risk

  20. Three-dimensional diffuse optical mammography with ultrasound localization in a human subject (United States)

    Holboke, Monica J.; Tromberg, Bruce J.; Li, Xingde; Shah, Natasha; Fishkin, Joshua B.; Kidney, D.; Butler, J.; Chance, Britton; Yodh, Arjun G.


    We describe an approach that combines clinical ultrasound and photon migration techniques to enhance the sensitivity and information content of diffuse optical tomography. Measurements were performed on a postmenopausal woman with a single 1.8 X 0.9 cm malignant ductal carcinoma in situ approximately 7.4 mm beneath the skin surface (UCI IRB protocol 95-563). The ultrasound-derived information about tumor geometry enabled us to segment the breast tissue into tumor and background regions. Optical data was obtained with a multifrequency, multiwavelength hand-held frequency-domain photon migration backscattering probe. The optical properties of the tumor and background were then computed using the ultrasound-derived geometrical constraints. An iterative perturbative approach, using parallel processing, provided quantitative information about scattering and absorption simultaneously with the ability to incorporate and resolve complex boundary conditions and geometries. A three to four fold increase in the tumor absorption coefficient and nearly 50% reduction in scattering coefficient relative to background was observed ((lambda) equals 674, 782, 803, and 849 nm). Calculations of the mean physiological parameters reveal fourfold greater tumor total hemoglobin concentration [Hbtot] than normal breast (67 (mu) M vs 16 (mu) M) and tumor hemoglobin oxygen saturation (SOx) values of 63% (vs 73% and 68% in the region surrounding the tumor and the opposite normal tissue, respectively). Comparison of semi-infinite to heterogeneous models shows superior tumor/background contrast for the latter in both absorption and scattering. Sensitivity studies assessing the impact of tumor size and refractive index assumptions, as well as scan direction, demonstrate modest effects on recovered properties.

  1. Preliminary study of the optic radiation in healthy adults by MR diffusion tensor imaging

    International Nuclear Information System (INIS)

    Sun Jing; Guo Jing; Xu Han; Jiang Zhen; Xu Xiaoqiu; Shen Junkang; Liu Tao; Gong Zhigang


    Objective: To investigate the distribution of optic radiation fibers and the variation of Meyer loop in healthy adults. Methods: Diffusion tensor magnetic resonance images were obtained from 25 healthy volunteers using a 1.5 T MR scanner and postprocessed using the DTI Studio software. Multiple ROIs were used for fiber reconstruction. The distance between the anterior limit of Meyer loop and the temporal tip(MT) and the fraction of anisotropy (FA) at one side were compared with those at the contralateral side by paired t test. Results: Forty-nine optic radiation fibers were successfully reconstructed in 25 volunteers. The value of MT was (43.2±7.7) mm(ranged from 30.6 to 59.7 mm), and coefficient of variation was 18%. The values of MT and FA of optic radiation in the left side were (43.5±8.1) mm, (0.53±0.10) respectively, and those counterparts in the right side were (43.2±7.5) mm and (0.53± 0.07) respectively. There were no significance difference of MT or FA between the two sides (t=0.12, 0.00; P=0.91 and 1.00 respectively). Conclusions: The range of interindividual variation for MT was rather large in healthy volunteers. The preoperative measurement of the MT appears be helpful to predict the risk of the incidence of visual defect and to decrease the incidence of the complication. (authors)

  2. Interface structure of Be/DSCu diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Makino, T.; Iwadachi, T. [NGK Insulators Ltd., Nagoya (Japan)


    Beryllium is used as plasma facing components of the first wall on ITER. Dispersion-Strengthened Copper (DSCu) is used as heat sink material by joining to Be because DSCu has high thermal conductivity and strength. In this study, Be/DSCu diffusion bonding tests using the interlayer of Al, Ni, Nb, Ti, Zr and Be-Cu alloy have been conducted to choose the suitable interlayer materials. As a result of the shear strength tests, Be/DSCu joints by using Be-Cu alloy interlayer showed the strength of about 200 MPa. Diffusion bonding tests using Be-Cu alloy interlayer or no interlayer (direct bonding) at the range of temperature from 600degC to 850degC have been conducted to identify the effect of bonding temperature and time on interface formation and strength. The thickness of diffusion layer was proportional to a square root of bonding time by diffusion controlled process. The shear strength is controlled by the formation of intermetallic layer at Be side. (author)

  3. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography. (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A


    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO2 Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chen


    Full Text Available The Mach-Zehnder interferometer (MZI can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI. Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.

  5. Modeling complex diffusion mechanisms in L1{sub 2}-structured compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail:; Lape, M. [Northern Kentucky University, Department of Physics and Geology (United States); Stufflebeam, M.; Evenson, W. E. [Utah Valley University, College of Science and Health (United States)


    We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L1{sub 2}-structured compounds.

  6. The defect structure of yttria-stabilized zirconia, studied by quasielastic diffuse neutron scattering

    DEFF Research Database (Denmark)

    Andersen, Niels Hessel; Clausen, Kurt Nørgaard; Hackett, M. A.


    The static defect structure of the oxygen ion conductor Y2O3 stabilized zirconia has been studied at room temperature by coherent diffuse neutron scattering from single crystal samples containing nominally 9.4, 12, 15 and 18 mol% Y2O3. There are two principal contributions to the observed diffuse...

  7. Observation of structural universality in disordered systems using bulk diffusion measurement (United States)

    Papaioannou, Antonios; Novikov, Dmitry S.; Fieremans, Els; Boutis, Gregory S.


    We report on an experimental observation of classical diffusion distinguishing between structural universality classes of disordered systems in one dimension. Samples of hyperuniform and short-range disorder were designed, characterized by the statistics of the placement of micrometer-thin parallel permeable barriers, and the time-dependent diffusion coefficient was measured by NMR methods over three orders of magnitude in time. The relation between the structural exponent, characterizing disorder universality class, and the dynamical exponent of the diffusion coefficient is experimentally verified. The experimentally established relation between structure and transport exemplifies the hierarchical nature of structural complexity—dynamics are mainly determined by the universality class, whereas microscopic parameters affect the nonuniversal coefficients. These results open the way for noninvasive characterization of structural correlations in porous media, complex materials, and biological tissues via a bulk diffusion measurement.

  8. Optical properties and defect structure of crystalline bodies

    International Nuclear Information System (INIS)

    Gindin, I.A.; Chirkina, L.A.; Metolidi, Eh.N.


    The main features of optical characteristics of ion, semiconductor and metal crystals have been analysed. It is shown that various types of defects resulting from mechanical and thermal action have significant effect on optical properties of materials with various types of interatomic interaction. The main regularities and differences in defect structure effect on optical properties of ion, semiconductor and metal crystal are detected. 52 refs.; 17 figs

  9. Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model

    Directory of Open Access Journals (Sweden)

    Yuxuan eZhan


    Full Text Available High-density diffuse optical tomography (HD-DOT methods have shown significant improvement in localization accuracy and image resolution compared to traditional topographic near infrared spectroscopy (NIRS of the human brain. In this work we provide a comprehensive evaluation of image quality in visual cortex mapping via a simulation study with the use of an anatomical head model derived from MRI data of a human subject. A model of individual head anatomy provides the surface shape and internal structure that allow for the construction of a more realistic physical model for the forward problem, as well as the use of a structural constraint in the inverse problem. The HD-DOT model utilized here incorporates multiple source-detector separations with continuous-wave data with added noise based on experimental results. To evaluate image quality we quantify the localization error and localized volume at half maximum (LVHM throughout a region of interest (ROI within the visual cortex and systematically analyze the use of whole brain tissue spatial constraint within image reconstruction. Our results demonstrate that an image quality with less than 10 mm in localization error and 1000 m3 in LVHM can be obtained up to 13 mm below the scalp surface with a typical unconstrained reconstruction and up to 18 mm deep when a spatial constraint based on the brain tissue is utilized.

  10. Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure

    International Nuclear Information System (INIS)

    Beyeler, M.


    In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions [fr

  11. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model. (United States)

    Krali, Emiljana; Curry, Richard J


    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  12. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study (United States)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie


    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  13. Diffuser-aided diffuse optical imaging for breast tumor: a feasibility study based on time-resolved three-dimensional Monte Carlo modeling. (United States)

    Chuang, Ching-Cheng; Lee, Chia-Yen; Chen, Chung-Ming; Hsieh, Yao-Sheng; Liu, Tsan-Chi; Sun, Chia-Wei


    This study proposed diffuser-aided diffuse optical imaging (DADOI) as a new approach to improve the performance of the conventional diffuse optical tomography (DOT) approach for breast imaging. The 3-D breast model for Monte Carlo simulation is remodeled from clinical MRI image. The modified Beer-Lambert's law is adopted with the DADOI approach to substitute the complex algorithms of inverse problem for mapping of spatial distribution, and the depth information is obtained based on the time-of-flight estimation. The simulation results demonstrate that the time-resolved Monte Carlo method can be capable of performing source-detector separations analysis. The dynamics of photon migration with various source-detector separations are analyzed for the characterization of breast tissue and estimation of optode arrangement. The source-detector separations should be less than 4 cm for breast imaging in DOT system. Meanwhile, the feasibility of DADOI was manifested in this study. In the results, DADOI approach can provide better imaging contrast and faster imaging than conventional DOT measurement. The DADOI approach possesses great potential to detect the breast tumor in early stage and chemotherapy monitoring that implies a good feasibility for clinical application.

  14. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall (United States)

    Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.


    We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

  15. Structural, electrical and optical studies on spray-deposited ...

    Indian Academy of Sciences (India)

    76, No. 1. — journal of. January 2011 physics pp. 153–163. Structural, electrical and optical studies on spray-deposited aluminium-doped ZnO thin films. S TEWARI1 and A BHATTACHARJEE2,∗ ... It is a versatile material with good electrical and optical ... applications for detecting hazardous gases, including LPG [13,14]. 2.

  16. Molecular studies and plastic optical fiber device structures for nonlinear optical applications (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne


    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.

  17. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy (United States)

    Yazdi, Hossein S.; O'Sullivan, Thomas D.; Leproux, Anais; Hill, Brian; Durkin, Amanda; Telep, Seraphim; Lam, Jesse; Yazdi, Siavash S.; Police, Alice M.; Carroll, Robert M.; Combs, Freddie J.; Strömberg, Tomas; Yodh, Arjun G.; Tromberg, Bruce J.


    Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, μa, and reduced scattering, μs‧) and blood flow (blood flow index, BFI), respectively. DOSI-derived μa values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin (HbO2, HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 mm-1 (37%) in μs‧ and 0.003 mm-1 (33%) in μa lead to ˜53% and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and a breast cancer patient reveals well-defined spatial distributions of BFI and composition that clearly delineates both the flow channel and the tumor. BFI reconstructed with DOSI-corrected μa and μs‧ values had a tumor/normal contrast of 2.7, 50% higher than the contrast using commonly assumed fixed optical properties. In conclusion, spatially coregistered imaging of DOSI and DCS enhances intrinsic tumor contrast and information content. This is particularly important for imaging diseased tissues where there are significant spatial variations in μa and μs‧ as well as potential uncoupling between flow and metabolism.

  18. Second harmonic generation in resonant optical structures

    Energy Technology Data Exchange (ETDEWEB)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel


    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  19. Localized structures in dissipative media: from optics to plant ecology (United States)

    Tlidi, M.; Staliunas, K.; Panajotov, K.; Vladimirov, A. G.; Clerc, M. G.


    Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years. PMID:25246688

  20. Optical cell with periodic resistive heating for the measurement of heat, mass, and thermal diffusions in liquid mixtures. (United States)

    Hartung, M; Köhler, W


    A new technique for the measurement of heat, mass, and thermal diffusions in liquids has been developed. Similar to laser induced dynamic gratings, a temperature grating is created in the sample. Thermal expansion transforms the temperature into a refractive-index grating, which is read by diffraction of a readout laser beam. In a multicomponent mixture an additional concentration grating is formed by thermal diffusion driven by the temperature gradients of the temperature grating. Differently to laser induced dynamic grating experiments we use Joule heating instead of optical heating. For that purpose we have built cuvettes which have a grating of transparent conducting strips on the inner side of one of their windows. If heated by an electric current a temperature grating will build up in the sample. Both the heat equation and the extended diffusion equation have been solved in two dimensions to allow for quantitative data analysis. Our apparatus and method of analysis have been validated by measurements of heat, mass, and thermal diffusions in pure and binary liquids. Heat diffusion can be correctly determined as was shown for pure toluene, pure dodecane, and the symmetric mixture of isobutylbenzene dodecane. Mass and thermal diffusions were studied in the three symmetric mixtures of dodecane, isobutylbenzene, and tetralin. The obtained diffusion and Soret coefficients agree with the literature values within the experimental errors. Uncompensated transient heating effects limit the resolution of the experimental technique.

  1. Multiparameter Fiber Optic Sensor Suite for Structures, Phase I (United States)

    National Aeronautics and Space Administration — Structural Health Monitoring (SHM) for microspacecraft is a rapidly growing technology area for the use of fiber optics and MEMS. Morgan Research Corporation...

  2. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Investigations on structural, optical and magnetic properties of solution-combustion-synthesized nanocrystalline iron molybdate. KRITHIKADEVI RAMACHANDRAN SIVA CHIDAMBARAM BALRAJ BASKARAN ARULMOZHI MUTHUKUMARASAMY JOHN ...

  3. Optimal optical communication terminal structure for maximizing the link budget (United States)

    Huang, Jian; Jiang, Dagang; Deng, Ke; Zhang, Peng


    Ordinary inter-satellite optical includes at least three optical paths for acquisition, tracking and communication, the three optical paths work simultaneously and share the received power. An optimal structure of inter-satellite optical communication terminal with single working optical path at each of working stages of acquisition and communication is introduced. A space optical switch based on frustrated total internal reflection effect is applied to switch the received laser power between the acquisition sensor and the communication sensor between the stages of acquisition and communication, this is named as power fusion which means power is transferred for shutting down unused optical path. For the stages of tracking and communication, a multiple cells sensor is used to accomplish the operation of tracking while communication, this is named as function fusion which means accomplishing multiple functions by one device to reduce the redundant optical paths. For optical communication terminal with single working path structure, the total received laser power would be detected by one sensor for each different stages of acquisition, tracking and communication, the link budget would be maximized, and this design would help to enlarge the system tolerance and reduce the acquisition time.

  4. Preclinical, fluorescence and diffuse optical tomography: non-contact instrumentation, modeling and time-resolved 3D reconstruction

    International Nuclear Information System (INIS)

    Nouizi, F.


    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1)- Setting up an imaging device to record the 3D coordinates of an animal's surface; 2)- Modeling the no-contact approach to solve the forward problem; 3)- Processing of the measured signals taking into account the impulse response of the device; 4)- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles. (author)

  5. Preparation and investigation of optical, structural, and ...

    Indian Academy of Sciences (India)

    ZnO:Mn; nanocrystalline thin film; sol–gel; optical properties. ... Azad University, Roudsar, Iran; Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, P.O. Box 413351914, Rasht, Iran; Department of Physics, Faculty of Science, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan, Iran ...


    DEFF Research Database (Denmark)


    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...

  7. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well (United States)

    Das, T.; Panda, S.; Panda, B. K.


    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  8. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix (United States)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum


    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  9. Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis (United States)

    Zimmermann, Bernhard B.; Deng, Bin; Singh, Bhawana; Martino, Mark; Selb, Juliette; Fang, Qianqian; Sajjadi, Amir Y.; Cormier, Jayne; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.; Saksena, Mansi A.; Carp, Stefan A.


    Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.

  10. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System. (United States)

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram


    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.

  11. Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study

    Directory of Open Access Journals (Sweden)

    Harsimrat Singh


    Full Text Available Seizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures.

  12. Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Shang Yu; Cheng Ran; Dong Lixin; Yu Guoqiang [Center for Biomedical Engineering, University of Kentucky, KY (United States); Ryan, Stephen J [Department of Neurology, University of Kentucky, KY (United States); Saha, Sibu P, E-mail: [Division of Cardiothoracic Surgery, University of Kentucky, KY (United States)


    Intraoperative monitoring of cerebral hemodynamics during carotid endarterectomy (CEA) provides essential information for detecting cerebral hypoperfusion induced by temporary internal carotid artery (ICA) clamping and post-CEA hyperperfusion syndrome. This study tests the feasibility and sensitivity of a novel dual-wavelength near-infrared diffuse correlation spectroscopy technique in detecting cerebral blood flow (CBF) and cerebral oxygenation in patients undergoing CEA. Two fiber-optic probes were taped on both sides of the forehead for cerebral hemodynamic measurements, and the instantaneous decreases in CBF and electroencephalogram (EEG) alpha-band power during ICA clamping were compared to test the measurement sensitivities of the two techniques. The ICA clamps resulted in significant CBF decreases (-24.7 {+-} 7.3%) accompanied with cerebral deoxygenation at the surgical sides (n = 12). The post-CEA CBF were significantly higher (+43.2 {+-} 16.9%) than the pre-CEA CBF. The CBF responses to ICA clamping were significantly faster, larger and more sensitive than EEG responses. Simultaneous monitoring of CBF, cerebral oxygenation and EEG power provides a comprehensive evaluation of cerebral physiological status, thus showing potential for the adoption of acute interventions (e.g., shunting, medications) during CEA to reduce the risks of severe cerebral ischemia and cerebral hyperperfusion syndrome.

  13. Monitoring early tumor response to drug therapy with diffuse optical tomography (United States)

    Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.


    Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.

  14. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Van Benschoten, Andrew H. [University of California San Francisco, San Francisco, CA 94158 (United States); Afonine, Pavel V. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C.; Wall, Michael E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Jackson, Colin J. [Australian National University, Canberra, ACT 2601 (Australia); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California Berkeley, Berkeley, CA 94720 (United States); Urzhumtsev, Alexandre [Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy (France); Fraser, James S., E-mail: [University of California San Francisco, San Francisco, CA 94158 (United States)


    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  15. Diffusion under water-saturated conditions in PFA/OPC-based structural concrete

    International Nuclear Information System (INIS)

    Harris, A.W.; Nickerson, A.K.


    A substantial proportion of the volume of the UK radioactive waste repository is likely to be composed of materials based on hydraulic cements. This includes the structural components, which are likely to be manufactured from concrete. The mass transport characteristics of dissolved species for a typical structural concrete, based on a mixture of pulverised fuel ash and ordinary Portland cement, have been measured in a water-saturated condition. Both the water permeability and the diffusion parameters (for caesium, strontium and iodide ion and tritiated water diffusion) are low compared to values obtained for other structural concretes. The intrinsic diffusion coefficients for iodide and caesium ions are in the range 2-5x10 -14 m 2 s -1 . There is no evidence of significant sorption of any of the diffusants studied. (author)

  16. The role of the organization structure in the diffusion of innovations. (United States)

    Sáenz-Royo, Carlos; Gracia-Lázaro, Carlos; Moreno, Yamir


    Diffusion and adoption of innovations is a topic of increasing interest in economics, market research, and sociology. In this paper we investigate, through an agent based model, the dynamics of adoption of innovative proposals in different kinds of structures. We show that community structure plays an important role on the innovation diffusion, so that proposals are more likely to be accepted in homogeneous organizations. In addition, we show that the learning process of innovative technologies enhances their diffusion, thus resulting in an important ingredient when heterogeneous networks are considered. We also show that social pressure blocks the adoption process whatever the structure of the organization. These results may help to understand how different factors influence the diffusion and acceptance of innovative proposals in different communities and organizations.

  17. Solvothermal syntheses, crystal structures, optical and thermal ...

    Indian Academy of Sciences (India)

    The dimeric [Ge₂Se₆] ⁴⁻ anion acts as a bridging ligand via the trans terminal Se atoms to link two [Ni(tepa)] ²⁺ cations, resulting in neutral complex 3. The Ni²⁺ ion in 2 is coordinated by two tridentate dien ... in the presence of transition metal ions. Thecompounds 1–3 exhibit optical band gaps between 2.06 and 2.35 eV.

  18. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi


    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  19. The Optical Janus Effect: Asymmetric Structural Color Reflection Materials. (United States)

    England, Grant T; Russell, Calvin; Shirman, Elijah; Kay, Theresa; Vogel, Nicolas; Aizenberg, Joanna


    Structurally colored materials are often used for their resistance to photobleaching and their complex viewing-direction-dependent optical properties. Frequently, absorption has been added to these types of materials in order to improve the color saturation by mitigating the effects of nonspecific scattering that is present in most samples due to imperfect manufacturing procedures. The combination of absorbing elements and structural coloration often yields emergent optical properties. Here, a new hybrid architecture is introduced that leads to an interesting, highly directional optical effect. By localizing absorption in a thin layer within a transparent, structurally colored multilayer material, an optical Janus effect is created, wherein the observed reflected color is different on one side of the sample than on the other. A systematic characterization of the optical properties of these structures as a function of their geometry and composition is performed. The experimental studies are coupled with a theoretical analysis that enables a precise, rational design of various optical Janus structures with highly controlled color, pattern, and fabrication approaches. These asymmetrically colored materials will open applications in art, architecture, semitransparent solar cells, and security features in anticounterfeiting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Diffusion-advection within dynamic biological gaps driven by structural motion (United States)

    Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo


    To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.

  1. Thermal Wavelength Measurement of Nanofluid in an Optical-Fiber Thermal Wave Cavity Technique to Determine the Thermal Diffusivity

    Directory of Open Access Journals (Sweden)

    Monir Noroozi


    Full Text Available The application of optical-fiber thermal wave cavity (OF-TWC technique was investigated to measure the thermal diffusivity of Ag nanofluids. The thermal diffusivity was obtained by measuring the thermal wavelength of sample in a cavity scan mode. The spherical Ag nanoparticles samples were prepared at various sizes using the microwave method. Applying the thermal wavelength measurement in a flexible OF-TWC technique requires only two experimental data sets. It can be used to estimate thermal diffusivity of a small amount of liquid samples (0.3 ml in a brief period. UV-Vis spectroscopy and transmission electron microscopy were used to measure the characterization of the Ag nanoparticles. The thermal diffusivity of distilled water, glycerol, and two different types of cooking oil was measured and has an excellent agreement with the reported results in the literature (difference of only 0.3%–2.4%. The nanofluids showed that the highest value of thermal diffusivity was achieved for smaller sized nanoparticles. The results of this method confirmed that the thermal wavelength measurement method using the OF-TWC technique had potential as a tool to measure the thermal diffusivity of nanofluids with different variables such as the size, shape, and concentration of the nanoparticles.

  2. Monitoring structure development in milk acidification using diffuse reflectance profiles

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Andersen, Ulf; Møller, Flemming


    The structure of dairy products is important for the consumer, and milk acidification plays a central role for structural development. To ensure the best possible consumer experience, it is important that a product’s structural properties are stable. Therefore process and quality control tools...... are needed so that the production can be carried out consistently, regardless of day-to-day variations in the raw materials. Casein micelles aggregate during milk acidification, which leads to formation of a gel network. This change of structure is important for the development of a range of dairy products....... It is therefore essential to monitor these structural changes and a variety of methods have been proposed to continuously follow this coagulation of milk [1]. Especially non-invasive methods for in situ production line application have been of interest. We propose a method for analyzing structural changes in milk...

  3. Rhodamine B diffusion in hair as a probe for structural integrity. (United States)

    dos Santos Silva, A L; Joekes, I


    The aim of this work was to investigate the diffusion of Rhodamine B into bleached, photo bleached and abraded hair, treated or not with an emulsion of ceramide using two different techniques: spectrophotometry and fluorescence optical microscopy with image analysis. This comparison, combined with the Einstein-Smoluchowski equation, allowed validating a methodology that uses the apparent diffusion coefficient of a dye as an index for hair damage. Distinct behaviors of the dye were observed in the cuticle and in the cortex. For a bleached hair sample the apparent diffusion coefficient in the cuticle ranges from 8.2 x 10(-11) cm2 s(-1) to 10 x 10(-11)cm2 s(-1), while for the cortex this value drops to 4.0 x 10(-11) cm2 s(-1) to 4.2 x 10(-11) cm2 s(-1). The diffusion is always faster in the cuticle than in the cortex and the apparent diffusion coefficient shows up to a seven-fold decrease when the dye penetrates the cortex. The chemical, photochemical and physical treatments applied to hair significantly change the values of the apparent diffusion coefficients in the cuticle. The data also proved that the penetration of Rhodamine B into hair occurs via an intercellular path.

  4. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics. (United States)

    Farzam, Parisa; Johansson, Johannes; Mireles, Miguel; Jiménez-Valerio, Gabriela; Martínez-Lozano, Mar; Choe, Regine; Casanovas, Oriol; Durduran, Turgut


    The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.

  5. Seismic damage identification for steel structures using distributed fiber optics. (United States)

    Hou, Shuang; Cai, C S; Ou, Jinping


    A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.

  6. Quantification of joint inflammation in rheumatoid arthritis by time-resolved diffuse optical spectroscopy and tracer kinetic modeling (United States)

    Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou


    Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.

