WorldWideScience

Sample records for diffusive light imager

  1. Light diffuseness metric, part 2 : Describing, measuring and visualizing the light flow and diffuseness in three-dimensional spaces

    NARCIS (Netherlands)

    Xia, L.; Pont, S.C.; Heynderickx, I.E.J.

    2017-01-01

    We introduce a way to simultaneously measure the light density, light vector and diffuseness of the light field using a cubic illumination meter based on the spherical harmonics representation of the light field. This approach was applied to six light probe images of natural scenes and four real

  2. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  3. Light source distribution and scattering phase function influence light transport in diffuse multi-layered media

    Science.gov (United States)

    Vaudelle, Fabrice; L'Huillier, Jean-Pierre; Askoura, Mohamed Lamine

    2017-06-01

    Red and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multispectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.

  4. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    Science.gov (United States)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  5. Breast Cancer Diagnosis Using Ultrasound and Diffusive Light

    National Research Council Canada - National Science Library

    Zhu, Quing

    2001-01-01

    The main goal of this study is to evaluate a novel imaging system and method that combines ultrasound with near infrared diffusive light to increase the sensitivity and specificity of breast cancer detection...

  6. Correlated diffusion imaging

    International Nuclear Information System (INIS)

    Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom

    2013-01-01

    Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer

  7. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  8. Diffusive-light invisibility cloak for transient illumination

    Science.gov (United States)

    Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.

    2016-12-01

    Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.

  9. System for diffusing light from an optical fiber or light guide

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  10. Small-polaron model of light atom diffusion

    International Nuclear Information System (INIS)

    Emin, D.

    1977-01-01

    A number of researchers have treated the diffusion of light interstitials in metals in strict analogy with the theory for the hopping diffusion of electrons in low-mobility insulators. In other words, these authors view the diffusion of light atoms as simply being an example of small-polaron hopping motion. In this paper the motion of a small polaron is introduced, and the mechanism of its motion is described. The experimental results are then succinctly presented. Next the physical assumptions implicit in the theory are compared with the situation which is believed to characterize the existence and motion of light interstitial atoms in metals. Concomitantly, the modifications of the small-polaron theory required in applying it to light atom diffusion are ennumerated

  11. Fiberoptic microneedles: novel optical diffusers for interstitial delivery of therapeutic light.

    Science.gov (United States)

    Kosoglu, Mehmet A; Hood, Robert L; Rossmeisl, John H; Grant, David C; Xu, Yong; Robertson, John L; Rylander, Marissa Nichole; Rylander, Christopher G

    2011-11-01

    Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area.This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper.Second, spatial temperature distribution of the paper in response to near-IR light (1,064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1,064 nm, (5 W CW)irradiation was recorded with bright field microscopy. Acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1,064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target chromophores, while minimizing undesirable photothermal damage in adjacent

  12. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  13. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  14. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers.

    Science.gov (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Maruoka, Yasuhiro; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-16

    Near-infrared photoimmunotherapy (NIR-PIT), a promising cancer therapy utilizing an antibody-photoabsorber conjugate (APC) and NIR light, which induces rapid necrotic cell death only in APC-bound cells. Effective NIR-PIT in mouse models has been achieved using superficial light illumination (SLI) with light emitting diodes (LEDs) or lasers, but in the clinical setting, fiber optic diffusers have been employed to deliver light to deeper tumors. However, the performance of NIR light in tissue delivered by fiber optic diffusers is poorly understood. Here, we investigated NIR-PIT using a cylindrical fiber optic diffuser in a mouse model of A431 tumors. NIR-PIT with 100 J/cm, the same light dose used in clinical trials of NIR-PIT, was applied after insertion of the diffuser within the tumor bed, and then both bioluminescence and fluorescence imaging were analyzed to assess the therapeutic efficacy. The diffuser can deliver adequate NIR light dose for effective NIR-PIT to the A431 tumor at a distance of approximately 1 cm around the light source at 100 J/cm. At 50 J/cm NIR light effective NIR-PIT was reduced to a distance of 5 - 7 mm diameter around the light source. These results indicate that the energy of interstitial light (measured in Joules/cm) administered via a fiber diffuser determines the depth of effective NIR-PIT around the diffuser and determines the spacing at which such diffusers should be placed to entirely cover the tumor. Thermal measurements demonstrate that interstitial light for NIR-PIT does not cause damage to the skin overlying the diffuser.

  15. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  16. Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation

    OpenAIRE

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; Bhatia, Nitin N.; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performedon a healthy 31-year-old man with asymptomatic lumbar disc herniation. Althoughthe left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic...

  17. Principles and implementation of diffusion-weighted and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Roberts, Timothy P.L.; Schwartz, E.S.

    2007-01-01

    We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of ''apparent'' diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies. (orig.)

  18. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    Science.gov (United States)

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  19. Performance characteristics of UV imaging instrumentation for diffusion, dissolution and release testing studies

    DEFF Research Database (Denmark)

    Jensen, Sabrine S; Jensen, Henrik; Goodall, David M

    2016-01-01

    UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging syst...... mainly to depend on collimation of light, the light path, the positioning of the object relative to the line of 100μm fibres which forms the light source, and the distance of the object from the sensor surface....

  20. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    Science.gov (United States)

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  1. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm.

  2. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE).

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance-encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at unprecedented, speckle-scale lateral resolution of ~ 5 μm.

  3. Sol-Gel Glass Holographic Light-Shaping Diffusers

    Science.gov (United States)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  4. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  5. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  6. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  7. Metamaterial devices for molding the flow of diffuse light (Conference Presentation)

    Science.gov (United States)

    Wegener, Martin

    2016-09-01

    Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.

  8. Bayesian regularization of diffusion tensor images

    DEFF Research Database (Denmark)

    Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif

    2007-01-01

    Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...

  9. Diffusion weighted imaging by MR method

    International Nuclear Information System (INIS)

    Horikawa, Yoshiharu; Naruse, Shoji; Ebisu, Toshihiko; Tokumitsu, Takuaki; Ueda, Satoshi; Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro.

    1993-01-01

    Diffusion weighted magnetic resonance imaging is a recently developed technique used to examine the micromovement of water molecules in vivo. We have applied this technique to examine various kinds of brain diseases, both experimentally and clinically. The calculated apparent diffusion coefficient (ADC) in vivo showed reliable values. In experimentally induced brain edema in rats, the pathophysiological difference of the type of edema (such as cytotoxic, and vasogenic) could be differentiated on the diffusion weighted MR images. Cytotoxic brain edema showed high intensity (slower diffusion) on the diffusion weighted images. On the other hand, vasogenic brain edema showed a low intensity image (faster diffusion). Diffusion anisotropy was demonstrated according to the direction of myelinated fibers and applied motion proving gradient (MPG). This anisotropy was also demonstrated in human brain tissue along the course of the corpus callosum, pyramidal tract and optic radiation. In brain ischemia cases, lesions were detected as high signal intensity areas, even one hour after the onset of ischemia. Diffusion was faster in brain tumor compared with normal brain. Histological differences were not clearly reflected by the ADC value. In epidermoid tumor cases, the intensity was characteristically high, was demonstrated, and the cerebrospinal fluid border was clearly demonstrated. New clinical information obtainable with this molecular diffusion method will prove to be useful in various clinical studies. (author)

  10. Basic principles of diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Bammer, Roland.

    2003-01-01

    In diffusion-weighted MRI (DWI), image contrast is determined by the random microscopic motion of water protons. During the last years, DWI has become an important modality in the diagnostic work-up of acute ischemia in the CNS. There are also a few promising reports about the application of DWI to other regions in the human body, such as the vertebral column or the abdomen. This manuscript provides an introduction into the basics of DWI and Diffusion Tensor imaging. The potential of various MR sequences in concert with diffusion preparation are discussed with respect to acquisition speed, spatial resolution, and sensitivity to bulk physiologic motion. More advanced diffusion measurement techniques, such as high angular resolution diffusion imaging, are also addressed

  11. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors

    NARCIS (Netherlands)

    Li, T.; Heuvelink, E.; Dueck, T.A.; Janse, J.; Gort, G.; Marcelis, L.F.M.

    2014-01-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in

  12. Image denoising using non linear diffusion tensors

    International Nuclear Information System (INIS)

    Benzarti, F.; Amiri, H.

    2011-01-01

    Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.

  13. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.

    Science.gov (United States)

    Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Yamao, Yukihiro; Shibata, Sumiya; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic

  14. Diffuse reflectance imaging: a tool for guided biopsy

    Science.gov (United States)

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  15. Effects of diffuse light on radiation use efficiency depend on the response of stomatal conductance to dynamic light intensity

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2016-02-01

    Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  16. Quantum diffusion of light interstitials in metals

    International Nuclear Information System (INIS)

    McMullen, T.; Bergersen, B.

    1978-01-01

    A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)

  17. Diffusion imaging and tractography of congenital brain malformations

    International Nuclear Information System (INIS)

    Wahl, Michael; Barkovich, A.J.; Mukherjee, Pratik

    2010-01-01

    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms. (orig.)

  18. Diffusion tensor imaging in spinal cord compression

    International Nuclear Information System (INIS)

    Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin

    2012-01-01

    Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression

  19. Diffusion Kurtosis Imaging of Acute Infarction: Comparison with Routine Diffusion and Follow-up MR Imaging.

    Science.gov (United States)

    Yin, Jianzhong; Sun, Haizhen; Wang, Zhiyun; Ni, Hongyan; Shen, Wen; Sun, Phillip Zhe

    2018-05-01

    Purpose To determine the relationship between diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in patients with acute stroke at admission and the tissue outcome 1 month after onset of stroke. Materials and Methods Patients with stroke underwent DWI (b values = 0, 1000 sec/mm 2 along three directions) and DKI (b values = 0, 1000, 2000 sec/mm 2 along 20 directions) within 24 hours after symptom onset and 1 month after symptom onset. For large lesions (diameter ≥ 1 cm), acute lesion volumes at DWI and DKI were compared with those at follow-up T2-weighted imaging by using Spearman correlation analysis. For small lesions (diameter the number of acute lesions at DWI and DKI and follow-up T2-weighted imaging was counted and compared by using the McNemar test. Results Thirty-seven patients (mean age, 58 years; range, 35-82 years) were included. There were 32 large lesions and 138 small lesions. For large lesions, the volumes of acute lesions on kurtosis maps showed no difference from those on 1-month follow-up T2-weighted images (P = .532), with a higher correlation coefficient than those on the apparent diffusion coefficient and mean diffusivity maps (R 2 = 0.730 vs 0.479 and 0.429). For small lesions, the number of acute lesions on DKI, but not on DWI, images was consistent with that on the follow-up T2-weighted images (P = .125). Conclusion DKI complements DWI for improved prediction of outcome of acute ischemic stroke. © RSNA, 2018.

  20. Basic consideration of diffusion/perfusion imaging

    International Nuclear Information System (INIS)

    Tamagawa, Yoichi; Kimura, Hirohiko; Matsuda, Tsuyoshi; Kawamura, Yasutaka; Nakatsugawa, Shigekazu; Ishii, Yasushi; Sakuma, Hajime; Tsukamoto, Tetsuji.

    1990-01-01

    In magnetic resonance imaging (MRI), microscopic motion of biological system such as molecular diffusion of water and microcirculation of blood in the capillary network (perfusion) has been proposed to cause signal attenuation as an intravoxel incoherent motion (IVIM). Quantitative imaging of the IVIM phenomenon was attempted to generate from a set of spin-echo (SE) sequences with or without sensitization by motion probing gradient (MPG). The IVIM imaging is characterized by a parameter, apparent diffusion coefficient (ADC), which is an integration of both the diffusion and the perfusion factor on voxel-by-voxel basis. Hard ware was adjusted to avoid image artifact mainly produced by eddy current. Feasibility of the method was tested using bottle phantom filled with water at different temperature and acetone, and the calculated ADC values of these media corresponded well with accepted values of diffusion. The method was then applied to biological system to investigate mutual participation of diffusion/perfusion on the ADC value. The result of tumor model born on nude mouse suggested considerable participation of perfusion factor which immediately disappeared after sacrificing the animal. Meanwhile, lower value of sacrificed tissue without microcirculation was suggested to have some restriction of diffusion factor by biological tissue. To substantiate the restriction effect on the diffusion, a series of observation have made on a fiber phantom, stalk of celory with botanical fibers and human brain with nerve fibers, in applying unidirectional MPG along the course of these banch of fiber system. The directional restriction effect of diffusion along the course of fiber (diffusion anisotrophy) was clearly visualized as directional change of ADC value. The present method for tissue characterization by diffusion/perfusion on microscopic level will provide a new insight for evaluation of functional derangement in human brain and other organs. (author)

  1. Improved light trapping in polymer solar cells by light diffusion ink

    International Nuclear Information System (INIS)

    Chao, Yu-Chiang; Lin, Yun-Hsuan; Lin, Ching-Yi; Li, Husan-De; Zhan, Fu-Min; Huang, Yu-Zhang

    2014-01-01

    Light trapping is an important issue for solar cells to increase optical path length and optical absorption. In this work, a light trapping structure was realized for polymer solar cells by utilizing light diffusion ink which is conventionally used in display backlighting. The light scattering particles in the ink cause the deflection of light, and the number of these particles coated on a glass substrate determines the light transmission and scattering characteristics. It was observed that the short-circuit current density did not decrease with decreasing transmittance, but it increased to a highest value at an optimized transmittance. This behaviour is attributed to the trapping of scattered light in the photoactive layer. (paper)

  2. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications

    International Nuclear Information System (INIS)

    Reinges, Marcus H.T.; Schoth, Felix; Coenen, Volker A.; Krings, Timo

    2004-01-01

    Diffusion weighted MRI offers the possibility to study the course of the cerebral white matter tracts. In the present manuscript, the basics, the technique and the limitations of diffusion tensor imaging and anisotropic diffusion weighted MRI are presented and their applications in various neurological and neurosurgical diseases are discussed with special emphasis on the visual system. A special focus is laid on the combination of fiber tract imaging, anatomical imaging and functional MRI for presurgical planning and intraoperative neuronavigation of lesions near the visual system

  3. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    Science.gov (United States)

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  4. Diffusion-weighted imaging in acute demyelinating myelopathy

    International Nuclear Information System (INIS)

    Zecca, Chiara; Cereda, Carlo; Tschuor, Silvia; Staedler, Claudio; Nadarajah, Navarajah; Bassetti, Claudio L.; Gobbi, Claudio; Wetzel, Stephan; Santini, Francesco

    2012-01-01

    Diffusion-weighted imaging (DWI) has become a reference MRI technique for the evaluation of neurological disorders. Few publications have investigated the application of DWI for inflammatory demyelinating lesions. The purpose of the study was to describe diffusion-weighted imaging characteristics of acute, spinal demyelinating lesions. Six consecutive patients (two males, four females; aged 28-64 years) with acute spinal cord demyelinating lesions were studied in a prospective case series design from June 2009 to October 2010. We performed magnetic resonance imaging studies from 2 to 14 days from symptom onset on the patients with relapsing remitting multiple sclerosis (n = 3) or clinically isolated syndrome (n = 3). Main outcome measures were diffusion-weighted imaging and apparent diffusion coefficient pattern (ADC) of acute spinal cord demyelinating lesions. All spinal lesions showed a restricted diffusion pattern (DWI+/ADC-) with a 24% median ADC signal decrease. A good correlation between clinical presentation and lesion site was observed. Acute demyelinating spinal cord lesions show a uniform restricted diffusion pattern. Clinicians and neuro-radiologists should be aware that this pattern is not necessarily confirmatory for an ischaemic aetiology. (orig.)

  5. Diffusion-weighted imaging in acute demyelinating myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Zecca, Chiara; Cereda, Carlo; Tschuor, Silvia; Staedler, Claudio; Nadarajah, Navarajah; Bassetti, Claudio L.; Gobbi, Claudio [Ospedale Regionale di Lugano, Servizio di Neurologia e Neuroradiologia, Neurocenter of Southern Switzerland, Lugano (Switzerland); Wetzel, Stephan [Swiss Neuro Institute (SNI), Abteilung fuer Neuroradiologie, Hirslanden Klinik Zuerich, Zuerich (Switzerland); Santini, Francesco [University of Basel Hospital, Division of Radiological Physics, Basel (Switzerland)

    2012-06-15

    Diffusion-weighted imaging (DWI) has become a reference MRI technique for the evaluation of neurological disorders. Few publications have investigated the application of DWI for inflammatory demyelinating lesions. The purpose of the study was to describe diffusion-weighted imaging characteristics of acute, spinal demyelinating lesions. Six consecutive patients (two males, four females; aged 28-64 years) with acute spinal cord demyelinating lesions were studied in a prospective case series design from June 2009 to October 2010. We performed magnetic resonance imaging studies from 2 to 14 days from symptom onset on the patients with relapsing remitting multiple sclerosis (n = 3) or clinically isolated syndrome (n = 3). Main outcome measures were diffusion-weighted imaging and apparent diffusion coefficient pattern (ADC) of acute spinal cord demyelinating lesions. All spinal lesions showed a restricted diffusion pattern (DWI+/ADC-) with a 24% median ADC signal decrease. A good correlation between clinical presentation and lesion site was observed. Acute demyelinating spinal cord lesions show a uniform restricted diffusion pattern. Clinicians and neuro-radiologists should be aware that this pattern is not necessarily confirmatory for an ischaemic aetiology. (orig.)

  6. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Catherine Tempel-Brami

    Full Text Available In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI. We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD-MRI protocol, termed photosensitized (psMRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1. This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.

  7. Diffusion-weighted MR imaging of the brain. 2. ed.

    International Nuclear Information System (INIS)

    Moritani, Toshio; Ekholm, Sven; Westesson, Per-Lennart

    2009-01-01

    This practical-minded text helps the radiologist and the clinician understand diffusion-weighted MR imaging. The book's 15 chapters range from basic principles to interpretation of diffusion-weighted MR imaging and specific disease. In this second edition, diffusion tensor imaging (fractional anisotropy, color map and fiber tractography) is covered and a new chapter, on ''Diffusion-Weighted Imaging of Scalp and Skull Lesions,'' is included. The volume is updated by newly added cases accompanied by radiological and pathological images along with the most recent references. It is aimed at all those who are involved in neuroimaging, including: residents, fellows, staff, as well as neurologists and neurosurgeons. Diffusion-weighted MR imaging is widely accepted as a means to identify acute infarction but also to differentiate many other pathologic conditions. Understanding diffusion-weighted imaging is important for radiologists, neurologists, neurosurgeons as well as radiology technologists. (orig.)

  8. Light Imaging Section

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Light Imaging Section is to give NIAMS scientists access to state-of-the-art light imaging equipment and to offer training and assistance at all...

  9. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh

    2015-12-21

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  10. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    Science.gov (United States)

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Imaging and assessment of diffusion coefficients by magnetic resonance

    International Nuclear Information System (INIS)

    Tintera, J.; Dezortova, M.; Hajek, M.; Fitzek, C.

    1999-01-01

    The problem of assessment of molecular diffusion by magnetic resonance is highlighted and some typical applications of diffusion imaging in the diagnosis, e.g., of cerebral ischemia, changes in patients with phenylketonuria or multiple sclerosis are discussed. The images were obtained by using diffusion weighted spin echo Echo-Planar Imaging sequence with subsequent correction of the geometrical distortion of the images and calculation of the Apparent Diffusion Coefficient map

  12. Use of diffusive optical fibers for plant lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, T.; Kitaya, Y.; Fujiwara, K. [Chiba Univ., Matsudo (Japan); Kino, S.; Kinowaki, M. [Topy Green Ltd., Tokyo (Japan)

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.

  13. Photographic measurements of the diffuse light in the coma cluster

    International Nuclear Information System (INIS)

    Thuan, T.X.; Kormendy, J.

    1977-01-01

    The diffuse background light in the Coma cluster is measured using isodensity tracings of B, G, V, and R photographic plates taken with the Palomar 1.2-m Schmidt telescope. The isodensity contours are calibrated using the star profile derived by Kormendy (1973). Between 4 and 14 arc min from the center, the surface brightness of the diffuse light decreases from approximately 26 to approximately 28 G magnitudes arc sec -2 . The total magnitude in this annulus is G = 11.22, which is approximately 45 percent of the light in galaxies alone, or approximately 30 percent of the total. This does little to alleviate the ''missing mass'' problem. The isodensity contours and the equivalent profile of the diffuse light closely parallel the distribution of light in galaxies, implying no strong mass segregation. However, the background light appears to be bluer than the galaxies. This is consistent with the hypothesis that the background consists of stars tidally stripped from galaxies, which generally become bluer at larger radii. The present technique is very different from methods used in the past. Comparison of a variety of measurements shows that a reasonably consistent body of data on the background light now exists

  14. New diffusion imaging method with a single acquisition sequence

    International Nuclear Information System (INIS)

    Melki, Ph.S.; Bittoun, J.; Lefevre, J.E.

    1987-01-01

    The apparent diffusion coefficient (ADC) is related to the molecular diffusion coefficient and to physiologic information: microcirculation in the capillary network, incoherent slow flow, and restricted diffusion. The authors present a new MR imaging sequence that yields computed ADC images in only one acquisition of 9-minutes with a 1.5-T imager (GE Signa). Compared to the previous method, this sequence is at least two times faster and thus can be used as a routine examination to supplement T1-, T2-, and density-weighted images. The method was assessed by measurement of the molecular diffusion in liquids, and the first clinical images obtained in neurologic diseases demonstrate its efficiency for clinical investigation. The possibility of separately imaging diffusion and perfusion is supported by an algorithm

  15. Acoustic-noise-optimized diffusion-weighted imaging.

    Science.gov (United States)

    Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M

    2015-12-01

    This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.

  16. The Diffuse Light of the Universe

    Science.gov (United States)

    Bonnet-Bidaud, Jean-Marc

    2017-06-01

    In 1965, the discovery of a new type of uniform radiation, located between radiowaves and infrared light, was accidental. Known today as Cosmic Microwave background (CMB), this diffuse radiation is commonly interpreted as a fossil light released in an early hot and dense universe and constitutes today the main 'pilar' of the big bang cosmology. Considerable efforts have been devoted to derive fundamental cosmological parameters from the characteristics of this radiation that led to a surprising universe that is shaped by at least three major unknown components: inflation, dark matter and dark energy. This is an important weakness of the present consensus cosmological model that justifies raising several questions on the CMB interpretation. Can we consider its cosmological nature as undisputable? Do other possible interpretations exist in the context of other cosmological theories or simply as a result of other physical mechanisms that could account for it? In an effort to questioning the validity of scientific hypotheses and the under-determination of theories compared to observations, we examine here the difficulties that still exist on the interpretation of this diffuse radiation and explore other proposed tracks to explain its origin. We discuss previous historical concepts of diffuse radiation before and after the CMB discovery and underline the limit of our present understanding.

  17. A cost-effective LED and photodetector based fast direct 3D diffuse optical imaging system

    Science.gov (United States)

    Saikia, Manob Jyoti; Manjappa, Rakesh; Kanhirodan, Rajan

    2017-07-01

    A cost-effective and high-speed 3D diffuse optical tomography system using high power LED light sources and silicon photodetectors has been designed and built, that can continuously scan and reconstruct spectroscopic images at a frame rate of 2 fps. The system is experimentally validated with tissue mimicking cylindrical resin phantom having light absorbing inhomogeneities of different size, shape and contrast, and at different locations.

  18. Diffusion-weighted MR imaging in leukodystrophies

    Energy Technology Data Exchange (ETDEWEB)

    Patay, Zoltan [King Faisal Specialist Hospital and Research Centre, Department of Radiology, Riyadh (Saudi Arabia)

    2005-11-01

    Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate. (orig.)

  19. Diffusion-weighted MR imaging in leukodystrophies

    International Nuclear Information System (INIS)

    Patay, Zoltan

    2005-01-01

    Leukodystrophies are genetically determined metabolic diseases, in which the underlying biochemical abnormality interferes with the normal build-up and/or maintenance of myelin, which leads to hypo- (or arrested) myelination, or dysmyelination with resultant demyelination. Although conventional magnetic resonance imaging has significantly contributed to recent progress in the diagnostic work-up of these diseases, diffusion-weighted imaging has the potential to further improve our understanding of underlying pathological processes and their dynamics through the assessment of normal and abnormal diffusion properties of cerebral white matter. Evaluation of conventional diffusion-weighted and ADC map images allows the detection of major diffusion abnormalities and the identification of various edema types, of which the so-called myelin edema is particularly relevant to leukodystrophies. Depending on the nature of histopathological changes, stage and progression gradient of diseases, various diffusion-weighted imaging patterns may be seen in leukodystrophies. Absent or low-grade myelin edema is found in mucopolysaccharidoses, GM gangliosidoses, Zellweger disease, adrenomyeloneuropathy, L-2-hydroxyglutaric aciduria, non-ketotic hyperglycinemia, classical phenylketonuria, Van der Knaap disease and the vanishing white matter, medium grade myelin edema in metachromatic leukodystrophy, X-linked adrenoleukodystrophy and HMG coenzyme lyase deficiency and high grade edema in Krabbe disease, Canavan disease, hyperhomocystinemias, maple syrup urine disease and leukodystrophy with brainstem and spinal cord involvement and high lactate. (orig.)

  20. Diffuse Optical Tomography for Brain Imaging: Continuous Wave Instrumentation and Linear Analysis Methods

    Science.gov (United States)

    Giacometti, Paolo; Diamond, Solomon G.

    Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.

  1. High angular resolution diffusion imaging : processing & visualization

    NARCIS (Netherlands)

    Prckovska, V.

    2010-01-01

    Diffusion tensor imaging (DTI) is a recent magnetic resonance imaging (MRI) technique that can map the orientation architecture of neural tissues in a completely non-invasive way by measuring the directional specificity (anisotropy) of the local water diffusion. However, in areas of complex fiber

  2. T2-enhanced tensor diffusion trace-weighted image in the detection of hyper-acute cerebral infarction: Comparison with isotropic diffusion-weighted image

    International Nuclear Information System (INIS)

    Chou, M.-C.; Tzeng, W.-S.; Chung, H.-W.; Wang, C.-Y.; Liu, H.-S.; Juan, C.-J.; Lo, C.-P.; Hsueh, C.-J.; Chen, C.-Y.

    2010-01-01

    Background and purpose: Although isotropic diffusion-weighted imaging (isoDWI) is very sensitive to the detection of acute ischemic stroke, it may occasionally show diffusion negative result in hyper-acute stroke. We hypothesize that high diffusion contrast diffusion trace-weighted image with enhanced T2 may improve stroke lesion conspicuity. Methods: Five hyper acute stroke patients (M:F = 0:5, average age = 61.8 ± 20.5 y/o) and 16 acute stroke patients (M:F = 11:5, average age = 67.7 ± 12 y/o) were examined six-direction tensor DWIs at b = 707 s/mm 2 . Three different diffusion-weighted images, including isotropic (isoDWI), diffusion trace-weighted image (trDWI) and T2-enhanced diffusion trace-weighted image (T2E t rDWI), were generated. Normalized lesion-to-normal ratio (nLNR) and contrast-to-noise ratio (CNR) of three diffusion images were calculated from each patient and statistically compared. Results: The trDWI shows better nLNR than isoDWI on both hyper-acute and acute stroke lesions, whereas no significant improvement in CNR. Nevertheless, the T2E t rDWI has statistically superior CNR and nLNR than those of isoDWI and trDWI in both hyper-acute and acute stroke. Conclusions: We concluded that tensor diffusion trace-weighted image with T2 enhancement is more sensitive to stroke lesion detection, and can provide higher lesion conspicuity than the conventional isotropic DWI for early stroke lesion delineation without the need of high-b-value technique.

  3. Dynamic light scattering optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Jiang, James Y; Zhu, Bo; Boas, David A

    2012-09-24

    We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

  4. Production of a table of diffusion of light at small angles

    International Nuclear Information System (INIS)

    Desert, Sylvain

    2001-01-01

    This thesis reports the development of an optical table for the analysis, in absolute unit, of the light diffused by samples in air within an angle range from 1 to 25 degrees, by using a 16 bit Ccd camera. In this installation, a sample is located in a parallelepiped vessel where it is illuminated by a laser beam, and the power of this laser is controlled by means of a polarizer system. A lens is placed behind the sample, and the sensor (a Ccd camera) behind its focal point. After some generalities about light diffusion (Van de Huist criterion, Rayleigh diffusion, Mie theory), the author presents the different components of the experimental set-up, reports its calibration and the measurement of its performance (linearity, dynamics and detectability, angular range and resolution). He describes how a diffusion measurement is performed: experimental protocol, data processing, experimental limitations. He reports the application to light diffusion by latexes [fr

  5. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Kinoshita, Toshibumi; Moritani, Toshio; Hiwatashi, Akio; Wang, Henry Z.; Shrier, David A.; Numaguchi, Yuji; Westesson, Per-Lennart A.

    2005-01-01

    Objective: (1) To detect diffuse axonal injury (DAI) lesions by diffusion-weighted imaging (DWI), as compared with fluid-attenuated inversion recovery (FLAIR) imaging and (2) to evaluate hemorrhagic DAI lesions by b 0 images obtained from DWI, as compared with gradient-echo (GRE) imaging. Methods: We reviewed MR images of 36 patients with a diagnosis of DAI. MR imaging was performed 20 h to 14 days (mean, 3.7 days) after traumatic brain injury. We evaluated: (1) conspicuity of lesions on DWI and FLAIR and (2) conspicuity of hemorrhage in DAI lesions on b 0 images and GRE imaging. Results: DWI clearly depicted high-signal DAI lesions. The sensitivity of DWI to lesional conspicuity in DAI lesions was almost equal to that of FLAIR. The sensitivity of b 0 images to identification of hemorrhagic DAI lesions was inferior to that of GRE. Conclusion: DWI is as useful as FLAIR in detecting DAI lesions. GRE imaging is still the superior tool for the evaluation of hemorrhagic DAI

  6. Light chain deposition disease in multiple myeloma: MR imaging features correlated with histopathological findings

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Lamerz, R.; Bartl, R.

    1998-01-01

    The clinical, histopathological, and imaging findings on MRI of a 56-year-old woman with light chain deposition disease occurring in multiple myeloma are presented. Light chain deposition disease is a variant of multiple myeloma with distinct clinical and histological characteristics. MRI of this patient also revealed an infiltration pattern in the bone marrow distinct from that of typical multiple myeloma. Multiple small foci of low signal intensity were present on T1- and T2-weighted spin echo and STIR images, corresponding to conglomerates of light chains in bone marrow biopsy. Contrast-enhanced T1-weighted spin echo images show diffuse enhancement of 51% over all vertebral bodies, with a minor enhancement of the focal conglomerates of light chains. Light chain deposition disease in multiple myeloma should be added to the list of those few entities with normal radiographs and discrete low-signal marrow lesions on T1- and T2-weighted spin echo pulse sequences. (orig.)

  7. Diffusion-weighted MR imaging in biopsy-proven Creutzfeldt-Jakob disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cheol; Chang, Kee Hyun; Song In Chan; Lee, Sang Hyun; Kwon, Bae Ju; Han, Moon Hee; Kim, Sang Yun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2001-12-01

    To compare conventional and diffusion-weighted MR imaging in terms of their depiction of the abnormalities occurring in Creutzfeldt-Jakob disease. We retrospectively analyzed the findings of conventional (T2-weighted and fluid-attenuated inversion recovery) and diffusion-weighted MR imaging in four patients with biopsy-proven Creutzfeldt-Jakob disease. The signal intensity of the lesion was classified by visual assessment as markedly high, slightly high, or isointense, relative to normal brain parenchyma. Both conventional and diffusion-weighted MR images demonstrated bilateral high signal intensity in the basal ganglia in all four patients. Cortical lesions were observed on diffusion-weighted MR images in all four, and on fluidattenuated inversion recovery MR images in one, but in no patient on T2-weighted images. Conventional MR images showed slightly high signal intensity in all lesions, while diffusion-weighted images showed markedly high signal intensity in most. Diffusion-weighted MR imaging is more sensitive than its conventional counterpart in the depiction of Creutzfeldt-Jakob disease, and permits better detection of the lesion in both the cerebral cortices and basal ganglia.

  8. Diffusion-weighted MR imaging in biopsy-proven Creutzfeldt-Jakob disease

    International Nuclear Information System (INIS)

    Kim, Hyo Cheol; Chang, Kee Hyun; Song In Chan; Lee, Sang Hyun; Kwon, Bae Ju; Han, Moon Hee; Kim, Sang Yun

    2001-01-01

    To compare conventional and diffusion-weighted MR imaging in terms of their depiction of the abnormalities occurring in Creutzfeldt-Jakob disease. We retrospectively analyzed the findings of conventional (T2-weighted and fluid-attenuated inversion recovery) and diffusion-weighted MR imaging in four patients with biopsy-proven Creutzfeldt-Jakob disease. The signal intensity of the lesion was classified by visual assessment as markedly high, slightly high, or isointense, relative to normal brain parenchyma. Both conventional and diffusion-weighted MR images demonstrated bilateral high signal intensity in the basal ganglia in all four patients. Cortical lesions were observed on diffusion-weighted MR images in all four, and on fluidattenuated inversion recovery MR images in one, but in no patient on T2-weighted images. Conventional MR images showed slightly high signal intensity in all lesions, while diffusion-weighted images showed markedly high signal intensity in most. Diffusion-weighted MR imaging is more sensitive than its conventional counterpart in the depiction of Creutzfeldt-Jakob disease, and permits better detection of the lesion in both the cerebral cortices and basal ganglia

  9. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  10. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Toshibumi [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States)]. E-mail: kino@grape.med.tottori-u.ac.jp; Moritani, Toshio [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Hiwatashi, Akio [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Wang, Henry Z. [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Shrier, David A. [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Numaguchi, Yuji [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States); Westesson, Per-Lennart A. [Department of Radiology, Division of Neuroradiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY 14642 (United States)

    2005-10-01

    Objective: (1) To detect diffuse axonal injury (DAI) lesions by diffusion-weighted imaging (DWI), as compared with fluid-attenuated inversion recovery (FLAIR) imaging and (2) to evaluate hemorrhagic DAI lesions by b{sub 0} images obtained from DWI, as compared with gradient-echo (GRE) imaging. Methods: We reviewed MR images of 36 patients with a diagnosis of DAI. MR imaging was performed 20 h to 14 days (mean, 3.7 days) after traumatic brain injury. We evaluated: (1) conspicuity of lesions on DWI and FLAIR and (2) conspicuity of hemorrhage in DAI lesions on b{sub 0} images and GRE imaging. Results: DWI clearly depicted high-signal DAI lesions. The sensitivity of DWI to lesional conspicuity in DAI lesions was almost equal to that of FLAIR. The sensitivity of b{sub 0} images to identification of hemorrhagic DAI lesions was inferior to that of GRE. Conclusion: DWI is as useful as FLAIR in detecting DAI lesions. GRE imaging is still the superior tool for the evaluation of hemorrhagic DAI.

  11. Hyperspectral imaging based on diffused laser light for prediction of astaxanthin coating concentration

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Nielsen, Otto Højager Attermann; Frosch, Stina

    2014-01-01

    -continuum laser as the light source was introduced. Furthermore, a parallel study with the commercially available multispectral VideometerLab imaging system was performed. The SuperK setup used 113 spectral bands (455–1,015 nm), and the VideometerLab used 20 spectral bands (385–1,050 nm). To predict...

  12. Interpolation of diffusion weighted imaging datasets

    DEFF Research Database (Denmark)

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W

    2014-01-01

    anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal......Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer...... interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical...

  13. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    Science.gov (United States)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  14. MR imaging evidence of anisotropic diffusion in the cat brain

    International Nuclear Information System (INIS)

    Moseley, M.E.; Mintorovich, J.; Cohen, Y.; Chilevitt, L.; Tsuruda, J.; Norman, D.; Weinstein, P.

    1989-01-01

    This paper discusses a study of diffusion behavior of brain water in the cat. Diffusion-weighted images, acquired with large gradient b values of 1,000-2,000 sec/mm 2 , showed no clear evidence of anisotropic water diffusion in either gray matter or basal ganglia. Large directional differences in image intensities and diffusion values were observed in cortical and deep white matter. Faster diffusion was sen when the direction of the applied diffusion gradient was parallel to the orientation of the white matter. Diffusion perpendicular to the gradient direction was significantly lower. This effect was proportional to gradient duration and strength and was seen in both pre- and immediate post-mortem images in all axial, sagittal, and coronal images

  15. MIRIS observation of near-infrared diffuse Galactic light

    Science.gov (United States)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  16. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon S.; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC

  17. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description.

    Science.gov (United States)

    Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley

    2014-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.

  18. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  19. Diffusion weighted MR imaging of acute Wernicke's encephalopathy

    International Nuclear Information System (INIS)

    Chung, Tae-Ick; Kim, Joong-Seok; Park, Soung-Kyeong; Kim, Beum-Saeng; Ahn, Kook-Jin; Yang, Dong-Won

    2003-01-01

    We report a case of Wernicke's encephalopathy in which diffusion-weighted MR images demonstrated symmetrical hyperintense lesions in the paraventricular area of the third ventricles and medial thalami. Apparent diffusion coefficient mapping showed isointensity in the aforementioned areas. Diffusion-weighted MR images may provide evidence of vasogenic edema associated with thiamine deficiency, proven in the histopathology of experimental animals. In addition, diffusion-weighted MRI has many advantages over T2 or FLARE-weighted brain MRI in detecting structural and functional abnormalities in Wernicke's encephalopathy

  20. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU

    Science.gov (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.

  1. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  2. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

    Science.gov (United States)

    Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.

    2011-11-01

    We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

  3. On some applications of diffusion processes for image processing

    International Nuclear Information System (INIS)

    Morfu, S.

    2009-01-01

    We propose a new algorithm inspired by the properties of diffusion processes for image filtering. We show that purely nonlinear diffusion processes ruled by Fisher equation allows contrast enhancement and noise filtering, but involves a blurry image. By contrast, anisotropic diffusion, described by Perona and Malik algorithm, allows noise filtering and preserves the edges. We show that combining the properties of anisotropic diffusion with those of nonlinear diffusion provides a better processing tool which enables noise filtering, contrast enhancement and edge preserving.

  4. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    Science.gov (United States)

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  5. MR imaging of diffuse thyroid disorders

    International Nuclear Information System (INIS)

    Inoue, Masaaki; Fujii, Koichi; Ohnishi, Takuya; Higashikawa, Motoki; Araki, Yutaka; Hamada, Tatsumi; Ishida, Osamu

    1996-01-01

    Magnetic resonance imaging was performed in 38 diffuse goiters, including 30 chronic thyroiditis and 8 Basedow disease. MR findings were analyzed as to degree of swelling, margin, internal structures including homogeneity and low intensity bands. With regard to signal intensity, thyroid-muscle-signal intensity ratios on T1 and T2-weighted images were measured in 19 normal thyroid glands, 30 chronic thyroiditis and 8 Basedow disease. Additionally thyroid-muscle-signal intensity ratios were compared between 19 hypothyroid glands and 11 euthyroid glands in chronic thyroiditis. Chronic thyroiditis tended to show lobulated margins, inhomogeneous intensity, and low intensity bands connecting with vessels or not. Basedow disease tended to display smooth margins, inhomogeneous intensity and low intensity bands connecting with vessels. Thyroid-muscle-signal intensity ratios of Basedow disease and chronic thyroiditis were significantly higher than those of normal thyroid gland at all sequences. In chronic thyroiditis thyroid-muscle-signal intensity ratios of euthyroid glands were significantly higher than those of hypothyroid glands. MR imaging could reflect pathologic features of diffuse goiters. Moreover, MR imaging is potentially contributory to speculate about thyroid function and degree of serious condition in diffuse thyroid disorders. (author)

  6. Higher-order tensors in diffusion imaging

    NARCIS (Netherlands)

    Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.

    2014-01-01

    Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion

  7. Imaging brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus

    2018-01-01

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging ...

  8. An Efficient Diffusion Scheme for Chaos-Based Digital Image Encryption

    Directory of Open Access Journals (Sweden)

    Jun-xin Chen

    2014-01-01

    Full Text Available In recent years, amounts of permutation-diffusion architecture-based image cryptosystems have been proposed. However, the key stream elements in the diffusion procedure are merely depending on the secret key that is usually fixed during the whole encryption process. Cryptosystems of this type suffer from unsatisfactory encryption speed and are considered insecure upon known/chosen plaintext attacks. In this paper, an efficient diffusion scheme is proposed. This scheme consists of two diffusion procedures, with a supplementary diffusion procedure padded after the normal diffusion. In the supplementary diffusion module, the control parameter of the selected chaotic map is altered by the resultant image produced after the normal diffusion operation. As a result, a slight difference in the plain image can be transferred to the chaotic iteration and bring about distinct key streams, and hence totally different cipher images will be produced. Therefore, the scheme can remarkably accelerate the diffusion effect of the cryptosystem and will effectively resist known/chosen plaintext attacks. Theoretical analyses and experimental results prove the high security performance and satisfactory operation efficiency of the proposed scheme.

  9. Diffusion-weighted MR imaging of the abdomen with pulse triggering

    International Nuclear Information System (INIS)

    Muertz, P.; Pauleit, D.; Traeber, F.; Kreft, B.P.; Schild, H.H.

    2000-01-01

    Purpose: The aim of this work was to reduce the influence of motion on diffusion-weighted MR images of the abdomen by pulse triggering of single-shot sequences. Methods: Five healthy volunteers were examined both without and with finger pulse-triggering of a diffusion-weighted single-shot echo planar MR imaging sequence at 1.5 T. Series of diffusion-weighted images were acquired at different phases of the cardiac cycle by varying the time delay between finger pulse and sequence acquisition. The measurements were repeated three times. The diffusion weighted images were analysed by measuring the signal intensities and by determining the ADC values within the spleen, kidney and liver. Results: The magnitude of motion artifacts on diffusion weighted images shows a strong dependence on the trigger delay. The optimum trigger delay is found to be between 500 and 600 ms. For these values the abdominal organs appear homogeneous on all diffusion weighted images and the strongest signal intensities are detected. At optimum triggering the accuracy of the apparent diffusion coefficients is up to 10 times better than without triggering. Moreover, the standard deviation of the repeated measurements is smaller than 12% for all volunteers and for all organs. Without triggering the standard deviation is larger by a factor of 4 on average. Conclusion: Pulse triggering of single-shot sequences leads to significant reduction of motion related artifacts on diffusion weighted images of the abdomen and provides more accurate and reproducible ADC values. (orig.) [de

  10. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    Science.gov (United States)

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  11. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia

    Directory of Open Access Journals (Sweden)

    Jiajia Zhu

    2015-01-01

    Full Text Available Diffusion kurtosis imaging (DKI is an extension of diffusion tensor imaging (DTI, exhibiting improved sensitivity and specificity in detecting developmental and pathological changes in neural tissues. However, little attention was paid to the performances of DKI and DTI in detecting white matter abnormality in schizophrenia. In this study, DKI and DTI were performed in 94 schizophrenia patients and 91 sex- and age-matched healthy controls. White matter integrity was assessed by fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD, radial diffusivity (RD, mean kurtosis (MK, axial kurtosis (AK and radial kurtosis (RK of DKI and FA, MD, AD and RD of DTI. Group differences in these parameters were compared using tract-based spatial statistics (TBSS (P  AK (20% > RK (3% and RD (37% > FA (24% > MD (21% for DKI, and RD (43% > FA (30% > MD (21% for DTI. DKI-derived diffusion parameters (RD, FA and MD were sensitive to detect abnormality in white matter regions (the corpus callosum and anterior limb of internal capsule with coherent fiber arrangement; however, the kurtosis parameters (MK and AK were sensitive to reveal abnormality in white matter regions (the juxtacortical white matter and corona radiata with complex fiber arrangement. In schizophrenia, the decreased AK suggests axonal damage; however, the increased RD indicates myelin impairment. These findings suggest that diffusion and kurtosis parameters could provide complementary information and they should be jointly used to reveal pathological changes in schizophrenia.

