WorldWideScience

Sample records for diffusion tensor mri

  1. Diffusion tensor MRI: clinical applications

    International Nuclear Information System (INIS)

    Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose

    2005-01-01

    Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)

  2. Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI

    Science.gov (United States)

    Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.

    2015-01-01

    Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085

  3. Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI

    Science.gov (United States)

    Liu, Chunlei; Murphy, Nicole E.; Li, Wei

    2012-01-01

    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987

  4. Analytical performance bounds for multi-tensor diffusion-MRI.

    Science.gov (United States)

    Ahmed Sid, Farid; Abed-Meraim, Karim; Harba, Rachid; Oulebsir-Boumghar, Fatima

    2017-02-01

    To examine the effects of MR acquisition parameters on brain white matter fiber orientation estimation and parameter of clinical interest in crossing fiber areas based on the Multi-Tensor Model (MTM). We compute the Cramér-Rao Bound (CRB) for the MTM and the parameter of clinical interest such as the Fractional Anisotropy (FA) and the dominant fiber orientations, assuming that the diffusion MRI data are recorded by a multi-coil, multi-shell acquisition system. Considering the sum-of-squares method for the reconstructed magnitude image, we introduce an approximate closed-form formula for Fisher Information Matrix that has the simplicity and easy interpretation advantages. In addition, we propose to generalize the FA and the mean diffusivity to the multi-tensor model. We show the application of the CRB to reduce the scan time while preserving a good estimation precision. We provide results showing how the increase of the number of acquisition coils compensates the decrease of the number of diffusion gradient directions. We analyze the impact of the b-value and the Signal-to-Noise Ratio (SNR). The analysis shows that the estimation error variance decreases with a quadratic rate with the SNR, and that the optimum b-values are not unique but depend on the target parameter, the context, and eventually the target cost function. In this study we highlight the importance of choosing the appropriate acquisition parameters especially when dealing with crossing fiber areas. We also provide a methodology for the optimal tuning of these parameters using the CRB. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Diffusion tensor tractography as a supplementary tool to conventional MRI for evaluating patients with myelopathy

    Directory of Open Access Journals (Sweden)

    Amal Amin A. El Maati

    2014-12-01

    Conclusion: Diffusion tensor imaging is a reliable method for the evaluation of the diffusion properties of normal and compressed spinal cords. Furthermore, this technique can be used as an important supplementary tool to conventional MRI for the quantification of fiber damage in spinal cord compression, thus has the potential to be of great utility for treatment planning and follow up.

  6. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.

    Science.gov (United States)

    Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong

    2008-07-01

    Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.

  7. In vivo reconstruction of lumbar erector spinae architecture using diffusion tensor MRI

    NARCIS (Netherlands)

    Sieben, Judith M.; Van Otten, Ilse; Lataster, Arno; Froeling, Martijn; Nederveen, Aart J.; Strijkers, Gustav J.; Drost, Maarten R.

    2016-01-01

    Study Design: Diffusion tensor magnetic resonance imaging (DTMRI) reconstruction of lumbar erector spinae (ES) compared with cadaver dissection. Objective: The aim of this study was to reconstruct the human lumbar ES from in vivo DT-MRI measurements and to compare the results with literature and

  8. On the Averaging of Cardiac Diffusion Tensor MRI Data: The Effect of Distance Function Selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) Metrics were judged by quantitative –rather than qualitative– criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the “swelling effect” occurrence following Euclidean averaging was found to be too unimportant to be worth consideration. PMID:27754986

  9. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  10. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications

    International Nuclear Information System (INIS)

    Reinges, Marcus H.T.; Schoth, Felix; Coenen, Volker A.; Krings, Timo

    2004-01-01

    Diffusion weighted MRI offers the possibility to study the course of the cerebral white matter tracts. In the present manuscript, the basics, the technique and the limitations of diffusion tensor imaging and anisotropic diffusion weighted MRI are presented and their applications in various neurological and neurosurgical diseases are discussed with special emphasis on the visual system. A special focus is laid on the combination of fiber tract imaging, anatomical imaging and functional MRI for presurgical planning and intraoperative neuronavigation of lesions near the visual system

  11. 3D structure tensor analysis of light microscopy data for validating diffusion MRI.

    Science.gov (United States)

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A; Kohama, Steven G; Jespersen, Sune Nørhøj; Kroenke, Christopher D

    2015-05-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that

  12. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging.

    Science.gov (United States)

    Brody, David L; Mac Donald, Christine L; Shimony, Joshua S

    2015-01-01

    Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement. © 2015 Elsevier B.V. All rights reserved.

  13. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging.

    Science.gov (United States)

    Teh, Irvin; McClymont, Darryl; Zdora, Marie-Christine; Whittington, Hannah J; Davidoiu, Valentina; Lee, Jack; Lygate, Craig A; Rau, Christoph; Zanette, Irene; Schneider, Jürgen E

    2017-03-10

    Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HA DTI-STSRI  = -1.4° ± 23.2° and TA DTI-STSRI  = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical

  14. Assessment of axonal degeneration in Alzheimer's disease with diffusion tensor MRI

    International Nuclear Information System (INIS)

    Stahl, R.; Dietrich, O.; Reiser, M.F.; Schoenberg, S.O.; Teipel, S.; Hampel, H.

    2003-01-01

    Alzheimer disease (AD) causes cortical degeneration with subsequent degenerative changes of the white matter. The aim of this study was to investigate the extent of white matter tissue damage of patients with Alzheimer's disease in comparison with healthy subjects using diffusion tensor MRI (DTI). The value of integrated parallel imaging techniques (iPAT) for reduction of image distortion was assessed. We studied 9 patients with mild AD and 10 age and gender matched healthy controls. DTI brain scans were obtained on a 1.5 tesla system (Siemens Magnetom Sonata) using parallel imaging (iPAT) and an EPI diffusion sequence with TE/TR 71 ms/6000 ms. We used an 8-element head coil and a GRAPPA reconstruction algorithm with an acceleration factor of 2. From the tensor, the mean diffusivity (D), the fractional anisotropy (FA), and the relative anisotropy (RA) of several white matter regions were determined. FA was significantly lower (p [de

  15. Brain diffusion tensor MRI in systematic lupus erythematosus: A systematic review.

    Science.gov (United States)

    Costallat, Beatriz Lavras; Ferreira, Daniel Miranda; Lapa, Aline Tamires; Rittner, Letícia; Costallat, Lilian Tereza Lavras; Appenzeller, Simone

    2018-01-01

    Diffusion tensor imaging (DTI) maps the brain's microstructure by measuring fractional anisotropy (FA) and mean diffusivity (MD). This systematic review describes brain diffusion tensor Magnetic resonance imaging (MRI) studies in systemic lupus erythematosus (SLE).The literature was reviewed following the PRISMA guidelines and using the terms "lupus", "systemic lupus erythematosus", "SLE", "diffusion tensor imaging", "DTI", "white matter" (WM), "microstructural damage", "tractography", and "fractional anisotropy"; the search included articles published in English from January 2007 to April 2017. The subjects included in the study were selected according to the ACR criteria and included 195 SLE patients with neuropsychiatric manifestation (NPSLE), 299 without neuropsychiatric manifestation (non-NPSLE), and 423 healthy controls (HC). Most studies identified significantly reduced FA and increased MD values in several WM regions of both NPSLE and non-NPSLE patients compared to HC. Subclinical microstructural changes were observed in either regional areas or the entire brain in both the non-NPSLE and NPSLE groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  17. Short-term evolution of spinal cord damage in multiple sclerosis: a diffusion tensor MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Theaudin, M.; Denier, C.; Adams, D. [AP-HP, CHU Bicetre, Service de Neurologie Adultes, Le Kremlin-Bicetre (France); INSERM, UMR788, Faculte de Medecine Paris Sud, Le Kremlin-Bicetre (France); Saliou, G. [AP-HP, CHU Bicetre, Service de Neuroradiologie, Le Kremlin-Bicetre (France); Ducot, B. [INSERM, U1018, CESP Centre for Research in Epidemiology and Population Health, Faculte de Medecine Paris Sud, Le Kremlin-Bicetre (France); Deiva, K. [Service de Neuropediatrie, Le Kremlin-Bicetre (France); Ducreux, D. [INSERM, UMR788, Faculte de Medecine Paris Sud, Le Kremlin-Bicetre (France); AP-HP, CHU Bicetre, Service de Neuroradiologie, Le Kremlin-Bicetre (France)

    2012-10-15

    The potential of diffusion tensor imaging (DTI) to detect spinal cord abnormalities in patients with multiple sclerosis has already been demonstrated. The objective of this study was to apply DTI techniques to multiple sclerosis patients with a recently diagnosed spinal cord lesion, in order to demonstrate a correlation between variations of DTI parameters and clinical outcome, and to try to identify DTI parameters predictive of outcome. A prospective single-centre study of patients with spinal cord relapse treated by intravenous steroid therapy was made. Patients were assessed clinically and by conventional MRI with DTI sequences at baseline and at 3 months. Sixteen patients were recruited. At 3 months, 12 patients were clinically improved. All but one patient had lower fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values than normal subjects in either inflammatory lesions or normal-appearing spinal cord. Patients who improved at 3 months presented a significant reduction in the radial diffusivity (p = 0.05) in lesions during the follow-up period. They also had a significant reduction in the mean ADC (p = 0.002), axial diffusivity (p = 0.02), radial diffusivity (p = 0.02) and a significant increase in FA values (p = 0.02) in normal-appearing spinal cord. Patients in whom the American Spinal Injury Association sensory score improved at 3 months showed a significantly higher FA (p = 0.009) and lower radial diffusivity (p = 0.04) in inflammatory lesion at baseline compared to patients with no improvement. DTI MRI detects more extensive abnormalities than conventional T2 MRI. A less marked decrease in FA value and more marked decreased in radial diffusivity inside the inflammatory lesion were associated with better outcome. (orig.)

  18. Short-term evolution of spinal cord damage in multiple sclerosis: a diffusion tensor MRI study

    International Nuclear Information System (INIS)

    Theaudin, M.; Denier, C.; Adams, D.; Saliou, G.; Ducot, B.; Deiva, K.; Ducreux, D.

    2012-01-01

    The potential of diffusion tensor imaging (DTI) to detect spinal cord abnormalities in patients with multiple sclerosis has already been demonstrated. The objective of this study was to apply DTI techniques to multiple sclerosis patients with a recently diagnosed spinal cord lesion, in order to demonstrate a correlation between variations of DTI parameters and clinical outcome, and to try to identify DTI parameters predictive of outcome. A prospective single-centre study of patients with spinal cord relapse treated by intravenous steroid therapy was made. Patients were assessed clinically and by conventional MRI with DTI sequences at baseline and at 3 months. Sixteen patients were recruited. At 3 months, 12 patients were clinically improved. All but one patient had lower fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values than normal subjects in either inflammatory lesions or normal-appearing spinal cord. Patients who improved at 3 months presented a significant reduction in the radial diffusivity (p = 0.05) in lesions during the follow-up period. They also had a significant reduction in the mean ADC (p = 0.002), axial diffusivity (p = 0.02), radial diffusivity (p = 0.02) and a significant increase in FA values (p = 0.02) in normal-appearing spinal cord. Patients in whom the American Spinal Injury Association sensory score improved at 3 months showed a significantly higher FA (p = 0.009) and lower radial diffusivity (p = 0.04) in inflammatory lesion at baseline compared to patients with no improvement. DTI MRI detects more extensive abnormalities than conventional T2 MRI. A less marked decrease in FA value and more marked decreased in radial diffusivity inside the inflammatory lesion were associated with better outcome. (orig.)

  19. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Swarupa Kancherla

    Full Text Available Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI. Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.

  20. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  1. Diffusion tensor MRI and fiber tractography of the sacral plexus in children with spina bifida

    DEFF Research Database (Denmark)

    Haakma, Wieke; Dik, Pieter; ten Haken, Bennie

    2014-01-01

    anatomical and microstructural properties of the sacral plexus of patients with spina bifida using diffusion tensor imaging and fiber tractography. MATERIALS AND METHODS: Ten patients 8 to 16 years old with spina bifida underwent diffusion tensor imaging on a 3 Tesla magnetic resonance imaging system...... diffusivity values at S1-S3 were significantly lower in patients. CONCLUSIONS: To our knowledge this 3 Tesla magnetic resonance imaging study showed for the first time sacral plexus asymmetry and disorganization in 10 patients with spina bifida using diffusion tensor imaging and fiber tractography...

  2. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI.

    Science.gov (United States)

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2014-06-10

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.

  3. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    Science.gov (United States)

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p laterality in children with a high degree of correlation between the two imaging modalities.

  4. Assessment of axonal degeneration in Alzheimer's disease with diffusion tensor MRI; Diffusion tensor imaging zur Erfassung axonaler Degeneration bei Morbus Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, R. [Institut fuer Klinische Radiologie - Grosshadern, Klinikum der Universitaet Muenchen (Germany); Institut fuer Klinische Radiologie - Grosshadern, Klinikum der Universitaet Muenchen, Marchioninistr. 15, 81377, Muenchen (Germany); Dietrich, O.; Reiser, M.F.; Schoenberg, S.O. [Institut fuer Klinische Radiologie - Grosshadern, Klinikum der Universitaet Muenchen (Germany); Teipel, S.; Hampel, H. [Klinik fuer Psychiatrie und Psychotherapie, Klinikum der Universitaet Muenchen (Germany)

    2003-07-01

    Alzheimer disease (AD) causes cortical degeneration with subsequent degenerative changes of the white matter. The aim of this study was to investigate the extent of white matter tissue damage of patients with Alzheimer's disease in comparison with healthy subjects using diffusion tensor MRI (DTI). The value of integrated parallel imaging techniques (iPAT) for reduction of image distortion was assessed. We studied 9 patients with mild AD and 10 age and gender matched healthy controls. DTI brain scans were obtained on a 1.5 tesla system (Siemens Magnetom Sonata) using parallel imaging (iPAT) and an EPI diffusion sequence with TE/TR 71 ms/6000 ms. We used an 8-element head coil and a GRAPPA reconstruction algorithm with an acceleration factor of 2. From the tensor, the mean diffusivity (D), the fractional anisotropy (FA), and the relative anisotropy (RA) of several white matter regions were determined. FA was significantly lower (p <0,05) in the white matter of the genu of corpus callosum from patients with AD than in the corresponding regions from healthy controls. There was a trend observed for slightly higher ADC values in the AD group (p=0,06). No significant changes were observed in the regions of the splenium, internal capsule, pericallosal areas, frontal, temporal, parietal, and occipital lobe. The images obtained with iPAT contained substantially less susceptibility artefacts and were less distorted than images acquired with non-parallel imaging technique. DTI is a method with potential to assess early stages of white matter damage in vivo. The altered FA and ADC values in the genu of corpus callosum of patients with AD presumably reflect the microscopic white matter degeneration. Acquisition time can be reduced by iPAT methods with less image distortion from susceptibility artefacts resulting in a more accurate calculation of the diffusion tensor. (orig.) [German] Bei der Alzheimer-Erkrankung (AD) kommt es zur kortikalen Degeneration und sekundaer zu

  5. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    International Nuclear Information System (INIS)

    Sreedharan, Ruma Madhu; Menon, Amitha C.; Thomas, Sanjeev V.; James, Jija S.; Kesavadas, Chandrasekharan

    2015-01-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm 3 ) as compared to the right (1824.11 ± 582.81 mm 3 ) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  6. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Ruma Madhu [Government Medical College Hospital, Department of Radiology, Trivandrum, Kerala (India); Menon, Amitha C.; Thomas, Sanjeev V. [Sree Chitra, Thirunal Institute for Medical Sciences and Technology, Department of Neurology, Thiruvananthapuram, Kerala (India); James, Jija S.; Kesavadas, Chandrasekharan [SCTIMST, Department of Imaging Science and Interventional Radiology, Trivandrum, Kerala (India)

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms - visual verb generation and word pair task - were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm{sup 3}) as compared to the right (1824.11 ± 582.81 mm{sup 3}) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities. (orig.)

  7. Potential of diffusion tensor MRI in the assessment of periventricular leukomalacia

    International Nuclear Information System (INIS)

    Fan, G.G.; Yu, B.; Quan, S.M.; Sun, B.H.; Guo, Q.Y.

    2006-01-01

    AIM: To investigate magnetic resonance (MR) diffusion tensor imaging (DTI) and fibre tractography in the assessment of altered major white matter (WM) fibre tracts in periventricular leukomalacia (PVL). MATERIALS AND METHODS: Twelve children (male:female=7:5, age range 3-10 years; mean age=6.5 years) who had suffered PVL were included in this study. Meanwhile, Twelve age-matched normal controls (male:female=6:6, age range 4-12 years; mean age=7.3 years) with normal MRI findings and no neurological abnormalities were recruited for comparison. DTI was performed with 15 different diffusion gradient directions and DTI colour maps were created from fractional anisotropy (FA) values and the three vector elements. To identify alteration of WM fibre tracts in patient of PVL quantitatively, FA values on diffusion tensor colour maps were compared between the patients and controls. Quantitative analysis was performed using the regions of interest (ROI) method settled on the central part of all identifiable WM fibres, including the corticospinal tract (CST) in the brainstem, middle cerebellar peduncle (MCP), medial lemniscus (ML), anterior/posterior limb of internal capsule (ICAL/ICPL), arcuate fasciculus (AF), posterior thalamic radiation (PTR), genu of corpus callosum (GCC), splenium of corpus callosum (SCC), corona radiata (CR), cingulum (CG), and superior longitudinal fasciculus (SLF). The averaged FA value of each WM fibre was measured and summarized as the mean±standard deviation (SD). All data were analysed by paired Student's t-test. A p-value of less than 0.05 was considered to indicate statistical significance. RESULTS: Visual investigation of WM fibre tracts showed that the ICAL, brainstem CST, ML, MCP, and external capsule (EC) was similar in controls and subjects. However, the ICPL, AF, PTR, CR, CG, SLF and corpus callosum, were all attenuated in size. All 12 cases of PVL showed a significant mean FA reduction in the ICPL, AF, PTR, CR, CG, SLF, SCC, and GCC in

  8. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

    Science.gov (United States)

    Lampinen, Björn; Szczepankiewicz, Filip; Mårtensson, Johan; van Westen, Danielle; Sundgren, Pia C; Nilsson, Markus

    2017-02-15

    In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter

  9. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  10. Diffusion tensor imaging in evaluation of posterior fossa tumors in children on a 3T MRI scanner

    International Nuclear Information System (INIS)

    Assis, Zarina Abdul; Saini, Jitender; Ranjan, Manish; Gupta, Arun Kumar; Sabharwal, Paramveer; Naidu, Purushotham R

    2015-01-01

    Primary intracranial tumors in children are commonly located in the posterior fossa. Conventional MRI offers limited information regarding the histopathological type of tumor which is essential for better patient management. The purpose of the study was to evaluate the usefulness of advanced MR imaging techniques like diffusion tensor imaging (DTI) in distinguishing the various histopathological types of posterior fossa tumors in children. DTI was performed on a 3T MRI scanner in 34 untreated children found to have posterior fossa lesions. Using third party software, various DTI parameters [apparent diffusion coefficient (ADC), fractional anisotropy (FA), radial diffusivity, planar index, spherical index, and linear index] were calculated for the lesion. Data were subjected to statistical analysis [analysis of variance (ANOVA)] using SPSS 15.0 software. We observed significant correlation (P < 0.01) between ADC mean and maximum, followed by radial diffusivity (RD) with the histopathological types of the lesions. Rest of the DTI parameters did not show any significant correlation in our study. The results of our study support the hypothesis that most cellular tumors and those with greater nuclear area like medulloblastoma would have the lowest ADC values, as compared to less cellular tumors like pilocytic astrocytoma

  11. Monitoring In-Vivo the Mammary Gland Microstructure during Morphogenesis from Lactation to Post-Weaning Using Diffusion Tensor MRI.

    Science.gov (United States)

    Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa

    2017-09-01

    Lactation and the return to the pre-conception state during post-weaning are regulated by hormonal induced processes that modify the microstructure of the mammary gland, leading to changes in the features of the ductal / glandular tissue, the stroma and the fat tissue. These changes create a challenge in the radiological workup of breast disorder during lactation and early post-weaning. Here we present non-invasive MRI protocols designed to record in vivo high spatial resolution, T 2 -weighted images and diffusion tensor images of the entire mammary gland. Advanced imaging processing tools enabled tracking the changes in the anatomical and microstructural features of the mammary gland from the time of lactation to post-weaning. Specifically, by using diffusion tensor imaging (DTI) it was possible to quantitatively distinguish between the ductal / glandular tissue distention during lactation and the post-weaning involution. The application of the T 2 -weighted imaging and DTI is completely safe, non-invasive and uses intrinsic contrast based on differences in transverse relaxation rates and water diffusion rates in various directions, respectively. This study provides a basis for further in-vivo monitoring of changes during the mammary developmental stages, as well as identifying changes due to malignant transformation in patients with pregnancy associated breast cancer (PABC).

  12. Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism

    International Nuclear Information System (INIS)

    Meijer, Frederick J.A.; Rumund, Anouke van; Tuladhar, Anil M.; Aerts, Marjolein B.; Titulaer, Imke; Esselink, Rianne A.J.; Bloem, Bastiaan R.; Verbeek, Marcel M.; Goraj, Bozena

    2015-01-01

    The aim of this study is to evaluate whether the diagnostic accuracy of 3 T brain MRI is improved by region of interest (ROI) measures of diffusion tensor imaging (DTI), to differentiate between neurodegenerative atypical parkinsonism (AP) and Parkinson's disease (PD) in early stage parkinsonism. We performed a prospective observational cohort study of 60 patients presenting with early stage parkinsonism and initial uncertain diagnosis. At baseline, patients underwent a 3 T brain MRI including DTI. After clinical follow-up (mean 28.3 months), diagnoses could be made in 49 patients (30 PD and 19 AP). Conventional brain MRI was evaluated for regions of atrophy and signal intensity changes. Tract-based spatial statistics and ROI analyses of DTI were performed to analyze group differences in mean diffusivity (MD) and fractional anisotropy (FA), and diagnostic thresholds were determined. Diagnostic accuracy of conventional brain MRI and DTI was assessed with the receiver operating characteristic (ROC). Significantly higher MD of the centrum semiovale, body corpus callosum, putamen, external capsule, midbrain, superior cerebellum, and superior cerebellar peduncles was found in AP. Significantly increased MD of the putamen was found in multiple system atrophy-parkinsonian form (MSA-P) and increased MD in the midbrain and superior cerebellar peduncles in progressive supranuclear palsy (PSP). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by ROI measures of MD, though the diagnostic accuracy to identify MSA-P was slightly increased (AUC 0.82 to 0.85). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by the current analysis approach to DTI, though DTI measures could be of added value to identify AP subgroups. (orig.)

  13. Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, Frederick J.A. [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Rumund, Anouke van; Tuladhar, Anil M.; Aerts, Marjolein B.; Titulaer, Imke; Esselink, Rianne A.J.; Bloem, Bastiaan R. [Radboud University Nijmegen Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen (Netherlands); Verbeek, Marcel M. [Radboud University Nijmegen Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen (Netherlands); Radboud University Nijmegen Medical Center, Department of Laboratory Medicine, Nijmegen (Netherlands); Goraj, Bozena [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Medical Center of Postgraduate Education, Department of Diagnostic Imaging, Warsaw (Poland)

    2015-07-15

    The aim of this study is to evaluate whether the diagnostic accuracy of 3 T brain MRI is improved by region of interest (ROI) measures of diffusion tensor imaging (DTI), to differentiate between neurodegenerative atypical parkinsonism (AP) and Parkinson's disease (PD) in early stage parkinsonism. We performed a prospective observational cohort study of 60 patients presenting with early stage parkinsonism and initial uncertain diagnosis. At baseline, patients underwent a 3 T brain MRI including DTI. After clinical follow-up (mean 28.3 months), diagnoses could be made in 49 patients (30 PD and 19 AP). Conventional brain MRI was evaluated for regions of atrophy and signal intensity changes. Tract-based spatial statistics and ROI analyses of DTI were performed to analyze group differences in mean diffusivity (MD) and fractional anisotropy (FA), and diagnostic thresholds were determined. Diagnostic accuracy of conventional brain MRI and DTI was assessed with the receiver operating characteristic (ROC). Significantly higher MD of the centrum semiovale, body corpus callosum, putamen, external capsule, midbrain, superior cerebellum, and superior cerebellar peduncles was found in AP. Significantly increased MD of the putamen was found in multiple system atrophy-parkinsonian form (MSA-P) and increased MD in the midbrain and superior cerebellar peduncles in progressive supranuclear palsy (PSP). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by ROI measures of MD, though the diagnostic accuracy to identify MSA-P was slightly increased (AUC 0.82 to 0.85). The diagnostic accuracy of brain MRI to identify AP as a group was not improved by the current analysis approach to DTI, though DTI measures could be of added value to identify AP subgroups. (orig.)

  14. Test–retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects

    International Nuclear Information System (INIS)

    Cutajar, Marica; Clayden, Jonathan D.; Clark, Christopher A.; Gordon, Isky

    2011-01-01

    Purpose: This study assessed test–retest reliability and repeatability of diffusion tensor imaging (DTI) in the kidneys. Materials and methods: Seven healthy volunteers (age range, 19–31 years), were imaged three consecutive times on the same day (short-term reliability) and the same imaging protocol was repeated after a month (long-term reliability). Diffusion-weighted magnetic resonance imaging scans in the coronal-oblique projection of the kidney were acquired on a 1.5 T scanner using a multi-section echo-planar sequence; six contiguous slices each 5 mm thick, diffusion sensitisation along 20 non-collinear directions, TR = 730 ms, TE = 73 ms and 2 b-values (0 and 400 s mm −2 ). Volunteers were asked to hold their breath throughout each data acquisition (approx. 20 s). The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were obtained from maps generated using dedicated software MIStar (Apollo Medical Imaging, Melbourne, Australia). Results: Statistical analyses of both short- and long-term repeats were carried out from which the within-subject coefficient of variation (wsCV) was calculated. The wsCV obtained for both the ADC and FA values were less than 10% in all the analyses carried out. In addition, paired (repeated measures) t-test was used to measure the variation between the diffusion parameters collected from the two scanning sessions a month apart. It showed no significant difference and the wsCV obtained after comparing the first and second scans were found to be smaller than 15% for both ADC and FA. Conclusion: Renal DTI produces reliable and repeatable results which make longitudinal investigation of patients viable.

  15. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study.

    Science.gov (United States)

    Ueda, Ryo; Yamada, Naoki; Kakuda, Wataru; Abo, Masahiro; Senoo, Atsushi

    2016-03-15

    Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (PBrodmann area 5 of the non-lesioned hemisphere. Age correlated negatively with GFA in Brodmann areas 5 and 7 of the lesioned hemisphere. Though these results may be due to a decrease in the frequency of use of the paralyzed limb over time, GFA overall was significantly and negatively affected by the subject's age. The GFA values of patients with paralysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (P<0.05). The stroke size and location were not associated with GFA differences. Differences between the GFA of the lesioned and non-lesioned hemispheres varied depending on the affected brain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Corticospinal MRI tractography in space-occupying brain lesions by diffusion tensor and kurtosis imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Leote, Joao [epartment of Neurosurgery, Hospital Garcia de Orta, Almada (Portugal); Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa (Portugal); Nunes, Rita; Cerqueira, Luis; Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa (Portugal)

    2015-05-18

    Recently, DKI-based tractography has been developed, showing improved crossing-fiber resolution in comparison to deterministic DTI-based tractography in healthy subjects. In this work, DTI and DKI-based tractography methods were compared regarding the assessment of the corticospinal tract in patients presenting space-occupying brain lesions near cortical motor areas. Nine patients (4 males) aged 23 to 62 years old, with space-occupying brain lesions (e.g. tumors) were studied for pre-surgical planning using a 1.5T MRI scanner and a 12-channel head coil. In 5 patients diffusion data was acquired along 64 directions and in 4 patients along 32 directions both with b-values 0, 1000 and 2000 s/mm2. Corticospinal tracts were estimated using deterministic DTI and DKI methods and also using probabilistic DTI. The superior cerebellar peduncles and the motor cortical areas, ipsilateral and contralateral to the lesions, were used as seed regions-of-interest for fiber tracking. Tracts courses and volumes were documented and compared between methods. Results showed that it was possible to estimate fiber tracts using deterministic DTI and DKI methods in 8/9 patients, and using the probabilistic DTI method in all patients. Overall, it was observed that DKI-based tractography showed more voluminous fiber tracts than when using deterministic DTI. The DKI method also showed curvilinear fibers mainly above lesions margins, which were not visible with deterministic DTI in 5 patients. Similar tracts were observed when using probabilistic DTI in 3 of those patients. Results suggest that the DKI method contribute with additional information about the corticospinal tract course in comparison with the DTI method, especially with subcortical lesions and near lesions’ margins. Therefore, this study suggests that DKI-based tractography could be useful in MRI and hybrid PET-MRI pre-surgical planning protocols for improved corticospinal tract evaluation.

  17. Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Aki; Kataoka, Masako; Yamamoto, Akira (Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto Univ., Kyoto (Japan)), e-mail: akikido@kuhp.kyoto-u.ac.jp (and others)

    2010-11-15

    Background: Diffusion tensor imaging (DTI) at 3 T provides information on the microstructure and pathophysiology of tissues that is not available from conventional imaging with an advantage of high signal to noise ratio (SNR). Purpose: To evaluate the feasibility of DTI of the normal kidney at 3.0 T compared to results obtained at 1.5 T. Material and Methods: DTI of the normal kidney of 15 healthy volunteers obtained with 3.0 and 1.5 T scanners using respiration-triggered acquisition was examined. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of both the renal cortex and the medulla and SNRs were measured (b-values 0 and 400 s/mm2, diffusion direction of 6). The image quality of FA and ADC maps was also compared subjectively. Results: The FA values of the renal cortex were 0.15 +- 0.03 at 3.0 T and 0.14+- 0.03 at 1.5 T on average. This difference was not significant. The FA values of the renal medulla were 0.49 +-0.04 at 3.0 T and 0.42 +- 0.05 at 1.5 T. ADC values of the renal cortex were 2.46 x 10-3+- 0.09 mm2/s at 3.0 T and 2.20 x10-3+-0.11 mm2/s at 1.5 T. The ADC values of the renal medulla were 2.08 x 10-3 +- 0.08 mm2/s at 3.0 T and 1.90 x 10-3+- 0.11 mm2/s at 1.5 T. These FA and ADC values were consistent with previous publications. The difference was significant for the FA value of the medulla (P< 0.01) and ADC values in both cortex and medulla (P < 0.01). The subjective image quality of the FA map with the 3.0 T scanner was significantly superior to that with the 1.5 T scanner (P< 0.01), but not significant for the ADC map (P = 0.18). There was a significant difference in SNR between 3.0 T (48.8 +- 6.6) and 1.5 T images (32.8 +- 5.0). Conclusion: The feasibility of renal DTI with a 3.0 T magnet resulting in improved SNR was demonstrated

  18. Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla

    International Nuclear Information System (INIS)

    Kido, Aki; Kataoka, Masako; Yamamoto, Akira

    2010-01-01

    Background: Diffusion tensor imaging (DTI) at 3 T provides information on the microstructure and pathophysiology of tissues that is not available from conventional imaging with an advantage of high signal to noise ratio (SNR). Purpose: To evaluate the feasibility of DTI of the normal kidney at 3.0 T compared to results obtained at 1.5 T. Material and Methods: DTI of the normal kidney of 15 healthy volunteers obtained with 3.0 and 1.5 T scanners using respiration-triggered acquisition was examined. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of both the renal cortex and the medulla and SNRs were measured (b-values 0 and 400 s/mm 2 , diffusion direction of 6). The image quality of FA and ADC maps was also compared subjectively. Results: The FA values of the renal cortex were 0.15 ± 0.03 at 3.0 T and 0.14± 0.03 at 1.5 T on average. This difference was not significant. The FA values of the renal medulla were 0.49 ±0.04 at 3.0 T and 0.42 ± 0.05 at 1.5 T. ADC values of the renal cortex were 2.46 x 10 -3 ± 0.09 mm 2 /s at 3.0 T and 2.20 x10 -3 ±0.11 mm 2 /s at 1.5 T. The ADC values of the renal medulla were 2.08 x 10 -3 ± 0.08 mm 2 /s at 3.0 T and 1.90 x 10 -3 ± 0.11 mm 2 /s at 1.5 T. These FA and ADC values were consistent with previous publications. The difference was significant for the FA value of the medulla (P< 0.01) and ADC values in both cortex and medulla (P < 0.01). The subjective image quality of the FA map with the 3.0 T scanner was significantly superior to that with the 1.5 T scanner (P< 0.01), but not significant for the ADC map (P = 0.18). There was a significant difference in SNR between 3.0 T (48.8 ± 6.6) and 1.5 T images (32.8 ± 5.0). Conclusion: The feasibility of renal DTI with a 3.0 T magnet resulting in improved SNR was demonstrated

  19. Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants

    Directory of Open Access Journals (Sweden)

    Dan Wu

    2017-06-01

    Full Text Available The data presented in this article are related to the research article entitled “Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI” (Wu et al., 2017 [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB that could affect postnatal development, based on diffusion tensor MRI (DTI acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA and mean diffusivities (MD measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.

  20. Diagnostic utility of novel MRI-based biomarkers for Alzheimer's disease: diffusion tensor imaging and deformation-based morphometry.

    Science.gov (United States)

    Friese, Uwe; Meindl, Thomas; Herpertz, Sabine C; Reiser, Maximilian F; Hampel, Harald; Teipel, Stefan J

    2010-01-01

    We report evidence that multivariate analyses of deformation-based morphometry and diffusion tensor imaging (DTI) data can be used to discriminate between healthy participants and patients with Alzheimer's disease (AD) with comparable diagnostic accuracy. In contrast to other studies on MRI-based biomarkers which usually only focus on a single modality, we derived deformation maps from high-dimensional normalization of T1-weighted images, as well as mean diffusivity maps and fractional anisotropy maps from DTI of the same group of 21 patients with AD and 20 healthy controls. Using an automated multivariate analysis of the entire brain volume, widespread decreased white matter integrity and atrophy effects were found in cortical and subcortical regions of AD patients. Mean diffusivity maps and deformation maps were equally effective in discriminating between AD patients and controls (AUC =0.88 vs. AUC=0.85) while fractional anisotropy maps performed slightly inferior. Combining the maps from different modalities in a logistic regression model resulted in a classification accuracy of AUC=0.86 after leave-one-out cross-validation. It remains to be shown if this automated multivariate analysis of DTI-measures can improve early diagnosis of AD in predementia stages.

  1. The functional relevance of diffusion tensor imaging in comparison to conventional MRI in patients with cervical compressive myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Young-Mi; Oh, Jae-Keun; Song, Ji-Sun [Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Spine Center, Anyang-si, Gyeonggi-do (Korea, Republic of); Yoo, Woo-Kyoung [Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Department of Physical Medicine and Rehabilitation, Anyang-si (Korea, Republic of); Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Hallym Institute for Translational Genomics and Bioinformatics, Anyang-si (Korea, Republic of); Yoo, Je Hyun; Kwak, Yoon Hae [Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Department of Orthopaedic surgery, Anyang-si (Korea, Republic of); Kim, Seok Woo [Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Spine Center, Anyang-si, Gyeonggi-do (Korea, Republic of); Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Department of Orthopaedic surgery, Anyang-si (Korea, Republic of)

    2017-11-15

    To determine the functional relevance of diffusion tensor imaging (DTI) metrics and conventional MRI (signal intensity change in T2, compression ratio) by measuring the correlation of these parameters with clinical outcome measured by the modified Japanese Orthopedic Association (mJOA) score. A total of 20 cervical myelopathy (CM) patients participated in this prospective cohort study. The severities of CM were assessed using the mJOA score. Conventional MRIs (T2-weighted images) measuring the signal changes of spinal cords and the degree of compression at the lesion level and DTI metrics [fractional anisotropy (FA), apparent diffusion coefficient (ADC)] at each lesion and below each lesion (C7/T1) level were acquired using a 3-T Achieva MRI. These parameters were correlated with the mJOA scores to determine the functional relevance. Ninety percent of CM patients showed signal changes and 30 % of patients noted a more than 40% canal compression ratio in conventional MRIs at the lesion level; however, these findings were not correlated with the mJOA score (p < 0.05). In contrast, FA values on DTI showed high sensitivity to CM (100%), which was well correlated with the mJOA score (p = 0.034, r = 0.475) below the lesion level (C7/T1). This study showed a meaningful symptomatic correlation between mJOA scores and FA values below the lesion levels in CM patients. It could give us more understanding of the pathological changes in spinal cords matched with various clinical findings in CM patients than the results from conventional MRI. (orig.)

  2. Preliminary assessment of amyotrophic lateral sclerosis by using MRI and MR diffusion tensor imaging

    International Nuclear Information System (INIS)

    Ma Lin; Yin Hong; Cai Youquan; Li Dejun; Shen Dingguo

    2003-01-01

    Objective: To describe the characteristic MR findings in the brain in patients with amyotrophic lateral sclerosis (ALS), and to assess the diagnostic value of conventional MR imaging and fractional anisotropy (FA) of diffusion tensor imaging (DTI). Methods: Conventional MR imaging was performed in 14 clinically proved ALS patients and 12 age-matched normal controls. Contrast enhanced MR images were acquired in 2 patients. Axial and coronal DTI scans were performed in 10 patients and 12 normal controls with SE-EPI sequence. The b value was 1000 s/mm 2 , the number of diffusion sensitive gradient direction was 25. For quantitative assessment of the corticospinal tract (CST), FA value of bilateral CST was measured at the level of posterior limb (PL) of the internal capsule (IC) and the cerebral peduncle of the midbrain, respectively, and statistical analysis was performed. Results: Focal slight low signal intensity on T 1 WI and high signal intensity (hyperintense to gray matter) on T 2 WI was demonstrated in 6 ALS cases (42.9%) in bilateral PL of the IC, and the high signal was longitudinally continuous from the PL to the cerebral peduncle on T 2 WI coronal plane, corresponding to the course of CST. In another 8 ALS cases (57.1%), the focal slight low signal intensity on T 1 WI and slight high signal intensity (isointense to gray matter) on T 2 WI was revealed in bilateral PL of the IC. No abnormal contrast enhancement was detected in the 2 cases. In control group, the focal slight low signal intensity on T 1 WI and slight high signal intensity (isointense to gray matter) on T 2 WI was demonstrated in all 12 subjects in bilateral PL of the IC. FA values of the patient group were significantly lower than that of the control group at the level of the PL of the IC (F=7.38, P<0.01) and the cerebral peduncle (F=7.31, P=0.01), respectively. Conclusion: Clinical information must be considered when diagnosing ALS by using conventional MR imaging. The decreased FA value in

  3. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children.