  7. Structural differences in interictal migraine attack after epilepsy: A diffusion tensor imaging analysis. (United States)

    Huang, Qi; Lv, Xin; He, Yushuang; Wei, Xing; Ma, Meigang; Liao, Yuhan; Qin, Chao; Wu, Yuan


    Patients with epilepsy (PWE) are more likely to suffer from migraine attack, and aberrant white matter (WM) organization may be the mechanism underlying this phenomenon. This study aimed to use diffusion tensor imaging (DTI) technique to quantify WM structural differences in PWE with interictal migraine. Diffusion tensor imaging data were acquired in 13 PWE with migraine and 12 PWE without migraine. Diffusion metrics were analyzed using tract-atlas-based spatial statistics analysis. Atlas-based and tract-based spatial statistical analyses were conducted for robustness analysis. Correlation was explored between altered DTI metrics and clinical parameters. The main results are as follows: (i) Axonal damage plays a key role in PWE with interictal migraine. (ii) Significant diffusing alterations included higher fractional anisotropy (FA) in the fornix, higher mean diffusivity (MD) in the middle cerebellar peduncle (CP), left superior CP, and right uncinate fasciculus, and higher axial diffusivity (AD) in the middle CP and right medial lemniscus. (iii) Diffusion tensor imaging metrics has the tendency of correlation with seizure/migraine type and duration. Results indicate that characteristic structural impairments exist in PWE with interictal migraine. Epilepsy may contribute to migraine by altering WMs in the brain stem. White matter tracts in the fornix and right uncinate fasciculus also mediate migraine after epilepsy. This finding may improve our understanding of the pathological mechanisms underlying migraine attack after epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. (United States)

    Eskandari, Ramin; Abdullah, Osama; Mason, Cameron; Lloyd, Kelley E; Oeschle, Amanda N; McAllister, James P


    The differential vulnerability of white matter (WM) to acute and chronic infantile hydrocephalus and the related effects of early and late reservoir treatment are unknown, but diffusion tensor imaging (DTI) could provide this information. Thus, we characterized WM integrity using DTI in a clinically relevant model. Obstructive hydrocephalus was induced in 2-week-old felines by intracisternal kaolin injection. Ventricular reservoirs were placed 1 (early) or 2 (late) weeks post-kaolin and tapped frequently based solely on neurological deficit. Hydrocephalic and age-matched control animals were sacrificed 12 weeks postreservoir. WM integrity was evaluated in the optic system, corpus callosum, and internal capsule prereservoir and every 3 weeks using DTI. Analyses were grouped as acute (<6 weeks) or chronic (≥6 weeks). In the corpus callosum during acute stages, fractional anisotropy (FA) decreased significantly with early and late reservoir placement (p = 0.0008 and 0.0008, respectively), and diffusivity increased significantly in early (axial, radial, and mean diffusivity, p = 0.0026, 0.0012, and 0.0002, respectively) and late (radial and mean diffusivity, p = 0.01 and 0.0038, respectively) groups. Chronically, the corpus callosum was thinned and not detectable by DTI. FA was significantly lower in the optic chiasm and tracts (p = 0.0496 and 0.0052, respectively) with late but not early reservoir placement. In the internal capsule, FA in both reservoir groups increased significantly with age (p < 0.05) but diffusivity remained unchanged. All hydrocephalic animals treated with intermittent ventricular reservoir tapping demonstrated progressive ventriculomegaly. Both reservoir groups demonstrated WM integrity loss, with the CC the most vulnerable and the optic system the most resilient.

  9. Effect of copper doping on structural, optical and electrical properties ...

    Indian Academy of Sciences (India)

    SEM pictures have revealed the presence of defects with spherical structure having fibre net- work. The variation of electrical conductivity is explained based on the defects present and by adopting tunneling mechanism. Keywords. Ternary semiconductor compounds; CBD method; structural properties; optical and electrical ...

  10. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium. (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U


    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dimensionality reduction in nonlinear optical datasets via diffusion mapping: case study of short-pulse second harmonic generation (United States)

    Romanov, Dmitri; Smith, Stanley; Brady, John; Levis, Robert J.


    We have studied the application of the diffusion mapping technique to dimensionality reduction and clustering in multidimensional optical datasets. The combinational (input-output) data were obtained by sampling search spaces related to optimization of a nonlinear physical process, short-pulse second harmonic generation. The diffusion mapping technique hierarchically reduces the dimensionality of the data set and unifies the statistics of input (the pulse shape) and output (the integral output intensity) parameters. The information content of the emerging clustered pattern can be optimized by modifying the parameters of the mapping procedure. The low-dimensional pattern captures essential features of the nonlinear process, based on a finite sampling set. In particular, the apparently parabolic two-dimensional projection of this pattern exhibits regular evolution with the increase of higher-intensity data in the sampling set. The basic shape of the pattern and the evolution are relatively insensitive to the size of the sampling set, as well as to the details of the mapping procedure. Moreover, the experimental data sets and the sets produced numerically on the basis of a theoretical model are mapped into patterns of remarkable similarity (as quantified by the similarity of the related quadratic-form coefficients). The diffusion mapping method is robust and capable of predicting higher-intensity points from a set of low-intensity points. With these attractive features, diffusion mapping stands poised to become a helpful statistical tool for preprocessing analysis of vast and multidimensional combinational optical datasets.

  12. Shape-based reconstruction for transrectal diffuse optical tomography monitoring of photothermal focal therapy of prostate cancer: simulation studies (United States)

    Weersink, Robert A.; Chaudhary, Sahil; Mayo, Kenwrick; He, Jie; Wilson, Brian C.


    We develop and demonstrate a simple shape-based approach for diffuse optical tomographic reconstruction of coagulative lesions generated during interstitial photothermal therapy (PTT) of the prostate. The shape-based reconstruction assumes a simple ellipsoid shape, matching the general dimensions of a cylindrical diffusing fiber used for light delivery in current clinical studies of PTT in focal prostate cancer. The specific requirement is to accurately define the border between the photothermal lesion and native tissue as the photothermal lesion grows, with an accuracy of ≤1 mm, so treatment can be terminated before there is damage to the rectal wall. To demonstrate the feasibility of the shape-based diffuse optical tomography reconstruction, simulated data were generated based on forward calculations in known geometries that include the prostate, rectum, and lesions of varying dimensions. The only source of optical contrast between the lesion and prostate was increased scattering in the lesion, as is typically observed with coagulation. With noise added to these forward calculations, lesion dimensions were reconstructed using the shape-based method. This approach for reconstruction is shown to be feasible and sufficiently accurate for lesions that are within 4 mm from the rectal wall. The method was also robust for irregularly shaped lesions.

  13. Experimental investigation of a double-diffused MOS structure (United States)

    Lin, H. C.; Halsor, J. L.


    Self-aligned polysilicon gate technology was applied to double-diffused MOS (DMOS) construction in a manner that retains processing simplicity and effectively eliminates parasitic overlap capacitance because of the self-aligning feature. Depletion mode load devices with the same dimensions as the DMOS transistors were integrated. The ratioless feature results in smaller dimension load devices, allowing for higher density integration with no increase in the processing complexity of standard MOS technology. A number of inverters connected as ring oscillators were used as a vehicle to test the performance and to verify the anticipated benefits. The propagation time-power dissipation product and process related parameters were measured and evaluated. This report includes (1) details of the process; (2) test data and design details for the DMOS transistor, the load device, the inverter, the ring oscillator, and a shift register with a novel tapered geometry for the output stages; and (3) an analytical treatment of the effect of the distributed silicon gate resistance and capacitance on the speed of DMOS transistors.

  14. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system. (United States)

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari


    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales.

  15. High Fidelity Additive Manufacturing of Optically Transparent Glass Structures (United States)

    Inamura, Chikara

    Glass has been an integral part of human civilization with expressions across scales and disciplines: from the microscope to the telescope, from fiber optics to mobile interface, and from the petri dish to a building envelope. Such a diverse range of applications is enabled by the inherent material properties including mechanical strength, optical transparency and chemical inertness. Additive manufacturing provides opportunities for integrating the unique properties of glass to engineer novel structures that are functionary graded through precise spatiotemporal deposition of molten glass. This talk presents the Mediated Matter Group's latest development of a novel additive manufacturing platform, and related processes, for 3D Printing optically transparent glass for architectural scale applications.

  16. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb


    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  17. Optical properties of 3D macroporous silicon structures

    International Nuclear Information System (INIS)

    Garin, M.; Trifonov, T.; Rodriguez, A.; Marsal, L.F.; Alcubilla, R.


    We study the optical properties of three-dimensional (3D) microstructures fabricated by electrochemical etching of macroporous silicon with modulated pore diameter. Optical measurements along the pore axis reveal photonic band gaps which are also confirmed by calculations of photonic band dispersion. We investigate numerically and experimentally the evolution of these gaps as a function of pore diameter modulation. In addition, a subsequent anisotropic etching of macroporous silicon in alkaline solutions allows to achieve pores with new shapes of modulation. We compare the optical characteristics of 3D macroporous structures with and without such anisotropic treatment

  18. Recent Developments in Micro-Structured Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Yanping Xu


    Full Text Available Recent developments in fiber-optic sensing have involved booming research in the design and manufacturing of novel micro-structured optical fiber devices. From the conventional tapered fiber architectures to the novel micro-machined devices by advanced laser systems, thousands of micro-structured fiber-optic sensors have been proposed and fabricated for applications in measuring temperature, strain, refractive index (RI, electric current, displacement, bending, acceleration, force, rotation, acoustic, and magnetic field. The renowned and unparalleled merits of sensors-based micro-machined optical fibers including small footprint, light weight, immunity to electromagnetic interferences, durability to harsh environment, capability of remote control, and flexibility of directly embedding into the structured system have placed them in highly demand for practical use in diverse industries. With the rapid advancement in micro-technology, micro-structured fiber sensors have benefitted from the trends of possessing high performance, versatilities and spatial miniaturization. Here, we comprehensively review the recent progress in the micro-structured fiber-optic sensors with a variety of architectures regarding their fabrications, waveguide properties and sensing applications.

  19. Toward noninvasive detection and monitoring of malaria with broadband diffuse optical spectroscopy (United States)

    Campbell, Chris; Tromberg, Bruce J.; O'Sullivan, Thomas D.


    Despite numerous advances, malaria continues to kill nearly half a million people globally every year. New analytical methods and diagnostics are critical to understanding how treatments under development affect the lifecycle of malaria parasites. A biomarker that has been gaining interest is the "malaria pigment" hemozoin. This byproduct of hemoglobin digestion by the parasite has a unique spectral signature but is difficult to differentiate from hemoglobin and other tissue chromophores. Hemozoin can be detected in blood samples, but only utilizing approaches that require specialized training and facilities. Diffuse optical spectroscopy (DOS) is a noninvasive sensing technique that is sensitive to near-infrared absorption and scattering and capable of probing centimeter-deep volumes of tissue in vivo. DOS is relatively low-cost, does not require specialized training and thus potentially suitable for use in low-resource settings. In this work, we assess the potential of DOS to detect and quantify the presence of hemozoin noninvasively and at physiologically relevant levels. We suspended synthetic hemozoin in Intralipid-based tissue-simulating phantoms in order to mimic malaria infection in multiply-scattering tissue. Using a fiber probe that combines frequency-domain and continuous-wave broadband DOS (650-1000 nm), we detected hemozoin concentrations below 250 ng/ml, which corresponds to parasitemia sensitivities comparable to modern rapid diagnostic tests. We used the experimental variability to simulate and estimate the sensitivity of DOS to hemozoin in tissue that includes hemoglobin, water, and lipid under various tissue oxygen saturation levels. The results indicate that with increased precision, it may be possible to detect Hz noninvasively with DOS.

  20. Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology. (United States)

    Lemaillet, Paul; Bouchard, Jean-Pierre; Allen, David W


    The development of a national reference instrument dedicated to the measurement of the scattering and absorption properties of solid tissue-mimicking phantoms used as reference standards is presented. The optical properties of the phantoms are measured with a double-integrating sphere setup in the steady-state domain, coupled with an inversion routine of the adding-doubling procedure that allows for the computation of the uncertainty budget for the measurements. The results are compared to the phantom manufacturer's values obtained by a time-resolved approach. The results suggest that the agreement between these two independent methods is within the estimated uncertainties. This new reference instrument will provide optical biomedical research laboratories with reference values for absolute diffuse optical properties of phantom materials.

  1. Fine structure at the diffusion welded interface of Fe3Al/Q235 ...

    Indian Academy of Sciences (India)


    DO3 type body centred cubic (bcc) structure to α-Fe (Al) solid solution with B2 type bcc structure. ... the diffusion of alloy elements causes the transitional zone ... Table 1. Chemical composition and thermophysical properties of Fe3Al intermetallic compound. Chemical composition (wt%). Fe. Al. Cr. Nb. Zr. Mn. B. Ce. 81⋅02.

  2. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation. (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing


    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  3. Gradient-Based Quantitative Image Reconstruction in Ultrasound-Modulated Optical Tomography: First Harmonic Measurement Type in a Linearised Diffusion Formulation. (United States)

    Powell, Samuel; Arridge, Simon R; Leung, Terence S


    Ultrasound-modulated optical tomography is an emerging biomedical imaging modality which uses the spatially localised acoustically-driven modulation of coherent light as a probe of the structure and optical properties of biological tissues. In this work we begin by providing an overview of forward modelling methods, before deriving a linearised diffusion-style model which calculates the first-harmonic modulated flux measured on the boundary of a given domain. We derive and examine the correlation measurement density functions of the model which describe the sensitivity of the modality to perturbations in the optical parameters of interest. Finally, we employ said functions in the development of an adjoint-assisted gradient based image reconstruction method, which ameliorates the computational burden and memory requirements of a traditional Newton-based optimisation approach. We validate our work by performing reconstructions of optical absorption and scattering in two- and three-dimensions using simulated measurements with 1% proportional Gaussian noise, and demonstrate the successful recovery of the parameters to within ±5% of their true values when the resolution of the ultrasound raster probing the domain is sufficient to delineate perturbing inclusions.

  4. Optical manipulation of microparticles and biological structures (United States)

    Gahagan, Kevin Thomas


    We report experimental and theoretical investigations of the trapping of microparticles and biological objects using radiation pressure. Part I of this thesis presents a technique for trapping both low and high index microparticles using a single, stationary focused laser beam containing an optical vortex. Advantages of this vortex trap include the ease of implementation, a lower exposure level for high-index particles compared to a standard Gaussian beam trap, and the ability to isolate individual low-index particles in concentrated dispersions. The vortex trap is modeled using ray-tracing methods and a more precise electromagnetic model, which is accurate for particles less than 10 μm in diameter. We have measured the stable equilibrium position for two low-index particle systems (e.g., hollow glass spheres (HGS) in water, and water droplets in acetophenone (W/A)). The strength of the trap was measured for the HGS system along the longitudinal and transverse directions. We also demonstrate simultaneous trapping of a low and high index particle with a vortex beam. The stability of this dual-particle trap is found to depend on the relative particle size, the divergence angle of the beam, and the depth of the particles within the trapping chamber. Part II presents results from an interdisciplinary and collaborative investigation of an all-optical genetic engineering technique whereby Agrobacterium rhizogenes were inserted through a laser-ablated hole in the cell wall of the plant, Gingko biloba. We describe a protocol which includes the control of osmotic conditions, culturing procedures, viability assays and laser microsurgery. We succeeded in placing up to twelve viable bacteria into a single plant cell using this technique. The bacteria are believed to be slightly heated by the Gaussian beam trap. A numerical model is presented predicting a temperature rise of just a few degrees. Whereas G. biloba and A. rhitogenes were chosen for this study because of Ginkgo

  5. Investigation of optical properties of Ag: PMMA nanocomposite structures (United States)

    Ponelyte, S.; Palevicius, A.; Guobiene, A.; Puiso, J.; Prosycevas, I.


    In the recent years fundamental research involving the nanodimensional materials has received enormous momentum for observing and understanding new types of plasmonic materials and their physical phenomena occurring in the nanoscale. Mechanical and optical properties of these polymer based nanocomposite structures depend not only on type, dimensions and concentration of filler material, but also on a kind of polymer matrix used. By proper selection of polymer matrix and nanofillers, it is possible to engineer nanocomposite materials with certain favorable properties. One of the most striking features of nanocomposite materials is that they can expose unique optical properties that are not intrinsic to natural materials. In these researches, nanocomposite structures were formed using polymer (PMMA) as a matrix, and silver nanoparticles as fillers. By hot embossing procedure a diffraction grating was imprinted on formed layers. The effect of UV exposure time on nanocomposite structures morphology, optical (diffraction effectiveness, absorbance) and mechanical properties was investigated. Results were confirmed by UV-VIS spectrometer, Laser Diffractometer, PMT- 3 and AFM. Investigations proposed new nanocomposite structures as plasmonic materials with improved optical and mechanical properties, which may be applied for a number of technological applications: micro-electro-mechanical devices, optical devices, various plasmonic sensors, or even in DNA nanotechnology.

  6. Cross-Diffusion Systems with Excluded-Volume Effects and Asymptotic Gradient Flow Structures (United States)

    Bruna, Maria; Burger, Martin; Ranetbauer, Helene; Wolfram, Marie-Therese


    In this paper, we discuss the analysis of a cross-diffusion PDE system for a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys 137:204116-1-204116-16, 2012a) from a stochastic system of interacting Brownian particles using the method of matched asymptotic expansions. The resulting cross-diffusion system is valid in the limit of small volume fraction of particles. While the system has a gradient flow structure in the symmetric case of all particles having the same size and diffusivity, this is not valid in general. We discuss local stability and global existence for the symmetric case using the gradient flow structure and entropy variable techniques. For the general case, we introduce the concept of an asymptotic gradient flow structure and show how it can be used to study the behavior close to equilibrium. Finally, we illustrate the behavior of the model with various numerical simulations.

  7. Structural disorder and anomalous water diffusion in random packing of spheres (United States)

    Gabrielli, Andrea; Capuani, Silvia; Palombo, Marco; Servedio, Vito D. P.; Ruocco, Giancarlo


    Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this method is not able to describe structural disorder and transitions in complex systems. In this talk we show that, according to the continuous time random walk framework, the dNMR measurable parameter α, quantifying the anomalous regime of D(t) , provides a quantitative characterization of structural disorder and structural transition in heterogeneous systems. This is demonstrated by comparing α measurements obtained in random packed monodisperse micro-spheres with Molecular Dynamics simulations of disordered porous media and 3D Monte Carlo simulation of particles diffusion in these kind of systems. Experimental results agree well with simulations that correlate the most used parameters and functions characterizing the disorder in porous media.

  8. Recent Twists of the Wage Structure and Technology Diffusion


    James D Adams


    This paper is an empirical study of the impact on U.S. wage structure of domestic technology, foreign technology, and import penetration. A model is presented which combines factor proportions theory with a version of growth theory. The model, which assumes two levels of skill, suggests that domestic technology raises both wages, while foreign technology, on a simple interpretation, lowers both. Trade at a constant technology, as usual, lowers the wage of that class of labor used intensively ...

  9. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale. (United States)

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong


    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lateral diffusion of the topological charge density in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS


    Full Text Available Stochastic (i.e. random and quasi-random) optical fields may contain distributions of optical vortices that are represented by non-uniform topological charge densities. Numerical simulations are used to investigate the evolution under free...

  11. Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Amir, E-mail: [Center for Emerging Sciences, Engineering & Technology (CESET), Islamabad (Pakistan); Ahmed, S. [Center for Emerging Sciences, Engineering & Technology (CESET), Islamabad (Pakistan); Advanced Electronics Laboratory, International Islamic University, Islamabad (Pakistan); Shah, N.A.; Anis-ur-Rehman, M. [COMSATS, Institute of Information Technology, Islamabad (Pakistan); Khan, E.U. [Center for Emerging Sciences, Engineering & Technology (CESET), Islamabad (Pakistan); Basit, M. [Centre for Solid State Physics, Punjab University (Pakistan)


    The critical role of cobalt dopant in ZnO nanostructures with different cobalt concentrations has been explored on the basis of structural, optical and dielectric mechanisms. X-ray diffraction (XRD) analysis shows that the Co{sup +2} ions replace Zn{sup +2} ions in the ZnO matrix, producing lattice strain. Diffused Reflectance Spectroscopy (DRS) shows a red shift in optical energy band gap with increase in cobalt content, along with the presence of transitions in high spin states due to tetrahedrally coordinated cobalt ions. The dielectric characterization explains the disparity in dynamic dielectric parameters like capacitance, dielectric constant, tangent loss, AC conductivity and impedance as a function of frequency. Capacitance and both static and dynamic dielectric constants found to be decreasing with cobalt addition. The anomaly in these pronounced parameters can address the key problems of the material at higher frequencies device operation.

  12. Low temperature Zn diffusion for GaSb solar cell structures fabrication (United States)

    Sulima, Oleg V.; Faleev, Nikolai N.; Kazantsev, Andrej B.; Mintairov, Alexander M.; Namazov, Ali


    Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.

  13. Uncovering the community structure associated with the diffusion dynamics on networks

    International Nuclear Information System (INIS)

    Cheng, Xue-Qi; Shen, Hua-Wei


    As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network

  14. Vertical excitation profile in diffusion injected multi-quantum well light emitting diode structure (United States)

    Riuttanen, L.; Kivisaari, P.; Svensk, O.; Vasara, T.; Myllys, P.; Oksanen, J.; Suihkonen, S.


    Due to their potential to improve the performance of light-emitting diodes (LEDs), novel device structures based on nanowires, surface plasmons, and large-area high-power devices have received increasing amount of interest. These structures are almost exclusively based on the double hetero junction (DHJ) structure, that has remained essentially unchanged for decades. In this work we study a III-nitride diffusion injected light-emitting diode (DILED), in which the active region is located outside the pn-junction and the excitation of the active region is based on bipolar diffusion of charge carriers. This unorthodox approach removes the need of placing the active region in the conventional current path and thus enabling carrier injection in device structures, which would be challenging to realize with the conventional DHJ design. The structure studied in this work is has 3 indium gallium nitride / gallium nitride (InGaN/GaN) quantum wells (QWs) under a GaN pn-junction. The QWs are grown at diferent growth temperatures for obtaining distinctive luminescence peaks. This allows to obtain knowledge on the carrier diffusion in the structure. When the device is biased, all QWs emit light indicating a significant diffusion current into the QW stack.

  15. Structural, optical, photoluminescence, dielectric and electrical ...

    Indian Academy of Sciences (India)

    well structures (Morales-Acevedo 2006; Robin et al 2009). A number of .... parameter m takes the values of 2 and 1/2 for the direct allowed ... fferent substrates the direct transitions are valid. The plots. (αhν)2 vs hν for the polycrystalline CdTe thin films on glass and quartz substrates are shown in figure 5. The values of.

  16. Band structure and optical properties of diglycine nitrate crystal

    International Nuclear Information System (INIS)

    Andriyevsky, Bohdan; Ciepluch-Trojanek, Wioleta; Romanyuk, Mykola; Patryn, Aleksy; Jaskolski, Marcin


    Experimental and theoretical investigations of the electron energy characteristics and optical spectra for diglycine nitrate crystal (DGN) (NH 2 CH 2 COOH) 2 .HNO 3 , in the paraelectric phase (T=295K) are presented. Spectral dispersion of light reflection R(E) have been measured in the range of 3-22eV and the optical functions n(E) and k(E) have been calculated using Kramers-Kronig relations. First principal calculations of the electron energy characteristic and optical spectra of DGN crystal have been performed in the frame of density functional theory using CASTEP code (CAmbridge Serial Total Energy Package). Optical transitions forming the low-energy edge of fundamental absorption are associated with the nitrate groups NO 3 . Peculiarities of the band structure and DOS projected onto glycine and NO 3 groups confirm the molecular character of DGN crystal

  17. Optical fingerprint recognition based on local minutiae structure coding. (United States)

    Yi, Yao; Cao, Liangcai; Guo, Wei; Luo, Yaping; Feng, Jianjiang; He, Qingsheng; Jin, Guofan


    A parallel volume holographic optical fingerprint recognition system robust to fingerprint translation, rotation and nonlinear distortion is proposed. The optical fingerprint recognition measures the similarity by using the optical filters of multiplexed holograms recorded in the holographic media. A fingerprint is encoded into multiple template data pages based on the local minutiae structure coding method after it is adapted for the optical data channel. An improved filter recording time schedule and a post-filtering calibration technology are combined to suppress the calculating error from the large variations in data page filling ratio. Experimental results tested on FVC2002 DB1 and a forensic database comprising 270,216 fingerprints demonstrate the robustness and feasibility of the system.

  18. Structured interference force for enhanced optical trapping (Presentation Recording) (United States)

    Taylor, Michael A.; Waleed, Muhammad; Stilgoe, Alexander B.; Rubinsztein-Dunlop, Halina; Bowen, Warwick P.