  12. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  13. Diffusion tensor and diffusion weighted imaging. Pictorial mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Tsutomu [California Univ., Davis, CA (United States)

    1995-06-01

    A new imaging algorithm for the treatment of a second order apparent diffusion tensor, D{sub app}{sup {xi}} is described. The method calls for only mathematics of images (pictorial mathematics) without necessity of eigenvalues/eigenvectors estimation. Nevertheless, it is capable of extracting properties of D{sub app}{sup {xi}} invariant to observation axes. While trace image is an example of images weighted by invariance of the tensor matrix, three dimensional anisotropy (3DAC) contrast represents the imaging method making use to anisotropic direction of tensor ellipsoid producing color coded contrast of exceptionally high anatomic resolution. Contrary to intuition, the processes require only a simple algorithm directly applicable to clinical magnetic resonance imaging (MRI). As a contrast method which precisely represents physical characteristics of a target tissue, invariant D{sub app}{sup {xi}} images produced by pictorial mathematics possess significant potential for a number of biological and clinical applications. (author).

  14. Experimental evidence of an effective medium seen by diffuse light in turbid colloids

    International Nuclear Information System (INIS)

    Contreras-Tello, H; Garcia-Valenzuela, A

    2011-01-01

    The propagation of diffuse light in turbid media is usually modeled with radiative transfer theory. When diffuse light travelling in a turbid colloid is reflected and transmitted at a flat interface where there is a refractive index mismatch, it is not clear whether one should assume the incident diffuse-light is travelling in a medium with a refractive index equal to that of the background medium (usually referred to as the matrix) or if one should assume it travels in an effective medium. Most authors simply avoid this issue and most often use the refractive index of the matrix. While this might be a good approximation for dilute turbid media one may suspect that for highly scattering materials it may not be the case. In this work we investigate experimentally this issue. Our experimental results provide clear evidence that diffuse light inside the turbid colloid travels in an effective medium and not in the matrix.

  15. Diffusion weighted imaging in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Cher Heng [The University of Texas, M D Anderson Cancer Center, Department of Diagnostic Radiology, Division of Diagnostic Imaging, Houston, TX (United States); Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Wang, Jihong [The University of Texas, M D Anderson Cancer Center, Department of Imaging Physics, Division of Diagnostic Imaging, Houston, TX (United States); Kundra, Vikas [The University of Texas, M D Anderson Cancer Center, Department of Diagnostic Radiology, Division of Diagnostic Imaging, Houston, TX (United States); The University of Texas, M D Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Division of Diagnostic Imaging, Houston, TX (United States)

    2011-03-15

    Diffusion-weighted imaging has generated substantial interest in the hope that it can be developed into a robust technique to improve the accuracy of MRI for the evaluation of prostate cancer. This technique has the advantages of short acquisition times, no need for intravenous administration of contrast medium, and the ability to study diffusion of water molecules that indirectly reflects tissue cellularity. In this article, we review the existing literature on the utility of DWI in tumour detection, localisation, treatment response, limitations of the technique, how it compares with other imaging techniques, technical considerations and future directions. (orig.)

  16. Performance of a contact textile-based light diffuser for photodynamic therapy.

    Science.gov (United States)

    Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich

    2006-03-01

    Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.

  17. Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on GPU and CPU.

    Science.gov (United States)

    Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid

    2017-12-01

    Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25  s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  19. Fast imaging of mean, axial and radial diffusion kurtosis

    DEFF Research Database (Denmark)

    Hansen, Brian; Shemesh, Noam; Jespersen, Sune Nørhøj

    2016-01-01

    Abstract Diffusion kurtosis imaging (DKI) is being increasingly reported to provide sensitive biomarkers of subtle changes in tissue microstructure. However, DKI also imposes larger data requirements than diffusion tensor imaging (DTI), hence, the widespread adaptation and exploration of DKI woul...

  20. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain.

    Science.gov (United States)

    Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei

    2017-12-01

    Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.

  1. Diffusion weighted MR imaging in the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Hagen, T.; Schweigerer-Schroeter, G.; Wellnitz, J.; Wuerstle, T.

    2000-01-01

    Magnetic resonance (MR) imaging is one of the best methods in diagnosis of multiple sclerosis, particularly in disclosure of active demyelinating lesions. Aim of this study was to compare diffusion weighted imaging and contrast enhancement in the detection of active lesions. A MR study with a contrast enhanced T1-weighted pulse sequence with magnetization transfer presaturation and a diffusion weighted echoplanar pulse sequence (b=1000 s/mm 2 ) was performed in 17 patients (11 women, 6 men) with multiple sclerosis. 29 of 239 lesions showed an increased signal intensity in diffusion weighted imaging, 24 lesions a contrast enhancement, but only 16 lesions were visible in both pulse sequences. In patients with short clinical symptomatology significant more lesions could be detected with diffusion-weighted pulse sequence in comparison to patients with long standing symptomatology showing more lesions with contrast enhancement. Hence it is likely, that both pulse sequences detect different histopathologic changes. The early detection of demyelinating lesions in diffusion weighted imaging is attributed to the extracellular edema, however the contrast enhancement is caused by a blood brain barrier abnormality. It can be expected that diffusion weighted imaging will have a high impact on imaging of multiple sclerosis not only in therapeutic trials, but also in clinical routine. (orig.) [de

  2. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  3. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  4. Diffusion-weighted MR images and pineoblastoma. Diagnosis and follow-up

    International Nuclear Information System (INIS)

    Gasparetto, Emerson L.; Cruz Junior, L. Celso Hygino; Doring, Thomas M.; Domingues, Romeu C.; Araujo, Bertha; Dantas, Mario Alberto; Chimelli, Leila

    2008-01-01

    Pineoblastomas are uncommon pineal tumors, which demonstrate rapid growing and poor prognosis. We report the case of a 43-year-old man with an enhancing pineal region mass, which showed restriction of the diffusion on diffusion-weighted (DW) MR images. The surgical biopsy defined the diagnosis of pineoblastoma and the therapy was initiated with radiation and chemotherapy. Three months later, the follow-up MR imaging showed areas suggestive of necrosis and the DW images demonstrate no significant areas of restricted diffusion. The differential diagnosis of pineal region masses that could show restriction of diffusion is discussed. (author)

  5. Imaging osteoarthritis in the knee joints using x-ray guided diffuse optical tomography

    Science.gov (United States)

    Zhang, Qizhi; Yuan, Zhen; Sobel, Eric S.; Jiang, Huabei

    2010-02-01

    In our previous studies, near-infrared (NIR) diffuse optical tomography (DOT) had been successfully applied to imaging osteoarthritis (OA) in the finger joints where significant difference in optical properties of the joint tissues was evident between healthy and OA finger joints. Here we report for the first time that large joints such as the knee can also be optically imaged especially when DOT is combined with x-ray tomosynthesis where the 3D image of the bones from x-ray is incorporated into the DOT reconstruction as spatial a priori structural information. This study demonstrates that NIR light can image large joints such as the knee in addition to finger joints, which will drastically broaden the clinical utility of our x-ray guided DOT technique for OA diagnosis.

  6. Microstructural analysis of human white matter architecture using Polarized Light Imaging (PLI: Views from neuroanatomy

    Directory of Open Access Journals (Sweden)

    Hubertus eAxer

    2011-11-01

    Full Text Available To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy in the human brain: 6 brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of 6 human brains. PLI can generate highly-resolved 3D datsets of fiber orientation of the human brain and has, therefore, a high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger scale diffusion orientation and microstructural histological analysis

  7. Deep Into the Fibers! Postmortem Diffusion Tensor Imaging in Forensic Radiology.

    Science.gov (United States)

    Flach, Patricia Mildred; Schroth, Sarah; Schweitzer, Wolf; Ampanozi, Garyfalia; Slotboom, Johannes; Kiefer, Claus; Germerott, Tanja; Thali, Michael J; El-Koussy, Marwan

    2015-09-01

    In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

  8. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    International Nuclear Information System (INIS)

    Park, Ju Young; Lee, In Ho; Song, Chang June; Hwang, Hee Youn

    2012-01-01

    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  9. Diffusion MR Imaging of Postoperative Bilateral Acute Ischemic Optic Neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Young; Lee, In Ho; Song, Chang June [Chungnam National University Hospital, Daejeon (Korea, Republic of); Hwang, Hee Youn [Eulji University Hospital, Daejeon(Korea, Republic of)

    2012-03-15

    A 57-year-old woman experienced bilateral acute ischemic optic neuropathy after spine surgery. Routine MR imaging sequence, T2-weighted image, showed subtle high signal intensity on bilateral optic nerves. A contrast-enhanced T1 weighted image showed enhancement along the bilateral optic nerve sheath. Moreover, diffusion-weighted image (DWI) and an apparent diffusion coefficient map showed markedly restricted diffusion on bilateral optic nerves. Although MR findings of T2-weighted and contrast enhanced T1-weighted images may be nonspecific, the DWI finding of cytotoxic edema of bilateral optic nerves will be helpful for the diagnosis of acute ischemic optic neuropathy after spine surgery.

  10. FTIR imaging in diffusion studies: CO2 and H2O in a synthetic sector-zoned beryl

    Directory of Open Access Journals (Sweden)

    Giancarlo eDella Ventura

    2015-06-01

    Full Text Available In this work we investigate the strongly inhomogeneous distribution of CO2 and H2O in a synthetic beryl having a peculiar hourglass zoning of Cr due to the crystal growth. The sample was treated at 800°C, 500 MPa, in a CO2-rich atmosphere. High-resolution FESEM images revealed that the hourglass boundary is not correlated to physical discontinuities, at least at the scale of tens of nanometers. Polarized FPA-FTIR imaging, on the other side, revealed that the chemical zoning acts as a fast pathway for carbon dioxide diffusion, a feature never observed so far in minerals. The hourglass zone boundary may be thus considered as a structural defect possibly due to the mismatch induced by the different growth rates of each sector. High-resolution synchrotron-light FTIR imaging, in addition, also allows enhancement of CO2 diffusion along the hourglass boundary to be distinguished from diffusion along fractures in the grain. Therefore, FTIR imaging provides evidence that different diffusion mechanisms may locally combine, suggesting that the distribution of the target molecules needs to be be carefully characterized in experimental studies. This piece of information is mandatory when the study is aimed at extracting diffusion coefficients from analytical profiles. Combination of TOF-SIMS and FPA data shows a significant depletion of type II H2O along the hourglass boundary, indicating that water diffusion could be controlled by the distribution of alkali cations within channels, coupled to a plug effect of CO2.

  11. Diffusion-weighted MR imaging of ring-enhancing intracerebral lesions

    International Nuclear Information System (INIS)

    Li Youcheng; Li Jiance; Tian Wei; Li Zongfang

    2005-01-01

    Objective: To assess the diagnostic value of diffusion-weighted echo-planar MR Imaging (DWI) in ring-enhancing intracerebral lesions. Methods: Magnetic resonance diffusion-weighted images of ninty-three patients presenting with ring-ehancing intracerebral lesions diagnosed by clinical or histopathologic findings were studied retrospectively, including 21 gliomas, 26 metastases, 13 pyogenic abscesses, 18 neurocysticercoses and 15 subacute intracerebral hematomas. The signal intensity ratio on diffusion-weighted images and exponential diffusion coefficient images was calculated respectively in ring walls, central contents, and perilesional edemas of ring-enhancing lesions, and normal contralateral cerebral parenchyma was used for comparison. ADC values of interest of lesions, contralateral cerebral parenchyma and CFS were calculated as well. Results: In pyogenic abscesses and subacute intracerebral hematomas, the central content was always extremely hyperintense on diffusion-weighted images, and showed low ADCs [(0.56 ± 0.20) x 10 -3 mm 2 /s, (0.69 ± 0.16) x 10 -3 mm 2 /s, respectively]. On the other hand the central content of gliomas, metastases and neurocysticercoses was hypointense, and showed high ADCs [(2.76 ± 0.41 ) x 10 -3 mm 2 /s, (2.31 ± 0.39 ) x 10 -3 mm 2 /s, (2.10 ± 0.32) x 10 -3 mm 2 /s, respectively]. The ADCs of the first two lesions were significantly lower than of the last three lesions (P 2 -weighted images should be reviewed in daily clinical practice. (authors)

  12. Diffusion-weighted MR imaging for detection of extrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Cui, Xing-Yu; Chen, Hong-Wei; Cai, Song; Bao, Jian; Tang, Qun-Feng; Wu, Li-Yuan; Fang, Xiang-Ming

    2012-01-01

    Objectives: To measure the sensitivity of diffusion-weighted imaging (DWI) and determine the most appropriate b value for DWI; to explore the correlation between the apparent diffusion coefficient (ADC) value and the degree of extrahepatic cholangiocarcinoma differentiation. Methods: Preoperative diffusion-weighted imaging and magnetic resonance examinations were performed for 31 patients with extrahepatic cholangiocarcinoma. Tumor ADC values were measured, and the signal-to-noise ratio, contrast-to-noise ratio, and signal-intensity ratio between the diffusion-weighted images with various b values as well as the T2-weighted images were calculated. Pathologically confirmed patients were pathologically graded to compare the ADC value with different b values of tumor at different degrees of differentiation, and the results were statistically analyzed by using the Friedman test. Results: A total of 29 cases of extrahepatic cholangiocarcinoma were detected by DWI. As the b value increased, tumor signal-to-noise ratio and contrast-to-noise ratio between the tumor and normal liver gradually decreased, but the tumor signal-intensity ratio gradually increased. When b = 800 s/mm 2 , contrast-to-noise ratio between tumor and normal liver, tumor signal-intensity ratio, and tumor signal-to-noise ratio of diffusion-weighted images were all higher than those of T2-weighted images; the differences were statistically significant (P 2 was the best in DWI of extrahepatic cholangiocarcinoma; the lesion ADC value declined as the degree of cancerous tissue differentiation decreased.

  13. Light field imaging and application analysis in THz

    Science.gov (United States)

    Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.

  14. Color Histogram Diffusion for Image Enhancement

    Science.gov (United States)

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  15. Light transmittance under diffuse radiation circumstances

    International Nuclear Information System (INIS)

    Kieboom, A.M.G. van den; Stoffers, J.A.

    1985-01-01

    For a grower it is important to know the light transmittance of a greenhouse. With this date (and many others) he is able to make a decision about which greenhouse and covering is the most economical in his situation. It is absolute impossible for a grower to use figures that are functions of: • the orientation of the greenhouse, • the relation between direct and global radiation, • the amount of radiation, etc. • He needs one comparable figure. As a comparable figure for light transmittance of a greenhouse we use the transmittance factor that is estimated with a diffuse radiation source. This figure will be the same as the mean transmittance over one year for that greenhouse, even with extreme direct radiation and independent of the orientation of the greenhouse. (author)

  16. Predicting patterns of glioma recurrence using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Price, Stephen J.; Pickard, John D.; Jena, Rajesh; Burnet, Neil G.; Carpenter, T.A.; Gillard, Jonathan H.

    2007-01-01

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T 2 -weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  17. Predicting patterns of glioma recurrence using diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen J.; Pickard, John D. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Academic Neurosurgery Unit (United Kingdom); University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Jena, Rajesh; Burnet, Neil G. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Oncology (United Kingdom); Carpenter, T.A. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Gillard, Jonathan H. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Radiology (United Kingdom)

    2007-07-15

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T{sub 2}-weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  18. MR imaging of skeletal muscle injury in rabbit : comparison between diffusion and T2-weighted MR images

    International Nuclear Information System (INIS)

    Kim, Ki Jun; Lee, Sung Yong; Lee, Jae Hee; Kwon Oh Han; Lee, Jae Mun; Lim, Yeon Soo

    2000-01-01

    The purpose of this study was to apply the diffusion-weighted MR imaging technique to the early detection of skeletal muscle injury and to evaluate the usefulness of this imaging sequence. Thirty rabbits, divided into two groups, were included in this study . Skeletal muscle injury was experimentally induced in the right thigh muscles of each rabbit by clamping with a hemostat for one minute. Four-stage clamping was applied to the rabbits in group I, but for group II there was only one stage. Diffusion and T2-weighted MR images were obtained using a 1.5T MR unit. Serial 5-and 30-minute, and 2-, 24-, and 48- hour delayed images were obtained after injury. The initial time of signal intensity change was recorded and the signal intensities of the injured sites and corresponding normal sites were measured and compared. On 5-minute delayed images in group I, diffusion-weighted MR images showed signal intensity changes in injured muscle in all 15 cases, but on T2-weighted images, change was not detected in three cases. In group II, 5-minute delayed T2-weighted images failed to depict the lesion in six cases, but on diffusion-weighted images, all lesions were detected. In addition, one lesion was not detected on 30-minute delayed T2-weighted images. In group II, the sensitivity of lesion detection was significantly higher on diffusion-weighted than on T2-weighted images (p=3D0.0169). Diffusion-weighted MR imaging was shown to be more sensitive than T2-weighted imaging for the detection of signal intensity changes immediately after artificial injury, especially when this was of a lesser degree. These results suggest that diffusion-weighted MR imaging may be useful for the detection of early stage skeletal muscle injury. (author)

  19. Relationship between timed 25-foot walk and diffusion tensor imaging in multiple sclerosis.

    Science.gov (United States)

    Klineova, Sylvia; Farber, Rebecca; Saiote, Catarina; Farrell, Colleen; Delman, Bradley N; Tanenbaum, Lawrence N; Friedman, Joshua; Inglese, Matilde; Lublin, Fred D; Krieger, Stephen

    2016-01-01

    The majority of multiple sclerosis patients experience impaired walking ability, which impacts quality of life. Timed 25-foot walk is commonly used to gauge gait impairment but results can be broadly variable. Objective biological markers that correlate closely with patients' disability are needed. Diffusion tensor imaging, quantifying fiber tract integrity, might provide such information. In this project we analyzed relationships between timed 25-foot walk, conventional and diffusion tensor imaging magnetic resonance imaging markers. A cohort of gait impaired multiple sclerosis patients underwent brain and cervical spinal cord magnetic resonance imaging. Diffusion tensor imaging mean diffusivity and fractional anisotropy were measured on the brain corticospinal tracts and spinal restricted field of vision at C2/3. We analyzed relationships between baseline timed 25-foot walk, conventional and diffusion tensor imaging magnetic resonance imaging markers. Multivariate linear regression analysis showed a statistically significant association between several magnetic resonance imaging and diffusion tensor imaging metrics and timed 25-foot walk: brain mean diffusivity corticospinal tracts (p = 0.004), brain corticospinal tracts axial and radial diffusivity (P = 0.004 and 0.02), grey matter volume (p = 0.05), white matter volume (p = 0.03) and normalized brain volume (P = 0.01). The linear regression model containing mean diffusivity corticospinal tracts and controlled for gait assistance was the best fit model (p = 0.004). Our results suggest an association between diffusion tensor imaging metrics and gait impairment, evidenced by brain mean diffusivity corticospinal tracts and timed 25-foot walk.

  20. In-utero three dimension high resolution fetal brain diffusion tensor imaging.

    Science.gov (United States)

    Jiang, Shuzhou; Xue, Hui; Counsell, Serena; Anjari, Mustafa; Allsop, Joanna; Rutherford, Mary; Rueckert, Daniel; Hajnal, Joseph V

    2007-01-01

    We present a methodology to achieve 3D high resolution in-utero fetal brain DTI that shows excellent ADC as well as promising FA maps. After continuous DTI scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for fetal motion. Once aligned, the diffusion images are treated as irregularly sampled data where each voxel is associated with an appropriately rotated diffusion direction, and used to estimate the diffusion tensor on a regular grid. The method has been tested successful on eight fetuses and has been validated on adults imaged at 1.5T.

  1. New design of textile light diffusers for photodynamic therapy

    International Nuclear Information System (INIS)

    Cochrane, Cédric; Mordon, Serge R.; Lesage, Jean Claude; Koncar, Vladan

    2013-01-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm 2 : 5 × 20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/cm 2 ) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18 ± 2.5 mw/cm 2 . Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm 2 ) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes

  2. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Science.gov (United States)

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK

  3. Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate

    International Nuclear Information System (INIS)

    Rendon, Augusto; Lilge, Lothar; Beck, J Christopher

    2008-01-01

    Interstitial photodynamic therapy (PDT) has seen a rebirth, partially prompted by the development of photosensitizers with longer absorption wavelengths that enable the treatment of larger tissue volumes. Here, we study whether using diffusers with customizable longitudinal emission profiles, rather than conventional ones with flat emission profiles, improves our ability to conform the light dose to the prostate. We present a modified Cimmino linear feasibility algorithm to solve the treatment planning problem, which improves upon previous algorithms by (1) correctly minimizing the cost function that penalizes deviations from the prescribed light dose, and (2) regularizing the inverse problem. Based on this algorithm, treatment plans were obtained under a variety of light delivery scenarios using 5-15 standard or tailored diffusers. The sensitivity of the resulting light dose distributions to uncertainties in the optical properties, and the placement of diffusers was also studied. We find that tailored diffusers only marginally outperform conventional ones in terms of prostate coverage and rectal sparing. Furthermore, it is shown that small perturbations in optical properties can lead to large changes in the light dose distribution, but that those changes can be largely corrected with a simple light dose re-normalization. Finally, we find that prostate coverage is only minimally affected by small changes in diffuser placement. Our results suggest that prostate PDT is not likely to benefit from the use of tailored diffusers. Other locations with more complex geometries might see a better improvement

  4. Quantum hologram of macroscopically entangled light via the mechanism of diffuse light storage

    International Nuclear Information System (INIS)

    Gerasimov, L V; Sokolov, I M; Kupriyanov, D V; Havey, M D

    2012-01-01

    In this paper, we consider a quantum memory scheme for light diffusely propagating through a spatially disordered atomic gas. A unique characteristic is enhanced trapping of the signal light pulse by quantum multiple scattering, which can be naturally integrated with the mechanism of stimulated Raman conversion into a long-lived spin coherence. Then, the quantum state of the light can be mapped onto the disordered atomic spin subsystem and can be stored in it for a relatively long time. The proposed memory scheme can be applicable for storage of the macroscopic analogue of the Ψ (−) Bell state and the prepared entangled atomic state performs its quantum hologram, which suggests the possibility of further quantum information processing. (paper)

  5. High visibility temporal ghost imaging with classical light

    Science.gov (United States)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  6. Ultraviolet light imaging technology and applications

    Science.gov (United States)

    Yokoi, Takane; Suzuki, Kenji; Oba, Koichiro

    1991-06-01

    Demands on the high-quality imaging in ultraviolet (UV) light region have been increasing recently, especially in fields such as forensic investigations, laser experiments, spent fuel identification, and so on. Important requirements on the UV imaging devices in such applications are high sensitivity, excellent solar blindness, and small image distortion, since the imaging of very weak UV images are usually carried out under natural sunlight or room illuminations and the image data have to be processed to produce useful two-dimensional quantitative data. A new photocathode has been developed to meet these requirements. It is specially made of RbTe on a sapphire window and its quantum efficiency is as high as 20% with the solar blindness of 10,000. The tube is specially designed to meet UV light optics and to minimize image distortion. It has an invertor type image intensifier tube structure and intensifies the incident UV light up to approximately 10,000 times. The distortion of the output image is suppressed less than 1.8%, because of a specially designed electron optic lens system. The device has shown excellent results in the observation of such objects as fingerprints and footprints in forensic investigations, the Cherenkov light produced by the spent fuels stored in a cooling water pool in the nuclear power station, and UV laser beam path in excimer laser experiments. Furthermore, many other applications of the UV light imaging will be expected in various fields such as semiconductors, cosmetics, and electrical power.

  7. Magnetic resonance imaging of epidermoid, including diffusion weighted images and an atypical case

    International Nuclear Information System (INIS)

    Takahashi, Shoki; Higano, Shuichi; Kurihara, Noriko

    1994-01-01

    In order to study the role of magnetic resonance imaging (MRI) in diagnosing intracranial epidermoid, we evaluated the MRI findings on five cases with such tumor, all of which were surgically verified. In addition to standard spin-echo (SE) images obtained in all cases, diffusion-weighted images were acquired in two patients. In four patients, the tumor revealed to be almost isointense relative to cerebrospinal fluid (CSF) on both T 1 -and T 2 -weighted images, while it tended to show slightly hyperintense to CSF on proton-density-weighted images; thus, based on the signal intensity on standard SE images the distinction between epidermoid and arachnoid cyst may be difficult. Furthermore, the presence of the tumor which has a tendency to grow in and along the subarachnoid space causing relatively minimal mass effect may be overlooked. Diffusion-weighted images were shown to have advantages in such cases by demonstrating the tumor unequivocally as a mass of high signal, and differentiating it from arachnoid cysts. In the remaining patient, its appearance was atypical, showing bright signal on both T 1 -and T 2 -weighted images. In conclusion free of bone artifacts, multiplanar MRI with additional diffusion-weighted images provides a clear demonstration of epidermoid, and its differentiation from arachnoid cyst, thus obviating the need for CT cisternography. (author)

  8. Diffusion kurtosis imaging of the liver at 3 Tesla: in vivo comparison to standard diffusion-weighted imaging.

    Science.gov (United States)

    Budjan, Johannes; Sauter, Elke A; Zoellner, Frank G; Lemke, Andreas; Wambsganss, Jens; Schoenberg, Stefan O; Attenberger, Ulrike I

    2018-01-01

    Background Functional techniques like diffusion-weighted imaging (DWI) are gaining more and more importance in liver magnetic resonance imaging (MRI). Diffusion kurtosis imaging (DKI) is an advanced technique that might help to overcome current limitations of DWI. Purpose To evaluate DKI for the differentiation of hepatic lesions in comparison to conventional DWI at 3 Tesla. Material and Methods Fifty-six consecutive patients were examined using a routine abdominal MR protocol at 3 Tesla which included DWI with b-values of 50, 400, 800, and 1000 s/mm 2 . Apparent diffusion coefficient maps were calculated applying a standard mono-exponential fit, while a non-Gaussian kurtosis fit was used to obtain DKI maps. ADC as well as Kurtosis-corrected diffusion ( D) values were quantified by region of interest analysis and compared between lesions. Results Sixty-eight hepatic lesions (hepatocellular carcinoma [HCC] [n = 25]; hepatic adenoma [n = 4], cysts [n = 18]; hepatic hemangioma [HH] [n = 18]; and focal nodular hyperplasia [n = 3]) were identified. Differentiation of malignant and benign lesions was possible based on both DWI ADC as well as DKI D-values ( P values were in the range of 0.04 to < 0.0001). Conclusion In vivo abdominal DKI calculated using standard b-values is feasible and enables quantitative differentiation between malignant and benign liver lesions. Assessment of conventional ADC values leads to similar results when using b-values below 1000 s/mm 2 for DKI calculation.

  9. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    Science.gov (United States)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  11. 3D structure tensor analysis of light microscopy data for validating diffusion MRI.

    Science.gov (United States)

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A; Kohama, Steven G; Jespersen, Sune Nørhøj; Kroenke, Christopher D

    2015-05-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that

  12. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography--part 2: image reconstruction.

    Science.gov (United States)

    Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon

    2016-02-21

    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.

  13. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions

    International Nuclear Information System (INIS)

    Cakir, Ozgur; Arslan, Arzu; Inan, Nagihan; Anık, Yonca; Sarısoy, Tahsin; Gumustas, Sevtap; Akansel, Gur

    2013-01-01

    Purpose: To evaluate the diagnostic efficiency of the diffusion parameters measured by conventional diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for discrimination of malignant breast lesions from benign lesions and the normal breast. Materials and methods: The study included 52 women with 55 breast lesions (30 malignant, 25 benign). DTI and DWI were performed complementary to dynamic contrast MRI at 3T. Apparent diffusion coefficient (ADC) of DWI, mean diffusivity (MD) and fractional anisotropy (FA) values of DTI were measured for lesions and contralateral breast parenchyma in each patient. We used b factors of 0, 50, 850, 1000 and 1500 s/mm 2 for DWI and b 0 and 1000 s/mm 2 for DTI. ADC, MD and FA values were compared between malignant and benign lesions, and the normal parenchyma by univariate and multivariate analyses. Results: Diffusion parameters showed no difference according to menopausal status in the normal breast. ADC and MD values of the malignant lesions were significantly lower than benign lesions and normal parenchyma (p = 0.001). The FA showed no statistical significance. With the cut-off values of ≤1.23 × 10 −3 mm 2 /s (b 0–1000 s/mm 2 ) and ≤1.12 × 10 −3 mm 2 /s (b 0–1500 s/mm 2 ), ADC showed 92.85% and 96.15% sensitivity; 72.22% and 73.52% PPV, respectively. With a cut-off value of ≤1.27 × 10 −3 mm 2 /s (b 1000 s/mm 2 ), MD was 100% sensitive with a PPV of 65.90%. Comparing the diagnostic performance of the parameters in DTI with DWI, we obtained similar efficiency of ADC with b values of 0,1000 and 0,1500 s/mm 2 and MD with a b value of 0, 1000 s/mm 2 (AUC = 0.82 ± 0.07). Conclusion: ADC of DWI and MD of DTI values provide significant discriminative factors for benign and malignant breast lesions. FA measurement was not discriminative. Supported with clinical and dynamic contrast MRI findings, DWI and DTI findings provide significant contribution to the final radiologic decision

  14. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Ozgur, E-mail: cakirozgur@hotmail.com; Arslan, Arzu, E-mail: arzu.s.arslan@gmail.com; Inan, Nagihan, E-mail: nagihaninan@yahoo.com.tr; Anık, Yonca, E-mail: yoncaanik@yahoo.com; Sarısoy, Tahsin, E-mail: htsarisoy@yahoo.com; Gumustas, Sevtap, E-mail: svtgumustas@yahoo.com; Akansel, Gur, E-mail: gakansel@gmail.com

    2013-12-01

    Purpose: To evaluate the diagnostic efficiency of the diffusion parameters measured by conventional diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for discrimination of malignant breast lesions from benign lesions and the normal breast. Materials and methods: The study included 52 women with 55 breast lesions (30 malignant, 25 benign). DTI and DWI were performed complementary to dynamic contrast MRI at 3T. Apparent diffusion coefficient (ADC) of DWI, mean diffusivity (MD) and fractional anisotropy (FA) values of DTI were measured for lesions and contralateral breast parenchyma in each patient. We used b factors of 0, 50, 850, 1000 and 1500 s/mm{sup 2} for DWI and b 0 and 1000 s/mm{sup 2} for DTI. ADC, MD and FA values were compared between malignant and benign lesions, and the normal parenchyma by univariate and multivariate analyses. Results: Diffusion parameters showed no difference according to menopausal status in the normal breast. ADC and MD values of the malignant lesions were significantly lower than benign lesions and normal parenchyma (p = 0.001). The FA showed no statistical significance. With the cut-off values of ≤1.23 × 10{sup −3} mm{sup 2}/s (b 0–1000 s/mm{sup 2}) and ≤1.12 × 10{sup −3} mm{sup 2}/s (b 0–1500 s/mm{sup 2}), ADC showed 92.85% and 96.15% sensitivity; 72.22% and 73.52% PPV, respectively. With a cut-off value of ≤1.27 × 10{sup −3} mm{sup 2}/s (b 1000 s/mm{sup 2}), MD was 100% sensitive with a PPV of 65.90%. Comparing the diagnostic performance of the parameters in DTI with DWI, we obtained similar efficiency of ADC with b values of 0,1000 and 0,1500 s/mm{sup 2} and MD with a b value of 0, 1000 s/mm{sup 2} (AUC = 0.82 ± 0.07). Conclusion: ADC of DWI and MD of DTI values provide significant discriminative factors for benign and malignant breast lesions. FA measurement was not discriminative. Supported with clinical and dynamic contrast MRI findings, DWI and DTI findings provide significant

  15. Current contribution of diffusion tensor imaging in the evaluation of diffuse axonal injury

    Directory of Open Access Journals (Sweden)

    Daphine Centola Grassi

    Full Text Available ABSTRACT Traumatic brain injury (TBI is the number one cause of death and morbidity among young adults. Moreover, survivors are frequently left with functional disabilities during the most productive years of their lives. One main aspect of TBI pathology is diffuse axonal injury, which is increasingly recognized due to its presence in 40% to 50% of all cases that require hospital admission. Diffuse axonal injury is defined as widespread axonal damage and is characterized by complete axotomy and secondary reactions due to overall axonopathy. These changes can be seen in neuroimaging studies as hemorrhagic focal areas and diffuse edema. However, the diffuse axonal injury findings are frequently under-recognized in conventional neuroimaging studies. In such scenarios, diffuse tensor imaging (DTI plays an important role because it provides further information on white matter integrity that is not obtained with standard magnetic resonance imaging sequences. Extensive reviews concerning the physics of DTI and its use in the context of TBI patients have been published, but these issues are still hazy for many allied-health professionals. Herein, we aim to review the current contribution of diverse state-of-the-art DTI analytical methods to the understanding of diffuse axonal injury pathophysiology and prognosis, to serve as a quick reference for those interested in planning new studies and who are involved in the care of TBI victims. For this purpose, a comprehensive search in Pubmed was performed using the following keywords: “traumatic brain injury”, “diffuse axonal injury”, and “diffusion tensor imaging”.

  16. Hybrid Monte Carlo-Diffusion Method For Light Propagation in Tissue With a Low-Scattering Region

    Science.gov (United States)

    Hayashi, Toshiyuki; Kashio, Yoshihiko; Okada, Eiji

    2003-06-01

    The heterogeneity of the tissues in a head, especially the low-scattering cerebrospinal fluid (CSF) layer surrounding the brain has previously been shown to strongly affect light propagation in the brain. The radiosity-diffusion method, in which the light propagation in the CSF layer is assumed to obey the radiosity theory, has been employed to predict the light propagation in head models. Although the CSF layer is assumed to be a nonscattering region in the radiosity-diffusion method, fine arachnoid trabeculae cause faint scattering in the CSF layer in real heads. A novel approach, the hybrid Monte Carlo-diffusion method, is proposed to calculate the head models, including the low-scattering region in which the light propagation does not obey neither the diffusion approximation nor the radiosity theory. The light propagation in the high-scattering region is calculated by means of the diffusion approximation solved by the finite-element method and that in the low-scattering region is predicted by the Monte Carlo method. The intensity and mean time of flight of the detected light for the head model with a low-scattering CSF layer calculated by the hybrid method agreed well with those by the Monte Carlo method, whereas the results calculated by means of the diffusion approximation included considerable error caused by the effect of the CSF layer. In the hybrid method, the time-consuming Monte Carlo calculation is employed only for the thin CSF layer, and hence, the computation time of the hybrid method is dramatically shorter than that of the Monte Carlo method.

  17. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues

    International Nuclear Information System (INIS)

    Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Liang, Jimin; Zhang, Qian

    2015-01-01

    Aiming at the limitations of the simplified spherical harmonics approximation (SP N ) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SP N are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SP N and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SP N model as well as a much better accuracy compared with the DE one. (paper)

  18. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues.

    Science.gov (United States)

    Chen, Xueli; Sun, Fangfang; Yang, Defu; Ren, Shenghan; Zhang, Qian; Liang, Jimin

    2015-08-21

    Aiming at the limitations of the simplified spherical harmonics approximation (SPN) and diffusion equation (DE) in describing the light propagation in tissues, a hybrid simplified spherical harmonics with diffusion equation (HSDE) based diffuse light transport model is proposed. In the HSDE model, the living body is first segmented into several major organs, and then the organs are divided into high scattering tissues and other tissues. DE and SPN are employed to describe the light propagation in these two kinds of tissues respectively, which are finally coupled using the established boundary coupling condition. The HSDE model makes full use of the advantages of SPN and DE, and abandons their disadvantages, so that it can provide a perfect balance between accuracy and computation time. Using the finite element method, the HSDE is solved for light flux density map on body surface. The accuracy and efficiency of the HSDE are validated with both regular geometries and digital mouse model based simulations. Corresponding results reveal that a comparable accuracy and much less computation time are achieved compared with the SPN model as well as a much better accuracy compared with the DE one.

  19. X-linked adrenoleukodystrophy: correlation between Loes score and diffusion tensor imaging parameters.

    Science.gov (United States)

    Ono, Sergio Eiji; de Carvalho Neto, Arnolfo; Gasparetto, Emerson Leandro; Coelho, Luiz Otávio de Mattos; Escuissato, Dante Luiz; Bonfim, Carmem Maria Sales; Ribeiro, Lisandro Lima

    2014-01-01

    The present study was aimed at evaluating the correlation between diffusion tensor imaging parameters and Loes score as well as whether those parameters could indicate early structural alterations. Diffusion tensor imaging measurements were obtained in 30 studies of 14 patients with X-linked adrenoleukodystrophy and were correlated with Loes scores. A control group including 28 male patients was created to establish agematched diffusion tensor imaging measurements. Inter- and intraobserver statistical analyses were undertaken. Diffusion tensor imaging measurements presented strong Pearson correlation coefficients (r) of -0.86, 0.89, 0.89 and 0.84 for fractional anisotropy and mean, radial and axial diffusivities (p tensor measurements at early stage of the disease indicates that mean and radial diffusivities might be useful to predict the disease progression. Measurements of diffusion tensor parameters can be used as an adjunct to the Loes score, aiding in the monitoring of the disease and alerting for possible Loes score progression in the range of interest for therapeutic decisions.

  20. Effect of diffusion of light on thin-film photovoltaic laminates

    Directory of Open Access Journals (Sweden)

    Lipi Mohanty

    Full Text Available A large fraction of the daylight incident on building-integrated photovoltaic (BIPV laminates is diffuse irradiance. In this study, fabrics of various weaves were used to simulate combinations of direct and diffuse irradiance on façade-mounted PV. The scattering of light achieved with the fabrics at varying angles of incidence was measured with a goniophotometer. The transmittance distribution was used to quantify the percentage of diffusion created by the fabrics. A photovoltaic (PV laminate was shaded with the fabrics to simulate diffuse irradiance and the short circuit current of the module was measured. The experimental results indicate fabrics of different porosity can be used to simulate various combinations of direct and diffuse irradiance. However, these fabrics can affect the module output. Preliminary results show that the proximity of the fabric to the thin-film PV laminate during the test skews the measured electrical parameters. Keywords: Scattering, BRDF, Solar energy, Diffused irradiance, Photovoltaics, Goniophotometry

  1. Diagnosis of pericardial cysts using diffusion weighted magnetic resonance imaging: A case series

    Directory of Open Access Journals (Sweden)

    Mousavi Negareh

    2011-09-01

    Full Text Available Abstract Introduction Congenital pericardial cysts are benign lesions that arise from the pericardium during embryonic development. The diagnosis is based on typical imaging features, but atypical locations and signal magnetic resonance imaging sequences make it difficult to exclude other lesions. Diffusion-weighted magnetic resonance imaging is a novel method that can be used to differentiate tissues based on their restriction to proton diffusion. Its use in differentiating pericardial cysts from other pericardial lesions has not yet been described. Case presentation We present three cases (a 51-year-old Caucasian woman, a 66-year-old Caucasian woman and a 77-year-old Caucasian woman with pericardial cysts evaluated with diffusion-weighted imaging using cardiac magnetic resonance imaging. Each lesion demonstrated a high apparent diffusion coefficient similar to that of free water. Conclusion This case series is the first attempt to investigate the utility of diffusion-weighted magnetic resonance imaging in the assessment of pericardial cysts. Diffusion-weighted imaging may be a useful noninvasive diagnostic tool for pericardial cysts when conventional imaging findings are inconclusive.

  2. Oriented diffusion filtering for enhancing low-quality fingerprint images

    KAUST Repository

    Gottschlich, C.; Schönlieb, C.-B.

    2012-01-01

    To enhance low-quality fingerprint images, we present a novel method that first estimates the local orientation of the fingerprint ridge and valley flow and next performs oriented diffusion filtering, followed by a locally adaptive contrast enhancement step. By applying the authors' new approach to low-quality images of the FVC2004 fingerprint databases, the authors are able to show its competitiveness with other state-of-the-art enhancement methods for fingerprints like curved Gabor filtering. A major advantage of oriented diffusion filtering over those is its computational efficiency. Combining oriented diffusion filtering with curved Gabor filters led to additional improvements and, to the best of the authors' knowledge, the lowest equal error rates achieved so far using MINDTCT and BOZORTH3 on the FVC2004 databases. The recognition performance and the computational efficiency of the method suggest to include oriented diffusion filtering as a standard image enhancement add-on module for real-time fingerprint recognition systems. In order to facilitate the reproduction of these results, an implementation of the oriented diffusion filtering for Matlab and GNU Octave is made available for download. © 2012 The Institution of Engineering and Technology.

  3. Oriented diffusion filtering for enhancing low-quality fingerprint images

    KAUST Repository

    Gottschlich, C.

    2012-01-01

    To enhance low-quality fingerprint images, we present a novel method that first estimates the local orientation of the fingerprint ridge and valley flow and next performs oriented diffusion filtering, followed by a locally adaptive contrast enhancement step. By applying the authors\\' new approach to low-quality images of the FVC2004 fingerprint databases, the authors are able to show its competitiveness with other state-of-the-art enhancement methods for fingerprints like curved Gabor filtering. A major advantage of oriented diffusion filtering over those is its computational efficiency. Combining oriented diffusion filtering with curved Gabor filters led to additional improvements and, to the best of the authors\\' knowledge, the lowest equal error rates achieved so far using MINDTCT and BOZORTH3 on the FVC2004 databases. The recognition performance and the computational efficiency of the method suggest to include oriented diffusion filtering as a standard image enhancement add-on module for real-time fingerprint recognition systems. In order to facilitate the reproduction of these results, an implementation of the oriented diffusion filtering for Matlab and GNU Octave is made available for download. © 2012 The Institution of Engineering and Technology.

  4. Wallenberg's lateral medullary syndrome: diffusion-weighted imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, O.; Calli, C.; Yunten, N.; Kocaman, A.; Sirin, H. [Ege Univ., Izmir (Turkey). Dept. of Radiology

    2004-02-01

    To investigate the efficacy of diffusion-weighted imaging in patients with Wallenberg's lateral medullary syndrome. Thirteen patients with Wallenberg's lateral medullary syndrome were examined with conventional and echoplanar diffusion-weighted magnetic resonance (MR) imaging in a 1.5 T magnetic resonance unit. MR examinations were obtained in the acute or subacute stage of clinical syndrome, and diffusion-weighted imaging (DWI) was considered to be positive for infarction when an increase in signal was seen on b = 1000 s/mm2 images in the posterolateral medullary localization. DWIs were positive in 12 patients in the acute or subacute stages of this clinical syndrome. A false-negative result was obtained in only one patient examined within the first day, 10 h after onset of the symptoms. In the visual evaluation of the DWI, the contrast between normal and infarcted brainstem area was better in the high b-value images than in the apparent diffusion coefficient map images. DWI is a valuable technique for examining patients presenting with the signs and symptoms of Wallenberg's syndrome and high b-value images can provide complementary data to T2-weighted images. However, because most of our case group were in either the acute or subacute stage, true sensitivity of the method in the hyperacute stage of the syndrome remains unclear.