    Science.gov (United States)

    Rose, Jessica; Butler, Erin E; Lamont, Lauren E; Barnes, Patrick D; Atlas, Scott W; Stevenson, David K

    2009-07-01

    The neurological basis of an increased incidence of cerebral palsy (CP) in preterm males is unknown. This study examined neonatal brain structure on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at term-equivalent age, sex, and neurodevelopment at 1 year 6 months on the basis of the Amiel-Tison neurological examination, Gross Motor Function Classification System, and Bayley Scales of Infant Development in 78 very-low-birthweight preterm children (41 males, 37 females; mean gestational age 27.6 wks, SD 2.5; mean birthweight 1021 g, SD 339). Brain abnormalities on MRI and DTI were not different between males and females except in the splenium of the corpus callosum, where males had lower DTI fractional anisotropy (p=0.025) and a higher apparent diffusion coefficient (p=0.013), indicating delayed splenium development. In the 26 infants who were at higher risk on the basis of DTI, males had more abnormalities on MRI (p=0.034) and had lower fractional anisotropy and a higher apparent diffusion coefficient in the splenium (p=0.049; p=0.025) and right posterior limb of the internal capsule (PLIC; p=0.003; p=0.033). Abnormal neurodevelopment was more common in males (n=9) than in females (n=2; p=0.036). Children with abnormal neurodevelopment had more abnormalities on MRI (p=0.014) and reduced splenium and right PLIC fractional anisotropy (p=0.001; p=0.035). In children with abnormal neurodevelopment, right PLIC fractional anisotropy was lower than left (p=0.035), whereas in those with normal neurodevelopment right PLIC fractional anisotropy was higher than left (p=0.001). Right PLIC fractional anisotropy correlated to neurodevelopment (rho=0.371, p=0.002). Logistic regression predicted neurodevelopment with 94% accuracy; only right PLIC fractional anisotropy was a significant logistic coefficient. Results indicate that the higher incidence of abnormal neurodevelopment in preterm males relates to greater incidence and severity of brain abnormalities

  4. Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training.

    Science.gov (United States)

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2017-08-01

    Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI.

    Science.gov (United States)

    Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D; Wickline, Samuel A; Chen, Junjie

    2013-01-15

    Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.

  6. Cortical reorganization associated lower extremity motor recovery as evidenced by functional MRI and diffusion tensor tractography in a stroke patient.

    Science.gov (United States)

    Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho

    2005-01-01

    Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical

  7. Brain structural connectivity increases concurrent with functional improvement: Evidence from diffusion tensor MRI in children with cerebral palsy during therapy

    Directory of Open Access Journals (Sweden)

    Zoë A. Englander

    2015-01-01

    Full Text Available Cerebral Palsy (CP refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005. Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17, who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  8. Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy.

    Science.gov (United States)

    Englander, Zoë A; Sun, Jessica; Laura Case; Mikati, Mohamad A; Kurtzberg, Joanne; Song, Allen W

    2015-01-01

    Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  9. Diffusion tensor smoothing through weighted Karcher means

    Science.gov (United States)

    Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie

    2014-01-01

    Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264

  10. Review of diffusion tensor imaging and its application in children

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, Gregory A. [Children' s Hospital of Richmond at Virginia Commonwealth University, Department of Radiology, Richmond, VA (United States); Berman, Jeffrey I. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2015-09-15

    Diffusion MRI is an imaging technique that uses the random motion of water to probe tissue microstructure. Diffusion tensor imaging (DTI) can quantitatively depict the organization and connectivity of white matter. Given the non-invasiveness of the technique, DTI has become a widely used tool for researchers and clinicians to examine the white matter of children. This review covers the basics of diffusion-weighted imaging and diffusion tensor imaging and discusses examples of their clinical application in children. (orig.)

  11. Age-related Differences in White Matter Integrity in Healthy Human Brain: Evidence from Structural Mri and Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Rishu Rathee

    2016-01-01

    Full Text Available The aim is to investigate the relationship between microstructural white matter (WM diffusivity indices and macrostructural WM volume (WMV among healthy individuals (20–85 years. Whole-brain diffusion measures were calculated from diffusion tensor imaging using FMRIB software library while WMV was estimated through voxel-based morphometry, and voxel-based analysis was carried out using tract-based spatial statistics. Our results revealed that mean diffusivity, axial diffusivity, and radial diffusivity had shown good correlation with WMV but not for fractional anisotropy (FA. Voxel-wise tract-based spatial statistics analysis for FA showed a significant decrease in four regions for middle-aged group compared to young-aged group, in 22 regions for old-aged group compared to middle-aged group, and in 26 regions for old-aged group compared to young-aged group ( P < 0.05. We found significantly lower WMV, FA, and mean diffusivity values in females than males and inverted-U trend for FA in males. We conclude differential age- and gender-related changes for structural WMV and WM diffusion indices.

  12. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ji [Huashan Hospital of Fudan University, Department of Radiology, Shanghai (China); Huashan Hospital of Fudan University, Department of Neuropathology, Shanghai (China); Tan, Wenli [Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Department of Radiology, Shanghai (China); Wen, Jianbo; Pan, Jiawei; Zhang, Jun; Geng, Daoying [Huashan Hospital of Fudan University, Department of Radiology, Shanghai (China); Wang, Yin [Huashan Hospital of Fudan University, Department of Neuropathology, Shanghai (China)

    2016-06-15

    To explore the correlations of conventional MRI (cMRI) and diffusion tensor imaging (DTI) values with the 1p/19 codeletion and IDH mutations in oligodendroglial tumours (OTs). Eighty-four patients with OTs who underwent cMRI and DTI were retrospectively reviewed. The maximal fractional anisotropy and minimal apparent diffusion coefficient (ADC) were measured and compared using the Mann-Whitney U test. Receiver operating characteristic curves, logistic regression analysis and four-table statistics analysis were performed to predict genotypings. OTs with 1p/19q codeletion or IDH mutations were prone to locate in frontal (P = 0.106 and 0.005, respectively) and insular lobes and were associated with absent or blurry contrast enhancement (P = 0.040 and 0.013, respectively). DTI values showed significant differences between OTs with and without IDH mutations (P < 0.05) but not in OTs with and without 1p/19q loss. The Ki-67 index significantly correlated with IDH mutations (P = 0.002) but not with 1p/19q codeletion. A combination of DTI and cMRI for the identification of IDH mutations resulted in sensitivity, specificity, positive and negative predictive values of 92.2 %, 75.8 %, 93.8 % and 71.1 %, respectively. Combination of DTI and cMRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in OTs. (orig.)

  13. Analyzing functional, structural, and anatomical correlation of hemispheric language lateralization in healthy subjects using functional MRI, diffusion tensor imaging, and voxel-based morphometry.

    Science.gov (United States)

    James, Jija S; Kumari, Sheela R; Sreedharan, Ruma Madhu; Thomas, Bejoy; Radhkrishnan, Ashalatha; Kesavadas, Chandrasekharan

    2015-01-01

    To evaluate the efficacy of diffusion fiber tractography (DFT) and voxel-based morphometry (VBM) for lateralizing language in comparison with functional magnetic resonance imaging (fMRI) to noninvasively assess hemispheric language lateralization in normal healthy volunteers. The aim of the present study is to evaluate the concordance of language lateralization obtained by diffusion tensor imaging (DTI) and VBM to fMRI, and thus to see whether there exists an anatomical correlate for language lateralization result obtained using fMRI. This is an advanced neuroimaging study conducted in normal healthy volunteers. Fifty-seven normal healthy subjects (39 males and 18 females; age range: 15-40 years) underwent language fMRI and 30 underwent direction DTI. fMRI language laterality index (LI), fiber tract asymmetry index (AI), and tract-based statistics of dorsal and ventral language pathways were calculated. The combined results were correlated with VBM-based volumetry of Heschl's gyrus (HG), planum temporale (PT), and insula for lateralization of language function. A linear regression analysis was done to study the correlation between fMRI, DTI, and VBM measurements. A good agreement was found between language fMRI LI and fiber tract AI, more specifically for arcuate fasciculus (ArcF) and inferior longitudinal fasciculus (ILF). The study demonstrated significant correlations (P based statistics, and PT and HG volumetry for determining language lateralization. A strong one-to-one correlation between fMRI, laterality index, DTI tractography measures, and VBM-based volumetry measures for determining language lateralization exists.

  14. Tract-specific analysis of white matter pathways in healthy subjects: a pilot study using diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin, Hasina; Abe, Osamu; Nakata, Yasuhiro; Hayashi, Naoto; Masutani, Yoshitaka; Goto, Masami; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo-ku, Tokyo (Japan)

    2009-12-15

    To date, very scant data is available regarding normal diffusion properties of white matter (WM) fibers. The present study aimed to initiate the establishment of a database of normal diffusion tensor metrics of cerebral WM fibers, including the uncinate fasciculus (UF), posterior cingulum (PC), fornix, and corticospinal tract (CST) for healthy adults using tract-specific analysis by diffusion tensor tractography (DTT). We also attempted to clarify whether age and laterality exerted any effects on this study group. DTT of WM fibers were generated for 100 healthy subjects, then mean diffusivity (MD) and fractional anisotropy (FA) of the tracts were measured. Pearson correlation analysis was used to evaluate age relationships. Paired t testing was used to compare hemispheric asymmetry. Interobserver correlation tests were also performed. Our results showed FA values for UF (right, 0.42 {+-} 0.03; left, 0.40{+-}0.03), PC (0.51 {+-} 0.06, 0.52 {+-} 0.06), fornix (0.37 {+-} 0.06, 0.38 {+-} 0.06), CST (0.70 {+-} 0.06, 0.69 {+-} 0.07), and MD values for UF (0.81 {+-} 0.03, 0.82 {+-} 0.04), PC (0.72 {+-} 0.03, 0.72 {+-} 0.04), fornix (1.86 {+-} 0.32, 1.94 {+-} 0.37), and CST (0.72 {+-} 0.03, 0.74 {+-} 0.04). We identified a significant positive correlation between age and MD in the right UF and bilateral fornices, and a negative correlation between age and FA in bilateral fornices. Hemispheric asymmetry was observed in FA of UF (right > left) and MD of CST (left > right). The results constitute a normative dataset for diffusion parameters of four WM tracts that can be used to identify, characterize, and establish the significance of changes in diseases affecting specific tracts. (orig.)

  15. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI.

    Science.gov (United States)

    Liu, Wenyu; An, Dongmei; Tong, Xin; Niu, Running; Gong, Qiyong; Zhou, Dong

    2017-10-01

    Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluation of ischemic corticospinal tract damage by diffusion tensor MRI. Its significance to predict functional outcome of corona radiata infarct

    International Nuclear Information System (INIS)

    Tanaka, Hideki

    2010-01-01

    Motor impairment is one of the most frequent symptoms among stroke patients and often leads to poststroke dependency. Recent advances of diffusion tensor MR imaging made it possible to identify corticospinal tract (CST) three-dimensionally and evaluate structural damage, so precise evaluation of the ischemic CST damage became feasible.Motor impairment, lesion size and location upon diffusion weighted MR image and clinical outcome were assessed in 23 acute to subacute capsular and corona radiata infarct patients. According to the lesion size, patients were grouped into A, maximal diameter below 15 mm and B, that above 15 mm. Motor impairment was graded severe: limb movement synergy level, moderate: selective muscle activity possible and mild: isolated movements well co-ordinated, each corresponding to Brunnstrom stage 1-3, 4-5, and 6, respectively. Outcome at the time of discharge was assessed by modified Rankin Scale (mRS), discharge destination and length of hospital stay were also registered. Diffusion tensor MR imaging was conducted in 15 corona radiata infarct patients at 2.3+-2.2 days from the onset of the clinical symptoms. CST was 3-dimensionally identified with dTV. II. SR and Volume-one 1.72 and CST-FA ratio (ipsi-/contralesional CST-FA) and CST-Area% (CST lesion free area/whole CST area) were obtained at the level where ischemic damage was most prominent and correlation of these parameters to motor impairment and clinical outcome was studied. CST-FA ratio and CST-Area% were in good correlation to motor impairment at presentation. Patients with severe motor impairment had lower CST-FA ratio and CSF-Area% than those with moderate or mild. CST-FA ratio was 0.73+-0.22 in patients with poor clinical outcome (mRS 3-6) and 0.93+-0.09 with good clinical outcome (mRS 0-2) (p=0.038). Diffusion tensor MR imaging is useful in evaluating motor impairment and predicting functional outcome of corona radiata infarct patient in the acute to subacute stage. (author)

  17. Evaluation of ischemic damage of the corticospinal tract by diffusion tensor MRI. Utility in predicting functional outcome of corona radiata infarcts

    International Nuclear Information System (INIS)

    Tanaka, Hideki; Matsuno, Akira; Okubo, Toshiyuki; Nakaguchi, Hiroshi; Murakami, Mineko; Ono, Seiichi; Takeuchi, Masato

    2011-01-01

    Motor impairment is one of the most frequent symptoms among stroke patients and often leads to post-stroke dependency, so evaluation of motor symptoms and underlining corticospinal tract (CST) damage is of prime importance. Motor impairment, ischemic lesion by diffusion weighted MRI, and clinical outcome were assessed in 15 acute to early subacute corona radiata infarct patients. Motor impairment was graded severe: limb movement synergy level, moderate: selective muscle activity possible and mild: isolated movements are well coordinated. Outcome at the time of discharge was assessed by modified Rankin Scale (mRS). Diffusion tensor MRI (GE Signa Excite system 1.5 T, Echo Planar Imaging, MPG 15) was conducted at 2.3±2.2 days from the onset of the clinical symptoms. CST was delineated 3-dimensionally with dTV.II.SR and Volume-one 1.72. CST-FA (fractional anisotropy) ratio and CST-Area % were calculated at the slice where CST-infarct overlap was maximal. CST-FA ratio and CST-Area % showed good correlation to motor impairment at presentation. Patients with severe motor impairment had lower CST-FA ratio and CSF-Area % than those with moderate or mild. CST-FA ratio was 0.73±0.22 in patients with poor clinical outcome (mRS 3-6) and 0.93±0.09 with good clinical outcome (mRS 0-2) (p=0.038). Diffusion tensor MRI is useful in evaluating ischemic CST damage and predicting functional outcome in patients with corona radiata infarcts in the acute to subacute stage. (author)

  18. Analysis and visualization methods for interpretation of diffusion MRI data

    NARCIS (Netherlands)

    Vos, S.B.

    2013-01-01

    Diffusion MRI is an imaging technique that is very sensitive to microstructural changes in tissue. Diffusion tensor MRI, the most commonly used method, can estimate the magnitude and anisotropy of diffusion. These tensor-based diffusion parameters have been shown to change in many neuropathological

  19. MRI assessment of the thigh musculature in dermatomyositis and healthy subjects using diffusion tensor imaging, intravoxel incoherent motion and dynamic DTI.

    Science.gov (United States)

    Sigmund, E E; Baete, S H; Luo, T; Patel, K; Wang, D; Rossi, I; Duarte, A; Bruno, M; Mossa, D; Femia, A; Ramachandran, S; Stoffel, D; Babb, J S; Franks, A; Bencardino, J

    2018-06-04

    Dermatomyositis (DM) is an idiopathic inflammatory myopathy involving severe debilitation in need of diagnostics. We evaluated the proximal lower extremity musculature with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM) and dynamic DTI in DM patients and controls and compared with standard clinical workup.  METHODS: In this IRB-approved, HIPAA-compliant study with written informed consent, anatomical, Dixon fat/water and diffusion imaging were collected in bilateral thigh MRI of 22 controls and 27 DM patients in a 3T scanner. Compartments were scored on T1/T2 scales. Single voxel dynamic DTI metrics in quadriceps before and after 3-min leg exercise were measured. Spearman rank correlation and mixed model analysis of variance/covariance (ANOVA/ANCOVA) were used to correlate with T1 and T2 scores and to compare patients with controls. DM patients showed significantly lower pseudo-diffusion and volume in quadriceps than controls. All subjects showed significant correlation between T1 score and signal-weighted fat fraction; tissue diffusion and pseudo-diffusion varied significantly with T1 and T2 score in patients. Radial and mean diffusion exercise response in patients was significantly higher than controls. Static and dynamic diffusion imaging metrics show correlation with conventional imaging scores, reveal spatial heterogeneity, and provide means to differentiate dermatomyositis patients from controls. • Diffusion imaging shows regional differences between thigh muscles of dermatomyositis patients and controls. • Signal-weighted fat fraction and diffusion metrics correlate with T1/T2 scores of disease severity. • Dermatomyositis patients show significantly higher radial diffusion exercise response than controls.

  20. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Senda, Joe; Kato, Shigenori; Kaga, Tomotsugu; Ito, Mizuki; Atsuta, Naoki; Nakamura, Tomohiko; Watanabe, Hirohisa; Tanaka, Fumiaki; Naganawa, Shinji; Sobue, Gen

    2011-01-01

    We investigated 17 patients with sporadic amyotrophic lateral sclerosis (ALS) using voxel-based morphometry (VBM) and voxel-based analysis of diffusion tensor images (DTI) at baseline and after a six-month follow-up. Compared with 17 healthy controls, ALS patients at baseline showed only minimal white matter volume decreases in the inferior frontal gyrus but marked decreases in the gray matter of several regions, especially in the bilateral paracentral lobule of the premotor cortex. DTI revealed reduced fractional anisotropy in the bilateral corticospinal tracts, insula, ventrolateral premotor cortex, and parietal cortex. Increased mean diffusivity was noted bilaterally in the motor cortex, ventrolateral premotor cortex, insula, hippocampal formation, and temporal gyrus. At the six-month follow-up, ALS patients showed widespread volume decreases in gray matter, and DTI abnormalities extended mainly into the bilateral frontal lobes, while volume changes in the white matter remained minimal but more distinct. Our combined VBM and DTI techniques revealed extra-corticospinal tract neuronal degeneration mainly in the frontotemporal lobe of ALS patients. In particular, follow-up examinations in these patients showed that whole-brain DTI changes occurred predominantly in the regions of brain atrophy. These objective analyses can be used to assess the disease condition of the ALS brain.

  1. Diffusion tensor and diffusion weighted imaging. Pictorial mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Tsutomu [California Univ., Davis, CA (United States)

    1995-06-01

    A new imaging algorithm for the treatment of a second order apparent diffusion tensor, D{sub app}{sup {xi}} is described. The method calls for only mathematics of images (pictorial mathematics) without necessity of eigenvalues/eigenvectors estimation. Nevertheless, it is capable of extracting properties of D{sub app}{sup {xi}} invariant to observation axes. While trace image is an example of images weighted by invariance of the tensor matrix, three dimensional anisotropy (3DAC) contrast represents the imaging method making use to anisotropic direction of tensor ellipsoid producing color coded contrast of exceptionally high anatomic resolution. Contrary to intuition, the processes require only a simple algorithm directly applicable to clinical magnetic resonance imaging (MRI). As a contrast method which precisely represents physical characteristics of a target tissue, invariant D{sub app}{sup {xi}} images produced by pictorial mathematics possess significant potential for a number of biological and clinical applications. (author).

  2. Bayesian regularization of diffusion tensor images

    DEFF Research Database (Denmark)

    Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif

    2007-01-01

    Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...

  3. Repeatability of chemical-shift-encoded water-fat MRI and diffusion-tensor imaging in lower extremity muscles in children.

    Science.gov (United States)

    Ponrartana, Skorn; Andrade, Kristine E; Wren, Tishya A L; Ramos-Platt, Leigh; Hu, Houchun H; Bluml, Stefan; Gilsanz, Vicente

    2014-06-01

    The purpose of this study was to assess the repeatability of water-fat MRI and diffusion-tensor imaging (DTI) as quantitative biomarkers of pediatric lower extremity skeletal muscle. MRI at 3 T of a randomly selected thigh and lower leg of seven healthy children was studied using water-fat separation and DTI techniques. Muscle-fat fraction, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) values were calculated. Test-retest and interrater repeatability were assessed by calculating the Pearson correlation coefficient, intraclass correlation coefficient, and Bland-Altman analysis. Bland-Altman plots show that the mean difference between test-retest and interrater measurements of muscle-fat fraction, ADC, and FA was near 0. The correlation coefficients and intraclass correlation coefficients were all between 0.88 and 0.99 (p DTI measurements in lower extremity skeletal muscles are objective repeatable biomarkers in children. This knowledge should aid in the understanding of the number of participants needed in clinical trials when using these determinations as an outcome measure to noninvasively monitor neuromuscular disease.

  4. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    Science.gov (United States)

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  5. New insights into the developing rabbit brain using diffusion tensor tractography and generalized q-sampling MRI.

    Directory of Open Access Journals (Sweden)

    Seong Yong Lim

    Full Text Available The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI, can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA of DTI and generalized fractional anisotropy (GFA of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain

  6. Diffusion tensor image registration using hybrid connectivity and tensor features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-07-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.

  7. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    Science.gov (United States)

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain

  8. Diffusion tensor imaging of partial intractable epilepsy

    International Nuclear Information System (INIS)

    Dumas de la Roque, Anne; Oppenheim, Catherine; Rodrigo, Sebastian; Meder, Jean-Francois; Chassoux, Francine; Devaux, Bertrand; Beuvon, Frederic; Daumas-Duport, Catherine

    2005-01-01

    Our aim was to assess the value of diffusion tensor imaging (DTI) in patients with partial intractable epilepsy. We used DTI (25 non-collinear directions) in 15 patients with a cortical lesion on conventional MRI. Fractional anisotropy (FA) was measured in the internal capsule, and in the normal-appearing white matter (WM), adjacent tothe lesion, and away from the lesion, at a set distance of 2-3 cm. In each patient, increased or decreased FA measurements were those that varied from mirror values using an arbitrary 10% threshold. Over the whole population, ipsi- and contralateral FA measurements were also compared using a Wilcoxon test (p<0.05). Over the whole population, FA was significantly reduced in the WM adjacent to and away from the lesion, whilst being normal in the internal capsule. FA was reduced by more than 10% in the WM adjacent to and distant from the lesion in 13 and 12 patients respectively. For nine of the ten patients for whom the surgical resection encompassed the limits of the lesion on conventional MRI, histological data showed WM alterations (gliosis, axonal loss, abnormal cells). DTI often reveals WM abnormalities that are undetected on conventional MRI in patients with partial intractable epilepsy. (orig.)

  9. Diffusion tensor imaging and tractography in clinical neuro sciences

    International Nuclear Information System (INIS)

    Zarei, M.; Johansen-Berg, H.; Matthews, P.M.

    2003-01-01

    Rapidly evolving MR technology has allowed better understanding of structure and function of the human brain. Diffusion weighted MRI was developed two decades ago and it is now well established in diagnosis of acute ischaemia in patients with stroke. Diffusion tensor MRI uses the same principles but takes a step further allowing US to measure magnitude of the diffusion along different directions. This lead to the development of diffusion tensor tractography, a technique by which major neural pathways in the living brain can be visualized. There is a growing interest in exploring possible use of these techniques in clinical neurology and psychiatry. This article aims to review the principles of this technique and recent discoveries which may help US to better understand neurological and psychiatric disorders

  10. Detection of prostate cancer in peripheral zone: comparison of MR diffusion tensor imaging, quantitative dynamic contrast-enhanced MRI, and the two techniques combined at 3.0 T.

    Science.gov (United States)

    Li, Chunmei; Chen, Min; Li, Saying; Zhao, Xuna; Zhang, Chen; Luo, Xiaojie; Zhou, Cheng

    2014-03-01

    Previous studies have shown that the diagnostic accuracy for prostate cancer improved with diffusion tensor imaging (DTI) or quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) only. However, the efficacy of combined DTI and quantitative DCE-MRI in detecting prostate cancer at 3.0 T is still indeterminate. To investigate the utility of diffusion tensor imaging (DTI), quantitative DCE-MRI, and the two techniques combined at 3.0 T in detecting prostate cancer of the peripheral zone (PZ). DTI and DCE-MRI of 33 patients was acquired prior to prostate biopsy. Regions of interest (ROIs) were drawn according to biopsy zones which were apex, mid-gland, and base on each side of the PZ. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume transfer constant (K(trans)), and rate constant (kep) values of cancerous sextants and non-cancerous sextants in PZ were calculated. Logistic regression models were generated for DTI, DCE-MRI, and DTI + DCE-MRI. Receiver-operating characteristic (ROC) curves were used to compare the ability of these models to differentiate cancerous sextants from non-cancerous sextants of PZ. There were significant differences in the ADC, FA, K(trans), and kep values between cancerous sextants and non-cancerous sextants in PZ (P < 0.0001, P < 0.0001, P < 0.0001, and P < 0.0001, respectively). The area under curve (AUC) for DTI + DCE-MRI was significantly greater than that for either DTI (0.93 vs. 0.86, P = 0.0017) or DCE-MRI (0.93 vs. 0.84, P = 0.0034) alone. The combination of DTI and quantitative DCE-MRI has better diagnostic performance in detecting prostate cancer of the PZ than either technique alone.

  11. Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI.

    Science.gov (United States)

    Brander, Antti; Koskinen, Eerika; Luoto, Teemu M; Hakulinen, Ullamari; Helminen, Mika; Savilahti, Sirpa; Ryymin, Pertti; Dastidar, Prasun; Ohman, Juha

    2014-05-01

    Compared to diffusion tensor imaging (DTI) of the brain, there is a paucity of reports addressing the applicability of DTI in the evaluation of the spinal cord. Most normative data of cervical spinal cord DTI consist of relatively small and arbitrarily collected populations. Comprehensive normative data are necessary for clinical decision-making. To establish normal values for cervical spinal cord DTI metrics with region of interest (ROI)- and fiber tractography (FT)-based measurements and to assess the reproducibility of both measurement methods. Forty healthy adults underwent cervical spinal cord 3T MRI. Sagittal and axial conventional T2 sequences and DTI in the axial plane were performed. Whole cord fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels from C2 to C7 using the ROI method. DTI metrics (FA, axial, and radial diffusivities based on eigenvalues λ1, λ2, and λ3, and ADC) of the lateral and posterior funicles were measured at C3 level. FA and ADC of the whole cord and the lateral and posterior funicles were also measured using quantitative tractography. Intra- and inter-observer variation of the measurement methods were assessed. Whole cord FA values decreased and ADC values increased in the rostral to caudal direction from C2 to C7. Between the individual white matter funicles no statistically significant difference for FA or ADC values was found. Both axial diffusivity and radial diffusivity of both lateral funicles differed significantly from those of the posterior funicle. Neither gender nor age correlated with any of the DTI metrics. Intra-observer variation of the measurements for whole cord FA and ADC showed almost perfect agreement with both ROI and tractography-based measurements. There was more variation in measurements of individual columns. Inter-observer agreement varied from moderate to strong for whole cord FA and ADC. Both ROI- and FT-based measurements are applicable

  12. The direct tensor solution and higher-order acquisition schemes for generalized diffusion tensor imaging

    NARCIS (Netherlands)

    Akkerman, Erik M.

    2010-01-01

    Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional

  13. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...

  14. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules

    International Nuclear Information System (INIS)

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions. (paper)

  15. New MRI Markers for Alzheimer's Disease: A Meta-Analysis of Diffusion Tensor Imaging and a Comparison with Medial Temporal Lobe Measurements

    NARCIS (Netherlands)

    Clerx, L.; Visser, P.J.; Verhey, F.; Aalten, P.

    2012-01-01

    The aim of the present study is to evaluate the diagnostic value of diffusion tensor imaging (DTI) for early Alzheimer's disease (AD) in comparison to widely accepted medial temporal lobe (MTL) atrophy measurements. A systematic literature research was performed into DTI and MTL atrophy in AD and

  16. Diffusion tensor imaging in spinal cord compression

    International Nuclear Information System (INIS)

    Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin

    2012-01-01

    Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression

  17. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    Science.gov (United States)

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from

  18. Higher-order tensors in diffusion imaging

    NARCIS (Netherlands)

    Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.

    2014-01-01

    Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion

  19. The effects of noise over the complete space of diffusion tensor shape.

    Science.gov (United States)

    Gahm, Jin Kyu; Kindlmann, Gordon; Ennis, Daniel B

    2014-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to quantify the microstructural organization of biological tissues. Multiple images are necessary to reconstruct the tensor data and each acquisition is subject to complex thermal noise. As such, measures of tensor invariants, which characterize components of tensor shape, derived from the tensor data will be biased from their true values. Previous work has examined this bias, but over a narrow range of tensor shape. Herein, we define the mathematics for constructing a tensor from tensor invariants, which permits an intuitive and principled means for building tensors with a complete range of tensor shape and salient microstructural properties. Thereafter, we use this development to evaluate by simulation the effects of noise on characterizing tensor shape over the complete space of tensor shape for three encoding schemes with different SNR and gradient directions. We also define a new framework for determining the distribution of the true values of tensor invariants given their measures, which provides guidance about the confidence the observer should have in the measures. Finally, we present the statistics of tensor invariant estimates over the complete space of tensor shape to demonstrate how the noise sensitivity of tensor invariants varies across the space of tensor shape as well as how the imaging protocol impacts measures of tensor invariants. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Alterations of diffusion tensor MRI parameters in the brains of patients with Parkinson's disease compared with normal brains: possible diagnostic use

    International Nuclear Information System (INIS)

    Lu, Chin-Song; Weng, Yi-Hsin; Lin, Wey-Yil; Ng, Shu-Hang; Cheng, Jur-Shan; Wai, Yau-Yau; Chen, Yao-Liang; Wang, Jiun-Jie

    2016-01-01

    To investigate the diagnostic performance of diffusion tensor imaging in patients with Parkinson's disease (PD). We examined a total of 126 PD patients (68 males/58 females, mean age: 62.0 ±7.6 years) and 91 healthy controls (43 males/48 females, mean age: 59.8 ±7.2 years). Images were acquired on a 3 Tesla magnetic resonance scanner. The Camino software was used to normalize and parcellate diffusion-weighted images into 90 cerebral regions based on the automatic anatomical labelling template. The minimum, median, and maximum values of the mean/radial/axial diffusivity/fractional anisotropy were determined. The diagnostic performance was assessed by receiver operating characteristic analysis. The associations of imaging parameters with disease severity were tested using Pearson's correlation coefficients after adjustment for disease duration. Compared with healthy controls, PD patients showed increased diffusivity in multiple cortical regions that extended beyond the basal ganglia. An area under curve of 85 % was identified for the maximum values of mean diffusivity in the ipsilateral middle temporal gyrus. The most significant intergroup difference was 26.8 % for the ipsilateral inferior parietal gyrus. The measurement of water diffusion from the parcellated cortex may be clinically useful for the assessment of PD patients. (orig.)

  1. Alterations of diffusion tensor MRI parameters in the brains of patients with Parkinson's disease compared with normal brains: possible diagnostic use

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chin-Song; Weng, Yi-Hsin; Lin, Wey-Yil [Chang Gung Memorial Hospital, Division of Movement Disorders,Department of Neurology, Taoyuan (China); Chang Gung Memorial Hospital, Neuroscience Research Center, Taoyuan (China); Chang Gung University, School of Traditional Chinese Medicine, Taoyuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Linkou (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan County (China); Cheng, Jur-Shan [Chang Gung University, Clinical Informatics and Medical Statistics Research Center,College of Medicine, Taoyuan (China); Wai, Yau-Yau [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Keelung (China); Chen, Yao-Liang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Linkou (China); Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Keelung (China); Wang, Jiun-Jie [Chang Gung Memorial Hospital, Neuroscience Research Center, Taoyuan (China); Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Linkou (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan County (China); Chang Gung University / Chang Gung Memorial Hospital, Linkou, Medical Imaging Research Center, Institute for Radiological Research, Taoyuan (China)

    2016-11-15

    To investigate the diagnostic performance of diffusion tensor imaging in patients with Parkinson's disease (PD). We examined a total of 126 PD patients (68 males/58 females, mean age: 62.0 ±7.6 years) and 91 healthy controls (43 males/48 females, mean age: 59.8 ±7.2 years). Images were acquired on a 3 Tesla magnetic resonance scanner. The Camino software was used to normalize and parcellate diffusion-weighted images into 90 cerebral regions based on the automatic anatomical labelling template. The minimum, median, and maximum values of the mean/radial/axial diffusivity/fractional anisotropy were determined. The diagnostic performance was assessed by receiver operating characteristic analysis. The associations of imaging parameters with disease severity were tested using Pearson's correlation coefficients after adjustment for disease duration. Compared with healthy controls, PD patients showed increased diffusivity in multiple cortical regions that extended beyond the basal ganglia. An area under curve of 85 % was identified for the maximum values of mean diffusivity in the ipsilateral middle temporal gyrus. The most significant intergroup difference was 26.8 % for the ipsilateral inferior parietal gyrus. The measurement of water diffusion from the parcellated cortex may be clinically useful for the assessment of PD patients. (orig.)

  2. An introduction to diffusion tensor image analysis.

    Science.gov (United States)

    O'Donnell, Lauren J; Westin, Carl-Fredrik

    2011-04-01

    Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue.

    Science.gov (United States)

    Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J

    2002-01-01

    The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.

  4. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    Science.gov (United States)

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], pFourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis

  5. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    Science.gov (United States)

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  6. Anisotropic diffusion tensor applied to temporal mammograms

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, Sami; Sporring, Jon

    2010-01-01

    changes related to  specific  effects  like  Hormonal  Replacement  Therapy  (HRT) and aging. Given effect-grouped patient data, we demonstrated how  anisotropic  diffusion  tensor  and  its  coherence  features computed in an anatomically oriented breast coordinate system followed by statistical learning...

  7. Diffusion, confusion and functional MRI

    International Nuclear Information System (INIS)

    Le Bihan, Denis

    2012-01-01

    Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)

  8. Diffusion MRI studies in vascular cognitive impairment and dementia Estudos de ressonância magnética funcional (imagens tensores de difusão nos quadros de prejuízo cognitivo vasculares e demências

    Directory of Open Access Journals (Sweden)

    Fabio L Urresta

    2003-09-01

    Full Text Available Since its introduction more than two decades ago, Magnetic Resonance Imaging (MRI has not only allowed for visualization of the macrostructure of the CNS, but also has been able to study dynamic processes which constitute the substrate of currently available MRI variants. While conventional Diffusion Weighted Imaging (DWI permits a robust visualization of lesions just a few minutes after the onset of cerebral ischemia, Diffusion Tensor Imaging (DTI measures the magnitude and direction of diffusion, leading to the characterization of cerebral white matter (WM microstructural integrity. In this paper, the potential role of MRI techniques, particularly DTI, for the study of the relationship between changes in the microstructural integrity of WM and cognitive impairment in the context of cerebrovascular disease are discussed. Significant correlations between scores of behavioral measures of cognitive function and regional anisotropy values are an example of the potential efficacy of DTI for in vivo studies of brain connectivity in vascular neurodegenerative conditions.Desde a sua introdução há mais de duas décadas, as Imagens de Ressonância Magnética (MRI não somente permitiram a visualização da macroestrutura do sistema nervoso central, mas também foram capazes de estudar múltiplos processos dinâmicos, os quais são o substrato para as variantes atuais da técnica. Enquanto que as Imagens de Difusão Ponderada permitem uma robusta visualização de lesões, apenas há minutos de iniciar-se a isquemia cerebral, as Imagens de Tensores de Difusão medem a magnitude e direção da difusão, caracterizando a integridade estrutural da substância branca (WM cerebral. Neste artigo, discute-se a utilidade potencial das técnicas de MRI, particularmente DTI, para o estudo da relação entre mudanças da integridade microestrutural da WM e a deterioração cognitiva, no contexto da doença cerebrovascular. As correlações significativas entre as

  9. Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei

    2013-10-01

    Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.

  10. Volume illustration of muscle from diffusion tensor images.

    Science.gov (United States)

    Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun

    2009-01-01

    Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.

  11. Image denoising using non linear diffusion tensors

    International Nuclear Information System (INIS)

    Benzarti, F.; Amiri, H.

    2011-01-01

    Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.

  12. Diffusion tensor in electron swarm transport

    International Nuclear Information System (INIS)

    Makabe, T.; Mori, T.

    1983-01-01

    Expression for the diffusion tensor of the electron (or light ion) swarm is presented from the higher-order expansion of the velocity distribution in the Boltzmann equation in hydrodynamic stage. Derived diffusion coefficients for the transverse and longitudinal directions include the additional terms representative of the curvature effect under the action of an electric field with the usual-two-term expressions. Numerical analysis is given for the electron swarm in model gases having the momentum transfer cross section Qsub(m)(epsilon)=Q 0 epsilon sup(beta) (β=0, 1/2, 1) using the present theory. As the result, appreciable degree of discrepancy appears between the transverse diffusion coefficient defined here and the conventional expression with increasing of β in Qsub(m). (Author)

  13. Interactive Volume Rendering of Diffusion Tensor Data

    Energy Technology Data Exchange (ETDEWEB)

    Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred; Carmichael, Owen; Hamann, Bernd; Scheuermann, Gerik

    2007-03-30

    As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal was to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].

  14. Less Confusion in Diffusion MRI

    NARCIS (Netherlands)

    Tax, CMW

    2016-01-01

    With its unique ability to investigate tissue architecture and microstructure in vivo, diffusion MRI (dMRI) has gained tremendous interest and the society has been continuously triggered to develop novel dMRI image analysis approaches. With the overwhelming amount of strategies currently available

  15. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  16. Diffusion tensor imaging for anatomical localization of cranial nerves and cranial nerve nuclei in pontine lesions: initial experiences with 3T-MRI.