    Interferometry can completely redirect light, providing the potential for exceptionally strong and controllable optical forces. When a beamsplitter combines two fields, the output power is directed via the relative phase between the incident fields. Since the phase changes with beamsplitter displacement, the interference force can be used to stably trap; with displacements as small as (λ/4n) able to completely redirect the light. The resulting change in optical momentum causes an opposing optical force. However, optical forces are most useful for trapping and manipulating small scattering particles. Optical scattering is not generally thought to allow efficient interference; essentially, it appears that small particles cannot act as beamsplitters. As such, optical traps have relied upon much weaker deflection-based forces. Here we show that efficient interference can be achieved by appropriately structuring the incident light. This relies on Mie scattering fringes to combine light which is incident from different incident angles. This results in a force, which we call the structured interference force, which offers order-of-magnitude higher trap stiffness over the usual Gaussian trap. We demonstrate structured interference force trapping (SIFT) of 10μm diameter silica spheres with a stiffness 20.1 times higher than is possible using Gaussian traps, while also increasing the measurement signal-to-noise ratio by two orders of magnitude. This is demonstrated using only phase control of the incident light, making the technique directly compatible with most existing holographic optical traps. These results are highly relevant to many applications, including cellular manipulation, fluid dynamics, micro-robotics, and tests of fundamental physics.

  19. Structural brain alterations in hemifacial spasm: A voxel-based morphometry and diffusion tensor imaging study. (United States)

    Tu, Ye; Yu, Tian; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei


    Hemifacial spasm (HFS) is characterized by involuntary, irregular clonic or tonic movement of muscles innervated by the facial nerve. We evaluated structural reorganization in brain gray matter and white matter and whether neuroplasticity is linked to clinical features in HFS patients. High-resolution structural magnetic resonance imaging and diffusion tensor imaging data were acquired by 3.0 T MRI from 42 patients with HFS and 30 healthy subjects. The severity of the spasm was assessed according to Jankovic disability rating scale. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis were performed to identify regional grey matter volume (GMV) changes and whole-brain microstructural integrity disruption measured by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). The VBM analysis showed that patients with HFS reduced GMV in the right inferior parietal lobule and increased GMV in the cerebellar lobule VIII, when compared with healthy subjects. Furthermore, within the HFS disease group, GMV decreased with the disease duration in the right inferior parietal lobule. TBSS did not identify group differences in diffusivity parameters. While no white matter integrity disruption was detected in the brain of patients with HFS, our study identified evident GMV changes in brain areas which were known to be involved in motor control. Our results suggest that HFS, a chronic neurovascular conflict disease, is related to structural reorganization in the brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Multi-spectral and fluorescence diffuse optical tomography of breast cancer (United States)

    Corlu, Alper

    Multi-spectral and fluorescence diffuse optical tomography (DOT) techniques are explored and applied to image human breast cancer in vivo. Image reconstruction algorithms that utilize first and second order gradient information are described in detail. Breast DOT requires large computational memory and long run times. To this end, parallel computation techniques were developed appropriate to each reconstruction algorithm. A parallel plate DOT instrument developed for breast cancer imaging is described. The system relies heavily on continuous-wave (CW) transmission measurements and utilizes frequency domain (FD) measurements on the reemission side. However, traditional DOT image reconstruction methods based on CW measurements fail to separate tissue absorption and scattering uniquely. In this manuscript, multi-spectral DOT is shown to be capable of minimizing cross-talk and retrieving spectral parameters almost uniquely when the measurement wavelengths are optimized. A theoretical framework to select optimum wavelengths is provided, and tested with computer simulations. Results from phantom spectroscopy experiments and in vivo patient measurements support the notion that multi-spectral methods are superior to traditional DOT image reconstruction schemes. The same breast DOT instrument is improved and utilized to obtain the first in vivo images of human breast cancer based on fluorescence DOT (FDOT). To this end the fluorophore Indocyanine Green (ICG) is injected intravenously and fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Careful phantom and in vivo measurements are carried on to assure that the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. An in vivo measurement protocol is designed to maximize the ICG contrast by acquiring full fluorescence tomographic scan during

  1. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy (United States)

    Little, Douglas J.; Kane, Deb M.


    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  2. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    Directory of Open Access Journals (Sweden)

    Little Douglas J.


    Full Text Available The transverse optical structure of two orb-weaver (family Araneidae spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This “excess contrast” indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1−4×10−4 and 6–7×10−4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively. The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  3. Optical properties of semiconductors quantum microcavity structures

    International Nuclear Information System (INIS)

    Afshar, A.M.


    The principal phenomenon investigated in this thesis is vacuum Rabi coupling in semiconductor microcavity structures. In these structures quantum well excitons are embedded in a Fabry - Perot like cavity, defined by two semiconductor dielectric mirrors. In such a system the coupled exciton and cavity photon mode form a mixed - mode polariton, where on - resonance there are two branches, each having 50% exciton and 50% photon character. The separation between the upper and lower branches is a measure of the coupling strength where the strength is dependent on the exciton oscillator strength. This interaction is known as vacuum Rabi coupling, and clear anticrossing is seen when the exciton is tuned through the cavity. In our reflectivity experiments we demonstrate control of the coupling between the cavity mode and the exciton by varying temperature, applied electric or magnetic field. Modelling of the reflectivity spectra and the tuning was done using a Transfer Matrix Reflectivity (TMR) model or a linear dispersion model, where in both cases the excitons are treated as Lorentz oscillators. Temperature tuning is achieved because exciton energy decreases with temperature at a much faster rate than the cavity mode. We have demonstrated vacuum Rabi coupling of the cavity mode with both the heavy - hole and light - hole excitons. Electric field tuning is achieved via the quantum confined Stark effect which decreases the exciton energy with increasing field, whilst at the same time the cavity mode energy remains constant. A study of how the electric field reduction of exciton oscillator strength reduces the vacuum Rabi coupling strength is performed. We report the first observation in a semiconductor structure of motional narrowing, seen in both electric field and in temperature tuning experiments at high magnetic field. In magnetic field studies we show how magnetic field induced increase in exciton oscillator strength affects the vacuum Rabi coupling. We also show by

  4. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung


    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  5. Effect of annealing on structural and optical properties of diamond-like nanocomposite thin films (United States)

    Jana, Sukhendu; Das, Sayan; De, Debasish; Gangopadhyay, Utpal; Ghosh, Prajit; Mondal, Anup


    The annealing effect on structural and optical properties of the Diamond-like Nanocomposite (DLN) thin film deposited on glass substrate by Plasma Assisted Chemical Vapor Deposition (PACVD) method has been investigated. The films were annealed at temperature ranging from 300 to 600 °C, with 100 °C interval for 9 minutes by rapid thermal process (RTP) under vacuum. The structural changes of the annealed films have been studied using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning Electron Microscope (SEM), and optical parameters have been determined using transmittance and reflectance spectra in UV-UIS-NIR range. The result shows that the refractive index increases gradually from 1.79 to 2.84 with annealing temperature due to out-diffusion of H by breaking Si-H and C-H bond leads to Si-C bond, i.e. more cross linking structure. In higher temperature range, graphitization also enhanced the refractive index. However, the optical band gap at up to 400 °C initially increases from 3.05 to 3.20 eV and then decreases due to graphitization. The film has a great potential to be used as anti-reflection coating (ARC) on silicon-based solar cell.

  6. Structure and optical properties of cubic gallium oxynitride synthesized by solvothermal route

    International Nuclear Information System (INIS)

    Oberländer, Andreas; Kinski, Isabel; Zhu, Wenliang; Pezzotti, Giuseppe; Michaelis, Alexander


    Cubic gallium oxynitride was synthesized using a solvothermal processing route. Crystal structure, chemical composition, optical properties and the influence of heat treatment in either reactive or inert atmospheres have been investigated. Despite a strongly distorted lattice revealed using X-ray diffraction, the Raman active modes of a cubic gallium oxynitride structure could be observed. With diffusive reflectance UV–Vis spectroscopy a band gap at around 4.8 eV has been observed. Additionally, cathodoluminescence spectroscopy exhibited observable luminescence caused by defect-related transitions within the optical gap. Cathodoluminescence and photoluminescence spectra collected after heat treatments showed significant changes in the defect structure. In particular, for annealing in ammonia the main spectral modifications were related to the substitution of oxygen by nitrogen on anion sites. - Graphical abstract: CL spectra of gallium oxynitride: As-prepared and heat-treated at temperatures of 500 °C in different atmospheres. Highlights: ► Raman spectrum of cubic gallium oxynitride. ► Experimental determination of optical band gap. ► Shift of band gap energy due to heat treatment. ► Nitrogen incorporation leads to deep level acceptor states. ► Red shifted luminescence spectrum

  7. Health monitoring of civil structures using fiber optic sensors

    International Nuclear Information System (INIS)

    Varma, Veto; Kumar, Praveen; Charan, J.J.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.


    During the lifetime of the reactor, the civil structure is subjected to many operational and environmental loads. Hence it is increasingly important to monitor the conditions of the structure and insure its safety and integrity. The conventional gauges have proved to be not sufficiently catering the problem of long term health monitoring of the structure because of its many limitations. Hence it is mandatory to develop a technique for the above purpose. Present study deals with the application of Fiber optic sensors (EFPI strain Gauges) in the civil structure for its health monitoring. Various experiments were undertaken and suitability of sensors was checked. A technique to embed the optical sensor inside the concrete is successfully developed and tested. (author)

  8. Antireflective "moth-eye" structures on tunable optical silicone membranes. (United States)

    Brunner, Robert; Keil, Bettina; Morhard, Christoph; Lehr, Dennis; Draheim, Jan; Wallrabe, Ulrike; Spatz, Joachim


    Flexible silicone membranes are key components for tunable optical lenses. The elastic operation of the membranes impedes the use of classical layer systems for an antireflective (AR) effect. To overcome this limitation, we equipped optical elastomer membranes with "moth-eye" structures directly in the flexible silicone substrate. The manufacturing of the AR structures in the flexible membrane includes a mastering process based on block copolymer micelle nanolithography followed by a replication method. We investigate the performance of the resulting AR structures under strain of up to 20% membrane expansion. A significant transmittance enhancement of up to 2.5% is achieved over the entire visible spectrum, which means that more than half of the surface reflection losses are compensated by the AR structures.

  9. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    International Nuclear Information System (INIS)

    Gutierrez Fuentes, R.; Pescador Rojas, J.A.; Jimenez-Perez, J.L.; Sanchez Ramirez, J.F.; Cruz-Orea, A.; Mendoza-Alvarez, J.G.


    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles

  10. Structural, morphological, optical and opto-thermal properties of Ni ...

    Indian Academy of Sciences (India)

    The effect of Ni concentration on the structural, morphological, optical and pho- ... catalytic [3], solar cells [4], gas sensors [5] and transparent ..... larger wavelength. This phenomenon indicates that the opti- cal energy gap decreases with doping concentration. It is well. Figure 4. Transmission spectra of sprayed ZnO : Ni thin ...

  11. Structural, optical and electrical properties of chemically deposited ...

    Indian Academy of Sciences (India)


    Stoichiometric and nonstoichiometric thin films of copper selenide have been prepared by chemical bath deposition technique at temperature below 60°C on glass substrate. The effect of nonstoichiometry on the optical, electrical and structural properties of the film was studied. The bandgap energy was observed to in-.

  12. Effect of transition metal elements on the structural and optical ...

    Indian Academy of Sciences (India)

    Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. I KAZEMINEZHAD1, S SAADATMAND1 and RAMIN YOUSEFI2,∗. 1Nanotechnology Laboratory, Physics Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran. 2Department of Physics, Islamic Azad University (IAU), ...

  13. Optical spectroscopy by Hantaro Nagaoka Pioneer nuclear structure study (United States)

    Inamura, Takashi T.


    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  14. Optical spectroscopy by Hantaro Nagaoka - Pioneer nuclear structure study

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Takashi T. [Warsaw University, Heavy Ion Laboratory (Poland)], E-mail:


    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  15. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)



    Nov 28, 2017 ... Abstract. First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X = Si, Ge) have been performed within the density functional theory (DFT) using the full- potential linearized augmented plane wave (FP-LAPW) method. The obtained ...

  16. Molecular structures of viruses from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.


    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira...

  17. Structural, optical and morphological studies of undoped and Zn ...

    Indian Academy of Sciences (India)

    Undoped and Zn-doped CdSe quantum dots (QDs) were successfully synthesized by the chemical precipitation method. The structural, optical and morphological properties of the synthesized undoped and Zn-dopedCdSe QDs were studied by X-ray diffraction (XRD), UV–visible absorption spectroscopy, ...

  18. Structural, electrical and optical studies on spray-deposited ...

    Indian Academy of Sciences (India)

    Structural, electrical and optical studies on spray-deposited ZnO. Table 1. Spray parameters for film deposition. Spray parameter. Value. Concentration of zinc acetate solution. 0.1 M. Nozzle–substrate ..... [13] F Paraguay, D M Miki-Yoshida, J Morales, J Solis and W Estrada, Thin Solid Films 373, 137. (2000). [14] B Baruwati ...

  19. Optical and structural behaviors of crosslinked polyvinyl alcohol thin films (United States)

    Pandit, Subhankar; Kundu, Sarathi


    Polyvinyl Alcohol (PVA) has excellent properties like uniaxial tensile stress, chemical resistance, biocompatibility, etc. The properties of PVA further can be tuned by crosslinking process. In this work, a simple heat treatment method is used to find out the optimum crosslinking of PVA and the corresponding structural and optical responses are explored. The PVA crosslinking is done by exposing the films at different temperatures and time intervals. The optical property of pure and heat treated PVA films are investigated by UV-Vis absorption and photoluminescence emission spectroscopy and structural modifications are studied by Fourier Transform Infrared Spectroscopy (FTIR). The absorption peaks of pure PVA are observed at ≈ 280 and 335 nm and the corresponding emission is observed at ≈ 424 nm. The pure PVA showed modified optical behaviors after the heat treatment. In addition, dipping the PVA films in hot water (85°C) for nearly 20 minutes also show impact on both structural and optical properties. From FTIR spectroscopy, the changes in vibrational band positions confirm the structural modifications of PVA films.

  20. Structural, optical and morphological studies of undoped and Zn ...

    Indian Academy of Sciences (India)

    Abstract. Undoped and Zn-doped CdSe quantum dots (QDs) were successfully synthesized by the chemical pre- cipitation method. The structural, optical and morphological properties of the synthesized undoped and Zn-doped. CdSe QDs were studied by X-ray diffraction (XRD), UV–visible absorption spectroscopy, ...

  1. Numerical Study on Infrared Optical Property of Diffuse Coal Particles in Mine Fully Mechanized Working Combined with CFD Method

    Directory of Open Access Journals (Sweden)

    Wen-Zheng Wang


    Full Text Available Coal dust seriously threatens the safety and occupational health of coal mines. Numerical simulation research on the infrared radiation characteristics of diffused coal dust is carried out in fully mechanized working faces based on the optical monitoring problem of dust particles in mine atmospheric environments. The CFD method is applied to obtain the law of dust transport and distribution. Combined with Mie scattering model, the infrared radiation change characteristics and spectral selection of diffused coal dust particles are simulated and analyzed along the working face. The comparison results show the following: the attenuation and scattering characteristics of mine dust particles system are first enhanced, and then they weaken as the distance from dust source increases. The infrared attenuation of mine dust at the center of the vertical cross-section is generally greater than that at the roof and floor in the same location. The dispersion of mine dust directly determines the attenuation contribution of respirable dust to total dust. Moreover, the infrared absorption effect of functional groups in coal causes the infrared attenuation effect of coal dust to have obvious optical selectivity along the roadway, the existing optical “window.”

  2. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system. (United States)

    Chitnis, Danial; Cooper, Robert J; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C; Everdell, Nicholas L


    We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm 2 . Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.

  3. Optical absorption coefficient and minority carrier diffusion length measurements in low-cost silicon solar cell material

    Energy Technology Data Exchange (ETDEWEB)

    Swimm, R.T.; Dumas, K.A.


    The optical absorption coefficient of silicon solar cell material grown by three low-cost growth methods was measured in the wavelength interval 0.8< or =lambda< or =1.0, the wavelength region of interest in surface photovoltage measurements of the minority carrier diffusion length. The square root of the absorption coefficient was found to vary linearly with photon energy over the wavelengths studied, and the measured data agree with a linear empirical fit to within 0.5% RMS. The absorption coefficients obtained are slightly lower than those reported by Runyan, with the greatest disagreement at long wavelengths. Minority carrier diffusion lengths computed using the present absorption coefficients are approximately 16% greater than those calculated using Runyan's data. Excellent sample-to-sample agreement within and between lots indicates that for two of the growth methods studied, material quality as judged by optical properties has not been sacrificed by the use of low-cost growth methods. Samples grown by the third growth method studied showed measurably poorer optical quality.

  4. Nano-Structures for Optics and Photonics: Optical Strategies for Enhancing

    CERN Document Server

    Collins, John; Silvestri, Luciano


    The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume.  The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biolo...

  5. Diffusion behavior of anion in hardened low-heat portland cement paste containing fly ash. Dependence of effective diffusion coefficient on pore structure

    International Nuclear Information System (INIS)

    Chida, Taiji; Yoshida, Takahiro


    In the sub-surface disposal system, the closely packed concrete layer is expected the low diffusivity to retard the migration of radionuclides. Low-heat portland cement containing 30 wt% fly ash (FAC) is a candidate cement material for the construction of sub-surface repository because of its high dense structure and its resistance to cracking. Previously, we reported that FAC has lower diffusivity than Ordinary Portland Cement (OPC) for acetic acid and iodine. However, the mechanism for low diffusivity of FAC was not clear. In this study, the diffusion of multiple trace ions (chlorine, bromine and iodine) in hardened cement pastes was examined by through-diffusion experiments. The effective diffusion coefficients, D e , of the trace ions for hardened OPC cement pastes were on the order of 10 -12 m 2 s -1 for trace ions, and D e for hardened FAC cement pastes were on the order of 10 -13 m 2 s -1 for chlorine, 10 -14 m 2 s -1 for bromine and 10 -15 m 2 s -1 for iodine. Additionally, the pore size distribution and porosity of FAC changed to more closely packed structure for 13 months by the pozzolanic reaction, and the pore size distribution of FAC (mainly 3-10 nm) were an order of magnitude smaller than that of OPC. These results suggest that the low diffusivity of FAC is based on the continuous change in the pore structure and the nano-scale pore size retarding the migration of trace ions. (author)

  6. Changes in structure and phase composition of chromium diffusion layer on stainless steels after long annealing

    International Nuclear Information System (INIS)

    Knyazev, E.V.; Voshedchenko, B.M.; Voskresenskij, Yu.A.


    A study was made on the effect of elevated temperatures UU and long holdings at heat on structure, phase composition and properties of chromium diffusion layer on austenitic chromium-nickel stainless steels 10Kh18N10TVD, 10Kh15N30M4B, 10Kh11N23T3MR, 10Kh21N28V6M3. The following mechanism of processes taking place in diffusion chromium layer is presented. The steady drop of chromium concentrations is observed after diffusion saturation. Chromium redistribution related with system transformation to more equilibrium state and simultaneous decarburization of steel surfaces takes place in diffusion layers of 10Kh15N30M4B and 10Kh21N28V6M3 steels after annealing at different temperatures and holdings at heat. Decarburization of steel surface layers is practically excluded in diffusion layers of 10Kh18N10T-VD and 10Kh11N23T3MR steels. Diffusion chromium-saturated layer stays effective only on 10Kh18N10T-VD and 10Kh11N23T3MR steels on heating up to 1000 deq C with holding up to 250 h

  7. Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: [Department of Applied Physics, Hunan University, Changsha 410082 (China); Chen Shuguang [Department of Applied Physics, Hunan University, Changsha 410082 (China)


    Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {l_brace}111{r_brace} to neighboring {l_brace}111{r_brace} facet. Owing to the small barrier of adatom diffusion across the step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {l_brace}100{r_brace} microfacet and the Pt clusters can have only {l_brace}111{r_brace} facets in epitaxial growth.

  8. Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Špirková, J.; Janáková, S.; Mika, K.; Oswald, Jiří; Macková, Anna


    Roč. 20, č. 1 (2009), s. 510-513 ISSN 0957-4522 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10480505 Keywords : Er, Yb diffusion * silicate glasses * optical waveguides Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.020, year: 2009

  9. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.


    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  10. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)


    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  11. Self-diffusion in the hexagonal structure of Zirconium and Hafnium: computer simulation studies

    Directory of Open Access Journals (Sweden)

    Diego Hernán Ruiz


    Full Text Available Self-diffusion by vacancy mechanism is studied in two metals of hexagonal close packed structure, namely Hafnium and Zirconium. Computer simulation techniques are used together with many-body potentials of the embedded atom type. Defect properties are calculated at 0 K by molecular static while molecular dynamic is used to explore a wide temperature range.

  12. Speckle Reduction and Structure Enhancement by Multichannel Median Boosted Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Yang Zhi


    Full Text Available We propose a new approach to reduce speckle noise and enhance structures in speckle-corrupted images. It utilizes a median-anisotropic diffusion compound scheme. The median-filter-based reaction term acts as a guided energy source to boost the structures in the image being processed. In addition, it regularizes the diffusion equation to ensure the existence and uniqueness of a solution. We also introduce a decimation and back reconstruction scheme to further enhance the processing result. Before the iteration of the diffusion process, the image is decimated and a subpixel shifted image set is formed. This allows a multichannel parallel diffusion iteration, and more importantly, the speckle noise is broken into impulsive or salt-pepper noise, which is easy to remove by median filtering. The advantage of the proposed technique is clear when it is compared to other diffusion algorithms and the well-known adaptive weighted median filtering (AWMF scheme in both simulation and real medical ultrasound images.

  13. Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave (United States)

    Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.


    In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.

  14. Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave. (United States)

    Sánchez-Pérez, C; De León-Hernández, A; García-Cadena, C


    In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.

  15. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang


    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  16. Modeling of the Diffusion Bond for SPF/DB Titanium Hollow Structures

    Directory of Open Access Journals (Sweden)

    Xianghai Chai


    Full Text Available Diffusion-bonded titanium hollow warren structures have been successfully applied in aircraft engine components, such as fan blade, and OGV, while the optimal design of the hollow warren structure to improve its impact resistance, especially under bird-strike event, has been a challenge. In this work, a series of impact tests and numerical simulations are carried out to investigate the effect of key geometric features on the overall impact strength of a panel-shaped titanium hollow warren structure. Based on experimental and numerical studies, a quantitative relationship between diffusion bonding seam strength and the overall impact strength is developed. Meanwhile, key geometric factors affecting the resultant bonding seam strength for a typical manufacturing process are identified. This work provides useful references for the optimal design to increase impact resistance for aircraft engine hollow warren structure components.

  17. Optical and mechanical properties of cellulose nanopaper structures (United States)

    Tsalagkas, Dimitrios; Zhai, Lindong; Kim, Hyun Chan; Kim, Jaehwan


    The objectives of this study are to prepare and investigate the optical and tensile properties of the obtained cellulose nanopaper structures. A ball mill mechanical pretreatment combined with a wet pulverization process by using an aqueous counter collision machine were used to extract CNFs from softwood and hardwood bleached kraft pulps. Cellulose nanofiber (CNF) nanopapers were fabricated via vacuum filtration and oven drying method. The mechanical and optical properties of the fabricated nanopaper were investigated by using tensile test and UV-vis spectrometer. Results have shown that the softwood sample demonstrated better mechanical properties than the hardwood sample. UV-vis transmittance measurements did not indicate significant differences.

  18. Interrelation between structural and ion-diffusion dynamic characteristics of α-AgI

    International Nuclear Information System (INIS)

    Polyakov, V.I.


    Interrelation of structural and dynamic characteristics of α-AgI superionic conductor is discussed in the framework of the theory of reaction absolute rates. Temperature dependences of structural (iodine-silver root-mean-square distance) and dynamic (diffusion coefficient of silver ions, characteristic time) characteristics have been calculated using statistical sums relating to silver ion states involved in retarded-rotational motion. A good agreement between calculated and experimental data is shown

  19. Interpretation of structural data on superionic conductors in terms of the hindered-rotation diffusion model

    International Nuclear Information System (INIS)

    Polyakov, V.I.


    Basic notions of a hindered-rotation diffusion model, which permits refining and supplementing the interpretation of structural and dynamic data obtained when studying superionic conductors, are briefly described. Using the model, dynamic features of β-AgI structure and the compound near order, studied by the EXAFS method, are considered, relative intensities of the Debye peaks in X-ray patterns for superionic conductors AgI and Ag 3 SI being refined [ru

  20. Simulation of the diffusion of implanted impurities in silicon structures at the rapid thermal annealing

    International Nuclear Information System (INIS)

    Komarov, F.F.; Komarov, A.F.; Mironov, A.M.; Makarevich, Yu.V.; Miskevich, S.A.; Zayats, G.M.


    Physical and mathematical models and numerical simulation of the diffusion of implanted impurities during rapid thermal treatment of silicon structures are discussed. The calculation results correspond to the experimental results with a sufficient accuracy. A simulation software system has been developed that is integrated into ATHENA simulation system developed by Silvaco Inc. This program can simulate processes of the low-energy implantation of B, BF 2 , P, As, Sb, C ions into the silicon structures and subsequent rapid thermal annealing. (authors)

  1. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam


    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were imprinted in a thermoplastic polymer by thermal nanoimprint lithography. Optical measurements were performed using spectroscopic ellipsometry in the spectral region of 1.5-4 eV. The geometrical profiles of the imprinted structures were reconstructed using the Rigorous Coupled-Wave Analysis (RCWA) to model the diffraction phenomena by periodic gratings. The technique was also adapted for large scale evaluation of the imprint process. Uniqueness of the solution was examined by analyzing the diffraction of the structure at different experimental conditions, for instance at various angles of incidence. © 2013 Elsevier B.V. All rights reserved.