  5. Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI acquisition scheme

    Directory of Open Access Journals (Sweden)

    Chandana Kodiweera

    2016-06-01

    Full Text Available This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI, “Hybrid diffusion imaging” [1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI model, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain” [2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid, anisotropic hindered diffusion (e.g., extracellular space, and anisotropic restricted diffusion (e.g., intracellular space. The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article “Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study” [3].

  6. Fat-saturated diffusion-weighted imaging with three-dimensional MP-RAGE sequence

    International Nuclear Information System (INIS)

    Numano, Tomokazu; Homma, Kazuhiro; Takahashi, Nobuyuki; Hirose, Takeshi

    2005-01-01

    Image misrepresentation due to chemical shifts can create image artifacts on MR images. Distinguishing the organization and affected area can be difficult due to the chemical shift artifacts. Chemical shift selective (CHESS) is a method of decreasing chemical shift artifacts. In this study we have developed a new sequence for fat-saturated three-dimensional diffusion weighted MR imaging. This imaging was done during in vivo studies using an animal experiment MR imaging system at 2.0 T. In this sequence a preparation phase with a ''CHESS-90 deg RF-Motion Proving Gradient (MPG-180 deg RF-MPG-90 deg RF pulse train) was used to sensitize the magnetization to fat-saturated diffusion. Centric k-space acquisition order is necessary to minimize saturation effects from tissues with short relaxation times. From experimental results obtained with a phantom, the effect of the diffusion weighting and the effect of the fat-saturation were confirmed. From rat experimental results, fat-saturated diffusion weighted image data (0.55 x 0.55 x 0.55 mm 3 : voxel size) were obtained. This sequence was useful for in vivo imaging. (author)

  7. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling

    Science.gov (United States)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-07-01

    Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer.

  8. Some applications of nonlinear diffusion to processing of dynamic evolution images

    International Nuclear Information System (INIS)

    Goltsov, Alexey N.; Nikishov, Sergey A.

    1997-01-01

    Model nonlinear diffusion equation with the most simple Landau-Ginzburg free energy functional was applied to locate boundaries between meaningful regions of low-level images. The method is oriented to processing images of objects that are a result of dynamic evolution: images of different organs and tissues obtained by radiography and NMR methods, electron microscope images of morphogenesis fields, etc. In the methods developed by us, parameters of the nonlinear diffusion model are chosen on the basis of the preliminary treatment of the images. The parameters of the Landau-Ginzburg free energy functional are extracted from the structure factor of the images. Owing to such a choice of the model parameters, the image to be processed is located in the vicinity of the steady-state of the diffusion equation. The suggested method allows one to separate distinct structures having specific space characteristics from the whole image. The method was applied to processing X-ray images of the lung

  9. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  10. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    Science.gov (United States)

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  11. Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber

    Directory of Open Access Journals (Sweden)

    Jose Luis Cenis

    2016-07-01

    Full Text Available This work describes a new approach to the delivery of light in deeper tissues, through a silk filament that is implantable, biocompatible, and biodegradable. In the present work, silkworm gut fibers (SGFs of Bombyx mori L., are made by stretching the silk glands. Morphological, structural, and optical properties of the fibers have been characterized and the stimulatory effect of red laser light diffused from the fiber was assayed in fibroblast cultures. SGFs are formed by silk fibroin (SF mainly in a β-sheet conformation, a stable and non-soluble state in water or biological fluids. The fibers showed a high degree of transparency to visible and infrared radiation. Using a red laser (λ = 650 nm as source, the light was efficiently diffused along the fiber wall, promoting a significant increment in the cell metabolism 5 h after the irradiation. SGFs have shown their excellent properties as light-diffusing optical fibers with a stimulatory effect on cells.

  12. Diffusion weighted imaging (DWI) in the abdomen

    International Nuclear Information System (INIS)

    Collaku, A.

    2013-01-01

    Full text: Introduction: The use of diffusion weighted images when performing abdomen MRI has been increased during the last years; achieving high quality images for a short period of time remains still a challenge. Learning points: We present a literature review together with our experience in optimizing the DW imaging in the abdomen, focused on creating high density ADC maps and handling the uncooperative patients. Discussion: The factors that influence the image quality are discussed as well. Conclusion: The factors that influence the image quality are discussed as well

  13. Diffusion imaging: technology and clinical application; Diffusionsbildgebung. Technik und klinische Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Kukuk, Guido Matthias; Greschus, Susanne; Pieper, Claus Christian [Universitaetsklinik Bonn (Germany). Radiologische Klinik; Goldstein, Jan [Staedtisches Klinikum Solingen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-03-15

    While diffusion imaging was predominantly used for cerebral ischemia diagnostics it is now a widely applied MR diagnostic tool for oncologic or inflammatory diseases. The contribution is focused on the fundamentals of diffusion imaging and the most important indications.

  14. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling.

    Science.gov (United States)

    Wu, Wei; Tassi, Nancy G; Zhu, Hongli; Fang, Zhiqiang; Hu, Liangbing

    2015-12-09

    Nanocellulose is a biogenerated and biorenewable organic material. Using a process based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/NaClO/NaBr system, a highly translucent and light-diffusive film consisting of many layers of nanocellulose fibers and wood pulp microfibers was made. The film demonstrates a combination of large optical transmittance of ∼90% and tunable diffuse transmission of up to ∼78% across the visible and near-infrared spectra. The detailed characterizations of the film indicate the combination of high optical transmittance and haze is due to the film's large packing density and microstructured surface. The superior optical properties make the film a translucent light diffuser and applicable for improving the efficiencies of optoelectronic devices such as thin-film silicon solar cells and organic light-emitting devices.

  15. Hiding Information Using different lighting Color images

    Science.gov (United States)

    Majead, Ahlam; Awad, Rash; Salman, Salema S.

    2018-05-01

    The host medium for the secret message is one of the important principles for the designers of steganography method. In this study, the best color image was studied to carrying any secret image.The steganography approach based Lifting Wavelet Transform (LWT) and Least Significant Bits (LSBs) substitution. The proposed method offers lossless and unnoticeable changes in the contrast carrier color image and imperceptible by human visual system (HVS), especially the host images which was captured in dark lighting conditions. The aim of the study was to study the process of masking the data in colored images with different light intensities. The effect of the masking process was examined on the images that are classified by a minimum distance and the amount of noise and distortion in the image. The histogram and statistical characteristics of the cover image the results showed the efficient use of images taken with different light intensities in hiding data using the least important bit substitution method. This method succeeded in concealing textual data without distorting the original image (low light) Lire developments due to the concealment process.The digital image segmentation technique was used to distinguish small areas with masking. The result is that smooth homogeneous areas are less affected as a result of hiding comparing with high light areas. It is possible to use dark color images to send any secret message between two persons for the purpose of secret communication with good security.

  16. Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

    Directory of Open Access Journals (Sweden)

    Ming-guo Qiu

    2012-01-01

    Full Text Available The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

  17. Imaging Appearance of Human Immunodeficiency Virus Encephalitis on the Diffusion Weighted Images: A Case Report

    International Nuclear Information System (INIS)

    Lim, Hun Cheol; Yu, In Kyu; Oh, Keon Se

    2011-01-01

    Imaging finding of human immunodeficiency virus (HIV) encephalitis contain bilateral, symmetric, patchy, or diffuse increased T2WI signal intensities in the basal ganglia, cerebellum, brainstem, and centrum semiovale. In particular, the centrum semiovale is most commonly involved. Most of the HIV encephalitis cases are accompanied by brain atrophy. No previous study has reported symmetric increased signal intensity at the bilateral centrum semiovale without brain atrophy on diffusion weighted images in HIV encephalitis patients. Here, we report a case of this. We suggest that radiologists should consider the possibility of HIV encephalitis if there are symmetric increases in signal intensity at the bilateral centrum semiovale on diffusion weighted images of patients with a history of HIV infection.

  18. Effects of diffuse light in cultivation of roses; Effecten van diffuus licht in de rozenteelt

    Energy Technology Data Exchange (ETDEWEB)

    Schapendonk, A. [Plant-Dynamics, Englaan 8, 6703 EW Wageningen (Netherlands); Rappoldt, K. [EcoCurves, Kamperfoelieweg 17, 9753 ER Haren (Netherlands)

    2011-09-15

    An overview is given of the effects of diffuse glass and the rose production and the interactions with light, CO2 and Relative Humidity. Diffuse glass prevents peaks in the horizontal distribution of light and increases the average use of light [Dutch] Een overzicht wordt gegeven van de effecten van diffuus glas op de opbrengst van roos en de interacties met licht, CO2, en RV. Diffuus glas voorkomt pieken in de horizontale lichtverdeling en verhoogt de gemiddelde lichtbenutting.

  19. The direct tensor solution and higher-order acquisition schemes for generalized diffusion tensor imaging

    NARCIS (Netherlands)

    Akkerman, Erik M.

    2010-01-01

    Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional

  20. Diffusion in Altered Tonalite Sample Using Time Domain Diffusion Simulations in Tomographic Images Combined with Lab-scale Diffusion Experiments

    Science.gov (United States)

    Voutilainen, M.; Sardini, P.; Togneri, L.; Siitari-Kauppi, M.; Timonen, J.

    2010-12-01

    In this work an effect of rock heterogeneity on diffusion was investigated. Time domain diffusion simulations were used to compare behavior of diffusion in homogeneous and heterogeneous 3D media. Tomographic images were used as heterogeneous rock media. One altered tonalite sample from Sievi, Finland, was chosen as test case for introduced analysis procedure. Effective diffusion coefficient of tonalite sample was determined with lab-scale experiments and the same coefficient was used also for homogeneous media. Somewhat technically complicated mathematical solution for analysis of through diffusion experiment is shortly described. Computed tomography (CT) is already quite widely used in many geological, petrological, and paleontological applications when the three-dimensional (3D) structure of the material is of interest, and is an excellent method for gaining information especially about its heterogeneity, grain size, or porosity. In addition to offering means for quantitative characterization, CT provides a lot of qualitative information [1]. A through -diffusion laboratory experiment using radioactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities [2]. As a result we found out that heterogeneity has only a small effect to diffusion coefficient and in-diffusion profile for used geometry. Also direction dependency was tested and was found to be negligible. Whereas significant difference between generally accepted value and value obtained from simulations for constant m in Archie’s law was found. [1] Voutilainen, M., Siitari-Kauppi, M., Sardini, P., and Timonen, J., (2010). On pore-space characterization of an altered tonalite by X-ray µCT and the 14C-PMMA method (in progress). [2] Sardini, P., Robinet, J., Siitari-Kauppi, M., Delay, F., and Hellmuth, K-H, (2007). On direct simulation of heterogeneous

  1. Diffusion-Weighted Magnetic Resonance Imaging in Rhombencephalitis due to Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hatipoglu, H.G.; Onbasioglu Gurbuz, M.; Sakman, B.; Yuksel, E. [Dept. of Radiology, Ankara Numune Education and Research Hospital, Ankara (Turkey)

    2007-04-15

    We present diffusion-weighted imaging findings of a case of rhombencephalitis due to Listeria monocytogenes. It is a rare, life-threatening disorder. The diagnosis is difficult by clinical findings only. In this report, we aim to draw attention to the role of conventional and diffusion-weighted magnetic resonance imaging findings. To our knowledge, this is the first case report in the literature with apparent diffusion coefficient values of diseased brain parenchyma.

  2. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    Science.gov (United States)

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced

  3. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    Science.gov (United States)

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  4. Fast dictionary-based reconstruction for diffusion spectrum imaging.

    Science.gov (United States)

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar

    2013-11-01

    Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.

  5. Assessing the future of diffuse optical imaging technologies for breast cancer management

    International Nuclear Information System (INIS)

    Tromberg, Bruce J.; Pogue, Brian W.; Paulsen, Keith D.; Yodh, Arjun G.; Boas, David A.; Cerussi, Albert E.

    2008-01-01

    Diffuse optical imaging (DOI) is a noninvasive optical technique that employs near-infrared (NIR) light to quantitatively characterize the optical properties of thick tissues. Although NIR methods were first applied to breast transillumination (also called diaphanography) nearly 80 years ago, quantitative DOI methods employing time- or frequency-domain photon migration technologies have only recently been used for breast imaging (i.e., since the mid-1990s). In this review, the state of the art in DOI for breast cancer is outlined and a multi-institutional Network for Translational Research in Optical Imaging (NTROI) is described, which has been formed by the National Cancer Institute to advance diffuse optical spectroscopy and imaging (DOSI) for the purpose of improving breast cancer detection and clinical management. DOSI employs broadband technology both in near-infrared spectral and temporal signal domains in order to separate absorption from scattering and quantify uptake of multiple molecular probes based on absorption or fluorescence contrast. Additional dimensionality in the data is provided by integrating and co-registering the functional information of DOSI with x-ray mammography and magnetic resonance imaging (MRI), which provide structural information or vascular flow information, respectively. Factors affecting DOSI performance, such as intrinsic and extrinsic contrast mechanisms, quantitation of biochemical components, image formation/visualization, and multimodality co-registration are under investigation in the ongoing research NTROI sites. One of the goals is to develop standardized DOSI platforms that can be used as stand-alone devices or in conjunction with MRI, mammography, or ultrasound. This broad-based, multidisciplinary effort is expected to provide new insight regarding the origins of breast disease and practical approaches for addressing several key challenges in breast cancer, including: Detecting disease in mammographically dense tissue

  6. Diffusion tensor magnetic resonance imaging of the pancreas.

    Directory of Open Access Journals (Sweden)

    Noam Nissan

    Full Text Available To develop a diffusion-tensor-imaging (DTI protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues.Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC, were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI, whereas a standard clinical protocol complemented the PDAC patients' scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC, and fractional anisotropy (FA, as well as a λ1-vector map, and a main diffusion-direction map.DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm² yielded: λ1 = (2.65±0.35×10⁻³, λ2 = (1.87±0.22×10⁻³, λ3 = (1.20±0.18×10⁻³, ADC = (1.91±0.22×10⁻³ (all in mm²/s units and FA = 0.38±0.06. Using b-values of 100,500 s/mm² led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001 and a significant increase (p<0.0001 in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM component at b≤100 s/mm², which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm² and 100,500 s/mm² b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue.DTI using two reference b-values 0 and 100 s/mm² enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC

  7. Transcranial light-emitting diode therapy for neuropsychological improvement after traumatic brain injury: a new perspective for diffuse axonal lesion management

    Directory of Open Access Journals (Sweden)

    Santos JG

    2018-04-01

    Full Text Available João Gustavo Rocha Peixoto dos Santos, Wellingson Silva Paiva, Manoel Jacobsen Teixeira Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil Abstract: The cost of traumatic brain injury (TBI for public health policies is undeniable today. Even patients who suffer from mild TBI may persist with cognitive symptoms weeks after the accident. Most of them show no lesion in computed tomography or conventional magnetic resonance imaging, but microstructural white matter abnormalities (diffuse axonal lesion can be found in diffusion tensor imaging. Different brain networks work together to form an important part of the cognition process, and they can be affected by TBI. The default mode network (DMN plays an important central role in normal brain activities, presenting greater relative deactivation during more cognitively demanding tasks. After deactivation, it allows a distinct network to activate. This network (the central executive network acts mainly during tasks involving executive functions. The salience network is another network necessary for normal executive function, and its activation leads to deactivation of the DMN. The use of red or near-infrared (NIR light to stimulate or regenerate tissue is known as photobiomodulation. It was discovered that NIR (wavelength 800–900 nm and red (wavelength 600 nm light-emitting diodes (LEDs are able to penetrate through scalp and skull and have the potential to improve the subnormal, cellular activity of compromised brain tissue. Based on this, different experimental and clinical studies were done to test LED therapy for TBI, and promising results were found. It leads us to consider developing different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients. Keywords: traumatic brain injuries, diffuse axonal injury, low-level light therapy, neurologic manifestations, post-concussion syndrome, quality

  8. The imaging diagnosis of diffuse brain swelling due to severe brain trauma

    International Nuclear Information System (INIS)

    Shen Jianqiang; Hu Jiawang

    2008-01-01

    Objective: To discuss the clinical and pathological characteristics and the imaging types of the diffuse brain swelling due to severe brain trauma. Methods: The clinical data and CT and MR images on 48 cases with diffuse brain swelling due to severe brain trauma were analyzed. Results: Among these 48 cases of the diffuse brain swelling due to severe brain trauma, 33 cases were complicated with brain contusions (including 12 cases brain diffuse axonal injury, 1 case infarct of the right basal ganglion), 31 cases were complicated with hematoma (epidural, subdural or intracerebral), 27 cases were complicated with skull base fracture, and 10 cases were complicated with subarachnoid hematoma. The CT and MR imaging of the diffuse brain swelling included as followed: (1) Symmetrically diffuse brain swelling in both cerebral hemispheres with cerebral ventricles decreased or disappeared, without median line shift. (2)Diffuse brain swelling in one side cerebral hemisphere with cerebral ventricles decreased or disappeared at same side, and median line shift to other side. (3) Subarachnoid hematoma or little subcortex intracerebral hematoma were complicated. (4) The CT value of the cerebral could be equal, lower or higher comparing with normal. Conclusion: The pathological reason of diffuse brain swelling was the brain vessel expanding resulting from hypothalamus and brainstem injured in severe brain trauma. There were four CT and MR imaging findings in diffuse brain swelling. The diffuse brain swelling without hematoma may be caused by ischemical reperfusion injury. (authors)

  9. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    NARCIS (Netherlands)

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy

  10. Diffusion Tensor Imaging for the Differentiation of Microangiopathy, Infarction and Perfusion-Diffusion Mismatch Lesions

    International Nuclear Information System (INIS)

    Ha, Dong Ho; Choi, Sun Seob; Kang, Myong Jin; Lee, Jin Hwa; Yoon, Seong Kuk; Nam, Kyung Jin

    2009-01-01

    This study was designed to evaluate the usefulness of diffusion tensor imaging (DTI) and the DTI indices for differentiating between microangiopathy lesions, acute infarction lesions and perfusion-diffusion mismatch areas. DTI was performed in 35 patients with the use of a 1.5 Tesla MRI system. The MRI parameters were as follows: a spin echo EPI sequence with a bvalue = 1000 s/mm 2 , 25 diffusion directions, a repetition time of 8400 msec, an echo time of 75 msec, a matrix size of 128 x 128, a FOV of 22 cm and a 4 mm slice thickness. From the diffusion tensor images, the apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume ratio (VR), relative anisotropy (RA), anisotropy index (AI), exponential ADC (eADC) and magnitude diffusion coefficient (MDC) were measured for the contra-lateral normal area (28 cases), the microangiopathy lesions (10 cases), the infarction lesions (17 cases) and the perfusion-diffusion mismatch area (8 cases). As compared to the normal area, the microangiopathy lesions showed increased ADC and MDC values and decreased FA, VR, RA, AI and eADC values. The infarction lesions showed increased VR, RA and eADC values, a normal FA, a decreased AI and decreased ADC and MDC values. The mismatch area showed a similar pattern as that for the microangiopathy lesions; however, the differences were not prominent, with an increase of the ADC and MDC values and a decrease of FA, VR, RA, AI and eADC values. The DTI indices could have a role in making the differential diagnosis of microangiopathy, acute infarction and perfusion-diffusion mismatch lesions

  11. An introduction to visualization of diffusion tensor imaging and its applications

    NARCIS (Netherlands)

    Vilanova, A.; Zhang, S.; Kindlmann, G.; Laidlaw, D.H.; Weickert, J.; Hagen, H.

    2005-01-01

    Summary. Water diffusion is anisotropic in organized tissues such as white matter and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, measures water self-diffusion rates and thus gives an indication of the underlying tissue microstructure. The diffusion rate is often expressed

  12. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Radhakrishnan, Harsha; Wu, Weicheng; Daneshmand, Ali; Climov, Mihail; Ayata, Cenk; Boas, David A

    2013-06-01

    This paper describes a novel optical method for label-free quantitative imaging of cerebral blood flow (CBF) and intracellular motility (IM) in the rodent cerebral cortex. This method is based on a technique that integrates dynamic light scattering (DLS) and optical coherence tomography (OCT), named DLS-OCT. The technique measures both the axial and transverse velocities of CBF, whereas conventional Doppler OCT measures only the axial one. In addition, the technique produces a three-dimensional map of the diffusion coefficient quantifying nontranslational motions. In the DLS-OCT diffusion map, we observed high-diffusion spots, whose locations highly correspond to neuronal cell bodies and whose diffusion coefficient agreed with that of the motion of intracellular organelles reported in vitro in the literature. Therefore, the present method has enabled, for the first time to our knowledge, label-free imaging of the diffusion-like motion of intracellular organelles in vivo. As an example application, we used the method to monitor CBF and IM during a brief ischemic stroke, where we observed an induced persistent reduction in IM despite the recovery of CBF after stroke. This result supports that the IM measured in this study represent the cellular energy metabolism-related active motion of intracellular organelles rather than free diffusion of intracellular macromolecules.

  13. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  14. MEASUREMENTS OF THE MEAN DIFFUSE GALACTIC LIGHT SPECTRUM IN THE 0.95–1.65 μm BAND FROM CIBER

    Energy Technology Data Exchange (ETDEWEB)

    Arai, T.; Matsuura, S.; Sano, K.; Matsumoto, T.; Nakagawa, T.; Onishi, Y. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Bock, J.; Lanz, A.; Korngut, P.; Zemcov, M. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Cooray, A.; Smidt, J. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G.; Lee, H. M. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shirahata, M. [National Institutes of Natural Science, National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588 (Japan); Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai 980-8578 (Japan)

    2015-06-10

    We report measurements of the diffuse galactic light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95–1.65 μm by the Cosmic Infrared Background ExpeRiment. Using the low-resolution spectrometer calibrated for absolute spectro-photometry, we acquired long-slit spectral images of the total diffuse sky brightness toward six high-latitude fields spread over four sounding rocket flights. To separate the DGL spectrum from the total sky brightness, we correlated the spectral images with a 100 μm intensity map, which traces the dust column density in optically thin regions. The measured DGL spectrum shows no resolved features and is consistent with other DGL measurements in the optical and at near-infrared wavelengths longer than 1.8 μm. Our result implies that the continuum is consistently reproduced by models of scattered starlight in the Rayleigh scattering regime with a few large grains.

  15. An introduction to diffusion tensor image analysis.

    Science.gov (United States)

    O'Donnell, Lauren J; Westin, Carl-Fredrik

    2011-04-01

    Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  17. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  18. Malignant versus benign mediastinal lesions: quantitative assessment with diffusion weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guemuestas, Sevtap; Inan, Nagihan; Sarisoy, Hasan Tahsin; Anik, Yonca; Arslan, Arzu; Ciftci, Ercuement; Akansel, Guer; Demirci, Ali [University of Kocaeli, Department of Radiology, School of Medicine, Umuttepe Kocaeli (Turkey)

    2011-11-15

    We aimed to evaluate the performance of diffusion-weighted magnetic resonance imaging in differentiating malignant from benign mediastinal lesions. Fifty-three mediastinal lesions were examined with T1- and T2-weighted (W) conventional images. Then, two diffusion-weighted images were obtained with b = 0 and 1000 s/mm{sup 2} values and apparent diffusion coefficients (ADC) were calculated. The statistical significance of differences between measurements was tested using the Student-t test. The mean ADC of malignant lesions was significantly lower than that of the benign masses (p < 0.001). The cut-off value of {<=} 1.39 x 10{sup -3} mm{sup 2}/s indicated a malignant lesion with a sensitivity of 95% and specificity of 87%. Diffusion-weighted imaging may be helpful in differentiating benign from malignant mediastinal masses. (orig.)

  19. Spatio-temporal diffusion of dynamic PET images

    International Nuclear Information System (INIS)

    Tauber, C; Chalon, S; Guilloteau, D; Stute, S; Buvat, I; Chau, M; Spiteri, P

    2011-01-01

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  20. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease.

    Science.gov (United States)

    Zhang, Yu; Wu, I-Wei; Buckley, Shannon; Coffey, Christopher S; Foster, Eric; Mendick, Susan; Seibyl, John; Schuff, Norbert

    2015-08-01

    Parkinson's disease (PD) is histopathologically characterized by the loss of dopamine neurons in the substantia nigra pars compacta. The depletion of these neurons is thought to reduce the dopaminergic function of the nigrostriatal pathway, as well as the neural fibers that link the substantia nigra to the striatum (putamen and caudate), causing a dysregulation in striatal activity that ultimately leads to lack of movement control. Based on diffusion tensor imaging, visualizing this pathway and measuring alterations of the fiber integrity remain challenging. The objectives were to 1) develop a diffusion tensor tractography protocol for reliably tracking the nigrostriatal fibers on multicenter data; 2) test whether the integrities measured by diffusion tensor imaging of the nigrostriatal fibers are abnormal in PD; and 3) test whether abnormal integrities of the nigrostriatal fibers in PD patients are associated with the severity of motor disability and putaminal dopamine binding ratios. Diffusion tensor tractography was performed on 50 drug-naïve PD patients and 27 healthy control subjects from the international multicenter Parkinson's Progression Marker Initiative. Tractography consistently detected the nigrostriatal fibers, yielding reliable diffusion measures. Fractional anisotropy, along with radial and axial diffusivity of the nigrostriatal tract, showed systematic abnormalities in patients. In addition, variations in fractional anisotropy and radial diffusivity of the nigrostriatal tract were associated with the degree of motor deficits in PD patients. Taken together, the findings imply that the diffusion tensor imaging characteristic of the nigrostriatal tract is potentially an index for detecting and staging of early PD. © 2015 International Parkinson and Movement Disorder Society.

  1. A Riemannian scalar measure for diffusion tensor images

    NARCIS (Netherlands)

    Astola, L.J.; Fuster, A.; Florack, L.M.J.

    2010-01-01

    We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI.

  2. Spinal diffusion tensor imaging: a comprehensive review with emphasis on spinal cord anatomy and clinical applications.

    Science.gov (United States)

    Hendrix, Philipp; Griessenauer, Christoph J; Cohen-Adad, Julien; Rajasekaran, Shanmuganathan; Cauley, Keith A; Shoja, Mohammadali M; Pezeshk, Parham; Tubbs, R Shane

    2015-01-01

    Magnetic resonance imaging technology allows for in vivo visualization of fiber tracts of the central nervous system using diffusion-weighted imaging sequences and data processing referred to as "diffusion tensor imaging" and "diffusion tensor tractography." While protocols for high-fidelity diffusion tensor imaging of the brain are well established, the spinal cord has proven a more difficult target for diffusion tensor methods. Here, we review the current literature on spinal diffusion tensor imaging and tractography with special emphasis on neuroanatomical correlations and clinical applications. © 2014 Wiley Periodicals, Inc.

  3. Anti-glare LED lamps with adjustable illumination light field.

    Science.gov (United States)

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  4. PANDA: a pipeline toolbox for analyzing brain diffusion images

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2013-02-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named Pipeline for Analyzing braiN Diffusion imAges (PANDA for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL, Pipeline System for Octave and Matlab (PSOM, Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics (e.g., FA and MD that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI, allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies.

  5. Diffusion tensor imaging of the human skeletal muscle: contributions and applications

    International Nuclear Information System (INIS)

    Neji, Radhouene

    2010-01-01

    In this thesis, we present several techniques for the processing of diffusion tensor images. They span a wide range of tasks such as estimation and regularization, clustering and segmentation, as well as registration. The variational framework proposed for recovering a tensor field from noisy diffusion weighted images exploits the fact that diffusion data represent populations of fibers and therefore each tensor can be reconstructed using a weighted combination of tensors lying in its neighborhood. The segmentation approach operates both at the voxel and the fiber tract levels. It is based on the use of Mercer kernels over Gaussian diffusion probabilities to model tensor similarity and spatial interactions, allowing the definition of fiber metrics that combine information from spatial localization and diffusion tensors. Several clustering techniques can be subsequently used to segment tensor fields and fiber tractographies. Moreover, we show how to develop supervised extensions of these algorithms. The registration algorithm uses probability kernels in order to match moving and target images. The deformation consistency is assessed using the distortion induced in the distances between neighboring probabilities. Discrete optimization is used to seek an optimum of the defined objective function. The experimental validation is done over a dataset of manually segmented diffusion images of the lower leg muscle for healthy and diseased subjects. The results of the techniques developed throughout this thesis are promising. (author)

  6. Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging

    Science.gov (United States)

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar

    2015-01-01

    Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466

  7. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: Evaluation using a diffusional anisotropic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Sung Cheol [Dept. of Biostatistics, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jeong, Ha Kyu [Dept. of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Clinical Scientist, MR, Philips Healthcare, Seoul (Korea, Republic of)

    2015-04-15

    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  8. Improving CT-guided transthoracic biopsy of mediastinal lesions by diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcos Duarte; TyngI, Chiang Cheng; Bitencourt, Almir Galvao Vieira; Gross, Jefferson Luiz; Zurstrassen, Charles Edouard, E-mail: marcosduarte500@gmail.com [AC Camargo Cancer Center, Sao Paulo, SP (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre (UFCSPA), RS (Brazil). Dept. de Radiologia; Benveniste, Marcelo Felipe Kuperman; Odisio, Bruno Calazans [University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), Petropolis, RJ (Brazil)

    2014-11-15

    Objectives: to evaluate the preliminary results obtained using diffusion-weighted magnetic resonance imaging and the apparent diffusion coefficient for planning computed tomography-guided biopsies of selected mediastinal lesions. Methods: eight patients with mediastinal lesions suspicious for malignancy were referred for computed tomography-guided biopsy. Diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient measurement were performed to assist in biopsy planning with diffusion/computed tomography fused images. We selected mediastinal lesions that could provide discordant diagnoses depending on the biopsy site, including large heterogeneous masses, lesions associated with lung atelectasis or consolidation, lesions involving large mediastinal vessels and lesions for which the results of biopsy using other methods and histopathological examination were divergent from the clinical and radiological suspicion. Results: in all cases, the biopsy needle was successfully directed to areas of higher signal intensity on diffusion weighted sequences and the lowest apparent diffusion coefficient within the lesion (mean, 0.8 [range, 0.6–1.1]610{sup -3} mm{sup 2}/s), suggesting high cellularity. All biopsies provided adequate material for specific histopathological diagnoses of four lymphomas, two sarcomas and two thymoma s. Conclusion: functional imaging tools, such as diffusion-weighted imaging and the apparent diffusion coefficient, are promising for implementation in noninvasive and imaging-guided procedures. However, additional studies are needed to confirm that mediastinal biopsy can be improved with these techniques. (author)

  9. Imaging brain microstructure with diffusion MRI: practicality and applications.

    Science.gov (United States)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Classical imaging with undetected light

    Science.gov (United States)

    Cardoso, A. C.; Berruezo, L. P.; Ávila, D. F.; Lemos, G. B.; Pimenta, W. M.; Monken, C. H.; Saldanha, P. L.; Pádua, S.

    2018-03-01

    We obtained the phase and intensity images of an object by detecting classical light which never interacted with it. With a double passage of a pump and a signal laser beams through a nonlinear crystal, we observe interference between the two idler beams produced by stimulated parametric down conversion. The object is placed in the amplified signal beam after its first passage through the crystal and the image is observed in the interference of the generated idler beams. High contrast images can be obtained even for objects with small transmittance coefficient due to the geometry of the interferometer and to the stimulated parametric emission. Like its quantum counterpart, this three-color imaging concept can be useful when the object must be probed with light at a wavelength for which detectors are not available.

  11. Incidence of postangiographic silent brain infarction detected by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Mori, Harushi; Hayashi, Naoto; Aoki, Shigeki

    2002-01-01

    We surveyed to assess for the incidence of clinically silent brain infarction after cerebral catheter angiography. Diffusion-weighted images were performed shortly after 33 cerebral catheter angiographies. We found totally 11 abnormally high intensity spots in 5 of 33 patients on diffusion-weighted images and, therefore, the incidence was calculated as 15.2%. This incidence is higher than has been estimated based on the incidence of neurological deficits (about 0.5%) after cerebral angiography. Diffusion-weighted MR imaging is suitable to monitor the safety of angiographic procedures and material. (author)

  12. Diffusion-weighted MR imaging of intracranial tumors

    International Nuclear Information System (INIS)

    Bydder, G.M.; Baudouin, C.J.; Steiner, R.E.; Hajnal, J.V.; Young, I.R.

    1991-01-01

    This paper assesses the effect of anisotropic diffusion weighting on the appearances of cerebral tumors as well as vasogenic and interstitial edema. Diffusion weighting produced a reduction in signal intensity in all or part of the tumors in the majority of cases. However, a relative increase in signal intensity was apparent in four cases. The decrease in signal intensity in vasogenic edema depended on the site and direction of gradient sensitization. Marked increase in conspicuity between tumor and edema was apparent in three cases. Changes in interstitial edema depended in detail in fiber direction. Differentiation between tumor and edema can be improved with diffusion-weighted imaging. Anisotropic change is seen in both vasogenic and interstitial edema

  13. Small-Animal Imaging Using Diffuse Fluorescence Tomography.

    Science.gov (United States)

    Davis, Scott C; Tichauer, Kenneth M

    2016-01-01

    Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.

  14. Application of diffusion tensor imaging in neurosurgery; Anwendung der Diffusions-Tensor-Bildgebung in der Neurochirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Saur, R. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Augenklinik des Universitaetsklinikums Tuebingen (Germany); Klinik fuer Psychiatrie und Psychotherapie des Universitaetsklinikums Tuebingen (Germany); Gharabaghi, A. [Klinik fuer Neurochirurgie des Universitaetsklinikums Tuebingen (Germany); Erb, M. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany)

    2007-07-01

    Knowledge about integrity and location of fibre tracts arising from eloquent cortical areas is important to plan neurosurgical interventions and to allow maximization of resection of pathological tissue while preserving vital white matter tracts. Diffusion Tensor Imaging (DTI) is so far the only method to get preoperatively an impression of the individual complexity of nerve bundles. Thereby nerve fibres are not mapped directly. They are derived indirectly by analysis of the directional distribution of diffusion of water molecules which is influenced mainly by large fibre tracts. From acquisition to reconstruction and visualisation of the fibre tracts many representational stages and working steps have to be passed. Exact knowledge about problems of Diffusion Imaging is important for interpretation of the results. Particularly, brain tumor edema, intraoperative brain shift, MR-artefacts and limitations of the mathematical models and algorithms challenge DTI-developers and applicants. (orig.)

  15. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Raja, Rajikha; Sinha, Neelam [International Institute of Information Technology-Bangalore, Bangalore (India); Saini, Jitender; Mahadevan, Anita; Rao, K.V.L. Narasinga; Swaminathan, Aarthi [National Institute of Mental Health and Neurosciences, Bangalore (India)

    2016-12-15

    In this work, we aim to assess the significance of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters in grading gliomas. Retrospective studies were performed on 53 subjects with gliomas belonging to WHO grade II (n = 19), grade III (n = 20) and grade IV (n = 14). Expert marked regions of interest (ROIs) covering the tumour on T2-weighted images. Statistical texture measures such as entropy and busyness calculated over ROIs on diffusion parametric maps were used to assess the tumour heterogeneity. Additionally, we propose a volume heterogeneity index derived from cross correlation (CC) analysis as a tool for grading gliomas. The texture measures were compared between grades by performing the Mann-Whitney test followed by receiver operating characteristic (ROC) analysis for evaluating diagnostic accuracy. Entropy, busyness and volume heterogeneity index for all diffusion parameters except fractional anisotropy and anisotropy of kurtosis showed significant differences between grades. The Mann-Whitney test on mean diffusivity (MD), among DTI parameters, resulted in the highest discriminability with values of P = 0.029 (0.0421) for grade II vs. III and P = 0.0312 (0.0415) for III vs. IV for entropy (busyness). In DKI, mean kurtosis (MK) showed the highest discriminability, P = 0.018 (0.038) for grade II vs. III and P = 0.022 (0.04) for III vs. IV for entropy (busyness). Results of CC analysis illustrate the existence of homogeneity in volume (uniformity across slices) for lower grades, as compared to higher grades. Hypothesis testing performed on volume heterogeneity index showed P values of 0.0002 (0.0001) and 0.0003 (0.0003) between grades II vs. III and III vs. IV, respectively, for MD (MK). In summary, the studies demonstrated great potential towards automating grading gliomas by employing tumour heterogeneity measures on DTI and DKI parameters. (orig.)

  16. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas

    International Nuclear Information System (INIS)

    Raja, Rajikha; Sinha, Neelam; Saini, Jitender; Mahadevan, Anita; Rao, K.V.L. Narasinga; Swaminathan, Aarthi

    2016-01-01

    In this work, we aim to assess the significance of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters in grading gliomas. Retrospective studies were performed on 53 subjects with gliomas belonging to WHO grade II (n = 19), grade III (n = 20) and grade IV (n = 14). Expert marked regions of interest (ROIs) covering the tumour on T2-weighted images. Statistical texture measures such as entropy and busyness calculated over ROIs on diffusion parametric maps were used to assess the tumour heterogeneity. Additionally, we propose a volume heterogeneity index derived from cross correlation (CC) analysis as a tool for grading gliomas. The texture measures were compared between grades by performing the Mann-Whitney test followed by receiver operating characteristic (ROC) analysis for evaluating diagnostic accuracy. Entropy, busyness and volume heterogeneity index for all diffusion parameters except fractional anisotropy and anisotropy of kurtosis showed significant differences between grades. The Mann-Whitney test on mean diffusivity (MD), among DTI parameters, resulted in the highest discriminability with values of P = 0.029 (0.0421) for grade II vs. III and P = 0.0312 (0.0415) for III vs. IV for entropy (busyness). In DKI, mean kurtosis (MK) showed the highest discriminability, P = 0.018 (0.038) for grade II vs. III and P = 0.022 (0.04) for III vs. IV for entropy (busyness). Results of CC analysis illustrate the existence of homogeneity in volume (uniformity across slices) for lower grades, as compared to higher grades. Hypothesis testing performed on volume heterogeneity index showed P values of 0.0002 (0.0001) and 0.0003 (0.0003) between grades II vs. III and III vs. IV, respectively, for MD (MK). In summary, the studies demonstrated great potential towards automating grading gliomas by employing tumour heterogeneity measures on DTI and DKI parameters. (orig.)

  17. Light diffusion in N-layered turbid media: steady-state domain.

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2010-01-01

    We deal with light diffusion in N-layered turbid media. The steady-state diffusion equation is solved for N-layered turbid media having a finite or an infinitely thick N'th layer. Different refractive indices are considered in the layers. The Fourier transform formalism is applied to derive analytical solutions of the fluence rate in Fourier space. The inverse Fourier transform is calculated using four different methods to test their performance and accuracy. Further, to avoid numerical errors, approximate formulas in Fourier space are derived. Fast solutions for calculation of the spatially resolved reflectance and transmittance from the N-layered turbid media ( approximately 10 ms) with small relative differences (<10(-7)) are found. Additionally, the solutions of the diffusion equation are compared to Monte Carlo simulations for turbid media having up to 20 layers.

  18. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  19. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  20. Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys

    International Nuclear Information System (INIS)

    Palmucci, Stefano; Cappello, Giuseppina; Attinà, Giancarlo; Foti, Pietro Valerio; Siverino, Rita Olivia Anna; Roccasalva, Federica; Piccoli, Marina; Sinagra, Nunziata; Milone, Pietro; Veroux, Massimiliano; Ettorre, Giovanni Carlo

    2015-01-01

    The aim of this study is to investigate the relation between renal indexes and functional MRI in a population of kidney transplant recipients who underwent MR with diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) of the transplanted graft. Study population included 40 patients with single kidney transplant. The patients were divided into 3 groups, on the basis of creatinine clearance (CrCl) values calculated using Cockcroft-Gault formula: group A, including patients with normal renal function (CrCl ≥ 60 mL/min); group B, which refers to patients with moderate renal impairment (CrCl > 30 but <60 mL/min); and, finally, group C, which means severe renal deterioration (CrCl ≤ 30 mL/min). All patients were investigated with a 1.5 Tesla MRI scanner, acquiring DWI and DTI sequences. A Mann–Whitney U test was adopted to compare apparent diffusion coefficients (ADCs) and fractional anisotropy (FA) measurements between groups. Receiver operating characteristic (ROC) curves were created for prediction of normal renal function (group A) and renal failure (group C). Pearson correlation was performed between renal clearance and functional imaging parameter (ADC and FA), obtained for cortical and medullar regions. Mann–Whitney U test revealed a highly significant difference (p < 0.01) between patients with low CrCl (group C) and normal CrCl (group A) considering both medullar ADC and FA and cortical ADC. Regarding contiguous groups, the difference between group B and C was highly significant (p < 0.01) for medullar ADC and significant (p < 0.05) for cortical ADC and medullar FA. No difference between these groups was found considering cortical FA. Analyzing groups A and B, we found a significant difference (p < 0.05) for medullar both ADC and FA, while no difference was found for cortical ADC and FA. Strongest Pearson correlation was found between CrCl and medullar ADC (r = 0.65). For predicting normal renal function or severe renal impairment, highest

  1. Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering

    International Nuclear Information System (INIS)

    Poupon, C.; Roche, A.; Dubois, J.; Mangin, J.F.; Poupon, F.

    2008-01-01

    Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm, it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted volume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clinicians, especially when it is not possible to predict how long a subject may remain still in the magnet. First, we introduce the general linear models corresponding to the two diffusion tensor and analytical Q-ball models of interest. Then, we present the Kalman filtering framework and we focus on the optimization of the diffusion orientation sets in order to speed up the convergence of the online processing. Last, we give some results on a healthy volunteer for the online tensor and the Q-ball model, and we make some comparisons with the conventional offline techniques used in the literature. We could achieve full real-time for diffusion tensor imaging and deferred time for Q-ball imaging, using a single workstation. (authors)

  2. Diffusion-weighted imaging of the musculoskeletal system in humans

    International Nuclear Information System (INIS)

    Baur, A.; Reiser, M.F.

    2000-01-01

    This article reviews the principles of diffusion-weighted imaging (DWI) and recent results in DWI of the musculoskeletal system. The potential of DWI in the diagnosis of pathology of the musculoskeletal system is discussed. DWI is a relatively new MR imaging technique that has already been established in neuroradiology, especially in the early detection of brain ischemia. The random motion of water protons on a molecular basis can be measured with DWI. To date DWI of the abdomen and of the musculoskeletal system has only been employed in scientific studies, but first results indicate that it may also be beneficial in these fields. Different diffusion characteristics have been found in normal tissues such as muscle, fat and bone marrow. Also, pathologic entities such as neoplasms, post-therapeutic soft tissue changes and inflammatory processes can be differentiated. Normal muscle shows significantly higher diffusion values than subcutaneous fat and bone marrow, due to a higher mobility of water protons within muscle. Soft tissue tumors exhibit a significantly lower diffusion value compared with post-therapeutic soft tissue changes and inflammatory processes. Necrotic tumor tissue can be distinguished from viable tumor due to significantly higher diffusion of water protons within necrotic tissue. (orig.)