    Science.gov (United States)

    Ulrich, Nils H; Ahmadli, Uzeyir; Woernle, Christoph M; Alzarhani, Yahea A; Bertalanffy, Helmut; Kollias, Spyros S

    2014-11-01

    With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the management of pontine lesions is constantly improving. Among pontine structures with vital functions that are at risk of being damaged by surgical manipulation, cranial nerves (CN) and cranial nerve nuclei (CNN) such as CN V, VI, and VII are critical. Pre-operative localization of the intrapontine course of CN and CNN should be beneficial for surgical outcomes. Our objective was to accurately localize CN and CNN in patients with intra-axial lesions in the pons using diffusion tensor imaging (DTI) and estimate its input in surgical planning for avoiding unintended loss of their function during surgery. DTI of the pons obtained pre-operatively on a 3Tesla MR scanner was analyzed prospectively for the accurate localization of CN and CNN V, VI and VII in seven patients with intra-axial lesions in the pons. Anatomical sections in the pons were used to estimate abnormalities on color-coded fractional anisotropy maps. Imaging abnormalities were correlated with CN symptoms before and after surgery. The course of CN and the area of CNN were identified using DTI pre- and post-operatively. Clinical associations between post-operative improvements and the corresponding CN area of the pons were demonstrated. Our results suggest that pre- and post-operative DTI allows identification of key anatomical structures in the pons and enables estimation of their involvement by pathology. It may predict clinical outcome and help us to better understand the involvement of the intrinsic anatomy by pathological processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  18. The relationship between functional magnetic resonance imaging activation, diffusion tensor imaging, and training effects.

    Science.gov (United States)

    Farrar, Danielle; Budson, Andrew E

    2017-04-01

    While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.

  19. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  20. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  1. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    Science.gov (United States)

    Lee, Wei-Ning; Larrat, Benoît; Pernot, Mathieu; Tanter, Mickaël

    2012-08-01

    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from -90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm-2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p 0.05, unpaired, one-tailed t-test, N = 10). In

  2. Diffusion Tensor Imaging for the Differentiation of Microangiopathy, Infarction and Perfusion-Diffusion Mismatch Lesions

    International Nuclear Information System (INIS)

    Ha, Dong Ho; Choi, Sun Seob; Kang, Myong Jin; Lee, Jin Hwa; Yoon, Seong Kuk; Nam, Kyung Jin

    2009-01-01

    This study was designed to evaluate the usefulness of diffusion tensor imaging (DTI) and the DTI indices for differentiating between microangiopathy lesions, acute infarction lesions and perfusion-diffusion mismatch areas. DTI was performed in 35 patients with the use of a 1.5 Tesla MRI system. The MRI parameters were as follows: a spin echo EPI sequence with a bvalue = 1000 s/mm 2 , 25 diffusion directions, a repetition time of 8400 msec, an echo time of 75 msec, a matrix size of 128 x 128, a FOV of 22 cm and a 4 mm slice thickness. From the diffusion tensor images, the apparent diffusion coefficient (ADC), fractional anisotropy (FA), volume ratio (VR), relative anisotropy (RA), anisotropy index (AI), exponential ADC (eADC) and magnitude diffusion coefficient (MDC) were measured for the contra-lateral normal area (28 cases), the microangiopathy lesions (10 cases), the infarction lesions (17 cases) and the perfusion-diffusion mismatch area (8 cases). As compared to the normal area, the microangiopathy lesions showed increased ADC and MDC values and decreased FA, VR, RA, AI and eADC values. The infarction lesions showed increased VR, RA and eADC values, a normal FA, a decreased AI and decreased ADC and MDC values. The mismatch area showed a similar pattern as that for the microangiopathy lesions; however, the differences were not prominent, with an increase of the ADC and MDC values and a decrease of FA, VR, RA, AI and eADC values. The DTI indices could have a role in making the differential diagnosis of microangiopathy, acute infarction and perfusion-diffusion mismatch lesions

  3. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    International Nuclear Information System (INIS)

    Mugnai, Mauro L.; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide

  4. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description.

    Science.gov (United States)

    Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley

    2014-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.

  5. Diffusion tensor imaging in children and adolescents with tuberous sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Demet [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Department of Paediatric Radiology, Jena (Germany); Kirikkale Yuksek Ihtisas Hospital, Department of Radiology, Kirirkale (Turkey); Mentzel, Hans-J.; Loebel, Ulrike; Reichenbach, Juergen R.; Kaiser, Werner A. [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Department of Paediatric Radiology, Jena (Germany); Guellmar, Daniel [Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Department of Paediatric Radiology, Jena (Germany); Friedrich Schiller University, Biomagnetic Centre, Clinic of Neurology, Jena (Germany); Rating, Tina; Brandl, Ulrich [Friedrich Schiller University, Department of Paediatric Neurology, Jena (Germany)

    2005-10-01

    Tuberous sclerosis (TS) is characterised by benign hamartomatous lesions in many organs. Diffusion tensor imaging (DTI) can detect microstructural changes in pathological processes. To determine apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps in children with TS and to investigate the diffusion properties in cortical tubers, white-matter lesions, perilesional white matter, and contralateral normal-appearing white matter, and to compare the results with ADC and FA maps of normal age- and sex-matched volunteers. Seven children and adolescents (age range 2-20 years) suffering from TS were included. MRI was performed on a 1.5-T scanner using a transmit/receive coil with T1-W and T2-W spin-echo and FLAIR sequences. DT images were acquired by using a single-shot echo-planar pulse sequence. Diffusion gradients were applied in six different directions with a b value of 1,000 s/mm{sup 2}. ADC was higher in cortical tubers than in the corresponding cortical location of controls. ADC values were higher and FA values were lower in white-matter lesions and perilesional white matter than in both the contralateral normal-appearing white matter of patients and in controls. There were no significant differences for both ADC and FA values in the normal-appearing white matter of patients with TS compared to controls. DTI provides important information about cortical tubers, white-matter abnormalities, and perilesional white matter in patients with TS. (orig.)

  6. Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering

    International Nuclear Information System (INIS)

    Poupon, C.; Roche, A.; Dubois, J.; Mangin, J.F.; Poupon, F.

    2008-01-01

    Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the Kalman filter is designed to be an incremental algorithm, it naturally enables updating the model estimate after the acquisition of any new diffusion-weighted volume. Processing diffusion models and maps during ongoing scans provides a new useful tool for clinicians, especially when it is not possible to predict how long a subject may remain still in the magnet. First, we introduce the general linear models corresponding to the two diffusion tensor and analytical Q-ball models of interest. Then, we present the Kalman filtering framework and we focus on the optimization of the diffusion orientation sets in order to speed up the convergence of the online processing. Last, we give some results on a healthy volunteer for the online tensor and the Q-ball model, and we make some comparisons with the conventional offline techniques used in the literature. We could achieve full real-time for diffusion tensor imaging and deferred time for Q-ball imaging, using a single workstation. (authors)

  7. Computational Diffusion MRI : MICCAI Workshop

    CERN Document Server

    Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle

    2018-01-01

    This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...

  8. Application of diffusion tensor imaging in neurosurgery; Anwendung der Diffusions-Tensor-Bildgebung in der Neurochirurgie

    Energy Technology Data Exchange (ETDEWEB)

    Saur, R. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany); Augenklinik des Universitaetsklinikums Tuebingen (Germany); Klinik fuer Psychiatrie und Psychotherapie des Universitaetsklinikums Tuebingen (Germany); Gharabaghi, A. [Klinik fuer Neurochirurgie des Universitaetsklinikums Tuebingen (Germany); Erb, M. [Sektion fuer Experimentelle Kernspinresonanz des ZNS, Abt. Neuroradiologie, Universitaetsklinikum Tuebingen (Germany)

    2007-07-01

    Knowledge about integrity and location of fibre tracts arising from eloquent cortical areas is important to plan neurosurgical interventions and to allow maximization of resection of pathological tissue while preserving vital white matter tracts. Diffusion Tensor Imaging (DTI) is so far the only method to get preoperatively an impression of the individual complexity of nerve bundles. Thereby nerve fibres are not mapped directly. They are derived indirectly by analysis of the directional distribution of diffusion of water molecules which is influenced mainly by large fibre tracts. From acquisition to reconstruction and visualisation of the fibre tracts many representational stages and working steps have to be passed. Exact knowledge about problems of Diffusion Imaging is important for interpretation of the results. Particularly, brain tumor edema, intraoperative brain shift, MR-artefacts and limitations of the mathematical models and algorithms challenge DTI-developers and applicants. (orig.)

  9. Diffusion tensor imaging in spinal cord injury

    International Nuclear Information System (INIS)

    Kamble, Ravindra B; Venkataramana, Neelam K; Naik, Arun L; Rao, Shailesh V

    2011-01-01

    To assess the feasibility of spinal tractography in patients of spinal cord injury vs a control group and to compare fractional anisotropy (FA) values between the groups. Diffusion tensor imaging (DTI) was performed in the spinal cord of 29 patients (18 patients and 11 controls). DTI was done in the cervical region if the cord injury was at the dorsal or lumbar region and in the conus region if cord injury was in the cervical or dorsal region. FA was calculated for the patients and the controls and the values were compared. The mean FA value was 0.550±0.09 in the control group and 0.367±0.14 in the patients; this difference was statistically significant (P=0.001). Spinal tractography is a feasible technique to assess the extent of spinal cord injury by FA, which is reduced in patients of spinal cord injury, suggesting possible Wallerian degeneration. In future, this technique may become a useful tool for assessing cord injury patients after stem cell therapy, with improvement in FA values indicating axonal regeneration

  10. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging.

    Science.gov (United States)

    Thomas, Cibu; Sadeghi, Neda; Nayak, Amrita; Trefler, Aaron; Sarlls, Joelle; Baker, Chris I; Pierpaoli, Carlo

    2018-06-01

    Diurnal fluctuations in MRI measures of structural and functional properties of the brain have been reported recently. These fluctuations may have a physiological origin, since they have been detected using different MRI modalities, and cannot be explained by factors that are typically known to confound MRI measures. While preliminary evidence suggests that measures of structural properties of the brain based on diffusion tensor imaging (DTI) fluctuate as a function of time-of-day (TOD), the underlying mechanism has not been investigated. Here, we used a longitudinal within-subjects design to investigate the impact of time-of-day on DTI measures. In addition to using the conventional monoexponential tensor model to assess TOD-related fluctuations, we used a dual compartment tensor model that allowed us to directly assess if any change in DTI measures is due to an increase in CSF/free-water volume fraction or due to an increase in water diffusivity within the parenchyma. Our results show that Trace or mean diffusivity, as measured using the conventional monoexponential tensor model tends to increase systematically from morning to afternoon scans at the interface of grey matter/CSF, most prominently in the major fissures and the sulci of the brain. Interestingly, in a recent study of the glymphatic system, these same regions were found to show late enhancement after intrathecal injection of a CSF contrast agent. The increase in Trace also impacts DTI measures of diffusivity such as radial and axial diffusivity, but does not affect fractional anisotropy. The dual compartment analysis revealed that the increase in diffusivity measures from PM to AM was driven by an increase in the volume fraction of CSF-like free-water. Taken together, our findings provide important insight into the likely physiological origins of diurnal fluctuations in MRI measurements of structural properties of the brain. Published by Elsevier Inc.

  11. Comparison of Biomarkers in Transgenic Alzheimer Rats Using Multi-shell Diffusion MRI

    OpenAIRE

    Fick , Rutger ,; Daianu , Madelaine; Pizzolato , Marco; Wassermann , Demian; Jacobs , Russel E.; Thompson , Paul M.; Town , Terrence; Deriche , Rachid

    2016-01-01

    International audience; In this study, we assessed the evolution of diffusion MRI (dMRI) derived markers from different white matter models as progressive neurodegeneration occurs in transgenic Alzheimer rats (TgF344-AD) at 10, 15 and 24 months. We compared biomarkers reconstructed from Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion and Density Imaging (NODDI) and Mean Apparent Propagator (MAP)-MRI in the hippocampus, cingulate cortex and corpus callosum using multi-shell dMRI...

  12. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Carolyn B Lauzon

    Full Text Available Diffusion tensor imaging (DTI enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio. However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70% while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA

  13. Diffusion tensor MR microscopy of tissues with low diffusional anisotropy.

    Science.gov (United States)

    Bajd, Franci; Mattea, Carlos; Stapf, Siegfried; Sersa, Igor

    2016-06-01

    Diffusion tensor imaging exploits preferential diffusional motion of water molecules residing within tissue compartments for assessment of tissue structural anisotropy. However, instrumentation and post-processing errors play an important role in determination of diffusion tensor elements. In the study, several experimental factors affecting accuracy of diffusion tensor determination were analyzed. Effects of signal-to-noise ratio and configuration of the applied diffusion-sensitizing gradients on fractional anisotropy bias were analyzed by means of numerical simulations. In addition, diffusion tensor magnetic resonance microscopy experiments were performed on a tap water phantom and bovine articular cartilage-on-bone samples to verify the simulation results. In both, the simulations and the experiments, the multivariate linear regression of the diffusion-tensor analysis yielded overestimated fractional anisotropy with low SNRs and with low numbers of applied diffusion-sensitizing gradients. An increase of the apparent fractional anisotropy due to unfavorable experimental conditions can be overcome by applying a larger number of diffusion sensitizing gradients with small values of the condition number of the transformation matrix. This is in particular relevant in magnetic resonance microscopy, where imaging gradients are high and the signal-to-noise ratio is low.

  14. Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach.

    Science.gov (United States)

    Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir

    2016-08-01

    In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.

  15. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder.

    Science.gov (United States)

    Schnyer, David M; Clasen, Peter C; Gonzalez, Christopher; Beevers, Christopher G

    2017-06-30

    Using MRI to diagnose mental disorders has been a long-term goal. Despite this, the vast majority of prior neuroimaging work has been descriptive rather than predictive. The current study applies support vector machine (SVM) learning to MRI measures of brain white matter to classify adults with Major Depressive Disorder (MDD) and healthy controls. In a precisely matched group of individuals with MDD (n =25) and healthy controls (n =25), SVM learning accurately (74%) classified patients and controls across a brain map of white matter fractional anisotropy values (FA). The study revealed three main findings: 1) SVM applied to DTI derived FA maps can accurately classify MDD vs. healthy controls; 2) prediction is strongest when only right hemisphere white matter is examined; and 3) removing FA values from a region identified by univariate contrast as significantly different between MDD and healthy controls does not change the SVM accuracy. These results indicate that SVM learning applied to neuroimaging data can classify the presence versus absence of MDD and that predictive information is distributed across brain networks rather than being highly localized. Finally, MDD group differences revealed through typical univariate contrasts do not necessarily reveal patterns that provide accurate predictive information. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Keil Carsten

    2012-11-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder, caused by progressive loss of motor neurons. Changes are widespread in the subcortical white matter in ALS. Diffusion tensor imaging (DTI detects pathological changes in white matter fibres in vivo, based on alterations in the degree (diffusivity, ADC and directedness (fractional anisotropy, FA of proton movement. Methods 24 patients with ALS and 24 age-matched controls received 1.5T DTI. FA and ADC were analyzed using statistical parametric mapping. In 15 of the 24 ALS patients, a second DTI was obtained after 6 months. Results Decreased FA in the corticospinal tract (CST and frontal areas confirm existing results. With a direct comparison of baseline and follow-up dataset, the progression of upper motor neuron degeneration, reflected in FA decrease, could be captured along the CST and in frontal areas. The involvement of cerebellum in the pathology of ALS, as suspected from functional MRI studies, could be confirmed by a reduced FA (culmen, declive. These structural changes correlated well with disease duration, ALSFRS-R, and physical and executive functions. Conclusion DTI detects changes that are regarded as prominent features of ALS and thus, shows promise in its function as a biomarker. Using the technique herein, we could demonstrate DTI changes at follow-up which correlated well with clinical progression.

  17. Harmonization of multi-site diffusion tensor imaging data.

    Science.gov (United States)

    Fortin, Jean-Philippe; Parker, Drew; Tunç, Birkan; Watanabe, Takanori; Elliott, Mark A; Ruparel, Kosha; Roalf, David R; Satterthwaite, Theodore D; Gur, Ruben C; Gur, Raquel E; Schultz, Robert T; Verma, Ragini; Shinohara, Russell T

    2017-11-01

    Diffusion tensor imaging (DTI) is a well-established magnetic resonance imaging (MRI) technique used for studying microstructural changes in the white matter. As with many other imaging modalities, DTI images suffer from technical between-scanner variation that hinders comparisons of images across imaging sites, scanners and over time. Using fractional anisotropy (FA) and mean diffusivity (MD) maps of 205 healthy participants acquired on two different scanners, we show that the DTI measurements are highly site-specific, highlighting the need of correcting for site effects before performing downstream statistical analyses. We first show evidence that combining DTI data from multiple sites, without harmonization, may be counter-productive and negatively impacts the inference. Then, we propose and compare several harmonization approaches for DTI data, and show that ComBat, a popular batch-effect correction tool used in genomics, performs best at modeling and removing the unwanted inter-site variability in FA and MD maps. Using age as a biological phenotype of interest, we show that ComBat both preserves biological variability and removes the unwanted variation introduced by site. Finally, we assess the different harmonization methods in the presence of different levels of confounding between site and age, in addition to test robustness to small sample size studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Diffusion tensor imaging of the normal prostate at 3 Tesla

    International Nuclear Information System (INIS)

    Guerses, Bengi; Kabakci, Neslihan; Kovanlikaya, Arzu; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Ilhami; Ulud, Aziz M.

    2008-01-01

    The aim of this study was to assess the feasibility of diffusion tensor imaging (DTI) of the prostate and to determine normative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of healthy prostate with a 3-Tesla magnetic resonance imaging (MRI) system. Thirty volunteers with a mean age of 28 (25-35) years were scanned with a 3-Tesla MRI (Intera Achieva; Philips, The Netherlands) system using a six-channel phased array coil. Initially, T2-weighted turbo spin-echo (TSE) axial images of the prostate were obtained. In two subjects, a millimetric hypointense signal change was detected in the peripheral zones on T2-weighted TSE images. These two subjects were excluded from the study. DTI with single-shot echo-planar imaging (ssEPI) was performed in the remaining 28 subjects. ADC and FA values were measured using the manufacturer supplied software by positioning 9-pixel ROIs on each zone. Differences between parameters of the central and peripheral zones were assessed. Mean ADC value of the central (1.220 ± 0.271 x 10 -3 mm 2 /s) was found to be significantly lower when compared with the peripheral gland (1.610 ± 0.347 x 10 -3 mm 2 /s) (P < 0.01). Mean FA of the central gland was significantly higher (0.26), compared with the peripheral gland (0.16) (P < 0.01). This study shows the feasibility of prostate DTI with a 3-Tesla MR system and the normative FA and ADC values of peripheral and central zones of the normal prostate. The results are compatible with the microstructural organization of the gland. (orig.)

  19. Comparison of Multi-Tensor Diffusion Models' Performance for White Matter Integrity Estimation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Olena G. Filatova

    2018-04-01

    Full Text Available Better insight into white matter (WM alterations after stroke onset could help to understand the underlying recovery mechanisms and improve future interventions. MR diffusion imaging enables to assess such changes. Our goal was to investigate the relation of WM diffusion characteristics derived from diffusion models of increasing complexity with the motor function of the upper limb. Moreover, we aimed to evaluate the variation of such characteristics across different WM structures of chronic stroke patients in comparison to healthy subjects. Subjects were scanned with a two b-value diffusion-weighted MRI protocol to exploit multiple diffusion models: single tensor, single tensor with isotropic compartment, bi-tensor model, bi-tensor with isotropic compartment. From each model we derived the mean tract fractional anisotropy (FA, mean (MD, radial (RD and axial (AD diffusivities outside the lesion site based on a WM tracts atlas. Asymmetry of these measures was correlated with the Fugl-Meyer upper extremity assessment (FMA score and compared between patient and control groups. Eighteen chronic stroke patients and eight age-matched healthy individuals participated in the study. Significant correlation of the outcome measures with the clinical scores of stroke recovery was found. The lowest correlation of the corticospinal tract FAasymmetry and FMA was with the single tensor model (r = −0.3, p = 0.2 whereas the other models reported results in the range of r = −0.79 ÷ −0.81 and p = 4E-5 ÷ 8E-5. The corticospinal tract and superior longitudinal fasciculus showed most alterations in our patient group relative to controls. Multiple compartment models yielded superior correlation of the diffusion measures and FMA compared to the single tensor model.

  20. Magnetic resonance temporal diffusion tensor spectroscopy of disordered anisotropic tissue

    DEFF Research Database (Denmark)

    Nielsen, Jonathan Scharff; Dyrby, Tim Bjørn; Lundell, Henrik

    2018-01-01

    of the oscillating gradient spin echo (OGSE) experiment, giving a basic contrast mechanism closely linked to both the temporal diffusion spectrum and the compartment anisotropy. We demonstrate our new method on post mortem brain tissue and show that we retrieve the correct temporal diffusion tensor spectrum...

  1. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis

    OpenAIRE

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-01-01

    Background Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM...

  2. Quantification of diffusion and anisotropy in intracranial epidermoids using diffusion tensor metrics and p: q tensor decomposition.

    Science.gov (United States)

    Srinivasan, K; Thomas, B; Shah, D; Kannath, S K; Menon, G; Sandhyamani, S; Kesavadas, C; Kapilamoorthy, T R

    2016-12-01

    To quantitatively evaluate the diffusion tensor metrics p, q, L and fractional anisotropy in intracranial epidermoids in comparison with normal white matter in the splenium of the corpus callosum. This retrospective study included 20 consecutive patients referred to our institute. All patients had a magnetic resonance imaging (MRI) study on a 1.5-Tesla MR system. A spin-echo echo-planar DTI sequence with diffusion gradients along 30 non-collinear directions was performed. The eigen values (λ 1 , λ 2 , λ 3 ) were computed for each voxel and, using p: q tensor decomposition, the DTI metrics p, q and L-values and fractional anositropy (FA) were calculated. The region of interest (ROI) (6 pixels each) was placed within the lesion in all the cases and in the splenium of the corpus callosum. The mean FA in the lesion and splenium were 0.50 and 0.88 respectively, with a statistically significant difference between them (Ptensor decomposition, the mean p-value in the epidermoid was 1.55±0.24 and 1.35±0.20 in the splenium; the mean q-values in the epidermoid was 0.67±0.13 and 1.27±0.17 in the splenium; the differences were statistically significant (P=0.01 and <0.01 respectively). The significant difference between p- and q-values in epidermoids compared with the splenium of callosum was probably due to structural and orientation differences in the keratin flakes in epidermoids and white matter bundles in the callosum. However, no significant statistical difference in L-values was noted (P=0.44). DTI metrics p and q have the potential to quantify the diffusion and anisotropy in various tissues thereby gaining information about their internal architecture. The results also suggest that significant differences of DTI metrics p and q between epidermoid and the splenium of the corpus callosum are due to the difference in structural organization within them. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson's disease.

    Science.gov (United States)

    Zhang, Yu; Wu, I-Wei; Buckley, Shannon; Coffey, Christopher S; Foster, Eric; Mendick, Susan; Seibyl, John; Schuff, Norbert

    2015-08-01

    Parkinson's disease (PD) is histopathologically characterized by the loss of dopamine neurons in the substantia nigra pars compacta. The depletion of these neurons is thought to reduce the dopaminergic function of the nigrostriatal pathway, as well as the neural fibers that link the substantia nigra to the striatum (putamen and caudate), causing a dysregulation in striatal activity that ultimately leads to lack of movement control. Based on diffusion tensor imaging, visualizing this pathway and measuring alterations of the fiber integrity remain challenging. The objectives were to 1) develop a diffusion tensor tractography protocol for reliably tracking the nigrostriatal fibers on multicenter data; 2) test whether the integrities measured by diffusion tensor imaging of the nigrostriatal fibers are abnormal in PD; and 3) test whether abnormal integrities of the nigrostriatal fibers in PD patients are associated with the severity of motor disability and putaminal dopamine binding ratios. Diffusion tensor tractography was performed on 50 drug-naïve PD patients and 27 healthy control subjects from the international multicenter Parkinson's Progression Marker Initiative. Tractography consistently detected the nigrostriatal fibers, yielding reliable diffusion measures. Fractional anisotropy, along with radial and axial diffusivity of the nigrostriatal tract, showed systematic abnormalities in patients. In addition, variations in fractional anisotropy and radial diffusivity of the nigrostriatal tract were associated with the degree of motor deficits in PD patients. Taken together, the findings imply that the diffusion tensor imaging characteristic of the nigrostriatal tract is potentially an index for detecting and staging of early PD. © 2015 International Parkinson and Movement Disorder Society.

  4. Diffusion MRI findings in phenylketonuria

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Dept. of Radiology, Ege Univ. Hospital, Izmir (Turkey)

    2003-12-01

    Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm{sup 2}/s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm{sup 2} images with low ADC values ranging from 0.46 to 0.57 x 10{sup -3} mm{sup 2}/s. Increased diffusion pattern consisted of normal b=1000 s/mm{sup 2} images with high ADC values ranging from 1.37 to 1.63 x 10{sup -3} mm{sup 2}/s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)

  5. Diffusion MRI findings in phenylketonuria

    International Nuclear Information System (INIS)

    Sener, R.N.

    2003-01-01

    Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm 2 /s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm 2 images with low ADC values ranging from 0.46 to 0.57 x 10 -3 mm 2 /s. Increased diffusion pattern consisted of normal b=1000 s/mm 2 images with high ADC values ranging from 1.37 to 1.63 x 10 -3 mm 2 /s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)

  6. Diffusion Tensor Imaging of Heterotopia: Changes of Fractional Anisotropy during Radial Migration of Neurons

    Science.gov (United States)

    Kim, Jinna

    2010-01-01

    Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428

  7. Mathematical methods for diffusion MRI processing

    International Nuclear Information System (INIS)

    Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)

  8. Diffusion tensor imaging in polymicrogyria: a report of three cases

    International Nuclear Information System (INIS)

    Trivedi, R.; Gupta, R.K.; Prasad, K.N.; Hasan, K.M.; Hou, P.; Narayana, P.A.

    2006-01-01

    Polymicrogyria (PMG), a neuronal migration disorder, commonly manifests as a seizure disorder. The aim of this study was to look for the abnormalities in the underlying white matter using diffusion tensor imaging (DTI) that appeared normal on conventional magnetic resonance imaging (MRI) in patients with PMG. DTI was performed in three patients with PMG and eight age- and sex-matched healthy controls. Fractional anisotropy (FA) and mean diffusivity (MD) values were calculated for the cortex and adjoining subcortical white matter in both controls and patients. We observed a significantly decreased mean FA value with no significant change in the MD value in subcortical white matter underlying polymicrogyric cortex (FA=0.23±0.04, MD=1.0±0.05 x 10 -3 mm 2 /s) as compared to both contralateral (FA=0.32±0.04, MD=1.0±0.05 x 10 -3 mm 2 /s) and normal control (FA=0.32±0.04, MD=1.0±0.06 x 10 -3 mm 2 /s) white matter. Significantly increased MD and decreased FA values were also observed in the polymicrogyric cortex (FA=0.08±0.01, MD=1.2±0.10 x 10 -3 mm 2 /s) as compared to normal contralateral (FA=0.12±0.04, MD=1.1±0.09 x 10 -3 mm 2 /s) and normal control (FA=0.12±0.01, MD=1.1±0.09 x 10 -3 mm 2 /s) cortex. Significantly decreased FA values with no change in MD values in the subcortical white matter subjacent to polymicrogyric cortex reflect microstructural changes in the white matter probably due to the presence of ectopic neurons. (orig.)

  9. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  10. An exploration into diffusion tensor imaging in the bovine ocular lens

    Directory of Open Access Journals (Sweden)

    Ehsan eVaghefi

    2013-03-01

    Full Text Available We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting and TE (determines the amount of MRI-obtained signal were used to estimate apparent diffusion coefficients (ADC and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens.

  11. A Riemannian scalar measure for diffusion tensor images

    NARCIS (Netherlands)

    Astola, L.J.; Fuster, A.; Florack, L.M.J.

    2010-01-01

    We study a well-known scalar quantity in Riemannian geometry, the Ricci scalar, in the context of Diffusion Tensor Imaging (DTI), which is an emerging non-invasive medical imaging modality. We derive a physical interpretation for the Ricci scalar and explore experimentally its significance in DTI.

  12. Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Zheng

    Full Text Available BACKGROUND: To explore the characteristics of diffusion tensor imaging (DTI and magnetic resonance (MR imaging in healthy native kidneys. METHODS: Seventy-three patients without chronic kidney disease underwent DTI-MRI with spin echo-echo planar (SE-EPI sequences accompanied by an array spatial sensitivity encoding technique (ASSET. Cortical and medullary mean, axial and radial diffusivity (MD, AD and RD, fractional anisotropy (FA and primary, secondary and tertiary eigenvalues (λ1, λ2, λ3 were analysed in both kidneys and in different genders. RESULTS: Cortical MD, λ2, λ3, and RD values were higher than corresponding medullary values. The cortical FA value was lower than the medullary FA value. Medullary λ1 and RD values in the left kidney were lower than in the right kidney. Medullary λ2, and λ3 values in women were higher than those in men. Medullary FA values in women were lower than those in men. Medullary FA (r = 0.351, P = 0.002 and λ1 (r = 0.277, P = 0.018 positively correlated with eGFR. Medullary FA (r = -0.25, P = 0.033 negatively correlated with age. CONCLUSIONS: Renal water molecular diffusion differences exist in human kidneys and genders. Age and eGFR correlate with medullary FA and primary eigenvalue.

  13. Predicting patterns of glioma recurrence using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Price, Stephen J.; Pickard, John D.; Jena, Rajesh; Burnet, Neil G.; Carpenter, T.A.; Gillard, Jonathan H.

    2007-01-01

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T 2 -weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  14. Predicting patterns of glioma recurrence using diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Price, Stephen J.; Pickard, John D. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Academic Neurosurgery Unit (United Kingdom); University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Jena, Rajesh; Burnet, Neil G. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Oncology (United Kingdom); Carpenter, T.A. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences (United Kingdom); Gillard, Jonathan H. [University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Addenbrooke' s Hospital, University Department of Radiology (United Kingdom)

    2007-07-15

    Although multimodality therapy for high-grade gliomas is making some improvement in outcome, most patients will still die from their disease within a short time. We need tools that allow treatments to be tailored to an individual. In this study we used diffusion tensor imaging (DTI), a technique sensitive to subtle disruption of white-matter tracts due to tumour infiltration, to see if it can be used to predict patterns of glioma recurrence. In this study we imaged 26 patients with gliomas using DTI. Patients were imaged after 2 years or on symptomatic tumour recurrence. The diffusion tensor was split into its isotropic (p) and anisotropic (q) components, and these were plotted on T{sub 2}-weighted images to show the pattern of DTI abnormality. This was compared to the pattern of recurrence. Three DTI patterns could be identified: (a) a diffuse pattern of abnormality where p exceeded q in all directions and was associated with diffuse increase in tumour size; (b) a localised pattern of abnormality where the tumour recurred in one particular direction; and (c) a pattern of minimal abnormality seen in some patients with or without evidence of recurrence. Diffusion tensor imaging is able to predict patterns of tumour recurrence and may allow better individualisation of tumour management and stratification for randomised controlled trials. (orig.)

  15. Chronic Effects of Boxing: Diffusion Tensor Imaging and Cognitive Findings.

    Science.gov (United States)

    Wilde, Elisabeth A; Hunter, Jill V; Li, Xiaoqi; Amador, Cristian; Hanten, Gerri; Newsome, Mary R; Wu, Trevor C; McCauley, Stephen R; Vogt, Gregory S; Chu, Zili David; Biekman, Brian; Levin, Harvey S

    2016-04-01

    We used magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to evaluate the effects of boxing on brain structure and cognition in 10 boxers (8 retired, 2 active; mean age = 45.7 years; standard deviation [SD] = 9.71) and 9 participants (mean age = 43.44; SD = 9.11) in noncombative sports. Evans Index (maximum width of the anterior horns of the lateral ventricles/maximal width of the internal diameter of the skull) was significantly larger in the boxers (F = 4.52; p = 0.050; Cohen's f = 0.531). Word list recall was impaired in the boxers (F(1,14) = 10.70; p = 0.006; f = 0.84), whereas implicit memory measured by faster reaction time (RT) to a repeating sequence of numbers than to a random sequence was preserved (t = 2.52; p boxing had the most consistent, negative correlations with FA, ranging from -0.65 for the right ventral striatum to -0.92 for the right cerebral peduncle. Years of boxing was negatively related to the number of words consistently recalled over trials (r = -0.74; p = 0.02), delayed recall (r = -0.83; p = 0.003), and serial RT (r = 0.66; p = 0.05). We conclude that microstructural integrity of white matter tracts is related to declarative memory and response speed in boxers and to the extent of boxing exposure. Implications for chronic traumatic encephalopathy are discussed.

  16. Spinal diffusion tensor imaging: a comprehensive review with emphasis on spinal cord anatomy and clinical applications.

    Science.gov (United States)

    Hendrix, Philipp; Griessenauer, Christoph J; Cohen-Adad, Julien; Rajasekaran, Shanmuganathan; Cauley, Keith A; Shoja, Mohammadali M; Pezeshk, Parham; Tubbs, R Shane

    2015-01-01

    Magnetic resonance imaging technology allows for in vivo visualization of fiber tracts of the central nervous system using diffusion-weighted imaging sequences and data processing referred to as "diffusion tensor imaging" and "diffusion tensor tractography." While protocols for high-fidelity diffusion tensor imaging of the brain are well established, the spinal cord has proven a more difficult target for diffusion tensor methods. Here, we review the current literature on spinal diffusion tensor imaging and tractography with special emphasis on neuroanatomical correlations and clinical applications. © 2014 Wiley Periodicals, Inc.

  17. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... model to enable axon diameter mapping in voxels with crossing fibers. We show in simulation that the technique can provide robust axon diameter estimates in a two-fiber crossing with the crossing angle as small as 45 degrees. Using ex vivo imaging data, we further demonstrate the feasibility...

  18. Bayesian uncertainty quantification in linear models for diffusion MRI.

    Science.gov (United States)

    Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans

    2018-03-29

    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences.

    Science.gov (United States)

    Middleton, Dana M; Li, Jonathan Y; Lee, Hui J; Chen, Steven; Dickson, Patricia I; Ellinwood, N Matthew; White, Leonard E; Provenzale, James M

    2017-08-01

    Purpose The purpose of this study was to investigate a novel tensor shape plot analysis technique of diffusion tensor imaging data as a means to assess microstructural differences in brain tissue. We hypothesized that this technique could distinguish white matter regions with different microstructural compositions. Methods Three normal canines were euthanized at seven weeks old. Their brains were imaged using identical diffusion tensor imaging protocols on a 7T small-animal magnetic resonance imaging system. We examined two white matter regions, the internal capsule and the centrum semiovale, each subdivided into an anterior and posterior region. We placed 100 regions of interest in each of the four brain regions. Eigenvalues for each region of interest triangulated onto tensor shape plots as the weighted average of three shape metrics at the plot's vertices: CS, CL, and CP. Results The distribution of data on the plots for the internal capsule differed markedly from the centrum semiovale data, thus confirming our hypothesis. Furthermore, data for the internal capsule were distributed in a relatively tight cluster, possibly reflecting the compact and parallel nature of its fibers, while data for the centrum semiovale were more widely distributed, consistent with the less compact and often crossing pattern of its fibers. This indicates that the tensor shape plot technique can depict data in similar regions as being alike. Conclusion Tensor shape plots successfully depicted differences in tissue microstructure and reflected the microstructure of individual brain regions. This proof of principle study suggests that if our findings are reproduced in larger samples, including abnormal white matter states, the technique may be useful in assessment of white matter diseases.

  20. Magnetic resonance temporal diffusion tensor spectroscopy of disordered anisotropic tissue

    DEFF Research Database (Denmark)

    Nielsen, Jonathan Scharff; Dyrby, Tim B; Lundell, Henrik

    2018-01-01

    Molecular diffusion measured with diffusion weighted MRI (DWI) offers a probe for tissue microstructure. However, inferring microstructural properties from conventional DWI data is a complex inverse problem and has to account for heterogeneity in sizes, shapes and orientations of the tissue...

  1. A GENERALIZED DIFFUSION TENSOR FOR FULLY ANISOTROPIC DIFFUSION OF ENERGETIC PARTICLES IN THE HELIOSPHERIC MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.

    2012-01-01

    The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.

  2. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode.

    Science.gov (United States)

    Sakaie, Ken; Lowe, Mark

    2017-04-01

    To quantify and retrospectively correct for systematic differences in diffusion tensor imaging (DTI) measurements due to differences in coil combination mode. Multi-channel coils are now standard among MRI systems. There are several options for combining signal from multiple coils during image reconstruction, including sum-of-squares (SOS) and adaptive combine (AC). This contribution examines the bias between SOS- and AC-derived measures of tissue microstructure and a strategy for limiting that bias. Five healthy subjects were scanned under an institutional review board-approved protocol. Each set of raw image data was reconstructed twice-once with SOS and once with AC. The diffusion tensor was calculated from SOS- and AC-derived data by two algorithms-standard log-linear least squares and an approach that accounts for the impact of coil combination on signal statistics. Systematic differences between SOS and AC in terms of tissue microstructure (axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy) were evaluated on a voxel-by-voxel basis. SOS-based tissue microstructure values are systematically lower than AC-based measures throughout the brain in each subject when using the standard tensor calculation method. The difference between SOS and AC can be virtually eliminated by taking into account the signal statistics associated with coil combination. The impact of coil combination mode on diffusion tensor-based measures of tissue microstructure is statistically significant but can be corrected retrospectively. The ability to do so is expected to facilitate pooling of data among imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Diffusion tensor metrics as biomarkers in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Julio Acosta-Cabronero

    Full Text Available Although diffusion tensor imaging has been a major research focus for Alzheimer's disease in recent years, it remains unclear whether it has sufficient stability to have biomarker potential. To date, frequently inconsistent results have been reported, though lack of standardisation in acquisition and analysis make such discrepancies difficult to interpret. There is also, at present, little knowledge of how the biometric properties of diffusion tensor imaging might evolve in the course of Alzheimer's disease.The biomarker question was addressed in this study by adopting a standardised protocol both for the whole brain (tract-based spatial statistics, and for a region of interest: the midline corpus callosum. In order to study the evolution of tensor changes, cross-sectional data from very mild (N = 21 and mild (N = 22 Alzheimer's disease patients were examined as well as a longitudinal cohort (N = 16 that had been rescanned at 12 months.The results revealed that increased axial and mean diffusivity are the first abnormalities to occur and that the first region to develop such significant differences was mesial parietal/splenial white matter; these metrics, however, remained relatively static with advancing disease indicating they are suitable as 'state-specific' markers. In contrast, increased radial diffusivity, and therefore decreased fractional anisotropy-though less detectable early-became increasingly abnormal with disease progression, and, in the splenium of the corpus callosum, correlated significantly with dementia severity; these metrics therefore appear 'stage-specific' and would be ideal for monitoring disease progression. In addition, the cross-sectional and longitudinal analyses showed that the progressive abnormalities in radial diffusivity and fractional anisotropy always occurred in areas that had first shown an increase in axial and mean diffusivity. Given that the former two metrics correlate with dementia severity

  4. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

    International Nuclear Information System (INIS)

    Bao, L J; Zhu, Y M; Liu, W Y; Pu, Z B; Magnin, I E; Croisille, P; Robini, M

    2009-01-01

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

  5. White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Ke, Xiaoyan; Tang, Tianyu; Hong, Shanshan; Hang, Yueyue; Zou, Bing; Li, Huiguo; Zhou, Zhenyu; Ruan, Zongcai; Lu, Zuhong; Tao, Guotai; Liu, Yijun

    2009-04-10

    This study explored white matter abnormalities in a group of Chinese children with high functioning autism (HFA). Twelve male children with HFA and ten matched typically developing children underwent diffusion tensor imaging (DTI) as well three-dimensional T1-weighted MRI for voxel-based morphometry (VBM). We found a significant decrease of the white matter density in the right frontal lobe, left parietal lobe and right anterior cingulate and a significant increase in the right frontal lobe, left parietal lobe and left cingulate gyrus in the HFA group compared with the control group. The HFA group also had decreased FA in the frontal lobe and left temporal lobe. By combining DT-MRI FA and MRI volumetric analyses based on the VBM model, the results showed consistent white matter abnormalities in a group of Chinese children with HFA.