  2. Jones matrix treatment for optical Fourier processors with structured polarization. (United States)

    Moreno, Ignacio; Iemmi, Claudio; Campos, Juan; Yzuel, Maria J


    We present a Jones matrix method useful to analyze coherent optical Fourier processors employing structured polarization. The proposed method is a generalization of the standard classical optical Fourier transform processor, but considering vectorial spatial functions with two complex components corresponding to two orthogonal linear polarizations. As a result we derive a Jones matrix that describes the polarization output in terms of two vectorial functions defining respectively the structured polarization input and the generalized polarization impulse response. We apply the method to show and analyze an experiment in which a regular scalar diffraction grating is converted into equivalent polarization diffraction gratings by means of an appropriate polarization filtering. The technique is further demonstrated to generate arbitrary structured polarizations. Excellent experimental results are presented.

  3. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.


    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  4. Combination of Mn(2+)-enhanced and diffusion tensor MR imaging gives complementary information about injury and regeneration in the adult rat optic nerve. (United States)

    Thuen, Marte; Olsen, Oystein; Berry, Martin; Pedersen, Tina Bugge; Kristoffersen, Anders; Haraldseth, Olav; Sandvig, Axel; Brekken, Christian


    To evaluate manganese (Mn(2+))-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) as tools for detection of axonal injury and regeneration after intravitreal peripheral nerve graft (PNG) implantation in the rat optic nerve (ON). In adult Fischer rats, retinal ganglion cell (RGC) survival was evaluated in Flurogold (FG) back-filled retinal whole mounts after ON crush (ONC), intravitreal PNG, and intravitreal MnCl(2) injection (150 nmol) at 0 and 20 days post lesion (dpl). MEMRI and echo-planar DTI (DTI-EPI) was obtained of noninjured ON one day after intravitreal MnCl(2) injection, and at 1 and 21 dpl after ONC, intravitreal PNG, and intravitreal MnCl(2) injections given at 0 and 20 dpl. GAP-43 immunohistochemistry was performed after the last MRI. ONC reduced RGC density in retina by 94% at 21 dpl compared to noninjured ON without MnCl(2) injections. Both intravitreal PNG and intravitreal MnCl(2) injections improved RGC survival in retina, which was reduced by 90% (ONC+MnCl(2)), 82% (ONC+PNG), and 74% (ONC+PNG+MnCl(2)) compared to noninjured ON. DTI-derived parameters (fractional anisotropy [FA], mean diffusivity, axial diffusivity lambda( parallel), and radial diffusivity lambda( perpendicular)) were unaffected by the presence of Mn(2+) in the ON. At 1 dpl, CNR(MEMRI) and lambda( parallel) were reduced at the injury site, while at 21 dpl they were increased at the injury site compared to values measured at 1 dpl. GAP-43 immunoreactive axons were present in the ON distal to the ONC injury site. MEMRI and DTI enabled detection of functional and structural degradation after rat ON injury, and there was correlation between the MRI-derived and immunohistochemical measures of axon regeneration.

  5. Fitting the CDO correlation skew: a tractable structural jump-diffusion model

    DEFF Research Database (Denmark)

    Willemann, Søren


    We extend a well-known structural jump-diffusion model for credit risk to handle both correlations through diffusion of asset values and common jumps in asset value. Through a simplifying assumption on the default timing and efficient numerical techniques, we develop a semi-analytic framework...... allowing for instantaneous calibration to heterogeneous CDS curves and fast computation of CDO tranche spreads. We calibrate the model to CDX and iTraxx data from February 2007 and achieve a satisfactory fit. To price the senior tranches for both indices, we require a risk-neutral probability of a market...

  6. On the Dynamics of the Self-organized Structures in a Low-Temperature Diffusion Plasma

    International Nuclear Information System (INIS)

    Talasman, S.J.


    In this paper we investigate the dynamics of self organized space charge structures a in low-temperature diffusion plasma, in order to see what are the processes responsible for the appearance of such structures. This is performed through the time-resolved axial distributions of the light emitted from the plasma and through a particular cross section of the phase-space. One obtains that excitations, de-excitations and ionizations are implied in both the transient regimes of the formation of these structures, and the oscillating steady states of them. On the other hand it was found that the dynamics of such structures verify the KAM theorem. (author)

  7. Survey on visualization and analysis techniques based on diffusion MRI for in-vivo anisotropic diffusion structures

    International Nuclear Information System (INIS)

    Masutani, Yoshitaka; Sato, Tetsuo; Urayama, Shin-ichi; Bihan, D.L.


    In association with development of diffusion MR imaging technologies for anisotropic diffusion measurement in living body, related research is explosively increasing including research fields of applied mathematics and visualization in addition to MR imaging, biomedical image technology, and medical science. One of the reasons is that the diffusion MRI data set is a set of high dimensional image information beyond conventional scalar or vector images, and is attractive for the researchers in the related fields. This survey paper is mainly aimed at introducing state-of-the-art of post processing techniques reported in the literature for diffusion MRI data, such as analysis and visualization. (author)

  8. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. (United States)

    Bassi, Laura; Ricci, Daniela; Volzone, Anna; Allsop, Joanna M; Srinivasan, Latha; Pai, Aakash; Ribes, Carmen; Ramenghi, Luca A; Mercuri, Eugenio; Mosca, Fabio; Edwards, A David; Cowan, Frances M; Rutherford, Mary A; Counsell, Serena J


    Children born prematurely have a high incidence of visual disorders which cannot always be explained by focal retinal or brain lesions. The aim of this study was to test the hypothesis that visual function in preterm infants is related to the microstructural development of white matter in the optic radiations. We used diffusion tensor imaging (DTI) with probabilistic diffusion tractography to delineate the optic radiations at term equivalent age and compared the fractional anisotropy (FA) to a contemporaneous evaluation of visual function. Thirty-seven preterm infants (19 male) born at median (range) 28(+4) (24(+1)-32(+3)) weeks gestational age, were examined at a post-menstrual age of 42 (39(+6)-43) weeks. MRI and DTI were acquired on a 3 Tesla MR system with DTI obtained in 15 non-collinear directions with a b value of 750 s/mm(2). Tracts were generated from a seed mask placed in the white matter lateral to the lateral geniculate nucleus and mean FA values of these tracts were determined. Visual assessment was performed using a battery of nine items assessing different aspects of visual abilities. Ten infants had evidence of cerebral lesions on conventional MRI. Multiple regression analysis demonstrated that the visual assessment score was independently correlated with FA values, but not gestational age at birth, post-menstrual age at scan or the presence of lesions on conventional MRI. The occurrence of mild retinopathy of prematurity did not affect the FA measures or visual scores. We then performed a secondary analysis using tract-based spatial statistics to determine whether global brain white matter development was related to visual function and found that only FA in the optic radiations was correlated with visual assessment score. Our results suggest that in preterm infants at term equivalent age visual function is directly related to the development of white matter in the optic radiations.

  9. Calculations of optical rotation: Influence of molecular structure

    Directory of Open Access Journals (Sweden)

    Yu Jia


    Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.

  10. Optical-based smart structures for tamper-indicating applications

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Simmons, K.L.; Undem, H.A.


    This report is a compilation of several related projects performed from 1991 through 1996 concerning the design, construction, and application of optical-based smart structure to tamper-indicating and sensing secure containers. Due to several influences, the projects were carried through to varying degrees of completion. Cancellation of the overall project at the client level motivated the authors to gather all of the technology and ideas about smart structures developed during these several projects, whether completed or just conceptualized, into one document. Although each section individually discusses a specific project, the overall document is written chronologically with each successive section showing how increased smart structure complexity was integrated into the container

  11. A suite of optical fibre sensors for structural condition monitoring (United States)

    Sun, T.; Grattan, K. T. V.; Carlton, J.


    This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.

  12. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.


    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  13. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G


    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses


    Directory of Open Access Journals (Sweden)



    Full Text Available Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brains with cellular resolution. Moving to living samples, we show how real-time dynamics of brain rewiring can be visualized through two-photon microscopy with the spatial resolution of single synaptic contacts. The plasticity of the injured brain can also be dissected through cutting-edge optical methods that specifically ablate single neuronal processes. Finally, we report how nonlinear microscopy in combination with novel voltage sensitive dyes allow optical registrations of action potential across a population of neurons opening promising prospective in understanding brain functionality. The knowledge acquired from these complementary optical methods may provide a deeper comprehension of the brain and of its unique features.

  15. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.


    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  16. Optical Properties of Nanostructured Silica Structures From Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ali Mcheik


    Full Text Available Light is important for the growth, behavior, and development of both phototrophic and autotrophic organisms. A large diversity of organisms used silica-based materials as internal and external structures. Nano-scaled well-organized silica biomaterials are characterized by a low refractive index and an extremely low absorption coefficient in the visible range, which make them interesting for optical studies. Recent studies on silica materials from glass sponges and diatoms, have pointed out very interesting optical properties, such as light waveguiding, diffraction, focusing, and photoluminescence. Light guiding and focusing have been shown to be coupled properties found in spicule of glass sponge or shells of diatoms. Moreover, most of these interesting studies have used purified biomaterials and the properties have addressed in non-aquatic environments, first in order to enhance the index contrast in the structure and second to enhance the spectral distribution. Although there is many evidences that silica biomaterials can present interesting optical properties that might be used for industrial purposes, it is important to emphases that the results were obtained from a few numbers of species. Due to the key roles of light for a large number of marine organisms, the development of experiments with living organisms along with field studies are require to better improve our understanding of the physiological and structural roles played by silica structures.

  17. Temperature and concentration dependence of hydrogen diffusion in vanadium measured by optical transmission


    Book, Stefan


    Hydrogen diffusion is investigated in a 50 nm film of vanadium and a vanadium superlattice. Diffusion constants for three different temperature and pressure pairs are determined for the 50 nm film. The diffusion constants for the temperature and pressure pairs are determined to be 4.5 $\\pm$ 0.1 $\\cdot 10^{-5} \\text{ cm}^{-2}$ at 463 K and 0.05 H/V, 5.6 $\\pm$ 0.1 $\\cdot 10^{-5} \\text{ cm}^{-2}$ at 463 K and 0.12 H/V and 8.0 $\\pm$ 0.2 $\\cdot 10^{-5} \\text{ cm}^{-2}$ at 493 K and 0.05 H/V. The t...

  18. Optical, electrical and structural characterization of novel phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Herpers, Anja; Woda, Michael; Wuttig, Matthias [1. Physikalisches Institut IA, RWTH Aachen University, Aachen (Germany)


    Phase Change Materials (PCM) are alloys, which can be used in a variety of applications in information technology. Information is stored using the transformation of small regions of a thin film between the crystalline and amorphous state. This phase change is accompanied by a remarkable change of properties such as the electrical resistivity and the optical reflectivity. Furthermore the transition between both states is extremely fast at elevated temperatures but negligible at room temperature. This property portfolio is attractive for storage applications. The corresponding materials are already used in rewriteable optical data storage media such as DVD and Blu-Ray-Discs, and are promising candidates for novel non-volatile electronic memory devices such as Phase Change Random Access Memories. In this study the structural, optical and electrical properties of two materials, i.e. Ag{sub 4}In{sub 3}Sb{sub 67}Te{sub 26} and GeSe are investigated. X-Ray diffraction and X-Ray reflection measurements reveal changes in the crystal structure and the film density upon crystallization. DSC measurements provide the crystallization temperature. The optical properties in an energy range of 0.025-5.3 eV are determined combining ellipsometry and FTIR experiments. Sheet resistance measurements in the van-der-Pauw-geometry enable the measurement of the electrical properties between 300 and 600 K.

  19. Study of magnetic thin films by polarized neutron reflectivity. Off-specular diffusion on periodical structures; Etude de couches minces magnetiques par reflectivite de neutrons polarises. Diffusion non speculaire sur des structures periodiques

    Energy Technology Data Exchange (ETDEWEB)

    Ott, F


    Theoretical (Zeeman energy effects) and experimental (beam polarisation problems) progress have been made in the understanding of polarized neutron reflectivity with polarisation analysis. It has been shown that modelization and numerical simulations makes it possible to avoid to have to systematically measure a full set of reflectivity curves for each field and temperature condition. It has been possible to determine a magnetic profile as a function of the field in a magnetic bilayer system by using only a few points in the reciprocal space. This technique allows to considerable reduce the experiment time. In single nickel layer systems, we have shown that it is possible to induce magnetic rotation inhomogeneities when these systems are subjects to deformation strains. The effect are related to magneto-elastic constants gradients. In trilayer systems, with a ME constant modulation, we have been able to induce large magnetic rotation gradients. A new magneto-optic technique to measure the magnetization direction without rotating the magnetic field has been developed. The field of neutron reflectivity has been extended to off-specular studies. It has been possible to account quantitatively of the off-specular diffusion on 2-D model systems (prepared by optical lithography). This new technique should make it possible in the future to determine magnetic structures with a in-depth as well as lateral resolution. (author)

  20. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. (United States)

    Park, Sung Chul; De Moraes, Carlos Gustavo V; Teng, Christopher C; Tello, Celso; Liebmann, Jeffrey M; Ritch, Robert


    To assess the usefulness of enhanced depth imaging (EDI) optical coherence tomography (OCT) for evaluating deep structures of the optic nerve complex (ONC; optic nerve head and peripapillary structures) in glaucoma. Prospective, observational study. Seventy-three established glaucoma patients (139 eyes) with a range of glaucomatous damage. Serial horizontal and vertical EDI OCT images of the ONC were obtained from both eyes of each participant. Deep ONC structures, including the lamina cribrosa (LC), short posterior ciliary artery (SPCA), central retinal artery (CRA), central retinal vein (CRV), peripapillary choroid and sclera, and subarachnoid space around the optic nerve, were investigated for their visibility and morphologic features. Deep ONC structures identified in EDI OCT images. Visual field mean deviation of 139 included eyes was -11.8 ± 8.6 dB (range, -28.70 to -2.01 dB). The anterior laminar surface was identified in all eyes in the central laminar area and in 91 (65%) eyes in the periphery beneath the neuroretinal and scleral rims or vascular structures. The LC pores with various shapes and sizes were visualized in 106 (76%) eyes, mainly in the central and temporal areas of the LC. Localized LC lesions seen on optic disc photographs were identified as focal LC defects (partial loss of LC tissue) in the EDI OCT images. The locations of the CRA and CRV were identified in all eyes. In the LC, the CRA maintained a straight shape with a consistent caliber, but the CRV (and tributaries) assumed a more irregular shape. The SPCAs, their branches through the emissary canals in the sclera, or both were visualized in 120 (86%) eyes. The subarachnoid space around the optic nerve was identified with varying degrees of clarity in 25 eyes (18%): 17 had high myopia and extensive parapapillary atrophy. Intrachoroidal cavitation or choroidal schisis, which had been unrecognized clinically, was identified in 2 eyes (1%) with high myopia. Enhanced depth imaging OCT was

  1. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods (United States)

    Nachabé, Rami; Evers, Daniel J.; Hendriks, Benno H. W.; Lucassen, Gerald W.; van der Voort, Marjolein; Rutgers, Emiel J.; Peeters, Marie-Jeanne Vrancken; van der Hage, Jos A.; Oldenburg, Hester S.; Wesseling, Jelle; Ruers, Theo J. M.


    We report on the use of diffuse optical spectroscopy analysis of breast spectra acquired in the wavelength range from 500 to 1600 nm with a fiber optic probe. A total of 102 ex vivo samples of five different breast tissue types, namely adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ from 52 patients were measured. A model deriving from the diffusion theory was applied to the measured spectra in order to extract clinically relevant parameters such as blood, water, lipid, and collagen volume fractions, β-carotene concentration, average vessels radius, reduced scattering amplitude, Mie slope, and Mie-to-total scattering fraction. Based on a classification and regression tree algorithm applied to the derived parameters, a sensitivity-specificity of 98%-99%, 84%-95%, 81%-98%, 91%-95%, and 83%-99% were obtained for discrimination of adipose, glandular, fibroadenoma, invasive carcinoma, and ductal carcinoma in situ, respectively; and a multiple classes overall diagnostic performance of 94%. Sensitivity-specificity values obtained for discriminating malignant from nonmalignant tissue were compared to existing reported studies by applying the different classification methods that were used in each of these studies. Furthermore, in these reported studies, either lipid or β-carotene was considered as adipose tissue precursors. We estimate both chromophore concentrations and demonstrate that lipid is a better discriminator for adipose tissue than β-carotene.

  2. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, A. K., E-mail:; Singhal, R. P., E-mail: [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh (India); Khazanov, G. V., E-mail: [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Avanov, L. A., E-mail: [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)


    Electron pitch angle (D{sub αα}) and momentum (D{sub pp}) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in D{sub αα} and D{sub pp} coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D{sub pp} diffusion coefficient for ECH waves is one to two orders smaller than D{sub αα} coefficients. For chorus waves, D{sub pp} coefficients are about an order of magnitude smaller than D{sub αα} coefficients for the case n ≠ 0. In case of Landau resonance, the values of D{sub pp} coefficient are generally larger than the values of D{sub αα} coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3

  3. Application of a wavelet-Galerkin method to the forward problem resolution in fluorescence diffuse optical tomography. (United States)

    Landragin-Frassati, Anne; Bonnet, Stéphane; Da Silva, Anabela; Dinten, Jean-Marc; Georges, Didier


    Fluorescence diffuse optical tomography is a powerful tool for the investigation of molecular events in studies for new therapeutic developments. Here, the emphasis is put on the mathematical problem of tomography, which can be formulated in terms of an estimation of physical parameters appearing as a set of Partial Differential Equations (PDEs). The standard polynomial Finite Element Method (FEM) is a method of choice to solve the diffusion equation because it has no restriction in terms of neither the geometry nor the homogeneity of the system, but it is time consuming. In order to speed up computation time, this paper proposes an alternative numerical model, describing the diffusion operator in orthonormal basis of compactly supported wavelets. The discretization of the PDEs yields to matrices which are easily computed from derivative wavelet product integrals. Due to the shape of the wavelet basis, the studied domain is included in a regular fictitious domain. A validation study and a comparison with the standard FEM are conducted on synthetic data.

  4. Diffuse reflectance spectroscopy for optical nerve identification. Preliminary ex vivo results for feedback controlled oral and maxillofacial laser surgery (United States)

    Stelzle, Florian; Zam, Azhar; Adler, Werner; Douplik, Alexandre; Tangermann-Gerk, Katja; Nkenke, Emeka; Neukam, Friedrich Wilhelm; Schmidt, Michael

    Objective: Laser surgery has many advantages. However, due to a lack of haptic feedback it is accompanied by the risk of iatrogenic nerve damage. The aim of this study was to evaluate the possibilities of optical nerve identification by diffuse reflectance spectroscopy to set the base for a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Materials and Methods: Diffuse reflectance spectra of nerve tissue, skin, mucosa, fat tissue, muscle, cartilage and bone (15120 spectra) of ex vivo pig heads were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed by principal components analysis (PCA) followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results: Nerve tissue could correctly be identified and differed from skin, mucosa, fat tissue, muscle, cartilage and bone in more than 90% of the cases (AUC results) with a specificity of over 78% and a sensitivity of more than 86%. Conclusion: Nerve tissue can be identified by diffuse reflectance spectroscopy with high precision and reliability. The results may set the base for a feedback system to prevent iatrogenic nerve damage performing oral and maxillofacial laser surgery.

  5. Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps (United States)

    Lee, Seung Yup; Pakela, Julia M.; Helton, Michael C.; Vishwanath, Karthik; Chung, Yooree G.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann


    In reconstructive surgery, the ability to detect blood flow interruptions to grafted tissue represents a critical step in preventing postsurgical complications. We have developed and pilot tested a compact, fiber-based device that combines two complimentary modalities-diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy-to quantitatively monitor blood perfusion. We present a proof-of-concept study on an in vivo porcine model (n=8). With a controllable arterial blood flow supply, occlusion studies (n=4) were performed on surgically isolated free flaps while the device simultaneously monitored blood flow through the supplying artery as well as flap perfusion from three orientations: the distal side of the flap and two transdermal channels. Further studies featuring long-term monitoring, arterial failure simulations, and venous failure simulations were performed on flaps that had undergone an anastomosis procedure (n=4). Additionally, benchtop verification of the DCS system was performed on liquid flow phantoms. Data revealed relationships between diffuse optical measures and state of occlusion as well as the ability to detect arterial and venous compromise. The compact construction of the device, along with its noninvasive and quantitative nature, would make this technology suitable for clinical translation.

  6. Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Sarah C. [Swedish Neuroscience Institute, Department of Neurosurgery, Seattle, WA (United States); Ackerman, Joseph W. [Washington University School of Medicine, Department of Radiology, 660 South Euclid Ave., Box 8131, St. Louis, MO (United States); Garbow, Joel R. [Washington University School of Medicine, Department of Radiology, 660 South Euclid Ave., Box 8131, St. Louis, MO (United States); Alvin J. Siteman Cancer Center, St. Louis, MO (United States); Manwaring, Linda P. [Washington University School of Medicine, Department of Pediatrics, St. Louis, MO (United States); Washington University School of Medicine, Department of Genetics and Genomic Medicine, St. Louis, MO (United States); Gutmann, David H. [Washington University School of Medicine, Department of Neurology, St. Louis, MO (United States); Alvin J. Siteman Cancer Center, St. Louis, MO (United States); McKinstry, Robert C. [Washington University School of Medicine, Department of Radiology, 660 South Euclid Ave., Box 8131, St. Louis, MO (United States); Washington University School of Medicine, Department of Pediatrics, St. Louis, MO (United States)


    Optic pathway gliomas (OPGs) are common pediatric brain tumors that pose significant clinical challenges with regard to predicting which tumors are likely to become symptomatic and require treatment. These tumors can arise sporadically or in the context of the inherited cancer predisposition syndrome neurofibromatosis type 1 (NF1). Few studies have suggested biological or imaging markers that predict the clinical course of this disease. In this cross-sectional study, we hypothesized that the clinical behavior of OPGs in children can be differentiated by diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI. A total of 27 children with OPG were studied using DW and DCE MRI protocols. Diffusivity and permeability were calculated and correlated with the clinical behavior the OPG. Mean diffusivity values of 1.39 {mu}m{sup 2}/ms and mean permeability values of 2.10 ml/min per 100 cm{sup 3} of tissue were measured. Clinically aggressive OPGs had significantly higher mean permeability values (P = 0.05) than clinically stable tumors. In addition, there was a strong correlation between clinical aggressiveness and the absence of NF1 (P < 0.01). These results suggest that DCE MRI might be a useful biomarker for clinically aggressive OPG, which should be confirmed in larger prospective longitudinal studies. (orig.)

  7. Molecular Structure and Dynamics of Water on Pristine and Strained Phosphorene: Wetting and Diffusion at Nanoscale. (United States)

    Zhang, Wei; Ye, Chao; Hong, Linbi; Yang, Zaixing; Zhou, Ruhong


    Phosphorene, a newly fabricated two-dimensional (2D) nanomaterial, has emerged as a promising material for biomedical applications with great potential. Nonetheless, understanding the wetting and diffusive properties of bio-fluids on phosphorene which are of fundamental importance to these applications remains elusive. In this work, using molecular dynamics (MD) simulations, we investigated the structural and dynamic properties of water on both pristine and strained phosphorene. Our simulations indicate that the diffusion of water molecules on the phosphorene surface is anisotropic, with strain-enhanced diffusion clearly present, which arises from strain-induced smoothing of the energy landscape. The contact angle of water droplet on phosphorene exhibits a non-monotonic variation with the transverse strain. The structure of water on transverse stretched phosphorene is demonstrated to be different from that on longitudinal stretched phosphorene. Moreover, the contact angle of water on strained phosphorene is proportional to the quotient of the longitudinal and transverse diffusion coefficients of the interfacial water. These findings thereby offer helpful insights into the mechanism of the wetting and transport of water at nanoscale, and provide a better foundation for future biomedical applications of phosphorene.

  8. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography. (United States)

    Lee, Dong-Hoon; Park, Ji-Won; Hong, Cheol-Pyo


    To attain the volumetric information of the optic radiation in normal human brains, we performed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation fiber tract volume was a range of about 0.16% and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability fiber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are helpful in the study of optic radiation fiber tract information.

  9. Structural And Optical Properties Of VOx Thin Films

    Directory of Open Access Journals (Sweden)

    Schneider K.


    Full Text Available VOx thin films were deposited on Corning glass, fused silica and Ti foils by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. Influence of the oxygen partial pressure in the sputtering chamber on the structural and optical properties of thin films has been investigated.