  3. Restoration of uneven illumination in light sheet microscopy images.

    Science.gov (United States)

    Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel

    2011-08-01

    Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.

  4. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  5. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain

    Directory of Open Access Journals (Sweden)

    Sahil Bajaj

    2017-11-01

    Full Text Available Mild traumatic brain injury (mTBI is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion and anisotropic fashion (i.e., quantitative anisotropy, QA for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo on the amount of water diffusion (QA for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

  6. Light Diffusion in the Tropical Dry Forest of Costa Rica

    Science.gov (United States)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  7. Diffusion tensor magnetic resonance imaging of the breast: a pilot study

    International Nuclear Information System (INIS)

    Baltzer, Pascal A.T.; Schaefer, Anja; Dietzel, Matthias; Kaiser, Werner A.; Graessel, David; Gajda, Mieczyslaw; Camara, Oumar

    2011-01-01

    Diffusion-weighted MR imaging has shown diagnostic value for differential diagnosis of breast lesions. Diffusion tensor imaging (DTI) adds information about tissue microstructure by addressing diffusion direction. We have examined the diagnostic application of DTI of the breast. A total of 59 patients (71 lesions: 54 malignant, 17 benign) successfully underwent prospective echo planar imaging-DTI (EPI-DTI) (1.5 T). First, diffusion direction both of parenchyma as well as lesions was assessed on parametric maps. Subsequently, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured. Statistics included univariate (Mann-Whitney U test, receiver operating analysis) and multivariate (logistic regression analysis, LRA) tests. Main diffusion direction of parenchyma was anterior-posterior in the majority of cases (66.1%), whereas lesions (benign, malignant) showed no predominant diffusion direction in the majority of cases (23.9%). ADC values showed highest differences between benign and malignant lesions (P < 0.001) with resulting area under the curve (AUC) of 0.899. FA values were lower in benign (interquartile range, IR, 0.14-0.24) compared to malignant lesions (IR 0.21-0.35, P < 0.002) with an AUC of 0.751-0.770. Following LRA, FA did not prove to have incremental value for differential diagnosis over ADC values. Microanatomical differences between benign and malignant breast lesions as well as breast parenchyma can be visualized by using DTI. (orig.)

  8. Volume illustration of muscle from diffusion tensor images.

    Science.gov (United States)

    Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun

    2009-01-01

    Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.

  9. Intrauterine device for laser light diffusion and method of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Tadir, Y.; Berns, M.W.; Svaasand, L.O.; Tromberg, B.J.

    1995-12-26

    An improved device for delivery of photoenergy from a light source, such as a laser, into a uterine cavity for photodynamic therapy is comprised of a plurality of optic fibers, which are bundled together and inserted into the uterine cavity by means of a uterine cannula. The cannula is positioned within the uterine cavity at a preferred location and then withdrawn thereby allowing the plurality of optic fibers to splay or diverge one from the other within the cavity. Different portions of the distal tip of the optic fiber is provided with a light diffusing tip, the remainder being provided with a nondiffusing tip portion. The fiber optic shape, as well as the segment which is permitted to actively diffuse light through the tip, is selected in order to provide a more uniform exposure intensity of the photo energy or at least sufficient radiation directed to each segment of the uterine walls. 5 figs.

  10. Harmonization of multi-site diffusion tensor imaging data.

    Science.gov (United States)

    Fortin, Jean-Philippe; Parker, Drew; Tunç, Birkan; Watanabe, Takanori; Elliott, Mark A; Ruparel, Kosha; Roalf, David R; Satterthwaite, Theodore D; Gur, Ruben C; Gur, Raquel E; Schultz, Robert T; Verma, Ragini; Shinohara, Russell T

    2017-11-01

    Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) technique used for studying microstructural changes in the white matter. As with many other imaging modalities, DTI images suffer from technical between-scanner variation that hinders comparisons of images across imaging sites, scanners and over time. Using fractional anisotropy (FA) and mean diffusivity (MD) maps of 205 healthy participants acquired on two different scanners, we show that the DTI measurements are highly site-specific, highlighting the need of correcting for site effects before performing downstream statistical analyses. We first show evidence that combining DTI data from multiple sites, without harmonization, may be counter-productive and negatively impacts the inference. Then, we propose and compare several harmonization approaches for DTI data, and show that ComBat, a popular batch-effect correction tool used in genomics, performs best at modeling and removing the unwanted inter-site variability in FA and MD maps. Using age as a biological phenotype of interest, we show that ComBat both preserves biological variability and removes the unwanted variation introduced by site. Finally, we assess the different harmonization methods in the presence of different levels of confounding between site and age, in addition to test robustness to small sample size studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  12. Phase correction of MR perfusion/diffusion images

    International Nuclear Information System (INIS)

    Chenevert, T.L.; Pipe, J.G.; Brunberg, J.A.; Yeung, H.N.

    1989-01-01

    Apparent diffusion coefficient (ADC) and perfusion MR sequences are exceptionally sensitive to minute motion and, therefore, are prone to bulk motions that hamper ADC/perfusion quantification. The authors have developed a phase correction algorithm to substantially reduce this error. The algorithm uses a diffusion-insensitive data set to correct data that are diffusion sensitive but phase corrupt. An assumption of the algorithm is that bulk motion phase shifts are uniform in one dimension, although they may be arbitrarily large and variable from acquisition to acquisition. This is facilitated by orthogonal section selection. The correction is applied after one Fourier transform of a two-dimensional Fourier transform reconstruction. Imaging experiments on rat and human brain demonstrate significant artifact reduction in ADC and perfusion measurements

  13. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  14. Production of a diffuse very high reflectivity material for light collection in nuclear detectors

    CERN Document Server

    Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I

    2000-01-01

    A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.

  15. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  16. Excess diffuse light absorption in upper mesophyll limits CO2 drawdown and depresses photosynthesis

    Science.gov (United States)

    Sun-grown and shade-grown leaves of some species absorb direct and diffuse light differently. Sun-grown leaves can photosynthesize ~10-15% less under diffuse compared to direct irradiance, while shade-grown leaves do not exhibit this sensitivity. In this study, we investigate if the spatial differen...

  17. The added value of advanced neuro-imaging (MR diffusion ...

    African Journals Online (AJOL)

    Introduction: Primary CNS lymphoma is difficult to diagnose with conventional imaging modalities. Magnetic resonance proton spectroscopy, dynamic susceptibility contrast DSC perfusion and diffusion weighted images have been recently investigated as a problem-solving tool for evaluation of primary CNS lymphoma with ...

  18. Fabrication of engineered particle-doped light diffuser with a soft transparent mold of UV-curable polymer

    Science.gov (United States)

    Zhu, Jicheng; Liu, Yanhua; Shen, Su; Wu, Jianhong

    2017-11-01

    Engineered particle-doped light diffuser is realized by a simple, low-cost soft lithographic method. A flexible photopolymerizable mold is employed as an intermediate transferring template directly from the developed photoresist texture to fabricate engineered particle-doped light diffuser. The well-designed surface microstructure can directionally scatter the incident light, while the doped ultra-violet curable resin with low concentration of the 2 μm-diameter organosilicone particles can homogenize the scattering light without decreasing transmittance. Experimental results show that the measured transmittance can be as high as 96.9% with little backscattering effect over the whole visible regime. Meanwhile, the haze raises from 30% to 75% with increased dopant concentration from 1 wt% to 7 wt% and thickness of the residual layer from 10 μm to 40 μm remained in the imprinting process. The proposed engineered particle-doped light diffuser can manage scattering angle, luminance uniformity and haze, thus it has the capability of homogenizing light and eliminating striations to create more visually pleasing structured lighting in commercial and residential environments. We anticipate that the approach appears to be a strong candidate for future development because of its scalable nature, environmentally-friendly process and relatively low cost.

  19. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Science.gov (United States)

    2016-12-22

    of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in

  20. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    Science.gov (United States)

    Lee, Wei-Ning; Larrat, Benoît; Pernot, Mathieu; Tanter, Mickaël

    2012-08-01

    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from -90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm-2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p 0.05, unpaired, one-tailed t-test, N = 10). In

  1. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    Science.gov (United States)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  2. Comparison of apparent diffusion coefficients (ADCs) between two-point and multi-point analyses using high-B-value diffusion MR imaging

    International Nuclear Information System (INIS)

    Kubo, Hitoshi; Maeda, Masayuki; Araki, Akinobu

    2001-01-01

    We evaluated the accuracy of calculating apparent diffusion coefficients (ADCs) using high-B-value diffusion images. Echo planar diffusion-weighted MR images were obtained at 1.5 tesla in five standard locations in six subjects using gradient strengths corresponding to B values from 0 to 3000 s/mm 2 . Estimation of ADCs was made using two methods: a nonlinear regression model using measurements from a full set of B values (multi-point method) and linear estimation using B values of 0 and max only (two-point method). A high correlation between the two methods was noted (r=0.99), and the mean percentage differences were -0.53% and 0.53% in phantom and human brain, respectively. These results suggest there is little error in estimating ADCs calculated by the two-point technique using high-B-value diffusion MR images. (author)

  3. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  4. Usefulness of Diffusion Tensor Imaging of White Matter in Alzheimer Disease and Vascular Dementia

    International Nuclear Information System (INIS)

    Sugihara, S.; Kinoshita, T.; Matsusue, E.; Fujii, S.; Ogawa, T.

    2004-01-01

    Purpose: To evaluate the usefulness of diffusion tensor imaging in detecting the water diffusivity caused by neuro pathological change in Alzheimer disease and vascular dementia. Material and Methods: Twenty patients with Alzheimer disease, 20 with vascular dementia, and 10 control subjects were examined. Diffusion tensor imaging applied diffusion gradient encoding in six non-collinear directions. Fractional anisotropy values were compared in the genu and splenium of the corpus callosum, and anterior and posterior white matter among the three groups. Results: In the patients with Alzheimer disease, fractional anisotropy values of the posterior white matter were significantly lower than those of controls. In patients with vascular dementia, fractional anisotropy values of the anterior white matter tended to be lower than those of the posterior white matter (P=0.07). Conclusion: Diffusion tensor imaging reflects the neuro pathological changes in the white matter, and may be useful in the diagnosis of Alzheimer disease and vascular dementia. Keywords: Alzheimer disease, .; diffusion tensor imaging, .; vascular dementia

  5. A novel image inpainting technique based on median diffusion

    Indian Academy of Sciences (India)

    numerical methods such as anisotropic diffusion and multiresolution schemes. Some steps ... Roth & Black (2005) have developed a framework for learning a generic and expressive image priors that ..... This paper presents a new approach for image inpainting by propagating median information .... J. Graphics Tools 9(1):.

  6. Functional evaluation of the kidney by diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Hasegawa, Taro; Hasegawa, Norio; Irie, Takeo; Fukuda, Kunihiko

    2003-01-01

    The purpose of this study was to determine the relationship between the apparent diffusion coefficient (ADC) and diffuse renal disease by diffusion-weighted echo planar magnetic resonance (MR) imaging (EPI). Ten volunteers, seven patients with chronic renal failure and eighteen recipients of renal transplants were examined with diffusion-weighted EPI. We compared renal function (serum creatinine level) with provided ADC value. The average ADC values were 2.63 x 10 -3 mm 2 /sec for the whole kidney, 2.67 x 10 -3 mm 2 /sec for the cortex and 2.61 x 10 -3 mm 2 /sec for the medulla in normal kidneys. ADC values in the whole kidney, the cortex and the medulla in chronic renal failure were significantly lower than those for normal kidneys. In renal transplantation kidneys, the ADC values in the cortex were significantly lower than those for normal kidney. There was a linear correlation between ADC value and serum creatinine level. Our results show that diffusion-weighted MR imaging may be useful to identify renal dysfunction. (author)

  7. Ghost imaging and ghost diffraction with pseudo-thermal light generated by means of a programmable SLM

    International Nuclear Information System (INIS)

    Capeluto, M G; Schmiegelow, C T; Francisco, D; Ledesma, S; Iemmi, C; Duisterwinkel, H

    2011-01-01

    Ghost imaging and ghost diffraction are techniques in which information about the object or about its diffraction pattern is extracted by measuring the correlation between a reference beam and a beam that passes through the object. Although first experiments were carried on by using entangled photons, it was demonstrated that this technique can be performed by splitting incoherent pseudo-thermal radiation such as that obtained with a laser passing through a moving diffuser. In this work we implemented the use of a programmable phase spatial light modulator (SLM) in order to replace the rotating ground glass. In this way the random phase distributions obtained from the moving diffuser can be emulated by displaying onto the SLM different realizations of a random function with uniform distribution. Based on the programmability of the modulator we have studied the influence of diverse parameters such as speckle size or phase distributions in the final image quality. We carry on the experiment for two different cases ghost imaging and far field ghost diffraction.

  8. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  9. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  10. Incidence of ischemic lesions in diffusion-weighted imaging after transbrachial digital subtraction angiography

    International Nuclear Information System (INIS)

    Aschenbach, R.; Majeed, A.; Eger, C.; Basche, S.; Kerl, J.M.; Vogl, T.J.

    2008-01-01

    Purpose: to evaluate the frequency of ischemia after transbrachial digital subtraction angiography under ambulant conditions using diffusion-weighted imaging. Materials and methods: 200 patients were included in a prospective study design and received transbrachial digital subtraction angiography under ambulant conditions. Before and after digital subtraction angiography, diffusion-weighted imaging of the brain was performed. Results: in our study population no new lesions were found in diffusion-weighted imaging after digital subtraction angiography during the 3-hour window after angiography. One new lesion was found 3 days after angiography as a late onset complication. Therefore, the frequency of neurological complications is at the level of the confidence interval of 0 - 1.5%. Conclusion: the transbrachial approach under ambulant conditions is a safe method for digital subtraction angiography resulting in a low rate of ischemic lesions in diffusion-weighted imaging. (orig.)

  11. Thermal diffusivity imaging with the thermal lens microscope.

    Science.gov (United States)

    Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J

    2011-12-01

    A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America

  12. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    OpenAIRE

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy pattern enabling the reconstruction of the nervous fibers - dubbed tractography. DMRI constitutes a powerful tool to analyse the structure of the white matter within a voxel, but also to investigate the...

  13. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  14. Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Wech, Tobias; Neubauer, Henning; Veldhoen, Simon; Bley, Thorsten Alexander; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-10-01

    Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750 s/mm{sup 2} with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3 Tesla.

  15. Histogram analysis of noise performance on fractional anisotropy brain MR image with different diffusion gradient numbers

    International Nuclear Information System (INIS)

    Chang, Yong Min; Kim, Yong Sun; Kang, Duk Sik; Lee, Young Joo; Sohn, Chul Ho; Woo, Seung Koo; Suh, Kyung Jin

    2005-01-01

    We wished to analyze, qualitatively and quantitatively, the noise performance of fractional anisotropy brain images along with the different diffusion gradient numbers by using the histogram method. Diffusion tensor images were acquired using a 3.0 T MR scanner from ten normal volunteers who had no neurological symptoms. The single-shot spin-echo EPI with a Stejskal-Tanner type diffusion gradient scheme was employed for the diffusion tensor measurement. With a b-valuee of 1000 s/mm 2 , the diffusion tensor images were obtained for 6, 11, 23, 35 and 47 diffusion gradient directions. FA images were generated for each DTI scheme. The histograms were then obtained at selected ROIs for the anatomical structures on the FA image. At the same ROI location, the mean FA value and the standard deviation of the mean FA value were calculated. The quality of the FA image was improved as the number of diffusion gradient directions increased by showing better contrast between the WM and GM. The histogram showed that the variance of FA values was reduced as the number of diffusion gradient directions increased. This histogram analysis was in good agreement with the result obtained using quantitative analysis. The image quality of the FA map was significantly improved as the number of diffusion gradient directions increased. The histogram analysis well demonstrated that the improvement in the FA images resulted from the reduction in the variance of the FA values included in the ROI

  16. A chaos-based digital image encryption scheme with an improved diffusion strategy.

    Science.gov (United States)

    Fu, Chong; Chen, Jun-jie; Zou, Hao; Meng, Wei-hong; Zhan, Yong-feng; Yu, Ya-wen

    2012-01-30

    Chaos-based image cipher has been widely investigated over the last decade or so to meet the increasing demand for real-time secure image transmission over public networks. In this paper, an improved diffusion strategy is proposed to promote the efficiency of the most widely investigated permutation-diffusion type image cipher. By using the novel bidirectional diffusion strategy, the spreading process is significantly accelerated and hence the same level of security can be achieved with fewer overall encryption rounds. Moreover, to further enhance the security of the cryptosystem, a plain-text related chaotic orbit turbulence mechanism is introduced in diffusion procedure by perturbing the control parameter of the employed chaotic system according to the cipher-pixel. Extensive cryptanalysis has been performed on the proposed scheme using differential analysis, key space analysis, various statistical analyses and key sensitivity analysis. Results of our analyses indicate that the new scheme has a satisfactory security level with a low computational complexity, which renders it a good candidate for real-time secure image transmission applications.

  17. Assessment of patency capsule retention using MR diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Klang, Eyal; Rozendorn, Noa; Amitai, Michal Marianne [Sheba Medical Center, Department of Diagnostic Imaging, Ramat Gan (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Kopylov, Uri; Ben-Horin, Shomron; Lahat, Adi; Yablecovitch, Doron; Eliakim, Rami [Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Sheba Medical Center, Department of Gastroenterology, Ramat Gan (Israel)

    2017-12-15

    Evaluate the ability of MR diffusion-weighted imaging (DWI) to predict patency capsule retention in Crohn's disease (CD). Clinical and imaging data were prospectively reviewed for 80 CD patients following patency capsule administration and MR-DWI under institutional review board (IRB) approval with informed consent. Two radiologists separately assessed the presence/absence of restricted diffusion in the distal ileum. Apparent diffusion coefficients (ADC) from three regions of interest on the ileal wall were averaged. The association between restricted diffusion and retention, and sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Ability of ADC to predict retention was assessed with receiver operating characteristic (ROC) curve analysis. Restricted diffusion in the distal ileum was associated with capsule retention (p = 0.001, p < 0.0001). Sensitivity, specificity, PPV and NPV of restricted diffusion for capsule retention were 100.0%, 46.2%, 30.0%, 100% and 100.0%, 56.9%, 34.9%, 100%, respectively, for two radiologists. Accuracy of ADC to predict retention was high (area under the curve = 0.851, p < 0.0001). An ADC of 1.47 mm{sup 2}/s showed 90.0% sensitivity and 50.0% specificity for retention. Sensitivity and NPV of restricted diffusion for patency capsule retention were 100%, suggesting that DWI may predict gastrointestinal tract capability to pass video camera endoscopy. (orig.)

  18. Assessment of patency capsule retention using MR diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Klang, Eyal; Rozendorn, Noa; Amitai, Michal Marianne; Kopylov, Uri; Ben-Horin, Shomron; Lahat, Adi; Yablecovitch, Doron; Eliakim, Rami

    2017-01-01

    Evaluate the ability of MR diffusion-weighted imaging (DWI) to predict patency capsule retention in Crohn's disease (CD). Clinical and imaging data were prospectively reviewed for 80 CD patients following patency capsule administration and MR-DWI under institutional review board (IRB) approval with informed consent. Two radiologists separately assessed the presence/absence of restricted diffusion in the distal ileum. Apparent diffusion coefficients (ADC) from three regions of interest on the ileal wall were averaged. The association between restricted diffusion and retention, and sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. Ability of ADC to predict retention was assessed with receiver operating characteristic (ROC) curve analysis. Restricted diffusion in the distal ileum was associated with capsule retention (p = 0.001, p < 0.0001). Sensitivity, specificity, PPV and NPV of restricted diffusion for capsule retention were 100.0%, 46.2%, 30.0%, 100% and 100.0%, 56.9%, 34.9%, 100%, respectively, for two radiologists. Accuracy of ADC to predict retention was high (area under the curve = 0.851, p < 0.0001). An ADC of 1.47 mm 2 /s showed 90.0% sensitivity and 50.0% specificity for retention. Sensitivity and NPV of restricted diffusion for patency capsule retention were 100%, suggesting that DWI may predict gastrointestinal tract capability to pass video camera endoscopy. (orig.)

  19. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  20. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  1. Clinical application of diffusion-weighted magnetic resonance imaging to intracranial disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yanaka, Kiyoyuki; Shirai, Shizuo; Kimura, Hiroshi [Soujinkai Hospital, Ibaraki (Japan); Kamezaki, Takao; Matsumura, Akira; Nose, Tadao

    1995-09-01

    Diffusion-weighted magnetic resonance imaging was performed to determine the changes in water diffusion and to investigate the detectability of diffusion anisotropy in patients with intracranial disorders. Diffusion maps of the apparent diffusion coefficient (ADC) were created of 19 patients with cerebral infarction, five with intracerebral hematoma, four with glioma, four with meningioma, four with hydrocephalus, and five with subdural hematoma. ADC was increased in chronic cerebral infarction and glioma, and decreased in acute cerebral infarction, meningioma, and the marginal area of glioma compared with the ADC of the normal gray matter. There was a significant difference in ADC between the marginal and internal areas of glioma. Increased ADC may be due to increased vasogenic edema in infarction and a lack of significant restriction of diffusion within glioma. Decreased ADC can be attributed to restricted diffusion caused by cytotoxic edema in infarction and the underlying histological pattern of densely packed tumor cells in glioma. Diffusion anisotropy of the internal capsule was less detectable in pathological than normal hemispheres. Diffusion anisotropy was less detectable in patients with hydrocephalus and subdural hematoma. Intracranial lesions were thought to have influenced the compression of the brain structures and cells, resulting in decreased diffusion. The measurement of ADC by diffusion-weighted magnetic resonance imaging has the potential for greater understanding of the biophysical changes in various intracranial disorders, including correct diagnosis of cerebral infarction, and histological diagnosis of brain tumor. (author).

  2. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review.

    Science.gov (United States)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H; Dudink, Jeroen

    2015-08-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.

  3. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases.

    Science.gov (United States)

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-04-01

    The activity of the glymphatic system is impaired in animal models of Alzheimer's disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score. We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity. Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.

  4. An Efficient FPGA Implementation of Optimized Anisotropic Diffusion Filtering of Images

    Directory of Open Access Journals (Sweden)

    Chandrajit Pal

    2016-01-01

    Full Text Available Digital image processing is an exciting area of research with a variety of applications including medical, surveillance security systems, defence, and space applications. Noise removal as a preprocessing step helps to improve the performance of the signal processing algorithms, thereby enhancing image quality. Anisotropic diffusion filtering proposed by Perona and Malik can be used as an edge-preserving smoother, removing high-frequency components of images without blurring their edges. In this paper, we present the FPGA implementation of an edge-preserving anisotropic diffusion filter for digital images. The designed architecture completely replaced the convolution operation and implemented the same using simple arithmetic subtraction of the neighboring intensities within a kernel, preceded by multiple operations in parallel within the kernel. To improve the image reconstruction quality, the diffusion coefficient parameter, responsible for controlling the filtering process, has been properly analyzed. Its signal behavior has been studied by subsequently scaling and differentiating the signal. The hardware implementation of the proposed design shows better performance in terms of reconstruction quality and accelerated performance with respect to its software implementation. It also reduces computation, power consumption, and resource utilization with respect to other related works.

  5. Measuring Restriction Sizes Using Diffusion Weighted Magnetic Resonance Imaging: A Review

    Directory of Open Access Journals (Sweden)

    Melanie Martin

    2013-01-01

    Full Text Available This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE measurements could provide shorter diffusion times so smaller restriction sizes could be probed.

  6. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  7. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    Science.gov (United States)

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    A simple polarized-based diffuse reflectance imaging system has been developed. The system is designed for both in vivo and in vitro imaging of agricultural specimen in the visible region. The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic ...

  9. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma

    International Nuclear Information System (INIS)

    Huisman, Thierry A.G.M.

    2003-01-01

    Diffusion-weighted imaging (DWI) of the brain represents a new imaging technique that extends imaging from depiction of neuroanatomy to the level of function and physiology. DWI measures a fundamentally different physiological parameter compared with conventional MRI. Image contrast is related to differences in the diffusion rate of water molecules rather than to changes in total tissue water. DWI can reveal pathology in cases where conventional MRI remains unremarkable. DWI has proven to be highly sensitive in the early detection of acute cerebral ischemia and seems promising in the evaluation of traumatic brain injury. DWI can differentiate between lesions with decreased and increased diffusion. In addition, full-tensor DWI can evaluate the microscopic architecture of the brain, in particular white matter tracts, by measuring the degree and spatial distribution of anisotropic diffusion within the brain. This article reviews the basic concepts of DWI and its application in cerebral ischemia and traumatic brain injury. (orig.)

  10. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, Thierry A.G.M. [Department of Radiology, Neuroradiology Section and MGH-NMR Center, Massachusetts General Hospital and Harvard Medical School, MA 02129, Boston (United States); Department of Radiology, University Children' s Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich (Switzerland)

    2003-10-01

    Diffusion-weighted imaging (DWI) of the brain represents a new imaging technique that extends imaging from depiction of neuroanatomy to the level of function and physiology. DWI measures a fundamentally different physiological parameter compared with conventional MRI. Image contrast is related to differences in the diffusion rate of water molecules rather than to changes in total tissue water. DWI can reveal pathology in cases where conventional MRI remains unremarkable. DWI has proven to be highly sensitive in the early detection of acute cerebral ischemia and seems promising in the evaluation of traumatic brain injury. DWI can differentiate between lesions with decreased and increased diffusion. In addition, full-tensor DWI can evaluate the microscopic architecture of the brain, in particular white matter tracts, by measuring the degree and spatial distribution of anisotropic diffusion within the brain. This article reviews the basic concepts of DWI and its application in cerebral ischemia and traumatic brain injury. (orig.)

  11. Diffusion and perfusion imaging of bone marrow

    International Nuclear Information System (INIS)

    Biffar, Andreas; Dietrich, Olaf; Sourbron, Steven; Duerr, Hans-Roland; Reiser, Maximilian F.; Baur-Melnyk, Andrea

    2010-01-01

    In diffusion-weighted magnetic resonance imaging (DWI), the observed MRI signal intensity is attenuated by the self-diffusion of water molecules. DWI provides information about the microscopic structure and organization of a biological tissue, since the extent and orientation of molecular motion is influenced by these tissue properties. The most common method to measure perfusion in the body using MRI is T1-weighted dynamic contrast enhancement (DCE-MRI). The analysis of DCE-MRI data allows determining the perfusion and permeability of a biological tissue. DWI as well as DCE-MRI are established techniques in MRI of the brain, while significantly fewer studies have been published in body imaging. In recent years, both techniques have been applied successfully in healthy bone marrow as well as for the characterization of bone marrow alterations or lesions; e.g., DWI has been used in particular for the differentiation of benign and malignant vertebral compression fractures. In this review article, firstly a short introduction to diffusion-weighted and dynamic contrast-enhanced MRI is given. Non-quantitative and quantitative approaches for the analysis of DWI and semiquantitative and quantitative approaches for the analysis of DCE-MRI are introduced. Afterwards a detailed overview of the results of both techniques in healthy bone marrow and their applications for the diagnosis of various bone-marrow pathologies, like osteoporosis, bone tumors, and vertebral compression fractures are described.

  12. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng

    1994-01-01

    In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs

  13. Backscatter absorption gas imaging systems and light sources therefore

    Science.gov (United States)

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  14. A rotational diffusion coefficient of the 70s ribosome determined by depolarized laser light scattering

    NARCIS (Netherlands)

    Bruining, J.; Fijnaut, H.M.

    We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due

  15. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats

    OpenAIRE

    Daianu, Madelaine; Jacobs, Russell E.; Weitz, Tara M.; Town, Terrence C.; Thompson, Paul M.

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired a...

  16. A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism

    Science.gov (United States)

    Ye, Ruisong

    2011-10-01

    This paper proposes a novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism, in which permuting the positions of image pixels incorporates with changing the gray values of image pixels to confuse the relationship between cipher-image and plain-image. In the permutation process, a generalized Arnold map is utilized to generate one chaotic orbit used to get two index order sequences for the permutation of image pixel positions; in the diffusion process, a generalized Arnold map and a generalized Bernoulli shift map are employed to yield two pseudo-random gray value sequences for a two-way diffusion of gray values. The yielded gray value sequences are not only sensitive to the control parameters and initial conditions of the considered chaotic maps, but also strongly depend on the plain-image processed, therefore the proposed scheme can resist statistical attack, differential attack, known-plaintext as well as chosen-plaintext attack. Experimental results are carried out with detailed analysis to demonstrate that the proposed image encryption scheme possesses large key space to resist brute-force attack as well.

  17. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  18. Diffusion-weighted imaging of skeletal muscle lymphoma

    International Nuclear Information System (INIS)

    Surov, Alexey; Behrmann, Curd

    2014-01-01

    Muscle lymphoma (ML) is a relatively uncommon condition. On magnetic resonance imaging (MRI), ML can manifest with a broad spectrum of radiological features. The aim of this study was to demonstrate the features of DW images of muscle lymphoma (ML). In our database, ten patients (six women and four men) with ML were identified who were investigated by magnetic resonance imaging including acquisition of DW images. DW images were obtained using a multi-shot SE-EPI pulse sequence. Apparent diffusion constant (ADC) maps were also calculated. Furthermore, fusion images were generated manually from DW and HASTE or T2W images. On T2W images, all recognized lesions were hyperintense in comparison to unaffected musculature and on T1W images they were homogeneously hypointense. All lesions demonstrated low signal intensity on ADC images. The calculated ADC values ranged from 0.60 to 0.90 mm 2 s -1 (mean value 0.76 ± 0.10; median value 0.78). On fusion images, all lesions showed high signal intensity. ML demonstrated low ADC values and high signal intensity on fusion images suggesting high cellularity of the lesions. (orig.)

  19. Rocky Mountain spotted fever: 'starry sky' appearance with diffusion-weighted imaging in a child.

    Science.gov (United States)

    Crapp, Seth; Harrar, Dana; Strother, Megan; Wushensky, Curtis; Pruthi, Sumit

    2012-04-01

    We present a case of Rocky Mountain spotted fever encephalitis in a child imaged utilizing diffusion-weighted MRI. Although the imaging and clinical manifestations of this entity have been previously described, a review of the literature did not reveal any such cases reported in children utilizing diffusion-weighted imaging. The imaging findings and clinical history are presented as well as a brief review of this disease.

  20. A Comparison of Techniques for Approximating Full Image-Based Lighting

    DEFF Research Database (Denmark)

    Madsen, Claus B.; Laursen, Rune Elmgaard

    2006-01-01

    Light probes, or environment maps, are used extensively in computer graphics for visual effects involving rendering virtual objects into real scenes (Augment Reality). A light probe is a High Dynamic Range omni-directional image covering all directions on a sphere at some location. Each pixel...... in the light probe image measures the incident radiance at the light probe acquisition point. The figure above shows an example of a light probe image in the longitude-latitude mapping, (similar to an atlas mapping of the Earth). Using the light probe information a virtual object can be rendered with correct...... scene illumination and inserted into images of the scene with credible shading, reflections and shadows. Rendering virtual objects with light probe information is a very time consuming process. Therefore several techniques exist which attempt to approximate the light probe with a set of directional...

  1. Diffusion weighted magnetic resonance imaging: ischemic and traumatic injury of the central nervous system

    International Nuclear Information System (INIS)

    Huisman, T.A.G.M.; Sorensen, A.G.; Hawighorst, H.; Benoit, C.H.

    2001-01-01

    Diffusion weighted magnetic resonance imaging (DWI) represents a recent development that extends imaging from the depiction of the neuroanatomy into the field of functional and physiologic processes. DWI measures a fundamentally different physiologic parameter than conventional MRI. Image contrast is related to differences in the microscopic motion (diffusion) of water molecules within brain tissue rather than a change in total tissue water. Consequently, DWI can reveal pathology where conventional T1- and T2-weighted MR images are negative. DWI has clinically proven its value in the assessment of acute cerebral stroke and trauma by showing cerebral injury early due to its ability to discriminate between lesions with cytotoxic edema (decreased diffusion) from lesions with vasogenic edema (increased diffusion). Full tensor DWI allows to calculate a variety of functional maps, the most widely used maps include maps of apparent diffusion coefficients and isotropic diffusion. In addition maps of anisotropic diffusion can be calculated which are believed to give information about the integrity and location of fiber tracts. This functional-anatomical information will most probably play an increasingly important role in the early detection of primary and secondary tissue injury from various reasons and could guide and validate current and future neuroprotective treatments. (orig.) [de

  2. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    Science.gov (United States)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  3. Diffusion-weighted MR imaging findings in carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Teksam, M.; Casey, S.O.; Michel, E.; Liu, H.; Truwit, C.L.

    2002-01-01

    Diffusion-weighted MR imaging (DWI) of two patients with carbon monoxide (CO) poisoning demonstrated white matter and cortical hyperintensities. In one patient, the changes on the FLAIR sequence were more subtle than those on DWI. The DWI abnormality in this patient represented true restriction. In the second patient, repeated exposure to CO caused restricted diffusion. DWI may be helpful for earlier identification of the changes of acute CO poisoning. (orig.)

  4. Image compensation for camera and lighting variability

    Science.gov (United States)

    Daley, Wayne D.; Britton, Douglas F.

    1996-12-01

    With the current trend of integrating machine vision systems in industrial manufacturing and inspection applications comes the issue of camera and illumination stabilization. Unless each application is built around a particular camera and highly controlled lighting environment, the interchangeability of cameras of fluctuations in lighting become a problem as each camera usually has a different response. An empirical approach is proposed where color tile data is acquired using the camera of interest, and a mapping is developed to some predetermined reference image using neural networks. A similar analytical approach based on a rough analysis of the imaging systems is also considered for deriving a mapping between cameras. Once a mapping has been determined, all data from one camera is mapped to correspond to the images of the other prior to performing any processing on the data. Instead of writing separate image processing algorithms for the particular image data being received, the image data is adjusted based on each particular camera and lighting situation. All that is required when swapping cameras is the new mapping for the camera being inserted. The image processing algorithms can remain the same as the input data has been adjusted appropriately. The results of utilizing this technique are presented for an inspection application.

  5. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Diffusion-weighted MR imaging in benign and malignant orbital masses

    International Nuclear Information System (INIS)

    Guo Jian; Wang Zhenchang; Xian Junfang; Niu Yantao; Zhao Bo; Yan Fei; Liu Zhonglin; Yang Bentao

    2007-01-01

    Objective: To analyse the characteristics of orbital benign and malignant masses on diffusion weighted imaging in combination with conventional MR imaging and evaluate the diagnostic value of apparent diffusion coefficient in distinguishing benign and malignant orbital lesions. Methods: Seventy- seven cases with orbital masses, including fifty-five benign lesions and twenty-two malignant tumors, who underwent conventional MRI and diffusion imaging scanning were studied with use of a 1.5 T magnetic resonance system. Quantitative ADC measurements of masses (ADCM) and of the white matter of contralateral temporal lobe (ADC w ) were made with two different b-values of 0 and 1000 s/mm 2 . The ADC ratio (ADCR) of the lesion to the control was calculated. The receiver operating characteristic curves(ROC) were constructed using various cut points of ADCM and ADCR for different parameters to differentiate between benign and malignant masses. The area under the ROC curve for each parameter was also calculated. Results: All cases were proved by histopathology. The mean ADCM and ADCR of benign orbital masses were (1.56 ± 0.75) x 10 -3 mm 2 /s and 1.85 ± 0.91, respectively. The mean ADCM and ADCR of malignant orbital masses were (1.09 ± 0.42) x 10 -3 mm 2 /s and 1.28 ± 0.53, respectively. There were significant difference both between ADCM and ADCR of benign and malignant masses (t=2.803, 2.735, P -3 mm 2 /s for ADC M of the tumor, the sensitivity, specificity and accuracy were 59.1%, 78.2% and 72.7%, respectively. And by using cut point of 1.24 for ADCR, the sensitivity, specificity and accuracy were 59.1%, 76.4%, 71.4%, respectively. Conclusion: Diffusion MR imaging and ADC value could provide additional information for conventional magnetic resonance imaging in distinguishing benign and malignant orbital masses. (authors)

  7. Diffusion tensor magnetic resonance imaging and fiber tractography of the sacral plexus in children with spina bifida

    DEFF Research Database (Denmark)

    Haakma, Wieke; Dik, Pieter; ten Haken, Bennie

    2014-01-01

    anatomical and microstructural properties of the sacral plexus of patients with spina bifida using diffusion tensor imaging and fiber tractography. MATERIALS AND METHODS: Ten patients 8 to 16 years old with spina bifida underwent diffusion tensor imaging on a 3 Tesla magnetic resonance imaging system...... diffusivity values at S1-S3 were significantly lower in patients. CONCLUSIONS: To our knowledge this 3 Tesla magnetic resonance imaging study showed for the first time sacral plexus asymmetry and disorganization in 10 patients with spina bifida using diffusion tensor imaging and fiber tractography...

  8. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands); Govaert, Paul [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Pediatrics, Koningin Paola Children' s Hospital, Antwerp (Belgium); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Lequin, Maarten H. [Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands)

    2015-08-15

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  9. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    International Nuclear Information System (INIS)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.

    2015-01-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  10. The Fresnel Zone Light Field Spectral Imager

    Science.gov (United States)

    2017-03-23

    detection efficiency for weak signals . Additionally, further study should be done on spectral calibration methods for a FZLFSI. When dealing with weak ... detection assembly. The different image formation planes for each wavelength are constructed synthetically through processing the collected light ...a single micro-lens image. This character- istic also holds for wavelengths other than the design wavelength. 36 modified light field PSF is detected

  11. Edge-Based Image Compression with Homogeneous Diffusion

    Science.gov (United States)

    Mainberger, Markus; Weickert, Joachim

    It is well-known that edges contain semantically important image information. In this paper we present a lossy compression method for cartoon-like images that exploits information at image edges. These edges are extracted with the Marr-Hildreth operator followed by hysteresis thresholding. Their locations are stored in a lossless way using JBIG. Moreover, we encode the grey or colour values at both sides of each edge by applying quantisation, subsampling and PAQ coding. In the decoding step, information outside these encoded data is recovered by solving the Laplace equation, i.e. we inpaint with the steady state of a homogeneous diffusion process. Our experiments show that the suggested method outperforms the widely-used JPEG standard and can even beat the advanced JPEG2000 standard for cartoon-like images.

  12. Muscle changes detected with diffusion-tensor imaging after long-distance running.

    Science.gov (United States)

    Froeling, Martijn; Oudeman, Jos; Strijkers, Gustav J; Maas, Mario; Drost, Maarten R; Nicolay, Klaas; Nederveen, Aart J

    2015-02-01

    To develop a protocol for diffusion-tensor imaging (DTI) of the complete upper legs and to demonstrate feasibility of detection of subclinical sports-related muscle changes in athletes after strenuous exercise, which remain undetected by using conventional T2-weighted magnetic resonance (MR) imaging with fat suppression. The research was approved by the institutional ethics committee review board, and the volunteers provided written consent before the study. Five male amateur long-distance runners underwent an MR examination (DTI, T1-weighted MR imaging, and T2-weighted MR imaging with fat suppression) of both upper legs 1 week before, 2 days after, and 3 weeks after they participated in a marathon. The tensor eigenvalues (λ1, λ2, and λ3), the mean diffusivity, and the fractional anisotropy (FA) were derived from the DTI data. Data per muscle from the three time-points were compared by using a two-way mixed-design analysis of variance with a Bonferroni posthoc test. The DTI protocol allowed imaging of both complete upper legs with adequate signal-to-noise ratio and within a 20-minute imaging time. After the marathon, T2-weighted MR imaging revealed grade 1 muscle strains in nine of the 180 investigated muscles. The three eigenvalues, mean diffusivity, and FA were significantly increased (P DTI measurements of the upper legs was developed that fully included frequently injured muscles, such as hamstrings, in one single imaging session. This study also revealed changes in DTI parameters that over time were not revealed by qualitative T2-weighted MR imaging with fat suppression. © RSNA, 2014.

  13. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules

    International Nuclear Information System (INIS)

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions. (paper)

  14. Thin-Section Diffusion-Weighted Magnetic Resonance Imaging of the Brain with Parallel Imaging

    International Nuclear Information System (INIS)

    Oner, A.Y.; Celik, H.; Tali, T.; Akpek, S.; Tokgoz, N.

    2007-01-01

    Background: Thin-section diffusion-weighted imaging (DWI) is known to improve lesion detectability, with long imaging time as a drawback. Parallel imaging (PI) is a technique that takes advantage of spatial sensitivity information inherent in an array of multiple-receiver surface coils to partially replace time-consuming spatial encoding and reduce imaging time. Purpose: To prospectively evaluate a 3-mm-thin-section DWI technique combined with PI by means of qualitative and quantitative measurements. Material and Methods: 30 patients underwent conventional echo-planar (EPI) DWI (5-mm section thickness, 1-mm intersection gap) without parallel imaging, and thin-section EPI-DWI with PI (3-mm section thickness, 0-mm intersection gap) for a b value of 1000 s/mm 2 , with an imaging time of 40 and 80 s, respectively. Signal-to-noise ratio (SNR), relative signal intensity (rSI), and apparent diffusion coefficient (ADC) values were measured over a lesion-free cerebral region on both series by two radiologists. A quality score was assigned for each set of images to assess the image quality. When a brain lesion was present, contrast-to-noise ratio (CNR) and corresponding ADC were also measured. Student t-tests were used for statistical analysis. Results: Mean SNR values of the normal brain were 33.61±4.35 and 32.98±7.19 for conventional and thin-slice DWI (P>0.05), respectively. Relative signal intensities were significantly higher on thin-section DWI (P 0.05). Quality scores and overall lesion CNR were found to be higher in thin-section DWI with parallel imaging. Conclusion: A thin-section technique combined with PI improves rSI, CNR, and image quality without compromising SNR and ADC measurements in an acceptable imaging time. Keywords: Brain; DWI; parallel imaging; thin section

  15. 3D reconstruction based on light field images

    Science.gov (United States)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  16. The distribution of stars around the Milky Way's central black hole. II. Diffuse light from sub-giants and dwarfs

    Science.gov (United States)

    Schödel, R.; Gallego-Cano, E.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.