  6. 2015 MICCAI Workshop on Computational Diffusion MRI

    CERN Document Server

    Ghosh, Aurobrata; Kaden, Enrico; Rathi, Yogesh; Reisert, Marco

    2016-01-01

    These Proceedings of the 2015 MICCAI Workshop “Computational Diffusion MRI” offer a snapshot of the current state of the art on a broad range of topics within the highly active and growing field of diffusion MRI. The topics vary from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms, new computational methods applied to diffusion magnetic resonance imaging data, and applications in neuroscientific studies and clinical practice. Over the last decade interest in diffusion MRI has exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into clinical practice. New processing methods are essential for addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber t...

  7. Dipy, a library for the analysis of diffusion MRI data.

    Science.gov (United States)

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  8. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging

    OpenAIRE

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-01-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed dur...

  9. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma

    DEFF Research Database (Denmark)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja

    2017-01-01

    the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve...... target definition in glioblastoma (GBM). MATERIAL AND METHODS: Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation...

  10. Adaptive distance learning scheme for diffusion tensor imaging using kernel target alignment

    NARCIS (Netherlands)

    Rodrigues, P.R.; Vilanova, A.; Twellmann, T.; Haar Romenij, ter B.M.; Alexander, D.; Gee, J.; Whitaker, R.

    2008-01-01

    In segmentation techniques for Diffusion Tensor Imaging (DTI) data, the similarity of diffusion tensors must be assessed for partitioning data into regions which are homogeneous in terms of tensor characteristics. Various distance measures have been proposed in literature for analysing the

  11. Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation

    OpenAIRE

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; Bhatia, Nitin N.; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performedon a healthy 31-year-old man with asymptomatic lumbar disc herniation. Althoughthe left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic...

  12. Regional Cerebral Disease Progression in Friedreich's Ataxia: A Longitudinal Diffusion Tensor Imaging Study.

    Science.gov (United States)

    Mascalchi, Mario; Toschi, Nicola; Giannelli, Marco; Ginestroni, Andrea; Della Nave, Riccardo; Tessa, Carlo; Piacentini, Silvia; Dotti, Maria Teresa; Aiello, Marco; Nicolai, Emanuele; Soricelli, Andrea; Salvi, Fabrizio; Diciotti, Stefano

    2016-01-01

    Imaging biomarkers of disease progression are desirable in inherited ataxias. MRI has demonstrated brain damage in Friedreich ataxia (FRDA) in form of regional atrophy of the medulla, peridentate cerebellar white matter (WM) and superior cerebellar peduncles (visible in T1-weighted images) and of change of microstructural characteristics of WM tracts of the brainstem, cerebellar peduncles, cerebellum, and supratentorial structures (visible through diffusion-weighted imaging). We explored the potential of brain MR morphometry and diffusion tensor imaging (DTI) to track the progression of neurodegeneration in FRDA. Eight patients (5F, 3M; age 13.4-41.2 years) and 8 healthy controls (2F, 6M; age 26.2-48.3 years) underwent 2 MRI examinations (mean 3.9 and 4.1 years apart, respectively) on the same 1.5T scanner. The protocol included 3D T1-weighted images and axial diffusion-weighted images (b-value 1,000 s/mm(2)) for calculating maps of fractional anisotropy, mean, axial and radial diffusivity, and mode of anisotropy. Tensor-based morphometry was used to investigate regional volume changes and tract-based spatial statistics was used to investigate microstructural changes in WM tracts. Longitudinal analyses showed no differences in regional volume changes but a significant difference in axial diffusivity changes in cerebral and corpus callosum WM of patients as compared to controls (mean longitudinal rate of change for axial diffusivity: -.02 × 10(-3) mm(2)/s/year in patients vs. .01 × 10(-3) mm(2)/s/year in controls). No correlation with number of triplets, disease duration, and worsening of the clinical deficit was observed. DTI can track brain microstructural changes in FRDA and can be considered a potential biomarker of disease progression. Copyright © 2015 by the American Society of Neuroimaging.

  13. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions

    International Nuclear Information System (INIS)

    Cakir, Ozgur; Arslan, Arzu; Inan, Nagihan; Anık, Yonca; Sarısoy, Tahsin; Gumustas, Sevtap; Akansel, Gur

    2013-01-01

    Purpose: To evaluate the diagnostic efficiency of the diffusion parameters measured by conventional diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for discrimination of malignant breast lesions from benign lesions and the normal breast. Materials and methods: The study included 52 women with 55 breast lesions (30 malignant, 25 benign). DTI and DWI were performed complementary to dynamic contrast MRI at 3T. Apparent diffusion coefficient (ADC) of DWI, mean diffusivity (MD) and fractional anisotropy (FA) values of DTI were measured for lesions and contralateral breast parenchyma in each patient. We used b factors of 0, 50, 850, 1000 and 1500 s/mm 2 for DWI and b 0 and 1000 s/mm 2 for DTI. ADC, MD and FA values were compared between malignant and benign lesions, and the normal parenchyma by univariate and multivariate analyses. Results: Diffusion parameters showed no difference according to menopausal status in the normal breast. ADC and MD values of the malignant lesions were significantly lower than benign lesions and normal parenchyma (p = 0.001). The FA showed no statistical significance. With the cut-off values of ≤1.23 × 10 −3 mm 2 /s (b 0–1000 s/mm 2 ) and ≤1.12 × 10 −3 mm 2 /s (b 0–1500 s/mm 2 ), ADC showed 92.85% and 96.15% sensitivity; 72.22% and 73.52% PPV, respectively. With a cut-off value of ≤1.27 × 10 −3 mm 2 /s (b 1000 s/mm 2 ), MD was 100% sensitive with a PPV of 65.90%. Comparing the diagnostic performance of the parameters in DTI with DWI, we obtained similar efficiency of ADC with b values of 0,1000 and 0,1500 s/mm 2 and MD with a b value of 0, 1000 s/mm 2 (AUC = 0.82 ± 0.07). Conclusion: ADC of DWI and MD of DTI values provide significant discriminative factors for benign and malignant breast lesions. FA measurement was not discriminative. Supported with clinical and dynamic contrast MRI findings, DWI and DTI findings provide significant contribution to the final radiologic decision

  14. Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Ozgur, E-mail: cakirozgur@hotmail.com; Arslan, Arzu, E-mail: arzu.s.arslan@gmail.com; Inan, Nagihan, E-mail: nagihaninan@yahoo.com.tr; Anık, Yonca, E-mail: yoncaanik@yahoo.com; Sarısoy, Tahsin, E-mail: htsarisoy@yahoo.com; Gumustas, Sevtap, E-mail: svtgumustas@yahoo.com; Akansel, Gur, E-mail: gakansel@gmail.com

    2013-12-01

    Purpose: To evaluate the diagnostic efficiency of the diffusion parameters measured by conventional diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for discrimination of malignant breast lesions from benign lesions and the normal breast. Materials and methods: The study included 52 women with 55 breast lesions (30 malignant, 25 benign). DTI and DWI were performed complementary to dynamic contrast MRI at 3T. Apparent diffusion coefficient (ADC) of DWI, mean diffusivity (MD) and fractional anisotropy (FA) values of DTI were measured for lesions and contralateral breast parenchyma in each patient. We used b factors of 0, 50, 850, 1000 and 1500 s/mm{sup 2} for DWI and b 0 and 1000 s/mm{sup 2} for DTI. ADC, MD and FA values were compared between malignant and benign lesions, and the normal parenchyma by univariate and multivariate analyses. Results: Diffusion parameters showed no difference according to menopausal status in the normal breast. ADC and MD values of the malignant lesions were significantly lower than benign lesions and normal parenchyma (p = 0.001). The FA showed no statistical significance. With the cut-off values of ≤1.23 × 10{sup −3} mm{sup 2}/s (b 0–1000 s/mm{sup 2}) and ≤1.12 × 10{sup −3} mm{sup 2}/s (b 0–1500 s/mm{sup 2}), ADC showed 92.85% and 96.15% sensitivity; 72.22% and 73.52% PPV, respectively. With a cut-off value of ≤1.27 × 10{sup −3} mm{sup 2}/s (b 1000 s/mm{sup 2}), MD was 100% sensitive with a PPV of 65.90%. Comparing the diagnostic performance of the parameters in DTI with DWI, we obtained similar efficiency of ADC with b values of 0,1000 and 0,1500 s/mm{sup 2} and MD with a b value of 0, 1000 s/mm{sup 2} (AUC = 0.82 ± 0.07). Conclusion: ADC of DWI and MD of DTI values provide significant discriminative factors for benign and malignant breast lesions. FA measurement was not discriminative. Supported with clinical and dynamic contrast MRI findings, DWI and DTI findings provide significant

  15. Principles and implementation of diffusion-weighted and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Roberts, Timothy P.L.; Schwartz, E.S.

    2007-01-01

    We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of ''apparent'' diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies. (orig.)

  16. FADTTS: functional analysis of diffusion tensor tract statistics.

    Science.gov (United States)

    Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H

    2011-06-01

    The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys

    International Nuclear Information System (INIS)

    Palmucci, Stefano; Cappello, Giuseppina; Attinà, Giancarlo; Foti, Pietro Valerio; Siverino, Rita Olivia Anna; Roccasalva, Federica; Piccoli, Marina; Sinagra, Nunziata; Milone, Pietro; Veroux, Massimiliano; Ettorre, Giovanni Carlo

    2015-01-01

    The aim of this study is to investigate the relation between renal indexes and functional MRI in a population of kidney transplant recipients who underwent MR with diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) of the transplanted graft. Study population included 40 patients with single kidney transplant. The patients were divided into 3 groups, on the basis of creatinine clearance (CrCl) values calculated using Cockcroft-Gault formula: group A, including patients with normal renal function (CrCl ≥ 60 mL/min); group B, which refers to patients with moderate renal impairment (CrCl > 30 but <60 mL/min); and, finally, group C, which means severe renal deterioration (CrCl ≤ 30 mL/min). All patients were investigated with a 1.5 Tesla MRI scanner, acquiring DWI and DTI sequences. A Mann–Whitney U test was adopted to compare apparent diffusion coefficients (ADCs) and fractional anisotropy (FA) measurements between groups. Receiver operating characteristic (ROC) curves were created for prediction of normal renal function (group A) and renal failure (group C). Pearson correlation was performed between renal clearance and functional imaging parameter (ADC and FA), obtained for cortical and medullar regions. Mann–Whitney U test revealed a highly significant difference (p < 0.01) between patients with low CrCl (group C) and normal CrCl (group A) considering both medullar ADC and FA and cortical ADC. Regarding contiguous groups, the difference between group B and C was highly significant (p < 0.01) for medullar ADC and significant (p < 0.05) for cortical ADC and medullar FA. No difference between these groups was found considering cortical FA. Analyzing groups A and B, we found a significant difference (p < 0.05) for medullar both ADC and FA, while no difference was found for cortical ADC and FA. Strongest Pearson correlation was found between CrCl and medullar ADC (r = 0.65). For predicting normal renal function or severe renal impairment, highest

  18. Dipy, a library for the analysis of diffusion MRI data

    Directory of Open Access Journals (Sweden)

    Eleftherios eGaryfallidis

    2014-02-01

    Full Text Available Diffusion Imaging in Python (Dipy is a free and open source software projectfor the analysis of data from diffusion magnetic resonance imaging (dMRIexperiments. dMRI is an application of MRI that can be used to measurestructural features of brain white matter. Many methods have been developed touse dMRI data to model the local configuration of white matter nerve fiberbundles and infer the trajectory of bundles connecting different parts of thebrain.Dipy gathers implementations of many different methods in dMRI, including:diffusion signal pre-processing; reconstruction of diffusion distributions inindividual voxels; fiber tractography and fiber track post-processing, analysisand visualization. Dipy aims to provide transparent implementations forall the different steps of dMRI analysis with a uniform programming interface.We have implemented classical signal reconstruction techniques, such as thediffusion tensor model and deterministic fiber tractography. In addition,cutting edge novel reconstruction techniques are implemented, such asconstrained spherical deconvolution and diffusion spectrum imaging withdeconvolution, as well as methods for probabilistic tracking and originalmethods for tractography clustering. Many additional utility functions areprovided to calculate various statistics, informative visualizations, as wellas file-handling routines to assist in the development and use of noveltechniques.In contrast to many other scientific software projects, Dipy is not beingdeveloped by a single research group. Rather, it is an open project thatencourages contributions from any scientist/developer through GitHub and opendiscussions on the project mailing list. Consequently, Dipy today has aninternational team of contributors, spanning seven different academic institutionsin five countries and three continents, which is still growing.

  19. A Review of Traumatic Axonal Injury following Whiplash Injury As Demonstrated by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2018-02-01

    Full Text Available Whiplash is a bony or soft tissue injury resulting from an acceleration–deceleration energy transfer in the neck. Although patients with whiplash injury often complain of cerebral symptoms, and previous studies have reported evidence indicating brain injury, such an association has not been clearly elucidated. Traumatic axonal injury (TAI is tearing of axons due to indirect shearing forces during acceleration, deceleration, and rotation of the brain or to direct head trauma. Diffusion tensor imaging (DTI has a unique advantage to detect TAI in patients whose conventional brain CT or magnetic resonance imaging (MRI results were negative following head trauma. Since the introduction of DTI, six studies using diffusion tensor tractography (DTT based on DTI data have reported TAI in patients with whiplash injury, even though conventional brain CT or MRI results were negative. A precise TAI diagnosis in whiplash patients is clinically important for proper management and prognosis. Among the methods employed to diagnose TAI in the six previous studies, the common diagnostic approach for neural tract TAI in individual patients with whiplash injury were (1 whiplash injury history due to car accident; (2 development of new clinical symptoms and signs after whiplash injury; (3 evidence of neural tract TAI in DTT results, mainly via configurational analysis; and (4 coincidence of newly developed clinical manifestations and the function of injured neural tracts. All six studies were individual patient case studies; therefore, further prospective studies involving larger number of subjects should be encouraged.

  20. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  1. Traumatic brain injury and the post-concussion syndrome: A diffusion tensor tractography study

    International Nuclear Information System (INIS)

    D’souza, Maria M; Trivedi, Richa; Singh, Kavita; Grover, Hemal; Choudhury, Ajay; Kaur, Prabhjot; Kumar, Pawan; Tripathi, Rajendra Prashad

    2015-01-01

    The aim of the present study is to evaluate diffusion tensor tractography (DTT) as a tool for detecting diffuse axonal injury in patients of acute, mild, and moderate traumatic brain injury (TBI), using two diffusion variables: Fractional anisotropy (FA) and mean diffusivity (MD). The correlation of these indices with the severity of post-concussive symptoms was also assessed. Nineteen patients with acute, mild, or moderate TBI and twelve age- and sex-matched healthy controls were recruited. Following Magnetic Resonance Imaging (MRI) on a 3.0-T scanner, DTT was performed using the ‘fiber assignment by continuous tracking’ (FACT) algorithm for fiber reconstruction. Appropriate statistical tools were used to see the difference in FA and MD values between the control and patient groups. In the latter group, the severity of post-concussive symptoms was assessed six months following trauma, using the Rivermead Postconcussion Symptoms Questionnaire (RPSQ). The patients displayed significant reduction in FA compared to the controls (P < 0.05) in several tracts, notably the corpus callosum, fornix, bilateral uncinate fasciculus, and bilateral superior thalamic radiations. Changes in MD were statistically significant in the left uncinate, inferior longitudinal fasciculus, and left posterior thalamic radiation. A strong correlation between these indices and the RPSQ scores was observed in several white matter tracts. Diffusion tensor imaging (DTI)-based quantitative analysis in acute, mild, and moderate TBI can identify axonal injury neuropathology, over and above that visualized on conventional MRI scans. Furthermore, the significant correlation observed between FA and MD indices and the severity of post-concussive symptoms could make it a useful predictor of the long-term outcome

  2. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    NARCIS (Netherlands)

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy

  3. MRI shows thickening and altered diffusion in the median and ulnar nerves in multifocal motor neuropathy

    DEFF Research Database (Denmark)

    Haakma, Wieke; Jongbloed, Bas A.; Froeling, Martijn

    2017-01-01

    Objectives To study disease mechanisms in multifocal motor neuropathy (MMN) with magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of the median and ulnar nerves. Methods We enrolled ten MMN patients, ten patients with amyotrophic lateral sclerosis (ALS) and ten healthy controls...

  4. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    Science.gov (United States)

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In

  5. Diffusion tensor analysis of corpus callosum in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shoichi; Makino, Takahiro; Shirai, Wakako; Hattori, Takamichi [Department of Neurology, Graduate School of Medicine, Chiba University (Japan)

    2008-11-15

    Progressive supranuclear palsy (PSP) is a neurodegenerative disease featuring parkinsonism, supranuclear ophthalmoplegia, dysphagia, and frontal lobe dysfunction. The corpus callosum which consists of many commissure fibers probably reflects cerebral cortical function. Several previous reports showed atrophy or diffusion abnormalities of anterior corpus callosum in PSP patients, but partitioning method used in these studies was based on data obtained in nonhuman primates. In this study, we performed a diffusion tensor analysis using a new partitioning method for the human corpus callosum. Seven consecutive patients with PSP were compared with 29 age-matched patients with Parkinson's Disease (PD) and 19 age-matched healthy control subjects. All subjects underwent diffusion tensor magnetic resonance imaging, and the corpus callosum was partitioned into five areas on the mid-sagittal plane according to a recently established topography of human corpus callosum (CC1-prefrontal area, CC2-premotor and supplementary motor area, CC3-motor area, CC4-sensory area, CC5-parietal, temporal, and occipital area). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in each area and differences between groups were analyzed. In the PSP group, FA values were significantly decreased in CC1 and CC2, and ADC values were significantly increased in CC1 and CC2. Receiver operating characteristic analysis showed excellent reliability of FA and ADC analyses of CC1 for differentiating PSP from PD. The anterior corpus callosum corresponding to the prefrontal, premotor, and supplementary motor cortices is affected in PSP patients. This analysis can be an additional test for further confirmation of the diagnosis of PSP.

  6. Diffusion tensor analysis of corpus callosum in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Ito, Shoichi; Makino, Takahiro; Shirai, Wakako; Hattori, Takamichi

    2008-01-01

    Progressive supranuclear palsy (PSP) is a neurodegenerative disease featuring parkinsonism, supranuclear ophthalmoplegia, dysphagia, and frontal lobe dysfunction. The corpus callosum which consists of many commissure fibers probably reflects cerebral cortical function. Several previous reports showed atrophy or diffusion abnormalities of anterior corpus callosum in PSP patients, but partitioning method used in these studies was based on data obtained in nonhuman primates. In this study, we performed a diffusion tensor analysis using a new partitioning method for the human corpus callosum. Seven consecutive patients with PSP were compared with 29 age-matched patients with Parkinson's Disease (PD) and 19 age-matched healthy control subjects. All subjects underwent diffusion tensor magnetic resonance imaging, and the corpus callosum was partitioned into five areas on the mid-sagittal plane according to a recently established topography of human corpus callosum (CC1-prefrontal area, CC2-premotor and supplementary motor area, CC3-motor area, CC4-sensory area, CC5-parietal, temporal, and occipital area). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in each area and differences between groups were analyzed. In the PSP group, FA values were significantly decreased in CC1 and CC2, and ADC values were significantly increased in CC1 and CC2. Receiver operating characteristic analysis showed excellent reliability of FA and ADC analyses of CC1 for differentiating PSP from PD. The anterior corpus callosum corresponding to the prefrontal, premotor, and supplementary motor cortices is affected in PSP patients. This analysis can be an additional test for further confirmation of the diagnosis of PSP

  7. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Dudink, Jeroen; Govaert, Paul; Zwol, Arjen L. van; Conneman, Nikk; Goudoever, Johannes B. van [Erasmus MC-Sophia Children' s Hospital, Division of Neonatology, Department of Paediatrics, Rotterdam (Netherlands); Buijs, Jan [Maxima Medical Center, Division of Neonatology, Department of Paediatrics, Veldhoven (Netherlands); Lequin, Maarten [Erasmus MC-Sophia Children' s Hospital, Division of Paediatrics, Department of Radiology, Rotterdam, Zuid-holland (Netherlands)

    2010-08-15

    Many intervention studies in preterm infants aim to improve neurodevelopmental outcome, but short-term proxy outcome measurements are lacking. Cortical plate and subplate development could be such a marker. Our aim was to provide normal DTI reference values for the cortical plate and subplate of preterm infants. As part of an ongoing study we analysed diffusion tensor imaging (DTI) images of 19 preterm infants without evidence of injury on conventional MRI, with normal outcome (Bayley-II assessed at age 2), and scanned in the first 4 days of life. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the frontal and temporal subplate and cortical plate were measured in single and multiple voxel regions of interest (ROI) placed on predefined regions. Using single-voxel ROIs, statistically significant inverse correlation was found between gestational age (GA) and FA of the frontal (r = -0.5938, P = 0.0058) and temporal (r = -0.4912, P = 0.0327) cortical plate. ADC values had a significant positive correlation with GA in the frontal (r = 0.5427, P = 0.0164) and temporal (r = 0.5540, P = 0.0138) subplate. Diffusion tensor imaging allows in vivo exploration of the evolving cortical plate and subplate. We provide FA and ADC values of the subplate and cortical plate in very-low-birth-weight (VLBW) infants with normal developmental outcome that can be used as reference values. (orig.)

  8. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants

    International Nuclear Information System (INIS)

    Dudink, Jeroen; Govaert, Paul; Zwol, Arjen L. van; Conneman, Nikk; Goudoever, Johannes B. van; Buijs, Jan; Lequin, Maarten

    2010-01-01

    Many intervention studies in preterm infants aim to improve neurodevelopmental outcome, but short-term proxy outcome measurements are lacking. Cortical plate and subplate development could be such a marker. Our aim was to provide normal DTI reference values for the cortical plate and subplate of preterm infants. As part of an ongoing study we analysed diffusion tensor imaging (DTI) images of 19 preterm infants without evidence of injury on conventional MRI, with normal outcome (Bayley-II assessed at age 2), and scanned in the first 4 days of life. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the frontal and temporal subplate and cortical plate were measured in single and multiple voxel regions of interest (ROI) placed on predefined regions. Using single-voxel ROIs, statistically significant inverse correlation was found between gestational age (GA) and FA of the frontal (r = -0.5938, P = 0.0058) and temporal (r = -0.4912, P = 0.0327) cortical plate. ADC values had a significant positive correlation with GA in the frontal (r = 0.5427, P = 0.0164) and temporal (r = 0.5540, P = 0.0138) subplate. Diffusion tensor imaging allows in vivo exploration of the evolving cortical plate and subplate. We provide FA and ADC values of the subplate and cortical plate in very-low-birth-weight (VLBW) infants with normal developmental outcome that can be used as reference values. (orig.)

  9. MR diffusion tensor analysis of schizophrenic brain using statistical parametric mapping

    International Nuclear Information System (INIS)

    Yamada, Haruyasu; Abe, Osamu; Kasai, Kiyoto

    2005-01-01

    The purpose of this study is to investigate diffusion anisotropy in the schizophrenic brain by voxel-based analysis of diffusion tensor imaging (DTI), using statistical parametric mapping (SPM). We studied 33 patients with schizophrenia diagnosed by diagnostic and statistical manual of mental disorders (DSM)-IV criteria and 42 matched controls. The data was obtained with a 1.5 T MRI system. We used single-shot spin-echo planar sequences (repetition time/echo time (TR/TE)=5000/102 ms, 5 mm slice thickness and 1.5 mm gap, field of view (FOV)=21 x 21 cm 2 , number of excitation (NEX)=4, 128 x 128 pixel matrix) for diffusion tensor acquisition. Diffusion gradients (b-value of 500 or 1000 s/mm 2 ) were applied on two axes simultaneously. Diffusion properties were measured along 6 non-linear directions. The structural distortion induced by the large diffusion gradients was corrected, based on each T 2 -weighted echo-planar image (b=0 s/mm 2 ). The fractional anisotropy (FA) maps were generated on a voxel-by-voxel basis. T 2 -weighted echo-planar images were then segmented into gray matter, white matter, and cerebrospinal fluid, using SPM (Wellcome Department of Imaging, University College London, UK). All apparent diffusion coefficient (ADC) and FA maps in native space were transformed to the stereotactic space by registering each of the images to the same template image. The normalized data was smoothed and analyzed using SPM. The significant FA decrease in the patient group was found in the uncinate fasciculus, parahippocampal white matter, anterior cingulum and other areas (corrected p<0.05). No significant increased region was noted. Our results may reflect reduced diffusion anisotropy of the white matter pathway of the limbic system as shown by the decreased FA. Manual region-of-interest analysis is usually more sensitive than voxel-based analysis, but it is subjective and difficult to set with anatomical reproducibility. Voxel-based analysis of the diffusion tensor

  10. Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy.

    Science.gov (United States)

    Upadhyay, Jaymin; Hallock, Kevin; Erb, Kelley; Kim, Dae-Shik; Ronen, Itamar

    2007-11-01

    In diffusion tensor imaging (DTI) the anisotropic movement of water is exploited to characterize microstructure. One confounding issue of DTI is the presence of intra- and extracellular components contributing to the measured diffusivity. This causes an ambiguity in determining the underlying cause of diffusion properties, particularly the fractional anisotropy (FA). In this study an intracellular constituent, N-acetyl aspartate (NAA), was used to probe intracellular diffusion, while water molecules were used to probe the combined intra- and extracellular diffusion. NAA and water diffusion measurements were made in anterior and medial corpus callosum (CC) regions, which are referred to as R1 and R2, respectively. FA(NAA) was found to be greater than FA(Water) in both CC regions, thus indicating a higher degree of anisotropy within the intracellular space in comparison to the combined intra- and extracellular spaces. A decreasing trend in the FA of NAA and water was observed between R1 and R2, while the radial diffusivity (RD) for both molecules increased. The increase in RD(NAA) is particularly significant, thus explaining the more significant decrease in FA(NAA) between the two regions. It is suggested that diffusion tensor spectroscopy of NAA can potentially be used to further characterize microscopic anatomic organization in white matter. Copyright 2007 Wiley-Liss, Inc.

  11. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  12. Diffusion tensor magnetic resonance imaging of the pancreas.

    Directory of Open Access Journals (Sweden)

    Noam Nissan

    Full Text Available To develop a diffusion-tensor-imaging (DTI protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues.Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC, were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI, whereas a standard clinical protocol complemented the PDAC patients' scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC, and fractional anisotropy (FA, as well as a λ1-vector map, and a main diffusion-direction map.DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm² yielded: λ1 = (2.65±0.35×10⁻³, λ2 = (1.87±0.22×10⁻³, λ3 = (1.20±0.18×10⁻³, ADC = (1.91±0.22×10⁻³ (all in mm²/s units and FA = 0.38±0.06. Using b-values of 100,500 s/mm² led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001 and a significant increase (p<0.0001 in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM component at b≤100 s/mm², which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm² and 100,500 s/mm² b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue.DTI using two reference b-values 0 and 100 s/mm² enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC

  13. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  14. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  15. Comparison of quality control software tools for diffusion tensor imaging.

    Science.gov (United States)

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui

    2015-04-01

    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging.

    Science.gov (United States)

    Morisaki, Shinsuke; Kawai, Yuko; Umeda, Masahiro; Nishi, Mayumi; Oda, Ryo; Fujiwara, Hiroyoshi; Yamada, Kei; Higuchi, Toshihiro; Tanaka, Chuzo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2011-03-01

    To evaluate the sensitivity of diffusion tensor imaging (DTI) in assessing peripheral nerve regeneration in vivo. We assessed the changes in the DTI parameters and histological analyses after nerve injury to examine degeneration and regeneration in the rat sciatic nerves. For magnetic resonance imaging (MRI), 16 rats were randomly divided into two groups: group P (permanently crushed; n = 7) and group T (temporally crushed; n = 9). Serial MRI of the right leg was performed before the operation, and then performed at the timepoints of 1, 2, 3, and 4 weeks after the crush injury. The changes in fractional anisotropy (FA), axial diffusivity (λ(∥)), and radial diffusivity (λ(⟂)) were quantified. For histological analyses, the number of axons and the myelinated axon areas were quantified. Decreased FA and increased λ(⟂) were observed in the degenerative phase, and increased FA and decreased λ(⟂) were observed in the regenerative phase. The changes in FA and λ(⟂) were strongly correlated with histological changes, including axonal and myelin regeneration. DTI parameters, especially λ(⟂) , can be good indicators for peripheral nerve regeneration and can be applied as noninvasive diagnostic tools for a variety of neurological diseases. Copyright © 2011 Wiley-Liss, Inc.

  17. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  18. Neuropsychological Correlates of Diffusion Tensor Imaging in Schizophrenia

    Science.gov (United States)

    Nestor, Paul G.; Kubicki, Marek; Gurrera, Ronald J.; Niznikiewicz, Margaret; Frumin, Melissa; McCarley, Robert W.; Shenton, Martha E.

    2009-01-01

    Patients with schizophrenia (n = 41) and healthy comparison participants (n = 46) completed neuropsychological measures of intelligence, memory, and executive function. A subset of each group also completed magnetic resonance diffusion tensor imaging (DTI) studies (fractional anisotropy and cross-sectional area) of the uncinate fasciculus (UF) and cingulate bundle (CB). Patients with schizophrenia showed reduced levels of functioning across all neuropsychological measures. In addition, selective neuropsychological–DTI relationships emerged. Among patients but not controls, lower levels of declarative–episodic verbal memory correlated with reduced left UF, whereas executive function errors related to performance monitoring correlated with reduced left CB. The data suggested abnormal DTI patterns linking declarative–episodic verbal memory deficits to the left UF and executive function deficits to the left CB among patients with schizophrenia. PMID:15506830

  19. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.

    Science.gov (United States)

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-02-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.

  20. Diffusion tensor imaging for long-term follow-up of corticospinal tract degeneration in amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, S.; Ehrenreich, H. [Max-Planck-Institute for Experimental Medicine, Georg-August-University, Hermann-Rein-Strasse 3, 37075, Goettingen (Germany); Departments of Neurology and Psychiatry, Georg-August-University, Goettingen (Germany); Finsterbusch, J.; Frahm, J. [Biomedizinische NMR Forschungs GmbH, Max-Planck-Institute for Biophysical Chemistry, Georg-August-University, Goettingen (Germany); Weishaupt, J.H. [Departments of Neurology and Psychiatry, Georg-August-University, Goettingen (Germany); Khorram-Sefat, D. [Department of Neuroradiology, Georg-August-University, Goettingen (Germany)

    2003-09-01

    Amyotrophic lateral sclerosis (ALS) is a predominantly clinical and electromyographic diagnosis. Conventional MRI reveals atrophy of the motor system, particularly the pyramidal tract, in the advanced stages but does not provide a sensitive measure of disease progression. Three patients with different principal symptoms of ALS, i.e., with predominant involvement of the upper (UMN) or lower (UMN) motor neurons, or bulbar disease, respectively, underwent serial clinical examination including lung function tests, conventional MRI, and diffusion tensor imaging (DTI). MRI demonstrated changes in of the pyramidal tract without measurable variation on follow-up. The patient with UMN involvement showed remarkable progressive loss of diffusion anisotropy in the pyramidal tract. DTI might be useful, together with clinical follow-up, as an objective morphological marker in therapeutic trials. (orig.)

  1. Diffusion abnormalities of the uncinate fasciculus in Alzheimer's disease: diffusion tensor tract-specific analysis using a new method to measure the core of the tract

    International Nuclear Information System (INIS)

    Yasmin, Hasina; Nakata, Yasuhiro; Abe, Osamu; Masutani, Yoshitaka; Ohtomo, Kuni; Aoki, Shigeki; Sato, Noriko; Nemoto, Kiyotaka; Arima, Kunimasa; Furuta, Nobuo; Uno, Masatake; Hirai, Shigeo

    2008-01-01

    Our aim was to determine diffusion abnormalities in the uncinate fasciculus (UF) in Alzheimer's disease (AD) by diffusion tensor tractography (DTT) using a new method for measuring the core of the tract. We studied 19 patients with AD and 19 age-matched control subjects who underwent MRI using diffusion tensor imaging (DTI). DTT of the UF was generated. The mean diffusivity (MD) and fractional anisotropy (FA) of the core of the tract were measured after voxelized tract shape processing. Student's t-test was used to compare results between patients with AD and controls. Intraobserver correlation tests were also performed. FA was significantly lower (P 0.93 for measured FA and r > 0.92 for measured MD. Our results suggest that FA reflects progression of AD-related histopathological changes in the UF of the white matter and may represent a useful biological index in monitoring AD. Diffusion tensor tract-specific analysis with voxelized tract shape processing to measure the core of the tract may be a sensitive tool for evaluation of diffusion abnormalities of white matter tracts in AD. (orig.)

  2. New MRI technologies. Diffusion MRI and its application to functional neuroimaging and analyses of white matter integrity

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo

    2010-01-01

    Described is the technological aspect of MRI, MR diffusion-weighted imaging (MR-DWI), principles of its measurement and application for imaging the cerebral function and for aiding the quantitative diagnosis of brain diseases. The author explains the principle of MR imaging process; diffusion properties of water molecules, MR-DWI based on them and DW-fMRI of the brain; MR-diffusion tensor imaging (MR-DTI), its analysis and color acquisition, and tracking of white matter nerve fibers; analysis of white matter lesions by the tracking; and the new tracking method at the chiasm of nerve fascicles. The usual fMRI reflects the blood oxygen level depending (BOLD) signals whereas recently attracted DW-fMRI, the volume changes of nerve cells concomitant to nerve activation accompanying apparent changes of water diffusion coefficients in and out of cells which occur faster than BOLD signs, resulting in higher resolution of time and space. However, DWI requires the higher intensity of static magnetic field like 3T. MR-DTI acquires the anisotropic diffusion of water molecules using MR-DWI technique with application of 6 or more motion probing gradients, thus makes it possible to track the running directions of nerve fibers and capillary vessels, and is proposed to be a useful mean of specific fiber tracking in the white matter when displayed by 3 different colors exhibiting the directions like the right/left (x axis, red), anterior/posterior (y, green) and upper/lower (z, blue) sides of head. Recently, MR-DWI and MR-DTI have been found usable for pathogenic studies of brain diseases such as dementia. Tensor anisotropy is apparently lowered at the chiasm of nerve fascicles, the cause of tracking error, for which authors have developed a new method using the similarity of directional vector, not of tensor, before and behind the chiasm. As exemplified, MRI technology is further advancing even at present. (T.T.)

  3. Love songs, bird brains and diffusion tensor imaging.

    Science.gov (United States)

    De Groof, Geert; Van der Linden, Annemie

    2010-08-01

    The song control system of songbirds displays a remarkable seasonal neuroplasticity in species in which song output also changes seasonally. Thus far, this song control system has been extensively analyzed by histological and electrophysiological methods. However, these approaches do not provide a global view of the brain and/or do not allow repeated measurements, which are necessary to establish causal correlations between alterations in neural substrate and behavior. Research has primarily been focused on the song nuclei themselves, largely neglecting their interconnections and other brain regions involved in seasonally changing behavior. In this review, we introduce and explore the song control system of songbirds as a natural model for brain plasticity. At the same time, we point out the added value of the songbird brain model for in vivo diffusion tensor techniques and its derivatives. A compilation of the diffusion tensor imaging (DTI) data obtained thus far in this system demonstrates the usefulness of this in vivo method for studying brain plasticity. In particular, it is shown to be a perfect tool for long-term studies of morphological and cellular changes of specific brain circuits in different endocrine/photoperiod conditions. The method has been successfully applied to obtain quantitative measurements of seasonal changes of fiber tracts and nuclei from the song control system. In addition, outside the song control system, changes have been discerned in the optic chiasm and in an interhemispheric connection. DTI allows the detection of seasonal changes in a region analogous to the mammalian secondary auditory cortex and in regions of the 'social behavior network', an interconnected group of structures that controls multiple social behaviors, including aggression and courtship. DTI allows the demonstration, for the first time, that the songbird brain in its entirety exhibits an extreme seasonal plasticity which is not merely limited to the song control

  4. Structural brain alterations in hemifacial spasm: A voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Tu, Ye; Yu, Tian; Wei, Yongxu; Sun, Kun; Zhao, Weiguo; Yu, Buwei

    2016-02-01

    Hemifacial spasm (HFS) is characterized by involuntary, irregular clonic or tonic movement of muscles innervated by the facial nerve. We evaluated structural reorganization in brain gray matter and white matter and whether neuroplasticity is linked to clinical features in HFS patients. High-resolution structural magnetic resonance imaging and diffusion tensor imaging data were acquired by 3.0 T MRI from 42 patients with HFS and 30 healthy subjects. The severity of the spasm was assessed according to Jankovic disability rating scale. Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis were performed to identify regional grey matter volume (GMV) changes and whole-brain microstructural integrity disruption measured by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). The VBM analysis showed that patients with HFS reduced GMV in the right inferior parietal lobule and increased GMV in the cerebellar lobule VIII, when compared with healthy subjects. Furthermore, within the HFS disease group, GMV decreased with the disease duration in the right inferior parietal lobule. TBSS did not identify group differences in diffusivity parameters. While no white matter integrity disruption was detected in the brain of patients with HFS, our study identified evident GMV changes in brain areas which were known to be involved in motor control. Our results suggest that HFS, a chronic neurovascular conflict disease, is related to structural reorganization in the brain. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Diffusion tensor MR imaging in neurofibromatosis type 1: expanding the knowledge of microstructural brain abnormalities

    International Nuclear Information System (INIS)

    Ferraz-Filho, Jose R.L.; Muniz, Marcos P.; Souza, Antonio S.; Rocha, Antonio J. da; Goloni-Bertollo, Eny M.; Pavarino-Bertelli, Erika C.