  10. Structural and optical properties of zinc titanates synthesized by ...

    Indian Academy of Sciences (India)

    presence of functional groups, structural aspects and optical bandgaps with respect to calcination temperature were studied by thermal analysis, ... on various substrates.17,18 In molten salt synthesis, ratio of molten salt to oxides is main- .... accounting for another 1 mole of Zn.13,16,31,32 Solubility of ZnO in Zn2Ti3O8 is not ...

  11. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na 2 KSb, Na 2 RbSb, Na 2 CsSb, K 2 RbSb, K 2 CsSb and Rb 2 CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical ...

  12. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na2KSb, Na2RbSb, Na2CsSb, K2RbSb, K2CsSb and Rb2CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical properties.

  13. Effect of copper doping on structural, optical and electrical properties ...

    Indian Academy of Sciences (India) Keywords. Ternary semiconductor compounds; CBD method; structural properties; optical and electrical studies. Abstract. Cd0.8Zn0.2S:Cu films of 1.3–6.1 mole percentage of copper have been grown on mica substrate by using chemical bath deposition technique ...

  14. Structural, elastic, electronic and optical properties of bi-alkali

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali antimonides (Na 2 KSb, Na 2 RbSb, Na 2 CsSb, K 2 RbSb, K 2 CsSb and Rb 2 CsSb) were calculated using state-of-the-art density functional theory. Different exchange-correlation potentials were adopted to predict the physical ...

  15. Role of coronal high-resolution diffusion-weighted imaging in acute optic neuritis: a comparison with axial orientation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping [Zhongshan Hospital, Fudan University, Shanghai Institution of Medical Imaging, Shanghai (China); Eye and ENT Hospital of Fudan University, Department of Radiology, Shanghai (China); Sha, Yan; Wan, Hailin; Wang, Feng [Eye and ENT Hospital of Fudan University, Department of Radiology, Shanghai (China); Tian, Guohong [Eye and ENT Hospital of Fudan University, Department of Ophthalmology, Shanghai (China)


    Through a comparison with the axial orientation, we aimed to evaluate the role of coronal high-resolution diffusion-weighted imaging (DWI) in acute optic neuritis based on diagnostic accuracy and the reproducibility of apparent diffusion coefficient (ADC) measurements. Orbital DWI, using readout-segmented, parallel imaging, and 2D navigator-based reacquisition (RESOLVE-DWI), was performed on 49 patients with acute vision loss. The coronal (thickness = 3 mm) and axial (thickness = 2 mm) diffusion images were evaluated by two neuroradiologists retrospectively. The sensitivity, specificity, and accuracy were calculated through diagnostic test; the inter- and intra-observer reliabilities were assessed with a weighted Cohen's kappa test. In addition, the agreement of ADC measurement among observers was evaluated by the intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman plots. Comparison of ADC values was also performed by unpaired t test. Among the 49 patients, 47 clinically positive optic nerves and 51 clinically negative optic nerves were found. The sensitivity, specificity, and accuracy were 85.1/87.2%, 90.2/94.12%, and 87.8/90.8%, respectively, for coronal RESOLVE-DWI and 83.0/85.1%, 66.7/76.5%, and 75.5/79.6%, respectively, for axial RESOLVE-DWI. The inter-observer kappa values were 0.710 and 0.806 for axial and coronal RESOLVE-DWI, respectively, and the intra-observer kappa values were 0.822 and 0.909, respectively (each P < 0.0001). Regarding the reproducibility of ADC measurements on axial and coronal RESOLVE-DWI, the ICCs among observers were 0.846 and 0.941, respectively, and the CV values were 7.046 and 4.810%, respectively. Bland-Altman plots revealed smaller inter-observer variability on coronal RESOLVE-DWI. ADC values were significantly lower in positive group (each P < 0.0001). Higher specificity and better reproducibility of ADC measurements were found for coronal RESOLVE-DWI, which demonstrated the

  16. Optical Nerve Detection by Diffuse Reflectance Spectroscopy for Feedback Controlled Oral and Maxillofacial Laser Surgery (United States)


    Background Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Methods Diffuse reflectance spectra of nerve tissue, salivary gland and bone (8640 spectra) of the mid-facial region of ex vivo domestic pigs were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed using principal component (PC) analysis followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated using receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results Five PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. Nerve tissue could be differed from bone as well as from salivary gland with AUC results of greater than 88%, sensitivity of greater than 83% and specificity in excess of 78%. Conclusions Diffuse reflectance spectroscopy is an adequate technique for nerve identification in the vicinity of bone and salivary gland. The results set the basis for a feedback system to prevent iatrogenic nerve damage when performing oral and maxillofacial laser surgery. PMID:21310023

  17. Diffuse idiopathic skeletal hyperostosis of cervical spine - An unusual cause of difficult flexible fiber optic intubation

    Directory of Open Access Journals (Sweden)

    Baxi Vaibhavi


    Full Text Available This is a report of anterior osteophytes on the cervical vertebra resulting in distortion of the airway and leading to difficulty during intubation. The osteophytes associated with the syndrome of diffuse idiopathic skeletal hyperostosis were at the C2-3 and C6-7, T1 level and resulted in anterior displacement of the pharynx and the trachea respectively.

  18. Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery. (United States)

    Stelzle, Florian; Zam, Azhar; Adler, Werner; Tangermann-Gerk, Katja; Douplik, Alexandre; Nkenke, Emeka; Schmidt, Michael


    Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Diffuse reflectance spectra of nerve tissue, salivary gland and bone (8640 spectra) of the mid-facial region of ex vivo domestic pigs were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed using principal component (PC) analysis followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated using receiver operating characteristic (ROC) analysis and the area under curve (AUC). Five PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. Nerve tissue could be differed from bone as well as from salivary gland with AUC results of greater than 88%, sensitivity of greater than 83% and specificity in excess of 78%. Diffuse reflectance spectroscopy is an adequate technique for nerve identification in the vicinity of bone and salivary gland. The results set the basis for a feedback system to prevent iatrogenic nerve damage when performing oral and maxillofacial laser surgery.

  19. Laser-induced generation of surface periodic structures in media with nonlinear diffusion (United States)

    Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.


    A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.

  20. Structural, optical and electrical properties of novel phase change alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gindner, Sarah; Woda, Michael; Kremers, Stephan; Klein, Michael; Wuttig, Matthias [I. Physikalisches Institut (1A), RWTH Aachen, 52056 Aachen (Germany)


    Phase Change Materials (PCM) are Te or Sb containing alloys, which show a remarkable property combination. They possess a very large property contrast, e.g. electrical resistivity and optical reflectivity between the amorphous and crystalline state. At the same time they can be switched between these two states very rapidly on a ns timescale using either a laser or current pulse. Hence they are used in rewriteable optical storage media such as DVDs and Blue-ray disks and are promising candidates for non-volatile electronic memories such as Phase Change Random Access Memory (PCRAM). From a scientific point of view it is important to determine their structural properties. In this study possible new PCM including CuInTe{sub 2} and Ge{sub 3}Sb{sub 6}Te{sub 5} are investigated by a variety of techniques to understand the effect of stoichiometric change upon physical properties. From these techniques the suitability of new materials for phase change application is derived and will be discussed. Temperature dependent resistivity is investigated with the van der Pauw technique. XRD measurements reveal the structural properties of the amorphous and crystalline state. The structural changes causing changes in film thickness and density are measured with X-ray reflectometry. Optical properties (0.02 eV to 5.3 eV) of the PCM are determined by FTIR and ellipsometry measurements.

  1. The Effect of Physician and Hospital Market Structure on Medical Technology Diffusion. (United States)

    Karaca-Mandic, Pinar; Town, Robert J; Wilcock, Andrew


    To examine the influence of physician and hospital market structures on medical technology diffusion, studying the diffusion of drug-eluting stents (DESs), which became available in April 2003. Medicare claims linked to physician demographic data from the American Medical Association and to hospital characteristics from the American Hospital Association Survey. Retrospective claims data analyses. All fee-for-service Medicare beneficiaries who received a percutaneous coronary intervention (PCI) with a cardiac stent in 2003 or 2004. Each PCI record was joined to characteristics on the patient, the procedure, the cardiologist, and the hospital where the PCI was delivered. We accounted for the endogeneity of physician and hospital market structure using exogenous variation in the distances between patient, physician, and hospital locations. We estimated multivariate linear probability models that related the use of a DES in the PCI on market structure while controlling for patient, physician, and hospital characteristics. DESs diffused faster in markets where cardiology practices faced more competition. Conversely, we found no evidence that the structure of the hospital market mattered. Competitive pressure to maintain or expand PCI volume shares compelled cardiologists to adopt DESs more quickly. © Health Research and Educational Trust.

  2. Diffusion-sensitive optical coherence tomography for real-time monitoring of mucus thinning treatments (United States)

    Blackmon, Richard L.; Kreda, Silvia M.; Sears, Patrick R.; Ostrowski, Lawrence E.; Hill, David B.; Chapman, Brian S.; Tracy, Joseph B.; Oldenburg, Amy L.


    Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3 cell) with a layer of endogenous mucus were doped with topically deposited GNRs (80x22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600μm with 4.65μm resolution, over a total of 8 minutes in increments of >=3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.

  3. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.


    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  4. Meta-structure and tunable optical device including the same

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry


    A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.

  5. Optical properties and the structure of the Saturn atmosphere

    International Nuclear Information System (INIS)

    Tejfel', V.G.


    The recent state of the chemical composition and structure of the atmosphere of Saturn is analyzed taking into account the observational and theoretical data received mainly during 1973-1977. One of the major problems of the study of the atmosphere of Saturn is the physical nature of the aerosol component (condensated particles and dust) and its distribution in height and different latitudes. Optical properties of the observable cloud cover of Saturn and their influence on spectral estimates of the content of absorbing gases are discussed. Data on the atmosphere reflecting power, polarization measurements, photometry composition in the atmosphere are presented. Scheme of a possible atmosphere structure is given

  6. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)


    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  7. Brain Diffusivity and Structural Changes in the R6/2 Mouse Model of Huntington Disease. (United States)

    Vorisek, Ivan; Syka, Michael; Vargova, Lydia


    Diffusion-weighted magnetic resonance (DW-MR) is an important diagnostic tool in Huntington disease (HD), a fatal hereditary neurodegenerative disorder. To clarify the nature of diffusivity changes in HD, we compared the apparent diffusion coefficient of water (ADC W ) acquired by DW-MR with extracellular space volume fraction α and tortuosity λ, measured by the iontophoretic method in the R6/2 mouse model of HD and in wild-type controls (WT). In anisotropic globus pallidus (GP), diffusion measurements were performed in the mediolateral (x), rostrocaudal (y), and ventrodorsal (z) axes. In HD animals, we detected an increase in ADC W in all axes and larger α than in WT mice. No significant difference between WT and HD mice was found in the values of tortuosity (λ x , λ y , λ z ). Despite structural changes in GP, diffusion anisotropy was unaffected in HD mice. Immunohistochemical analysis revealed in HD mice weaker expression of extracellular matrix and a decrease in neuron numbers compared with WT mice. Glial fibrillary acidic protein staining detected astrogliosis-like changes in the morphology of astrocytic processes in HD GP. In the somatosensory cortex, no significant differences in the studied parameters were found. We conclude that in the R6/2 model of HD, a decrease in the number of neurons in the GP results in increased ADC W and α values. Values of λ were not significantly changed as the increase of diffusion obstacles formed by reactive astrocytes was compensated for by the extracellular matrix reduction. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Nonlinear optics of light induced structural transitions in confined gallium

    International Nuclear Information System (INIS)

    MacDonald, Kevin Francis


    An ultra-high-vacuum system has been constructed to facilitate atomic-beam deposition of gallium on cryogenically cooled substrates, including optical fibre tips. Alongside this, a fibre-optic pump-probe diagnostic system, based on semiconductor lasers, has been developed to perform in-situ measurements of the linear and transient nonlinear optical properties of gallium nanostructures, both during and after deposition. This unique combination of deposition and optical diagnostic techniques has provided a new means of studying the growth and optical characteristics of gallium nanostructures under highly controlled conditions. The linear and nonlinear optical properties of a new material structure, namely gallium/glass interfaces prepared by ultrafast pulsed laser deposition (UPLD), have been studied for the first time. The reflectivity characteristics of these high-quality interfaces were measured under varying conditions of temperature and light intensity at 810 nm: At temperatures several degrees below gallium's melting point T m , excitation intensities of just a few -2 were seen to induce reflectivity changes of more than 30%. Experiments performed with a nanosecond optical parametric oscillator have illustrated that UPLD gallium/silica interfaces show a nonlinear response to optical excitation in the 440-680 nm wavelength range: Fluences of less than 10 -2 were seen to induce reflectivity changes of up to 35%, even at temperatures 15 deg below T m . It has been found that low power (17 μW average) laser illumination of cryogenically cooled substrates during atomic-beam deposition of gallium leads to the formation of uniformly sized gallium nanoparticles. This phenomenon is believed to be the result of a non-thermal light-assisted particle self-assembly process. Gallium nanoparticles have been seen to show a strongly temperature-dependent nonlinear response to low intensity, infrared (1550 nm) optical excitation: 1 μs pulses with peak intensities

  9. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E.; Coy, E.B.


    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  10. Micro structured coupling elements for 3D silicon optical interposer (United States)

    Charania, Sujay; Lüngen, Sebastian; Al-Husseini, Zaid; Killge, Sebastian; Nieweglowski, Krzysztof; Neumann, Niels; Plettemeier, Dirk; Bock, Karlheinz; Bartha, Johann W.


    Current trends in electronic industry, such as Internet of Things (IoT) and Cloud Computing call for high interconnect bandwidth, increased number of active devices and high IO count. Hence the integration of on silicon optical waveguides becomes an alternative approach to cope with the performance demands. The application and fabrication of horizontal (planar) and vertical (Through Silicon Vias - TSVs) optical waveguides are discussed here. Coupling elements are used to connect both waveguide structures. Two micro-structuring technologies for integration of coupling elements are investigated: μ-mirror fabrication by nanoimprint (i) and dicing technique (ii). Nanoimprint technology creates highly precise horizontal waveguides with polymer (refractive index nC = 1.56 at 650 nm) as core. The waveguide ends in reflecting facets aligned to the optical TSVs. To achieve Total Internal Reflection (TIR), SiO2 (nCl = 1.46) is used as cladding. TSVs (diameter 20-40μm in 200-380μm interposer) are realized by BOSCH process1, oxidation and SU-8 filling techniques. To carry out the imprint, first a silicon structure is etched using a special plasma etching process. A polymer stamp is then created from the silicon template. Using this polymer stamp, SU-8 is imprinted aligned to vertical TSVs over Si surface.Waveguide dicing is presented as a second technology to create coupling elements on polymer waveguides. The reflecting mirror is created by 45° V-shaped dicing blade. The goal of this work is to develop coupling elements to aid 3D optical interconnect network on silicon interposer, to facilitate the realization of the emerging technologies for the upcoming years.

  11. Analytical theory of diffuse scattering from distributions of non-overlapping structures

    Energy Technology Data Exchange (ETDEWEB)

    Uimin, G. [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Lindgaard, P.-A. [Risoe Nat. Lab., Roskilde (Denmark). Dept. of Condensed Matter Phys.


    The diffuse scattering for X-rays or neutrons is derived analytically for equilibrium or non-equilibrium nanoscale structures distributed according to any set of suitable distribution functions. A disordered lattice gas model has been used basically for one dimension but for objects that may have higher dimensions. The results for multilayers, phase separation, domain patterns, surface roughness and `hut` clusters are discussed and explicit formulae are given. (orig.).

  12. Probing the Diffuse Optical-IR Background with TeV Blazars Detected with the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Elisa Prandini


    Full Text Available Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV. To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs such as MAGIC, H.E.S.S., and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011 is constrained to be 0.95 (+0.11, −0.12stat (+0.16, −0.07sys, where a value of 1 means the perfect match with the model.

  13. Probing the Diffuse Optical-IR Background with TeV Blazars Detected with the MAGIC Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Prandini, Elisa [Dipartimento di Fisica e Astronomia “G. Galilei”, University of Padova, Padua (Italy); Domínguez, Alberto [Departamento de Física Atómica, Universidad Complutense, Madrid (Spain); Fallah Ramazani, Vandad [Tuorla observatory, University of Turku, Turku (Finland); Hassan, Tarek [IFAE, The Barcelona Institute of Science and Technology, Bellaterra (Spain); Mazin, Daniel [Max Planck Institute for Physics, Munich (Germany); Institute for Cosmic Ray Research, University of Tokyo, Tokyo (Japan); Moralejo, Abelardo [IFAE, The Barcelona Institute of Science and Technology, Bellaterra (Spain); Nievas Rosillo, Mireia [Departamento de Física Atómica, Universidad Complutense, Madrid (Spain); Vanzo, Gaia; Vazquez Acosta, Monica, E-mail: [Instituto de Astrofísica de Canarias, Tenerife (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife (Spain)


    Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV). To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs) such as MAGIC, H.E.S.S., and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL) leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011) is constrained to be 0.95 (+0.11, −0.12){sub stat} (+0.16, −0.07){sub sys}, where a value of 1 means the perfect match with the model.

  14. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.


    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  15. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. (United States)

    Edwards, Perry; Zhang, Chenji; Zhang, Baigang; Hong, Xiangqian; Nagarajan, Vivek K; Yu, Bing; Liu, Zhiwen


    We report a miniature, visible to near infrared G-Fresnel spectrometer that contains a complete spectrograph system, including the detection hardware and connects with a smartphone through a microUSB port for operational control. The smartphone spectrometer is able to achieve a resolution of ~5 nm in a wavelength range from 400 nm to 1000 nm. We further developed a diffuse reflectance spectroscopy system using the smartphone spectrometer and demonstrated the capability of hemoglobin measurement. Proof of concept studies of tissue phantoms yielded a mean error of 9.2% on hemoglobin concentration measurement, comparable to that obtained with a commercial benchtop spectrometer. The smartphone G-Fresnel spectrometer and the diffuse reflectance spectroscopy system can potentially enable new point-of-care opportunities, such as cancer screening.

  16. Optical Orientation and Inverse Spin Hall Effect as Effective Tools to Investigate Spin-Dependent Diffusion

    Directory of Open Access Journals (Sweden)

    Marco Finazzi


    Full Text Available In this work we address optical orientation, a process consisting in the excitation of spin polarized electrons across the gap of a semiconductor. We show that the combination of optical orientation with spin-dependent scattering leading to the inverse spin-Hall effect, i.e., to the conversion of a spin current into an electrical signal, represents a powerful tool to generate and detect spin currents in solids. We consider a few examples where these two phenomena together allow addressing the spin-dependent transport properties across homogeneous samples or metal/semiconductor Schottky junctions.

  17. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices. (United States)

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran


    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances. Copyright © 2011 Wiley-Liss, Inc.

  18. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani


    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  19. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    Directory of Open Access Journals (Sweden)

    J. W. Elmer


    -step joining method is proposed for fabricating the NLC structures. The structure would be assembled with pure silver braze inserts using a self-aligning step joint design, then the assembly would be vacuum diffusion bonded at 700 °C and 3.45 MPa pressure to seal the critical inner portion of the assembly. Finally, during the same furnace cycle, the temperature would be increased to 800 °C in order to react the silver with the copper to form a liquid braze alloy that would join and seal the outer portion of the cells together.

  20. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ


    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  1. Testing and modeling of diffusion bonded prototype optical windows under ITER conditions

    NARCIS (Netherlands)

    Jacobs, M.; Oost, G. van; Degrieck, J.; Baere, I. De; Gusarov, A.; Gubbels, F.; Massaut, V.


    Glass-metal joints are a part of ITER optical diagnostics windows. These joints must be leak tight for the safety (presence of tritium in ITER) and to preserve the vacuum. They must also withstand the ITER environment: temperatures up to 220°C and fast neutron fluxes of ∼3·10 9 n/cm 2·s. At the

  2. Structural and optical studies of CuO nanostructures

    International Nuclear Information System (INIS)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani


    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively

  3. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader


    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  4. Structural abnormalities in childhood absence epilepsy: voxel-based analysis using diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Wenchao Qiu


    Full Text Available Purpose: Childhood absence epilepsy (CAE is a common syndrome of idiopathic generalized epilepsy. However, little is known about the brain structural changes in this type of epilepsy, especially in the default mode network (DMN regions. This study aims at using the diffusion tensor imaging (DTI technique to quantify structural abnormalities of DMN nodes in CAE patients. Method: DTI data were acquired in 14 CAE patients (aged 8.64±2.59 years, 7 females and 7 males and 16 age- and sex-matched healthy controls. The data were analyzed using voxel-based analysis (VBA and statistically compared between patients and controls. Pearson correlation was explored between altered DTI metrics and clinical parameters. The difference of brain volumes between patients and controls were also tested using unpaired t-test. Results: Patients showed significant increase of mean diffusivity (MD and radial diffusivity (RD in left medial prefrontal cortex, and decrease of fractional anisotropy (FA in left precuneus and axial diffusivity (AD in both left medial prefrontal cortex and precuneus. In correlation analysis, MD value from left medial prefrontal cortex was positively associated with duration of epilepsy. Neither the disease duration nor the seizure frequency showed significant correlation with FA values. Between-group comparison of brain volumes got no significant difference. Conclusion: The findings indicate that structural impairments exist in DMN regions in children suffering from absence epilepsy and MD values positively correlate with epilepsy duration. This may contribute to understanding the pathological mechanisms of chronic neurological deficits and promote the development of new therapies for this disorder.

  5. Diffuse scattering and defect structure simulations a cook book using the program DISCUS

    CERN Document Server

    Neder, Reinhard B


    In recent years it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complextopic such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a dis

  6. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, P. V., E-mail:; Fedyukin, A. V. [Voronezh State University (Russian Federation); Arsentyev, I. N.; Vavilova, L. S.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Prutskij, T. [Benemérita Universidad Autonoma de Puebla, Instituto de Ciencias (Mexico); Leiste, H.; Rinke, M. [Karlsruhe Nano Micro Facility (Germany)


    The aim of this study is to explore the structural and optical properties of single-crystal GaAs(100) doped with Cr atoms by burning them into the substrate at high temperatures. The diffusion of chromium into single-crystal GaAs(100) substrates brings about the formation of a thin (~20–40 μm) GaAs:Cr transition layer. In this case, chromium atoms are incorporated into the gallium-arsenide crystal lattice and occupy the regular atomic sites of the metal sublattice. As the chromium diffusion time is increased, such behavior of the dopant impurity yields changes in the energy structure of GaAs, a decrease in the absorption at free charge carriers, and a lowering of the surface recombination rate. As a result, the photoluminescence signal from the sample is significantly enhanced.

  7. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar


    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  8. Markov logic networks for optical chemical structure recognition. (United States)

    Frasconi, Paolo; Gabbrielli, Francesco; Lippi, Marco; Marinai, Simone


    Optical chemical structure recognition is the problem of converting a bitmap image containing a chemical structure formula into a standard structured representation of the molecule. We introduce a novel approach to this problem based on the pipelined integration of pattern recognition techniques with probabilistic knowledge representation and reasoning. Basic entities and relations (such as textual elements, points, lines, etc.) are first extracted by a low-level processing module. A probabilistic reasoning engine based on Markov logic, embodying chemical and graphical knowledge, is subsequently used to refine these pieces of information. An annotated connection table of atoms and bonds is finally assembled and converted into a standard chemical exchange format. We report a successful evaluation on two large image data sets, showing that the method compares favorably with the current state-of-the-art, especially on degraded low-resolution images. The system is available as a web server at

  9. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors (United States)

    Chen, Guifeng; Wang, Mengxue; Yang, Wenxian; Tan, Ming; Wu, Yuanyuan; Dai, Pan; Huang, Yuyang; Lu, Shulong


    Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of -5 V and a high breakdown voltage of larger than 41 V (I Foundation of China (Nos. 61674051), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121E32KYSB20160071).

  10. Analysis of Plasmonics Based Fiber Optic Sensing Structures (United States)

    Moayyed, Hamed

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  11. Diffuse shear wave imaging: toward passive elastography using low-frame rate spectral-domain optical coherence tomography (United States)

    Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan


    Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.

  12. The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks, E. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization can remedy it.

  13. Structural, optical and electrical properties of WO3-Ag nanocomposites for the electro-optical devices (United States)

    Najafi-Ashtiani, Hamed; Bahari, Ali; Gholipour, Samira; Hoseinzadeh, Siamak


    The composites of tungsten trioxide and silver are synthesized by sodium tungstate and silver nitrate precursors. The structural properties of composite coatings are studied by FTIR, XRD, and XPS. The FTIR analysis of synthesized composite powder corroborated the bonds between tungsten and oxygen elements in WO3 molecules. Furthermore, the XRD spectra show crystalline nature while particle size analysis that is investigated by X-powder software shows average particle size of 24 and 25 nm for samples. The structural analyses show that the addition of silver dopant does not change the stoichiometry of tungsten trioxide and only increase the size of the aggregation in the films. Furthermore, these films have an average approximate roughness of about 10.7, 13.1 and 14.2 nm for sample 1, 2 and 3, respectively. The real and imaginative parts of permittivity are investigated using LCR meter in the frequency range 1 Hz-10 GHz. The optical spectra of composite coatings are characterized in the 300-900 nm wavelength range and the calculation of optical band gaps of them exhibited the directly allowed transition with the values of 3.8 and 3.85 eV. From UV-visible spectroscopy studies, the absorption coefficient of the composite thin films is determined to be of the order of 105 cm- 1 and the obtained refraction and extinction indexes indicated normal dispersive coatings. Due to their optical and electrical properties, the synthesized composite material is a promising candidate for use in electro-optical applicants.