    2018-01-01

    Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way's central black hole, Sagittarius A*, with new data and methods. Aims: We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. Methods: We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose. Results: The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I. Conclusions: The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19-22 with masses of 0.8-1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way's central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster's intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the

  17. Diffusion-weighted MR imaging of thyroid nodules

    International Nuclear Information System (INIS)

    Bozgeyik, Zulkif; Coskun, Sonay; Ogur, Erkin; Dagli, A.F.; Ozkan, Yusuf; Sahpaz, Fatih

    2009-01-01

    The purpose of our study was to determine the diagnostic role of diffusion-weighted imaging (DWI) in the differentiating of malignant and benign thyroid nodules by using fine needle aspiration biopsy cytology criteria as a reference standard. The apparent diffusion coefficient (ADC) values of the normal-looking thyroid parenchyma were also evaluated both in normal patients and in patients with nodules. Between March 2007 and February 2008, 76 consecutive patients with ultrasound-diagnosed thyroid nodules and 20 healthy subjects underwent diffusion-weighted MR imaging by using single-shot spin echo, echo planar imaging. A total of 93 nodules were included in the study using the following b factors 100, 200, and 300 mm 2 /s. ADC values of thyroid nodules and normal area in all subjects were calculated and compared using suitable statistical analysis. Mean ADC values for malignant and benign nodules were 0.96±0.65 x 10 -3 and 3.06±0.71 x 10 -3 mm 2 /s. for b-300 factor, 0.56±0.43 x 10 -3 and 1.80±0.60 x 10 -3 mm 2 /s for b-200, and 0.30±0.20 x 10 -3 and 1.15±0.43 x 10 -3 mm 2 /s, for b-300, respectively. Mean ADC values of malignant nodules were lower than benign nodules. There were significant differences in ADC values between benign and malignant nodules. ADC values among normal-appearing thyroid parenchyma of patients and normal-appearing thyroid parenchyma of healthy subjects were insignificant at all b factors. Benign nodules have higher ADC values than malignant ones. DWI may be helpful in differentiating malign and benign thyroid nodules. (orig.)

  18. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  19. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  20. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    Science.gov (United States)

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  1. Diffusion-weighted imaging in patients with progressive multifocal leukoencephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cosottini, M. [University of Pisa, Department of Neuroscience, Pisa (Italy); Service of Neuroradiology AO, Pisa (Italy); Tavarelli, C.; De Cori, S.; Bartolozzi, C. [University of Pisa, Department of Radiology, Pisa (Italy); Del Bono, L.; Doria, G. [Unit of Infectious Diseases AO, Pisa (Italy); Giannelli, M. [Unit of Medical Physics, Pisa (Italy); Michelassi, M.C. [Service of Neuroradiology AO, Pisa (Italy); Murri, L. [University of Pisa, Department of Neuroscience, Pisa (Italy)

    2008-05-15

    Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system due to JC polyoma virus infection of oligodendrocytes. PML develops in patients with impaired T-cell function as occurs in HIV, malignancy or immunosuppressive drugs users. Until now no imaging methods have been reported to correlate with clinical status. Diffusion-weighted imaging (DWI) is a robust MRI tool in investigating white matter architecture and diseases. The aim of our work was to assess diffusion abnormalities in focal white matter lesions in patients with PML and to correlate the lesion load measured with conventional MRI and DWI to clinical variables. We evaluated eight patients with a biopsy or laboratory-supported diagnosis of PML. All patients underwent MRI including conventional sequences (fluid attenuated inversion recovery-FLAIR) and DWI. Mean diffusivity (MD) maps were used to quantify diffusion on white matter lesions. Global lesion load was calculated by manually tracing lesions on FLAIR images, while total, central core and peripheral lesion loads were calculated by manually tracing lesions on DWI images. Lesion load obtained with the conventional or DWI-based methods were correlated with clinical variables such as disease duration, disease severity and survival. White matter focal lesions are characterized by a central core with low signal on DWI images and high MD (1.853 x 10{sup -3} mm2/s), surrounded by a rim of high signal intensity on DWI and lower MD (1.1 x 10{sup -3} mm2/s). The MD value of normal-appearing white matter is higher although not statistically significant (0.783 x 10{sup -3} mm2/s) with respect to control subjects (0.750 x 10{sup -3} mm2/s). Inter-rater correlations of global lesion load between FLAIR (3.96%) and DWI (3.43%) was excellent (ICC =0.87). Global lesion load on FLAIR and DWI correlates with disease duration and severity (respectively, p = 0.037, p = 0.0272 with Karnofsky scale and p = 0.0338 with

  2. Initial experience of functional imaging of upper urinary tract neoplasm by diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Soichiro; Masuda, Hitoshi; Saito, Kazutaka; Kawakami, Satoru; Kihara, Kazunori; Ishii, Chikako

    2008-01-01

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) provides functional information widely used in the diagnosis of acute cerebral stroke. We reported our initial experience of this imaging technique of upper urinary tract (UUT) urothelial carcinoma (UC). Diffusion-weighted magnetic resonance imaging was carried out in 10 consecutive patients with suspected UUT UC. With conventional imaging, seven were diagnosed as having renal pelvic tumors and two were highly suspected of having UUT UC. These nine patients were diagnosed histopathologically as having renal pelvic UC by subsequent operation. The last patient was confirmed as experiencing benign stenosis. DW MRI was obtained with a 1.5-T MR imager without a breath-holding sequence. The apparent diffusion coefficient (ADC) values of renal parenchyma, dilated collecting system, and tumor were calculated. The differences were analyzed using Wilcoxon t-test. On DW MRI, all nine tumors showed hyperintensity with negligible urinary intensity. Two cases of highly suspected UUT UC with unclear conventional MRI had high signal intensity and contrast. The case of benign stenosis had negative DW MRI. The median (range) ADC value of the tumor (0.803 [0.412-0.958] x 10 -3 mm 2 /s) was significantly lower than those of the dilated collecting system (2.19 [1.42-2.40] x 10 -3 ) and renal parenchyma (1.28 [0.922-1.45] x 10 -3 , respectively (P<0.01 and P<0.01). This is the first report on the application of DW MRI for a series of UUT UC. With this technique, a clear demonstration of UUT UC could be obtained. Moreover, this imaging technique is potentially useful to identify small lesions if they have a low diffusion coefficient. (author)

  3. Optimal Parameters to Determine the Apparent Diffusion Coefficient in Diffusion Weighted Imaging via Simulation

    Science.gov (United States)

    Perera, Dimuthu

    Diffusion weighted (DW) Imaging is a non-invasive MR technique that provides information about the tissue microstructure using the diffusion of water molecules. The diffusion is generally characterized by the apparent diffusion coefficient (ADC) parametric map. The purpose of this study is to investigate in silico how the calculation of ADC is affected by image SNR, b-values, and the true tissue ADC. Also, to provide optimal parameter combination depending on the percentage accuracy and precision for prostate peripheral region cancer application. Moreover, to suggest parameter choices for any type of tissue, while providing the expected accuracy and precision. In this research DW images were generated assuming a mono-exponential signal model at two different b-values and for known true ADC values. Rician noise of different levels was added to the DWI images to adjust the image SNR. Using the two DWI images, ADC was calculated using a mono-exponential model for each set of b-values, SNR, and true ADC. 40,000 ADC data were collected for each parameter setting to determine the mean and the standard-deviation of the calculated ADC, as well as the percentage accuracy and precision with respect to the true ADC. The accuracy was calculated using the difference between known and calculated ADC. The precision was calculated using the standard-deviation of calculated ADC. The optimal parameters for a specific study was determined when both the percentage accuracy and precision were minimized. In our study, we simulated two true ADCs (ADC 0.00102 for tumor and 0.00180 mm2/s for normal prostate peripheral region tissue). Image SNR was varied from 2 to 100 and b-values were varied from 0 to 2000s/mm2. The results show that the percentage accuracy and percentage precision were minimized with image SNR. To increase SNR, 10 signal-averagings (NEX) were used considering the limitation in total scan time. The optimal NEX combination for tumor and normal tissue for prostate

  4. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases

    OpenAIRE

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-01-01

    Purpose: The activity of the glymphatic system is impaired in animal models of Alzheimer’s disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Materials and methods: Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along t...

  5. White matter injury in newborns with congenital heart disease: a diffusion tensor imaging study.

    Science.gov (United States)

    Mulkey, Sarah B; Ou, Xiawei; Ramakrishnaiah, Raghu H; Glasier, Charles M; Swearingen, Christopher J; Melguizo, Maria S; Yap, Vivien L; Schmitz, Michael L; Bhutta, Adnan T

    2014-09-01

    Brain injury is observed on cranial magnetic resonance imaging preoperatively in up to 50% of newborns with congenital heart disease. Newer imaging techniques such as diffusion tensor imaging provide sensitive measures of the white matter integrity. The objective of this study was to evaluate the diffusion tensor imaging analysis technique of tract-based spatial statistics in newborns with congenital heart disease. Term newborns with congenital heart disease who would require surgery at less than 1 month of age were prospectively enrolled (n = 19). Infants underwent preoperative and postoperative brain magnetic resonance imaging with diffusion tensor imaging. Tract-based spatial statistics, an objective whole-brain diffusion tensor imaging analysis technique, was used to determine differences in white matter fractional anisotropy between infant groups. Term control infants were also compared with congenital heart disease infants. Postmenstrual age was equivalent between congenital heart disease infant groups and between congenital heart disease and control infants. Ten infants had preoperative brain injury, either infarct or white matter injury, by conventional brain magnetic resonance imaging. The technique of tract-based spatial statistics showed significantly lower fractional anisotropy (P tensor imaging analysis technique that may have better sensitivity in detecting white matter injury compared with conventional brain magnetic resonance imaging in term newborns with congenital heart disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Diffusion-weighted imaging in the evaluation of odontogenic cysts and tumours.

    Science.gov (United States)

    Srinivasan, K; Seith Bhalla, A; Sharma, R; Kumar, A; Roychoudhury, A; Bhutia, O

    2012-10-01

    The differentiation between keratocystic odontogenic tumour (KCOT) and other cystic/predominantly cystic odontogenic tumours is difficult on conventional CT and MR sequences as there is overlap in the imaging characteristics of these lesions. The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) and to assess the performance of apparent diffusion coefficients (ADCs) in the differential diagnosis of odontogenic cysts and tumours. 20 patients with odontogenic cysts and tumours of the maxillomandibular region were examined with DWI. Diffusion-weighted images were obtained with a single-shot echoplanar technique with b-values of 0, 500 and 1000 s mm(-2). An ADC map was obtained at each slice position. The cystic areas of ameloblastoma (n=10) showed free diffusion with a mean ADC value of 2.192±0.33×10(-3) mm(2) s(-1), whereas the solid areas showed restricted diffusion with a mean ADC value of 1.041±0.41×10(-3) mm(2) s(-1). KCOT (n=5) showed restricted diffusion with a mean ADC value of 1.019±0.07×10(-3) mm(2) s(-1). There was a significant difference between the ADC values of KCOT and cystic ameloblastoma (p<0.01, Mann-Whitney U-test). The cut-off with which KCOT and predominantly cystic ameloblastomas were optimally differentiated was 2.013×10(-3) mm(2) s(-1), which yielded 100% sensitivity and 100% specificity. DWI can be used to differentiate KCOT from cystic (or predominantly cystic) odontogenic tumours.

  7. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus.

    Science.gov (United States)

    Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra

    2016-05-31

    In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly

  8. Low cost light-sheet microscopy for whole brain imaging

    Science.gov (United States)

    Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia

    2018-02-01

    Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.

  9. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    International Nuclear Information System (INIS)

    Tosun, Mesude; Inan, Nagihan; Sarisoy, Hasan Tahsin; Akansel, Gur; Gumustas, Sevtap; Gürbüz, Yeşim; Demirci, Ali

    2013-01-01

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm 2 . ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm 2 , the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade

  10. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Mesude, E-mail: mesude.tosun@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Inan, Nagihan, E-mail: inannagihan@ekolay.net [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Sarisoy, Hasan Tahsin, E-mail: htssarisoy@yahoo.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Akansel, Gur, E-mail: gakansel@gmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gumustas, Sevtap, E-mail: svtgumustas@hotmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gürbüz, Yeşim, E-mail: yesimgurbuz2002@yahoo.com [Department of Pathology, School of Medicine, University of Kocaeli (Turkey); Demirci, Ali, E-mail: alidemirci@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey)

    2013-02-15

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm{sup 2}. ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm{sup 2}, the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade.

  11. Regional Cerebral Disease Progression in Friedreich's Ataxia: A Longitudinal Diffusion Tensor Imaging Study.

    Science.gov (United States)

    Mascalchi, Mario; Toschi, Nicola; Giannelli, Marco; Ginestroni, Andrea; Della Nave, Riccardo; Tessa, Carlo; Piacentini, Silvia; Dotti, Maria Teresa; Aiello, Marco; Nicolai, Emanuele; Soricelli, Andrea; Salvi, Fabrizio; Diciotti, Stefano

    2016-01-01

    Imaging biomarkers of disease progression are desirable in inherited ataxias. MRI has demonstrated brain damage in Friedreich ataxia (FRDA) in form of regional atrophy of the medulla, peridentate cerebellar white matter (WM) and superior cerebellar peduncles (visible in T1-weighted images) and of change of microstructural characteristics of WM tracts of the brainstem, cerebellar peduncles, cerebellum, and supratentorial structures (visible through diffusion-weighted imaging). We explored the potential of brain MR morphometry and diffusion tensor imaging (DTI) to track the progression of neurodegeneration in FRDA. Eight patients (5F, 3M; age 13.4-41.2 years) and 8 healthy controls (2F, 6M; age 26.2-48.3 years) underwent 2 MRI examinations (mean 3.9 and 4.1 years apart, respectively) on the same 1.5T scanner. The protocol included 3D T1-weighted images and axial diffusion-weighted images (b-value 1,000 s/mm(2)) for calculating maps of fractional anisotropy, mean, axial and radial diffusivity, and mode of anisotropy. Tensor-based morphometry was used to investigate regional volume changes and tract-based spatial statistics was used to investigate microstructural changes in WM tracts. Longitudinal analyses showed no differences in regional volume changes but a significant difference in axial diffusivity changes in cerebral and corpus callosum WM of patients as compared to controls (mean longitudinal rate of change for axial diffusivity: -.02 × 10(-3) mm(2)/s/year in patients vs. .01 × 10(-3) mm(2)/s/year in controls). No correlation with number of triplets, disease duration, and worsening of the clinical deficit was observed. DTI can track brain microstructural changes in FRDA and can be considered a potential biomarker of disease progression. Copyright © 2015 by the American Society of Neuroimaging.

  12. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Klein, Jákup; Kraus, Martin

    2017-01-01

    of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...... cases, the reprojection approach is not capable of creating the light field. We conclude that pixel reprojection is a feasible method for rendering light fields as far as quality of perspective and diffuse shading is concerned, but render time needs to be reduced to make the method practical....

  13. Diffusion-weighted MR imaging of cystic lesions of neurocysticercosis: a preliminary study

    International Nuclear Information System (INIS)

    Raffin, Luciana S.; Bacheschi, Luiz A.; Machado, Luis R.; Nobrega, Jose P.S.; Coelho, Christina; Leite, Claudia C.

    2001-01-01

    Neurocysticercosis is an endemic disease in some developing countries. It has pleomorfic clinical and imaging findings, which are variable from patient to patient. In this preliminary note, we studied the magnetic resonance diffusion-weighted images of sixteen patients presenting with cystic lesions of this disease diagnosed by clinical and laboratorial findings. All the lesions had hypointense signal and the similar apparent diffusion coefficient values as the cerebrospinal fluid. (author)

  14. Semiautomated spleen volumetry with diffusion-weighted MR imaging.

    Science.gov (United States)

    Lee, Jeongjin; Kim, Kyoung Won; Lee, Ho; Lee, So Jung; Choi, Sanghyun; Jeong, Woo Kyoung; Kye, Heewon; Song, Gi-Won; Hwang, Shin; Lee, Sung-Gyu

    2012-07-01

    In this article, we determined the relative accuracy of semiautomated spleen volumetry with diffusion-weighted (DW) MR images compared to standard manual volumetry with DW-MR or CT images. Semiautomated spleen volumetry using simple thresholding followed by 3D and 2D connected component analysis was performed with DW-MR images. Manual spleen volumetry was performed on DW-MR and CT images. In this study, 35 potential live liver donor candidates were included. Semiautomated volumetry results were highly correlated with manual volumetry results using DW-MR (r = 0.99; P volumetry was significantly shorter compared to that of manual volumetry with DW-MR (P volumetry with DW-MR images can be performed rapidly and accurately when compared with standard manual volumetry. Copyright © 2011 Wiley Periodicals, Inc.

  15. Diffusion tensor imaging of the anterior cruciate ligament graft.

    Science.gov (United States)

    Van Dyck, Pieter; Froeling, Martijn; De Smet, Eline; Pullens, Pim; Torfs, Michaël; Verdonk, Peter; Sijbers, Jan; Parizel, Paul M; Jeurissen, Ben

    2017-11-01

    A great need exists for objective biomarkers to assess graft healing following ACL reconstruction to guide the time of return to sports. The purpose of this study was to evaluate the feasibility and reliability of diffusion tensor imaging (DTI) to delineate the anterior cruciate ligament (ACL) graft and to investigate its diffusion properties using a clinical 3T scanner. DTI of the knee (b = 0, 400, and 800 s/mm 2 , 10 diffusion directions, repeated 16 times for a total of 336 diffusion-weighted volumes) was performed at 3T in 17 patients between 3 and 7 months (mean, 4 months) following ACL reconstruction. Tractography was performed by two independent observers to delineate the ACL graft. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated within the graft. Interrater reliability was assessed using the intraclass correlation coefficient (ICC) and the scan-rescan reproducibility was evaluated based on the percentage coefficient of variance (%CV) across 20 repetition bootknife samples. In all subjects, tractography of the ACL graft was feasible. Quantitative evaluation of the diffusion properties of the ACL graft yielded the following mean ± SD values: FA = 0.23 ± 0.04; MD = 1.30 ± 0.11 × 10 -3 mm 2 /s; AD = 1.61 ± 0.12 × 10 -3 mm 2 /s, and RD = 1.15 ± 0.11 × 10 -3 mm 2 /s. Interrater reliability for the DTI parameters was excellent (ICC = 0.91-0.98). Mean %CVs for FA, MD, AD, and RD were 4.6%, 3.5%, 3.7%, and 4.4%, respectively. We demonstrated the feasibility and reliability of DTI for the visualization and quantitative evaluation of the ACL graft at 3T. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1423-1432. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Diffusion MR imaging with PSIF and SPLICE. Experiences in phantom studies and the central nervous system

    International Nuclear Information System (INIS)

    Uchikoshi, Masato; Ueda, Takashi; Kaji, Yasushi

    2001-01-01

    Studies have shown that diffusion MR imaging is a reliable method for the diagnosis of central nervous system diseases, especially acute cerebral infarction. Although echo planar imaging (EPI) is a promising tool for that purpose, it is vulnerable to susceptibility artifacts that are responsible for image distortion or signal loss. Our purpose in this study was to evaluate the usefulness of diffusion MR imaging with PSIF (reversed fast imaging SSFP) and split acquisition of fast-spin-echo signals for diffusion imaging (SPLICE) in the central nervous system (CNS). First, PSIF and SPLICE were applied to the phantoms. Each phantom, including acetone, acetic acid, and water, was analyzed for apparent diffusion coefficient (ADC) based on SPLICE and for diffusion-related coefficient (DRC) based on PSIF. The ADCs based on SPLICE were 4.36±0.89 x 10 -3 mm 2 /sec, 1.25±0.04 x 10 -3 mm 2 /sec, and 2.35±0.04 x 10 -3 mm 2 /sec, and the DRCs based on PSIF were 0.353±0.25, 0.178±0.07, and 0.273±0.018 for acetone, acetic acid, and water, respectively. These calculated ADCs based on SPLICE were well correlated with known diffusion coefficients, showing a correlation coefficient of 0.995. Second, PSIF and SPLICE were applied to the CNS. The advantage of PSIF and SPLICE was that susceptibility artifacts were reduced in the images of spinal cord and brain stem. PSIF was especially useful for diffusion MR imaging in the spinal cord. The disadvantage of SPLICE was the decreased SN ratio. We conclude that PSIF or SPLICE may be helpful when EPI diffusion MR imaging is insufficient. (author)

  17. Acute vertebral fracture: differentiation of malignant and benign causes by diffusion weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mubarak, F.; Akhtar, W.

    2011-01-01

    Objective: To evaluate the sensitivity, specificity and accuracy of diffusion weighted (DWI) magnetic resonance imaging (MRI) in the diagnosis and differentiation between benign (osteoporotic/infectious) and malignant vertebral compression fractures in comparison with histology findings and clinical follow up. Methods: The study was conducted at the Radiology Department, Aga Khan University Hospital (AKUH) Karachi. It was a one year cross-sectional study from 01/01/2009 to 01/01/2010. Forty patients with sixty three vertebral compression fractures were included. Diffusion-weighted sequences and apparent diffusion coefficient (ADC) images on a 1.5 T MR scanner were obtained in all patients to identify the vertebral compression fracture along with benign and malignant causes. Imaging findings were compared with histopathologic results and clinical follow-up. Results: Diffusion-weighted MR imaging found to have, 92% sensitivity, 90% specificity and accuracy of 85% in differentiation of benign and malignant vertebral compression fracture while PPV and NPV were 78 % and 90% respectively. Conclusion: Diffusion weighted magnetic resonance imaging offers a safe, accurate and non invasive modality to differentiate between the benign and malignant vertebral compression fracture. (author)

  18. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  19. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  20. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  1. The use of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions

    International Nuclear Information System (INIS)

    Pereira, Fernanda Philadelpho Arantes; Martins, Gabriela; Domingues, Marisa Nassar Aidar; Domingues, Romeu Cortes; Figueiredo, Eduardo; Fonseca, Lea Mirian Barbosa da

    2009-01-01

    Objective: to study the utility of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions. Materials and methods: forty-five women (mean age, 46.1 years) with 52 focal breast lesions underwent diffusion-weighted magnetic resonance imaging. The calculation of apparent diffusion coefficient (ADC) was based on the ADC map reflecting five b values (0, 250, 500, 750, and 1000 s/mm 2 ). The mean ADC value of each lesion was correlated with imaging findings and histopathologic results. Cutoff ADC, sensitivity and specificity of diffusion-weighted imaging in the differentiation between benign and malignant lesions were calculated. P -3 mm 2 /s) as compared with benign lesions (1.50 ± 0.34 x 10 -3 mm 2 /s) (P < 0.0001). Diffusion-weighted imaging showed high sensitivity and specificity (both, 92.3%) in the differentiation between benign and malignant lesions. Conclusion: diffusion-weighted imaging is a potential resource as an adjuvant to breast magnetic resonance imaging to differentiate benign from malignant lesions. Such sequence can be easily added to the standard breast magnetic resonance imaging protocol, without implying any significant increase in examination time. (author)

  2. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally...

  3. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.

    Directory of Open Access Journals (Sweden)

    Othman I Alomair

    Full Text Available Magnetic Resonance Imaging (MRI of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI with strong diffusion weighting (b >3000 s/mm2 and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE, thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white

  4. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging: Relationship between apparent diffusion coefficient and split glomerular filtration rate

    International Nuclear Information System (INIS)

    Toyoshima, S.; Noguchi, K.; Seto, H.; Shimizu, M.; Watanabe, N.

    2000-01-01

    To determine the relationship between apparent diffusion coefficient (ADC) values measured by diffusion-weighted MR imaging and split renal function determined by renal scintigraphy in patients with hydronephrosis. Material and Methods: Diffusion-weighted imaging on a 1.5 T MR unit and renal scintigraphy were performed in 36 patients with hydronephrosis (45 hydronephrotic kidneys, 21 non-hydronephrotic kidneys). ADC values of the individual kidneys were measured by diffusion-weighted MR imaging. Split renal function (glomerular filtration rate (GFR)) was determined by renal scintigraphy using 99m Tc-DTPA. The relationship between ADC values and split GFR was examined in 66 kidneys. The hydronephrotic kidneys were further classified into three groups (severe renal dysfunction, GFR 25 ml/min, n=28), and mean values for ADCs were calculated. Results: In hydronephrotic kidneys, there was a moderate positive correlation between ADC values and split GFR (R2=0.56). On the other hand, in non-hydronephrotic kidneys, poor correlation between ADC values and split GFR was observed (R2=0.08). The mean values for ADCs of the dysfunctioning hydronephrotic kidneys (severe renal dysfunction, 1.32x10 -3 ±0.18x10 -3 mm 2 /s; moderate renal dysfunction, 1.38x10 -3 ±0.10x10 -3 mm2/s) were significantly lower than that of the normal functioning hydronephrotic kidneys (1.63x10 -3 ±0.12±10 -3 mm 2 /s). Conclusion: These results indicated that measurement of ADC values by diffusion-weighted MR imaging has a potential value in the evaluation of the functional status of hydronephrotic kidneys

  5. Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders

    International Nuclear Information System (INIS)

    MacKenzie, John D.; Gonzalez, Leonardo; Hernandez, Andrea; Ruppert, Kai; Jaramillo, Diego

    2007-01-01

    Diffusion-weighted imaging (DWI) is a powerful tool that has recently been applied to evaluate several pediatric musculoskeletal disorders. DWI probes abnormalities of tissue structure by detecting microscopic changes in water mobility that develop when disease alters the organization of normal tissue. DWI provides tissue characterization at a cellular level beyond what is available with other imaging techniques, and can sometimes identify pathology before gross anatomic alterations manifest. These features of early detection and tissue characterization make DWI particularly appealing for probing diseases that affect the musculoskeletal system. This article focuses on the current and future applications of DWI in the musculoskeletal system, with particular attention paid to pediatric disorders. Although most of the applications are experimental, we have emphasized the current state of knowledge and the main research questions that need to be investigated. (orig.)

  6. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    Science.gov (United States)

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  7. Prediction of recovery from a post-traumatic coma state by diffusion-weighted imaging (DWI) in patients with diffuse axonal injury

    International Nuclear Information System (INIS)

    Zheng, W.B.; Liu, G.R.; Wu, R.H.; Li, L.P.

    2007-01-01

    To determine whether diffusion-weighted magnetic resonance (MR) imaging findings combined with initial clinical factors indicate the depth of shearing lesions in the brain structure and therefore relate to coma duration in diffuse axonal injury (DAI). A total of 74 adult patients (48 male and 26 female) with DAI were examined with conventional MR imaging and diffusion-weighted MR imaging between 2 hours and 20 days after injury. Apparent diffusion coefficient (ADC) maps were obtained and the mean ADC values of each region of interest (ROI) were measured using MRI console software. The involvement of the brainstem, deep gray matter, and corpus callosum was determined for each sequence separately as well as for the combination of all sequences. The correlations between MR imaging findings indicating the presence of apparent brain injury combined with initial clinical factors were determined. Clinical characteristics, such as initial score on the Glasgow coma scale (GCS), age and number of all lesions, and ADC scores were predictive of the duration of coma. It was possible to predict post-traumatic coma duration in DAI from cerebral MR imaging findings combined with clinical prognostic factors in the acute to subacute stage after head injury. Age, ADC scores, GCS score and number of lesions were highly significant in predicting coma duration. The technique presented here might provide a tool for in vivo detection of DAI to allow the prediction of the coma duration during the early stages in patients with traumatic brain injury. (orig.)

  8. Rapid Automatic Lighting Control of a Mixed Light Source for Image Acquisition using Derivative Optimum Search Methods

    Directory of Open Access Journals (Sweden)

    Kim HyungTae

    2015-01-01

    Full Text Available Automatic lighting (auto-lighting is a function that maximizes the image quality of a vision inspection system by adjusting the light intensity and color.In most inspection systems, a single color light source is used, and an equal step search is employed to determine the maximum image quality. However, when a mixed light source is used, the number of iterations becomes large, and therefore, a rapid search method must be applied to reduce their number. Derivative optimum search methods follow the tangential direction of a function and are usually faster than other methods. In this study, multi-dimensional forms of derivative optimum search methods are applied to obtain the maximum image quality considering a mixed-light source. The auto-lighting algorithms were derived from the steepest descent and conjugate gradient methods, which have N-size inputs of driving voltage and one output of image quality. Experiments in which the proposed algorithm was applied to semiconductor patterns showed that a reduced number of iterations is required to determine the locally maximized image quality.

  9. MR imaging of skeletal soft tissue infection: utility of diffusion-weighted imaging in detecting abscess formation

    International Nuclear Information System (INIS)

    Harish, Srinivasan; Rebello, Ryan; Chiavaras, Mary M.; Kotnis, Nikhil

    2011-01-01

    Our objectives were to assess if diffusion-weighted imaging (DWI) can help identify abscess formation in the setting of soft tissue infection and to assess whether abscess formation can be diagnosed confidently with a combination of DWI and other unenhanced sequences. Eight cases of soft tissue infection imaged with MRI including DWI were retrospectively reviewed. Two male and six female patients were studied (age range 23-50 years). Unenhanced MRI including DWI was performed in all patients. Post-contrast images were obtained in seven patients. All patients had clinically or surgically confirmed abscesses. Abscesses demonstrated restricted diffusion. DWI in conjunction with other unenhanced imaging showed similar confidence levels as post-contrast images in diagnosing abscess formation in four cases. In two cases, although the combined use of DWI and other unenhanced imaging yielded the same confidence levels as post-contrast imaging, DWI was more definitive for demonstrating abscess formation. In one case, post-contrast images had a better confidence for suggesting abscess. In one case, DWI helped detected the abscess, where gadolinium could not be administered because of a contraindication. This preliminary study suggests that DWI is a useful adjunct in the diagnosis of skeletal soft tissue abscesses. (orig.)

  10. Diffusion-weighted MR imaging of neuro-Behcet's disease: a case report

    International Nuclear Information System (INIS)

    Hiwatashi, Akio; Moritani, Toshio; Kinoshita, Toshibumi; Westesson, Per-Lennart; Garber, Todd

    2003-01-01

    We present a serial study of diffusion-weighted imaging (DWI) in a patient with neuro-Behcet's disease. Initial T2-weighted magnetic resonance images showed a hyperintense lesion in the brain stem. The lesion was slightly hyperintense on DWI and the apparent diffusion coefficient (ADC) was slightly increased. Ten months later, DWI showed an improvement in the abnormal signal intensity and the region of increased ADC had increased in size, especially on the left side. DWI is useful for differentiating an acute exacerbation of neuro-Behcet's disease from acute infarction. (orig.)

  11. Diffusion tensor mode in imaging of intracranial epidermoid cysts: one step ahead of fractional anisotropy

    International Nuclear Information System (INIS)

    Jolapara, Milan; Kesavadas, Chandrasekharan; Saini, Jitender; Patro, Satya Narayan; Gupta, Arun Kumar; Kapilamoorthy, Tirur Raman; Bodhey, Narendra; Radhakrishnan, V.V.

    2009-01-01

    The signal characteristics of an epidermoid on T2-weighted imaging have been attributed to the presence of increased water content within the tumor. In this study, we explore the utility of diffusion tensor imaging (DTI) and diffusion tensor metrics (DTM) in knowing the microstructural anatomy of epidermoid cysts. DTI was performed in ten patients with epidermoid cysts. Directionally averaged mean diffusivity (D av ), exponential diffusion, and DTM-like fractional anisotropy (FA), diffusion tensor mode (mode), linear (CL), planar (CP), and spherical (CS) anisotropy were measured from the tumor as well as from the normal-looking white matter. Epidermoid cysts showed high FA. However, D av and exponential diffusion values did not show any restriction of diffusion. Diffusion tensor mode values were near -1, and CP values were high within the tumor. This suggested preferential diffusion of water molecules along a two-dimensional geometry (plane) in epidermoid cysts, which could be attributed to the parallel-layered arrangement of keratin filaments and flakes within these tumors. Thus, advanced imaging modalities like DTI with DTM can provide information regarding the microstructural anatomy of the epidermoid cysts. (orig.)

  12. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging.

    Science.gov (United States)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  13. Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps

    International Nuclear Information System (INIS)

    Jakab, Andras; Berenyi, Ervin; Molnar, Peter; Emri, Miklos

    2011-01-01

    Current endeavors in neuro-oncology include morphological validation of imaging methods by histology, including molecular and immunohistochemical techniques. Diffusion tensor imaging (DTI) is an up-to-date methodology of intracranial diagnostics that has gained importance in studies of neoplasia. Our aim was to assess the feasibility of discriminant analysis applied to histograms of preoperative diffusion tensor imaging-derived images for the prediction of glioma grade validated by histomorphology. Tumors of 40 consecutive patients included 13 grade II astrocytomas, seven oligoastrocytomas, six grade II oligodendrogliomas, three grade III oligoastrocytomas, and 11 glioblastoma multiformes. Preoperative DTI data comprised: unweighted (B 0 ) images, fractional anisotropy, longitudinal and radial diffusivity maps, directionally averaged diffusion-weighted imaging, and trace images. Sampling consisted of generating histograms for gross tumor volumes; 25 histogram bins per scalar map were calculated. The histogram bins that allowed the most precise determination of low-grade (LG) or high-grade (HG) classification were selected by multivariate discriminant analysis. Accuracy of the model was defined by the success rate of the leave-one-out cross-validation. Statistical descriptors of voxel value distribution did not differ between LG and HG tumors and did not allow classification. The histogram model had 88.5% specificity and 85.7% sensitivity in the separation of LG and HG gliomas; specificity was improved when cases with oligodendroglial components were omitted. Constructing histograms of preoperative radiological images over the tumor volume allows representation of the grade and enables discrimination of LG and HG gliomas which has been confirmed by histopathology. (orig.)

  14. DCT-Based Characterization of Milk Products Using Diffuse Reflectance Images

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Skytte, Jacob Lercke; Clemmensen, Line Katrine Harder

    2013-01-01

    We propose to use the two-dimensional Discrete Cosine Transform (DCT) for decomposition of diffuse reflectance images of laser illumination on milk products in different wavelengths. Based on the prior knowledge about the characteristics of the images, the initial feature vectors are formed at ea...... discriminate milk from yogurt products better....

  15. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors

    KAUST Repository

    Heide, Felix

    2014-06-01

    The functional difference between a diffuse wall and a mirror is well understood: one scatters back into all directions, and the other one preserves the directionality of reflected light. The temporal structure of the light, however, is left intact by both: assuming simple surface reflection, photons that arrive first are reflected first. In this paper, we exploit this insight to recover objects outside the line of sight from second-order diffuse reflections, effectively turning walls into mirrors. We formulate the reconstruction task as a linear inverse problem on the transient response of a scene, which we acquire using an affordable setup consisting of a modulated light source and a time-of-flight image sensor. By exploiting sparsity in the reconstruction domain, we achieve resolutions in the order of a few centimeters for object shape (depth and laterally) and albedo. Our method is robust to ambient light and works for large room-sized scenes. It is drastically faster and less expensive than previous approaches using femtosecond lasers and streak cameras, and does not require any moving parts.

  16. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors

    KAUST Repository

    Heide, Felix; Xiao, Lei; Heidrich, Wolfgang; Hullin, Matthias B.

    2014-01-01

    The functional difference between a diffuse wall and a mirror is well understood: one scatters back into all directions, and the other one preserves the directionality of reflected light. The temporal structure of the light, however, is left intact by both: assuming simple surface reflection, photons that arrive first are reflected first. In this paper, we exploit this insight to recover objects outside the line of sight from second-order diffuse reflections, effectively turning walls into mirrors. We formulate the reconstruction task as a linear inverse problem on the transient response of a scene, which we acquire using an affordable setup consisting of a modulated light source and a time-of-flight image sensor. By exploiting sparsity in the reconstruction domain, we achieve resolutions in the order of a few centimeters for object shape (depth and laterally) and albedo. Our method is robust to ambient light and works for large room-sized scenes. It is drastically faster and less expensive than previous approaches using femtosecond lasers and streak cameras, and does not require any moving parts.

  17. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.

  18. A time-efficient acquisition protocol for multipurpose diffusion-weighted microstructural imaging at 7 Tesla.

    Science.gov (United States)

    Sepehrband, Farshid; O'Brien, Kieran; Barth, Markus

    2017-12-01

    Several diffusion-weighted MRI techniques have been developed and validated during the past 2 decades. While offering various neuroanatomical inferences, these techniques differ in their proposed optimal acquisition design, preventing clinicians and researchers benefiting from all potential inference methods, particularly when limited time is available. This study reports an optimal design that enables for a time-efficient diffusion-weighted MRI acquisition scheme at 7 Tesla. The primary audience of this article is the typical end user, interested in diffusion-weighted microstructural imaging at 7 Tesla. We tested b-values in the range of 700 to 3000 s/mm 2 with different number of angular diffusion-encoding samples, against a data-driven "gold standard." The suggested design is a protocol with b-values of 1000 and 2500 s/mm 2 , with 25 and 50 samples, uniformly distributed over two shells. We also report a range of protocols in which the results of fitting microstructural models to the diffusion-weighted data had high correlation with the gold standard. We estimated minimum acquisition requirements that enable diffusion tensor imaging, higher angular resolution diffusion-weighted imaging, neurite orientation dispersion, and density imaging and white matter tract integrity across whole brain with isotropic resolution of 1.8 mm in less than 11 min. Magn Reson Med 78:2170-2184, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. External motion tracking for brain imaging: structured light tracking with invisible light

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    The importance of motion correction in 3D medical imaging increases with increasing scanner resolution. It is necessary for scanners with long image acquisition and low contrast images to correct for patient motion in order to optimize image quality. We present a near infrared structured light...... stereo depth map system for head motion estimation inside 3D medical scanners with limited space....

  20. Diffusion weighted MR imaging of brachial plexus diseases

    International Nuclear Information System (INIS)

    Okinaga, Shuji; Korenaga, Tateo; Tekemura, Atsushi; Tajiri, Yasuhito; Kawano, Ken-Ichi

    2010-01-01

    Diffusion weighted image (DWI) can specifically give running of nerve fibers as they have diffusion anisotropic property and DW whole body imaging with background body signal suppression (DWIBS) procedure, which being capable of imaging cervical and lumber nerve roots, is thus suggested to be useful for diagnosis of diseases related to brachial plexus (BP). The purpose of the present study is to confirm the usefulness of DWIBS by comparison of its images of the normal and sick plexuses. Subjects are 5 normal healthy males (27-36 y), 29 patients (19 M/10 F, 7-73 y) with BP diseases (10 cases of external injury, 6 of obstetric palsy, 2 of paralysis by dysfunctional position, 6 by Schwannoma, 2 by metastasis of breast cancer and 3 by radiation) and, to see the diagnostic specificity, 9 patients (M 7/F 2, 15-64 y) with severely reduced hand force by nervous causes other than BP ones. MRI with Philips Gyroscan INTERA 1.5T machine is conducted for DWIBS by DWI with single shot EPI (echo planar imaging) with the coil of either sensitivity encoding (SENSE) Cardiac, Flex-M or -S. Images are reconstructed 3D by a radiological technician possessing no information concerning patient's conditions, with Philips software Soap-bubble tool on the workstation, and are then evaluated by a radiologist and an orthopedist separately. It is found that BP disorders by injury, obstetric palsy and tumors, of which diagnosis has been difficult hitherto, can be imaged either negatively or positively depending on their history. In radiation paralysis, only 1/3 cases give a reduced signal intensity in the whole BP. DWIBS will be a new diagnostic mean for systemic peripheral nerve diseases as well as BP ones. (T.T.)

  1. Coulomb Green's function and image potential near a cylindrical diffuse interface

    Science.gov (United States)

    Xue, Changfeng; Huang, Qiongwei; Deng, Shaozhong

    2015-12-01

    In a preceding paper [Comput. Phys. Commun. 184 (1): 51-59, 2013], we revisited the problem of calculating Coulomb Green's function and image potential near a planar diffuse interface within which the dielectric permittivity of the inhomogeneous medium changes continuously along one Cartesian direction in a transition layer between two dissimilar dielectric materials. In the present paper, we consider a cylindrical diffuse interface within which the dielectric permittivity changes continuously along the radial direction instead. First we propose a specific cylindrical diffuse interface model, termed the quasi-harmonic diffuse interface model, that can admit analytical solution for the Green's function in terms of the modified Bessel functions. Then and more importantly we develop a robust numerical method for building Green's functions for any cylindrical diffuse interface models. The main idea of the numerical method is, after dividing a diffuse interface into multiple sublayers, to approximate the dielectric permittivity profile in each one of the sublayers by one of the quasi-harmonic functional form rather than simply by a constant value as one would normally do. Next we describe how to efficiently compute well-behaved ratios, products, and logarithmic derivatives of the modified Bessel functions so as to avoid direct evaluations of individual modified Bessel functions in our formulations. Finally we conduct numerical experiments to show the effectiveness of the quasi-harmonic diffuse interface model in overcoming the divergence of the image potential, to validate the numerical method in terms of its accuracy and convergence, and to demonstrate its capability for computing Green's functions for any cylindrical diffuse interface models.

  2. Adaptive distance learning scheme for diffusion tensor imaging using kernel target alignment

    NARCIS (Netherlands)

    Rodrigues, P.R.; Vilanova, A.; Twellmann, T.; Haar Romenij, ter B.M.; Alexander, D.; Gee, J.; Whitaker, R.

    2008-01-01

    In segmentation techniques for Diffusion Tensor Imaging (DTI) data, the similarity of diffusion tensors must be assessed for partitioning data into regions which are homogeneous in terms of tensor characteristics. Various distance measures have been proposed in literature for analysing the

  3. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    Science.gov (United States)

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  4. Readout-segmented echo-planar imaging improves the image quality of diffusion-weighted MR imaging in rectal cancer: Comparison with single-shot echo-planar diffusion-weighted sequences

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chun-chao; Liu, Xi; Peng, Wan-lin; Li, Lei; Zhang, Jin-ge [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Meng, Wen-jian; Deng, Xiang-bing [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Zuo, Pan-li [Siemens Healthcare, MR Collaborations NE Asia, 100010, Beijing (China); Li, Zhen-lin, E-mail: lzlcd01@126.com [Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2016-10-15

    Purpose: To determine whether readout-segmented echo-planar imaging (rs-EPI) diffusion-weighted imaging (DWI) can improve the image quality in patients with rectal cancer compared with single-shot echo-planar imaging (ss-EPI) DWI using 3.0 T magnetic resonance (MR) imaging. Materials and methods: This study was approved by the Institutional Review Board, and informed consent was obtained from all patients. Seventy-one patients with rectal cancer were enrolled in this study. For all patients, both rs-EPI and ss-EPI DWI were performed using a 3T MR scanner. Two radiologists independently assessed the overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures. The signal-to-noise ratio (SNR), lesion contrast, contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) were also measured. Comparisons of the quantitative and qualitative parameters between the two sequences were performed using the paired t-test and the Wilcoxon signed rank test. Results: The scores of overall image quality, lesion conspicuity, geometric distortion and distinction of anatomical structures of rs-EPI were all significantly higher than those of ss-EPI (all p < 0.05). The SNR and CNR were higher in rs-EPI than those in ss-EPI (all p < 0.05). There was no significant difference between ss-EPI and rs-EPI with regard to ROI size and mean ADCs of the tumour (p = 0.574 and p = 0.479, respectively), but the mean ADC of the normal tissue was higher in rs-EPI than in ss-EPI (1.73 ± 0.30 × 10{sup −3} mm{sup 2}/s vs. 1.60 ± 0.31 × 10{sup −3} mm{sup 2}/s, p = 0.001). Conclusions: DW imaging based on readout-segmented echo-planar imaging is a clinically useful technique to improve the image quality for the purpose of evaluating lesions in patients with rectal tumours.

  5. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode.