    2012-01-01

    Neurofibromatosis type 1 (NF1) is a hereditary disease with a dominant autosomal pattern. In children and adolescents, it is frequently associated with the appearance of T2-weighted hyperintensities in the brain's white matter. MRI with diffusion tensor imaging (DTI) is used to detect white matter abnormalities by measuring fractional anisotropy (FA). This study employed DTI to evaluate the relationship between FA patterns and the findings of T2 sequences, with the aim of improving our understanding of anatomical changes and microstructural brain abnormalities in individuals with NF1. Forty-four individuals with NF1 and 20 control subjects were evaluated. The comparative analysis of FA between NF1 and control groups was based on four predetermined anatomical regions of the brain hemispheres (basal ganglia, cerebellum, pons, thalamus) and related the presence or absence of T2-weighted hyperintensities in the brain, which are called unidentified bright objects (UBOs). The FA values between the groups demonstrated statistically significant differences (P ≤ 0.05) for the cerebellum and thalamus in patients with NF1, independent of the occurrence of UBOs. Diffusion tensor MR imaging confirms the influence of UBOs in the decrease of FA values in this series of patients with NF1. Additionally, this technique allows the characterization of microstructural abnormalities even in some brain regions that appear normal in conventional MR sequences. (orig.)

  6. Diffusion tensor imaging of the anterior cruciate ligament graft.

    Science.gov (United States)

    Van Dyck, Pieter; Froeling, Martijn; De Smet, Eline; Pullens, Pim; Torfs, Michaël; Verdonk, Peter; Sijbers, Jan; Parizel, Paul M; Jeurissen, Ben

    2017-11-01

    A great need exists for objective biomarkers to assess graft healing following ACL reconstruction to guide the time of return to sports. The purpose of this study was to evaluate the feasibility and reliability of diffusion tensor imaging (DTI) to delineate the anterior cruciate ligament (ACL) graft and to investigate its diffusion properties using a clinical 3T scanner. DTI of the knee (b = 0, 400, and 800 s/mm 2 , 10 diffusion directions, repeated 16 times for a total of 336 diffusion-weighted volumes) was performed at 3T in 17 patients between 3 and 7 months (mean, 4 months) following ACL reconstruction. Tractography was performed by two independent observers to delineate the ACL graft. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated within the graft. Interrater reliability was assessed using the intraclass correlation coefficient (ICC) and the scan-rescan reproducibility was evaluated based on the percentage coefficient of variance (%CV) across 20 repetition bootknife samples. In all subjects, tractography of the ACL graft was feasible. Quantitative evaluation of the diffusion properties of the ACL graft yielded the following mean ± SD values: FA = 0.23 ± 0.04; MD = 1.30 ± 0.11 × 10 -3 mm 2 /s; AD = 1.61 ± 0.12 × 10 -3 mm 2 /s, and RD = 1.15 ± 0.11 × 10 -3 mm 2 /s. Interrater reliability for the DTI parameters was excellent (ICC = 0.91-0.98). Mean %CVs for FA, MD, AD, and RD were 4.6%, 3.5%, 3.7%, and 4.4%, respectively. We demonstrated the feasibility and reliability of DTI for the visualization and quantitative evaluation of the ACL graft at 3T. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1423-1432. © 2017 International Society for Magnetic Resonance in Medicine.

  7. White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents

    NARCIS (Netherlands)

    Sundram, Frederick; Campbell, Linda E.; Azuma, Rayna; Daly, Eileen; Bloemen, Oswald J. N.; Barker, Gareth J.; Chitnis, Xavier; Jones, Derek K.; van Amelsvoort, Therese; Murphy, Kieran C.; Murphy, Declan G. M.

    2010-01-01

    Young people with 22q11 Deletion Syndrome (22q11DS) are at substantial risk for developing psychosis and have significant differences in white matter (WM) volume. However, there are few in vivo studies of both WM microstructural integrity (as measured using Diffusion Tensor (DT)-MRI) and WM volume

  8. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    Science.gov (United States)

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  9. Imaging brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus

    2018-01-01

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging ...

  10. Quantifying Pathology in Diffusion Weighted MRI

    NARCIS (Netherlands)

    Caan, M.W.A.

    2010-01-01

    In this thesis algorithms are proposed for quantification of pathology in Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) data. Functional evidence for brain diseases can be explained by specific structural loss in the white matter of the brain. That is, certain biomarkers may exist where the

  11. Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Yang, Zhao-Yang; Li, Xiao-Guang

    2016-06-01

    Diffusion tensor imaging (DTI) as a potential technology has been used in spinal cord injury (SCI) studies, but the longitudinal evaluation of DTI parameters after SCI, and the correlation between DTI parameters and locomotor outcomes need to be defined. Adult Wistar rats (n = 6) underwent traumatic thoracic cord contusion by an NYU impactor. DTI and Basso-Beattie-Bresnahan datasets were collected pre-SCI and 1, 3, 7, 14, and 84 days post-SCI. Diffusion tensor tractography (DTT) of the spinal cord was also generated. Fractional anisotropy (FA) and connection rate of fibers at the injury epicenter and at 5 mm rostral/caudal to the epicenter were calculated. The variations of these parameters after SCI were observed by one-way analysis of variance and the correlations between these parameters and motor function were explored by Pearson's correlation. FA at the epicenter decreased most remarkably on day 1 post-SCI (from 0.780 ± 0.012 to 0.330 ± 0.015), and continued to decrease slightly by day 3 post-SCI (0.313 ± 0.015), while other parameters decreased significantly over the first 3 days after SCI. DTT showed residual fibers concentrated on ventral and ventrolateral sides of the cord. Moreover, FA at the epicenter exhibited the strongest correlation (r = 0.887, p = 0.000) with the locomotion performance. FA was sensitive to degeneration in white matter and DTT could directly reflect the distribution of the residual white matter. Moreover, days 1 to 3 post-SCI may be the optimal time window for SCI examination and therapy.

  12. MRI: update on technology diffusion and acquisition.

    Science.gov (United States)

    Hoppszallern, S; Hughes, C; Zimmerman, R A

    1991-04-01

    Over the past three years, magnetic resonance imaging (MRI) has become accepted as a valuable diagnostic tool, and its applications continue to expand. During this time, the number of units installed in the United States doubled. By 1990 about 2,000 MRI units were in place in the United States and nearly 20 percent of the MRI-installed base was mobile, according to a research study conducted by the Hadley Hart Group (Chicago) and Drew Consultants, Inc. (Concord, MA). With the introduction of the prospective payment system, many hospitals were hesitant to spend limited capital on new technology, such as MRI. At the same time, freestanding diagnostic imaging centers were on the rise. Some hospitals and entrepreneurs who foresaw the potential of MRI in health care pioneered its use in the clinical setting. Hospitals began to examine new partnership arrangements and alternative forms of financing, so that they too could offer MRI services. By the end of 1988, the majority of hospitals offering MRI services did not own their own unit and about 40 percent of the hospitals offering MRI services were in a mobile configuration according to the Hadley Hart Group. While the technology has been diffused into 100-bed hospitals via mobile service vendors in some parts of the country, many medium-sized and large hospitals also have entered the MRI services market in this fashion. In the larger hospitals, the patient demand or need for the service often would justify acquisition of MRI, but the expense of the technology, and in many areas restrictive state health planning policies, modified purchase of MRI systems by hospitals. Mobile service vendors offered hospitals a way to startup MRI services in a limited fashion without a major capital expenditure and its associated risk. As hospitals gain experience with mobile MRI and achieve or exceed their early utilization projections, administrators are reevaluating the need to expand services to a full-time fixed site. Early fixed

  13. Reducing surgical levels by paraspinal mapping and diffusion tensor imaging techniques in lumbar spinal stenosis.

    Science.gov (United States)

    Chen, Hua-Biao; Wan, Qi; Xu, Qi-Feng; Chen, Yi; Bai, Bo

    2016-04-25

    Correlating symptoms and physical examination findings with surgical levels based on common imaging results is not reliable. In patients who have no concordance between radiological and clinical symptoms, the surgical levels determined by conventional magnetic resonance imaging (MRI) and neurogenic examination (NE) may lead to a more extensive surgery and significant complications. We aimed to confirm that whether the use of diffusion tensor imaging (DTI) and paraspinal mapping (PM) techniques can further prevent the occurrence of false positives with conventional MRI, distinguish which are clinically relevant from levels of cauda equina and/or nerve root lesions based on MRI, and determine and reduce the decompression levels of lumbar spinal stenosis than MRI + NE, while ensuring or improving surgical outcomes. We compared the data between patients who underwent MRI + (PM or DTI) and patients who underwent conventional MRI + NE to determine levels of decompression for the treatment of lumbar spinal stenosis. Outcome measures were assessed at 2 weeks, 3 months, 6 months, and 12 months postoperatively. One hundred fourteen patients (59 in the control group, 54 in the experimental group) underwent decompression. The levels of decompression determined by MRI + (PM or DTI) in the experimental group were significantly less than that determined by MRI + NE in the control group (p = 0.000). The surgical time, blood loss, and surgical transfusion were significantly less in the experimental group (p = 0.001, p = 0.011, p = 0.001, respectively). There were no differences in improvement of the visual analog scale back and leg pain (VAS-BP, VAS-LP) scores and Oswestry Disability Index (ODI) scores at 2 weeks, 3 months, 6 months, and 12 months after operation between the experimental and control groups. MRI + (PM or DTI) showed clear benefits in determining decompression levels of lumbar spinal stenosis than MRI + NE. In patients with lumbar spinal

  14. Oculomotor nerve palsy evaluated by diffusion-tensor tractography

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kei; Kizu, Osamu; Ito, Hirotoshi; Nishimura, Tsunehiko [Kyoto Prefectural University of Medicine, Department of Radiology, Kyoto (Japan); Shiga, Kensuke; Akiyama, Katsuhisa; Nakagawa, Masanori [Kyoto Prefectural University of Medicine, Department of Neurology, Kyoto (Japan)

    2006-06-15

    The aim of the study was to test the feasibility of the tractography technique based on diffusion-tensor imaging (DTI) for the assessment of small infarcts involving the brainstem. A patient who presented with an isolated left third cranial nerve palsy underwent magnetic resonance examination. Images were obtained by use of a whole-body, 1.5-T imager. Data were transferred to an off-line workstation for fiber tracking. The conventional diffusion-weighted imaging (DWI) performed using a 5 mm slice thickness could only depict an equivocal hyperintensity lesion located at the left paramedian midbrain. An additional thin-slice DTI was performed immediately after the initial DWI using a 3 mm slice thickness and was able to delineate the lesion more clearly. Image postprocessing of thin-slice DTI data revealed that the lesion location involved the course of the third cranial nerve tract, corresponding with the patient's clinical symptoms. The tractography technique can be applied to assess fine neuronal structures of the brainstem, enabling direct clinicoradiological correlation of small infarcts involving this region. (orig.)

  15. Communication: On the diffusion tensor in macroscopic theory of cavitation

    Science.gov (United States)

    Shneidman, Vitaly A.

    2017-08-01

    The classical description of nucleation of cavities in a stretched fluid relies on a one-dimensional Fokker-Planck equation (FPE) in the space of their sizes r, with the diffusion coefficient D(r) constructed for all r from macroscopic hydrodynamics and thermodynamics, as shown by Zeldovich. When additional variables (e.g., vapor pressure) are required to describe the state of a bubble, a similar approach to construct a diffusion tensor D ^ generally works only in the direct vicinity of the thermodynamic saddle point corresponding to the critical nucleus. It is shown, nevertheless, that "proper" kinetic variables to describe a cavity can be selected, allowing to introduce D ^ in the entire domain of parameters. In this way, for the first time, complete FPE's are constructed for viscous volatile and inertial fluids. In the former case, the FPE with symmetric D ^ is solved numerically. Alternatively, in the case of an inertial fluid, an equivalent Langevin equation is considered; results are compared with analytics. The suggested approach is quite general and can be applied beyond the cavitation problem.

  16. Oculomotor nerve palsy evaluated by diffusion-tensor tractography

    International Nuclear Information System (INIS)

    Yamada, Kei; Kizu, Osamu; Ito, Hirotoshi; Nishimura, Tsunehiko; Shiga, Kensuke; Akiyama, Katsuhisa; Nakagawa, Masanori

    2006-01-01

    The aim of the study was to test the feasibility of the tractography technique based on diffusion-tensor imaging (DTI) for the assessment of small infarcts involving the brainstem. A patient who presented with an isolated left third cranial nerve palsy underwent magnetic resonance examination. Images were obtained by use of a whole-body, 1.5-T imager. Data were transferred to an off-line workstation for fiber tracking. The conventional diffusion-weighted imaging (DWI) performed using a 5 mm slice thickness could only depict an equivocal hyperintensity lesion located at the left paramedian midbrain. An additional thin-slice DTI was performed immediately after the initial DWI using a 3 mm slice thickness and was able to delineate the lesion more clearly. Image postprocessing of thin-slice DTI data revealed that the lesion location involved the course of the third cranial nerve tract, corresponding with the patient's clinical symptoms. The tractography technique can be applied to assess fine neuronal structures of the brainstem, enabling direct clinicoradiological correlation of small infarcts involving this region. (orig.)

  17. An introduction to visualization of diffusion tensor imaging and its applications

    NARCIS (Netherlands)

    Vilanova, A.; Zhang, S.; Kindlmann, G.; Laidlaw, D.H.; Weickert, J.; Hagen, H.

    2005-01-01

    Summary. Water diffusion is anisotropic in organized tissues such as white matter and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, measures water self-diffusion rates and thus gives an indication of the underlying tissue microstructure. The diffusion rate is often expressed

  18. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.

    Science.gov (United States)

    Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Yamao, Yukihiro; Shibata, Sumiya; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic

  19. Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Testaverde, Lorenzo; Caporali, Laura [University ' ' Sapienza' ' of Rome, Department of Radiological Sciences, Rome (Italy); Venditti, Eugenio; Grillea, Giovanni [U.O.C. Neuroradiologia, I.R.C.C.S. ' ' Neuromed' ' , Pozzilli (Italy); Colonnese, Claudio [University ' ' Sapienza' ' of Rome, Department of Radiological Sciences, Rome (Italy); U.O.C. Neuroradiologia, I.R.C.C.S. ' ' Neuromed' ' , Pozzilli (Italy)

    2012-05-15

    This study evaluated patients with multiple sclerosis using diffusion tensor imaging (DTI) to obtain fractional anisotropy (FA) and mean diffusivity (MD) values. We investigated the possible statistically significant variation of MD and FA in different MS patients, compared simultaneously, putting in comparison their normal appearing white matter (NAWM) and white matter affected by disease (plaques), both during activity and in remission, with normal white matter (NWM) of control subjects. Statistical analysis using Levene's test for comparison of variances revealed significant (P < 0.05) differences between FA values of the NWM of the controls and those of NAWM and active or inactive lesions, of the patients in the study. However, the differences between MD values of the NWM of the controls and those of NAWM and active or inactive lesions of the patients in the study were judged not significant (P > 0.05). Imaging of MS using MRI techniques is constantly searching for reproducible quantitative parameter. This study shows how these parameters can be identified in the MD and FA values, and thus suggests the implementation of MRI routine protocols for diagnosing MS with the DTI analysis, since it can provide valuable information otherwise unobtainable. (orig.)

  20. Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    OpenAIRE

    Rodrigues, P.R.

    2011-01-01

    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy pattern enabling the reconstruction of the nervous fibers - dubbed tractography. DMRI constitutes a powerful tool to analyse the structure of the white matter within a voxel, but also to investigate the...

  1. Current contribution of diffusion tensor imaging in the evaluation of diffuse axonal injury

    Directory of Open Access Journals (Sweden)

    Daphine Centola Grassi

    Full Text Available ABSTRACT Traumatic brain injury (TBI is the number one cause of death and morbidity among young adults. Moreover, survivors are frequently left with functional disabilities during the most productive years of their lives. One main aspect of TBI pathology is diffuse axonal injury, which is increasingly recognized due to its presence in 40% to 50% of all cases that require hospital admission. Diffuse axonal injury is defined as widespread axonal damage and is characterized by complete axotomy and secondary reactions due to overall axonopathy. These changes can be seen in neuroimaging studies as hemorrhagic focal areas and diffuse edema. However, the diffuse axonal injury findings are frequently under-recognized in conventional neuroimaging studies. In such scenarios, diffuse tensor imaging (DTI plays an important role because it provides further information on white matter integrity that is not obtained with standard magnetic resonance imaging sequences. Extensive reviews concerning the physics of DTI and its use in the context of TBI patients have been published, but these issues are still hazy for many allied-health professionals. Herein, we aim to review the current contribution of diverse state-of-the-art DTI analytical methods to the understanding of diffuse axonal injury pathophysiology and prognosis, to serve as a quick reference for those interested in planning new studies and who are involved in the care of TBI victims. For this purpose, a comprehensive search in Pubmed was performed using the following keywords: “traumatic brain injury”, “diffuse axonal injury”, and “diffusion tensor imaging”.

  2. Diffusion-weighted MRI of the prostate

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.G.; Scherr, M.K.; Mueller-Lisse, U.L.; Zamecnik, P.; Schlemmer, H.P.W.

    2011-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can complement MRI of the prostate in the detection and localization of prostate cancer, particularly after previous negative biopsy. A total of 13 original reports and 2 reviews published in 2010 demonstrate that prostate cancer can be detected by DWI due to its increased cell density and decreased diffusiveness, either qualitatively in DWI images or quantitatively by means of the apparent diffusion coefficient (ADC). In the prostate, the ADC is influenced by the strength of diffusion weighting, localization (peripheral or transitional zone), presence of prostatitis or hemorrhage and density and differentiation of prostate cancer cells. Mean differences between healthy tissue of the peripheral zone and prostate cancer appear to be smaller for ADC than for the (choline + creatine)/citrate ratio in MR spectroscopy. Test quality parameters vary greatly between different studies but appear to be slightly better for combined MRI and DWI than for MRI of the prostate alone. Clinical validation of DWI of the prostate requires both increased technical conformity and increased numbers of patients in clinical studies. (orig.) [de

  3. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Science.gov (United States)

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK

  4. Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions

    International Nuclear Information System (INIS)

    Rossi, Maija E; Jason, Eeva; Marchesotti, Silvia; Dastidar, Prasun; Ollikainen, Jyrki; Soimakallio, Seppo

    2010-01-01

    Both a large lesion volume and abnormalities in diffusion tensor imaging are independently associated with a poor prognosis after cerebral infarctions. Therefore, we assume that they are associated. This study assessed the associations between lesion volumes and diffusion tensor imaging in patients with a right-sided cerebral infarction. The lesion volumes of 33 patients (age 65.9 ± 8.7, 26 males and 7 females) were imaged using computed tomography (CT) in the acute phase (within 3-4 hours) and magnetic resonance imaging (MRI) in the chronic phase (follow-up at 12 months, with a range of 8-27 months). The chronic-phase fractional anisotropy (FA) and mean diffusivity (MD) values were measured at the site of the infarct and selected white matter tracts. Neurological tests in both the acute and chronic phases, and DTI lateralization were assessed with the Wilcoxon signed-rank test. The effects of thrombolytic therapy (n = 10) were assessed with the Mann-Whitney U test. The correlations between the measured parameters were analysed with Spearman's rho correlation. Bonferroni post-hoc correction was used to compensate for the familywise error rate in multiple comparisons. Several MD values in the right hemisphere correlated positively and FA values negatively with the lesion volumes. These correlations included both lesion area and healthy tissue. The results of the mini-mental state examination and the National Institutes of Health Stroke Scale also correlated with the lesion volume. A larger infarct volume is associated with more pronounced tissue modifications in the chronic stage as observed with the MD and FA alterations

  5. Diffusion tensor imaging of the human skeletal muscle: contributions and applications

    International Nuclear Information System (INIS)

    Neji, Radhouene

    2010-01-01

    In this thesis, we present several techniques for the processing of diffusion tensor images. They span a wide range of tasks such as estimation and regularization, clustering and segmentation, as well as registration. The variational framework proposed for recovering a tensor field from noisy diffusion weighted images exploits the fact that diffusion data represent populations of fibers and therefore each tensor can be reconstructed using a weighted combination of tensors lying in its neighborhood. The segmentation approach operates both at the voxel and the fiber tract levels. It is based on the use of Mercer kernels over Gaussian diffusion probabilities to model tensor similarity and spatial interactions, allowing the definition of fiber metrics that combine information from spatial localization and diffusion tensors. Several clustering techniques can be subsequently used to segment tensor fields and fiber tractographies. Moreover, we show how to develop supervised extensions of these algorithms. The registration algorithm uses probability kernels in order to match moving and target images. The deformation consistency is assessed using the distortion induced in the distances between neighboring probabilities. Discrete optimization is used to seek an optimum of the defined objective function. The experimental validation is done over a dataset of manually segmented diffusion images of the lower leg muscle for healthy and diseased subjects. The results of the techniques developed throughout this thesis are promising. (author)

  6. Outcomes of Diffusion Tensor Tractography-Integrated Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomoyuki, E-mail: kouga-tky@umin.ac.jp [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Maruyama, Keisuke; Kamada, Kyousuke; Ota, Takahiro; Shin, Masahiro [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Itoh, Daisuke [Department of Radiology, University of Tokyo Hospital, Tokyo (Japan); Kunii, Naoto [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan); Ino, Kenji; Terahara, Atsuro; Aoki, Shigeki; Masutani, Yoshitaka [Department of Radiology, University of Tokyo Hospital, Tokyo (Japan); Saito, Nobuhito [Department of Neurosurgery, University of Tokyo Hospital, Tokyo (Japan)

    2012-02-01

    Purpose: To analyze the effect of use of tractography of the critical brain white matter fibers created from diffusion tensor magnetic resonance imaging on reduction of morbidity associated with radiosurgery. Methods and Materials: Tractography of the pyramidal tract has been integrated since February 2004 if lesions are adjacent to it, the optic radiation since May 2006, and the arcuate fasciculus since October 2007. By visually confirming the precise location of these fibers, the dose to these fiber tracts was optimized. One hundred forty-four consecutive patients with cerebral arteriovenous malformations who underwent radiosurgery with this technique between February 2004 and December 2009 were analyzed. Results: Tractography was prospectively integrated in 71 of 155 treatments for 144 patients. The pyramidal tract was visualized in 45, the optic radiation in 22, and the arcuate fasciculus in 13 (two tracts in 9). During the follow-up period of 3 to 72 months (median, 23 months) after the procedure, 1 patient showed permanent worsening of pre-existing dysesthesia, and another patient exhibited mild transient hemiparesis 12 months later but fully recovered after oral administration of corticosteroid agents. Two patients had transient speech disturbance before starting integration of the arcuate fasciculus tractography, but no patient thereafter. Conclusion: Integrating tractography helped prevent morbidity of radiosurgery in patients with brain arteriovenous malformations.

  7. Fisher statistics for analysis of diffusion tensor directional information.

    Science.gov (United States)

    Hutchinson, Elizabeth B; Rutecki, Paul A; Alexander, Andrew L; Sutula, Thomas P

    2012-04-30

    A statistical approach is presented for the quantitative analysis of diffusion tensor imaging (DTI) directional information using Fisher statistics, which were originally developed for the analysis of vectors in the field of paleomagnetism. In this framework, descriptive and inferential statistics have been formulated based on the Fisher probability density function, a spherical analogue of the normal distribution. The Fisher approach was evaluated for investigation of rat brain DTI maps to characterize tissue orientation in the corpus callosum, fornix, and hilus of the dorsal hippocampal dentate gyrus, and to compare directional properties in these regions following status epilepticus (SE) or traumatic brain injury (TBI) with values in healthy brains. Direction vectors were determined for each region of interest (ROI) for each brain sample and Fisher statistics were applied to calculate the mean direction vector and variance parameters in the corpus callosum, fornix, and dentate gyrus of normal rats and rats that experienced TBI or SE. Hypothesis testing was performed by calculation of Watson's F-statistic and associated p-value giving the likelihood that grouped observations were from the same directional distribution. In the fornix and midline corpus callosum, no directional differences were detected between groups, however in the hilus, significant (pstatistical comparison of tissue structural orientation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Voxel-based analysis of the diffusion tensor

    International Nuclear Information System (INIS)

    Abe, Osamu; Takao, Hidemasa; Gonoi, Wataru; Sasaki, Hiroki; Murakami, Mizuho; Ohtomo, Kuni; Kabasawa, Hiroyuki; Kawaguchi, Hiroshi; Goto, Masami; Yamada, Haruyasu; Yamasue, Hidenori; Kasai, Kiyoto; Aoki, Shigeki

    2010-01-01

    Diffusion tensor imaging (DTI) has provided important insights into the neurobiological basis for normal development and aging and various disease processes in the central nervous system. The aim of this article is to review the current protocols for DTI acquisition and preprocessing and statistical testing for a voxelwise analysis of DTI, focused on statistical parametric mapping (SPM) and tract-based spatial statistics (TBSS). We tested the effects of distortion correction induced by gradient nonlinearity on fractional anisotropy (FA) maps or FA skeletons processed via two SPM-based methods (coregistration and FA template methods), or TBSS-based method, respectively. With two SPM-based methods, we found similar results in some points (e.g., significant FA elevation for uncorrected images in anterior-dominant white matter and for corrected images in bilateral middle cerebellar peduncles) and different results in other points (e.g., significantly larger FA for corrected images with coregistration method, but significantly smaller with FA template method in bilateral internal capsules, extending to corona radiata, and semioval centers). In contrast, there was no area with significant difference between uncorrected and corrected FA skeletons with TBSS-based method. The discrepancy among these results was not explained in full, but possible explanations were misregistration and smoothing for the SPM-based methods and insensitivity to FA changes outside the local centers of white matter bundles for TBSS-based method. (orig.)

  9. Diffusion tensor tractography reveals muscle reconnection during axolotl limb regeneration.

    Directory of Open Access Journals (Sweden)

    Cheng-Han Wu

    Full Text Available Axolotls have amazing ability to regenerate their lost limbs. Our previous works showed that after amputation the remnant muscle ends remained at their original location whilst sending satellite cells into the regenerating parts to develop into early muscle fibers in the late differentiation stage. The parental and the newly formed muscle fibers were not connected until very late stage. The present study used non-invasive diffusion tensor imaging (DTI to monitor weekly axolotl upper arm muscles after amputation of their upper arms. DTI tractography showed that the regenerating muscle fibers became visible at 9-wpa (weeks post amputation, but a gap was observed between the regenerating and parental muscles. The gap was filled at 10-wpa, indicating reconnection of the fibers of both muscles. This was confirmed by histology. The DTI results indicate that 23% of the muscle fibers were reconnected at 10-wpa. In conclusion, DTI can be used to visualize axolotls' skeletal muscles and the results of muscle reconnection were in accordance with our previous findings. This non-invasive technique will allow researchers to identify the timeframe in which muscle fiber reconnection takes place and thus enable the study of the mechanisms underlying this reconnection.

  10. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Casseb, Raphael [University of Campinas - UNICAMP, Department of Neurology, School of Medicine, Campinas, SP (Brazil); University of Campinas - UNICAMP, Neurophysics Group, Department of Cosmic Rays and Chronology, Institute of Physics Gleb Wataghin, Campinas, SP (Brazil); Ribeiro de Paiva, Jean Levi; Teixeira Branco, Lucas Melo; Muro Martinez, Alberto Rolim; Cavalcante Franca, Marcondes Jr. [University of Campinas - UNICAMP, Department of Neurology, School of Medicine, Campinas, SP (Brazil); Reis, Fabiano [University of Campinas - UNICAMP, Department of Radiology, School of Medicine, Campinas, SP (Brazil); Lima-Junior, Jose Carlos de [University of Campinas - UNICAMP, Laboratory of Cell Signaling, Department of Internal Medicine, Campinas, SP (Brazil); Castellano, Gabriela [University of Campinas - UNICAMP, Neurophysics Group, Department of Cosmic Rays and Chronology, Institute of Physics Gleb Wataghin, Campinas, SP (Brazil)

    2016-11-15

    We investigated whether MR diffusion tensor imaging (DTI) analysis of the cervical spinal cord could aid the (differential) diagnosis of sensory neuronopathies, an underdiagnosed group of diseases of the peripheral nervous system. We obtained spinal cord DTI and T2WI at 3 T from 28 patients, 14 diabetic subjects with sensory-motor distal polyneuropathy, and 20 healthy controls. We quantified DTI-based parameters and looked at the hyperintense T2W signal at the spinal cord posterior columns. Fractional anisotropy and mean diffusivity values at C2-C3 and C3-C4 levels were compared between groups. We also compared average fractional anisotropy (mean of values at C2-C3 and C3-C4 levels). A receiver operating characteristic (ROC) curve was used to determine diagnostic accuracy of average fractional anisotropy, and we compared its sensitivity against the hyperintense signal in segregating patients from the other subjects. Mean age and disease duration were 52 ± 10 and 11.4 ± 9.3 years in the patient group. Eighteen subjects had idiopathic disease and 6 dysimmune etiology. Fractional anisotropy at C3-C4 level and average fractional anisotropy were significantly different between patients and healthy controls (p < 0.001 and <0.001) and between patients and diabetic subjects (p = 0.019 and 0.027). Average fractional anisotropy presented an area under the curve of 0.838. Moreover, it had higher sensitivity than visual detection of the hyperintense signal (0.86 vs. 0.54), particularly for patients with short disease duration. DTI-based analysis enables in vivo detection of posterior column damage in sensory neuronopathy patients and is a useful diagnostic test for this condition. It also helps the differential diagnosis between sensory neuronopathy and distal polyneuropathies. (orig.)

  11. Spinal cord diffusion tensor imaging in patients with sensory neuronopathy

    International Nuclear Information System (INIS)

    Fernandes Casseb, Raphael; Ribeiro de Paiva, Jean Levi; Teixeira Branco, Lucas Melo; Muro Martinez, Alberto Rolim; Cavalcante Franca, Marcondes Jr.; Reis, Fabiano; Lima-Junior, Jose Carlos de; Castellano, Gabriela

    2016-01-01

    We investigated whether MR diffusion tensor imaging (DTI) analysis of the cervical spinal cord could aid the (differential) diagnosis of sensory neuronopathies, an underdiagnosed group of diseases of the peripheral nervous system. We obtained spinal cord DTI and T2WI at 3 T from 28 patients, 14 diabetic subjects with sensory-motor distal polyneuropathy, and 20 healthy controls. We quantified DTI-based parameters and looked at the hyperintense T2W signal at the spinal cord posterior columns. Fractional anisotropy and mean diffusivity values at C2-C3 and C3-C4 levels were compared between groups. We also compared average fractional anisotropy (mean of values at C2-C3 and C3-C4 levels). A receiver operating characteristic (ROC) curve was used to determine diagnostic accuracy of average fractional anisotropy, and we compared its sensitivity against the hyperintense signal in segregating patients from the other subjects. Mean age and disease duration were 52 ± 10 and 11.4 ± 9.3 years in the patient group. Eighteen subjects had idiopathic disease and 6 dysimmune etiology. Fractional anisotropy at C3-C4 level and average fractional anisotropy were significantly different between patients and healthy controls (p < 0.001 and <0.001) and between patients and diabetic subjects (p = 0.019 and 0.027). Average fractional anisotropy presented an area under the curve of 0.838. Moreover, it had higher sensitivity than visual detection of the hyperintense signal (0.86 vs. 0.54), particularly for patients with short disease duration. DTI-based analysis enables in vivo detection of posterior column damage in sensory neuronopathy patients and is a useful diagnostic test for this condition. It also helps the differential diagnosis between sensory neuronopathy and distal polyneuropathies. (orig.)

  12. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    Science.gov (United States)

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  13. Segmentation of the canine corpus callosum using diffusion-tensor imaging tractography.

    Science.gov (United States)

    Pierce, Theodore T; Calabrese, Evan; White, Leonard E; Chen, Steven D; Platt, Simon R; Provenzale, James M

    2014-01-01

    We set out to determine functional white matter (WM) connections passing through the canine corpus callosum; these WM connections would be useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex whereas progressively posterior segments would send projections to more posterior cortex. A postmortem canine brain was imaged using a 7-T MRI system producing 100-μm-isotropic-resolution diffusion-tensor imaging analyzed by tractography. Using regions of interest (ROIs) within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified six important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity, and axial diffusivity in tracts passing through the genu and splenium. Callosal fibers were organized on the basis of cortical destination (e.g., fibers from the genu project to the frontal cortex). Histologic results identified the motor cortex on the basis of cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, radial diffusivity, and axial diffusivity values were all higher in posterior corpus callosum fiber tracts. Using six cortical ROIs, we identified six major WM tracts that reflect major functional divisions of the cerebral hemispheres, and we derived quantitative values that can be used for study of canine models of human WM pathologic states.

  14. Diffusion tensor imaging in patients with obstetric antiphospholipid syndrome without neuropsychiatric symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabricio R. [University Hospital Center of Nimes and Research Team EA 2415, Department of Radiology (France); Macri, Francesco; Beregi, Jean-Paul [University Hospital Center of Nimes and Research Team EA 2415, Department of Radiology (France); Montpellier University, Faculty of Medicine, Montpellier (France); Jackowski, Marcel P. [University of Sao Paulo, Department of Computer Science, Institute of Mathematics and Statistics, Sao Paulo (Brazil); Kostis, William J. [Harvard Medical School, Massachusetts General Hospital, Boston, MA (United States); Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Gris, Jean-Christophe [Montpellier University, Faculty of Medicine, Montpellier (France); University Hospital Center of Nimes, Department and Laboratory of Hematology (France); Mekkaoui, Choukri [University Hospital Center of Nimes and Research Team EA 2415, Department of Radiology (France); Montpellier University, Faculty of Medicine, Montpellier (France); Harvard Medical School, Massachusetts General Hospital, Boston, MA (United States); Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States)

    2016-04-15

    To evaluate white matter (WM) integrity in neurologically asymptomatic antiphospholipid syndrome (APS) using diffusion tensor imaging (DTI) in women with no thrombotic history but with pregnancy loss. Imaging was performed with a 3 T scanner using structural MRI (T1-weighted, fluid attenuation inversion recovery [FLAIR]) and DTI sequences in 66 women with APS and a control group of 17 women. Women with APS were further categorized as positive for lupus anticoagulant (LA) and/or aβ2GPI-G antibodies (LA/aβ2GPI-G-positive, N = 29) or negative (LA/aβ2GPI-G-negative, N = 37) for both. Tract-based spatial statistics of standard DTI-based indices were compared among groups. Women with APS had significantly lower fractional anisotropy (p < 0.05) associated with higher mean diffusivity and radial diffusivity compared to the control group. There was a stronger association of abnormal DTI features among women positive for LA and/or aβ2GPI-IgG antibodies than those who were negative. DTI appears sensitive to subtle WM changes in women with APS with no thrombotic history but with pregnancy loss, compatible with alterations in axonal structure and in the myelin sheath. The preferential association of abnormal DTI features with the two most pathogenic aPLAbs reinforces the pathophysiological relevance of our findings. (orig.)

  15. Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation

    Energy Technology Data Exchange (ETDEWEB)

    Woitek, Ramona; Prayer, Daniela; Weber, Michael; Schoepf, Veronika; Furtner, Julia; Asenbaum, Ulrika; Kasprian, Gregor [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Amann, Gabriele [Medical University of Vienna, Department of Clinical Pathology, Vienna (Austria); Seidl, Rainer [Medical University of Vienna, Department of Paediatrics and Adolescent Medicine, Vienna (Austria); Bettelheim, Dieter [Medical University of Vienna, Department of Obstetrics and Gynecology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center for Anatomy and Cell Biology, Vienna (Austria)

    2016-05-15

    This prenatal MRI study evaluated the potential of diffusion tensor imaging (DTI) metrics to identify changes in the midbrain of fetuses with Chiari II malformations compared to fetuses with mild ventriculomegaly, hydrocephalus and normal CNS development. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated from a region of interest (ROI) in the midbrain of 46 fetuses with normal CNS, 15 with Chiari II malformations, eight with hydrocephalus and 12 with mild ventriculomegaly. Fetuses with different diagnoses were compared group-wise after age-matching. Axial T2W-FSE sequences and single-shot echo planar DTI sequences (16 non-collinear diffusion gradient-encoding directions, b-values of 0 and 700 s/mm{sup 2}, 1.5 Tesla) were evaluated retrospectively. In Chiari II malformations, FA was significantly higher than in age-matched fetuses with a normal CNS (p =.003), while ADC was not significantly different. No differences in DTI metrics between normal controls and fetuses with hydrocephalus or vetriculomegaly were detected. DTI can detect and quantify parenchymal alterations of the fetal midbrain in Chiari II malformations. Therefore, in cases of enlarged fetal ventricles, FA of the fetal midbrain may contribute to the differentiation between Chiari II malformation and other entities. (orig.)

  16. Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation

    International Nuclear Information System (INIS)

    Woitek, Ramona; Prayer, Daniela; Weber, Michael; Schoepf, Veronika; Furtner, Julia; Asenbaum, Ulrika; Kasprian, Gregor; Amann, Gabriele; Seidl, Rainer; Bettelheim, Dieter; Brugger, Peter C.