  14. In situ optical diagnostic for monitoring or control of sodium diffusion in photovoltaics manufacturing (United States)

    Li, Jian; Levi, Dean; Contreras, Miguel; Glynn, Stephen


    A method of fabricating a photovoltaic device 100, includes the steps of providing a glass substrate 102, depositing a molybdenum layer 104 on a surface of the glass substrate, directing light through the glass substrate to the near-substrate region of the molybdenum layer 206, detecting an optical property of the near-substrate region of the molybdenum layer after interaction with the incident light 208 and determining a density of the near-substrate region of the molybdenum layer from the detected optical property 210. A molybdenum deposition parameter may be controlled based upon the determined density of the near-substrate region of the molybdenum layer 218. A non-contact method measures a density of the near-substrate region of a molybdenum layer and a deposition chamber 300.

  15. Freehand diffuse optical spectroscopy imaging for intraoperative identification of major venous and arterial vessels underlying peritoneal fat: an in vivo demonstration in a pig model (United States)

    Piao, Daqing; Ramadan, Mohammad; Park, Aaron; Bartels, Kenneth E.; Patel, Sanjay G.


    Inadvertent injury to important anatomic structures is a significant risk in minimally invasive surgery (MIS) that potentially requires conversion to an open procedure, which results in increased morbidity and mortality. Surgeons operating minimal-invasively currently do not have an easy-to-use, real-time device to aid in intraoperative identification of important anatomic structures that underlie tissue planes. We demonstrate freehand diffuse optical spectroscopy (DOS) imaging for intraoperatively identifying major underlying veins and arteries. An applicator probe that can be affixed to and detached from an 8-mm laparoscopic instrument has been developed. The 10-mm DOS source-detector separation renders sampling of tissue heterogeneities a few millimeters deep. DOS spectra acquired consecutively during freehand movement of the applicator probe on the tissue surface are displayed as a temporal and spectral image to assist in spatially resolved identification of the underlying structures. Open surgery identifications of the vena cava and aorta underlying peritoneal fat of ˜4 mm in thickness using the applicator probe under room light were demonstrated repeatedly in multiple pigs in vivo.

  16. Geometry, electronic structures and optical properties of phosphorus nanotubes

    International Nuclear Information System (INIS)

    Hu, Tao; Hashmi, Arqum; Hong, Jisang


    Using a first principles approach, we investigated the geometry, electronic structures, and optical properties of phosphorus nanotubes (PNTs). Two possible 1D configurations, the so-called α-PNTs and β-PNTs, are proposed, which are structurally related to blue and black phosphorus monolayers, respectively. Hereby, we predict that both armchair and zigzag geometries can be synthesized in α-PNTs, but the zigzag form of β-PNT is highly unfavorable because of large strain and conformation energies. The band gap of α-PNTs is expected to be ∼2.67 eV, and this is insensitive to the chirality when the tube’s inner diameter is larger than 1.3 nm, while the armchair β-PNTs have a much smaller band gap. Interestingly, we find nearly flat band structures in the zigzag α-PNT system. This may indicate that an excited particle–hole pair has a huge effective mass. We also find asymmetric optical properties with respect to the polarization direction. The armchair α-PNT for parallel polarization shows a large refractive index of 2.6 near the ultraviolet wavelength, and also we find that the refractive index can be even smaller than 1 in certain frequency ranges. The zigzag tubes show very weak reflectivity for parallel polarization, while the armchair tube displays high reflectivity. (paper)

  17. Diffuse optical tomography through solving a system of quadratic equations: theory and simulations. (United States)

    Kanmani, B; Vasu, R M


    This paper discusses the iterative solution of the nonlinear problem of optical tomography. In the established forward model-based iterative image reconstruction (MOBIIR) method a linear perturbation equation containing the first derivative of the forward operator is solved to obtain the update vector for the optical properties. In MOBIIR, the perturbation equation is updated by recomputing the first derivative after each update of the optical properties. In the method presented here a nonlinear perturbation equation, containing terms up to the second derivative, is used to iteratively solve for the optical property updates. Through this modification, reconstructions with reasonable contrast recovery and accuracy are obtained without the need for updating the perturbation equation and therefore eliminating the outer iteration of the usual MOBIIR algorithm. To improve the performance of the algorithm the outer iteration is reintroduced in which the perturbation equation is recomputed without re-estimating the derivatives and with only updated computed data. The system of quadratic equations is solved using either a modified conjugate gradient descent scheme or a two-step linearized predictor-corrector scheme. A quick method employing the adjoint of the forward operator is used to estimate the derivatives. By solving the nonlinear perturbation equation it is shown that the iterative scheme is able to recover large contrast variations in absorption coefficient with improved noise tolerance in data. This ability has not been possible so far with linear algorithms. This is demonstrated by presenting results of numerical simulations from objects with inhomogeneous inclusions in absorption coefficient with different contrasts and shapes.

  18. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid


    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  19. Cracking assessment in concrete structures by distributed optical fiber (United States)

    Rodríguez, Gerardo; Casas, Joan R.; Villaba, Sergi


    In this paper, a method to obtain crack initiation, location and width in concrete structures subjected to bending and instrumented with an optical backscattered reflectometer (OBR) system is proposed. Continuous strain data with high spatial resolution and accuracy are the main advantages of the OBR system. These characteristics make this structural health monitoring technique a useful tool in early damage detection in important structural problems. In the specific case of reinforced concrete structures, which exhibit cracks even in-service loading, the possibility to obtain strain data with high spatial resolution is a main issue. In this way, this information is of paramount importance concerning the durability and long performance and management of concrete structures. The proposed method is based on the results of a test up to failure carried out on a reinforced concrete slab. Using test data and different crack modeling criteria in concrete structures, simple nonlinear finite element models were elaborated to validate its use in the localization and appraisal of the crack width in the testing slab.

  20. A versatile optical profilometer based on conoscopic holography sensors for acquisition of specular and diffusive surfaces in artworks (United States)

    Gaburro, Nicola; Marchioro, Giacomo; Daffara, Claudia


    Surface metrology of artworks requires the design of suitable devices for in-situ non-destructive measurement together with reliable procedures for an effective analysis of such non-engineered variegate objects. To advance the state-of-the-art it has been implemented a versatile optical micro-profilometry taking advantage of the adapt- ability of conoscopic holography sensors, able to operate with irregular shapes and composite materials (diffusive, specular, and polychrome) of artworks. The scanning technique is used to obtain wide field and high spatially resolved areal profilometry. The prototype has a modular scheme based on a set of conoscopic sensors, extending the typical design based on a scanning stage and a single probe with a limited bandwidth, thus allowing the collection of heights data from surface with different scales and materials with variegate optical response. The system was optimized by characterizing the quality of the measurement with the probes triggered in continuous scanning modality. The results obtained on examples of cultural heritage objects (2D paintings, 3D height-relief) and materials (pictorial, metallic) demonstrate the versatility of the implemented device.

  1. Exploring Optical Contrast in Ex-Vivo Breast Tissue Using Diffuse Reflectance Spectroscopy and Tissue Morphology (United States)

    Kennedy, Stephanie Ann

    In this research, ex-vivo breast tissue is evaluated to determine which sources of optical contrast have the potential to detect malignancy at the margins in women of differing breast composition. Then, H&E images of ex-vivo breast tissue sites are quantified to further deconstruct the relationship between optical scattering and the underlying tissue morphology. H&E images were taken of the malignant and benign sites and quantified to describe the % adipose, % collagen and % glands. Adipose sites, images at 10x, were predominantly fatty and quantified according to adipocyte morphology. H&E-stained adipose tissue sections were analyzed with an automated image processing algorithm to extract average cell area and cell density. Non-adipose sites were imaged with a 2.5x objective. Grids of 200µm boxes corresponding to the 3mm x 2mm area were overlaid on each non-adipose image. The non-adipose images were classified as the following: adipose and collagen (fibroadipose); collagen and glands (fibroglandular); adipose, collagen and glands (mixed); and malignant sites. Correlations between and % collagen in were determined in benign sites. Age, BMI, and MBD were then correlated to in the adipose and non-adipose sites. Variability in was determined to be related to collagen and not adipose content. In order to further investigate this relationship, the importance of age, BMI and MBD was analyzed after adjusting for the % collagen. Lastly, the relationship between % collagen and % glands was analyzed to determine the relative contributions of % collagen and % glands . Statistics were calculated using Wilcoxon rank-sum tests, Pearson correlation coefficients and linear fits in R. Further deconstructing the relationship between optical scattering and tissue morphology resulted in a positive relationship between and % collagen. Increased variability was observed in sites with a higher percentage of collagen. In adipose tissues MBD was negatively correlated with age, BMI and

  2. [Study on plasma parameters in diffuse discharge with semispherical electrod by optical emission spectrum]. (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Shen, Zhong-Kai; Liu, Liang; Ji, Ya-Fei; Zhao, Huan-Huan


    The diffuse discharge plasma in air was observed in a dielectric barrier discharge with two semispherical water electrodes. The variations of vibration temperature, rotation temperature, and average electron energy as the function of the applied voltage were studied by emission spectroscopy. The vibration temperature and the rotation temperature were calculated through the second positive band system (C3Pi(u)-->B3Pi(g)) of N2+ and the first negative band system (B2 Sigma(u+)-->Chi2Sigma(g+)) of N(2+) respectively. The average electron energy was studied by intensity ratio of 391.4 and 337.1 nm. It was found that the rotation temperature increases with the applied voltage increasing, while the vibration temperature and the electron energy decrease.

  3. Near-infrared diffuse interstellar bands in APOGEE telluric standard star spectra . Weak bands and comparisons with optical counterparts (United States)

    Elyajouri, M.; Lallement, R.; Monreal-Ibero, A.; Capitanio, L.; Cox, N. L. J.


    Aims: Information on the existence and properties of diffuse interstellar bands (DIBs) outside the optical domain is still limited. Additional infra-red (IR) measurements and IR-optical correlative studies are needed to constrain DIB carriers and locate various absorbers in 3D maps of the interstellar matter. Methods: We extended our study of H-band DIBs in Apache Point Observatory Galactic Evolution Experiment (APOGEE) Telluric Standard Star (TSS) spectra. We used the strong λ15273 band to select the most and least absorbed targets. We used individual spectra of the former subsample to extract weaker DIBs, and we searched the two stacked series for differences that could indicate additional bands. High-resolution NARVAL and SOPHIE optical spectra for a subsample of 55 TSS targets were additionally recorded for NIR/optical correlative studies. Results: From the TSS spectra we extract a catalog of measurements of the poorly studied λλ15617, 15653, and 15673 DIBs in ≃300 sightlines, we obtain a first accurate determination of their rest wavelength and constrained their intrinsic width and shape. In addition, we studied the relationship between these weak bands and the strong λ15273 DIB. We provide a first or second confirmation of several other weak DIBs that have been proposed based on different instruments, and we add new constraints on their widths and locations. We finally propose two new DIB candidates. Conclusions: We compared the strength of the λ15273 absorptions with their optical counterparts λλ5780, 5797, 6196, 6283, and 6614. Using the 5797-5780 ratio as a tracer of shielding against the radiation field, we showed that the λ15273 DIB carrier is significantly more abundant in unshielded (σ-type) clouds, and it responds even more strongly than the λ5780 band carrier to the local ionizing field. Full Table 5 is available at the CDS via anonymous ftp to ( or via http://cdsarc

  4. Structural and optical characterization of the propolis films

    Energy Technology Data Exchange (ETDEWEB)

    Drapak, S.I. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine)]. E-mail:; Bakhtinov, A.P. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine); Gavrylyuk, S.V. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine); Drapak, I.T. [Chernivtsi National University, 2 Kotsyubynskii Str., 58012 Chernivtsi (Ukraine); Kovalyuk, Z.D. [Frantsevich Institute of Materials Science Problems, National Academy of Sciences of Ukraine, Chernivtsi Department, 5 Iryna Vilde Str., 58001 Chernivtsi (Ukraine)


    We have performed structural and optical characterizations of the propolis (an organic entity of biological nature) films grown on various non-organic substrates. The films were grown from a propolis melt or a propolis alcohol solution. The crystal structure has been observed in the films precipitated from the solution onto substrates such as an amorphous glass and sapphire or semiconductor indium monoselenide. For any growth method, the propolis film is a semiconductor with the bandgap of 3.07 eV at 300 K that is confirmed by a maximum in photoluminescence spectra at 2.86 eV. We argue that propolis films might be used in various optoelectronic device applications.

  5. 3D structure tensor analysis of light microscopy data for validating diffusion MRI. (United States)

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A; Kohama, Steven G; Jespersen, Sune Nørhøj; Kroenke, Christopher D


    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that

  6. Geometric diffusion of quantum trajectories (United States)

    Yang, Fan; Liu, Ren-Bao


    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.

  7. Effect of modulation frequency bandwidth on measurement accuracy and precision for digital diffuse optical spectroscopy (dDOS) (United States)

    Jung, Justin; Istfan, Raeef; Roblyer, Darren


    Near-infrared (NIR) frequency-domain Diffuse Optical Spectroscopy (DOS) is an emerging technology with a growing number of potential clinical applications. In an effort to reduce DOS system complexity and improve portability, we recently demonstrated a direct digital sampling method that utilizes digital signal generation and detection as a replacement for more traditional analog methods. In our technique, a fast analog-to-digital converter (ADC) samples the detected time-domain radio frequency (RF) waveforms at each modulation frequency in a broad-bandwidth sweep (50- 300MHz). While we have shown this method provides comparable results to other DOS technologies, the process is data intensive as digital samples must be stored and processed for each modulation frequency and wavelength. We explore here the effect of reducing the modulation frequency bandwidth on the accuracy and precision of extracted optical properties. To accomplish this, the performance of the digital DOS (dDOS) system was compared to a gold standard network analyzer based DOS system. With a starting frequency of 50MHz, the input signal of the dDOS system was swept to 100, 150, 250, or 300MHz in 4MHz increments and results were compared to full 50-300MHz networkanalyzer DOS measurements. The average errors in extracted μa and μs' with dDOS were lowest for the full 50-300MHz sweep (less than 3%) and were within 3.8% for frequency bandwidths as narrow as 50-150MHz. The errors increased to as much as 9.0% when a bandwidth of 50-100MHz was tested. These results demonstrate the possibility for reduced data collection with dDOS without critical compensation of optical property extraction.

  8. Structural, Optical and Electrical Properties of ITO Thin Films (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.


    Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity ( ρ) ˜ 10-3 Ω cm and high carrier concentration ( n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path ( L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

  9. Structural Optimization of a Laterally Driven Electromagnetic Micro Optical Switch

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sam; Kwak, Byung Man [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Ko, Jong Soo [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)


    This paper presents structural optimization for a micro optical switch based on the concept of a laterally driven electromagnetic microactuator (LaDEM). This utilizes a nonlinear behavior of a snap-through buckling occurring in two arch-shaped leaf springs of the switch, when actuated by a distributed Lorentz force induced along the leaf springs. An important objective in the design of the micro optical switch is to achieve a large displacement with low actuation force. For this purpose, a parametric study is first made. The most important parameters are found the initial rise and two sizes of the meander and chosen as design variables. The nonlinear displacement-load response is calculated by a modified Riks method in ABAQUS. Two formulations of structural optimization were studied. In the first formulation, the load needed for the micro mirror to reach a specific displacement is minimized subject to natural frequency and stress constraints. In the other optimization, the displacement was maximized for an applied load subject to the same constraints in the first approach. Nonlinear FE techniques and optimizations are found to be valuable tools for analysis and design of microactuators which utilize a complex nonlinear snap-through buckling behavior.

  10. On Embedding N2R Structures in Optical Fiber OMS-SP Ring

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Nielsen, Rasmus Hjorth


    The objective of this paper is to propose methods for embedding N2R structures in optical fiber OMS-SP rings. The OMS-SP ring supports full mesh structure and restoration on the optical level. The N2R structures have been proven to be superior to other degree 3 network structures. Two main mapping...

  11. XRD study of laser induced crystallisation of (Ag)-Sb-S amorphous thin films prepared by thermal evaporation combined with optically induced diffusion and dissolution of Ag

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Frumar, M.; Bezdička, Petr; Vlček, Milan


    Roč. 47, č. 2 (2006), s. 229-232 ISSN 0031-9090 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : laser induced crystallisation * optically induced diffusion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.577, year: 2006

  12. Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    Nachabé, Rami; Hendriks, Benno H. W.; van der Voort, Marjolein; Desjardins, Adrien E.; Sterenborg, Henricus J. C. M.


    With an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of our technique

  13. Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    R. Nachabé (Rami); B.H.W. Hendriks (Benno); M. van der Voort (Marjolein); A.E. Desjardins (Adrien); H.J.C.M. Sterenborg (Dick)


    textabstractWith an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of

  14. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: [CEA-CESTA, Le Barp (France); Regan, C., E-mail: [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: [CEA-CESTA, Le Barp (France)


    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  15. Phantom verification for a ring-scanning and prone diffuse optical imaging system (United States)

    Yu, Jhao-Ming; Pan, Min-Chun; Chen, Liang-Yu; Pan, Min-Cheng; Hsu, Ya-Fen


    In this study, we proposed and implemented a ring-scanning mechanism in the prone position for application in breast tumour detection. The current scanning module using two zones with three light sources in each zone enables the acquisition of 36 source and 30 detection data (36S × 30D) items during the optical information collection phase. This study employed only three photomultiplier tubes (PMTs), instead of 30 PMTs used in a fixed model. In particular, the circular scanning of source-and-detection module actually behaves as more channels and can acquire more optoelectrical data as the scanning module operates in a fractional motion of a single channel-to-channel span. In this study, the optoelectrical measurement system was first calibrated; then, the feasibility of optical-coefficient image reconstruction was verified using several heterogeneous cylindrical phantoms. The reconstructed μa and μs ‧ images through multilayer scanning presented good outcomes, implying that the developed system is promising for 3D scanning of breasts. In a quantitative analysis, the contrast-to-noise ratios of the μa and μs ‧ images (6.00 and 4.97, respectively) for the flexible scanning scheme were superior to those derived for the fixed scheme (5.05 and 4.31, respectively). This indicates that the higher amount of detection information obtained through the proposed scanning module can enhance the spatial resolution of the reconstructed images while retaining an acceptable scanning time.

  16. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study. (United States)

    Scheel, Michael; Finke, Carsten; Oberwahrenbrock, Timm; Freing, Alina; Pech, Luisa-Maria; Schlichting, Jeremias; Sömmer, Carina; Wuerfel, Jens; Paul, Friedemann; Brandt, Alexander U


    We investigated the association of retinal nerve fibre layer thickness (RNFL) with white matter damage assessed by diffusion tensor imaging (DTI). Forty-four MS patients and 30 healthy subjects underwent optical coherence tomography. DTI was analysed with a voxel-based whole brain and region-based analysis of optic radiation, corpus callosum and further white matter. Correlations between RNFL, fractional anisotropy (FA) and other DTI-based parameters were assessed in patients and controls. RNFL correlated with optic radiation FA, but also with corpus callosum and remaining white matter FA. Our findings demonstrate that RNFL changes indicate white matter damage exceeding the visual pathway. © The Author(s), 2014.

  17. Structural and diffusion effects in the Dutch fertility transition, 1870-1940

    Directory of Open Access Journals (Sweden)

    Hilde Bras


    Full Text Available Background: Ever since the Princeton European Fertility Project, structural and diffusion effects on fertility behavior have been juxtaposed. However, we still hardly know what the relative effects were of shifting socio-economic conditions and shifts in sociability in explaining the historical fertility decline. Objective: To what extent and how did structural and diffusion effects play a role in the adoption of fertility control in the Dutch historical fertility transition? Methods: A national data set was used with more than 3,000 maternity histories of married Dutch women aged 15-50, whose reproductive careers took place between 1870 and 1940. Apart from husbands' occupations, characteristics of the set of couples' marriage witnesses were included to measure their social networks. Cox regression analyses of age at last birth and negative binomial regressions of net family size were conducted. Results: Results indicate that unskilled laborers and farm laborers were laggards in the practice of fertility control during the Dutch fertility transition. Besides SES differentials, differences in couples' social networks were important in explaining fertility behavior. Those who had networks consisting of lateral kin, age peers, and people of urban background stopped childbearing earlier and had smaller families than other couples did. Particularly the presence of lateral kin of the bride and of female witnesses was strongly associated with smaller family size. Conclusions: The evidence lends support for so-called "blended diffusion models" and suggests that the fertility transition must be understood as much from the viewpoint of changed cost-benefit calculations related to structural changes, as from shifting patterns of sociability associated with the decline of patriarchy and the increasing lateralization and age homophily of people's social networks.

  18. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin


    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  19. Interactions and Diffusion of Methane and Hydrogen in Microporous Structures: Nuclear Magnetic Resonance (NMR Studies

    Directory of Open Access Journals (Sweden)

    Jaha A. Hamida


    Full Text Available Measurements of nuclear spin relaxation times over a wide temperature range have been used to determine the interaction energies and molecular dynamics of light molecular gases trapped in the cages of microporous structures. The experiments are designed so that, in the cases explored, the local excitations and the corresponding heat capacities determine the observed nuclear spin-lattice relaxation times. The results indicate well-defined excitation energies for low densities of methane and hydrogen deuteride in zeolite structures. The values obtained for methane are consistent with Monte Carlo calculations of A.V. Kumar et al. The results also confirm the high mobility and diffusivity of hydrogen deuteride in zeolite structures at low temperatures as observed by neutron scattering.

  20. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures (United States)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.


    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  1. Optical Assessment of Caries Lesion Structure and Activity (United States)

    Lee, Robert Chulsung

    New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging

  2. Enhancement of diffusers BRDF accuracy (United States)

    Otter, Gerard; Bazalgette Courrèges-Lacoste, Gregory; van Brug, Hedser; Schaarsberg, Jos Groote; Delwart, Steven; del Bello, Umberto


    This paper reports the result of an ESA study conducted at TNO to investigate properties of various diffusers. Diffusers are widely used in space instruments as part of the on-board absolute calibration. Knowledge of the behaviour of the diffuser is therefore most important. From measurements of launched instruments in-orbit it has been discovered that when a diffuser is used in the vacuum of space the BRDF can change with respect to the one in ambient conditions. This is called the air/vacuum effect and has been simulated in this study by measuring the BRDF in a laboratory in ambient as well as vacuum conditions. Another studied effect is related to the design parameters of the optical system and the scattering properties of the diffuser. The effect is called Spectral Features and is a noise like structure superimposed on the diffuser BRDF. Modern space spectrometers, which have high spectral resolution and/or a small field of view (high spatial resolution) are suffering from this effect. The choice of diffuser can be very critical with respect to the required absolute radiometric calibration of an instrument. Even if the Spectral Features are small it can influence the error budget of the retrieval algorithms for the level 2 products. in this presentation diffuser trade-off results are presented and the Spectral Features model applied to the optical configuration of the MERIS instrument is compared to in-flight measurements of MERIS.

  3. Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4Nanoparticles. (United States)

    Tatarchuk, Tetiana; Bououdina, Mohamed; Macyk, Wojciech; Shyichuk, Olexander; Paliychuk, Natalia; Yaremiy, Ivan; Al-Najar, Basma; Pacia, Michał


    The effect of Zn-doping in CoFe 2 O 4 nanoparticles (NPs) through chemical co-precipitation route was investigated in term of structural, optical, and magnetic properties. Both XRD and FTIR analyses confirm the formation of cubic spinel phase, where the crystallite size changes with Zn content from 46 to 77 nm. The Scherrer method, Williamson-Hall (W-H) analysis, and size-strain plot method (SSPM) were used to study of crystallite sizes. The TEM results were in good agreement with the results of the SSP method. SEM observations reveal agglomeration of fine spherical-like particles. The optical band gap energy determined from diffuse reflectance spectroscopy (DRS) varies increases from 1.17 to 1.3 eV. Magnetization field loops reveal a ferromagnetic behavior with lower hysteresis loop for higher Zn content. The magnetic properties are remarkably influenced with Zn doping; saturation magnetization (M s ) increases then decreases while both coercivity (H C ) and remanent magnetization (M r ) decrease continuously, which was associated with preferential site occupancy and the change in particle size.

  4. Extra-visual functional and structural connection abnormalities in Leber's hereditary optic neuropathy.

    Directory of Open Access Journals (Sweden)

    Maria A Rocca

    Full Text Available We assessed abnormalities within the principal brain resting state networks (RSNs in patients with Leber's hereditary optic neuropathy (LHON to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits.