    Science.gov (United States)

    Sakaie, Ken; Lowe, Mark

    2017-04-01

    To quantify and retrospectively correct for systematic differences in diffusion tensor imaging (DTI) measurements due to differences in coil combination mode. Multi-channel coils are now standard among MRI systems. There are several options for combining signal from multiple coils during image reconstruction, including sum-of-squares (SOS) and adaptive combine (AC). This contribution examines the bias between SOS- and AC-derived measures of tissue microstructure and a strategy for limiting that bias. Five healthy subjects were scanned under an institutional review board-approved protocol. Each set of raw image data was reconstructed twice-once with SOS and once with AC. The diffusion tensor was calculated from SOS- and AC-derived data by two algorithms-standard log-linear least squares and an approach that accounts for the impact of coil combination on signal statistics. Systematic differences between SOS and AC in terms of tissue microstructure (axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy) were evaluated on a voxel-by-voxel basis. SOS-based tissue microstructure values are systematically lower than AC-based measures throughout the brain in each subject when using the standard tensor calculation method. The difference between SOS and AC can be virtually eliminated by taking into account the signal statistics associated with coil combination. The impact of coil combination mode on diffusion tensor-based measures of tissue microstructure is statistically significant but can be corrected retrospectively. The ability to do so is expected to facilitate pooling of data among imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Evaluation of MR diffusion-weighted imaging in differentiating endometriosis infiltrating the bowel from colorectal carcinoma

    International Nuclear Information System (INIS)

    Busard, M.P.H.; Pieters-van den Bos, I.C.; Mijatovic, V.; Van Kuijk, C.; Bleeker, M.C.G.; Waesberghe, J.H.T.M. van

    2012-01-01

    Objective: Endometriosis infiltrating the bowel may be difficult to differentiate from colorectal carcinoma in cases that present with non-specific clinical and imaging features. The aim of this study is to assess the value of MR diffusion-weighted imaging (DWI) in differentiating endometriosis infiltrating the bowel from colorectal carcinoma. Methods: In 66 patients, MR DWI was added to the standard imaging protocol in patients visiting our outdoor MR clinic for the analysis of suspected or known deep infiltrating endometriosis (DIE). In patients diagnosed with DIE infiltrating the bowel on MR imaging, high b-value diffusion-weighted images were qualitatively assessed by two readers in consensus and compared to high b-value diffusion weighted images in 15 patients evaluated for colorectal carcinoma. In addition, ADC values of lesions were calculated, using b-values of 50, 400 and 800 s/mm 2 . Results: A total of 15 patients were diagnosed with DIE infiltrating the bowel on MR imaging. Endometriosis infiltrating the bowel showed low signal intensity on high b-value diffusion-weighted images in all patients, whereas colorectal carcinoma showed high signal intensity on high b-value diffusion-weighted images in all patients. Mean ADC value in endometriosis infiltrating the bowel (0.80 ± 0.06 × 10 −3 mm 2 /s) was significantly lower compared to mean ADC value in colorectal carcinoma (0.86 ± 0.06 × 10 −3 mm 2 /s), but with considerable overlap between ADC values. Conclusion: Only qualitative assessment of MR DWI may be valuable to facilitate differentiation between endometriosis infiltrating the bowel and colorectal carcinoma.

  7. Parameterized source term in the diffusion approximation for enhanced near-field modeling of collimated light

    Science.gov (United States)

    Jia, Mengyu; Wang, Shuang; Chen, Xueying; Gao, Feng; Zhao, Huijuan

    2016-03-01

    Most analytical methods for describing light propagation in turbid medium exhibit low effectiveness in the near-field of a collimated source. Motivated by the Charge Simulation Method in electromagnetic theory as well as the established discrete source based modeling, we have reported on an improved explicit model, referred to as "Virtual Source" (VS) diffuse approximation (DA), to inherit the mathematical simplicity of the DA while considerably extend its validity in modeling the near-field photon migration in low-albedo medium. In this model, the collimated light in the standard DA is analogously approximated as multiple isotropic point sources (VS) distributed along the incident direction. For performance enhancement, a fitting procedure between the calculated and realistic reflectances is adopted in the nearfield to optimize the VS parameters (intensities and locations). To be practically applicable, an explicit 2VS-DA model is established based on close-form derivations of the VS parameters for the typical ranges of the optical parameters. The proposed VS-DA model is validated by comparing with the Monte Carlo simulations, and further introduced in the image reconstruction of the Laminar Optical Tomography system.

  8. Diffusion MR imaging in sporadic Creutzfeldt-Jakob disease

    Directory of Open Access Journals (Sweden)

    Burcak Cakir Pekoz

    2014-08-01

    Full Text Available Creutzfeldt-Jakob disease (CJD is a rare dementing disease and is thought to caused by a prion. It is characterized by rapidly progressive dementia, ataxia, myoclonus, akinetic mutism and eventual death. Brain biopsy or autopsy is required for a definitive diagnosis of CJD. Diffusion-weighted imaging became an important tool for early diagnosis of CJD because of the high sensitivity. We present 59-year-old female patient diagnosed as sporadic CJD with typical MR imagings. [Cukurova Med J 2014; 39(4.000: 880-883

  9. Fast imaging of live organisms with sculpted light sheets

    Science.gov (United States)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  10. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo

    OpenAIRE

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Murthy, Shashi K.; Lin, Charles P.; Niedre, Mark

    2012-01-01

    Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser t...

  11. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  12. Naturalness and image quality : saturation and lightness variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.

    1996-01-01

    The relation between perceived image quality and naturalness was investigated by varying the colorfulness of natural images at various lightness levels. At each lightness level, subjects assessed perceived colorfulness, naturalness, and quality as a function of average saturation by means of direct

  13. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    Science.gov (United States)

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  14. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.

    Science.gov (United States)

    Mukherjee, Pratik; Miller, Jeffrey H; Shimony, Joshua S; Philip, Joseph V; Nehra, Deepika; Snyder, Abraham Z; Conturo, Thomas E; Neil, Jeffrey J; McKinstry, Robert C

    2002-10-01

    Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter. Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations. Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age. Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.

  15. Pseudo color ghost coding imaging with pseudo thermal light

    Science.gov (United States)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  16. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    International Nuclear Information System (INIS)

    Gideon, P.; Thomsen, C.; Gjerris, F.; Soerensen, P.S.; Henriksen, O.

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 agematched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients (ADC) of brain water were found within periventricular white matter, in the corpus callosum, in the internal capsule, within cortical gray matter, and in cerebrospinal fluid, whereas normal ADCs were found within the basal ganglia. In 2 patients with HPH elevated ADCs were found most prominently within white matter and in one patient reexamined one year after surgery. ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable. (orig.)

  17. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo.

    Science.gov (United States)

    Cervantes, Barbara; Van, Anh T; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J; Gersing, Alexandra; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-08-01

    To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per k z plane with respect to T 2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med 80:609-618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2018 The Authors Magnetic Resonance

  18. The use of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fernanda Philadelpho Arantes; Martins, Gabriela; Domingues, Marisa Nassar Aidar; Domingues, Romeu Cortes [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)], e-mail: fephila@gmail.com; Figueiredo, Eduardo [GE Healthcare, Sao Paulo, SP (Brazil); Fonseca, Lea Mirian Barbosa da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina

    2009-09-15

    Objective: to study the utility of diffusion-weighted magnetic resonance imaging in the differentiation between benign and malignant breast lesions. Materials and methods: forty-five women (mean age, 46.1 years) with 52 focal breast lesions underwent diffusion-weighted magnetic resonance imaging. The calculation of apparent diffusion coefficient (ADC) was based on the ADC map reflecting five b values (0, 250, 500, 750, and 1000 s/mm{sup 2}). The mean ADC value of each lesion was correlated with imaging findings and histopathologic results. Cutoff ADC, sensitivity and specificity of diffusion-weighted imaging in the differentiation between benign and malignant lesions were calculated. P < 0.05 was considered as statistically significant. Results: the mean ADC was significantly lower for malignant lesions (0.92 {+-} 0.26 x 10{sup -3} mm{sup 2}/s) as compared with benign lesions (1.50 {+-} 0.34 x 10{sup -3} mm{sup 2}/s) (P < 0.0001). Diffusion-weighted imaging showed high sensitivity and specificity (both, 92.3%) in the differentiation between benign and malignant lesions. Conclusion: diffusion-weighted imaging is a potential resource as an adjuvant to breast magnetic resonance imaging to differentiate benign from malignant lesions. Such sequence can be easily added to the standard breast magnetic resonance imaging protocol, without implying any significant increase in examination time. (author)

  19. New imaging algorithm in diffusion tomography

    Science.gov (United States)

    Klibanov, Michael V.; Lucas, Thomas R.; Frank, Robert M.

    1997-08-01

    A novel imaging algorithm for diffusion/optical tomography is presented for the case of the time dependent diffusion equation. Numerical tests are conducted for ranges of parameters realistic for applications to an early breast cancer diagnosis using ultrafast laser pulses. This is a perturbation-like method which works for both homogeneous a heterogeneous background media. Its main innovation lies in a new approach for a novel linearized problem (LP). Such an LP is derived and reduced to a boundary value problem for a coupled system of elliptic partial differential equations. As is well known, the solution of such a system amounts to the factorization of well conditioned, sparse matrices with few non-zero entries clustered along the diagonal, which can be done very rapidly. Thus, the main advantages of this technique are that it is fast and accurate. The authors call this approach the elliptic systems method (ESM). The ESM can be extended for other data collection schemes.

  20. Error-diffusion binarization for joint transform correlators

    Science.gov (United States)

    Inbar, Hanni; Mendlovic, David; Marom, Emanuel

    1993-02-01

    A normalized nonlinearly scaled binary joint transform image correlator (JTC) based on a 1D error-diffusion binarization method has been studied. The behavior of the error-diffusion method is compared with hard-clipping, the most widely used method of binarized JTC approaches, using a single spatial light modulator. Computer simulations indicate that the error-diffusion method is advantageous for the production of a binarized power spectrum interference pattern in JTC configurations, leading to better definition of the correlation location. The error-diffusion binary JTC exhibits autocorrelation characteristics which are superior to those of the high-clipping binary JTC over the whole nonlinear scaling range of the Fourier-transform interference intensity for all noise levels considered.

  1. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  2. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  3. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    Science.gov (United States)

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  4. Diffusion weighted MR imaging in non-infarct lesions of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Karaarslan, E. [Department of Radiology, American Hospital, Sisli, Istanbul (Turkey)], E-mail: ercankaraarslan@yahoo.com; Arslan, A. [Department of Radiology, Kocaeli University Medical School, Kocaeli (Turkey)], E-mail: arzuarslan@netscape.net

    2008-03-15

    Diffusion weighted imaging (DWI) is a relatively new method in which the images are formed by the contrast produced by the random microscopic motion of water molecules in different tissues. Although DWI has been tried for different organ systems, it has been found its primary use in the central nervous system. The most widely used clinical application is in the detection of hyperacute infarcts and the differentiation of acute or subacute infarction from chronic infarction. Recently DWI has been applied to various other cerebral diseases. In this pictorial paper the authors demonstrated different DWI patterns of non-infarct lesions of the brain which are hyperintense in the diffusion trace image, such as infectious, neoplastic and demyelinating diseases, encephalopathies - including hypoxic-ischemic, hypertensive, eclamptic, toxic, metabolic and mitochondrial encephalopathies - leukodystrophies, vasculitis and vasculopathies, hemorrhage and trauma.

  5. Diffusion-Weighted MR Imaging of Unusual White Matter Lesion in a Patient with Menkes Disease

    International Nuclear Information System (INIS)

    Lee, Eun Shin; Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Kwon, Soo Hyun; Shin, Hee Suk

    2007-01-01

    We report here on the diffusion-weighted imaging of unusual white matter lesions in a case of Menkes disease. On the initial MR imaging, the white matter lesions were localized in the deep periventricular white matter in the absence of diffuse cortical atrophy. The lesion showed diffuse high signal on the diffusion weighted images and diffuse progression and persistent hyperintensity on the follow up imaging. Our case suggests that the white matter lesion may precede diffuse cortical atrophy in a patient with Menkes disease. Menkes disease is an X-linked disorder that's caused by impaired intracellular transport of copper. We describe here the DWI findings of unusual and progressive white matter lesions in a case of Menkes disease. Menkes disease is an X-linked recessive disorder, and it is due to an inborn error of copper metabolism. The cause of Menkes disease has been isolated to a genetic defect in copper-transporting adenosine triphosphatase, and this results in low levels of intracellular copper. It is characterized clinically by failure to thrive, retarded mental and motor development, clonic seizure and peculiarly coarse, sparse and colorless scalp hair. These clinical findings can be explained by a dysfunction of the copper-dependent enzymes

  6. Ischemic lesion volume determination on diffusion weighted images vs. apparent diffusion coefficient maps.

    Science.gov (United States)

    Bråtane, Bernt Tore; Bastan, Birgul; Fisher, Marc; Bouley, James; Henninger, Nils

    2009-07-07

    Though diffusion weighted imaging (DWI) is frequently used for identifying the ischemic lesion in focal cerebral ischemia, the understanding of spatiotemporal evolution patterns observed with different analysis methods remains imprecise. DWI and calculated apparent diffusion coefficient (ADC) maps were serially obtained in rat stroke models (MCAO): permanent, 90 min, and 180 min temporary MCAO. Lesion volumes were analyzed in a blinded and randomized manner by 2 investigators using (i) a previously validated ADC threshold, (ii) visual determination of hypointense regions on ADC maps, and (iii) visual determination of hyperintense regions on DWI. Lesion volumes were correlated with 24 hour 2,3,5-triphenyltetrazoliumchloride (TTC)-derived infarct volumes. TTC-derived infarct volumes were not significantly different from the ADC and DWI-derived lesion volumes at the last imaging time points except for significantly smaller DWI lesions in the pMCAO model (p=0.02). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived lesions on ADC maps than DWI (pdetermined lesion volumes on ADC maps and DWI by both investigators correlated significantly with threshold-derived lesion volumes on ADC maps with the former method demonstrating a stronger correlation. There was also a better interrater agreement for ADC map analysis than for DWI analysis. Ischemic lesion determination by ADC was more accurate in final infarct prediction, rater independent, and provided exclusive information on ischemic lesion reversibility.

  7. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  8. Diffusion-Weighted Magnetic Resonance Imaging as a Cancer Biomarker: Consensus and Recommendations

    Directory of Open Access Journals (Sweden)

    Anwar R. Padhani

    2009-02-01

    Full Text Available On May 3, 2008, a National Cancer Institute (NCI-sponsored open consensus conference was held in Toronto, Ontario, Canada, during the 2008 International Society for Magnetic Resonance in Medicine Meeting. Approximately 100 experts and stakeholders summarized the current understanding of diffusion-weighted magnetic resonance imaging (DW-MRI and reached consensus on the use of DW-MRI as a cancer imaging biomarker. DW-MRI should be tested as an imaging biomarker in the context of well-defined clinical trials, by adding DW-MRI to existing NCI-sponsored trials, particularly those with tissue sampling or survival indicators. Where possible, DW-MRI measurements should be compared with histologic indices including cellularity and tissue response. There is a need for tissue equivalent diffusivity phantoms; meanwhile, simple fluid-filled phantoms should be used. Monoexponential assessments of apparent diffusion coefficient values should use two b values (> 100 and between 500 and 1000 mm2/sec depending on the application. Free breathing with multiple acquisitions is superior to complex gating techniques. Baseline patient reproducibility studies should be part of study designs. Both region of interest and histogram analysis of apparent diffusion coefficient measurements should be obtained. Standards for measurement, analysis, and display are needed. Annotated data from validation studies (along with outcome measures should be made publicly available. Magnetic resonance imaging vendors should be engaged in this process. The NCI should establish a task force of experts (physicists, radiologists, and oncologists to plan, organize technical aspects, and conduct pilot trials. The American College of Radiology Imaging Network infrastructure may be suitable for these purposes. There is an extraordinary opportunity for DW-MRI to evolve into a clinically valuable imaging tool, potentially important for drug development.

  9. Hemorrhagic brain metastases with high signal intensity on diffusion-weighted MR images. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mori, H.; Abe, O.; Aoki, S.; Masumoto, T.; Yoshikawa, T.; Kunimatsu, A; Hayashi, N.; Ohtomo, K. [Graduate School of Medicine, Univ. of Tokyo (Japan). Dept. of Radiology

    2002-11-01

    Diffusion-weighted MR imaging has been applicable to the differential diagnosis of abscesses and necrotic or cystic brain tumors. However, restricted water diffusion is not necessarily specific for brain abscess. We describe ring-enhancing metastases of lung carcinoma characterized by high signal intensity on diffusion-weighted MR images. The signal pattern probably reflected intralesional hemorrhage. The present report adds to the growing literature regarding the differential diagnosis of ring-enhancing brain lesions.

  10. An exploration into diffusion tensor imaging in the bovine ocular lens

    Directory of Open Access Journals (Sweden)

    Ehsan eVaghefi

    2013-03-01

    Full Text Available We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting and TE (determines the amount of MRI-obtained signal were used to estimate apparent diffusion coefficients (ADC and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens.

  11. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    Science.gov (United States)

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In

  12. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    Science.gov (United States)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  13. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.

    Science.gov (United States)

    Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2014-11-12

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.

  14. White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

    Science.gov (United States)

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513

  15. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles.

    Science.gov (United States)

    Sigmund, Eric E; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; McGorty, KellyAnne; Hodnett, Philip A; Bencardino, Jenny

    2013-11-01

    To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. All diffusivities significantly increased (P DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. Copyright © 2013 Wiley Periodicals, Inc.

  16. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  17. Intravoxel incoehrent motion MR imaging in the head and neck: Correlation with dynamic contrast-enhanced MR imaging and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Beak, Jung Hwan; Lee, Jeong Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Yoon, Ra Gyoung [Dept. of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon (Korea, Republic of)

    2016-09-15

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  18. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Choi, Young Jun; Sung, Yu Sub [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Yoon, Ra Gyoung [Department of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711 (Korea, Republic of); Jang, Seung Won; Park, Ji Eun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Heo, Young Jin [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392 (Korea, Republic of); Baek, Jung Hwan; Lee, Jeong Hyun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  19. Intravoxel incoehrent motion MR imaging in the head and neck: Correlation with dynamic contrast-enhanced MR imaging and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Beak, Jung Hwan; Lee, Jeong Hyun; Yoon, Ra Gyoung

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D * ), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D * and model-free parameters from the DCE-MRI (wash-in, T max , E max , initial AUC 60 , whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D * and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D * (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck

  20. Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging

    DEFF Research Database (Denmark)

    Karlsborg, Merete; Rosenbaum, Sverre; Wiegell, Mette R.

    2004-01-01

    BACKGROUND: MR diffusion tensor imaging (DTI) appears to be a powerful method to investigate the neuronal and axonal fibre distribution in the human brain. Changes in diffusion characteristics of water molecules in the white matter can be estimated as the apparent diffusion coefficient (ADC...

  1. A comparison of lesion detection and conspicuity on T2-weighted images (T2 FFE), FLAIR and diffusion-weighted images in patients with traumatic brain injury

    International Nuclear Information System (INIS)

    Kwon, Eun Yong; Lee, Myeong sub; Kim, Myung Soon; Hong, In Soo; Kim, Young Ju; Whang, Gum

    2001-01-01

    To compare the lesion detectability and conspicuity in traumatic brain injury on T-2 FFE, FLAIR and diffusion weighted imaging (DWI) sequences. Thirty-three patients who underwent MR brain imaging after traumatic brain injury were reviewed. T-2 FFE, FLAIR and diffusion-weighted MR sequences were obtained and were compared in terms of the detectability and conspicuity of intra- and extra-axial lesions which showed abnormal signal intensities. Among 33 patients, a total of 108 lesions were found, T-2 FFE sequences detected 88(81%) of these, FLAIR sequences 91%(84%), and diffusion-weighted sequences 57(52%). In the case of petechial hemorrhagic lesions, 16 were detected by T-2 FFE imaging but only one by FLAIR and one by DWI. Sixteen extra-axial lesions (73%) were detected by T-2 FFE, 21 (95%) by FLAIR, and 11(50%) by DWI. Lesion conspicuity on FLAIR images was judged superior to that on T-2 FFE and diffusion-weighted images in 42 lesions (75%). Eleven extra-axial Lesions (92%) were more conspicuous on FLAIR than on T-2 FFE and DWI. For detecting traumatic brain lesions and determining their conspicuity, FLAIR imaging was more useful than T-2 FFE and diffusion weighting , while T-2 FFE imaging was more sensitive for the detecion of petechial hemorrhage. Although diffusion-weighted imaging was generally inferior to both FLAIR and T-2 FFE in terms of lesion detection and conspicuity, for some lesions it was superior. The results suggest that images obtained at each pulse sequence can be used as complementary imaging sequences, and that in traumatic brain injury, the acquisition of FLAIR, T-2 FFE and diffusion-weighted images is useful

  2. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  3. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering.

    Science.gov (United States)

    Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen

    2014-04-01

    In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.

  4. Computational model of lightness perception in high dynamic range imaging

    Science.gov (United States)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  5. Direct comparison of in vivo versus postmortem second-order motion-compensated cardiac diffusion tensor imaging.

    Science.gov (United States)

    Stoeck, Christian T; von Deuster, Constantin; Fleischmann, Thea; Lipiski, Miriam; Cesarovic, Nikola; Kozerke, Sebastian

    2018-04-01

    To directly compare in vivo versus postmortem second-order motion-compensated spin-echo diffusion tensor imaging of the porcine heart. Second-order motion-compensated spin-echo cardiac diffusion tensor imaging was performed during systolic contraction in vivo and repeated upon cardiac arrest by bariumchloride without repositioning of the study animal or replaning of imaging slices. In vivo and postmortem reproducibility was assessed by repeat measurements. Comparison of helix, transverse, and sheet (E2A) angulation as well as mean diffusivity and fractional anisotropy was performed. Intraclass correlation coefficients for repeated measurements (postmortem/in vivo) were 0.95/0.96 for helix, 0.70/0.66 for transverse, and 0.79/0.72 for E2A angulation; 0.83/0.72 for mean diffusivity; and 0.78/0.76 for fractional anisotropy. The corresponding 95% levels of agreement across the left ventricle were: helix 14 to 18°/12 to 15°, transverse 9 to 10°/10 to 11°, E2A 15 to 20°/16 to 18°. The 95% levels of agreement across the left ventricle for the comparison of postmortem versus in vivo were 20 to 22° for helix, 13 to 19° for transverse, and 24 to 31° for E2A angulation. Parameters derived from in vivo second-order motion-compensated spin-echo diffusion tensor imaging agreed well with postmortem imaging, indicating sufficient suppression of motion-induced signal distortions of in vivo cardiac diffusion tensor imaging. Magn Reson Med 79:2265-2276, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Bright intracranial lesions on diffusion-weighted images: a pictorial review

    International Nuclear Information System (INIS)

    Choi, Dae Seob

    2006-01-01

    Diffusion-weighted imaging (DWI) is a MR sequence that is used to evaluate the rate of microscopic water diffusion within the tissues. The ability to measure the rate of water diffusion is important because this is frequently altered in various disease processes. Generally, the lesions with restricted water diffusion show bright intensity on DWI, but the lesions without restricted water diffusion can also show bright intensity on DWI, which is called the 'T2 shine through effect'. With DWI, we can sensitively detect hyperacute infarction (within 6 hours after symptom onset), and this is difficult to detect with using CT and the conventional MR sequenced. The acute and subacute lesions of hypoxic-ischemic encephalopathy and carbon monoxide intoxication also show bright intensity on the DWI. The other diseases that can show bright intensity on the DWI include acute and subacute diffuse axonal injury lesion, hyperacute and late subacute hematomas, cerebral abscess, subdural empyema, acute herpes encephalitis, various tumors and such degenerative and demyelinating diseases as multiple sclerosis, posterior reversible encephalopathy syndrome, Wilson's disease and Wernicke's encephalopathy

  7. Bright intracranial lesions on diffusion-weighted images: a pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dae Seob [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of)

    2006-06-15

    Diffusion-weighted imaging (DWI) is a MR sequence that is used to evaluate the rate of microscopic water diffusion within the tissues. The ability to measure the rate of water diffusion is important because this is frequently altered in various disease processes. Generally, the lesions with restricted water diffusion show bright intensity on DWI, but the lesions without restricted water diffusion can also show bright intensity on DWI, which is called the 'T2 shine through effect'. With DWI, we can sensitively detect hyperacute infarction (within 6 hours after symptom onset), and this is difficult to detect with using CT and the conventional MR sequenced. The acute and subacute lesions of hypoxic-ischemic encephalopathy and carbon monoxide intoxication also show bright intensity on the DWI. The other diseases that can show bright intensity on the DWI include acute and subacute diffuse axonal injury lesion, hyperacute and late subacute hematomas, cerebral abscess, subdural empyema, acute herpes encephalitis, various tumors and such degenerative and demyelinating diseases as multiple sclerosis, posterior reversible encephalopathy syndrome, Wilson's disease and Wernicke's encephalopathy.

  8. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    International Nuclear Information System (INIS)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang; Wei, Kuo-Chen; Ng, Shu-Hang

    2007-01-01

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P -3 mm 2 /s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 ± 0.057 and 0.820 ± 0.094, the mean MD ratios were 220.3 ± 22.6 and 193.1 ± 23.4, the mean FA values were 0.146 ± 0.026 and 0.199 ± 0.052, and the mean FA ratios were 32.3 ± 5.9 and 46.0 ± 12.1. All the values were significantly different between metastases and meningiomas (MD values P 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  9. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Wei, Kuo-Chen [Chang Gung Memorial Hospital, Department of Neurosurgery, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Chang Gung Memorial Hospital, Molecular Image Center, Tao-Yuan (China)

    2007-06-15

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P < 0.05 was taken as indicating statistical significance. The mean MD values (x 10{sup -3} mm{sup 2}/s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 {+-} 0.057 and 0.820 {+-} 0.094, the mean MD ratios were 220.3 {+-} 22.6 and 193.1 {+-} 23.4, the mean FA values were 0.146 {+-} 0.026 and 0.199 {+-} 0.052, and the mean FA ratios were 32.3 {+-} 5.9 and 46.0 {+-} 12.1. All the values were significantly different between metastases and meningiomas (MD values P = 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  10. Low Voltage Low Light Imager and Photodetector

    Science.gov (United States)

    Nikzad, Shouleh (Inventor); Martin, Chris (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.

  11. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury.

    Science.gov (United States)

    Boyer, Richard B; Kelm, Nathaniel D; Riley, D Colton; Sexton, Kevin W; Pollins, Alonda C; Shack, R Bruce; Dortch, Richard D; Nanney, Lillian B; Does, Mark D; Thayer, Wesley P

    2015-09-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.

  12. Design of light-small high-speed image data processing system

    Science.gov (United States)

    Yang, Jinbao; Feng, Xue; Li, Fei

    2015-10-01

    A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.

  13. Diffusion-weighted imaging features in spinal cord infarction

    International Nuclear Information System (INIS)

    Zhang Jingsong; Huan Yi; Sun Lijun; Chang Yingjuan; Zhao Haitao; Yang Chunmin; Zhang Guangyun

    2005-01-01

    Objective: To analyze the diffusion-weighted MR imaging findings in ischemic spinal cord lesions and discuss the value of diffusion-weighted MR imaging in differentiating diagnosis with inflammatory diseases and tumors. Methods: Six patients (2 male, 4 female) with typical sudden onset of neurological deficits caused by spinal cord ischemia were evaluated. There were no definite etiologies in all patients. DW imaging was performed within 1 to 30 days after the initial neurological symptoms using a Philips Gyroscan 1.5 TMR system. Four patients had other scans including contrast-enhanced MR imaging (CE-MRI) and/or FLAIR scans. Two of them followed up with MR images in three months. All six patients were imaged using a multi-shot, navigator-corrected, echo-planar pulse sequence, and ADC values were calculated in sagittal-oriented plane. Results: MR abnormalities were demonstrated on sagittal T 2 -weighted images with 'patch-like' or 'strip-like' hyperintensities (6/6) and cord enlargement (5/6). Axial T 2 -weighted images showed bilateral (6/6) hyperintensities. In one patient only the posterior spinal artery (PSA) territory was involved. Spinal cord was mainly affected at the cervical (2/6) and thoracolumbar (4/6) region, two of them included the conus medullaris (T10-L1). DW images showed high signals in all infarct lesions, degree of intensity depended on scanning time from ill-onset and progress of illness and whether companied with hemorrhage. In this group, except one case with closely normal ADC value due to one month course of illness, the five others ADC values of lesions calculated from ADC maps arranged from 0.23 x 10 -3 mm 2 /s to 0.47 x 10 -3 mm 2 /s [average value (0.37 ± 0.10) x 10 -3 mm 2 /s], markedly lower than normal parts [ average value (0.89 ± 0.08) x 10 -3 mm 2 /s]. There were marked difference between lesions and normal regions (t=4.71, P 2 W images. Meanwhile, lesions could be displayed much better in DW images than in T 2 W images because

  14. Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Zheng

    Full Text Available BACKGROUND: To explore the characteristics of diffusion tensor imaging (DTI and magnetic resonance (MR imaging in healthy native kidneys. METHODS: Seventy-three patients without chronic kidney disease underwent DTI-MRI with spin echo-echo planar (SE-EPI sequences accompanied by an array spatial sensitivity encoding technique (ASSET. Cortical and medullary mean, axial and radial diffusivity (MD, AD and RD, fractional anisotropy (FA and primary, secondary and tertiary eigenvalues (λ1, λ2, λ3 were analysed in both kidneys and in different genders. RESULTS: Cortical MD, λ2, λ3, and RD values were higher than corresponding medullary values. The cortical FA value was lower than the medullary FA value. Medullary λ1 and RD values in the left kidney were lower than in the right kidney. Medullary λ2, and λ3 values in women were higher than those in men. Medullary FA values in women were lower than those in men. Medullary FA (r = 0.351, P = 0.002 and λ1 (r = 0.277, P = 0.018 positively correlated with eGFR. Medullary FA (r = -0.25, P = 0.033 negatively correlated with age. CONCLUSIONS: Renal water molecular diffusion differences exist in human kidneys and genders. Age and eGFR correlate with medullary FA and primary eigenvalue.

  15. Diffuse optical tomography with structured-light patterns to quantify breast density

    Science.gov (United States)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2016-02-01

    Breast density is an independent risk factor for breast cancer, where women with denser breasts are more likely to develop cancer. By identifying women at higher risk, healthcare providers can suggest screening at a younger age to effectively diagnose and treat breast cancer in its earlier stages. Clinical risk assessment models currently do not incorporate breast density, despite its strong correlation with breast cancer. Current methods to measure breast density rely on mammography and MRI, both of which may be difficult to use as a routine risk assessment tool. We propose to use diffuse optical tomography with structured-light to measure the dense, fibroglandular (FGT) tissue volume, which has a different chromophore signature than the surrounding adipose tissue. To test the ability of this technique, we performed simulations by creating numerical breast phantoms from segmented breast MR images. We looked at two different cases, one with a centralized FGT distribution and one with a dispersed distribution. As expected, the water and lipid volumes segmented at half-maximum were overestimated for the dispersed case. However, it was noticed that the recovered water and lipid concentrations were lower and higher, respectively, than the centralized case. This information may provide insight into the morphological distribution of the FGT and can be a correction in estimating the breast density.

  16. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale

    2016-01-01

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging

  17. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  18. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  19. Survey of on-road image projection with pixel light systems

    Science.gov (United States)

    Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland

    2017-12-01

    HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.

  20. Quantitative differentiation of breast lesions at 3T diffusion-weighted imaging (DWI) using the ratio of distributed diffusion coefficient (DDC).

    Science.gov (United States)

    Ertas, Gokhan; Onaygil, Can; Akin, Yasin; Kaya, Handan; Aribal, Erkin

    2016-12-01

    To investigate the accuracy of diffusion coefficients and diffusion coefficient ratios of breast lesions and of glandular breast tissue from mono- and stretched-exponential models for quantitative diagnosis in diffusion-weighted magnetic resonance imaging (MRI). We analyzed pathologically confirmed 170 lesions (85 benign and 85 malignant) imaged using a 3.0T MR scanner. Small regions of interest (ROIs) focusing on the highest signal intensity for lesions and also for glandular tissue of contralateral breast were obtained. Apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) were estimated by performing nonlinear fittings using mono- and stretched-exponential models, respectively. Coefficient ratios were calculated by dividing the lesion coefficient by the glandular tissue coefficient. A stretched exponential model provides significantly better fits then the monoexponential model (P DDC ratio (area under the curve [AUC] = 0.93) when compared with lesion DDC, ADC ratio, and lesion ADC (AUC = 0.91, 0.90, 0.90) but with no statistically significant difference (P > 0.05). At optimal thresholds, the DDC ratio achieves 93% sensitivity, 80% specificity, and 87% overall diagnostic accuracy, while ADC ratio leads to 89% sensitivity, 78% specificity, and 83% overall diagnostic accuracy. The stretched exponential model fits better with signal intensity measurements from both lesion and glandular tissue ROIs. Although the DDC ratio estimated by using the model shows a higher diagnostic accuracy than the ADC ratio, lesion DDC, and ADC, it is not statistically significant. J. Magn. Reson. Imaging 2016;44:1633-1641. © 2016 International Society for Magnetic Resonance in Medicine.

  1. The role of diffusion weighted magnetic resonance imaging in ...

    African Journals Online (AJOL)

    Aim of the work: To demonstrate the role of Diffusion Weighted Imaging and ADC maps in assessing normal progression of the infantile brain myelination. Patients and methods: The present work included 30 infants with normal MRI study of the brain, normal psychomotor development and normal neurological examination.

  2. MR diffusion imaging and 1H spectroscopy in a child with medulloblastoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, M. [Max-Planck-Institute of Psychiatry, Muenchen (Germany). NMR Study Group; Eidenschink, A.; Mueller-Weihrich, S. [Technical Univ. of Muenchen, (Germany). Childrens' Hospital; Auer, D.P. [Max-Planck-Institute of Psychiatry, Muenchen (Germany). NMR Study Group

    2000-01-01

    We report on a child with a metastasising medulloblastoma which was assessed by MR diffusion imaging and 1H MR spectroscopy (MRS). Reduced mean apparent diffusion coefficients and a high amount of taurine could be demonstrated. This is the first reported case of high taurine in medulloblastoma in vivo and confirms earlier in vitro findings. It is suggested that the changes on diffusion imaging, possibly reflecting the small-cell histology of the tumour and high taurine in MRS, are indicative of medulloblastoma.

  3. MR diffusion imaging and 1H spectroscopy in a child with medulloblastoma: A case report

    International Nuclear Information System (INIS)

    Wilke, M.; Eidenschink, A.; Mueller-Weihrich, S.; Auer, D.P.

    2000-01-01

    We report on a child with a metastasising medulloblastoma which was assessed by MR diffusion imaging and 1H MR spectroscopy (MRS). Reduced mean apparent diffusion coefficients and a high amount of taurine could be demonstrated. This is the first reported case of high taurine in medulloblastoma in vivo and confirms earlier in vitro findings. It is suggested that the changes on diffusion imaging, possibly reflecting the small-cell histology of the tumour and high taurine in MRS, are indicative of medulloblastoma

  4. Cloaking through cancellation of diffusive wave scattering

    KAUST Repository

    Farhat, Mohamed

    2016-08-10

    A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.

  5. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  6. Assessment of vasogenic edema in eclampsia using diffusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Engelter, S.T. [Department of Radiology, Duke University Medical Center, Durham, NC (United States); Division of Neurology, Duke University Medical Center, Durham, North Carolina (United States); Provenzale, J.M.; Petrella, J.R. [Department of Radiology, Duke University Medical Center, Durham, NC (United States)

    2000-11-01

    We qualitatively assessed the regional distribution of vasogenic edema in a case of postpartum eclampsia. Although diffusion-weighted imaging showed no abnormalities, bilateral high signal was seen on T2-weighted images and apparent diffusion coefficient (ADC) maps. ADC of 1.45 {+-} 0.10 mm{sup 2}/s x 10{sup -3} for the posterior cerebral artery (PCA) territory and 1.22 {+-} 0.12 mm{sup 2}/s x 10{sup -3} for the watershed areas were significantly higher than those in the territories of the anterior (0.85 {+-} 0.07 mm{sup 2}/s x 10{sup -3}) and middle cerebral (0.79 {+-} 0.06 mm{sup 2}/s x 10{sup -3})arteries (P < 0.05). The predilection of ADC changes within the PCA territory and in a previously undescribed watershed distribution supports the hypothesis that vasogenic edema in eclampsia is due to hypertension-induced failure of vascular autoregulation. (orig.)

  7. MR diffusion weighted imaging with background signal suppression in breast cancer

    International Nuclear Information System (INIS)

    Li Ming; Zhang Bing; Zhou Zhengyang; Yu Haiping; Yuan Lei; Zhu Bin

    2009-01-01

    Objective: To explore the feasibility of echo planar imaging with short time inversion recovery (STIR-EPI) diffusion weighted imaging with background signal (DWIBS) suppression in breast cancer. Methods: The diffusion weighted imaging (DWI)with background suppression (b=800 mm 2 /s) was performed in 26 patients with breast cancer. Apparent diffusion coefficient(ADC) of all lesions were measured and compared. 3D maximum intensity projection (3D-MIP)and reverse black and white technique were used to show the lesions. DWI and DWIBS were performed and compared for the detection of breast cancer. Randomized blocks analysis of variance was used for the ADC values in different breast tissues, the ADC values in breast cancer and benign lesion were compared using t test. The paired chi square test was used for the detection rate of breast cancer in two different imaging methods. Results: Most of the breast cancers were hyperintense on DWI (b=800 mm 2 /s). The ADC value of cancer tissue was (0.93±0.25) x 10 -3 mm 2 /s, tumor necrosis was (2.06±0.17) x 10 -3 mm 2 /s, normal breast tissue was (1.92±0.23) x 10 -3 mm 2 /s and metastatic lymph node was (1.10±0.14) x 10 -3 mm 2 /s and the differences were statistically significant between two structures (P 2 =8.307, P 2 = 12.235, P -3 mm 2 /s and benign lesion (2.15±0.53) x 10 -3 mm 2 /s had significant statistical differences (t=8.626,P<0.05). Conclusion: Diffusion weighted MRI with background suppression can detect more lesions than DWI and can be potentially applied for the detection of the breast cancer combining the ADC value. (authors)

  8. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  9. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    International Nuclear Information System (INIS)

    Ahlawat, Shivani; Fayad, Laura M.

    2018-01-01

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  10. Diffusion weighted imaging demystified. The technique and potential clinical applications for soft tissue imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Shivani [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Fayad, Laura M. [The Johns Hopkins Medical Institutions, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Oncology, Baltimore, MD (United States); The Johns Hopkins Medical Institutions, Department of Orthopaedic Surgery, Baltimore, MD (United States)

    2018-03-15

    Diffusion-weighted imaging (DWI) is a fast, non-contrast technique that is readily available and easy to integrate into an existing imaging protocol. DWI with apparent diffusion coefficient (ADC) mapping offers a quantitative metric for soft tissue evaluation and provides information regarding the cellularity of a region of interest. There are several available methods of performing DWI, and artifacts and pitfalls must be considered when interpreting DWI studies. This review article will review the various techniques of DWI acquisition and utility of qualitative as well as quantitative methods of image interpretation, with emphasis on optimal methods for ADC measurement. The current clinical applications for DWI are primarily related to oncologic evaluation: For the assessment of de novo soft tissue masses, ADC mapping can serve as a useful adjunct technique to routine anatomic sequences for lesion characterization as cyst or solid and, if solid, benign or malignant. For treated soft tissue masses, the role of DWI/ADC mapping in the assessment of treatment response as well as recurrent or residual neoplasm in the setting of operative management is discussed, especially when intravenous contrast medium cannot be given. Emerging DWI applications for non-neoplastic clinical indications are also reviewed. (orig.)

  11. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  12. Sequential Magnetic Resonance Imaging Finding of Intramedullary Spinal Cord Abscess including Diffusion Weighted Image: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Jae Eun; Lee, Seung Young; Cha, Sang Hoon; Cho, Bum Sang; Jeon, Min Hee; Kang, Min Ho [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of)

    2011-04-15

    Intramedullary spinal cord abscess (ISCA) is a rare infection of the central nervous system. We describe the magnetic resonance imaging (MRI) findings, including the diffusion-weighted imaging (DWI) findings, of ISCA in a 78-year-old man. The initial conventional MRI of the thoracic spine demonstrated a subtle enhancing nodule accompanied by significant edema. On the follow-up MRI after seven days, the nodule appeared as a ring-enhancing nodule. The non-enhancing central portion of the nodule appeared hyperintense on DWI with a decreased apparent diffusion coefficient (ADC) value on the ADC map. We performed myelotomy and surgical drainage, and thick, yellowish pus was drained

  13. Analysis of Multiple B-Value Diffusion-Weighted Imaging in Pediatric Acute Encephalopathy

    Science.gov (United States)

    Tachibana, Yasuhiko; Aida, Noriko; Niwa, Tetsu; Nozawa, Kumiko; Kusagiri, Kouki; Mori, Kana; Endo, Kazuo; Obata, Takayuki; Inoue, Tomio

    2013-01-01

    Acute encephalopathy is a disease group more commonly seen in children. It is often severe and has neurological sequelae. Imaging is important for early diagnosis and prompt treatment to ameliorate an unfavorable outcome, but insufficient sensitivity/specificity is a problem. To overcome this, a new value (fraction of high b-pair (FH)) that could be processed from clinically acceptable MR diffusion-weighted imaging (DWI) with three different b-values was designed on the basis of a two-compartment model of water diffusion signal attenuation. The purpose of this study is to compare FH with the apparent diffusion coefficient (ADC) regarding the detectability of pediatric acute encephalopathy. We retrospectively compared the clinical DWI of 15 children (1–10 years old, mean 2.34, 8 boys, 7 girls) of acute encephalopathy with another 16 children (1–11 years old, mean 4.89, 9 boys, 7 girls) as control. A comparison was first made visually by mapping FH on the brain images, and then a second comparison was made on the basis of 10 regions of interest (ROIs) set on cortical and subcortical areas of each child. FH map visually revealed diffusely elevated FH in cortical and subcortical areas of the patients with acute encephalopathy; the changes seemed more diffuse in FH compared to DWI. The comparison based on ROI revealed elevated mean FH in the cortical and subcortical areas of the acute encephalopathy patients compared to control with significant difference (Pencephalopathy may be superior in FH compared to ADC. PMID:23755112

  14. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging.

    Science.gov (United States)

    Brody, David L; Mac Donald, Christine L; Shimony, Joshua S

    2015-01-01

    Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement. © 2015 Elsevier B.V. All rights reserved.

  15. Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.

    Science.gov (United States)

    Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M

    2014-01-01

    We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.