    2016-01-01

    This prenatal MRI study evaluated the potential of diffusion tensor imaging (DTI) metrics to identify changes in the midbrain of fetuses with Chiari II malformations compared to fetuses with mild ventriculomegaly, hydrocephalus and normal CNS development. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated from a region of interest (ROI) in the midbrain of 46 fetuses with normal CNS, 15 with Chiari II malformations, eight with hydrocephalus and 12 with mild ventriculomegaly. Fetuses with different diagnoses were compared group-wise after age-matching. Axial T2W-FSE sequences and single-shot echo planar DTI sequences (16 non-collinear diffusion gradient-encoding directions, b-values of 0 and 700 s/mm 2 , 1.5 Tesla) were evaluated retrospectively. In Chiari II malformations, FA was significantly higher than in age-matched fetuses with a normal CNS (p =.003), while ADC was not significantly different. No differences in DTI metrics between normal controls and fetuses with hydrocephalus or vetriculomegaly were detected. DTI can detect and quantify parenchymal alterations of the fetal midbrain in Chiari II malformations. Therefore, in cases of enlarged fetal ventricles, FA of the fetal midbrain may contribute to the differentiation between Chiari II malformation and other entities. (orig.)

  17. Diffusion tensor imaging in patients with obstetric antiphospholipid syndrome without neuropsychiatric symptoms

    International Nuclear Information System (INIS)

    Pereira, Fabricio R.; Macri, Francesco; Beregi, Jean-Paul; Jackowski, Marcel P.; Kostis, William J.; Gris, Jean-Christophe; Mekkaoui, Choukri

    2016-01-01

    To evaluate white matter (WM) integrity in neurologically asymptomatic antiphospholipid syndrome (APS) using diffusion tensor imaging (DTI) in women with no thrombotic history but with pregnancy loss. Imaging was performed with a 3 T scanner using structural MRI (T1-weighted, fluid attenuation inversion recovery [FLAIR]) and DTI sequences in 66 women with APS and a control group of 17 women. Women with APS were further categorized as positive for lupus anticoagulant (LA) and/or aβ2GPI-G antibodies (LA/aβ2GPI-G-positive, N = 29) or negative (LA/aβ2GPI-G-negative, N = 37) for both. Tract-based spatial statistics of standard DTI-based indices were compared among groups. Women with APS had significantly lower fractional anisotropy (p < 0.05) associated with higher mean diffusivity and radial diffusivity compared to the control group. There was a stronger association of abnormal DTI features among women positive for LA and/or aβ2GPI-IgG antibodies than those who were negative. DTI appears sensitive to subtle WM changes in women with APS with no thrombotic history but with pregnancy loss, compatible with alterations in axonal structure and in the myelin sheath. The preferential association of abnormal DTI features with the two most pathogenic aPLAbs reinforces the pathophysiological relevance of our findings. (orig.)

  18. Preliminary diffusion tensor imaging studies in limb-girdle muscular dystrophies

    Science.gov (United States)

    Hidalgo-Tobon, S.; Hernandez-Salazar, G.; Vargas-Cañas, S.; Marrufo-Melendez, O.; Solis-Najera, S.; Taboada-Barajas, J.; Rodriguez, A. O.; Delgado-Hernandez, R.

    2012-10-01

    Limb-girdle muscular dystrophies (LGMD) are a group of autosomal dominantly or recessively inherited muscular dystrophies that also present with primary proximal (limb-girdle) muscle weakness. This type of dystrophy involves the shoulder and pelvic girdles, distinct phenotypic or clinical characteristics are recognized. Imaging experiments were conducted on a 1.5T GE scanner (General Electric Medical Systems. Milwaukee. USA), using a combination of two eight-channel coil array. Diffusion Tensor Imaging (DTI) data were acquired using a SE-EPI sequence, diffusion weighted gradients were applied along 30 non-collinear directions with a b-value=550 s/mm2. The connective tissue content does not appear to have a significant effect on the directionality of the diffusion, as assessed by fractional anisotropy. The fibers of the Sartorius muscle and gracilis showed decreased number of tracts, secondary to fatty infiltration and replacement of connective tissue and muscle mass loss characteristic of the underlying pathology. Our results demonstrated the utility of non-invasive MRI techniques to characterize the muscle pathology, through quantitative and qualitative methods such as the FA values and tractrography.

  19. Long-Term Follow-up of a Patient with Traumatic Brain Injury Using Diffusion Tensor Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Skoglund, T.S.; Nilsson, D.; Ljungberg, M.; Joensson, L.; Rydenhag, B. (Dept. of Neurosurgery, Dept. of Medical Physics and Biomedical Engineering, and Dept. of Radiology, Sahlgrenska Univ. Hospital, Goeteborg (Sweden))

    2008-02-15

    This case report describes a patient who sustained severe head trauma with diffuse axonal injury (DAI). Examination with magnetic resonance diffusion tensor imaging (MR-DTI), 6 days post-injury, showed a severe reduction in fractional anisotropy (FA) in the rostral pons containing the corticospinal tract, which correlated to the patient's severe hemiparesis. By 18 months post-accident, the patient had recovered completely and conventional MRI showed no pathology. However, although her FA values in the rostral pons had increased, they were still not normalized. It seems that a complete normalization of the FA values is not required to achieve clinical recovery, and that MR-DTI seems to be more sensitive to DAI compared to conventional MRI

  20. Long-Term Follow-up of a Patient with Traumatic Brain Injury Using Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Skoglund, T.S.; Nilsson, D.; Ljungberg, M.; Joensson, L.; Rydenhag, B.

    2008-01-01

    This case report describes a patient who sustained severe head trauma with diffuse axonal injury (DAI). Examination with magnetic resonance diffusion tensor imaging (MR-DTI), 6 days post-injury, showed a severe reduction in fractional anisotropy (FA) in the rostral pons containing the corticospinal tract, which correlated to the patient's severe hemiparesis. By 18 months post-accident, the patient had recovered completely and conventional MRI showed no pathology. However, although her FA values in the rostral pons had increased, they were still not normalized. It seems that a complete normalization of the FA values is not required to achieve clinical recovery, and that MR-DTI seems to be more sensitive to DAI compared to conventional MRI

  1. An Adaptive Spectrally Weighted Structure Tensor Applied to Tensor Anisotropic Nonlinear Diffusion for Hyperspectral Images

    Science.gov (United States)

    Marin Quintero, Maider J.

    2013-01-01

    The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…

  2. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study

    International Nuclear Information System (INIS)

    Ponrartana, Skorn; Hu, Houchun Harry; Ramos-Platt, Leigh; Wren, Tishya Anne Leong; Gilsanz, Vicente; Perkins, Thomas Gardner; Chia, Jonathan Mawlin

    2015-01-01

    There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury. The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD. Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity. Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and -0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = -0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = -0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = -0.89, P = 0.0001). DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD. (orig.)

  3. Effectiveness of diffusion tensor imaging in assessing disease severity in Duchenne muscular dystrophy: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ponrartana, Skorn; Hu, Houchun Harry [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Ramos-Platt, Leigh [Children' s Hospital Los Angeles, Department of Neurology, Los Angeles, CA (United States); Wren, Tishya Anne Leong; Gilsanz, Vicente [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital Los Angeles, Department of Orthopaedic Surgery, Los Angeles, CA (United States); Perkins, Thomas Gardner; Chia, Jonathan Mawlin [Philips Healthcare North America, Cleveland, OH (United States)

    2015-04-01

    There is currently a lack of suitable objective endpoints to measure disease progression in Duchenne muscular dystrophy (DMD). Emerging research suggests that diffusion tensor imaging (DTI) has potential as an outcome measure for the evaluation of skeletal muscle injury. The objective of this study was to evaluate the potential of DTI as quantitative magnetic resonance imaging (MRI) markers of disease severity in DMD. Thirteen consecutive boys (8.9 years ± 3.0 years) with DMD were evaluated using DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were compared with clinical outcome measures of manual muscle testing and MRI determinations of muscle fat fraction (MFF) in the right lower extremity. Both MRI measures of FA and ADC strongly correlated with age and muscle strength. Values for FA positively correlated with age and negatively correlated with muscle strength (r = 0.78 and -0.96; both P ≤ 0.002) while measures of ADC negatively correlated age, but positively correlated with muscle strength (r = -0.87 and 0.83; both P ≤ 0.0004). Additionally, ADC and FA strongly correlated with MFF (r = -0.891 and 0.894, respectively; both P ≤ 0.0001). Mean MMF was negatively correlated with muscle strength (r = -0.89, P = 0.0001). DTI measures of muscle structure strongly correlated with muscle strength and adiposity in boys with DMD in this pilot study, although these markers may be more reflective of fat replacement rather than muscle damage in later stages of the disease. Further studies in presymptomatic younger children are needed to assess the ability of DTI to detect early changes in DMD. (orig.)

  4. Deep Into the Fibers! Postmortem Diffusion Tensor Imaging in Forensic Radiology.

    Science.gov (United States)

    Flach, Patricia Mildred; Schroth, Sarah; Schweitzer, Wolf; Ampanozi, Garyfalia; Slotboom, Johannes; Kiefer, Claus; Germerott, Tanja; Thali, Michael J; El-Koussy, Marwan

    2015-09-01

    In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

  5. X-linked adrenoleukodystrophy: correlation between Loes score and diffusion tensor imaging parameters.

    Science.gov (United States)

    Ono, Sergio Eiji; de Carvalho Neto, Arnolfo; Gasparetto, Emerson Leandro; Coelho, Luiz Otávio de Mattos; Escuissato, Dante Luiz; Bonfim, Carmem Maria Sales; Ribeiro, Lisandro Lima

    2014-01-01

    The present study was aimed at evaluating the correlation between diffusion tensor imaging parameters and Loes score as well as whether those parameters could indicate early structural alterations. Diffusion tensor imaging measurements were obtained in 30 studies of 14 patients with X-linked adrenoleukodystrophy and were correlated with Loes scores. A control group including 28 male patients was created to establish agematched diffusion tensor imaging measurements. Inter- and intraobserver statistical analyses were undertaken. Diffusion tensor imaging measurements presented strong Pearson correlation coefficients (r) of -0.86, 0.89, 0.89 and 0.84 for fractional anisotropy and mean, radial and axial diffusivities (p tensor measurements at early stage of the disease indicates that mean and radial diffusivities might be useful to predict the disease progression. Measurements of diffusion tensor parameters can be used as an adjunct to the Loes score, aiding in the monitoring of the disease and alerting for possible Loes score progression in the range of interest for therapeutic decisions.

  6. Data quality in diffusion tensor imaging studies of the preterm brain : a systematic review

    NARCIS (Netherlands)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, A; Lequin, Maarten H.; Dudink, Jeroen

    BACKGROUND: To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE: To review the literature to evaluate acquisition and processing

  7. Impact of Gradient Number and Voxel Size on Diffusion Tensor Imaging Tractography for Resective Brain Surgery

    NARCIS (Netherlands)

    Hoefnagels, Friso W. A.; de Witt Hamer, Philip C.; Pouwels, Petra J. W.; Barkhof, Frederik; Vandertop, W. Peter

    2017-01-01

    To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with

  8. Altered brain microstructure assessed by diffusion tensor imaging in patients with chronic pancreatitis

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel

    2011-01-01

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised...

  9. Changes of brain microstructure in patients with painful chronic pancreatitis assessed by diffusion tensor imaging

    DEFF Research Database (Denmark)

    Frøkjær, Jens Brøndum; Olesen, Søren Schou; Gram, Mikkel

    Objective In patients with painful chronic pancreatitis (CP) there is increasing evidence of abnormal pain processing in the central nervous system. Using magnetic resonance (MR) diffusion tensor imaging, brain microstructure in areas involved in processing of visceral pain was characterised...

  10. Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging

    DEFF Research Database (Denmark)

    Karlsborg, Merete; Rosenbaum, Sverre; Wiegell, Mette R.

    2004-01-01

    BACKGROUND: MR diffusion tensor imaging (DTI) appears to be a powerful method to investigate the neuronal and axonal fibre distribution in the human brain. Changes in diffusion characteristics of water molecules in the white matter can be estimated as the apparent diffusion coefficient (ADC...

  11. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state

    Directory of Open Access Journals (Sweden)

    Fernández-Espejo Davinia

    2010-09-01

    Full Text Available Abstract Background The rate of recovery from the vegetative state (VS is low. Currently, little is known of the mechanisms and cerebral changes that accompany those relatively rare cases of good recovery. Here, we combined functional magnetic resonance imaging (fMRI and diffusion tensor imaging (DTI to study the evolution of one VS patient at one month post-ictus and again twelve months later when he had recovered consciousness. Methods fMRI was used to investigate cortical responses to passive language stimulation as well as task-induced deactivations related to the default-mode network. DTI was used to assess the integrity of the global white matter and the arcuate fasciculus. We also performed a neuropsychological assessment at the time of the second MRI examination in order to characterize the profile of cognitive deficits. Results fMRI analysis revealed anatomically appropriate activation to speech in both the first and the second scans but a reduced pattern of task-induced deactivations in the first scan. In the second scan, following the recovery of consciousness, this pattern became more similar to that classically described for the default-mode network. DTI analysis revealed relative preservation of the arcuate fasciculus and of the global normal-appearing white matter at both time points. The neuropsychological assessment revealed recovery of receptive linguistic functioning by 12-months post-ictus. Conclusions These results suggest that the combination of different structural and functional imaging modalities may provide a powerful means for assessing the mechanisms involved in the recovery from the VS.

  12. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  13. Structural changes of central white matter tracts in Kennedy's disease - a diffusion tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Pieper, C C; Konrad, C; Sommer, J; Teismann, I; Schiffbauer, H

    2013-05-01

    Spinobulbar muscular atrophy [Kennedy's disease (KD)] is a rare X-linked neurodegenerative disorder of mainly spinal and bulbar motoneurons. Recent studies suggest a multisystem character of this disease. The aim of this study was to identify and characterize structural changes of gray (GM) and white matter (WM) in the central nervous system. Whole-brain-based voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analyses were applied to MRI data of eight genetically proven patients with KD and compared with 16 healthy age-matched controls. Diffusion tensor imaging analysis showed not only decreased fractional anisotropy (FA) values in the brainstem, but also widespread changes in central WM tracts, whereas VBM analysis of the WM showed alterations primarily in the brainstem and cerebellum. There were no changes in GM volume. The FA value decrease in the brainstem correlated with the disease duration. Diffusion tensor imaging analysis revealed subtle changes of central WM tract integrity, while GM and WM volume remained unaffected. In our patient sample, KD had more extended effects than previously reported. These changes could either be attributed primarily to neurodegeneration or reflect secondary plastic changes due to atrophy of lower motor neurons and reorganization of cortical structures. © 2012 John Wiley & Sons A/S.

  14. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    OpenAIRE

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.; Dudink, Jeroen

    2015-01-01

    Background To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. Objective To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. Materials and methods We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 20...

  15. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    Science.gov (United States)

    Gyrya, V.; Lipnikov, K.

    2017-11-01

    We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.

  16. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke.

    Science.gov (United States)

    Auriat, A M; Borich, M R; Snow, N J; Wadden, K P; Boyd, L A

    2015-01-01

    Diffusion tensor imaging (DTI)-based tractography has been used to demonstrate functionally relevant differences in white matter pathway status after stroke. However, it is now known that the tensor model is insensitive to the complex fiber architectures found in the vast majority of voxels in the human brain. The inability to resolve intra-voxel fiber orientations may have important implications for the utility of standard DTI-based tract reconstruction methods. Intra-voxel fiber orientations can now be identified using novel, tensor-free approaches. Constrained spherical deconvolution (CSD) is one approach to characterize intra-voxel diffusion behavior. In the current study, we performed DTI- and CSD-based tract reconstruction of the corticospinal tract (CST) and corpus callosum (CC) to test the hypothesis that characterization of complex fiber orientations may improve the robustness of fiber tract reconstruction and increase the sensitivity to identify functionally relevant white matter abnormalities in individuals with chronic stroke. Diffusion weighted magnetic resonance imaging was performed in 27 chronic post-stroke participants and 12 healthy controls. Transcallosal pathways and the CST bilaterally were reconstructed using DTI- and CSD-based tractography. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD) were calculated across the tracts of interest. The total number and volume of reconstructed tracts was also determined. Diffusion measures were compared between groups (Stroke, Control) and methods (CSD, DTI). The relationship between post-stroke motor behavior and diffusion measures was evaluated. Overall, CSD methods identified more tracts than the DTI-based approach for both CC and CST pathways. Mean FA, ADC, and RD differed between DTI and CSD for CC-mediated tracts. In these tracts, we discovered a difference in FA for the CC between stroke and healthy control groups using CSD but

  17. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke

    Directory of Open Access Journals (Sweden)

    A.M. Auriat

    2015-01-01

    Full Text Available Diffusion tensor imaging (DTI-based tractography has been used to demonstrate functionally relevant differences in white matter pathway status after stroke. However, it is now known that the tensor model is insensitive to the complex fiber architectures found in the vast majority of voxels in the human brain. The inability to resolve intra-voxel fiber orientations may have important implications for the utility of standard DTI-based tract reconstruction methods. Intra-voxel fiber orientations can now be identified using novel, tensor-free approaches. Constrained spherical deconvolution (CSD is one approach to characterize intra-voxel diffusion behavior. In the current study, we performed DTI- and CSD-based tract reconstruction of the corticospinal tract (CST and corpus callosum (CC to test the hypothesis that characterization of complex fiber orientations may improve the robustness of fiber tract reconstruction and increase the sensitivity to identify functionally relevant white matter abnormalities in individuals with chronic stroke. Diffusion weighted magnetic resonance imaging was performed in 27 chronic post-stroke participants and 12 healthy controls. Transcallosal pathways and the CST bilaterally were reconstructed using DTI- and CSD-based tractography. Mean fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial diffusivity (AD, and radial diffusivity (RD were calculated across the tracts of interest. The total number and volume of reconstructed tracts was also determined. Diffusion measures were compared between groups (Stroke, Control and methods (CSD, DTI. The relationship between post-stroke motor behavior and diffusion measures was evaluated. Overall, CSD methods identified more tracts than the DTI-based approach for both CC and CST pathways. Mean FA, ADC, and RD differed between DTI and CSD for CC-mediated tracts. In these tracts, we discovered a difference in FA for the CC between stroke and healthy control groups

  18. Relationship between timed 25-foot walk and diffusion tensor imaging in multiple sclerosis.

    Science.gov (United States)

    Klineova, Sylvia; Farber, Rebecca; Saiote, Catarina; Farrell, Colleen; Delman, Bradley N; Tanenbaum, Lawrence N; Friedman, Joshua; Inglese, Matilde; Lublin, Fred D; Krieger, Stephen

    2016-01-01

    The majority of multiple sclerosis patients experience impaired walking ability, which impacts quality of life. Timed 25-foot walk is commonly used to gauge gait impairment but results can be broadly variable. Objective biological markers that correlate closely with patients' disability are needed. Diffusion tensor imaging, quantifying fiber tract integrity, might provide such information. In this project we analyzed relationships between timed 25-foot walk, conventional and diffusion tensor imaging magnetic resonance imaging markers. A cohort of gait impaired multiple sclerosis patients underwent brain and cervical spinal cord magnetic resonance imaging. Diffusion tensor imaging mean diffusivity and fractional anisotropy were measured on the brain corticospinal tracts and spinal restricted field of vision at C2/3. We analyzed relationships between baseline timed 25-foot walk, conventional and diffusion tensor imaging magnetic resonance imaging markers. Multivariate linear regression analysis showed a statistically significant association between several magnetic resonance imaging and diffusion tensor imaging metrics and timed 25-foot walk: brain mean diffusivity corticospinal tracts (p = 0.004), brain corticospinal tracts axial and radial diffusivity (P = 0.004 and 0.02), grey matter volume (p = 0.05), white matter volume (p = 0.03) and normalized brain volume (P = 0.01). The linear regression model containing mean diffusivity corticospinal tracts and controlled for gait assistance was the best fit model (p = 0.004). Our results suggest an association between diffusion tensor imaging metrics and gait impairment, evidenced by brain mean diffusivity corticospinal tracts and timed 25-foot walk.

  19. Detection of high GS risk group prostate tumors by diffusion tensor imaging and logistic regression modelling.

    Science.gov (United States)

    Ertas, Gokhan

    2018-07-01

    To assess the value of joint evaluation of diffusion tensor imaging (DTI) measures by using logistic regression modelling to detect high GS risk group prostate tumors. Fifty tumors imaged using DTI on a 3 T MRI device were analyzed. Regions of interests focusing on the center of tumor foci and noncancerous tissue on the maps of mean diffusivity (MD) and fractional anisotropy (FA) were used to extract the minimum, the maximum and the mean measures. Measure ratio was computed by dividing tumor measure by noncancerous tissue measure. Logistic regression models were fitted for all possible pair combinations of the measures using 5-fold cross validation. Systematic differences are present for all MD measures and also for all FA measures in distinguishing the high risk tumors [GS ≥ 7(4 + 3)] from the low risk tumors [GS ≤ 7(3 + 4)] (P Logistic regression modelling provides a favorable solution for the joint evaluations easily adoptable in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review.

    Science.gov (United States)

    Pieterman, Kay; Plaisier, Annemarie; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H; Dudink, Jeroen

    2015-08-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.

  1. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands); Govaert, Paul [Erasmus Medical Center - Sophia, Division of Neonatology, Department of Pediatrics, dr. Molewaterplein 60, GJ, Rotterdam (Netherlands); Department of Pediatrics, Koningin Paola Children' s Hospital, Antwerp (Belgium); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Lequin, Maarten H. [Department of Radiology, Erasmus Medical Center, Rotterdam (Netherlands)

    2015-08-15

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  2. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    International Nuclear Information System (INIS)

    Pieterman, Kay; Plaisier, Annemarie; Dudink, Jeroen; Govaert, Paul; Leemans, Alexander; Lequin, Maarten H.

    2015-01-01

    To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards. (orig.)

  3. Pediatric MRI

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIH Study of Normal Brain Development is a longitudinal study using anatomical MRI, diffusion tensor imaging (DTI), and MR spectroscopy (MRS) to map pediatric...

  4. Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia

    Directory of Open Access Journals (Sweden)

    Jiajia Zhu

    2015-01-01

    Full Text Available Diffusion kurtosis imaging (DKI is an extension of diffusion tensor imaging (DTI, exhibiting improved sensitivity and specificity in detecting developmental and pathological changes in neural tissues. However, little attention was paid to the performances of DKI and DTI in detecting white matter abnormality in schizophrenia. In this study, DKI and DTI were performed in 94 schizophrenia patients and 91 sex- and age-matched healthy controls. White matter integrity was assessed by fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD, radial diffusivity (RD, mean kurtosis (MK, axial kurtosis (AK and radial kurtosis (RK of DKI and FA, MD, AD and RD of DTI. Group differences in these parameters were compared using tract-based spatial statistics (TBSS (P  AK (20% > RK (3% and RD (37% > FA (24% > MD (21% for DKI, and RD (43% > FA (30% > MD (21% for DTI. DKI-derived diffusion parameters (RD, FA and MD were sensitive to detect abnormality in white matter regions (the corpus callosum and anterior limb of internal capsule with coherent fiber arrangement; however, the kurtosis parameters (MK and AK were sensitive to reveal abnormality in white matter regions (the juxtacortical white matter and corona radiata with complex fiber arrangement. In schizophrenia, the decreased AK suggests axonal damage; however, the increased RD indicates myelin impairment. These findings suggest that diffusion and kurtosis parameters could provide complementary information and they should be jointly used to reveal pathological changes in schizophrenia.

  5. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline.

    Science.gov (United States)

    Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H

    2012-07-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

  6. Visual pathway impairment by pituitary adenomas: quantitative diagnostics by diffusion tensor imaging.

    Science.gov (United States)

    Lilja, Ylva; Gustafsson, Oscar; Ljungberg, Maria; Starck, Göran; Lindblom, Bertil; Skoglund, Thomas; Bergquist, Henrik; Jakobsson, Karl-Erik; Nilsson, Daniel

    2017-09-01

    OBJECTIVE Despite ample experience in surgical treatment of pituitary adenomas, little is known about objective indices that may reveal risk of visual impairment caused by tumor growth that leads to compression of the anterior visual pathways. This study aimed to explore diffusion tensor imaging (DTI) as a means for objective assessment of injury to the anterior visual pathways caused by pituitary adenomas. METHODS Twenty-three patients with pituitary adenomas, scheduled for transsphenoidal tumor resection, and 20 healthy control subjects were included in the study. A minimum suprasellar tumor extension of Grade 2-4, according to the SIPAP (suprasellar, infrasellar, parasellar, anterior, and posterior) scale, was required for inclusion. Neuroophthalmological examinations, conventional MRI, and DTI were completed in all subjects and were repeated 6 months after surgery. Quantitative assessment of chiasmal lift, visual field defect (VFD), and DTI parameters from the optic tracts was performed. Linear correlations, group comparisons, and prediction models were done in controls and patients. RESULTS Both the degree of VFD and chiasmal lift were significantly correlated with the radial diffusivity (r = 0.55, p visual pathways that were compressed by pituitary adenomas. The correlation between radial diffusivity and visual impairment may reflect a gradual demyelination in the visual pathways caused by an increased tumor effect. The low level of axial diffusivity found in the patient group may represent early atrophy in the visual pathways, detectable on DTI but not by conventional methods. DTI may provide objective data, detect early signs of injury, and be an additional diagnostic tool for determining indication for surgery in cases of pituitary adenomas.

  7. Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Dobri Baldaranov

    2017-12-01

    Full Text Available Objective: The potential of magnetic resonance imaging (MRI as a technical biomarker for cerebral microstructural alterations in neurodegenerative diseases is under investigation. In this study, a framework for the longitudinal analysis of diffusion tensor imaging (DTI-based mapping was applied to the assessment of predefined white matter tracts in amyotrophic lateral sclerosis (ALS, as an example for a rapid progressive neurodegenerative disease.Methods: DTI was performed every 3 months in six patients with ALS (mean (M = 7.7; range 3 to 15 scans and in six controls (M = 3; range 2–5 scans with the identical scanning protocol, resulting in a total of 65 longitudinal DTI datasets. Fractional anisotropy (FA, mean diffusivity (MD, axonal diffusivity (AD, radial diffusivity (RD, and the ratio AD/RD were studied to analyze alterations within the corticospinal tract (CST which is a prominently affected tract structure in ALS and the tract correlating with Braak’s neuropathological stage 1. A correlation analysis was performed between progression rates based on DTI metrics and the revised ALS functional rating scale (ALS-FRS-R.Results: Patients with ALS showed an FA and AD/RD decline along the CST, while DTI metrics of controls did not change in longitudinal DTI scans. The FA and AD/RD decrease progression correlated significantly with ALS-FRS-R decrease progression.Conclusion: On the basis of the longitudinal assessment, DTI-based metrics can be considered as a possible noninvasive follow-up marker for disease progression in neurodegeneration. This finding was demonstrated here for ALS as a fast progressing neurodegenerative disease.

  8. Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Baldaranov, Dobri; Khomenko, Andrei; Kobor, Ines; Bogdahn, Ulrich; Gorges, Martin; Kassubek, Jan; Müller, Hans-Peter

    2017-01-01

    Objective : The potential of magnetic resonance imaging (MRI) as a technical biomarker for cerebral microstructural alterations in neurodegenerative diseases is under investigation. In this study, a framework for the longitudinal analysis of diffusion tensor imaging (DTI)-based mapping was applied to the assessment of predefined white matter tracts in amyotrophic lateral sclerosis (ALS), as an example for a rapid progressive neurodegenerative disease. Methods : DTI was performed every 3 months in six patients with ALS (mean (M) = 7.7; range 3 to 15 scans) and in six controls ( M = 3; range 2-5 scans) with the identical scanning protocol, resulting in a total of 65 longitudinal DTI datasets. Fractional anisotropy (FA), mean diffusivity (MD), axonal diffusivity (AD), radial diffusivity (RD), and the ratio AD/RD were studied to analyze alterations within the corticospinal tract (CST) which is a prominently affected tract structure in ALS and the tract correlating with Braak's neuropathological stage 1. A correlation analysis was performed between progression rates based on DTI metrics and the revised ALS functional rating scale (ALS-FRS-R). Results : Patients with ALS showed an FA and AD/RD decline along the CST, while DTI metrics of controls did not change in longitudinal DTI scans. The FA and AD/RD decrease progression correlated significantly with ALS-FRS-R decrease progression. Conclusion : On the basis of the longitudinal assessment, DTI-based metrics can be considered as a possible noninvasive follow-up marker for disease progression in neurodegeneration. This finding was demonstrated here for ALS as a fast progressing neurodegenerative disease.

  9. Diffusion tensor mode in imaging of intracranial epidermoid cysts: one step ahead of fractional anisotropy

    International Nuclear Information System (INIS)

    Jolapara, Milan; Kesavadas, Chandrasekharan; Saini, Jitender; Patro, Satya Narayan; Gupta, Arun Kumar; Kapilamoorthy, Tirur Raman; Bodhey, Narendra; Radhakrishnan, V.V.

    2009-01-01

    The signal characteristics of an epidermoid on T2-weighted imaging have been attributed to the presence of increased water content within the tumor. In this study, we explore the utility of diffusion tensor imaging (DTI) and diffusion tensor metrics (DTM) in knowing the microstructural anatomy of epidermoid cysts. DTI was performed in ten patients with epidermoid cysts. Directionally averaged mean diffusivity (D av ), exponential diffusion, and DTM-like fractional anisotropy (FA), diffusion tensor mode (mode), linear (CL), planar (CP), and spherical (CS) anisotropy were measured from the tumor as well as from the normal-looking white matter. Epidermoid cysts showed high FA. However, D av and exponential diffusion values did not show any restriction of diffusion. Diffusion tensor mode values were near -1, and CP values were high within the tumor. This suggested preferential diffusion of water molecules along a two-dimensional geometry (plane) in epidermoid cysts, which could be attributed to the parallel-layered arrangement of keratin filaments and flakes within these tumors. Thus, advanced imaging modalities like DTI with DTM can provide information regarding the microstructural anatomy of the epidermoid cysts. (orig.)

  10. Early microstructural white matter changes in patients with HIV: A diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Stubbe-Drger Bianca

    2012-05-01

    Full Text Available Abstract Background Previous studies have reported white matter (WM brain alterations in asymptomatic patients with human immunodeficiency virus (HIV. Methods We compared diffusion tensor imaging (DTI derived WM fractional anisotropy (FA between HIV-patients with and without mild macroscopic brain lesions determined using standard magnetic resonance imaging (MRI. We furthermore investigated whether WM alterations co-occurred with neurocognitive deficits and depression. We performed structural MRI and DTI for 19 patients and 19 age-matched healthy controls. Regionally-specific WM integrity was investigated using voxel-based statistics of whole-brain FA maps and region-of-interest analysis. Each patient underwent laboratory and neuropsychological tests. Results Structural MRI revealed no lesions in twelve (HIV-MRN and unspecific mild macrostructural lesions in seven patients (HIV-MRL. Both analyses revealed widespread FA-alterations in all patients. Patients with HIV-MRL had FA-alterations primarily adjacent to the observed lesions and, whilst reduced in extent, patients with HIV-MRN also exhibited FA-alterations in similar regions. Patients with evidence of depression showed FA-increase in the ventral tegmental area, pallidum and nucleus accumbens in both hemispheres, and patients with evidence of HIV-associated neurocognitive disorder showed widespread FA-reduction. Conclusion These results show that patients with HIV-MRN have evidence of FA-alterations in similar regions that are lesioned in HIV-MRL patients, suggesting common neuropathological processes. Furthermore, they suggest a biological rather than a reactive origin of depression in HIV-patients.

  11. Examining the gateway to the limbic system with diffusion tensor imaging: the perforant pathway in dementia.

    Science.gov (United States)

    Kalus, Peter; Slotboom, Johannes; Gallinat, Jürgen; Mahlberg, Richard; Cattapan-Ludewig, Katja; Wiest, Roland; Nyffeler, Thomas; Buri, Caroline; Federspiel, Andrea; Kunz, Dieter; Schroth, Gerhard; Kiefer, Claus

    2006-04-15

    Current treatments for Alzheimer's disease (AD) are only able to slow the progression of mental deterioration, making early and reliable diagnosis an essential part of any promising therapeutic strategy. In the initial stages of AD, the first neuropathological alterations occur in the perforant pathway (PP), a large neuronal fiber tract located at the entrance to the limbic system. However, to date, there is no sensitive diagnostic tool for performing in vivo assessments of this structure. In the present bimodal magnetic resonance imaging (MRI) study, we examined 10 elderly controls, 10 subjects suffering from mild cognitive impairment (MCI), and 10 AD patients in order to evaluate the sensitivity of diffusion tensor imaging (DTI), a new MRI technique, for detecting changes in the PP. Furthermore, the diagnostic explanatory power of DTI data of the PP should be compared to high-resolution MRI volumetry and intervoxel coherences (COH) of the hippocampus and the entorhinal cortex, two limbic regions also involved in the pathophysiology of early AD. DTI revealed a marked decrease in COH values in the PP region of MCI (right side: 26%, left side: 29%, as compared to controls) and AD patients (right side: 37%, left side: 43%, as compared to controls). Reductions in COH values of the PP region were significantly correlated with cognitive impairment. DTI data of the PP zone were the only parameter differing significantly between control subjects and MCI patients, while the volumetric measures and the COH values of the hippocampus and the entorhinal cortex did not. DTI of medial temporal brain regions is a promising non-invasive tool for the in vivo diagnosis of the early/preclinical stages of AD.

  12. Diffusion Tensor Imaging of Central Auditory Pathways in Patients with Sensorineural Hearing Loss: A Systematic Review.

    Science.gov (United States)

    Tarabichi, Osama; Kozin, Elliott D; Kanumuri, Vivek V; Barber, Samuel; Ghosh, Satra; Sitek, Kevin R; Reinshagen, Katherine; Herrmann, Barbara; Remenschneider, Aaron K; Lee, Daniel J

    2018-03-01

    Objective The radiologic evaluation of patients with hearing loss includes computed tomography and magnetic resonance imaging (MRI) to highlight temporal bone and cochlear nerve anatomy. The central auditory pathways are often not studied for routine clinical evaluation. Diffusion tensor imaging (DTI) is an emerging MRI-based modality that can reveal microstructural changes in white matter. In this systematic review, we summarize the value of DTI in the detection of structural changes of the central auditory pathways in patients with sensorineural hearing loss. Data Sources PubMed, Embase, and Cochrane. Review Methods We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement checklist for study design. All studies that included at least 1 sensorineural hearing loss patient with DTI outcome data were included. Results After inclusion and exclusion criteria were met, 20 articles were analyzed. Patients with bilateral hearing loss comprised 60.8% of all subjects. Patients with unilateral or progressive hearing loss and tinnitus made up the remaining studies. The auditory cortex and inferior colliculus (IC) were the most commonly studied regions using DTI, and most cases were found to have changes in diffusion metrics, such as fractional anisotropy, compared to normal hearing controls. Detectable changes in other auditory regions were reported, but there was a higher degree of variability. Conclusion White matter changes based on DTI metrics can be seen in patients with sensorineural hearing loss, but studies are few in number with modest sample sizes. Further standardization of DTI using a prospective study design with larger sample sizes is needed.

  13. 3 T magnetic resonance diffusion tensor imaging and fibre tracking in cervical myelopathy

    International Nuclear Information System (INIS)

    Xiangshui, M.; Xiangjun, C.; Xiaoming, Z.; Qingshi, Z.; Yi, C.; Chuanqiang, Q.; Xiangxing, M.; Chuanfu, L.; Jinwen, H.

    2010-01-01

    Aim: To analyse the characterization of diffusion tensor imaging (DTI) with 3 T magnetic resonance imaging (MRI) in cervical myelopathy. Methods: A total of 21 healthy controls and 84 patients with cervical myelopathy underwent T2-weighted imaging and DTI. The patients were divided into four groups based on the degree of cord compression and MRI signal intensity of the compressed cord as seen on T2-weighted images. The values of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues (λ i ) were analysed, and fibre tracking (FT) was performed. Results: For healthy controls, the mean values from the DTI of the cervical spinal cord were ADC = 0.784 ± 0.083 x 10 -3 mm 2 /s, FA = 0.721 ± 0.027, λ 1 , λ 2 , and λ 3 = 1.509 ± 0.145 x 10 -3 , 0.416 ± 0.094 x 10 -3 , and 0.411 ± 0.102 x 10 -3 mm 2 /s, respectively. Only values for λ 2 and λ 3 differed significantly between the control and A groups (p 2 and λ 3 of group A were 0.516 ± 0.105 x 10 -3 and 0.525 ± 0.129 x 10 -3 mm 2 /s, respectively. ADC, FA, λ 1 , λ 2 and λ 3 differed significantly between the control and B, C, D groups (p i obtained with DTI could assess subtle structural damage and changes of anisotropy in the cord of cervical myelopathy. Fibre tracking was useful in verifying changes in the compressed cord.

  14. Diffusion tensor imaging in children with unilateral hearing loss: a pilot study

    Directory of Open Access Journals (Sweden)

    Tara eRachakonda

    2014-05-01

    Full Text Available Objective: Language acquisition was assumed to proceed normally in children with unilateral hearing loss (UHL since they have one functioning ear. However, children with UHL score poorly on speech-language tests and have higher rates of educational problems compared to normal hearing (NH peers. Diffusion tensor imaging (DTI is an imaging modality used to measure microstructural integrity of brain white matter. The purpose of this pilot study was to investigate differences in fractional anisotropy (FA and mean diffusivity (MD in hearing- and non-hearing-related structures in the brain between children with UHL and their NH siblings. Study Design: Prospective observational cohortSetting: Academic medical center.Subjects and Methods: 61 children were recruited, tested and imaged. 29 children with severe-to-profound UHL were compared to 20 siblings with NH using IQ and oral language testing, and MRI with DTI. 12 children had inadequate MRI data. Parents provided demographic data and indicated whether children had a need for an individualized educational program (IEP or speech therapy (ST. DTI parameters were measured in auditory and non-auditory regions of interest (ROIs. Between-group comparisons were evaluated with non-parametric tests. Results: Lower FA of left lateral lemniscus was observed for children with UHL compared to their NH siblings, as well as trends towards differences in other auditory and nonauditory regions. Correlation analyses showed associations between several DTI parameters and outcomes in children with UHL. Regression analyses revealed relationships between educational outcome variables and several DTI parameters, which may provide clinically useful information for guidance of speech therapy. Discussion/Conclusion: White matter microstructural patterns in several brain regions are preserved despite unilateral rather than bilateral auditory input which contrasts with findings in patients with bilateral hearing loss.

  15. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus.