  5. Optical processes in different types of photonic band gap structures (United States)

    Wang, Zhiguo; Gao, Mengqin; Ullah, Zakir; Chen, Haixia; Zhang, Dan; Zhang, Yiqi; Zhang, Yanpeng


    For the first time, we investigate the photonic band gap (PBG) structure in the static and moving electromagnetically induced grating (EIG) through scanning the frequency detunings of the probe field, dressing field and coupling field. Especially, the suppression and enhancement of the four wave mixing band gap signal (FWM BGS) and the probe transmission signal (PTS) can be observed when we scan the dressing field frequency detuning in the FWM BGS system. It is worth noting that the PBG structure and FWM BGS appear at the right of the electromagnetically induced transparency (EIT) position in the case of scanning the frequency detuning of the coupling field in the FWM BGS system, while the PBG structure and FWM BGS appears at the left of the EIT position on the condition of scanning the probe field frequency detuning. Moreover, in the moving PBG structure, we can obtain the nonreciprocity of FWM BGS. Furthermore, we can modulate the intensity, width, location of the FWM BGS and PTS through changing the frequency detunings and intensities of the probe field, dressing field and coupling field, sample length and the frequency difference of coupling fields in EIG. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

  6. Consume, Modify, Share (CMS): The Interplay between Individual Decisions and Structural Network Properties in the Diffusion of Information (United States)

    Koren, Hila; Kaminer, Ido


    Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and

  7. Fast optical control of spin in semiconductor interfacial structures

    Czech Academy of Sciences Publication Activity Database

    Nádvorník, Lukáš; Surýnek, M.; Olejník, Kamil; Novák, Vít; Wunderlich, Joerg; Trojánek, F.; Jungwirth, Tomáš; Němec, P.


    Roč. 8, č. 3 (2017), s. 1-10, č. článku 034022. ISSN 2331-7019 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : spintronics * optics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.808, year: 2016

  8. Optimization of the Refractive-Index Distribution of Graded-Index Polymer Optical Fiber by the Diffusion-Assisted Fabrication Process (United States)

    Mukawa, Yoshiki; Kondo, Atsushi; Koike, Yasuhiro


    Graded-index polymer optical fiber (GI-POF) is a promising high-speed communication medium for very-short-reach networks, such as home or office networks. The refractive-index distribution of GI-POF needs to be accurately controlled to maximize the bandwidth. We attempted to control the refractive-index distribution by developing a simulation for dopant diffusion. In the rod-in-tube method, GI-POF with an optimal refractive-index distribution was obtained by adjusting the diffusion temperature and the diffusion time, whereas in the coextrusion process, GI-POF with an optimal refractive-index distribution was fabricated by controlling the length of the diffusion tube and the rate of discharge of polymer.

  9. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C., E-mail: [Institute of Plastics Processing (IKV) at RWTH Aachen University (Germany); Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T. [Surface Engineering Institute (IOT), RWTH Aachen University, Aachen (Germany); Steger, M. [Fraunhofer Institute for Laser Technology (ILT), Aachen (Germany)


    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  10. On-line hyperfine structure and isotope shift measurements with diffuse light collection and photon burst detection

    International Nuclear Information System (INIS)

    Lassen, J.; Benck, E.C.; Schuessler, H.A.


    An experiment is presently being set up which combines collinear-fast-beam laser spectroscopy with photon burst spectroscopy. Selectivity is provided by the large kinetic isotope shifts together with the practically Doppler free linewidth of the fluorescence from the fast atom beam. The photon burst detection, based on photon correlations in the resonance fluorescence, increases the sensitivity, so that on-line optical isotope shift and hyperfine structure measurements on low intensity radioactive beams become feasible. In order to improve photon burst detection the solid angle of detection and the observation time have to be optimized. To this end a diffuse reflecting cavity has been designed and built, which collects fluorescence over a 45 cm length of the beam and covers the full solid angle. The light collection efficiency of the cavity is calculated to be about 45%. The cavity is being tested with a 11 keV beam of krypton atoms, probing the near infrared transitions in our apparatus at Texas A ampersand M University. copyright 1997 American Institute of Physics

  11. Heterophase fluctuation of omega phase and X-ray diffuse scattering from dual phase structure

    International Nuclear Information System (INIS)

    Farjami, Susan; Kubo, Hiroshi


    Heterophase fluctuation of athermal omega embryos has been analyzed by assuming a dual phase structure of omega embryos composed of omega and bcc matrix phase. The two-dimensional modulation of dual phase was suggested from the quantitative estimation of coherent free energy of omega embryos using microscopic theory of elasticity and the Landau anharmonic theory for phase transformation. The X-ray diffraction theory was developed in connection to the formation of omega embryos having the dual phase structure. The offset of the diffuse peak position from the ideal omega point in the X-ray diffraction pattern is attributed to the dual phase (incommensurate phase) of omega embryos. It was also shown that the ellipsoidal shape of the diffuse intensity tailing toward the fundamental spot of the matrix phase is originated from the equilibrium shape of the omega embryo. The quantitative estimation of elastic energy modulus (EEM) in the disordered bcc matrix and in the ordered bcc matrix indicates a difference in the deviation amount of the minimum point k(q m ) from the ideal omega point k(q ω ) and a difference in the elliptical shape of embryos

  12. Iron nanoparticles embedded in carbon films: structural and optical properties (United States)

    Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, Seyed Ali


    In the present work amorphous hydrogenated carbon films with sputtered iron nanoparticles (Fe NPs @ a-C:H) were deposited by co-deposition of RF-sputtering and RF-plasma enhanced chemical vapor deposition methods using acetylene gas and iron target on quartz and silicon substrates. Samples were prepared in different initial pressures and during constant deposition time. The crystalline structure of Fe NPs @ a-C:H was studied using X-ray diffraction and selected area electron diffraction patterns. The X-ray photoelectron spectroscopy analysis presents that increasing the initial pressure decreases the atomic ratio of Fe/C and the sp3-hybridized carbon content in prepared samples. The transmission electron microscope image shows the encapsulated Fe NPs in carbon films. The optical properties and localized surface plasmon resonance (LSPR) of samples were studied using UV-visible spectrophotometry, which is shown that increasing of Fe content decreases the intensity of LSPR peak and increases the optical band gap.

  13. Complexation of Flavonoids with Iron: Structure and Optical Signatures (United States)

    Ren, Jun; Meng, Sheng; Lekka, Ch. E.; Kaxiras, Efthimios


    Flavonoids exhibit antioxidant behavior believed to be related to their metal ion chelation ability. We investigate the complexation mechanism of several flavonoids, quercetin, luteolin, galangin, kaempferol and chrysin with iron, the most abundant type of metal ions in the body, through first- principles electronic structure calculations based on Density Functional Theory (DFT). We find that the most likely chelation site for Fe is the 3-hydroxyl-4-carbonyl group, followed by 4- carbonyl-5-hydroxyl group and the 3'-4' hydroxyl (if present) for all the flavonoid molecules studied. Three quercetin molecules are required to saturate the bonds of a single Fe ion by forming six orthogonal Fe-O bonds, though the binding energy per molecule is highest for complexes consisting of two quercetin molecules and one Fe atom, in agreement with experiment. Optical absorption spectra calculated with time- dependent DFT serve as signatures to identify various complexes. For the iron-quercetin complexes, we find a redshift of the first absorbance peak upon complexation in good agreement with experiment; this behavior is explained by the narrowing of the optical gap of quercetin due to Fe(d)--O(p) orbital hybridization.

  14. Full-color structured illumination optical sectioning microscopy (United States)

    Qian, Jia; Lei, Ming; Dan, Dan; Yao, Baoli; Zhou, Xing; Yang, Yanlong; Yan, Shaohui; Min, Junwei; Yu, Xianghua


    In merits of super-resolved resolution and fast speed of three-dimensional (3D) optical sectioning capability, structured illumination microscopy (SIM) has found variety of applications in biomedical imaging. So far, most SIM systems use monochrome CCD or CMOS cameras to acquire images and discard the natural color information of the specimens. Although multicolor integration scheme are employed, multiple excitation sources and detectors are required and the spectral information is limited to a few of wavelengths. Here, we report a new method for full-color SIM with a color digital camera. A data processing algorithm based on HSV (Hue, Saturation, and Value) color space is proposed, in which the recorded color raw images are processed in the Hue, Saturation, Value color channels, and then reconstructed to a 3D image with full color. We demonstrated some 3D optical sectioning results on samples such as mixed pollen grains, insects, micro-chips and the surface of coins. The presented technique is applicable to some circumstance where color information plays crucial roles, such as in materials science and surface morphology.

  15. Control mechanism of double-rotator-structure ternary optical computer (United States)

    Kai, SONG; Liping, YAN


    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  16. Electrical, optical, and structural properties of semitransparent metallic layers (United States)

    Kar, S.; Varghese, R.; Bhattacharya, S.


    MOS solar cells have been fabricated with Ag and Au barrier metals on n-type silicon and with Al barrier metal on p-type silicon. The short-circuit current density Jsc was measured as a function of the average metal layer thickness tm; and the optical transmittance was measured as a function of the wavelength with tm as a parameter. It is shown that in the case of Ag and Au the film network structure attained electrical continuity at a lower value of tm than in the case of Al, and the surface covered by the film was lower. Mainly for this reason, optical transmittance was higher in the case of Ag and Au than in the case of Al. Jsc(tm) profiles were peaked with the maximum occurring around 55 angstroms for Ag and Au and around 70 angstroms for Al. A higher rate of degradation for Ag and Au than for Al MOS cells is found which is associated with the presence of large discontinuity in Ag and Au films.

  17. Review on structured optical field generated from array beams (United States)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong


    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  18. Synthesis, crystal structure, and optical properties of the noncentrosymmetric sulfide Ce8Sb2S15 (United States)

    Zhao, Hua-Jun; Zhong, Xiao-Ai


    The new noncentrosymmetric sulfide Ce8Sb2S15 has been prepared at 1223 K in an evacuated silica tube. It crystallizes in the RE8Sb2S15 (RE=La, Pr, Nd) structure type with a=15.7871(6) Å, c=19.7992(16) Å, V=4934.6(5) Å3. The structure contains the discrete [SbS3]3- trigonal pyramids, which are packed in a noncentrosymmetric pseudolayer motif perpendicular to the c direction and lead to a polar structure. The Ce3+ cations and S2- anions located between them. It exhibits a weak SHG response in the IR region. UV/Vis diffuse reflectance spectroscopy study indicates that the optical gap of Ce8Sb2S15 is about 1.99 eV, showing a red shift with respect to the corresponding ternary sulfides: La8Sb2S15, which was attributed to the allowed electronic transfer from the narrow Ce 4 f level to the conduction band, mainly built from the empty Ce 5d orbitals.

  19. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.


    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  20. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.


    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  1. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors (United States)

    Osei, Albert J.


    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of

  2. Near-Zero-Refractive-Index Structure at Optical Frequencies

    Directory of Open Access Journals (Sweden)

    Hassan S. Ashour


    Full Text Available We have used a new class of left-handed materials, which uses 3D nanospheres distributed in loops in the dielectric host material. These 3D nanospheres loops give rise to negative effective permeability and permeability at Terahertz (optical frequencies. The modal dispersion relation for Terahertz TE surface waves has been derived for a slab waveguide constructed from a dielectric material slab sandwiched between two thick layers of Terahertz left-handed material (LHM. The modal dispersion relation and the power flow were numerically solved for a given set of parameters: dielectric slab thickness, the operating frequency, mode order, and the power flow and extinction in the structure. The real part of the effective refractive index exhibits near-zero values, with small extinction coefficient values. Besides that, the power flow in the dielectric core increased with slab thickness increase and the power attenuation decreased with thickness increase.

  3. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte


    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  4. Cu nanoparticles induced structural, optical and electrical modification in PVA

    DEFF Research Database (Denmark)

    Rozra, J.; Saini, I.; Sharma, A.


    Cu nanoparticles were synthesized in PVA matrix by chemical reduction of cupric nitrate with hydrazine hydrate. Structural characterization of synthesized Cu-PVA nanocomposite was carried out using UV-Visible Spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission...... electron microscopy (TEM). Appearance of characteristic surface plasmon resonance peak of Cu nanoparticles at 591 nm in absorption spectra of Cu-PVA colloidal solution confirms the formation of Cu nanoparticles. TEM investigation indicates that Cu nanoparticles of size 16 nm are formed in PVA matrix which...... are in agreement with the size obtained using X-ray diffraction. Morphology of Cu-PVA nanocomposite was further confirmed using SEM. Analysis of UV-Visible absorption and reflection data indicates towards the reduction in optical band gap and increase in refractive index of the resulting nanocomposite...

  5. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990 (United States)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  6. In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm Diffuse Optical and Correlation Spectroscopies.

    Directory of Open Access Journals (Sweden)

    Sanathana Konugolu Venkata Sekar

    Full Text Available Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS to assess mean absorption and reduced scattering spectra in the 600-1200 nm range and Diffuse Correlation Spectroscopy (DCS to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care.

  7. In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies (United States)

    Pagliazzi, Marco; Negredo, Eugènia; Martelli, Fabrizio; Farina, Andrea; Dalla Mora, Alberto; Lindner, Claus; Farzam, Parisa; Pérez-Álvarez, Núria; Puig, Jordi; Taroni, Paola; Pifferi, Antonio; Durduran, Turgut


    Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600–1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care. PMID:27997565

  8. Structured Light in Structured Media: From Classical to Quantum Optics Incubator, OSA Workshop, Washington, DC 28 September-1 October 2013 (United States)


    division- multiplexing , MDM) as a possible next domain to exploit. One MDM approach is multiplexing of optical beams carrying orbital angular momentum...of pseudo-spin with optical angular momentum (AM) and corresponding peculiar spatial structure of a laser beam. Specifically, we study AM dynamics... Angular Momentum of Light Forces Materials to Become Chiral Nano- Structures, Takashige Omatsu, Chiba University Laser beams termed ‘Optical vortex

  9. Surface-driven registration method for the structure-informed segmentation of diffusion MR images. (United States)

    Esteban, Oscar; Zosso, Dominique; Daducci, Alessandro; Bach-Cuadra, Meritxell; Ledesma-Carbayo, María J; Thiran, Jean-Philippe; Santos, Andres


    Current methods for processing diffusion MRI (dMRI) to map the connectivity of the human brain require precise delineations of anatomical structures. This requirement has been approached by either segmenting the data in native dMRI space or mapping the structural information from T1-weighted (T1w) images. The characteristic features of diffusion data in terms of signal-to-noise ratio, resolution, as well as the geometrical distortions caused by the inhomogeneity of magnetic susceptibility across tissues hinder both solutions. Unifying the two approaches, we propose regseg, a surface-to-volume nonlinear registration method that segments homogeneous regions within multivariate images by mapping a set of nested reference-surfaces. Accurate surfaces are extracted from a T1w image of the subject, using as target image the bivariate volume comprehending the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) maps derived from the dMRI dataset. We first verify the accuracy of regseg on a general context using digital phantoms distorted with synthetic and random deformations. Then we establish an evaluation framework using undistorted dMRI data from the Human Connectome Project (HCP) and realistic deformations derived from the inhomogeneity fieldmap corresponding to each subject. We analyze the performance of regseg computing the misregistration error of the surfaces estimated after being mapped with regseg onto 16 datasets from the HCP. The distribution of errors shows a 95% CI of 0.56-0.66mm, that is below the dMRI resolution (1.25mm, isotropic). Finally, we cross-compare the proposed tool against a nonlinear b0-to-T2w registration method, thereby obtaining a significantly lower misregistration error with regseg. The accurate mapping of structural information in dMRI space is fundamental to increase the reliability of network building in connectivity analyses, and to improve the performance of the emerging structure-informed techniques for dMRI data

  10. Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure

    Directory of Open Access Journals (Sweden)

    Hsin-Cheng Lee


    Full Text Available Silicon-based solar cells (SCs promise to be an alternative energy source mainly due to: (1 a high efficiency-to-cost ratio, (2 the absence of environmental-degradation issues, and (3 great reliability. Transition from wafer-based to thin-film SC significantly reduces the cost of SCs, including the cost from the material itself and the fabrication process. However, as the thickness of the absorption (or the active layer decreases, the energy-conversion efficiency drops dramatically. As a consequence, we discuss here three techniques to increase the efficiency of silicon-based SCs: (1 photonic crystal (PC optical couplers and (2 plasmonic optical couplers to increase efficiency of light absorption in the SCs, and (3 a radial p-n junction structure, decomposing light absorption and diffusion path into two orthogonal directions. The detailed mechanisms and recent research progress regarding these techniques are discussed in this review article.

  11. Effects of Orientation and Anisometry of Magnetic Resonance Imaging Acquisitions on Diffusion Tensor Imaging and Structural Connectomes.

    Directory of Open Access Journals (Sweden)

    Raúl Tudela

    Full Text Available Diffusion-weighted imaging (DWI quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions and three different encoding orientations (coronal, axial and sagittal. Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values, producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.

  12. Age-related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural Mri and Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Rishu Rathee


    Full Text Available The aim is to investigate the relationship between microstructural white matter (WM diffusivity indices and macrostructural WM volume (WMV among healthy individuals (20–85 years. Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA. Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group ( P < 0.05. We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices.

  13. Diffusion of Carbon Dioxide in Cordierite-like Structures: a FTIR Imaging Approach (United States)

    Radica, F.; Bellatreccia, F.; Della Ventura, G.; Freda, C.; Cinque, G.; Cestelli Guidi, M.


    In the last decades microporous and mesoporous minerals have been recognized to be very important materials from both a geological and a technological viewpoint. In this context, cordierite plays a key role since it represents the only case of a widespread microporous mineral able to trap significant amounts of molecular H2O and CO2 [1] under extreme geological conditions, spanning from the amphibolite facies to ultra-high temperature metamorphism to crustal anatexis [2]. The analysis of volatiles in cordierite can be a very useful tool to define the composition of coexisting fluids during its formation, thus a deeper knowledge of their diffusion mechanism through the structure is crucial in petrologic studies. However, it may have significant implications on technological issues such as the design of new strategies for the permanent sequestration of atmospheric CO2. The incorporation of CO2 into cordierite has been studied by several authors [1, 3], who pointed out the extreme difficulty to reach the sample saturation and homogenization, implying that in experimental studies knowledge of the actual distribution of the volatile molecules in the run samples is crucial to derive any scientific conclusion. In this work, we addressed this problem using FTIR imaging. Our experiments were carried out in tandem on natural cordierite and synthetic CO2-free beryl, a mineral which is isostructural with cordierite. All samples were treated in CO2-saturated atmosphere at different pressure, temperature and time conditions using a non end-load piston-cylinder apparatus at INGV. The run products were oriented using a spindle stage, cut and doubly polished, and analyzed using polarized micro-FTIR spectroscopy at INFN-LNF in order to study the distribution across the sample and quantify the CO2 content. Preliminary data show that both pressure and time play a major role on the diffusion of gaseous CO2 in both cordierite and beryl, whereas the effect of temperature is less

  14. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. (United States)

    Di Sante, Raffaella


    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  15. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante


    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  16. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications (United States)

    Di Sante, Raffaella


    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  17. Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs. (United States)

    Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert


    Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.

  18. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue (United States)

    Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio


    We present in vivo images of near-infrared (NIR) diffuse optical tomography (DOT) of human lower legs and forearm to validate the dual functions of a time-resolved (TR) NIR DOT in clinical diagnosis, i.e., to provide anatomical and functional information simultaneously. The NIR DOT system is composed of time-correlated single-photon-counting channels, and the image reconstruction algorithm is based on the modified generalized pulsed spectral technique, which effectively incorporates the TR data with reasonable computation time. The reconstructed scattering images of both the lower legs and the forearm revealed their anatomies, in which the bones were clearly distinguished from the muscles. In the absorption images, some of the blood vessels were observable. In the functional imaging, a subject was requested to do handgripping exercise to stimulate physiological changes in the forearm tissue. The images of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentration changes in the forearm were obtained from the differential images of the absorption at three wavelengths between the exercise and the rest states, which were reconstructed with a differential imaging scheme. These images showed increases in both blood volume and oxyhemoglobin concentration in the arteries and simultaneously showed hypoxia in the corresponding muscles. All the results have demonstrated the capability of TR NIR DOT by reconstruction of the absolute images of the scattering and the absorption with a high spatial resolution that finally provided both the anatomical and functional information inside bulky biological tissues.

  19. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography. (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y


    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  20. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra? (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas


    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  1. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring (United States)

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.


    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.

  2. Structural limitations of learning in a crowd: communication vulnerability and information diffusion in MOOCs (United States)

    Gillani, Nabeel; Yasseri, Taha; Eynon, Rebecca; Hjorth, Isis


    Massive Open Online Courses (MOOCs) bring together a global crowd of thousands of learners for several weeks or months. In theory, the openness and scale of MOOCs can promote iterative dialogue that facilitates group cognition and knowledge construction. Using data from two successive instances of a popular business strategy MOOC, we filter observed communication patterns to arrive at the ``significant'' interaction networks between learners and use complex network analysis to explore the vulnerability and information diffusion potential of the discussion forums. We find that different discussion topics and pedagogical practices promote varying levels of 1) ``significant'' peer-to-peer engagement, 2) participant inclusiveness in dialogue, and ultimately, 3) modularity, which impacts information diffusion to prevent a truly ``global'' exchange of knowledge and learning. These results indicate the structural limitations of large-scale crowd-based learning and highlight the different ways that learners in MOOCs leverage, and learn within, social contexts. We conclude by exploring how these insights may inspire new developments in online education.

  3. General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Xu, Huihua; Zhao, Ni; Wang, Yu; Rogach, Andrey L; Shen, Yingzhong


    Resistive random access memory (RRAM) devices based on metal oxides, organic molecules and inorganic nanocrystals (NCs) have been studied extensively in recent years. Different memory switching mechanisms have been proposed and shown to be closely related to the device architectures. In this work, we demonstrate that the use of an ITO/active layer/InGa structure can yield nonvolatile resistive memory behavior in a variety of active materials, including polymers, organic small molecules, and colloidal NCs. Through the electrode material and thickness-dependent study, we show that the ON state of the devices is associated with filamentary conduction induced by indium diffusion from the ITO electrode, occurring mostly within around 40–50 nm from the ITO/active layer interface. A negative differential resistance (NDR) regime is observed during transition from the ON to OFF state, and is explained by the space charge limited current (SCLC) effect due to hole injection at the ITO/active layer interface. Our study reveals the impact of indium diffusion at the ITO/active layer interface, an important factor that should be taken into consideration when designing thin printed RRAM devices. (paper)

  4. Effects of Structure and Hydrodynamics on the Sooting Behavior of Spherical Microgravity Diffusion Flames (United States)

    Sunderland, P. B.; Axelbaum, R. L.; Urban, D. L.


    Recent experimental, numerical and analytical work has shown that the stoichiometric mixture fraction (Z(sub st)) can have a profound effect on soot formation in diffusion flames. These findings were obtained at constant flame temperature (T(sub ad)), employing the approach described in Du and Axelbaum (1995, 1996). For example, a fuel mixture containing 1 mole of ethylene and 11.28 moles of nitrogen burning in pure oxygen ((Z(sub st)) = 0.78) has the same adiabatic flame temperature (2370 K) as that of pure ethylene burning in air ((Z(sub st)) = 0.064). An important finding of these works was that at sufficiently high (Z(sub st)), flames remain blue as strain rate approaches zero in counterflow flames, or as flame height and residence time approach infinity in coflowing flames. Lin and Faeth (1996a) coined the term permanently blue to describe such flames. Two theories have been proposed to explain the appearance of permanently-blue flames at high (Z(sub st)). They are based on (1) hydrodynamics and (2) flame structure. Previous experimental studies in normal gravity are not definitive as to which, if either, mechanism is dominant because both hydrodynamics and structure suppress soot formation at high (Z(sub st)) in coflowing and counterflowing diffusion flames. In counterflow flames with (Z(sub st)) 0.5, convection at the flame is toward the oxidizer, thus enhancing soot oxidization. Thus, in counterflow flames, hydrodynamics causes soot to be convected towards the oxidizer at high (Z(sub st)) which suppresses soot formation. Axelbaum and co-workers maintain that while the direction of convection can impact soot growth and oxidation, these processes alone cannot cause permanently-blue flames. Soot growth and oxidation are dependent on the existence of soot particles and the presence of soot is invariably accompanied by yellow luminosity. Soot-particle inception, on the other hand, arises from gas-phase reactions and its dependence on flow direction is weak

  5. Effects of non-local diffusion on structural MRI preprocessing and default network mapping: statistical comparisons with isotropic/anisotropic diffusion.

    Directory of Open Access Journals (Sweden)

    Xi-Nian Zuo

    Full Text Available Neuroimaging community usually employs spatial smoothing to denoise magnetic resonance imaging (MRI data, e.g., Gaussian smoothing kernels. Such an isotropic diffusion (ISD based smoothing is widely adopted for denoising purpose due to its easy implementation and efficient computation. Beyond these advantages, Gaussian smoothing kernels tend to blur the edges, curvature and texture of images. Researchers have proposed anisotropic diffusion (ASD and non-local diffusion (NLD kernels. We recently demonstrated the effect of these new filtering paradigms on preprocessing real degraded MRI images from three individual subjects. Here, to further systematically investigate the effects at a group level, we collected both structural and functional MRI data from 23 participants. We first evaluated the three smoothing strategies' impact on brain extraction, segmentation and registration. Finally, we investigated how they affect subsequent mapping of default network based on resting-state functional MRI (R-fMRI data. Our findings suggest that NLD-based spatial smoothing maybe more effective and reliable at improving the quality of both MRI data preprocessing and default network mapping. We thus recommend NLD may become a promising method of smoothing structural MRI images of R-fMRI pipeline.