  16. Discriminating Yogurt Microstructure Using Diffuse Reflectance Images

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Møller, Flemming; Abildgaard, Otto Højager Attermann

    2015-01-01

    The protein microstructure of many dairy products is of great importance for the consumers’ experience when eating the product. However, studies concerning discrimination between protein microstructures are limited. This paper presents preliminary results for discriminating different yogurt...... microstructures using hyperspectral (500-900nm) diffuse reflectance images (DRIs) – a technique potentially well suited for inline process control. Comparisons are made to quantified measures of the yogurt microstructure observed through confocal scanning laser microscopy (CSLM). The output signal from both...... modalities is evaluated on a 24 factorial design covering four common production parameters, which significantly change the chemistry and the microstructure of the yogurt. It is found that the DRIs can be as discriminative as the CSLM images in certain cases, however the performance is highly governed...

  17. The diagnostic value of diffusion-weighted magnetic resonance imaging in soft tissue abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Ozkan; Koparan, Halil Ibrahim [Yuezuencue Yil University, Department of Radiology, Van (Turkey); Avcu, Serhat, E-mail: serhatavcu@hotmail.com [Yuezuencue Yil University, Department of Radiology, Van (Turkey); Kalender, Ali Murat [Yuezuencue Yil University, Department of Orthopaedics, General Surgery, Van (Turkey); Kisli, Erol [Yuezuencue Yil University, Department of General Surgery, Van (Turkey)

    2011-03-15

    Purpose: To study the diagnostic value of diffusion-weighted imaging (DWI) in soft tissue abscesses. Materials and methods: Fifty patients were included in this study who were thought to have soft tissue abscess or cystic lesion as a result of clinical and radiological examinations. Localisations of the lesions were: 1 periorbital, 3 breast, 14 intraabdominal, and 32 intramuscular lesions. After other radiological examinations, DWI was performed. The signal intensity values of the lesions were evaluated qualitatively according to the hyperintensity on b-1000 DWI, using 1.5 T MR system. All of the lesions were aspirated after DWI, and detection of pus in the aspiration material was accepted as gold standard for the diagnosis of abscess. Results: In 38 of the 50 patients, hyperintensity was obtained on diffusion-weighted images. False-positive results were maintained in 2 of these patients, and true-positive results were maintained in 36 of them. In 11 of the 50 patients, hypointensity was visualised on diffusion-weighted images. False-negative results were maintained in 3 of these patients, and true-negative results were maintained in 8 of them. An abscess which was seen on post-contrast conventional MRI could not be seen on DWI, and this was regarded as false-negative. Conclusion: The sensitivity and specificity of diffusion-weighted images for detecting soft tissue abscesses were found to be 92% and 80%, respectively. DWI has a high diagnostic value in soft tissue abscesses, and is an important imaging modality that may be used for the differentiation of cysts and abscesses.

  18. The diagnostic value of diffusion-weighted magnetic resonance imaging in soft tissue abscesses

    International Nuclear Information System (INIS)

    Unal, Ozkan; Koparan, Halil Ibrahim; Avcu, Serhat; Kalender, Ali Murat; Kisli, Erol

    2011-01-01

    Purpose: To study the diagnostic value of diffusion-weighted imaging (DWI) in soft tissue abscesses. Materials and methods: Fifty patients were included in this study who were thought to have soft tissue abscess or cystic lesion as a result of clinical and radiological examinations. Localisations of the lesions were: 1 periorbital, 3 breast, 14 intraabdominal, and 32 intramuscular lesions. After other radiological examinations, DWI was performed. The signal intensity values of the lesions were evaluated qualitatively according to the hyperintensity on b-1000 DWI, using 1.5 T MR system. All of the lesions were aspirated after DWI, and detection of pus in the aspiration material was accepted as gold standard for the diagnosis of abscess. Results: In 38 of the 50 patients, hyperintensity was obtained on diffusion-weighted images. False-positive results were maintained in 2 of these patients, and true-positive results were maintained in 36 of them. In 11 of the 50 patients, hypointensity was visualised on diffusion-weighted images. False-negative results were maintained in 3 of these patients, and true-negative results were maintained in 8 of them. An abscess which was seen on post-contrast conventional MRI could not be seen on DWI, and this was regarded as false-negative. Conclusion: The sensitivity and specificity of diffusion-weighted images for detecting soft tissue abscesses were found to be 92% and 80%, respectively. DWI has a high diagnostic value in soft tissue abscesses, and is an important imaging modality that may be used for the differentiation of cysts and abscesses.

  19. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  20. Inpainting using airy diffusion

    Science.gov (United States)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  1. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  2. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    OpenAIRE

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.; Dudink, Jeroen

    2015-01-01

    Background To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. Objective To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. Materials and methods We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 20...

  3. Diffusion-weighted MR imaging of non-complicated hepatic cysts: Value of 3T computed diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Nakamura, Yuko; Higaki, Toru; Akiyama, Yuji; Fukumoto, Wataru; Kajiwara, Kenji; Kaichi, Yoko; Honda, Yukiko; Komoto, Daisuke; Tatsugami, Fuminari; Iida, Makoto; Ohmoto, Toshifumi; Date, Shuji; Awai, Kazuo

    2016-01-01

    To investigate the utility of computed 3T diffusion-weighted imaging (c-DWI) for the diagnosis of non-complicated hepatic cysts with a focus on the T2 shine-through effect. In 50 patients with non-complicated hepatic cysts we acquired one set of DWIs (b-value 0 and 1000 s/mm 2 ) at 1.5T, and two sets at 3T (b-value 0 and 1000 s/mm 2 , TE 70 ms; b-value 0 and 600 s/mm 2 , TE 60 ms). We defined the original DWIs acquired with b = 1000 s/mm 2 at 1.5T and 3T as “o-1.5T-1000” and “o-3T-1000”. c-DWIs were calculated with 3T DWI at b-values of 0 and 600 s/mm 2 . c-DWI with b = 1000 and 1500 s/mm 2 were defined as “c-1000” and “c-1500”. Radiologists evaluated the signal intensity (SI) of the cysts using a 3-point score where 1 = not visible, 2 = discernible, and 3 = clearly visible. They calculated the contrast ratio (CR) between the cysts and the surrounding liver parenchyma on each DWIs and recorded the apparent diffusion coefficient (ADC) with a b-value = 0 and 1000 s/mm 2 on 1.5T- and 3T DWIs. Compared with o-1.5T-1000 DWI, the visual scores of all but the c-1500 DWIs were higher (p = 0.07 for c-1500- and p < 0.01 for the other DWIs). The CR at b = 1000 s/mm 2 was higher on o-3T-1000- than on o-1.5T-1000- (p < 0.01) but not higher than on c-1500 DWIs (p = 0.96). The CR at b = 0 s/mm 2 on 3T images with TE 70 ms was higher than on 1.5T images (p < 0.01). The ADC value was higher for 3T- than 1.5T images (p < 0.01). Non-complicated hepatic cysts showed higher SI on o-3T-1000- than o-1.5T-1000 DWIs due to the T2-shine through effect. This high SI was suppressed on c-1500 DWIs

  4. Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia

    International Nuclear Information System (INIS)

    Bozzao, Alessandro; Di Paolo, Ambrogio; Simonetti, Alessandra; Mazzoleni, Clarissa; Fasoli, Fabrizio; Floris, Roberto; Fantozzi, Luigi Maria

    2003-01-01

    Diffusion-weighted imaging (DWI) has been shown to be highly sensitive in detecting acute cerebral infarction, but its use in detecting hypoxic-ischemic encephalopathy (HIE) in neonates is still controversial. Moreover, few reports concern pre-term infants with possible periventricular leukomalacia (PVL). We examined the ability of this technique to detect cerebral changes in the acute phase of PVL. Fifteen MR examinations were performed in 11 pre-term infants (mean age 3.4 days, range 2-6 days). Conventional DWI sequences, apparent diffusion coefficient (ADC) maps, and US obtained in the acute phase were compared. All the neonates underwent US follow-up up to 4 months after delivery; those with suspected PVL also underwent MRI follow-up for up to 2 months. Qualitative and quantitative evaluations were performed to assess the presence of DW changes compatible with PVL. Diffusion-weighted MRI showed signal hyperintensity associated with decreased ADC values in 3 subjects (27%). In these patients conventional MRI sequences were interpreted as normal and US (performed at the same time) as doubtful in 2 and compatible with PVL in 1 subject. The MRI and US follow-up confirmed severe damage in all these patients. In 1 neonate hemorrhages involving the germinative matrix were identified. In 8 neonates MRI was considered normal. In these subjects US follow-up (up to 4 months) confirmed no signs of PVL. Diffusion-weighted imaging may have a higher correlation with later evidence of PVL than does conventional MR imaging and US when performed in the acute phase of the disease. (orig.)

  5. Color appearance for photorealistic image synthesis

    Science.gov (United States)

    Marini, Daniele; Rizzi, Alessandro; Rossi, Maurizio

    2000-12-01

    Photorealistic Image Synthesis is a relevant research and application field in computer graphics, whose aim is to produce synthetic images that are undistinguishable from real ones. Photorealism is based upon accurate computational models of light material interaction, that allow us to compute the spectral intensity light field of a geometrically described scene. The fundamental methods are ray tracing and radiosity. While radiosity allows us to compute the diffuse component of the emitted and reflected light, applying ray tracing in a two pass solution we can also cope with non diffuse properties of the model surfaces. Both methods can be implemented to generate an accurate photometric distribution of light of the simulated environment. A still open problem is the visualization phase, whose purpose is to display the final result of the simulated mode on a monitor screen or on a printed paper. The tone reproduction problem consists of finding the best solution to compress the extended dynamic range of the computed light field into the limited range of the displayable colors. Recently some scholars have addressed this problem considering the perception stage of image formation, so including a model of the human visual system in the visualization process. In this paper we present a working hypothesis to solve the tone reproduction problem of synthetic image generation, integrating Retinex perception model into the photo realistic image synthesis context.

  6. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    Science.gov (United States)

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Diffusion-weighted magnetic resonance imaging in autoimmune pancreatitis

    International Nuclear Information System (INIS)

    Taniguchi, Takao; Kobayashi, Hisato; Nishikawa, Koji; Iida, Etsushi; Michigami, Yoshihiro; Morimoto, Emiko; Yamashita, Rikiya; Miyagi, Ken; Okamoto, Motozumi

    2009-01-01

    The aim of this study was to investigate the usefulness of diffusion-weighted magnetic resonance imaging (DWI MRI) for the diagnosis and evaluation of autoimmune pancreatitis (AIP). A total of 4 consecutive patients with AIP, 5 patients with chronic alcoholic pancreatitis (CP), and 13 patients without pancreatic disease (controls) were studied. DWI was performed in the axial plane with spin-echo echo-planar imaging single-shot sequence. Apparent diffusion coefficients (ADCs) were measured in circular regions of interest in the pancreas. In AIP patients, abdominal MRI was performed before, and 2-4 weeks after steroid treatment. Follow-up study was performed chronologically for up to 11 months in two patients. The correlation between ADCs of the pancreas and the immunoglobulin G4 (IgG4) index (serum IgG4 value/serum IgG4 value before steroid treatment) was evaluated. In the AIP patients, DWI of the pancreas showed high signal intensity, and the ADCs of the pancreas (mean±standard deviation (SD): 0.97±0.18 x 10 -3 mm 2 /s) were significantly lower than those in patients with CP (1.45±0.10 x 10 -3 mm 2 /s) or the controls (1.45±0.16 x 10 -3 mm 2 /s) (Mann-Whitney U-test, P s =-0.80, P<0.05). Autoimmune pancreatitis showed high signal intensity on DWI, which improved after steroid treatment. ADCs reflected disease activity. Thus, diffusion-weighted MRI might be useful for diagnosing AIP, determining the affected area, and evaluating the effect of treatment. (author)

  8. Investigation of a phantom for diffusion weighted imaging that controlled the apparent diffusion coefficient using gelatin and sucrose

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Usui, Shuji; Akiyama, Mitoshi

    2009-01-01

    When studying diffusion weighted imaging (DWI), it is important to create a phantom that has a reliably controlled diffusion coefficient. In this study, we investigated phantoms to control both the diffusion coefficient and the T2-value by changing the concentration of gelatin or sucrose and MnCl 2 , respectively. The results showed that the diffusion coefficient decreased linearly with increases in the gelatin or sucrose concentration, and decreasing of their relaxation times was observed. By properly adjusting the MnCl 2 concentrations, we were able to equalize the T2-values between phantoms having different gelatin or sucrose concentrations. Temperature dependence of the diffusion coefficient was also revealed. This phantom can be made stable for a few months by adding a small amount of NaN 3 as an antiseptic agent, has a diffusion coefficient similar to that of neural tissue or clinical tumor, and is able to control the T2-value properly. We consider this phantom suitable for studying SE-type DWI and contributes to elucidation of this technique. (author)

  9. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  10. Standardizing display conditions of diffusion-weighted images using concurrent b0 images. A multi-vendor multi-institutional study

    International Nuclear Information System (INIS)

    Sasaki, Makoto; Ida, Masahiro; Yamada, Kei; Watanabe, Yoshiyuki; Matsui, Mieko

    2007-01-01

    The purpose of this study was to establish a practical method that uses concurrent b0 images to standardize the display conditions for diffusion-weighted images (DWI) that vary among institutions and interpreters. Using identical parameters, we obtained DWI for 12 healthy volunteers at 4 institutions using 4 MRI scanners from 3 vendors. Three operators manually set the window width for the images equal to the signal intensity of the normal-appearing thalamus on b0 images and set the window level at half and then exported the images to 8-bit gray-scale images. We calculated the mean pixel values of the brain objects in the images and examined the variation among scanners, operators, and subjects. Following our method, the DWI of the 12 subjects obtained using the 4 different scanners had nearly identical contrast and brightness. The mean pixel values of the brain on the exported images among the operators and subjects were not significantly different, but we found a slight, significant difference among the scanners. Determining DWI display conditions by using b0 images is a simple and practical method to standardize window width and level for evaluating diffusion abnormalities and decreasing variation among institutions and operators. (author)

  11. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    DEFF Research Database (Denmark)

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.

    2015-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged...... measurement noise model. The method is based on iteratively combining a lagged diffusivity step and a linearization of the measurement model of diffuse optical tomography with priorconditioned LSQR. The performance of the reconstruction technique is tested via three-dimensional numerical experiments...

  12. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Tidwell, V.C. [Sandia National Laboratories, Albuquerque, NM (United States); Uchida, M. [Japan Nuclear Cycle Development Inst., Ibaraki (Japan)

    2001-08-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix.

  13. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    International Nuclear Information System (INIS)

    Altman, S.J.; Tidwell, V.C.; Uchida, M.

    2001-01-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix

  14. Diffusion tensor imaging in children and adolescents with tuberous sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Demet [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Department of Paediatric Radiology, Jena (Germany); Kirikkale Yuksek Ihtisas Hospital, Department of Radiology, Kirirkale (Turkey); Mentzel, Hans-J.; Loebel, Ulrike; Reichenbach, Juergen R.; Kaiser, Werner A. [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Department of Paediatric Radiology, Jena (Germany); Guellmar, Daniel [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Department of Paediatric Radiology, Jena (Germany); Friedrich Schiller University, Biomagnetic Centre, Clinic of Neurology, Jena (Germany); Rating, Tina; Brandl, Ulrich [Friedrich Schiller University, Department of Paediatric Neurology, Jena (Germany)

    2005-10-01

    Tuberous sclerosis (TS) is characterised by benign hamartomatous lesions in many organs. Diffusion tensor imaging (DTI) can detect microstructural changes in pathological processes. To determine apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps in children with TS and to investigate the diffusion properties in cortical tubers, white-matter lesions, perilesional white matter, and contralateral normal-appearing white matter, and to compare the results with ADC and FA maps of normal age- and sex-matched volunteers. Seven children and adolescents (age range 2-20 years) suffering from TS were included. MRI was performed on a 1.5-T scanner using a transmit/receive coil with T1-W and T2-W spin-echo and FLAIR sequences. DT images were acquired by using a single-shot echo-planar pulse sequence. Diffusion gradients were applied in six different directions with a b value of 1,000 s/mm{sup 2}. ADC was higher in cortical tubers than in the corresponding cortical location of controls. ADC values were higher and FA values were lower in white-matter lesions and perilesional white matter than in both the contralateral normal-appearing white matter of patients and in controls. There were no significant differences for both ADC and FA values in the normal-appearing white matter of patients with TS compared to controls. DTI provides important information about cortical tubers, white-matter abnormalities, and perilesional white matter in patients with TS. (orig.)

  15. Appearances of diffuse excessive high signal intensity (DEHSI) on MR imaging following preterm birth

    International Nuclear Information System (INIS)

    Hart, Anthony R.; Smith, Michael F.; Rigby, Alan S.; Wallis, Lauren I.; Whitby, Elspeth H.

    2010-01-01

    Diffuse damage to the periventricular white matter has recently been suggested to be a cause of the cognitive deficits seen following preterm birth. It is unclear whether this form of injury can be visualised on MR imaging, but one group has described diffuse excessive high signal intensity (DEHSI) as a possible form of diffuse white matter injury. This finding is dependant on window imaging and the subjective assessment of the reviewer, but little data have been published on the degree of subjectivity on its appearance among raters. To assess the subjectivity of DEHSI on conventional and ultrafast T2-weighted MR imaging following preterm birth. An observational study of 40 preterm infants who had MR imaging of the brain around term-equivalent age, including conventional fast spin-echo (FSE) and ultrafast single-shot fast spin-echo (SSFSE) T2-weighted sequences in the axial plane. Images were anonymised and scored twice by four observers for the presence of DEHSI. Inter- and intra-observer agreement were calculated. Sixty-five percent of conventional and 100% of the ultrafast images were of diagnostic quality. DEHSI was noted in between 0% and 69.2% of conventional images and 27.5-90% of the ultrafast images. Inter- and intra-observer agreement ranged from none to moderate. The visual appearances of DEHSI on conventional FSE and ultrafast SSFSE T2-W images are highly subjective, limiting its clinical application. (orig.)

  16. Appearances of diffuse excessive high signal intensity (DEHSI) on MR imaging following preterm birth

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Anthony R. [Sheffield Teaching Hospital NHS Foundation Trust, Department of Neonatology, Jessop Wing, Sheffield (United Kingdom); University of Sheffield, Academic Unit of Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom); University of Sheffield, Department of Academic Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom); Smith, Michael F. [Sheffield Teaching Hospital NHS Foundation Trust, Department of Neonatology, Jessop Wing, Sheffield (United Kingdom); Rigby, Alan S. [University of Hull, Postgraduate Medical Centre, Castle Hill Hospital, East Yorkshire (United Kingdom); Wallis, Lauren I.; Whitby, Elspeth H. [University of Sheffield, Academic Unit of Radiology, Royal Hallamshire Hospital, Sheffield (United Kingdom)

    2010-08-15

    Diffuse damage to the periventricular white matter has recently been suggested to be a cause of the cognitive deficits seen following preterm birth. It is unclear whether this form of injury can be visualised on MR imaging, but one group has described diffuse excessive high signal intensity (DEHSI) as a possible form of diffuse white matter injury. This finding is dependant on window imaging and the subjective assessment of the reviewer, but little data have been published on the degree of subjectivity on its appearance among raters. To assess the subjectivity of DEHSI on conventional and ultrafast T2-weighted MR imaging following preterm birth. An observational study of 40 preterm infants who had MR imaging of the brain around term-equivalent age, including conventional fast spin-echo (FSE) and ultrafast single-shot fast spin-echo (SSFSE) T2-weighted sequences in the axial plane. Images were anonymised and scored twice by four observers for the presence of DEHSI. Inter- and intra-observer agreement were calculated. Sixty-five percent of conventional and 100% of the ultrafast images were of diagnostic quality. DEHSI was noted in between 0% and 69.2% of conventional images and 27.5-90% of the ultrafast images. Inter- and intra-observer agreement ranged from none to moderate. The visual appearances of DEHSI on conventional FSE and ultrafast SSFSE T2-W images are highly subjective, limiting its clinical application. (orig.)

  17. Actinomycotic brain infection: registered diffusion, perfusion MR imaging and MR spectroscopy

    International Nuclear Information System (INIS)

    Wang, Sumei; Wolf, Ronald L.; Woo, John H.; Melhem, Elias R.; Poptani, Harish; Wang, Jiongjiong; O'Rourke, Donald M.; Roy, Subhojit

    2006-01-01

    Introduction: Actinomycotic brain infection is caused by an organism of the Actinomyces genus. We report here one such case. Methods: The methods used included coregistered diffusion, perfusion and spectroscopic magnetic resonance (MR) imaging. Decreased apparent diffusion coefficient, markedly elevated fractional anisotropy (FA) and reduced cerebral blood flow were observed. MR spectroscopy demonstrated elevated amino acids, acetate and succinate. Elevated FA values may be due to the microstructure of this special brain infection. (orig.)

  18. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  19. A unified account of gloss and lightness perception in terms of gamut relativity.

    Science.gov (United States)

    Vladusich, Tony

    2013-08-01

    A recently introduced computational theory of visual surface representation, termed gamut relativity, overturns the classical assumption that brightness, lightness, and transparency constitute perceptual dimensions corresponding to the physical dimensions of luminance, diffuse reflectance, and transmittance, respectively. Here I extend the theory to show how surface gloss and lightness can be understood in a unified manner in terms of the vector computation of "layered representations" of surface and illumination properties, rather than as perceptual dimensions corresponding to diffuse and specular reflectance, respectively. The theory simulates the effects of image histogram skewness on surface gloss/lightness and lightness constancy as a function of specular highlight intensity. More generally, gamut relativity clarifies, unifies, and generalizes a wide body of previous theoretical and experimental work aimed at understanding how the visual system parses the retinal image into layered representations of surface and illumination properties.

  20. Diffusion-weighted magnetic resonance imaging of cerebral white matter development

    International Nuclear Information System (INIS)

    Prayer, Daniela.; Prayer, Lucas

    2003-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function

  1. Diffusion-weighted magnetic resonance imaging of cerebral white matter development

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela. E-mail: daniela.prayer@univie.ac.at; Prayer, Lucas

    2003-03-01

    Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function.

  2. Image recovery using diffusion equation embedded neural network

    International Nuclear Information System (INIS)

    Torkamani-Azar, F.

    2001-01-01

    Artificial neural networks with their inherent parallelism have been shown to perform well in many processing applications. In this paper, a new self-organizing approach for the recovery of gray level images degraded by additive noise based on embedding the diffusion equation in a neural network (without using a priori knowledge about the image point spread function, noise or original image) is described which enhances and restores gray levels of degraded images and is for application in low-level processing. Two learning features have been proposed which would be effective in the practical implementation of such a network. The recovery procedure needs some parameter estimation such as different error goals. While the required computation is not excessive, the procedure dose not require too many iterations and convergence is very fast. In addition, through the simulation the new network showed that it has superior ability to give a better quality result with a minimum of the sum of the squared error

  3. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  4. Diffusion-weighted imaging in the diagnosis of enterovirus 71 encephalitis

    International Nuclear Information System (INIS)

    Lian, Zhou-yang; Huang, Biao; Liang, Chang-hong; He, Shaoru; Guo, Yuxiong

    2012-01-01

    Background. In the early phase of viral encephalitis, conventional MRI may appear normal. Diffusion-weighted imaging (DWI) is a sensitive tool for detecting early changes in cellular function in the central nervous system. Purpose. To investigate the usefulness of DWI in the diagnosis of enterovirus 71 (EV71) encephalitis, and to determine whether DWI is superior to conventional MR sequences. Material and Methods. MRI scans in 26 patients were retrospectively evaluated for distribution of lesions on T1-weighted images (T1WI), T2-weighted images (T2WI), fluid-attenuated inversion recovery (FLAIR), and DWI. Contrast-to-noise ratios (CNRs) were calculated for all regions on each sequence and differences in the four MRI sequences were assessed using CNRs. Apparent diffusion coefficient (ADC) values were measured for all regions to look for true restriction of diffusion. Results. Fifteen out of 26 cases showed positive findings on MR imaging. The brain stem was involved in 11 patients, cortex and subcortical white matter in four patients. DWI was more sensitive in detecting the abnormalities (89.7%) compared to T2WI (48.7%), FLAIR (41.0%), and T1WI (35.9%), and the positive ratio of DWI was significantly higher compared to other sequences. Furthermore, no significant difference was found between T2WI and FLAIR (P 0.649). The corresponding mean CNRs were 8.73 ± 2.57, 83.59 ± 29.28, 24.22 ± 6.22, and 132.27 ± 78.32 on T1WI, T2WI, FLAIR, and DWI, respectively. The absolute values of CNRs of lesions on DWI were significantly greater than those on other sequences. Conclusion. DWI appears to be more sensitive in detecting EV71 encephalitis than conventional MRI sequences. This capability may improve the accuracy in diagnosing EV71 encephalitis, especially at the early stage

  5. Diffusion-weighted imaging in the diagnosis of enterovirus 71 encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Zhou-yang; Huang, Biao; Liang, Chang-hong (Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China)), Email: cjr.huangbiao@vip.163.com; He, Shaoru; Guo, Yuxiong (Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China))

    2012-03-15

    Background. In the early phase of viral encephalitis, conventional MRI may appear normal. Diffusion-weighted imaging (DWI) is a sensitive tool for detecting early changes in cellular function in the central nervous system. Purpose. To investigate the usefulness of DWI in the diagnosis of enterovirus 71 (EV71) encephalitis, and to determine whether DWI is superior to conventional MR sequences. Material and Methods. MRI scans in 26 patients were retrospectively evaluated for distribution of lesions on T1-weighted images (T1WI), T2-weighted images (T2WI), fluid-attenuated inversion recovery (FLAIR), and DWI. Contrast-to-noise ratios (CNRs) were calculated for all regions on each sequence and differences in the four MRI sequences were assessed using CNRs. Apparent diffusion coefficient (ADC) values were measured for all regions to look for true restriction of diffusion. Results. Fifteen out of 26 cases showed positive findings on MR imaging. The brain stem was involved in 11 patients, cortex and subcortical white matter in four patients. DWI was more sensitive in detecting the abnormalities (89.7%) compared to T2WI (48.7%), FLAIR (41.0%), and T1WI (35.9%), and the positive ratio of DWI was significantly higher compared to other sequences. Furthermore, no significant difference was found between T2WI and FLAIR (P 0.649). The corresponding mean CNRs were 8.73 +- 2.57, 83.59 +- 29.28, 24.22 +- 6.22, and 132.27 +- 78.32 on T1WI, T2WI, FLAIR, and DWI, respectively. The absolute values of CNRs of lesions on DWI were significantly greater than those on other sequences. Conclusion. DWI appears to be more sensitive in detecting EV71 encephalitis than conventional MRI sequences. This capability may improve the accuracy in diagnosing EV71 encephalitis, especially at the early stage

  6. The utility of diffusion-weighted MR imaging in cervical cancer

    International Nuclear Information System (INIS)

    Chen Jianyu; Zhang Yun; Liang Biling; Yang Zehong

    2010-01-01

    Purpose: To investigate the value of diffusion-weighted MR imaging (DWI) in detection of cervical cancer, and to determine the diagnostic accuracy of apparent diffusion coefficient (ADC) values for evaluating cervical cancer before and after chemoradiotherapy. Materials and methods: Thirty-three patients with cervical squamous carcinoma and 20 patients with other pelvic abnormalities underwent diffusion-weighted imaging (DWI) in addition to routine MR imaging. The ADC values of normal cervical tissue, cervical area before and after chemoradiotherapy were measured and compared. Receiver operating characteristic (ROC) analysis was employed to investigate whether ADC values could help in discrimination among normal cervical tissue, cervical cancer before and after therapy, and to obtain the optimal ADC threshold value. Results: Cervical cancer lesion demonstrated obviously hyperintensity on DWI images. The mean ADC value of cervical carcinoma (1.110 ± 0.175 x 10 -3 mm 2 /s) was significantly lower than that of normal cervical tissue (1.593 ± 0.151 x 10 -3 mm 2 /s) (P -3 mm 2 /s) was significantly higher than that before therapy (1.013 ± 0.094 x 10 -3 mm 2 /s) (P -3 mm 2 /s, between cervical area before and after therapy was 1.255 x 10 -3 mm 2 /s, between normal cervical tissue and cervical area after therapy was 1.525 x 10 -3 mm 2 /s. The sensitivity and specificity were 100% and 84.8%, 95.5% and 100%, 70% and 81.8%, respectively. Conclusion: DWI can be applied for the detection of cervical cancer because of its superior disease contrast with normal tissue. The measurement of the ADC values can be a useful tool to monitor the response to therapy for cervical carcinoma.

  7. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    International Nuclear Information System (INIS)

    Agnetta, G.; Assis, P.; Biondo, B.

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance

  8. 3D widefield light microscope image reconstruction without dyes

    Science.gov (United States)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  9. Diffusion-weighted imaging of the pancreas; Diffusionsbildgebung des Pankreas

    Energy Technology Data Exchange (ETDEWEB)

    Gruenberg, K. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie, E010, Heidelberg (Germany); Grenacher, L.; Klauss, M. [Universitaetsklinikum Heidelberg, Abt. Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)

    2011-03-15

    Diffusion-weighted imaging (DWI) has increasingly gained in importance over the last 10 years especially in cancer imaging for differentiation of malignant and benign lesions. Through development of fast magnetic resonance imaging (MRI) sequences DWI is not only applicable in neuroradiology but also in abdominal imaging. As a diagnostic tool of the pancreas DWI enables a differentiation between normal tissue, cancer and chronic pancreatitis. The ADC values (apparent diffusion coefficient, the so-called effective diffusion coefficient) reported in the literature for healthy pancreatic tissue are in the range from 1.49 to 1.9 x 10{sup -3} mm{sup 2}/s, for pancreatic cancer in the range from 1.24 to 1.46 x 10{sup -3} mm{sup 2}/s and for autoimmune pancreatitis an average ADC value of 1.012 x 10{sup -3} mm{sup 2}/s. There are controversial data in the literature concerning the differentiation between chronic pancreatitis and pancreatic cancer. Using DWI-derived IVIM (intravoxel incoherent motion) the parameter f (perfusion fraction) seems to be advantageous but it is important to use several b values. In the literature the mean f value in chronic pancreatitis is around 16%, in pancreatic cancer 8% and in healthy pancreatic tissue around 25%. So far, DWI has not been helpful for differentiating cystic lesions of the pancreas. There are many references with other tumor entities and in animal models which indicate that there is a possible benefit of DWI in monitoring therapy of pancreatic cancer but so far no original work has been published. (orig.) [German] Die Diffusionsbildgebung (''diffusion-weighted imaging'', DWI) gewann in den letzten 10 Jahren insbesondere in der Tumorbildgebung zur Unterscheidung zwischen malignen und benignen Laesionen zunehmend an Bedeutung. Durch Entwicklung schnellerer MR-Sequenzen ist sie nicht nur in der Neuroradiologie, sondern auch in der Abdomenbildgebung einsetzbar. In der Pankreasdiagnostik ermoeglicht sie

  10. Specular, diffuse and polarized imagery of an oat canopy

    Science.gov (United States)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  11. Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions

    International Nuclear Information System (INIS)

    Rossi, Maija E; Jason, Eeva; Marchesotti, Silvia; Dastidar, Prasun; Ollikainen, Jyrki; Soimakallio, Seppo

    2010-01-01

    Both a large lesion volume and abnormalities in diffusion tensor imaging are independently associated with a poor prognosis after cerebral infarctions. Therefore, we assume that they are associated. This study assessed the associations between lesion volumes and diffusion tensor imaging in patients with a right-sided cerebral infarction. The lesion volumes of 33 patients (age 65.9 ± 8.7, 26 males and 7 females) were imaged using computed tomography (CT) in the acute phase (within 3-4 hours) and magnetic resonance imaging (MRI) in the chronic phase (follow-up at 12 months, with a range of 8-27 months). The chronic-phase fractional anisotropy (FA) and mean diffusivity (MD) values were measured at the site of the infarct and selected white matter tracts. Neurological tests in both the acute and chronic phases, and DTI lateralization were assessed with the Wilcoxon signed-rank test. The effects of thrombolytic therapy (n = 10) were assessed with the Mann-Whitney U test. The correlations between the measured parameters were analysed with Spearman's rho correlation. Bonferroni post-hoc correction was used to compensate for the familywise error rate in multiple comparisons. Several MD values in the right hemisphere correlated positively and FA values negatively with the lesion volumes. These correlations included both lesion area and healthy tissue. The results of the mini-mental state examination and the National Institutes of Health Stroke Scale also correlated with the lesion volume. A larger infarct volume is associated with more pronounced tissue modifications in the chronic stage as observed with the MD and FA alterations

  12. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    Science.gov (United States)

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  13. Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumors.

    Science.gov (United States)

    Wang, Tingting; Wu, Xiangru; Cui, Yanfen; Chu, Caiting; Ren, Gang; Li, Wenhua

    2014-11-29

    Benign and malignant bone tumors can present similar imaging features. This study aims to evaluate the significance of apparent diffusion coefficients (ADC) in differentiating between benign and malignant bone tumors. A total of 187 patients with 198 bone masses underwent diffusion-weighted (DW) magnetic resonance (MR) imaging. The ADC values in the solid components of the bone masses were assessed. Statistical differences between the mean ADC values in the different tumor types were determined by Student's t-test. Histological analysis showed that 84/198 (42.4%) of the bone masses were benign and 114/198 (57.6%) were malignant. There was a significant difference between the mean ADC values in the benign and malignant bone lesions (Pbenign and malignant bone tumors.

  14. Extended substitution-diffusion based image cipher using chaotic standard map

    Science.gov (United States)

    Kumar, Anil; Ghose, M. K.

    2011-01-01

    This paper proposes an extended substitution-diffusion based image cipher using chaotic standard map [1] and linear feedback shift register to overcome the weakness of previous technique by adding nonlinearity. The first stage consists of row and column rotation and permutation which is controlled by the pseudo-random sequences which is generated by standard chaotic map and linear feedback shift register, second stage further diffusion and confusion is obtained in the horizontal and vertical pixels by mixing the properties of the horizontally and vertically adjacent pixels, respectively, with the help of chaotic standard map. The number of rounds in both stage are controlled by combination of pseudo-random sequence and original image. The performance is evaluated from various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results illustrate that performance of this is highly secured and fast.

  15. MR imaging of diffuse bone marrow replacement in pediatric patients with solid malignancies

    International Nuclear Information System (INIS)

    Ruzal-Shapiro, C.; Berdon, W.E.; Cohen, M.D.; Abramson, S.J.

    1990-01-01

    This paper demonstrates that the MR imaging finding of dark T1/bright T2, associated with diffuse bone marrow tumor infiltration in leukemia, also occurs in solid tumors. The clinical course and results on plain radiographs, bone scans, and marrow aspiration were reviewed in two patients with solid tumors and two with leukemia whose MR studies showed a pattern of diffuse bone marrow T2 hypointensity and T2 hyperintensity. One case was followed serially through treatment. There were two cases of ALL, one neuroblastoma, and one rhabdomyosarcoma. Plain radiographs and bone scans showed metaphyseal changes with normal epiphyses and diaphyses. On MR images, flip-flop or reversal of the expected signal characteristics of fatty marrow was seen diffusely in the metaphyses, epiphyses, and diaphyses. All patients had positive bone marrow aspirates

  16. DEEP HST /STIS VISIBLE-LIGHT IMAGING OF DEBRIS SYSTEMS AROUND SOLAR ANALOG HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Glenn; Gaspar, Andras [Steward Observatory and the Department of Astronomy, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Stark, Christopher C.; Kuchner, Marc J. [NASA/Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Debes, John H.; Hines, Dean C.; Perrin, Marshall [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Branch Road, NW, Washington, DC 20015 (United States); Tamura, Motohide [The University of Tokyo, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Wisniewski, John P., E-mail: gschneider@as.arizona.edu [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2016-09-01

    We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar system's Edgeworth–Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both ∼2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10–14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse/low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F {sub disk}/ F {sub star} optical brightness ∼ t {sup −0.8}, similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.

  17. Measurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomography

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A.; Lee, Jonghwan; Boas, David A.

    2018-02-01

    Dynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.

  18. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    International Nuclear Information System (INIS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  19. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors?

    Science.gov (United States)

    Caro-Domínguez, Pablo; Gupta, Abha A; Chavhan, Govind B

    2018-01-01

    There are limited data on utility of diffusion-weighted imaging (DWI) in the evaluation of pediatric liver lesions. To determine whether qualitative and quantitative DWI can be used to differentiate benign and malignant pediatric liver lesions. We retrospectively reviewed MRIs in children with focal liver lesions to qualitatively evaluate lesions noting diffusion restriction, T2 shine-through, increased diffusion, hypointensity on DWI and apparent diffusion coefficient (ADC) maps, and intermediate signal on both, and to measure ADC values. Pathology confirmation or a combination of clinical, laboratory and imaging features, and follow-up was used to determine final diagnosis. We included 112 focal hepatic lesions in 89 children (median age 11.5 years, 51 female), of which 92 lesions were benign and 20 malignant. Interobserver agreement was almost perfect for both qualitative (kappa 0.8735) and quantitative (intraclass correlation coefficient [ICC] 0.96) diffusion assessment. All malignant lesions showed diffusion restriction. Most benign lesions other than abscesses were not restricted. There was significant association of qualitative restriction with malignancy and non-restriction with benignancy (Fisher exact test Pbenign and malignant lesions, with wide range for each diagnosis. Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.63 for predicting malignancy using an ADC cut-off value of ≤1.20x10 -3  mm 2 /s, yielding a sensitivity of 78% and a specificity of 54% for differentiating malignant from benign lesions. Qualitative diffusion restriction in pediatric liver lesions is a good predictor of malignancy and can help to differentiate between benign and malignant lesions, in conjunction with conventional MR sequences. Even though malignant lesions demonstrated significantly lower ADC values than benign lesions, the use of quantitative diffusion remains limited in its utility for distinguishing them because of the

  20. Cerebral Effects of Targeted Temperature Management Methods Assessed by Diffusion-Weighted Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Grejs, Anders Morten; Gjedsted, Jakob; Pedersen, Michael

    2016-01-01

    The aim of this randomized porcine study was to compare surface targeted temperature management (TTM) to endovascular TTM evaluated by cerebral diffusion-weighted magnetic resonance imaging (MRI): apparent diffusion coefficient (ADC), and by intracerebral/intramuscular microdialysis. It is well k...

  1. Role of apparent diffusion coefficient values and diffusion weighted magnetic resonance imaging in differentiation between benign and malignant thyroid nodules

    International Nuclear Information System (INIS)

    Incedayi, M.; Sivrioglu, A.; Mutlu, H.; Sonmez, G.; Velioglu, M.; Sildiroglu, O.; Basekim, C.; Kizilkaya, E.

    2012-01-01

    Full text: Objective: The purpose of the study was to differentiate between benign and malignant thyroid nodules using nodule-spinal cord signal intensity and nodule apparent diffusion coefficient (ADC) ratios on diffusion weighted magnetic resonance imaging. Materials and methods: Forty-four patients (27 females, 17 males; mean age 49) with nodules who underwent diffusion weighted magnetic resonance imaging (DW-MRI) were included in this study. The images were acquired with 0, 50, 400 and 1000 s/mm 2 b values. ADC maps were calculated afterwards. Fine needle aspiration biopsies (FNAB) were performed at the same day with DW-MRI acquisition. The diagnosis in patients where malignity was detected after FNAB was confirmed by histopathologic analysis of the operation material. The signal intensities of the spinal cord and the nodule were measured additionally, over b-1000 diffusion weighted images. Nodule /cord signal intensity (SI) ratios were obtained and the digital values were calculated by dividing to ADC values estimated for each nodule. Statistical analysis was performed. Results: The (nodule SI-cord SI)/nodule ADC ratio is calculated in the DW images and a statistically significant relationship was found between this ratio and the histopathology of the nodules (p<0.001). The ratio was determined as 0.27 in benign, and 0.86 in malignant lesions. The result of ROC analysis was statistically significant, and the area under Receiver Operating Characteristic (ROC) curve (100%) was considerably high. The threshold value was calculated as 0.56 according to the ROC analysis. According to this threshold value, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy rates for (nodule SI/cord SI)/ADC ratios in differentiating benign from malignant thyroid nodules are calculated as 100%, 97%, 83%, 100%, and 98%, respectively. Conclusion: We have found that (nodule/cord SI)/ nodule ADC ratio has the highest values for

  2. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A

    2018-02-01

    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  4. Diffusion Tensor Imaging of Heterotopia: Changes of Fractional Anisotropy during Radial Migration of Neurons

    Science.gov (United States)

    Kim, Jinna

    2010-01-01

    Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428

  5. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging.

    Science.gov (United States)

    Mao, Wei; Zhou, Jianjun; Zeng, Mengsu; Ding, Yuqin; Qu, Lijie; Chen, Caizhong; Ding, Xiaoqiang; Wang, Yaqiong; Fu, Caixia

    2018-05-01

    Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. Prospective study. In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. 1.5T. All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P Imaging 2018;47:1251-1259. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Real-time Image Generation for Compressive Light Field Displays

    International Nuclear Information System (INIS)

    Wetzstein, G; Lanman, D; Hirsch, M; Raskar, R

    2013-01-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  7. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  8. Diffusion-weighted magnetic resonance imaging of the abdomen

    International Nuclear Information System (INIS)

    Schmid-Tannwald, C.; Reiser, M.F.; Zech, C.J.

    2011-01-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides qualitative and quantitative information of tissue cellularity and the integrity of cellular membranes. Since DW-MRI can be performed without ionizing radiation exposure and contrast media application, DW-MRI is a particularly attractive tool for patients with allergies for gadolinium-based contrast agents or renal failure. Recent technical developments have made DW-MRI a robust and feasible technique for abdominal imaging. DW-MRI provides information on the detection and characterization of focal liver lesions and can also visualize treatment effects and early changes in chronic liver disease. In addition DW-MRI is a promising tool for the detection of inflammatory changes in patients with Crohn's disease. (orig.) [de

  9. Preliminary study on hypoxic-ischemic encephalopathy in neonates with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Wang Xiaoming; Chen Liying; Lin Nan; Guo Qiyong

    2005-01-01

    Objective: To evaluate hypoxic-ischemic encephalopathy (HIE) in neonates with diffusion-weighted MR imaging, and to explore the value and limitation of diffusion-weighted imaging (DWI) compared with conventional magnetic resonance imaging. Methods: Conventional magnetic resonance T 1 -weighted imaging (T 1 WI) and DWI (b=700 s/mm 2 ) were performed in 36 neonates with HIE (average age, 8.44 days; range, 3 hours to 22 days), and the cortex and subcortical white matter, deep white matter, basal ganglia and thalamus, cerebral ventricle, and extra-cerebral interspace etc were observed. Results: Signal abnormalities were shown on DWI with hypoxic-ischemic insults, which included diffuse brain damage (19.4%, 7/36): extensive high signals in the regional cortex, subcortical and deep white matter; localized brain damage: high signals along lateral ventricular wall and triangular part (27.8%, 10/36 ), and punctate high signals in the frontal deep white matter (5.6%, 2/36). On T 1 WI, the incidence of the corresponding changes were 16.7% (6/36), 36.1% (13/36), and 30.6%(11/36), respectively. Hemorrhagic lesions demonstrated high signals on T 1 WI and no signals on DWI. Conclusion: DWI was applicable for acute HIE, and T 1 WI was suitable for subacute and chronic HIE. (authors)

  10. Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans

    International Nuclear Information System (INIS)

    Baur, A.; Huber, A.; Reiser, M.; Arbogast, S.; Duerr, H.R.; Zysk, S.; Wendtner, C.; Deimling, M.