    Science.gov (United States)

    Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra

    2016-05-31

    In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly

  16. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Dhafer M Alahmari

    Full Text Available Injurious mechanical ventilation causes white matter (WM injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO increases brain injury at 24 h.Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only, or occluded (INJ+UCO; inflammatory and haemodynamic pathway. The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham, and lambs that did not undergo surgery (unoperated control; Cont. Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI and magnetic resonance spectroscopy (MRS techniques.Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively; no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively. Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04. DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit

  17. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    International Nuclear Information System (INIS)

    Tosun, Mesude; Inan, Nagihan; Sarisoy, Hasan Tahsin; Akansel, Gur; Gumustas, Sevtap; Gürbüz, Yeşim; Demirci, Ali

    2013-01-01

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm 2 . ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm 2 , the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade

  18. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Mesude, E-mail: mesude.tosun@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Inan, Nagihan, E-mail: inannagihan@ekolay.net [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Sarisoy, Hasan Tahsin, E-mail: htssarisoy@yahoo.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Akansel, Gur, E-mail: gakansel@gmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gumustas, Sevtap, E-mail: svtgumustas@hotmail.com [Department of Radiology, School of Medicine, University of Kocaeli (Turkey); Gürbüz, Yeşim, E-mail: yesimgurbuz2002@yahoo.com [Department of Pathology, School of Medicine, University of Kocaeli (Turkey); Demirci, Ali, E-mail: alidemirci@kocaeli.edu.tr [Department of Radiology, School of Medicine, University of Kocaeli (Turkey)

    2013-02-15

    Objective: To evaluate the diagnostic accuracy of liver apparent diffusion coefficient (ADC) measured with conventional diffusion-weighted imaging (CDI) and diffusion tensor imaging (DTI) for the diagnosis of liver fibrosis and inflammation. Materials and methods: Thirty-seven patients with histologic diagnosis of chronic viral hepatitis and 34 healthy volunteers were included in this prospective study. All patients and healthy volunteers were examined by 3 T MRI. CDI and DTI were performed using a breath-hold single-shot echo-planar spin echo sequence with b factors of 0 and 1000 s/mm{sup 2}. ADCs were obtained with CDI and DTI. Histopathologically, fibrosis of the liver parenchyma was classified with the use of a 5-point scale (0–4) and inflammation was classified with use of a 4-point scale (0–3) in accordance with the METAVIR score. Quantitatively, signal intensity and the ADCs of the liver parenchyma were compared between patients stratified by fibrosis stage and inflammation grade. Results: With a b factor of 1000 s/mm{sup 2}, the signal intensity of the cirrhotic livers was significantly higher than those of the normal volunteers. In addition, ADCs reconstructed from CDI and DTI of the patients were significantly lower than those of the normal volunteers. Liver ADC values inversely correlated with fibrosis and inflammation but there was only statistically significant for inflammatory grading. CDI performed better than DTI for the diagnosis of fibrosis and inflammation. Conclusion: ADC values measured with CDI and DTI may help in the detection of liver fibrosis. They may also give contributory to the inflammatory grading, particularly in distinguishing high from low grade.

  19. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints.

    Science.gov (United States)

    Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2017-02-01

    To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.

  20. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma.

    Science.gov (United States)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F

    2017-11-01

    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.

  1. Effect of intravenous gadolinium-DTPA on diffusion tensor MR imaging for the evaluation of brain tumors

    International Nuclear Information System (INIS)

    Bae, Min Sun; Jahng, Geon-Ho; Ryu, Chang Woo; Yang, Dal Mo; Kim, Eui Jong; Choi, Woo Suk

    2009-01-01

    The aim of this study was to investigate whether indices of diffusion tensor MRI (DT-MRI) are altered after contrast medium injection in patients with brain tumors. DT-MRIs at a 3-T unit before and 6 min after gadolinium-diethylenetriamine penta-acetic acid injection were obtained in nine patients (five women, four men) with histologically confirmed brain tumors (four metastases, one glioblastoma multiforme, three meningiomas, and one lymphoma). Fractional anisotropy (FA), trace and mean raw DT-MRI data without (DT b 0, b value = 0 s/mm 2 ) and with (DT b 800, b value = 800 s/mm 2 ) diffusion-encoded gradients were calculated. Regions of interest (ROIs) were placed in the tumor, peritumoral edema, and normal-appearing symmetric contralateral brain tissue for each patient. The Kruskal-Wallis rank sum test was used to determine the effects of contrast medium and ROI for all of the maps, and the Wilcoxon signed-rank test was performed for either paired t test between pre- and post-contrast values of DTI indices for the ROIs or the post hoc test. Statistically significant differences between pre-contrast and post-contrast DT-MRI are shown in the trace value of the peritumoral edema area (p = 0.0195) and the FA value of the tumor area (p = 0.0273). Trace and FA values of the other areas show no statistically significant differences between pre- and post-contrast (p > 0.05). In addition, we find a significant ROI effect for both FA (χ 2 = 26.514, df = 2, p = 0.0001) and trace (χ 2 = 21.218, df = 2, p = 0.0001). DT-MRI obtained after contrast medium injection of 6 min results in significant changes in diffusion isotropic and anisotropic values. Therefore, clinical applications of DT-MRI after administrating a contrast medium require caution in interpretation. (orig.)

  2. Diffusion tensor imaging of brain in relapsing neuromyelitis optica

    International Nuclear Information System (INIS)

    Yu Chunshui; Li Kuncheng; Qin Wen; Lin Fuchun; Jiang Tianzi

    2007-01-01

    Objective: To investigate the presence of occult brain tissue damage in patients with relapsing neuromyelitis optica (RNMO) and its possible mechanism by using diffusion tensor imaging (DTI). Methods: DTI scans were performed in 16 patients with RNMO and 16 sex- and age-matched healthy controls. Histogram analysis of mean diffusivity (MD) and fractional anisotropy (FA) was performed in brain tissue (BT), white matter (WM) and gray matter (GM) to detect the presence of occult brain tissue damage in RNMO patients. Region of interest (ROI) analysis of MD and FA was also performed in 6 dedicated regions with or without direct connection with spinal cord or optic nerve to determine the relationship between occult brain tissue damage and the damage of spinal cord and optic nerve. Results Patients with RNMO had a significantly higher average MD of the BT [RNMO (0.95 ± 0.02) x 10 -3 mm 2 /s, controls (0.91 ± 0.03) x 10 -3 mm 2 /s, t=3.940, P -3 mm 2 /s, controls(0.80 ± 0.02) x 10 -3 mm 2 /s, t=3.117, P=0.004] an.d GM [RNMO (1.06 ± 0.04) x 10 -3 mm 2 /s, controls (0.88 ± 0.05) x 10 -3 mm 2 /s, t=4.031, P -3 mm 2 /s, controls (0.81 ± 0.02) x 10 -3 mm 2 /s, t=4.373, P -3 mm 2 /s, controls (1.11 ± 0.10) x 10 -3 mm 2 /s, t=4.260, P -3 mm 2 /s, controls (0.87 ± 0.05) x 10 -3 mm 2 /s, t4.391, P -3 mm 2 /s, controls (0.72 ± O.01) x 10 -3 mm 2 /s, t=4.683, P -3 mm 2 /s, controls (0.82+0.03) x 10-3 mm2/s, t = 4. 619, P -3 mm 2 /s, controls (0.73±0.03) x 10 -3 mm 2 /s, t =2.804, P=0.009 and splenium of corpus callosum: RNMO(0.77 ± 0.05) x 10 -3 mm 2 /s, controls (0.73 ± 0.04) x 10 -3 mm 2 /s, t=2.234, P=0.033] and FA [genu of corpus callosum: RNMO 0.82± 0.03 ,controls 0.82 ± 0.03, t=0.196, P=0.846 and splenium of corpus caltosum: RNMO 0.83±0.03, controls 0.83 ± 0.02, t=0.333, P=0.741] between RNMO patients and controls. Conclusion: RNMO patients have occult brain tissue damage, which might be related to the antegrade and retrograde degeneration secondary to lesions in

  3. Diffusion-weighted MRI in cervical cancer

    International Nuclear Information System (INIS)

    McVeigh, Patrick Z.; Haider, Masoom A.; Syed, Aejaz M.; Milosevic, Michael; Fyles, Anthony

    2008-01-01

    The purpose was to investigate the potential value of apparent diffusion coefficient (ADC) measurement with MRI in the assessment of cervix cancer. Diffusion-weighted MRI was performed in 47 patients with cervical carcinoma undergoing chemoradiation therapy and 26 normal controls on a 1.5-T system with a b-value of 600 s/mm 2 . FIGO stage, tumor volume, nodal status, interstitial fluid pressure (IFP) and oxygen measurements were recorded. Response was defined as no visible tumor 3-6 months following completion of therapy. The average median ADC (mADC) of cervical carcinomas (1.09±0.20 x 10 -3 mm 2 /s) was significantly lower than normal cervix (2.09±0.46 x 10 -3 mm 2 /s) (P -3 mm 2 /s) compared to T2b (1.21 x 10 -3 mm 2 /s) and T3/T4 (1.10 x 10 -3 mm 2 /s) (P<0.001). In patients with squamous carcinomas the 90th percentile of ADC values was lower in responders than non-responders (P<0.05). Median ADC in cervix carcinoma is significantly lower compared to normal cervix. ADC may have predictive value in squamous tumors, but further long-term study will determine the ultimate clinical utility. (orig.)

  4. The role of diffusion tensor imaging in brain tumor surgery : A review of the literature

    NARCIS (Netherlands)

    Potgieser, Adriaan R. E.; Wagemakers, Michiel; van Hulzen, Arjen L. J.; de Jong, Bauke M.; Hoving, Eelco W.; Groen, Rob J. M.

    Diffusion tensor imaging (DTI) is a recent technique that utilizes diffusion of water molecules to make assumptions about white matter tract architecture of the brain. Early on, neurosurgeons recognized its potential value in neurosurgical planning, as it is the only technique that offers the

  5. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  6. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.

    Science.gov (United States)

    Mukherjee, Pratik; Miller, Jeffrey H; Shimony, Joshua S; Philip, Joseph V; Nehra, Deepika; Snyder, Abraham Z; Conturo, Thomas E; Neil, Jeffrey J; McKinstry, Robert C

    2002-10-01

    Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter. Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations. Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age. Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.

  7. Recent Developments in Diffusion Tensor Imaging of Brain

    OpenAIRE

    Parekh, Mansi Bharat; Gurjarpadhye, Abhijit Achyut; Manoukian, Martin A.C.; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Magnetic resonance imaging (MRI) has come to be known as a unique radiological imaging modality because of its ability to perform tomographic imaging of body without the use of any harmful ionizing radiation. The radiologists use MRI to gain insight into the anatomy of organs, including the brain, while biomedical researchers explore the modality to gain better understanding of the brain structure and function. However, due to limited resolution and contrast, the conventional MRI fails to sho...

  8. Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

    Directory of Open Access Journals (Sweden)

    Ming-guo Qiu

    2012-01-01

    Full Text Available The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers were acquired; the DTI data were processed using DtiStudio and FSL software. The FA and color FA maps were compared with the sectional images of the Chinese visible human dataset. The probability maps of the corticospinal tract were generated as a quantitative measure of reproducibility for each voxel of the stereotaxic space. The fibers displayed by the diffusion tensor imaging were well consistent with the sectional images of the Chinese visible human dataset and the existing anatomical knowledge. The three-dimensional architecture of the white matter fibers could be clearly visualized on the diffusion tensor tractography. The diffusion tensor tractography can establish the 3D probability maps of the corticospinal tract, in which the degree of intersubject reproducibility of the corticospinal tract is consistent with the previous architectonic report. DTI is a reliable method of studying the fiber connectivity in human brain, but it is difficult to identify the tiny fibers. The probability maps are useful for evaluating and identifying the corticospinal tract in the DTI, providing anatomical information for the preoperative planning and improving the accuracy of surgical risk assessments preoperatively.

  9. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Raja, Rajikha; Sinha, Neelam [International Institute of Information Technology-Bangalore, Bangalore (India); Saini, Jitender; Mahadevan, Anita; Rao, K.V.L. Narasinga; Swaminathan, Aarthi [National Institute of Mental Health and Neurosciences, Bangalore (India)

    2016-12-15

    In this work, we aim to assess the significance of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters in grading gliomas. Retrospective studies were performed on 53 subjects with gliomas belonging to WHO grade II (n = 19), grade III (n = 20) and grade IV (n = 14). Expert marked regions of interest (ROIs) covering the tumour on T2-weighted images. Statistical texture measures such as entropy and busyness calculated over ROIs on diffusion parametric maps were used to assess the tumour heterogeneity. Additionally, we propose a volume heterogeneity index derived from cross correlation (CC) analysis as a tool for grading gliomas. The texture measures were compared between grades by performing the Mann-Whitney test followed by receiver operating characteristic (ROC) analysis for evaluating diagnostic accuracy. Entropy, busyness and volume heterogeneity index for all diffusion parameters except fractional anisotropy and anisotropy of kurtosis showed significant differences between grades. The Mann-Whitney test on mean diffusivity (MD), among DTI parameters, resulted in the highest discriminability with values of P = 0.029 (0.0421) for grade II vs. III and P = 0.0312 (0.0415) for III vs. IV for entropy (busyness). In DKI, mean kurtosis (MK) showed the highest discriminability, P = 0.018 (0.038) for grade II vs. III and P = 0.022 (0.04) for III vs. IV for entropy (busyness). Results of CC analysis illustrate the existence of homogeneity in volume (uniformity across slices) for lower grades, as compared to higher grades. Hypothesis testing performed on volume heterogeneity index showed P values of 0.0002 (0.0001) and 0.0003 (0.0003) between grades II vs. III and III vs. IV, respectively, for MD (MK). In summary, the studies demonstrated great potential towards automating grading gliomas by employing tumour heterogeneity measures on DTI and DKI parameters. (orig.)

  10. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas

    International Nuclear Information System (INIS)

    Raja, Rajikha; Sinha, Neelam; Saini, Jitender; Mahadevan, Anita; Rao, K.V.L. Narasinga; Swaminathan, Aarthi

    2016-01-01

    In this work, we aim to assess the significance of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameters in grading gliomas. Retrospective studies were performed on 53 subjects with gliomas belonging to WHO grade II (n = 19), grade III (n = 20) and grade IV (n = 14). Expert marked regions of interest (ROIs) covering the tumour on T2-weighted images. Statistical texture measures such as entropy and busyness calculated over ROIs on diffusion parametric maps were used to assess the tumour heterogeneity. Additionally, we propose a volume heterogeneity index derived from cross correlation (CC) analysis as a tool for grading gliomas. The texture measures were compared between grades by performing the Mann-Whitney test followed by receiver operating characteristic (ROC) analysis for evaluating diagnostic accuracy. Entropy, busyness and volume heterogeneity index for all diffusion parameters except fractional anisotropy and anisotropy of kurtosis showed significant differences between grades. The Mann-Whitney test on mean diffusivity (MD), among DTI parameters, resulted in the highest discriminability with values of P = 0.029 (0.0421) for grade II vs. III and P = 0.0312 (0.0415) for III vs. IV for entropy (busyness). In DKI, mean kurtosis (MK) showed the highest discriminability, P = 0.018 (0.038) for grade II vs. III and P = 0.022 (0.04) for III vs. IV for entropy (busyness). Results of CC analysis illustrate the existence of homogeneity in volume (uniformity across slices) for lower grades, as compared to higher grades. Hypothesis testing performed on volume heterogeneity index showed P values of 0.0002 (0.0001) and 0.0003 (0.0003) between grades II vs. III and III vs. IV, respectively, for MD (MK). In summary, the studies demonstrated great potential towards automating grading gliomas by employing tumour heterogeneity measures on DTI and DKI parameters. (orig.)

  11. In utero diffusion tensor imaging of the fetal brain: A reproducibility study.

    Science.gov (United States)

    Jakab, András; Tuura, Ruth; Kellenberger, Christian; Scheer, Ianina

    2017-01-01

    Our purpose was to evaluate the within-subject reproducibility of in utero diffusion tensor imaging (DTI) metrics and the visibility of major white matter structures. Images for 30 fetuses (20-33. postmenstrual weeks, normal neurodevelopment: 6 cases, cerebral pathology: 24 cases) were acquired on 1.5 T or 3.0 T MRI. DTI with 15 diffusion-weighting directions was repeated three times for each case, TR/TE: 2200/63 ms, voxel size: 1 ∗ 1 mm, slice thickness: 3-5 mm, b-factor: 700 s/mm 2 . Reproducibility was evaluated from structure detectability, variability of DTI measures using the coefficient of variation (CV), image correlation and structural similarity across repeated scans for six selected structures. The effect of age, scanner type, presence of pathology was determined using Wilcoxon rank sum test. White matter structures were detectable in the following percentage of fetuses in at least two of the three repeated scans: corpus callosum genu 76%, splenium 64%, internal capsule, posterior limb 60%, brainstem fibers 40% and temporooccipital association pathways 60%. The mean CV of DTI metrics ranged between 3% and 14.6% and we measured higher reproducibility in fetuses with normal brain development. Head motion was negatively correlated with reproducibility, this effect was partially ameliorated by motion-correction algorithm using image registration. Structures on 3.0 T had higher variability both with- and without motion correction. Fetal DTI is reproducible for projection and commissural bundles during mid-gestation, however, in 16-30% of the cases, data were corrupted by artifacts, resulting in impaired detection of white matter structures. To achieve robust results for the quantitative analysis of diffusivity and anisotropy values, fetal-specific image processing is recommended and repeated DTI is needed to ensure the detectability of fiber pathways.

  12. Investigation of altered microstructure in patients with drug refractory epilepsy using diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuwei; Yan, Xu; Fan, Mingxia [East China Normal University, Key Laboratory of Magnetic Resonance, Shanghai (China); Mao, Lingyan; Wang, Xin; Ding, Jing [Fudan University, Department of Neurology, Zhongshan Hospital, Shanghai (China); Xu, Dongrong [Columbia University and New York State Psychiatric Institute, MRI Unit/Epidemiology Division, Department of Psychiatry, New York, NY (United States)

    2017-06-15

    The risk of refractory epilepsy can be more dangerous than the adverse effect caused by medical treatment. In this study, we employed voxel-wise analysis (VWA) and tract-based spatial statistics (TBSS) methods to measure microstructural changes using diffusion tensor imaging (DTI) in patients of drug refractory epilepsy (DRE) who had been epileptic for more than 10 years. To examine the specific microstructural abnormalities in DRE patients and its difference from medically controlled epilepsy (MCE), we acquired DTI data of 7 DRE patients, 37 MCE patients, and 31 healthy controls (HCs) using a 3 T MRI scanner. Comparisons between epileptic patients and HCs between MCE and DRE patients were performed based on calculated diffusion anisotropic indices data using VWA and TBSS. Compared to HCs, epileptic patients (including MCE and DRE) showed significant DTI changes in the common affected regions based on VWA, whereas TBSS found that widespread DTI changes in parts of microstructures of bilateral hemispheres were more obvious in the DRE patients than that in the MCE patients when compared with HCs. In contrast, significant reduction of fractional anisotropy values of thalamo-cortical fibers, including left superior temporal gyrus, insular cortex, pre-/post-central gyri, and thalamus, were further found in DRE patients compared with MCE. The results of multiple diffusion anisotropic indices data provide complementary information to understand the dysfunction of thalamo-cortical pathway in DRE patients, which may be contributors to disorder of language and motor functions. Our current study may shed light on the pathophysiology of DRE. (orig.)

  13. Measuring Connectivity in the Primary Visual Pathway in Human Albinism Using Diffusion Tensor Imaging and Tractography.

    Science.gov (United States)

    Grigorian, Anahit; McKetton, Larissa; Schneider, Keith A

    2016-08-11

    In albinism, the number of ipsilaterally projecting retinal ganglion cells (RGCs) is significantly reduced. The retina and optic chiasm have been proposed as candidate sites for misrouting. Since a correlation between the number of lateral geniculate nucleus (LGN) relay neurons and LGN size has been shown, and based on previously reported reductions in LGN volumes in human albinism, we suggest that fiber projections from LGN to the primary visual cortex (V1) are also reduced. Studying structural differences in the visual system of albinism can improve the understanding of the mechanism of misrouting and subsequent clinical applications. Diffusion data and tractography are useful for mapping the OR (optic radiation). This manuscript describes two algorithms for OR reconstruction in order to compare brain connectivity in albinism and controls.An MRI scanner with a 32-channel head coil was used to acquire structural scans. A T1-weighted 3D-MPRAGE sequence with 1 mm(3) isotropic voxel size was used to generate high-resolution images for V1 segmentation. Multiple proton density (PD) weighted images were acquired coronally for right and left LGN localization. Diffusion tensor imaging (DTI) scans were acquired with 64 diffusion directions. Both deterministic and probabilistic tracking methods were run and compared, with LGN as the seed mask and V1 as the target mask. Though DTI provides relatively poor spatial resolution, and accurate delineation of OR may be challenging due to its low fiber density, tractography has been shown to be advantageous both in research and clinically. Tract based spatial statistics (TBSS) revealed areas of significantly reduced white matter integrity within the OR in patients with albinism compared to controls. Pairwise comparisons revealed a significant reduction in LGN to V1 connectivity in albinism compared to controls. Comparing both tracking algorithms revealed common findings, strengthening the reliability of the technique.

  14. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  15. Hippocampal diffusion tensor imaging microstructural changes in vascular dementia

    DEFF Research Database (Denmark)

    Ostojic, Jelena; Kozic, Dusko; Pavlovic, Aleksandra

    2015-01-01

    To explore microstructural integrity of hippocampus in vascular dementia (VD) using DTI. Twenty-five individuals with VD, without magnetic resonance imaging (MRI) evidence of gray matter pathology, and 25 matched healthy control (HC) individuals underwent a 3T MRI protocol including T2, FLAIR, an...

  16. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  17. The value of 3 T MR diffusion tensor fiber tractography study of association fasciculus of normative human in vivo primarily

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Gao Peiyi; Li Shaowu; Ai Lin; Chen Hongyan; Tian Shengyong; Pang Ruilin

    2006-01-01

    Objective: To exhibit the fibers of association fascicules, aims at demonstrating the association fibers of brain with diffusion tensor fiber tracking technique. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and diffusion tensor fiber tractography (DT-FT) were performed in twenty healthy subjects, including eighteen right-handed (sixteen men and four women) and two left-handed (one male and one female) by 3 T Siemens Trio 2003 T MRI. To select arcuate fascicules, inferior longitudinal fascicules, frontalwoceipital fascicules, corpus callosum, posterior limb of internal capsule and external capsule as seeds used to track fibers. Results: Diffusion tensor fiber tracking exhibited bundles of external capsule left mean fibers were 308 bundles, right fibers were 307 bundles (t=0.138, P>0.05), frontal-occipital tracks left mean fibers were 115 bundles, right fibers were 110 bundles(t=1.174, P>0.05), and their fractional anisotropy (FA) valueexternal capsule mean FA left was 0.361, the right was 0.362 (t=-0.184, P>0.05). Frontal-occipital tracks mean fractional anisotropy left was 0.352, the right was 0.351 (t=-0.816, P>0.05). The difference between both sides were statistically insignificant (P>0.05). The posterior limb of internal capsule left mean fibers were 249 bundles, right fibers were 257 bundles (t=-0.818, P>0.05), arcuate fascietfiesleft mean fibers were 198 bundles, right fibers were 204 bundles (t=-0.465, P>0.05 ) fibers difference between both sides were statistically insignificant (P>0.05), but the individual difference was significant, and their fractional anisotropy difference between both sides (posterior limb of internal capsule mean FA left was 0.450, the right was 0.444 (t=2.771, P 0.05). Mean FA left was 0.369, the right was 0.370(t=-0.178, P>0.05) ,difference between both sides was statistically insignificant (P>0.05). But the individual difference was significant. Some of them were the left larger than the right side. The frontal

  18. Diffusion Tensor Imaging Tractography in Pure Neuritic Leprosy: First Experience Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Michele R. Colonna

    2016-01-01

    Full Text Available Five years after both right ulnar and median nerve decompression for paraesthesias and palsy, a patient, coming from Nigeria but living in Italy, came to our unit claiming to have persistent pain and combined median and ulnar palsy. Under suspicion of leprosy, skin and left sural nerve biopsy were performed. Skin tests were negative, but Schwann cells resulted as positive for acid-fast bacilli (AFB, leading to the diagnosis of Pure Neuritic Leprosy (PNL. The patient was given PB multidrug therapy and recovered from pain in two months. After nine months both High Resolution Ultrasonography (HRUS and Magnetic Resonance Imaging (MRI were performed, revealing thickening of the nerves. Since demyelination is common in PNL, the Authors started to use Diffusion Tensor Imaging Tractography (DTIT to get better morphological and functional data about myelination than does the traditional imaging. DTIT proved successful in showing myelin discontinuity, reorganization, and myelination, and the Authors suggest that it can give more information about the evolution of the disease, as well as further indications for surgery (nerve decompression, nerve transfers, and babysitting for distal effector protection, and should be added to traditional imaging tools in leprosy.

  19. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage.

    Science.gov (United States)

    Fox, W Christopher; Park, Min S; Belverud, Shawn; Klugh, Arnett; Rivet, Dennis; Tomlin, Jeffrey M

    2013-04-01

    To follow the progression of neuroimaging as a means of non-invasive evaluation of mild traumatic brain injury (mTBI) in order to provide recommendations based on reproducible, defined imaging findings. A comprehensive literature review and analysis of contemporary published articles was performed to study the progression of neuroimaging findings as a non-invasive 'biomarker' for mTBI. Multiple imaging modalities exist to support the evaluation of patients with mTBI, including ultrasound (US), computed tomography (CT), single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). These techniques continue to evolve with the development of fractional anisotropy (FA), fiber tractography (FT), and diffusion tensor imaging (DTI). Modern imaging techniques, when applied in the appropriate clinical setting, may serve as a valuable tool for diagnosis and management of patients with mTBI. An understanding of modern neuroanatomical imaging will enhance our ability to analyse injury and recognize the manifestations of mTBI.

  20. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Science.gov (United States)

    Genova, Helen M; Rajagopalan, Venkateswaran; Deluca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  1. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Helen M Genova

    Full Text Available The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS, looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  2. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  3. Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study.

    Directory of Open Access Journals (Sweden)

    Davis Woodworth

    Full Text Available Studies have suggested chronic pain syndromes are associated with neural reorganization in specific regions associated with perception, processing, and integration of pain. Urological chronic pelvic pain syndrome (UCPPS represents a collection of pain syndromes characterized by pelvic pain, namely Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS and Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS, that are both poorly understood in their pathophysiology, and treated ineffectively. We hypothesized patients with UCPPS may have microstructural differences in the brain compared with healthy control subjects (HCs, as well as patients with irritable bowel syndrome (IBS, a common gastrointestinal pain disorder. In the current study we performed population-based voxel-wise DTI and super-resolution track density imaging (TDI in a large, two-center sample of phenotyped patients from the multicenter cohort with UCPPS (N = 45, IBS (N = 39, and HCs (N = 56 as part of the MAPP Research Network. Compared with HCs, UCPPS patients had lower fractional anisotropy (FA, lower generalized anisotropy (GA, lower track density, and higher mean diffusivity (MD in brain regions commonly associated with perception and integration of pain information. Results also showed significant differences in specific anatomical regions in UCPPS patients when compared with IBS patients, consistent with microstructural alterations specific to UCPPS. While IBS patients showed clear sex related differences in FA, MD, GA, and track density consistent with previous reports, few such differences were observed in UCPPS patients. Heat maps illustrating the correlation between specific regions of interest and various pain and urinary symptom scores showed clustering of significant associations along the cortico-basal ganglia-thalamic-cortical loop associated with pain integration, modulation, and perception. Together, results suggest patients with UCPPS have extensive

  4. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    NARCIS (Netherlands)

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT

  5. White matter injury in newborns with congenital heart disease: a diffusion tensor imaging study.

    Science.gov (United States)

    Mulkey, Sarah B; Ou, Xiawei; Ramakrishnaiah, Raghu H; Glasier, Charles M; Swearingen, Christopher J; Melguizo, Maria S; Yap, Vivien L; Schmitz, Michael L; Bhutta, Adnan T

    2014-09-01

    Brain injury is observed on cranial magnetic resonance imaging preoperatively in up to 50% of newborns with congenital heart disease. Newer imaging techniques such as diffusion tensor imaging provide sensitive measures of the white matter integrity. The objective of this study was to evaluate the diffusion tensor imaging analysis technique of tract-based spatial statistics in newborns with congenital heart disease. Term newborns with congenital heart disease who would require surgery at less than 1 month of age were prospectively enrolled (n = 19). Infants underwent preoperative and postoperative brain magnetic resonance imaging with diffusion tensor imaging. Tract-based spatial statistics, an objective whole-brain diffusion tensor imaging analysis technique, was used to determine differences in white matter fractional anisotropy between infant groups. Term control infants were also compared with congenital heart disease infants. Postmenstrual age was equivalent between congenital heart disease infant groups and between congenital heart disease and control infants. Ten infants had preoperative brain injury, either infarct or white matter injury, by conventional brain magnetic resonance imaging. The technique of tract-based spatial statistics showed significantly lower fractional anisotropy (P tensor imaging analysis technique that may have better sensitivity in detecting white matter injury compared with conventional brain magnetic resonance imaging in term newborns with congenital heart disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Usefulness of Diffusion Tensor Imaging of White Matter in Alzheimer Disease and Vascular Dementia

    International Nuclear Information System (INIS)

    Sugihara, S.; Kinoshita, T.; Matsusue, E.; Fujii, S.; Ogawa, T.

    2004-01-01

    Purpose: To evaluate the usefulness of diffusion tensor imaging in detecting the water diffusivity caused by neuro pathological change in Alzheimer disease and vascular dementia. Material and Methods: Twenty patients with Alzheimer disease, 20 with vascular dementia, and 10 control subjects were examined. Diffusion tensor imaging applied diffusion gradient encoding in six non-collinear directions. Fractional anisotropy values were compared in the genu and splenium of the corpus callosum, and anterior and posterior white matter among the three groups. Results: In the patients with Alzheimer disease, fractional anisotropy values of the posterior white matter were significantly lower than those of controls. In patients with vascular dementia, fractional anisotropy values of the anterior white matter tended to be lower than those of the posterior white matter (P=0.07). Conclusion: Diffusion tensor imaging reflects the neuro pathological changes in the white matter, and may be useful in the diagnosis of Alzheimer disease and vascular dementia. Keywords: Alzheimer disease, .; diffusion tensor imaging, .; vascular dementia

  7. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study

    Science.gov (United States)

    Kim, Junghoon; Avants, Brian; Patel, Sunil; Whyte, John; Coslett, H. Branch; Pluta, John; Detre, John A.; Gee, James C.

    2008-01-01

    Traumatic brain injury (TBI) is one of the most common causes of long-term disability. Despite the importance of identifying neuropathology in individuals with chronic TBI, methodological challenges posed at the stage of inter-subject image registration have hampered previous voxel-based MRI studies from providing a clear pattern of structural atrophy after TBI. We used a novel symmetric diffeomorphic image normalization method to conduct a tensor-based morphometry (TBM) study of TBI. The key advantage of this method is that it simultaneously estimates an optimal template brain and topology preserving deformations between this template and individual subject brains. Detailed patterns of atrophies are then revealed by statistically contrasting control and subject deformations to the template space. Participants were 29 survivors of TBI and 20 control subjects who were matched in terms of age, gender, education, and ethnicity. Localized volume losses were found most prominently in white matter regions and the subcortical nuclei including the thalamus, the midbrain, the corpus callosum, the mid- and posterior cingulate cortices, and the caudate. Significant voxel-wise volume loss clusters were also detected in the cerebellum and the frontal/temporal neocortices. Volume enlargements were identified largely in ventricular regions. A similar pattern of results was observed in a subgroup analysis where we restricted our analysis to the 17 TBI participants who had no macroscopic focal lesions (total lesion volume> 1.5 cm 3). The current study confirms, extends, and partly challenges previous structural MRI studies in chronic TBI. By demonstrating that a large deformation image registration technique can be successfully combined with TBM to identify TBI-induced diffuse structural changes with greater precision, our approach is expected to increase the sensitivity of future studies examining brain-behavior relationships in the TBI population. PMID:17999940

  8. Diffusion tensor analysis with nuclear magnetic resonance in human central nervous system

    International Nuclear Information System (INIS)

    Nakayama, Naoki

    1998-01-01

    Nuclear magnetic resonance has been used to measure the diffusivity of water molecules. In central nervous system, anisotropic diffusion, which is characterized by apparent diffusion tensor D app ξ , is thought to be related to neuronal fiber tract orientation. For precise observation of anisotropic diffusion, it is needed to determine the diagonal and off-diagonal elements of D app ξ . Once D app ξ is estimated from a series of diffusion weighted images, a tissue's orthotropic principal axes and diffusivity of each direction are determined from eigenvalues and eigenvectors of D app ξ . There are several methods to represent anisotropic diffusion with D app ξ . Examples are diffusion ellipsoids constructed in each voxel depicting both these principal axes and the mean diffusion length in these directions, trace invariant values and its mapping image, largest eigenvalue, and ratio of largest eigenvalue to the other eigenvalue. In this study, the author investigated practical procedure to analyze diffusion tensor D app ξ using both of spin-echo end echo-planer diffusion weighted imagings with 3-tesla magnetic resonance machine in human brain. The ellipsoid representation provided particularly useful information about microanatomy including neuronal fiber tract orientation and molecular mobility reflective of microstructure. Furthermore, in the lesion of Wallerian degeneration, the loss of anisotropy of local apparent diffusion was observed. It is suggested that the function of axons can be observed via degree of anisotropy of apparent diffusion. Consequently, diffusion tensor analysis is expected to be a powerful, noninvasive method capable of quantitative and functional evaluation of the central nervous system. (author)

  9. Diffusion tensor imaging parameters' changes of cerebellar hemispheres in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mormina, Enricomaria; Arrigo, Alessandro; Granata, Francesca; Anastasi, Giuseppe P.; Gaeta, Michele [University of Messina, Department of Biomedical Science and Morphological and Functional Images, Messina (Italy); Calamuneri, Alessandro; Quartarone, Angelo [University of Messina, Department of Neurosciences, Messina (Italy); Ghilardi, Maria F.; Inglese, Matilde; Di Rocco, Alessandro [Mount Sinai Hospital, New York, NY (United States); Milardi, Demetrio [University of Messina, Department of Biomedical Science and Morphological and Functional Images, Messina (Italy); IRCCS Centro Neurolesi Bonino Pulejo, Messina (Italy)

    2015-03-01

    Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson's disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD. We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings. We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls. The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance. (orig.)

  10. Diffusion tensor imaging and three-dimensional brain fiber tracking for the diagnosis of multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Bing, Hu; Hong, Shan; Mingyue, Luo; Shaoqiong, Chen; Wang, Kang; Bingjun, He; Yan, Zou [Department of Radiology, the 3rd Affiliated Hospital of Sun Yat-sen Univ., Guangzhou (China); Binbin, Ye

    2007-02-15

    Objective: To demonstrate the diffusion tensor imaging (DTI) characteristics of multiple sclerosis (MS) plaques, periplaque white matter regions and normal appearing white matter (NAWM) regions in patients with MS, and to evaluate the clinical values of DTI and three-dimensional brain fiber tracking for the diagnosis of MS. Methods: Conventional MRI and DTI were performed in 32 patients with MS and 32 age-matched control subjects. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated and coregistered with T{sub 2}-weighted MR images. FA and ADC values were calculated in regions of interest in plaques, periplaque white matter regions, NAWM regions and white matter regions in control subjects. And three-dimensional brain fiber tracking maps were generated by using the DTI. Results: The ADC was (1.233 {+-} 0.119) x 10{sup -3} mm{sup 2}/s in MS plaques, (0.973 {+-} 0.098) x 10{sup -3} mm{sup 2}/s in periplaque white matter regions, (0.748 {+-} 0.089) x 10{sup -3} mm{sup 2}/s in NAWM, and (0.620 {+-} 0.094) x 10{sup -3} mm{sup 2}/s in control subjects. The FA was 0.225 {+-} 0.052 in MS plaques, 0.311 {+-} 0.050 in periplaque white matter regions, 0.421 {+-} 0.070 in NAWM, and 0.476 {+-} 0.069 in control subjects. Significant differences in FA and ADC values were observed among all white matter regions (P<0.01). MS plaques were demonstrated in three-dimensional brain fiber tracking maps. Conclusion: FA and ADC maps are helpful for the evaluation of all white matter changes of MS. The abnormalities of white matter fiber tracts in MS plaques could be demonstrated in three-dimensional brain fiber tracking maps. (authors)

  11. Diffusion tensor imaging and three-dimensional brain fiber tracking for the diagnosis of multiple sclerosis

    International Nuclear Information System (INIS)

    Hu Bing; Shan Hong; Luo Mingyue; Chen Shaoqiong; Kang Wang; He Bingjun; Zou Yan; Ye Binbin

    2007-01-01

    Objective: To demonstrate the diffusion tensor imaging (DTI) characteristics of multiple sclerosis (MS) plaques, periplaque white matter regions and normal appearing white matter (NAWM) regions in patients with MS, and to evaluate the clinical values of DTI and three-dimensional brain fiber tracking for the diagnosis of MS. Methods: Conventional MRI and DTI were performed in 32 patients with MS and 32 age-matched control subjects. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated and coregistered with T 2 -weighted MR images. FA and ADC values were calculated in regions of interest in plaques, periplaque white matter regions, NAWM regions and white matter regions in control subjects. And three-dimensional brain fiber tracking maps were generated by using the DTI. Results: The ADC was (1.233 ± 0.119) x 10 -3 mm 2 /s in MS plaques, (0.973 ± 0.098) x 10 -3 mm 2 /s in periplaque white matter regions, (0.748 ± 0.089) x 10 -3 mm 2 /s in NAWM, and (0.620 ± 0.094) x 10 -3 mm 2 /s in control subjects. The FA was 0.225 ± 0.052 in MS plaques, 0.311 ± 0.050 in periplaque white matter regions, 0.421 ± 0.070 in NAWM, and 0.476 ± 0.069 in control subjects. Significant differences in FA and ADC values were observed among all white matter regions (P<0.01). MS plaques were demonstrated in three-dimensional brain fiber tracking maps. Conclusion: FA and ADC maps are helpful for the evaluation of all white matter changes of MS. The abnormalities of white matter fiber tracts in MS plaques could be demonstrated in three-dimensional brain fiber tracking maps. (authors)

  12. Diffusion tensor imaging parameters' changes of cerebellar hemispheres in Parkinson's disease

    International Nuclear Information System (INIS)

    Mormina, Enricomaria; Arrigo, Alessandro; Granata, Francesca; Anastasi, Giuseppe P.; Gaeta, Michele; Calamuneri, Alessandro; Quartarone, Angelo; Ghilardi, Maria F.; Inglese, Matilde; Di Rocco, Alessandro; Milardi, Demetrio

    2015-01-01

    Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson's disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD. We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings. We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls. The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance. (orig.)