  6. Structured reporting adds clinical value in primary CT staging of diffuse large B-cell lymphoma. (United States)

    Schoeppe, Franziska; Sommer, Wieland H; Nörenberg, Dominik; Verbeek, Mareike; Bogner, Christian; Westphalen, C Benedikt; Dreyling, Martin; Rummeny, Ernst J; Fingerle, Alexander A


    To evaluate whether template-based structured reports (SRs) add clinical value to primary CT staging in patients with diffuse large B-cell lymphoma (DLBCL) compared to free-text reports (FTRs). In this two-centre study SRs and FTRs were acquired for 16 CT examinations. Thirty-two reports were independently scored by four haematologists using a questionnaire addressing completeness of information, structure, guidance for patient management and overall quality. The questionnaire included yes-no, 10-point Likert scale and 5-point scale questions. Altogether 128 completed questionnaires were evaluated. Non-parametric Wilcoxon signed-rank test and McNemar's test were used for statistical analysis. SRs contained information on affected organs more often than FTRs (95 % vs. 66 %). More SRs commented on extranodal involvement (91 % vs. 62 %). Sufficient information for Ann-Arbor classification was included in more SRs (89 % vs. 64 %). Information extraction was quicker from SRs (median rating on 10-point Likert scale=9 vs. 6; 7-10 vs. 4-8 interquartile range). SRs had better comprehensibility (9 vs. 7; 8-10 vs. 5-8). Contribution of SRs to clinical decision-making was higher (9 vs. 6; 6-10 vs. 3-8). SRs were of higher quality (p < 0.001). All haematologists preferred SRs over FTRs. Structured reporting of CT examinations for primary staging in patients with DLBCL adds clinical value compared to FTRs by increasing completeness of reports, facilitating information extraction and improving patient management. • Structured reporting in CT helps clinicians to assess patients with lymphoma. • This two-centre study showed that structured reporting improves information content and extraction. • Patient management may be improved by structured reporting. • Clinicians preferred structured reports over free-text reports.

  7. Structural inspection and wind analysis of redwood cooling towers at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Chung, T.; Solack, T.; Hortel, J.


    As part of the plant upgrade program, structural analyses and field inspections were performed on four redwood cooling towers at the DOE Portsmouth gaseous diffusion plant located in Piketon, Ohio. The cooling towers are categorized as important hazard facilities. The loadings are derived from UCRL-15910 according to the pertinent hazard category. In addition to the seismic and wind loadings, the wood cooling towers are constantly subject to adverse environmental effects such as elevated temperature, chemical attack, icing and snow load, and motor vibrations. A thorough structural evaluation for all load combinations was performed for each of the cooling towers based on the structural code requirements of the Cooling Tower Institute and National Forest Products Association. Most stress criteria are unique for the redwood material. This evaluation was performed using finite element techniques on the global structural integrity and supplemented by hand calculations on the individual connection joints. Overloaded wood structural members and joints are identified by the analysis. The rectangular tower structure sits on a concrete basin that span across 60 ft by 200 ft. A major part of the cooling towers upgrading program involved field inspections of the individual cells of each tower. The primary purpose of these inspections was to identify any existing structural damage or deficiencies such as failed members, degraded wood, and deficiencies resulting from poor construction practice. Inspection of 40 cells identified some generic deficiencies that mostly are consistent with the analytical finding. Based on the analysis, some effective but inexpensive upgrading techniques were developed and recommended to bring the cooling towers into compliance with current DOE requirements

  8. Spatial distribution of ultra-diffuse galaxies within large-scale structures (United States)

    Román, Javier; Trujillo, Ignacio


    Taking advantage of the Sloan Digital Sky Survey Stripe82 data, we have explored the spatial distribution of ultra-diffuse galaxies (UDGs) within an area of 8 × 8 Mpc2 centred around the galaxy cluster Abell 168 (z = 0.045). This intermediate massive cluster (σ = 550 km s-1) is surrounded by a complex large-scale structure. Our work confirms the presence of UDGs in the cluster and in the large-scale structure that surrounds it, and it is the first detection of UDGs outside clusters. Approximately 50 per cent of the UDGs analysed in the selected area inhabit the cluster region (˜11 ± 5 per cent in the core and ˜39 ± 9 per cent in the outskirts), whereas the remaining UDGs are found outside the main cluster structure (˜50 ± 11 per cent). The colours and the spatial distribution of the UDGs within this large-scale structure are more similar to dwarf galaxies than to L⋆ galaxies, suggesting that most UDGs could be bona fide dwarf galaxies.

  9. Biomimetric sentinel reef structures for optical sensing and communications (United States)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor


    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  10. Structural, electrical, electronic and optical properties of melanin films (United States)

    Abbas, M.; D'Amico, F.; Morresi, L.; Pinto, N.; Ficcadenti, M.; Natali, R.; Ottaviano, L.; Passacantando, M.; Cuccioloni, M.; Angeletti, M.; Gunnella, R.


    We present thick, uniform and rather flat melanin films obtained using spray deposition. The morphology of the films was investigated using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Temperature-dependent electrical resistance of melanin thin films evidenced a semiconductor-like character and a hysteretic behavior linked to an irreversible process of water molecule desorption from the melanin film. X-ray Photoelectron Spectroscopy (XPS) was carried out to analyze the role of the functional groups in the primary and secondary structure of the macromolecule, showing that the contribution of the 5,6-dihydroxyindole-2-carboxylic acid (DHICA) subunit to the molecule is about 35%. Comparison of the optical absorption of the thick (800nm) and thin (80nm) films showed a spectral change when the thickness increases. From in vacuum photoconductivity (PC) measured at controlled temperatures, we suggest that the melanin films exhibit a possible charge transport mechanism by means of delocalized π states along the stacked planar secondary structure.

  11. A new Cu–cysteamine complex: structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lun; Chen, Wei; Schatte, Gabriele; Wang, Wei; Joly, Alan G.; Huang, Yining; Sammynaiken, Ramaswami; Hossu, Marius


    Here we report the structure and optical properties of a new Cu–cysteamine complex (Cu–Cy) with a formula of Cu3Cl(SR)2 (R ¼ CH2CH2NH2). This Cu–Cy has a different structure from a previous Cu–Cy complex, in which both thio and amine groups from cysteamine bond with copper ions. Single-crystal X-ray diffraction and solid-state nuclear magnetic resonance results show that the oxidation state of copper in Cu3Cl(SR)2 is +1 rather than +2. Further, Cu3Cl(SR)2 has been observed to show intense photoluminescence and X-ray excited luminescence. More interesting is that Cu3Cl(SR)2 particles can produce singlet oxygen under irradiation by light or X-ray. This indicates that Cu3Cl(SR)2 is a new photosensitizer that can be used for deep cancer treatment as X-ray can penetrate soft tissues. All these findings mean that Cu3Cl(SR)2 is a new material with potential applications for lighting, radiation detection and cancer treatment.

  12. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging. (United States)

    Teh, Irvin; McClymont, Darryl; Zdora, Marie-Christine; Whittington, Hannah J; Davidoiu, Valentina; Lee, Jack; Lygate, Craig A; Rau, Christoph; Zanette, Irene; Schneider, Jürgen E


    Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HA DTI-STSRI  = -1.4° ± 23.2° and TA DTI-STSRI  = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical

  13. An evaluation of meniscal collagenous structure using optical projection tomography

    International Nuclear Information System (INIS)

    Andrews, Stephen HJ; Ronsky, Janet L; Rattner, Jerome B; Shrive, Nigel G; Jamniczky, Heather A


    The collagenous structure of menisci is a complex network of circumferentially oriented fascicles and interwoven radially oriented tie-fibres. To date, examination of this micro- architecture has been limited to two-dimensional imaging techniques. The purpose of this study was to evaluate the ability of the three-dimensional imaging technique; optical projection tomography (OPT), to visualize the collagenous structure of the meniscus. If successful, this technique would be the first to visualize the macroscopic orientation of collagen fascicles in 3-D in the meniscus and could further refine load bearing mechanisms in the tissue. OPT is an imaging technique capable of imaging samples on the meso-scale (1-10 mm) at a micro-scale resolution. The technique, similar to computed tomography, takes two-dimensional images of objects from incremental angles around the object and reconstructs them using a back projection algorithm to determine three-dimensional structure. Bovine meniscal samples were imaged from four locations (outer main body, femoral surface, tibial surface and inner main body) to determine the variation in collagen orientation throughout the tissue. Bovine stifles (n = 2) were obtained from a local abattoir and the menisci carefully dissected. Menisci were fixed in methanol and subsequently cut using a custom cutting jig (n = 4 samples per meniscus). Samples were then mounted in agarose, dehydrated in methanol and subsequently cleared using benzyl alcohol benzyl benzoate (BABB) and imaged using OPT. Results indicate circumferential, radial and oblique collagenous orientations at the contact surfaces and in the inner third of the main body of the meniscus. Imaging identified fascicles ranging from 80-420 μm in diameter. Transition zones where fascicles were found to have a woven or braided appearance were also identified. The outer-third of the main body was composed of fascicles oriented predominantly in the circumferential direction. Blood vessels were

  14. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements (United States)

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan


    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  15. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. (United States)

    Marami, Bahram; Mohseni Salehi, Seyed Sadegh; Afacan, Onur; Scherrer, Benoit; Rollins, Caitlin K; Yang, Edward; Estroff, Judy A; Warfield, Simon K; Gholipour, Ali


    Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average

  16. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy. (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan


    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  17. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Arturo Cardenas-Blanco


    Full Text Available Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects upper and lower motor neurons. Observational and intervention studies can be tracked using clinical measures such as the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R but for a complete understanding of disease progression, objective in vivo biomarkers of both central and peripheral motor pathway pathology are highly desirable. The aim of this study was to determine the utility of structural and diffusion imaging as central nervous system biomarkers compared to the standard clinical measure, ALSFRS-R, to track longitudinal evolution using three time-point measurements. N = 34 patients with ALS were scanned and clinically assessed three times at a mean of three month time intervals. The MRI biomarkers were structural T1-weighted volumes for cortical thickness measurement as well as deep grey matter volumetry, voxel-based morphometry and diffusion tensor imaging (DTI. Cortical thickness focused specifically on the precentral gyrus while quantitative DTI biomarkers focused on the corticospinal tracts. The evolution of imaging biomarkers and ALSFRS-R scores over time were analysed using a mixed effects model that accounted for the scanning interval as a fixed effect variable, and, the initial measurements and time from onset as random variables. The mixed effects model showed a significant decrease in the ALSFRS-R score, (p  0.5. In addition, deep grey matter volumetry and voxel-based morphometry also identified no significant changes. Furthermore, the availability of three time points was able to indicate that there was a linear progression in both clinical and fractional anisotropy measures adding to the validity of these results. The results indicate that DTI is clearly a superior imaging marker compared to atrophy for tracking the evolution of the disease and can act as a central nervous biomarker in longitudinal studies. It

  18. Bulk growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Imidazolium L-Ascorbate (United States)

    Saripalli, Ravi Kiran; Bhat, H. L.; Elizabeth, Suja


    Bulk, transparent organic nonlinear optical (NLO) single-crystals of imidazolium L-Ascorbate (ImLA) were grown using slow-evaporation. Crystal structure was determined by single crystal X-ray diffraction analysis. Preliminary linear optical measurements through UV-Visible and infrared spectroscopy revealed good optical transmittance and a low near-UV cutoff wavelength at 256 nm. Kurtz and Perry powder test revealed that ImLA is a phase-matchable NLO material with a second harmonic generation (SHG) efficiency of 1.2 times larger than that of standard KH2PO4 (KDP). Laser damage thresholds were determined for ImLA.

  19. Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell (United States)

    Inoue, Gen; Kawase, Motoaki


    It is important to reduce the oxygen diffusion resistance through PEFC porous electrode, because it is the key to reduce the PEFC cost. However, the gas diffusion coefficient of CL is lower than MPL in spite of framework consisted of same carbon blacks. In this study, in order to understand the reasons of the lower gas diffusion performance of CL, the relationship between a carbon black agglomerate structure and ionomer adhesion condition is evaluated by a numerical analysis with an actual reconstructed structure and a simulated structure. As a result, the gas diffusion property of CL strongly depends on the ionomer adhesion shape. In the case of adhesion shape with the same curvature of ionomer interface, each pore can not be connected enough. So the pore tortuosity increases. Moreover, in the case of existence of inefficient large pores formed by carbon black agglomerate and ununiformly coated ionomer, the gas diffusion performance decrease rapidly. As the measurement values in actual CL are almost equal to that with model structure with inefficient large pores. These characteristics can be confirmed by actual cross-section image obtained by FIB-SEM.

  20. Air-structured optical fibre drawn from a 3D-printed preform


    Cook, Kevin; Canning, John; Leon-Saval, Sergio; Reid, Zane; Hossain, Md Arafat; Comatti, Jade-Edouard; Luo, Yanhua; Peng, Gang-Ding


    A structured optical fibre is drawn from a 3D-printed structured preform. Preforms containing a single ring of holes around the core are fabricated using filament made from a modified butadiene polymer. More broadly, 3D printers capable of processing soft glasses, silica and other materials are likely to come on line in the not-so distant future. 3D printing of optical preforms signals a new milestone in optical fibre manufacture.

  1. Strategic structure matrix: A framework for explaining the impact of superstructure organizations on the diffusion of wind energy infrastructure

    International Nuclear Information System (INIS)

    Tang, Amy; Taylor, John E.; Mahalingam, Ashwin


    Increasing the use of renewables in the global energy mix has become a top priority for policy makers. In this paper, we use a diffusion theory based approach to analyze the impact of government initiatives on the development of wind energy infrastructure focusing on the specific case of wind energy diffusion in India. We propose a new framework—the strategic structure matrix—as a way to characterize the strategic focus and analyze the effectiveness of different initiatives to increase wind power diffusion. We apply the matrix to explain the different pace and paths of wind energy growth observed in five Indian states: Tamil Nadu, Gujarat, Maharashtra, Andhra Pradesh, and Karnataka. Our findings suggest the importance of a comprehensive approach that includes multiple strategies across initiatives, local regulatory measures, and supply-side incentives. - Highlights: • A new framework—the Strategic Structure Matrix—is proposed. • It characterizes strategic initiatives designed to promote innovation diffusion. • The matrix was validated using case study data on wind power diffusion in India. • The matrix can help shape government policies to improve RET diffusion

  2. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick


    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  3. Electronic Structure and Optical Properties Of EuIn2P2

    KAUST Repository

    Singh, Nirpendra


    The electronic structures and, optical and magneto‐optical properties of a newly found Zintl compound EuIn2P2 have been investigated within the density‐functional theory using the highly precise full‐potential linear‐augmented‐plane‐wave method. Results of detailed investigation of the electronic structure and related properties are reported.

  4. Revealing the Structural Neural Circuitry of Attention Deficit Hyperactivity Disorder With Diffusion MRI: Implications for Future Diagnosis and Treatment. (United States)

    Adisetiyo, Vitria


    Rates of attention deficit hyperactivity disorder (ADHD) diagnosis and psychostimulant prescriptions continue to rise, yet there are no clear diagnostic tests or biomarkers for the disorder. The purpose of this article is to highlight the role of diffusion MRI in bolstering a neurobiologic conceptualization of ADHD and how this holds promise for optimizing future diagnosis. Diffusion MRI is a powerful neuroimaging tool for noninvasive assessment of the structural neural circuitry underlying brain function and behavior. Though the modality is still in its infancy, diffusion MRI studies are showing neural network disruption in ADHD consistent with findings from other imaging modalities. Given the mounting evidence of brain-behavior correlates in ADHD, it is likely that imaging-based biomarkers will one day be incorporated into clinical diagnosis and treatment evaluation. Until then, diffusion MRI findings serve to validate ADHD as a brain-based disorder with immediate public health implications for individuals with ADHD.

  5. Fiber-Optic Ultrasound Sensors for Smart Structures Applications

    National Research Council Canada - National Science Library

    Krishnaswamy, Sridhar


    The project addressed the development of an important nondestructive evaluation tool utilizing fiber-optic ultrasonic sensors which can be permanently mounted in inaccessible regions of an airframe...

  6. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.


    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  7. Optical fiber Fabry-Perot sensors for smart structures (United States)

    Lee, C. E.; Alcoz, J. J.; Yeh, Y.; Gibler, W. N.; Atkins, R. A.; Taylor, H. F.


    The paper describes the operation principles and the construction, performance, and application of optical fiber Fabry-Perot interferometers (FFPIs) utilizing internal mirrors, developed for sensing temperature, strain, acoustic waves, and other physical perturbations in structural materials. It is shown that the internal-mirror FFPI sensors have a good mechanical strength which make it possible for the sensors to endure mechanical stresses experienced during the embedding process, and provide high sensitivity and point-sensing and ultrasound pressure. A digital signal processor is described. the 29th International Conference on the Applications of the Mössbauer Effect (ICAME 2007) held in Kanpur, India, 14-19 October 2007, PART IV/VII 30 2008 11 19 2008 11 18 2008 7 2008 Springer Science+Business Media B.V. 2008 9819 10.1007/s10751-008-9819-1 17 57Fe-Mössbauer study of electrically conducting barium iron vanadate glass after heat treatment 115 121 2008 9 17 2008 10 9 Spr

  8. Co2+-doped diopside: crystal structure and optical properties (United States)

    Gori, C.; Tribaudino, M.; Mezzadri, F.; Skogby, H.; Hålenius, U.


    Synthetic clinopyroxenes along the CaMgSi2O6-CaCoSi2O6 join were investigated by a combined chemical-structural-spectroscopic approach. Single crystals were synthesized by flux growth methods, both from Ca-saturated and Ca-deficient starting compositions. Single crystal structure refinements show that the incorporation of Co2+ at the octahedrally coordinated cation sites of diopside, increases the unit-cell as well as the M1 and the M2 polyhedral volumes. Spectroscopic investigations (UV-VIS-NIR) of the Ca-rich samples reveal three main optical absorption bands, i.e. 4 T 1g → 4 T 2g(F), 4 T 1g → 4 A 2g(F) and 4 T 1g → 4 T 1g(P) as expected for Co2+ at a six-coordinated site. The bands arising from the 4 T 1g → 4 T 2g(F) and the 4 T 1g → 4 T 1g(P) electronic transitions, are each split into two components, due to the distortions of the M1 polyhedron from ideal Oh-symmetry. In spectra of both types, a band in the NIR range at ca 5000 cm-1 is caused by the 4 A 2g → 4 T 1g(F) electronic transition in Co2+ in a cubic field in the M2 site. Furthermore, an additional component to a band system at 14,000 cm-1, due to electronic transitions in Co2+ at the M2 site, is recorded in absorption spectra of Ca-deficient samples. No variations in Dq and Racah B parameters for Co2+ at the M1 site in response to compositional changes, were demonstrated, suggesting complete relaxation of the M1 polyhedron within the CaMgSi2O6-CaCoSi2O6 solid solution.

  9. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe


    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  10. Modeling of the blood flow in the lower extremities for dynamic diffuse optical tomography of peripheral artery disease (United States)

    Marone, A.; Hoi, J. W.; Khalil, M. A.; Kim, H. K.; Shrikhande, G.; Dayal, R.; Hielscher, A. H.


    Peripheral Arterial Disease (PAD) is caused by a reduction of the internal diameters of the arteries in the upper or lower extremities mainly due to atherosclerosis. If not treated, its worsening may led to a complete occlusion, causing the death of the cells lacking proper blood supply, followed by gangrene that may require chirurgical amputation. We have recently performed a clinical study in which good sensitivities and specificities were achieved with dynamic diffuse optical tomography. To gain a better understanding of the physiological foundations of many of the observed effects, we started to develop a mathematical model for PAD. The model presented in this work is based on a multi-compartment Windkessel model, where the vasculature in the leg and foot is represented by resistors and capacitors, the blood pressure with a voltage drop, and the blood flow with a current. Unlike existing models, the dynamics induced by a thigh-pressure-cuff inflation and deflation during the measurements are taken into consideration. This is achieved by dynamically varying the resistances of the large veins and arteries. By including the effects of the thigh-pressure cuff, we were able to explain many of the effects observed during our dynamic DOT measurements, including the hemodynamics of oxy- and deoxy-hemoglobin concentration changes. The model was implemented in MATLAB and the simulations were normalized and compared with the blood perfusion obtained from healthy, PAD and diabetic patients. Our preliminary results show that in unhealthy patients the total system resistance is sensibly higher than in healthy patients.

  11. Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure (United States)

    Jiang, Hao; Stewart, Derek A.


    Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.

  12. Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics (United States)

    Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish


    Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.

  13. The All-fiber MZI Structure for Optical DPSK Demodulation and Optical PSBT Encoding

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau


    Full Text Available Since the beginning of optical telecommunications, the most simple modulation format has been employed in optical links. This format is called OOK (On Off Keying. With the increases in bit rates, number of optical channels in Dense Wavelength Division Multiplexing (DWDM configuration, and the augmentation of power in each channel, new modulation formats have been studied in the last years. Today, in order to increase the quality of optical links, tendency is to modify the modulation scheme used to encode information in light signals. Particularly, the Differential Phase Shift Keying (DPSK format presents an increased tolerance to non-linear effects in optical fibers, justifying the interest for using this format in optical communications links. In the past two years, some studies investigated the possibilities to transmit 40 Gbps data rates on the deployed 10 Gbps links. An interesting solution consists in using the Phase Shaped Binary Transmission (PSBT modulation format. With this technique, the system upgrade costs from 10 Gbps to 40 Gbps are reduced, justifying the use of PSBT. In this paper, we present two applications of Mach-Zehnder Inteferometers (MZIs, used in optical communication links. We first review the principles of the Differential Phase Shift Keying (DPSK, a phase modulation scheme, and its interest in optical communications. After that, we also focus on a recently introduced modulation format: the all-optical Phase Shaped Binary Transmission (PSBT.

  14. Diffuse X-ray scattering as a probe of strain-induced nanoscale structure

    International Nuclear Information System (INIS)

    Welberry, T.R.


    Full text: We show in this paper that a feature that has been observed in the diffuse scattering patterns of a wide variety of different materials-a diffuse 'ring' or toroidal shaped region of scattering-can be understood in terms of a simple model that has been borrowed from the field of sol-gel science. In this it is supposed that there is a balance between the local attractive forces that are trying to make a particular structure and a rather longer-range repulsive force. In the present context we believe this latter force has its origin in the strain that builds as the preferred local structure tries to fit into the average crystal lattice. We describe here simple Monte Carlo (MC) models in which this principle has been demonstrated for three examples: cubic stabilized zirconia, the didecylbenzene/urea inclusion compound and the pure molecular compound 1,3-dibromo-2,5-diethyl-4,6-dimethyl-benzene (BEMB2). A similar feature is also observed in the alumino-silicate ceramic mullite. Although we are confident that this feature in mullite has similar origins to those of the other examples described, no attempt has been made to model it at this stage as this system shows additional incommensurate diffraction effects not easily described by the kind of simple model presented here. The result of the present work is particularly important in the context of the stabilised zirconia problem. The realisation that the very complex structural problem can be explained by such a simple physical idea should enable further progress to be made in understanding the properties of a wide range of these materials. A description in terms of the cation ordering is, from a chemical point of view, a much more natural approach than that used in previous studies where the oxygen vacancies were given prominence. To incorporate the anions into the derived cation distributions should be quite feasible using simple bond-valence criteria, so that a much more complete model should now be

  15. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann


    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  16. Parallel plate structures for optical modulation and casimir force measurement

    NARCIS (Netherlands)

    Syed Nawazuddin, M.B.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt


    Integrated optical switches using mechano-optical sensing are gaining more attention in many fields due to their fast switching speed, large bandwidth and compact devices. In this paper, a micromachined electrostatically actuated metal plate to sense the evanescent field above the waveguide is

  17. Near-Field Optical Microscopy of Fractal Structures

    DEFF Research Database (Denmark)

    Coello, Victor; Bozhevolnyi, Sergey I.


    Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern...

  18. Electronic structure and optical properties of prominent phases of ...

    Indian Academy of Sciences (India)

    Santosh singh


    Jun 19, 2017 ... behaviour of the optical spectra in the optical region for transparent conducting application. Keywords. Optoelectronic; titanium .... and (b) anatase phases of TiO2. Red and gray ball indicate O and Ti atoms respectively. .... [11] H Fox, K E Newman, W F Schneider and S A Corcelli,. J. Chem. Theory Comput.

  19. Effect of External Optical Feedback for Nano-laser Structures

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug


    We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers.......We theoretically investigated the effect of optical feedback on a photonic crystal nanolaser, comparing with conventional in-plane and vertical-cavity lasers....

  20. Fiber Optics Deliver Real-Time Structural Monitoring (United States)


    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.