    2001-01-01

    The aim of this study was to examine soft tissue tumor recurrences and posttherapeutic soft tissue changes in humans with a diffusion-weighted steady-state free precession (SSFP) sequence. Twenty-four patients with 29 pathologies of the pelvis or the extremities were examined. The lesions were classified as follows: group 1, recurrent viable tumors (n = 10); group 2, postoperative hygromas (n = 7); and group 3, posttherapeutic reactive inflammatory muscle changes (n = 12). The sequence protocol in these patients consisted of short tau inversion recovery images, T2-weighted spin-echo (SE), pre- and postcontrast T1-weighted SE images and the diffusion-weighted SSFP sequence. The signal loss on diffusion-weighting was evaluated visually on a four-grade scale and quantitatively. The signal intensities were measured in regions of interest and a regression analysis was performed. Statistical analyses was performed utilizing the Student's t-test. The signal loss was significantly higher for hygromas and edematous muscle changes than for recurrent tumors (p < 0.001) indicating higher diffusion of water protons. The regression coefficient was -0.11 (mean) for tumors. Hygromas had a significantly higher signal loss than inflammatory edematous muscle changes (p < 0.01). The regression coefficients were -0.29 (mean) for hygromas and -0.22 (mean) for edematous muscle changes. The SSFP sequence seems to be a suitable method for diffusion-weighted imaging of the musculoskeletal system in humans. These preliminary results suggest that the signal loss and the regression coefficients can be used to characterize different types of tissue. (orig.)

  11. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Mingze Li

    2010-01-01

    Full Text Available Diffuse optical tomography (DOT and fluorescence molecular tomography (FMT are two attractive imaging techniques for in vivo physiological and psychological research. They have distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical applications are included. Future challenges and perspective on optical tomography are discussed.

  12. Influence of excitation light rejection on forward model mismatch in optical tomography

    International Nuclear Information System (INIS)

    Hwang, K; Pan, T; Joshi, A; Rasmussen, J C; Bangerth, W; Sevick-Muraca, E M

    2006-01-01

    Fluorescence enhanced tomography for molecular imaging requires low background for detection and accurate image reconstruction. In this contribution, we show that excitation light leakage is responsible for elevated background and can be minimized with the use of gradient index (GRIN) lenses when using fibre optics to collect propagated fluorescence light from tissue or other biological media. We show that the model mismatch between frequency-domain photon migration (FDPM) measurements and the diffusion approximation prediction is decreased when GRIN lenses are placed prior to the interference filters to provide efficient excitation light rejection. Furthermore, model mismatch is correlated to the degree of excitation light leakage. This work demonstrates the importance of proper light filtering when designing fluorescence optical imaging and tomography

  13. MICADO: first light imager for the E-ELT

    NARCIS (Netherlands)

    Davies, R.; Schubert, J.; Hartl, M.; Alves, J.; Clénet, Y.; Lang-Bardl, F.; Nicklas, H.; Pott, J. -U; Ragazzoni, R.; Tolstoy, E.; Agocs, T.; Anwand-Heerwart, H.; Barboza, S.; Baudoz, P.; Bender, R.; Bizenberger, P.; Boccaletti, A.; Boland, W.; Bonifacio, P.; Briegel, F.; Buey, T.; Chapron, F.; Cohen, M.; Czoske, O.; Dreizler, S.; Falomo, R.; Feautrier, P.; Förster Schreiber, N.; Gendron, E.; Genzel, R.; Glück, M.; Gratadour, D.; Greimel, R.; Grupp, F.; Häuser, M.; Haug, M.; Hennawi, J.; Hess, H. J.; Hörmann, V.; Hofferbert, R.; Hopp, U.; Hubert, Z.; Ives, D.; Kausch, W.; Kerber, F.; Kravcar, H.; Kuijken, K.; Leitzinger, M.; Leschinski, K.; Massari, D.; Mei, S.; Merlin, F.; Mohr, L.; Monna, A.; Müller, F.; Navarro, R.; Plattner, M.; Przybilla, N.; Ramlau, R.; Ramsay, S.; Ratzka, T.; Rhode, P.; Richter, J.; Rix, H. -W; Rodeghiero, G.; Rohloff, R. -R; Rousset, G.; Ruddenklau, R.; Schaffenroth, V.; Schlichter, J.; Sevin, A.; Stuik, R.; Sturm, E.; Thomas, J.; Tromp, N.; Turatto, M.; Verdoes-Kleijn, G.; Vidal, F.; Wagner, R.; Wegner, M.; Zeilinger, W.; Ziegler, B.; Zins, G.

    2016-01-01

    MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument's observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode

  14. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  15. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  16. Diffusion weighted imaging of female pelvic cancers: Concepts and clinical applications

    International Nuclear Information System (INIS)

    Punwani, Shonit

    2011-01-01

    Early applications of diffusion weighted magnetic resonance imaging (DWI) were limited to neuroimaging, concentrating either on stroke or brain tumours. With recent advances in MRI hardware and software DWI is now increasingly being investigated for cancer assessment throughout the body. Clinical applications of DWI relating to female pelvic cancers have largely concentrated on detection, localisation and staging of disease. More recently investigators have started to evaluate the ability of DWI for determining tumour histology and even predicting the outcome of chemoradiation treatment. This article reviews the physical concepts of MR diffusion weighting, illustrates the biophysical basis of diffusion contrast and reports the clinical applications of DWI for cervical, endometrial, ovarian, rectal and bladder tumours.

  17. Comparison of MR imaging after administration of dysprosium-based magnetic-susceptibility contrast media with diffusion-weighted MR imaging in evaluation of regional cerebral ischemia

    International Nuclear Information System (INIS)

    Moseley, M.E.; Kucharczyk, J.; Kurhanewicz, J.; Mintorovitch, J.; Cohen, Y.; Rocklage, S.; Quay, S.C.; Norman, D.

    1989-01-01

    This paper reports on a study to establish whether a nonionic T2-shortening contrast agent, Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA), would facilitate early detection of stroke-induced cerebral perfusion deficits. The sensitivity of susceptibility-enhanced MR imaging was compared with that of diffusion-weighted MR imaging in the same cats subjected to unilateral occlusion of the middle cerebral artery (MCA). A 2-T unit, equipped with self-shielded gradient coils (± 20 G/cm, 15-cm bore size), was used in conjunction with an 8.5-cm inner diameter low-pass bird cage proton imaging coil. Diffusion-weighted images displayed increased signal intensity in the ischemic MCA territory less than 1 hour after occlusion, whereas T2-weighted MR images without contrast enhancement usually failed to depict injury for 2--3 hours after toke. With contrast administration (0.5 mmoles/kg of Dy-DTPA-BMA), however, T2-weighted images revealed perfusion deficits (hyperintensity) within 1 hour after MCA occlusion, and these corresponded to the anatomic regions of ischemic injury shown on diffusion-weighted MR images

  18. Body diffusion-weighted MR imaging of uterine endometrial cancer: Is it helpful in the detection of cancer in nonenhanced MR imaging?

    International Nuclear Information System (INIS)

    Inada, Yuki; Matsuki, Mitsuru; Nakai, Go; Tatsugami, Fuminari; Tanikake, Masato; Narabayashi, Isamu; Yamada, Takashi; Tsuji, Motomu

    2009-01-01

    Objective: In this study, the authors discussed the feasibility and value of diffusion-weighted (DW) MR imaging in the detection of uterine endometrial cancer in addition to conventional nonenhanced MR images. Methods and materials: DW images of endometrial cancer in 23 patients were examined by using a 1.5-T MR scanner. This study investigated whether or not DW images offer additional incremental value to conventional nonenhanced MR imaging in comparison with histopathological results. Moreover, the apparent diffusion coefficient (ADC) values were measured in the regions of interest within the endometrial cancer and compared with those of normal endometrium and myometrium in 31 volunteers, leiomyoma in 14 patients and adenomyosis in 10 patients. The Wilcoxon rank sum test was used, with a p -3 mm 2 /s, which was significantly lower than those of the normal endometrium, myometrium, leiomyoma and adenomyosis (p < 0.05). Conclusion: DW imaging can be helpful in the detection of uterine endometrial cancer in nonenhanced MR imaging.

  19. Holographic diffuser by use of a silver halide sensitized gelatin process

    Science.gov (United States)

    Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man

    2003-05-01

    Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.

  20. Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan); Keupp, Jochen [Philips Research, Hamburg (Germany); Yoshimoto, Koji; Kuga, Daisuke; Iihara, Koji [Kyushu University, Department of Neurosurgery, Graduate School of Medical Sciences, Fukuoka (Japan); Yoneyama, Masami [Philips Electronics Japan, Tokyo (Japan); Suzuki, Satoshi O.; Iwaki, Toru [Kyushu University, Department of Neuropathology, Graduate School of Medical Sciences, Fukuoka (Japan); Takahashi, Masaya [Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX (United States)

    2017-02-15

    To investigate whether amide proton transfer (APT) MR imaging can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) among gliomas without intense contrast enhancement (CE). This retrospective study evaluated 34 patients (22 males, 12 females; age 36.0 ± 11.3 years) including 20 with LGGs and 14 with HGGs, all scanned on a 3T MR scanner. Only tumours without intense CE were included. Two neuroradiologists independently performed histogram analyses to measure the 90th-percentile (APT{sub 90}) and mean (APT{sub mean}) of the tumours' APT signals. The apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) were also measured. The parameters were compared between the groups with Student's t-test. Diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis. The APT{sub 90} (2.80 ± 0.59 % in LGGs, 3.72 ± 0.89 in HGGs, P = 0.001) and APT{sub mean} (1.87 ± 0.49 % in LGGs, 2.70 ± 0.58 in HGGs, P = 0.0001) were significantly larger in the HGGs compared to the LGGs. The ADC and rCBV values were not significantly different between the groups. Both the APT{sub 90} and APT{sub mean} showed medium diagnostic performance in this discrimination. APT imaging is useful in discriminating HGGs from LGGs among diffuse gliomas without intense CE. (orig.)

  1. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    Science.gov (United States)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  2. A Novel Approach of Low-Light Image Denoising for Face Recognition

    Directory of Open Access Journals (Sweden)

    Yimei Kang

    2014-04-01

    Full Text Available Illumination variation makes automatic face recognition a challenging task, especially in low light environments. A very simple and efficient novel low-light image denoising of low frequency noise (DeLFN is proposed. The noise frequency distribution of low-light images is presented based on massive experimental results. The low and very low frequency noise are dominant in low light conditions. DeLFN is a three-level image denoising method. The first level denoises mixed noises by histogram equalization (HE to improve overall contrast. The second level denoises low frequency noise by logarithmic transformation (LOG to enhance the image detail. The third level denoises residual very low frequency noise by high-pass filtering to recover more features of the true images. The PCA (Principal Component Analysis recognition method is applied to test recognition rate of the preprocessed face images with DeLFN. DeLFN are compared with several representative illumination preprocessing methods on the Yale Face Database B, the Extended Yale face database B, and the CMU PIE face database, respectively. DeLFN not only outperformed other algorithms in improving visual quality and face recognition rate, but also is simpler and computationally efficient for real time applications.

  3. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    Science.gov (United States)

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images

  4. Individuality evaluation for paper based artifact-metrics using transmitted light image

    Science.gov (United States)

    Yamakoshi, Manabu; Tanaka, Junichi; Furuie, Makoto; Hirabayashi, Masashi; Matsumoto, Tsutomu

    2008-02-01

    Artifact-metrics is an automated method of authenticating artifacts based on a measurable intrinsic characteristic. Intrinsic characters, such as microscopic random-patterns made during the manufacturing process, are very difficult to copy. A transmitted light image of the distribution can be used for artifact-metrics, since the fiber distribution of paper is random. Little is known about the individuality of the transmitted light image although it is an important requirement for intrinsic characteristic artifact-metrics. Measuring individuality requires that the intrinsic characteristic of each artifact significantly differs, so having sufficient individuality can make an artifact-metric system highly resistant to brute force attack. Here we investigate the influence of paper category, matching size of sample, and image-resolution on the individuality of a transmitted light image of paper through a matching test using those images. More concretely, we evaluate FMR/FNMR curves by calculating similarity scores with matches using correlation coefficients between pairs of scanner input images, and the individuality of paper by way of estimated EER with probabilistic measure through a matching method based on line segments, which can localize the influence of rotation gaps of a sample in the case of large matching size. As a result, we found that the transmitted light image of paper has a sufficient individuality.

  5. Performance Improvement of GaN-Based Flip-Chip White Light-Emitting Diodes with Diffused Nanorod Reflector and with ZnO Nanorod Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The GaN-based flip-chip white light-emitting diodes (FCWLEDs with diffused ZnO nanorod reflector and with ZnO nanorod antireflection layer were fabricated. The ZnO nanorod array grown using an aqueous solution method was combined with Al metal to form the diffused ZnO nanorod reflector. It could avoid the blue light emitted out from the Mg-doped GaN layer of the FCWLEDs, which caused more blue light emitted out from the sapphire substrate to pump the phosphor. Moreover, the ZnO nanorod array was utilized as the antireflection layer of the FCWLEDs to reduce the total reflection loss. The light output power and the phosphor conversion efficiency of the FCWLEDs with diffused nanorod reflector and 250 nm long ZnO nanorod antireflection layer were improved from 21.15 mW to 23.90 mW and from 77.6% to 80.1% in comparison with the FCWLEDs with diffused nanorod reflector and without ZnO nanorod antireflection layer, respectively.

  6. Artifact reduction of compressed images and video combining adaptive fuzzy filtering and directional anisotropic diffusion

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Forchhammer, Søren; Korhonen, Jari

    2011-01-01

    and ringing artifacts, we have applied directional anisotropic diffusion. Besides that, the selection of the adaptive threshold parameter for the diffusion coefficient has also improved the performance of the algorithm. Experimental results on JPEG compressed images as well as MJPEG and H.264 compressed......Fuzzy filtering is one of the recently developed methods for reducing distortion in compressed images and video. In this paper, we combine the powerful anisotropic diffusion equations with fuzzy filtering in order to reduce the impact of artifacts. Based on the directional nature of the blocking...... videos show improvement in artifact reduction of the proposed algorithm over other directional and spatial fuzzy filters....

  7. Investigation of altered microstructure in patients with drug refractory epilepsy using diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuwei; Yan, Xu; Fan, Mingxia [East China Normal University, Key Laboratory of Magnetic Resonance, Shanghai (China); Mao, Lingyan; Wang, Xin; Ding, Jing [Fudan University, Department of Neurology, Zhongshan Hospital, Shanghai (China); Xu, Dongrong [Columbia University and New York State Psychiatric Institute, MRI Unit/Epidemiology Division, Department of Psychiatry, New York, NY (United States)

    2017-06-15

    The risk of refractory epilepsy can be more dangerous than the adverse effect caused by medical treatment. In this study, we employed voxel-wise analysis (VWA) and tract-based spatial statistics (TBSS) methods to measure microstructural changes using diffusion tensor imaging (DTI) in patients of drug refractory epilepsy (DRE) who had been epileptic for more than 10 years. To examine the specific microstructural abnormalities in DRE patients and its difference from medically controlled epilepsy (MCE), we acquired DTI data of 7 DRE patients, 37 MCE patients, and 31 healthy controls (HCs) using a 3 T MRI scanner. Comparisons between epileptic patients and HCs between MCE and DRE patients were performed based on calculated diffusion anisotropic indices data using VWA and TBSS. Compared to HCs, epileptic patients (including MCE and DRE) showed significant DTI changes in the common affected regions based on VWA, whereas TBSS found that widespread DTI changes in parts of microstructures of bilateral hemispheres were more obvious in the DRE patients than that in the MCE patients when compared with HCs. In contrast, significant reduction of fractional anisotropy values of thalamo-cortical fibers, including left superior temporal gyrus, insular cortex, pre-/post-central gyri, and thalamus, were further found in DRE patients compared with MCE. The results of multiple diffusion anisotropic indices data provide complementary information to understand the dysfunction of thalamo-cortical pathway in DRE patients, which may be contributors to disorder of language and motor functions. Our current study may shed light on the pathophysiology of DRE. (orig.)

  8. Coherent imaging with incoherent light in digital holographic microscopy

    Science.gov (United States)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  9. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To determine the clinical value of diffusion-weight- ed imaging (DWI) for the diagnosis of extrahepatic cholangiocarcinoma (EHCC) by comparing the diagnostic sensitivity of DWI and magnetic resonance cholan-giopancreatography (MRCP). METHODS: Magnetic resonance imaging examination was performed in 56 patients with suspected EHCC. T1- weighted imaging, T2-weighted imaging, MRCP and DWI sequence, DWI using single-shot spin-echo echoplanar imaging sequence with different b values (100, 300, 500, 800 and 1...

  10. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  11. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    International Nuclear Information System (INIS)

    Lai, Vincent; Khong, Pek Lan; Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin; Chan, Queenie

    2015-01-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm 2 ). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10 -3 mm 2 /s) for low stage group vs 0.794 ± 0.253 (x 10 -3 mm 2 /s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10 -3 mm 2 /s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  12. Antibiogramj: A tool for analysing images from disk diffusion tests.

    Science.gov (United States)

    Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M

    2017-05-01

    Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Diffusion weighted MR imaging of pancreatic islet cell tumors

    International Nuclear Information System (INIS)

    Bakir, Baris; Salmaslioglu, Artur; Poyanli, Arzu; Rozanes, Izzet; Acunas, Bulent

    2010-01-01

    Purpose: The aim of our study is to demonstrate the feasibility of body diffusion weighted (DW) MR imaging in the evaluation of pancreatic islet cell tumors (ICTs) and to define apparent diffusion coefficient (ADC) values for these tumors. Materials and methods: 12 normal volunteers and 12 patients with histopathologically proven pancreatic ICT by surgery were included in the study. DW MR images were obtained by a body-phased array coil using a multisection single-shot echo planar sequence on the axial plane without breath holding. In addition, the routine abdominal imaging protocol for pancreas was applied in the patient group. We measured the ADC value within the normal pancreas in control group, pancreatic ICT, and surrounding pancreas parenchyma. Mann-Whitney U-test has been used to compare ADC values between tumoral tissues and normal pancreatic tissues of the volunteers. Wilcoxon Signed Ranks Test was preferred to compare ADC values between tumoral tissues and surrounding pancreatic parenchyma of the patients. Results: In 11 patients out of 12, conventional MR sequences were able to demonstrate ICTs successfully. In 1 patient an indistinct suspicious lesion was noted at the pancreatic tail. DW sequence was able to demonstrate the lesions in all of the 12 patients. On the DW images, all ICTs demonstrated high signal intensity relative to the surrounding pancreatic parenchyma. The mean and standard deviations of the ADC values (x10 -3 mm 2 /s) were as follows: ICT (n = 12), 1.51 ± 0.35 (0.91-2.11), surrounding parenchyma (n = 11) 0.76 ± 0.15 (0.51-1.01) and normal pancreas in normal volunteers (n = 12), 0.80 ± 0.06 (0.72-0.90). ADC values of the ICT were significantly higher compared with those of surrounding parenchyma (p < 0.01) and normal pancreas (p < 0.001). Conclusion: DW MR imaging does not appear to provide significant contribution to routine MR imaging protocol in the evaluation of pancreatic islet cell tumors. But it can be added to MR imaging

  14. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    International Nuclear Information System (INIS)

    Chapman, Christopher H.; Nagesh, Vijaya; Sundgren, Pia C.; Buchtel, Henry; Chenevert, Thomas L.; Junck, Larry; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2012-01-01

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity (λ ‖ ) decreased and perpendicular diffusivity (λ ⊥ ) increased after RT, with early changes correlating to later changes (p ⊥ at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in λ ⊥ at 3 and 6 weeks (p ‖ (30 weeks, p ‖ changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.

  15. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  16. Role of magnetic resonance diffusion imaging and apparent diffusion coefficient values in the evaluation of spinal tuberculosis in Indian patients

    International Nuclear Information System (INIS)

    Palle, Lalitha; Reddy, MCH Balaji; Reddy, K Jagannath

    2010-01-01

    To define a range of apparent diffusion coefficient values in spinal tuberculosis and to evaluate the sensitivity of diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient values in patients of spinal tuberculosis. This study was conducted over a period of 20 months and included 110 patients with a total of 230 vertebral bodies. The study was performed in two parts. The first part included all patients of known tuberculosis and patients with classical features of tuberculosis. The second part included patients with spinal pathology of indeterminate etiology. All the patients underwent a routine MRI examination along with diffusion sequences. The apparent diffusion coefficient (ADC) values were calculated from all the involved vertebral bodies. The mean ADC value of affected vertebrae in first part of the study was found to be 1.4 ± 0.20 × 10 −3 mm 2 /s. This ADC value was then applied to patients in the second part of study in order to determine its ability in predicting tuberculosis. This range of ADC values was significantly different from the mean ADC values of normal vertebrae and those with metastatic involvement. However, there was an overlap of ADC values in a few tuberculous vertebrae with the ADC values in metastatic vertebrae. We found that DW-MRI and ADC values may help in the differentiation of spinal tuberculosis from other lesions of similar appearance. However, an overlap of ADC values was noted with those of metastatic vertebrae. Therefore diffusion imaging and ADC values must always be interpreted in association with clinical history and routine MRI findings and not in isolation

  17. Compression and Processing of Space Image Sequences of Northern Lights and Sprites

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Martins, Bo; Jensen, Ole Riis

    1999-01-01

    Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated.......Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated....

  18. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  19. Application of diffusion kurtosis imaging to odontogenic lesions: Analysis of the cystic component.

    Science.gov (United States)

    Sakamoto, Junichiro; Kuribayashi, Ami; Kotaki, Shinya; Fujikura, Mamiko; Nakamura, Shin; Kurabayashi, Tohru

    2016-12-01

    To assess the feasibility of applying diffusion kurtosis imaging (DKI) to common odontogenic lesions and to compare its diagnostic ability versus that of the apparent diffusion coefficient (ADC) for differentiating keratocystic odontogenic tumors (KCOTs) from odontogenic cysts. Altogether, 35 odontogenic lesions were studied: 24 odontogenic cysts, six KCOTs, and five ameloblastomas. The diffusion coefficient (D) and excessive kurtosis (K) were obtained from diffusion-weighted images at b-values of 0, 500, 1000, and 1500 s/mm 2 on 3T magnetic resonance imaging (MRI). The combination of D and K values showing the maximum density of the probable density function was estimated. The ADC was obtained (0 and 1000 s/mm 2 ). Values for odontogenic cysts, KCOTs, and ameloblastomas were compared. Multivariate logistic regression modeling was performed to assess the combination of D and K model versus ADC for differentiating KCOTs from odontogenic cysts. The mean D and ADC were significantly higher for ameloblastomas than for odontogenic cysts or KCOTs (P < 0.05). The mean K was significantly lower for ameloblastomas than for odontogenic cysts or KCOTs (P < 0.05). The mean values of all parameters for odontogenic cysts and KCOTs showed no significant differences (P = 0.369 for ADC, 0.133 for D, and 0.874 for K). The accuracy of the combination of D and K model (76.7%) was superior to that of ADC (66.7%). Use of DKI may be feasible for common odontogenic lesions. A combination of DKI parameters can be expected to increase the accuracy of its diagnostic ability compared with ADC. J. Magn. Reson. Imaging 2016;44:1565-1571. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Glucocorticoid treatment of brain tumor patients: changes of apparent diffusion coefficient values measured by MR diffusion imaging

    International Nuclear Information System (INIS)

    Minamikawa, Sosuke; Kono, Kinuko; Nakayama, Keiko; Yokote, Hiroyuki; Tashiro, Takahiko; Inoue, Yuichi; Nishio, Akimasa; Hara, Mitsuhiro

    2004-01-01

    Glucocorticoids (GCC) generally are administered to patients with brain tumors to relieve neurological symptoms by decreasing the water content in a peritumoral zone of edema. We hypothesized that diffusion imaging and apparent diffusion coefficient (ADC) values could detect subtle changes of water content in brain tumors and in peritumoral edema after GCC therapy. The study consisted of 13 patients with intra-axial brain tumor, and ADC was measured in the tumor, within peritumoral edema, and in normal white matter remote from the tumor before and after GCC therapy. ADC also was measured in normal white matter in four control patients with no intracranial disease who were treated with GCC for other indications. Conventional MR images showed no visually evident interval change in tumor size or the extent of peritumoral edema in any subject after GCC therapy, which nonetheless resulted in a decrease in mean ADC of 7.0% in tumors (P 0.05, not significant) and 5.8% in normal white matter (P<0.05). In patients with no intracranial disease, GCC therapy decreased mean ADC in white matter by 5.4% (P<0.05). ADC measurement can demonstrate subtle changes in the brain after GCC therapy that cannot be observed by conventional MR imaging. Measurement of ADC proved to be a sensitive means of assessing the effect of GCC therapy, even in the absence of visually discernible changes in conventional MR images. (orig.)

  1. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    Science.gov (United States)

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  2. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  3. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    OpenAIRE

    Zhong-jun Hou; Yong Huang; Zi-wen Fan; Xin-chun Li; Bing-yi Cao

    2015-01-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy v...

  4. Use of blood-pool imaging in evaluation of diffuse activity patterns in technetium-99m pyrophosphate myocardial scintigraphy.

    Science.gov (United States)

    Cowley, M J; Mantle, J A; Rogers, W J; Russell, R O; Rackley, C E; Logic, J R

    1979-06-01

    It has been suggested that diffuse Tc-99m pyrophosphate precordial activity may be due to persistent blood-pool activity in routine delayed views during myocardial imaging. To answer this question, we reviewed myocardial scintigrams recorded 60--90 min following the injection of 12--15 mCi of Tc-99m pyrophosphate for the presence of diffuse precordial activity, and compared these with early images of the blood pool in 265 patients. Diffuse activity in the delayed images was identified in 48 patients: in 20 with acute myocardial infarction and in 28 with no evidence of it. Comparison of these routine delayed images with early views of the blood pool revealed two types of patterns. In patients with acute infarction, 95% had delayed images that were distinguishable from blood pool either because the activity was smaller than the early blood pool, or by the presence of localized activity superimposed on diffuse activity identical to blood pool. In those without infarction, 93% had activity distribution in routine delayed views matching that in the early blood-pool images. The usefulness of the diffuse TcPPi precordial activity in myocardial infarction is improved when early blood-pool imaging is used to exclude persistence of blood-pool activity as its cause. Moreover, it does not require additional amounts of radioactivity nor complex computer processing, a feature that may be of value in the community hospital using the technique to "rule out" infarction 24--72 hr after onset of suggestive symptoms.

  5. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria

    International Nuclear Information System (INIS)

    Manara, Renzo; Citton, Valentina; Carollo, Carla; Burlina, Alessandro P.; Ermani, Mario; Vespignani, Francesco; Burlina, Alberto B.

    2009-01-01

    The aim of this study was to grade magnetic resonance white matter abnormalities (WMAs) of classical phenylketonuria (cPKU) patients treated from birth and to compare sensitivity and specificity of T2-weighted and diffusion-weighted images (DWI). Twenty early-treated cPKU patients still on a low-phenylalanine diet (12 males; mean age 21.2 years) and 26 normal subjects (ten males; mean age 25.1 years) were enrolled. Typical T2- and diffusion-weighted WMAs were semiquantitatively graded according to Thompson score (TS). Besides, a regional magnetic resonance imaging (MRI) score (mTS) was developed according to extension and intensity of WMAs. Phenylalanine and tyrosine plasma concentrations before performing MRI and the amino acid mean levels collected the year before MRI (Tyr year and Phe year ) were measured. No patient with Phe year concentration below 460 μmol/L showed WMAs. In cPKU patients, TS and mTS were significantly higher on DWI than on T2 images (3.50 vs 2.65 and 23.65 vs 15.85, respectively, p year levels. Among the different MR sequences, DWI seems to be the most sensitive and reliable in detecting and grading the typical WMAs of cPKU patients. (orig.)

  6. Diffusion weighted MR imaging of transient ischemic attacks

    International Nuclear Information System (INIS)

    Chung, Jin Il; Kim, Dong Ik; Lee, Seung Ik; Yoon, Pyung Ho; Heo, Ji Hoe; Lee, Byung In

    2000-01-01

    To investigate the findings of diffusion-weighted MR imaging in patients with transient ischemic attacks (TIA). Between August 1996 and June 1999, 41 TIA patients (M:F =3D 28:13, mean age 57 (range, 27-75) years) with neurologic symptoms lasting less than 24 hours underwent diffusion-weighted MR imaging. The time interval between the onset of symptoms and MR examination was less than one week in 29 patients, from one week to one month in eight, and undetermined in four. Conventional MR and DWI were compared in terms of location of infarction and lesion size (less than 1 cm, 1-3 cm, greater than 3 cm), and we also determined the anatomical vascular territory of acute stroke lesions and possible etiologic mechanisms. The findings of DWI were normal in 24/41 patients (58.5%), while 15 (36.6%) showed acute ischemic lesions. The other two showed old lacunar infarcts. All acute and old DWI lesions were revealed by conventional MR imaging. Among the 15 acute stroke patients, seven had small vessel lacunar disease. In three patients, the infarction was less than 1 cm in size. Six patients showed large vessel infarction in the territory of the MCA, PCA, and PICA; the size of this was less than 1 cm in three patients, 1-3 cm in two, and more than 3 cm in one. In two patients, embolic infarction of cardiac origin in the territory of the MCA and AICA was diagnosed. The possible mechanism of TIA is still undetermined, but acute lesions revealed by DWI in TIA patients tend, in any case, to be small and multiple. (author)

  7. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Darai, Emile; Cuenod, Charles A.; Fournier, Laure; Toussaint, Irwin; Marsault, Claude; Bazot, Marc

    2009-01-01

    The purpose of this study was to prospectively assess the contribution of diffusion-weighted MR imaging (DWI) for characterizing complex adnexal masses. Seventy-seven women (22-87 years old) with complex adnexal masses (30 benign and 47 malignant) underwent MR imaging including DWI before surgery. Conventional morphological MR imaging criteria were recorded in addition to b 1,000 signal intensity and apparent diffusion coefficient (ADC) measurements of cystic and solid components. Positive likelihood ratios (PLR) were calculated for predicting benignity and malignancy. The most significant criteria for predicting benignity were low b 1,000 signal intensity within the solid component (PLR = 10.9), low T2 signal intensity within the solid component (PLR = 5.7), absence of solid portion (PLR = 3.1), absence of ascites or peritoneal implants (PLR = 2.3) and absence of papillary projections (PLR = 2.3). ADC measurements did not contribute to differentiating benign from malignant adnexal masses. All masses that displayed simultaneously low signal intensity within the solid component on T2-weighted and on b 1,000 diffusion-weighted images were benign. Alternatively, the presence of a solid component with intermediate T2 signal and high b 1,000 signal intensity was associated with a PLR of 4.5 for a malignant adnexal tumour. DWI signal intensity is an accurate tool for predicting benignity of complex adnexal masses. (orig.)

  8. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle [Hopital Tenon, Assistance Publique Hopitaux de Pariss, Department of Radiology, Paris (France); Universite Rene Descartes, LRI-EA4062, Paris (France); Darai, Emile [Hopital Tenon, Assistance Publique Hopitaux de Pariss, Department of Gynecology-Obstetrics, Paris (France); Cuenod, Charles A.; Fournier, Laure [Universite Rene Descartes, LRI-EA4062, Paris (France); Hopital Europeen Georges Pompidou (HEGP), Assistance Publique Hopitaux de Paris, Department of Radiology, Paris (France); Toussaint, Irwin; Marsault, Claude; Bazot, Marc [Hopital Tenon, Assistance Publique Hopitaux de Pariss, Department of Radiology, Paris (France)

    2009-06-15

    The purpose of this study was to prospectively assess the contribution of diffusion-weighted MR imaging (DWI) for characterizing complex adnexal masses. Seventy-seven women (22-87 years old) with complex adnexal masses (30 benign and 47 malignant) underwent MR imaging including DWI before surgery. Conventional morphological MR imaging criteria were recorded in addition to b{sub 1,000} signal intensity and apparent diffusion coefficient (ADC) measurements of cystic and solid components. Positive likelihood ratios (PLR) were calculated for predicting benignity and malignancy. The most significant criteria for predicting benignity were low b{sub 1,000} signal intensity within the solid component (PLR = 10.9), low T2 signal intensity within the solid component (PLR = 5.7), absence of solid portion (PLR = 3.1), absence of ascites or peritoneal implants (PLR = 2.3) and absence of papillary projections (PLR = 2.3). ADC measurements did not contribute to differentiating benign from malignant adnexal masses. All masses that displayed simultaneously low signal intensity within the solid component on T2-weighted and on b{sub 1,000} diffusion-weighted images were benign. Alternatively, the presence of a solid component with intermediate T2 signal and high b{sub 1,000} signal intensity was associated with a PLR of 4.5 for a malignant adnexal tumour. DWI signal intensity is an accurate tool for predicting benignity of complex adnexal masses. (orig.)

  9. Fibreoptic diffuse-light irradiators of biological tissues

    International Nuclear Information System (INIS)

    Volkov, Vladimir V; Loshchenov, V B; Konov, Vitalii I; Kononenko, Vitalii V

    2010-01-01

    We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 - 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ∼10 % in their middle part. The maximum length of the diffusers produced by this method is 20 - 25 mm. (laser applications and other topics in quantum electronics)

  10. Multispectral imaging of the ocular fundus using light emitting diode illumination.

    Science.gov (United States)

    Everdell, N L; Styles, I B; Calcagni, A; Gibson, J; Hebden, J; Claridge, E

    2010-09-01

    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

  11. Hyperintensity on diffusion weighted image along ipsilateral cortical spinal tract after cerebral ischemic stroke: A diffusion tensor analysis

    International Nuclear Information System (INIS)

    Liu Xiang; Tian Wei; Li Lilin; Kolar, Balasubramanya; Qiu Xing; Chen, Feng; Dogra, Vikram S.

    2012-01-01

    Purpose: Hyperintensity along the ipsilateral cortical spinal tract (CST) on a diffusion weighted imaging (DWI) has been reported to may be associated with motor disability after brain infarction and can be misdiagnosed as a new infarction. However, the underlying patho-physiology related to this finding is not clear. The goal of our study was to analyze the diffusion tensor imaging (DTI) changes in patients with this hyperintensity. Materials and methods: Eight patients (50 ± 10 years) who exhibited hyperintensity on DWI along ipsilateral CST from 3 to 21 days after stroke onset were reviewed as positive group, including 5 patients with serial DTI examinations. Twelve patients without hyperintensity during the matched examination time were classified as reference group. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues and their ratios (ipsilateral/contralateral value) in cerebral peduncle were measured, their correlation with motor function scale at eight months after stroke onset were evaluated. Results: The serial examinations showed that hyperintensity could eventually disappear. Both the ipsilateral ADC and FA values were significantly decreased (p < 0.05) compared to the contralateral side. The ipsilateral FA significantly correlated with motor function scale in both groups (r = 0.875, 0.738; p = 0.004, 0.006 respectively). Conclusions: The hyperintensity on DWI is a transient pathological process of Wallerian degeneration after ischemic stroke, its diffusion characteristics include concurrent significant decrease of ipsilateral ADC and FA. The ipsilateral FA value has the potential to predict neurological motor function outcome in such patients.

  12. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    Science.gov (United States)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  13. Transurethral light delivery for prostate photoacoustic imaging

    OpenAIRE

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2015-01-01

    Photoacoustic imaging has broad clinical potential to enhance prostate cancer detection and treatment, yet it is challenged by the lack of minimally invasive, deeply penetrating light delivery methods that provide sufficient visualization of targets (e.g., tumors, contrast agents, brachytherapy seeds). We constructed a side-firing fiber prototype for transurethral photoacoustic imaging of prostates with a dual-array (linear and curvilinear) transrectal ultrasound probe. A method to calculate ...

  14. Diffusion Tensor Imaging Correlates of Reading Ability in Dysfluent and Non-Impaired Readers

    Science.gov (United States)

    Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian

    2013-01-01

    Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and…

  15. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  16. Diffusion-weighted MR imaging in transient ischaemic attacks

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C.; Calvet, D.; Domigo, V.; Mas, J. [de l' Hopital Sainte-Anne, Service de Neurologie, Paris Cedex 14 (France); Oppenheim, C.; Naggara, O.; Meder, J.F. [Hoepital Sainte-Anne, Departement d' Imagere Morphologique et Fonchonnille, Paris (France)

    2006-05-15

    The purpose of this study was to determine frequency and the characteristics of diffusion-weighted imaging (DWI) abnormalities in patients with transient ischaemic attack (TIA). We analysed data of 98 consecutive patients (mean age: 60.6{+-}15.4 years, 56 men) admitted between January 2003 and April 2004 for TIA. Age, gender, symptom type and duration, delay from onset to magnetic resonance imaging (MRI), probable or possible TIA and cause of TIA were compared in patients with (DWI+) and without (DWI-) lesions on DWI. Volume and apparent diffusion coefficient (ADC) values of DWI lesions were computed. DWI revealed ischaemic lesions in 34 patients (34.7%). Lesions were small (mean volume: 1.9 cm{sup 3}{+-}3.3), and ADC was moderately decreased (mean ADC ratio: 79.5%). The diagnosis of TIA was considered as probable in all DWI+ patients. A multiple logistic regression model demonstrated that TIA duration greater than or equal to 60 min (OR, 7.6; 95% CI, 2.3-25.7), aphasia (OR, 9.2; 95% CI, 2.7-31.4) and motor deficit (OR, 5.1; 95% CI, 1.5-17.8) were independent predictors of DWI lesions. Prolonged TIA duration, aphasia and motor deficits are associated with DWI lesions. More than half of TIA patients with symptoms lasting more than 60 min have DWI lesions. (orig.)

  17. Diffusion-weighted MR imaging in transient ischaemic attacks

    International Nuclear Information System (INIS)

    Lamy, C.; Calvet, D.; Domigo, V.; Mas, J.; Oppenheim, C.; Naggara, O.; Meder, J.F.

    2006-01-01

    The purpose of this study was to determine frequency and the characteristics of diffusion-weighted imaging (DWI) abnormalities in patients with transient ischaemic attack (TIA). We analysed data of 98 consecutive patients (mean age: 60.6±15.4 years, 56 men) admitted between January 2003 and April 2004 for TIA. Age, gender, symptom type and duration, delay from onset to magnetic resonance imaging (MRI), probable or possible TIA and cause of TIA were compared in patients with (DWI+) and without (DWI-) lesions on DWI. Volume and apparent diffusion coefficient (ADC) values of DWI lesions were computed. DWI revealed ischaemic lesions in 34 patients (34.7%). Lesions were small (mean volume: 1.9 cm 3 ±3.3), and ADC was moderately decreased (mean ADC ratio: 79.5%). The diagnosis of TIA was considered as probable in all DWI+ patients. A multiple logistic regression model demonstrated that TIA duration greater than or equal to 60 min (OR, 7.6; 95% CI, 2.3-25.7), aphasia (OR, 9.2; 95% CI, 2.7-31.4) and motor deficit (OR, 5.1; 95% CI, 1.5-17.8) were independent predictors of DWI lesions. Prolonged TIA duration, aphasia and motor deficits are associated with DWI lesions. More than half of TIA patients with symptoms lasting more than 60 min have DWI lesions. (orig.)

  18. Modeling the diffusion magnetic resonance imaging signal inside neurons

    International Nuclear Information System (INIS)

    Nguyen, D V; Li, J R; Grebenkov, D S; Le Bihan, D

    2014-01-01

    The Bloch-Torrey partial differential equation (PDE) describes the complex transverse water proton magnetization due to diffusion-encoding magnetic field gradient pulses. The integral of the solution of this PDE yields the diffusion magnetic resonance imaging (dMRI) signal. In a complex medium such as cerebral tissue, it is difficult to explicitly link the dMRI signal to biological parameters such as the cellular geometry or the cellular volume fraction. Studying the dMRI signal arising from a single neuron can provide insight into how the geometrical structure of neurons influences the measured signal. We formulate the Bloch-Torrey PDE inside a single neuron, under no water exchange condition with the extracellular space, and show how to reduce the 3D simulation in the full neuron to a 3D simulation around the soma and 1D simulations in the neurites. We show that this latter approach is computationally much faster than full 3D simulation and still gives accurate results over a wide range of diffusion times

  19. MRI of paraventricular white matter lesions in amyotrophic lateral sclerosis. Analysis by diffusion-weighted images

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    Magnetic resonance images in some cases of amyotrophic lateral sclerosis (ALS) revealed abnormal signals in both the paraventriculer white matter and in the posterior limbs of the internal capsule. We examined T 2 - and diffusion-weighted MR images of these lesions in 18 cases of ALS. There were symmetrical high-signal areas in the posterior limbs of the internal capsule in all of the cases. The high-signal areas in the internal capsule corresponded to the pyramidal tracts in the anatomical atlas by Talairach. In 5 of the cases of ALS, T 2 -weighted MR images showed discrete paraventricular white matter lesions as well. The mean age of the ALS patients with paraventricular white matter lesions was higher than that of the ALS patients without such lesions. Proton densities calculated from the conventional MR images were higher in both the capsular and paraventricular lesions. The diffusion coefficients perpendicular to the pyramidal tract in the internal capsular lesions were within the normal range, where as the diffusion coefficients in the paraventricular lesions were increased in all directions. Thus, diffusion anisotropy was lost in the paraventricular lesions. These findings are similar to those observed in the white matter lesions of cerebro-vascular origin. As a result, the pathology of the paraventricular lesions in ALS was confirmed to be different from that of the internal capsular lesions. (author)

  20. MRI of paraventricular white matter lesions in amyotrophic lateral sclerosis. Analysis by diffusion-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Fuminori; Kinoshita, Masao (Toho Univ., Tokyo (Japan). Ohashi Hospital); Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko

    1994-09-01

    Magnetic resonance images in some cases of amyotrophic lateral sclerosis (ALS) revealed abnormal signals in both the paraventriculer white matter and in the posterior limbs of the internal capsule. We examined T[sub 2]- and diffusion-weighted MR images of these lesions in 18 cases of ALS. There were symmetrical high-signal areas in the posterior limbs of the internal capsule in all of the cases. The high-signal areas in the internal capsule corresponded to the pyramidal tracts in the anatomical atlas by Talairach. In 5 of the cases of ALS, T[sub 2]-weighted MR images showed discrete paraventricular white matter lesions as well. The mean age of the ALS patients with paraventricular white matter lesions was higher than that of the ALS patients without such lesions. Proton densities calculated from the conventional MR images were higher in both the capsular and paraventricular lesions. The diffusion coefficients perpendicular to the pyramidal tract in the internal capsular lesions were within the normal range, where as the diffusion coefficients in the paraventricular lesions were increased in all directions. Thus, diffusion anisotropy was lost in the paraventricular lesions. These findings are similar to those observed in the white matter lesions of cerebro-vascular origin. As a result, the pathology of the paraventricular lesions in ALS was confirmed to be different from that of the internal capsular lesions. (author).