  13. Cognitive functions, electroencephalographic and diffusion tensor imaging changes in children with active idiopathic epilepsy.

    Science.gov (United States)

    A Yassine, Imane; M Eldeeb, Waleed; A Gad, Khaled; A Ashour, Yossri; A Yassine, Inas; O Hosny, Ahmed

    2018-07-01

    Neurocognitive impairment represents one of the most common comorbidities occurring in children with idiopathic epilepsy. Diagnosis of the idiopathic form of epilepsy requires the absence of any macrostructural abnormality in the conventional MRI. Though changes can be seen at the microstructural level imaged using advanced techniques such as the Diffusion Tensor Imaging (DTI). The aim of this work is to study the correlation between the microstructural white matter DTI findings, the electroencephalographic changes and the cognitive dysfunction in children with active idiopathic epilepsy. A comparative cross-sectional study, included 60 children with epilepsy based on the Stanford-Binet 5th Edition Scores was conducted. Patients were equally assigned to normal cognitive function or cognitive dysfunction groups. The history of the epileptic condition was gathered via personal interviews. All patients underwent brain Electroencephalography (EEG) and DTI, which was analyzed using FSL. The Fractional Anisotropy (FA) was significantly higher whereas the Mean Diffusivity (MD) was significantly lower in the normal cognitive function group than in the cognitive dysfunction group. This altered microstructure was related to the degree of the cognitive performance of the studied children with epilepsy. The microstructural alterations of the neural fibers in children with epilepsy and cognitive dysfunction were significantly related to the younger age of onset of epilepsy, the poor control of the clinical seizures, and the use of multiple antiepileptic medications. Children with epilepsy and normal cognitive functions differ in white matter integrity, measured using DTI, compared with children with cognitive dysfunction. These changes have important cognitive consequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Spinal diffusion tensor tractography for differentiation of intramedullary tumor-suspected lesions

    Energy Technology Data Exchange (ETDEWEB)

    Egger, K., E-mail: karl.egger@uniklinik-freiburg.de [Department of Neuroradiology, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg (Germany); Hohenhaus, M. [Department of Neurosurgery, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg (Germany); Van Velthoven, V. [Department of Neurosurgery, UZ Brussel, Laarbeeklaan 101, 1090 Brussel (Belgium); Heil, S.; Urbach, H. [Department of Neuroradiology, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg (Germany)

    2016-12-15

    Background and purpose: Primary MRI diagnosis of spinal intramedullary tumor-suspected lesions can be challenging and often requires spinal biopsy or resection with a substantial risk of neurological deficits. We evaluated whether Diffusion Tensor Imaging (DTI) tractography can facilitate the differential diagnosis. Materials and methods: Twenty-five consecutive patients with an intramedullary tumor-suspected lesion considered for spinal surgery were studied with a Diffusion-weighted multi-shot read out segmented EPI sequence (RESOLVE). White matter tracts (“streamlines”) were calculated using the FACT algorithm and visually co-registered to a T2-weighted 3D sequence. The fused images were assessed concerning spinal streamline appearance as normal, displaced or terminated. Definite diagnosis was verified by histological analysis or further clinical work-up. Results: All patients with normal appearing streamlines (n = 6) showed an acute inflammatory demyelinating pathology in the further clinical work-up. In 10 patients streamline displacing lesions were found from which 5 patients underwent a surgical treatment with histologically confirmed low-grade tumors like ependymomas and pilocytic astrocytomas. In nine patients streamlines were terminated, from which 6 patients received a histology proven diagnoses with a more heterogenous spectrum (3 cases of high grade tumor, 1 case of low grade tumor with intralesional hemorrhage and 2 cases with gliosis but no tumor cells). Conclusion: Using multi-shot DTI spinal tractography acute inflammatory lesions can be differentiated from other tumorous intramedullary lesions. The entity diagnosis of spinal tumors seems to be more challenging, primarily due to the variety of factors like invasivity, expansion or intralesional hemorrhage.

  15. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population.

    Science.gov (United States)

    Wei, Liang-Feng; Wang, Shou-Sen; Zheng, Zhao-Cong; Tian, Jun; Xue, Liang

    2017-05-01

    Diffusion tensor imaging (DTI) shows great advantage in the diagnosis of brain diseases, including cervical spinal cord (CSC) disease. This study aims to obtain the normal values of the DTI parameters for a healthy population and to establish a baseline for CSC disease diagnosis using DTI. A total of 36 healthy adults were subjected to magnetic resonance imaging (MRI) for the entire CSC using the Siemens 3.0 T MR System. Sagittal DTI acquisition was carried out with a single-shot spin-echo echo-planar imaging (EPI) sequence along 12 non-collinear directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels using a region of interest (ROI) method, following which they were correlated with parameters, like age and sex. Further, diffusion tensor tracking (DTT) was carried out to reconstruct the white matter fiber bundles of the CSC. The full and complete fiber bundle structure of a normal CSC was confirmed in both the T2-weighted and DTI images. The FA and ADC values were significantly negatively correlated with each other and showed strongly negative and positive correlations with age, respectively, but not with sex. Additionally, there was no significant difference between the FA and the ADC values at different cervical levels. The DTI technique can act as an important supplement to the conventional MRI technique for CSC observation. Moreover, the FA and ADC values can be used as sensitive parameters in the DTI study on the CSC by taking the effects of age into consideration.

  16. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    International Nuclear Information System (INIS)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M.; Rahmat, K.; Ariffin, H.

    2012-01-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  17. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Rahmat, K. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); University Malaya, Biomedical Imaging Department, Kuala Lumpur (Malaysia); Ariffin, H. [University of Malaya, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2012-07-15

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  18. Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance

    Science.gov (United States)

    Zhang, Wen; Shi, Jie; Yu, Jun; Zhan, Liang; Thompson, Paul M.; Wang, Yalin

    2017-01-01

    In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research. PMID:28936280

  19. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    Science.gov (United States)

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  20. In-utero three dimension high resolution fetal brain diffusion tensor imaging.

    Science.gov (United States)

    Jiang, Shuzhou; Xue, Hui; Counsell, Serena; Anjari, Mustafa; Allsop, Joanna; Rutherford, Mary; Rueckert, Daniel; Hajnal, Joseph V

    2007-01-01

    We present a methodology to achieve 3D high resolution in-utero fetal brain DTI that shows excellent ADC as well as promising FA maps. After continuous DTI scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for fetal motion. Once aligned, the diffusion images are treated as irregularly sampled data where each voxel is associated with an appropriately rotated diffusion direction, and used to estimate the diffusion tensor on a regular grid. The method has been tested successful on eight fetuses and has been validated on adults imaged at 1.5T.

  1. Diffusion Tensor Imaging Evaluation of Neural Network Development in Patients Undergoing Therapeutic Repetitive Transcranial Magnetic Stimulation following Stroke

    Directory of Open Access Journals (Sweden)

    Naoki Yamada

    2018-01-01

    Full Text Available We aimed to investigate plastic changes in cerebral white matter structures using diffusion tensor imaging following a 15-day stroke rehabilitation program. We compared the detection of cerebral plasticity between generalized fractional anisotropy (GFA, a novel tool for investigating white matter structures, and fractional anisotropy (FA. Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS of 2400 pulses applied to the nonlesional hemisphere and 240 min intensive occupation therapy (OT daily over 15 days. Motor function was evaluated using the Fugl-Meyer assessment (FMA and Wolf Motor Function Test (WMFT. Patients underwent diffusion tensor magnetic resonance imaging (MRI on admission and discharge, from which bilateral FA and GFA values in Brodmann area (BA 4 and BA6 were calculated. Motor function improved following treatment (p<0.001. Treatment increased GFA values for both the lesioned and nonlesioned BA4 (p<0.05, p<0.001, resp.. Changes in GFA value for BA4 of the lesioned hemisphere were significantly inversely correlated with changes in WMFT scores (R2=0.363, p<0.05. Our findings indicate that the GFA may have a potentially more useful ability than FA to detect changes in white matter structures in areas of fiber intersection for any such future investigations.

  2. Diffusion Tensor Imaging Correlates of Reading Ability in Dysfluent and Non-Impaired Readers

    Science.gov (United States)

    Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian

    2013-01-01

    Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and…

  3. White Matter Integrity in Asperger Syndrome: A Preliminary Diffusion Tensor Magnetic Resonance Imaging Study in Adults

    NARCIS (Netherlands)

    Bloemen, Oswald J. N.; Deeley, Quinton; Sundram, Fred; Daly, Eileen M.; Barker, Gareth J.; Jones, Derek K.; van Amelsvoort, Therese A. M. J.; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C.; Murphy, Declan G. M.

    2010-01-01

    Background: Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging

  4. Diffusion tensor imaging. Theory, sequence optimization and application in Alzheimer's disease

    International Nuclear Information System (INIS)

    Stieltjes, B.; Schlueter, M.; Hahn, H.K.; Wilhelm, T.; Essig, M.

    2003-01-01

    Diffusion tensor imaging (DTI) offers an in vivo view into the microarchitecture of the brain. Furthermore it allows a three-dimensional reconstruction of fiber tracts. We will discuss the principles of DTI and possibilities for sequence optimization. Finally we will give an overview of DTI and its application in Alzheimer's disease. (orig.) [de

  5. Fiber crossing in human brain depicted with diffusion tensor MR imaging

    DEFF Research Database (Denmark)

    Wiegell, M.R.; Larsson, H.B.; Wedeen, V.J.

    2000-01-01

    Human white matter fiber crossings were investigated with use of the full eigenstructure of the magnetic resonance diffusion tensor. Intravoxel fiber dispersions were characterized by the plane spanned by the major and medium eigenvectors and depicted with three-dimensional graphics. This method...

  6. Determination of mouse skeletal muscle architecture using three dimensional diffusion tensor imaging

    NARCIS (Netherlands)

    Heemskerk, A.M.; Strijkers, G.J.; Vilanova, A.; Drost, M.R.; Nicolaij, K.

    2005-01-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six

  7. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging

    NARCIS (Netherlands)

    Heemskerk, Anneriet M.; Strijkers, Gustav J.; Vilanova, Anna; Drost, Maarten R.; Nicolay, Klaas

    2005-01-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six

  8. Microstructure assessment of the thalamus in Wilson's disease using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Li, G.; Zhou, X.; Xu, P.; Pan, X.; Chen, Y.

    2014-01-01

    Aim: To assess diffusion changes of the thalamus in Wilson's disease using diffusion tensor imaging (DTI). Materials and methods: Fifteen patients with Wilson's disease and an abnormal signal in the thalamus (designated as group 1) and 18 patients with Wilson's disease with a normal-appearing thalamus (designated as group 2) at conventional magnetic resonance imaging (MRI) were recruited. Fifteen age-matched and sex-matched healthy volunteers were also enrolled as the control group (designated as group 3). The fractional anisotropy (FA), primary eigenvalue (λ1), second eigenvalue (λ2), and third eigenvalue (λ3) of the thalamus were measured and the differences were compared. Results: The FA values of the thalamus were different in the three groups (group 1: 0.36 ± 0.02; group 2: 0.38 ± 0.02; group 3: 0.43 ± 0.02; F = 54.51, p 2 /s, 1.11 ± 0.06 mm 2 /s, and 1.10 ± 0.04 mm 2 /s of λ1 in group 1, group 2, and group 3, respectively; 0.82 ± 0.08 mm 2 /s, 0.78 ± 0.05 mm 2 /s, and 0.72 ± 0.02 mm 2 /s of λ2 in group 1, group 2, and group 3, respectively; 0.52 ± 0.05 mm 2 /s, 0.49 ± 0.06 mm 2 /s, and 0.42 ± 0.06 mm 2 /s of λ3 in group 1, group 2, and group 3, respectively; F = 1.65, p = 0.203 of λ1; F = 10.55, p < 0.001 of λ2; F = 4.21, p = 0.021 of λ3; respectively). A statistically significant difference in the λ2 value was observed between group 1 and group 3 (p < 0.001) and group 2 and group 3 (p = 0.005). A statistically significant difference in the λ3 value was also observed between group 1 and group 3 (p = 0.007). No significant difference in the λ1 value was noted between each of the two groups. Conclusions: Damage of the thalamus in Wilson's disease patients can be detected using DTI. DTI may provide information regarding thalamus damage in patients with Wilson's disease before abnormal signals on conventional MRI

  9. Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

    Science.gov (United States)

    2012-12-01

    an advanced magnetic resonance imaging (MRI) technique that is sensitive to the movement of water molecules, providing additional information on the...imaging (MRI) technique that is sensitive to the movement of water molecules, providing additional information on the micro-structural arrangement of...disrupted fiber tracts adjacent to the hemorrhages. 1.3. Basic Physics of DW-MRI and Apparent Diffusion Coefficient (ADC) Mapping Brownian motion of

  10. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.

    Science.gov (United States)

    Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui

    2018-06-01

    The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.

  11. Diffusion tensor magnetic resonance imaging and fiber tractography of the sacral plexus in children with spina bifida

    DEFF Research Database (Denmark)

    Haakma, Wieke; Dik, Pieter; ten Haken, Bennie

    2014-01-01

    anatomical and microstructural properties of the sacral plexus of patients with spina bifida using diffusion tensor imaging and fiber tractography. MATERIALS AND METHODS: Ten patients 8 to 16 years old with spina bifida underwent diffusion tensor imaging on a 3 Tesla magnetic resonance imaging system...... diffusivity values at S1-S3 were significantly lower in patients. CONCLUSIONS: To our knowledge this 3 Tesla magnetic resonance imaging study showed for the first time sacral plexus asymmetry and disorganization in 10 patients with spina bifida using diffusion tensor imaging and fiber tractography...

  12. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study

    DEFF Research Database (Denmark)

    Sidaros, A.; Engberg, A.W.; Sidaros, K.

    2008-01-01

    of longitudinal studies on TBI that follow DTI changes over time and correlate findings with long-term clinical outcome. We performed a prospective longitudinal study of 30 adult patients admitted for subacute rehabilitation following severe traumatic brain injury. DTI and conventional MRI were acquired at mean 8......Diffusion tensor imaging (DTI) has been proposed as a sensitive biomarker of traumatic white matter injury, which could potentially serve as a tool for prognostic assessment and for studying microstructural changes during recovery from traumatic brain injury (TBI). However, there is a lack...... weeks (5-11 weeks), and repeated in 23 of the patients at mean 12 months (9-15 months) post-trauma. Using a region-of-interest-based approach, DTI parameters were compared to those of healthy matched controls, scanned during the same time period and rescanned with a similar interval as that of patients...

  13. Usefulness of diffusion tensor imaging in amyotrophic lateral sclerosis: potential biomarker and association with the cognitive profile

    Directory of Open Access Journals (Sweden)

    Marcelo Chaves

    Full Text Available ABSTRACT The objective of this preliminary study was to correlate diffusion tensor imaging (DTI alterations with the cognitive profile of patients with amyotrophic lateral sclerosis (ALS. Methods This was a case-control study conducted from December 1, 2012 to December 1, 2014. Clinical and demographic data were recorded. A neuropsychological test battery adapted to ALS patients was used. An MRI with DTI was performed in all patients and fractional anisotropy (FA was analyzed in the white matter using the tract based spatial statistics program. Results Twenty-four patients with ALS (15 females, mean age 66.9 + -2.3 and 13 healthy controls (four females, average age 66.9 + - 2 were included. The DTI showed white matter damage in ALS patients vs. healthy controls (p < 0.001. Discussion In our preliminary study the alterations of white matter in DTI were significantly associated with cognitive impairment in patients with ALS.

  14. Diffusion Tensor Imaging as a Biomarker to Differentiate Acute Disseminated Encephalomyelitis From Multiple Sclerosis at First Demyelination.

    Science.gov (United States)

    Aung, Wint Yan; Massoumzadeh, Parinaz; Najmi, Safa; Salter, Amber; Heaps, Jodi; Benzinger, Tammie L S; Mar, Soe

    2018-01-01

    There are no clinical features or biomarkers that can reliably differentiate acute disseminated encephalomyelitis from multiple sclerosis at the first demyelination attack. Consequently, a final diagnosis is sometimes delayed by months and years of follow-up. Early treatment for multiple sclerosis is recommended to reduce long-term disability. Therefore, we intend to explore neuroimaging biomarkers that can reliably distinguish between the two diagnoses. We reviewed prospectively collected clinical, standard MRI and diffusion tensor imaging data from 12 pediatric patients who presented with acute demyelination with and without encephalopathy. Patients were followed for an average of 6.5 years to determine the accuracy of final diagnosis. Final diagnosis was determined using 2013 International Pediatric MS Study Group criteria. Control subjects consisted of four age-matched healthy individuals for each patient. The study population consisted of six patients with central nervous system demyelination with encephalopathy with a presumed diagnosis of acute disseminated encephalomyelitis and six without encephalopathy with a presumed diagnosis of multiple sclerosis or clinically isolated syndrome at high risk for multiple sclerosis. During follow-up, two patients with initial diagnosis of acute disseminated encephalomyelitis were later diagnosed with multiple sclerosis. Diffusion tensor imaging region of interest analysis of baseline scans showed differences between final diagnosis of multiple sclerosis and acute disseminated encephalomyelitis patients, whereby low fractional anisotropy and high radial diffusivity occurred in multiple sclerosis patients compared with acute disseminated encephalomyelitis patients and the age-matched controls. Fractional anisotropy and radial diffusivity measures may have the potential to serve as biomarkers for distinguishing acute disseminated encephalomyelitis from multiple sclerosis at the onset. Copyright © 2017 Elsevier Inc. All

  15. Diffusion abnormalities of the uncinate fasciculus in Alzheimer's disease: diffusion tensor tract-specific analysis using a new method to measure the core of the tract

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin, Hasina; Nakata, Yasuhiro; Abe, Osamu; Masutani, Yoshitaka; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Tokyo (Japan); Aoki, Shigeki [University of Tokyo, Department of Radiology, Tokyo (Japan); Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, National Center Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan); Nemoto, Kiyotaka [Ibaraki Prefectural Tomobe Hospital, Department of Psychiatry, Ibaraki (Japan); Arima, Kunimasa; Furuta, Nobuo [National Center of Neurology and Psychiatry, Department of Psychiatry, National Center Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan); Uno, Masatake [Yoshioka Rehabilitation Clinic, Department of Psychiatry, Tokyo (Japan); Hirai, Shigeo [Iruma Hirai Clinic, Department of Psychiatry, Saitama (Japan)

    2008-04-15

    Our aim was to determine diffusion abnormalities in the uncinate fasciculus (UF) in Alzheimer's disease (AD) by diffusion tensor tractography (DTT) using a new method for measuring the core of the tract. We studied 19 patients with AD and 19 age-matched control subjects who underwent MRI using diffusion tensor imaging (DTI). DTT of the UF was generated. The mean diffusivity (MD) and fractional anisotropy (FA) of the core of the tract were measured after voxelized tract shape processing. Student's t-test was used to compare results between patients with AD and controls. Intraobserver correlation tests were also performed. FA was significantly lower (P < 0.0001) in the UF of patients with AD than of controls. There was no significant difference in MD along the UF between the two groups. Intraobserver reliability (intraclass correlation coefficient) for the first and second measurement was r > 0.93 for measured FA and r > 0.92 for measured MD. Our results suggest that FA reflects progression of AD-related histopathological changes in the UF of the white matter and may represent a useful biological index in monitoring AD. Diffusion tensor tract-specific analysis with voxelized tract shape processing to measure the core of the tract may be a sensitive tool for evaluation of diffusion abnormalities of white matter tracts in AD. (orig.)

  16. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury.

    Science.gov (United States)

    Boyer, Richard B; Kelm, Nathaniel D; Riley, D Colton; Sexton, Kevin W; Pollins, Alonda C; Shack, R Bruce; Dortch, Richard D; Nanney, Lillian B; Does, Mark D; Thayer, Wesley P

    2015-09-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.

  17. Total magnitude of diffusion tensor imaging as an effective tool for the differentiation of glioma

    Energy Technology Data Exchange (ETDEWEB)

    Smitha, Karavallil A., E-mail: mithamahesh@gmail.com [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram (India); Gupta, Arun kumar, E-mail: gupta209@gmail.com [Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India); Jayasree, Ramapurath S., E-mail: jayashreemenon@gmail.com [Biophotonics and Imaging Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram (India)

    2013-05-15

    Objectives: The study aims to evaluate the difference in diffusion properties between high grade glioma and low grade glioma by measuring the total magnitude of diffusion tensor (L), and its isotropic (p) and anisotropic (q) components. Methods: The diffusion tensor parameters p, q, L and FA from the tumor area, adjacent area to the tumor and corresponding contra lateral normal area of 30 high grade glioma and 49 low grade glioma were calculated. Chi square analysis was done to find the changes in age and sex. One Way ANOVA was performed to compare the mean and ROC curve analysis to confirm the discriminative sensitivity. Results: Major variation in the mean values of p, L and FA was observed in different brain areas considered. Variation in the p and L values between low grade and high grade glioma were statistically significant (p < 0.001) and their ROC curve analysis yielded 93.9% and 91.8% sensitivity and 53.3% specificity respectively. Conclusion: Measurement of the isotropic component p and the total value of diffusion tensor L can be effectively correlated with different grades of glioma and can be used to study the diffusion properties of tumor affected brain.

  18. The Disruption of Geniculocalcarine Tract in Occipital Neoplasm: A Diffusion Tensor Imaging Study

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available Aim. Investigate the disruption of geniculocalcarine tract (GCT in different occipital neoplasm by diffusion tensor imaging (DTI. Methods. Thirty-two subjects (44.1 ± 3.6 years who had single occipital neoplasm (9 gliomas, 6 meningiomas, and 17 metastatic tumors with ipsilateral GCT involved and thirty healthy subjects (39.2 ± 3.3 years underwent conventional sequences scanning and diffusion tensor imaging by a 1.5T MR scanner. The diffusion-sensitive gradient direction is 13. Compare the fractional anisotropy (FA and mean diffusivity (MD values of healthy GCT with the corresponding values of GCT in peritumoral edema area. Perform diffusion tensor tractography (DTT on GCT by the line propagation technique in all subjects. Results. The FA values of GCT in peritumoral edema area decreased (P=0.001 while the MD values increased (P=0.002 when compared with healthy subjects. There was no difference in the FA values across tumor types (P=0.114 while the MD values of GCT in the metastatic tumor group were higher than the other groups (P=0.001. GCTs were infiltrated in all the 9 gliomas cases, with displacement in 2 cases and disruption in 7 cases. GCTs were displaced in 6 meningiomas cases. GCTs were displaced in all the 7 metastatic cases, with disruption in 7 cases. Conclusions. DTI represents valid markers for evaluating GCT’s disruption in occipital neoplasm. The disruption of GCT varies according to the properties of neoplasm.

  19. Diffusion tensor tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kanako; Masutani, Yoshitaka; Watadani, Takeyuki; Nakata, Yasuhiro; Yoshida, Mariko; Abe, Osamu; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo, Tokyo (Japan); Iwata, Nobue K.; Terao, Yasuo; Tsuji, Shoji [University of Tokyo, Department of Neurology, Graduate School of Medicine, Bunkyo, Tokyo (Japan)

    2010-08-15

    The uncinate fasciculus (UF) consists of core fibers connecting the frontal and temporal lobes and is considered to be related to cognitive/behavioral function. Using diffusion tensor tractography, we quantitatively evaluated changes in fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the UF by tract-specific analysis to evaluate the damage of the UF in patients with amyotrophic lateral sclerosis (ALS). We obtained diffusion tensor images of 15 patients with ALS and 9 age-matched volunteers. Patients with ALS showed significantly lower mean FA (P = 0.029) compared with controls. No significant difference was seen in mean ADC. The results suggest that damage of the UF in patients with ALS can be quantitatively evaluated with FA. (orig.)

  20. Diffusion tensor imaging--arcuate fasciculus and the importance for the neurosurgeon.

    Science.gov (United States)

    Hana, Ardian; Dooms, Georges; Boecher-Schwarz, Hans; Hertel, Frank

    2015-05-01

    Tumors in eloquent areas of the brain like Broca or Wernicke might have disastrous consequences for patients. We intended to visualize the arcuate fasciculus (AF) and to demonstrate his relation with the corticospinal tract and the visual pathway using diffusion tensor imaging (DTI). We depicted between 2012 and 2014 the AF in 71 patients. Men and women of all ages were included. Eleven patients had postoperative controls also. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI-sequences were performed. The FOV was 200 × 200 mm(2), slice thickness 2mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-Value was 800 s/mm(2). Additional scanning time was less than 9 min. AF was portrayed in 63 patients bilaterally. In one glioblastoma patient it was impossible to visualize the left AF and in seven other patients we could not portray the right one. The lesions affected AF by disrupting or displacing the fibers. DTI might be a useful tool to portray AF. It is time-saving and can be used to preserve morbidity in patients with lesions in eloquent brain areas. It might give deeper insights of the white matter and the reorganization of AF-fibers postoperatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Diffusion tensor imaging, intracranial vascular resistance and cognition in middle-aged asymptomatic subjects.

    Science.gov (United States)

    López-Olóriz, Jorge; López-Cancio, Elena; Arenillas, Juan F; Hernández, María; Dorado, Laura; Dacosta-Aguayo, Rosalía; Barrios, Maite; Soriano-Raya, Juan José; Miralbell, Júlia; Bargalló, Núria; Cáceres, Cynthia; Torán, Pere; Alzamora, Maite; Dávalos, Antonio; Mataró, Maria

    2014-01-01

    The contribution of traditional vascular risk factors to cognitive impairment and dementia is well known. However, in order to obtain possible targets for prevention of vascular cognitive impairment (VCI), it may be important to identify other early and noninvasive markers in asymptomatic middle-aged adults. The calculation of middle cerebral artery-pulsatility index (MCA-PI) is an ultrasonologic, noninvasive, validated and easily reproducible technique to assess increased distal resistance to blood flow. This study aims to assess the relationship between MCA-PI, microstructural white matter (WM) integrity and cognition in a middle-aged asymptomatic population. Ninety-five participants from the Barcelona-Asymptomatic Intracranial Atherosclerosis (AsIA) neuropsychology study were included. Subjects were 50-65 years old, free from dementia and without history of vascular disease. Transcranial color-coded duplex ultrasound examination was performed to assess MCA-PI as a measure of vascular resistance. WM integrity was evaluated by fractional anisotropy (FA) measurements of diffusion tensor images (DTI) acquired on a 3T-MRI. The neuropsychological battery was specifically selected to be sensitive to VCI, and included tests that were grouped into six cognitive domains: executive functioning, attention, verbal fluency, memory, visuospatial skills and psychomotor speed. A multivariate linear regression model adjusted for age, gender, years of education, diabetes and hypertension was performed. MCA-PI was significantly associated with WM disintegration in different tracts (fornix, corticospinal and anterior thalamic), all p gender, years of education, and vascular risk factors (all p cognitive domains, except for visuospatial skills. Our data suggest that MCA-PI may be related to WM disintegration and early vascular cognitive impairment in middle-aged subjects. Although further prospective studies are needed to provide evidence for its validity in longitudinal studies, our

  2. White matter abnormalities in treatment-naive adolescents at the earliest stages of Anorexia Nervosa: A diffusion tensor imaging study.

    Science.gov (United States)

    Gaudio, Santino; Quattrocchi, Carlo Cosimo; Piervincenzi, Claudia; Zobel, Bruno Beomonte; Montecchi, Francesca Romana; Dakanalis, Antonios; Riva, Giuseppe; Carducci, Filippo

    2017-08-30

    Few studies have examined white matter (WM) integrity in long-lasting Anorexia Nervosa (AN) patients using Diffusion Tensor Imaging (DTI). In this paper, we investigated WM integrity at the earliest stages of AN (i.e. less than 6 months duration). Fourteen treatment-naive female adolescents with AN restrictive type (AN-r) in its earliest stages and 15 age-matched healthy females received brain MRI. Fractional Anisotropy (FA), Axial Diffusivity (AD), Radial diffusivity (RD), and Mean Diffusivity (MD) maps were computed from DTI data using Tract-Based Spatial Statistics analysis. AN-r patients showed FA decreases compared to controls (p FWE < 0.05) mainly in left anterior and superior corona radiata and left superior longitudinal fasciculus. AN-r patients also showed decreased AD in superior longitudinal fasciculus bilaterally and left superior and anterior corona radiata, (p FWE < 0.05). No significant differences were found in RD and MD values between the two groups. FA and AD integrity appears to be specifically affected at the earliest stages of AN. Alterations in the microstructural properties of the above mentioned tracts, also involved in cognitive control and visual perception and processing, may be early mechanisms of vulnerability/resilience of WM in AN and sustain the key symptoms of AN, such as impaired cognitive flexibility and body image distortion. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI.

    Science.gov (United States)

    Wilm, Bertram J; Barmet, Christoph; Gross, Simon; Kasper, Lars; Vannesjo, S Johanna; Haeberlin, Max; Dietrich, Benjamin E; Brunner, David O; Schmid, Thomas; Pruessmann, Klaas P

    2017-01-01

    The purpose of this work was to improve the quality of single-shot spiral MRI and demonstrate its application for diffusion-weighted imaging. Image formation is based on an expanded encoding model that accounts for dynamic magnetic fields up to third order in space, nonuniform static B 0 , and coil sensitivity encoding. The encoding model is determined by B 0 mapping, sensitivity mapping, and concurrent field monitoring. Reconstruction is performed by iterative inversion of the expanded signal equations. Diffusion-tensor imaging with single-shot spiral readouts is performed in a phantom and in vivo, using a clinical 3T instrument. Image quality is assessed in terms of artefact levels, image congruence, and the influence of the different encoding factors. Using the full encoding model, diffusion-weighted single-shot spiral imaging of high quality is accomplished both in vitro and in vivo. Accounting for actual field dynamics, including higher orders, is found to be critical to suppress blurring, aliasing, and distortion. Enhanced image congruence permitted data fusion and diffusion tensor analysis without coregistration. Use of an expanded signal model largely overcomes the traditional vulnerability of spiral imaging with long readouts. It renders single-shot spirals competitive with echo-planar readouts and thus deploys shorter echo times and superior readout efficiency for diffusion imaging and further prospective applications. Magn Reson Med 77:83-91, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Piriformis muscle syndrome with assessment of sciatic nerve using diffusion tensor imaging and tractography: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi [The University of Tokushima Graduate School, Department of Orthopedics, Institute of Health Biosciences, Tokushima (Japan)

    2017-10-15

    Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS. (orig.)

  5. Piriformis muscle syndrome with assessment of sciatic nerve using diffusion tensor imaging and tractography: a case report.

    Science.gov (United States)

    Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi

    2017-10-01

    Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS.

  6. Piriformis muscle syndrome with assessment of sciatic nerve using diffusion tensor imaging and tractography: a case report

    International Nuclear Information System (INIS)

    Wada, Keizo; Goto, Tomohiro; Takasago, Tomoya; Hamada, Daisuke; Sairyo, Koichi

    2017-01-01

    Piriformis muscle syndrome (PMS) is difficult to diagnose by objective evaluation of sciatic nerve injury. Here we report a case of PMS diagnosed by diffusion tensor imaging (DTI) and tractography of the sciatic nerve, which can assess and visualize the extent of nerve injury. The patient was a 53-year-old man with a 2-year history of continuous pain and numbness in the left leg. His symptoms worsened when sitting. Physical examination, including sensorimotor neurologic tests, the deep tendon reflex test, and the straight leg raise test, revealed no specific findings. The hip flexion adduction and internal rotation test and resisted contraction maneuvers for the piriformis muscle were positive. There were no abnormal findings on magnetic resonance imaging (MRI) of the lumbar spine. The transverse diameter of piriformis muscle was slightly thicker in affected side on MRI of the pelvis. A single DTI sequence was performed during MRI of the pelvis. Fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) of the sciatic nerve were quantified at three levels using the fiber-tracking method. FA values were significantly lower and ADC values were significantly higher distal to the piriformis muscle. We performed endoscopic-assisted resection of the piriformis tendon. Intraoperatively, the motor-evoked potentials in the left gastrocnemius were improved by resection of the piriformis tendon. The patient's symptoms improved immediately after surgery. There was no significant difference in FA or ADC at any level between the affected side and the unaffected side 3 months postoperatively. MRI-DTI may aid the diagnosis of PMS. (orig.)

  7. D-BRAIN : Anatomically accurate simulated diffusion MRI brain data

    OpenAIRE

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume...

  8. Diffusion-weighted MRI in acute posterior ischemic optic neuropathy

    International Nuclear Information System (INIS)

    Srinivasan, Sivasubramanian; Moorthy, Srikant; Sreekumar, KP; Kulkarni, Chinmay

    2012-01-01

    Blindness following surgery, especially cardiac surgery, has been reported sporadically, the most common cause being ischemic optic neuropathy. The role of MRI in the diagnosis of this condition is not well established. We present a case of postoperative posterior ischemic optic neuropathy that was diagnosed on diffusion-weighted MRI

  9. Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging

    DEFF Research Database (Denmark)

    Karlsborg, Merete; Rosenbaum, Sverre; Wiegell, Mette R.

    2004-01-01

    BACKGROUND: MR diffusion tensor imaging (DTI) appears to be a powerful method to investigate the neuronal and axonal fibre distribution in the human brain. Changes in diffusion characteristics of water molecules in the white matter can be estimated as the apparent diffusion coefficient (ADC...... significance. ADC was unchanged at the level of the corona radiata. FA was significantly reduced at the lowest level (pons), only tended to be reduced in the internal capsule, but was also unchanged in the corona radiata. CONCLUSIONS: Segmentation of the CST into three regions supports the hypothesis...

  10. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

    OpenAIRE

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K.; Hanson, Jamie L.; Avants, Brian B.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white ...

  11. In the assessment of supratentorial glioma grade: The combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Zou, Q.-G.; Xu, H.-B.; Liu, F.; Guo, W.; Kong, X.-C.; Wu, Y.

    2011-01-01

    Aim: To detect a difference in the parameters derived from proton magnetic resonance spectroscopy ( 1 H-MRS) and diffusion tensor imaging (DTI) between low-grade and high-grade gliomas, and to evaluate whether the combination of these two techniques can improve the diagnostic accuracy of conventional magnetic resonance imaging (MRI) in supratentorial glioma grading. Materials and methods: Thirty patients with histologically proved supratentorial brain gliomas (12 low grade, 18 high grade) were prospectively evaluated with contrast material-enhanced MRI, DTI, and multivoxel 1 H-MRS (135 ms echo time). The tumour grades determined using the three methods were then compared with those obtained at histopathology. Receiver operating characteristic (ROC) analyses were performed to determine the optimum thresholds for glioma grading. Independent sample t-test, Spearman's rank correlation, and the Fisher's exact test were also carried out for statistical analysis. p -6 mm 2 /s for the calculated ADC value, corresponding to the maximum Youden index from the ROC curve of the above-selected parameters, the resultant sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Kappa values were all higher and the fraction of misclassified tumour was lower when compared with conventional MRI. However, only NAA/Cho and ADC calculation contributed to the significant difference (p < 0.01) in the assessment of glioma grade compared to conventional MRI alone, and the grading results of statistical tests comparing those two parameters were highly consistent (kappa value = 0.798). Conclusion: Thresholds for NAA/Cho and calculated ADC values, corresponding to maximum Youden index from ROC curve analyses, helped to improve the accuracy of supratentorial glioma grading when compared with conventional MRI alone. In addition, a combination of NAA/Cho and ADC calculation were more useful together than each alone in a clinical setting to evaluate

  12. 3D reconstruction of tensors and vectors

    International Nuclear Information System (INIS)

    Defrise, Michel; Gullberg, Grant T.

    2005-01-01

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields

  13. Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging.

    Science.gov (United States)

    von Deuster, Constantin; Sammut, Eva; Asner, Liya; Nordsletten, David; Lamata, Pablo; Stoeck, Christian T; Kozerke, Sebastian; Razavi, Reza

    2016-10-01

    The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs. Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy. © 2016 The Authors.

  14. Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging.

    Science.gov (United States)

    Wang, Shu-Qiang; Li, Xiang; Cui, Jiao-Long; Li, Han-Xiong; Luk, Keith D K; Hu, Yong

    2015-06-01

    To investigate the use of a newly designed machine learning-based classifier in the automatic identification of myelopathic levels in cervical spondylotic myelopathy (CSM). In all, 58 normal volunteers and 16 subjects with CSM were recruited for diffusion tensor imaging (DTI) acquisition. The eigenvalues were extracted as the selected features from DTI images. Three classifiers, naive Bayesian, support vector machine, and support tensor machine, and fractional anisotropy (FA) were employed to identify myelopathic levels. The results were compared with clinical level diagnosis results and accuracy, sensitivity, and specificity were calculated to evaluate the performance of the developed classifiers. The accuracy by support tensor machine was the highest (93.62%) among the three classifiers. The support tensor machine also showed excellent capacity to identify true positives (sensitivity: 84.62%) and true negatives (specificity: 97.06%). The accuracy by FA value was the lowest (76%) in all the methods. The classifiers-based method using eigenvalues had a better performance in identifying the levels of CSM than the diagnosis using FA values. The support tensor machine was the best among three classifiers. © 2014 Wiley Periodicals, Inc.

  15. An efficient explicit numerical scheme for diffusion-type equations with a highly inhomogeneous and highly anisotropic diffusion tensor

    International Nuclear Information System (INIS)

    Larroche, O.

    2007-01-01

    A locally split-step explicit (LSSE) algorithm was developed for efficiently solving a multi-dimensional advection-diffusion type equation involving a highly inhomogeneous and highly anisotropic diffusion tensor, which makes the problem very ill-conditioned for standard implicit methods involving the iterative solution of large linear systems. The need for such an optimized algorithm arises, in particular, in the frame of thermonuclear fusion applications, for the purpose of simulating fast charged-particle slowing-down with an ion Fokker-Planck code. The LSSE algorithm is presented in this paper along with the results of a model slowing-down problem to which it has been applied

  16. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis.

    Science.gov (United States)

    Marami, Bahram; Mohseni Salehi, Seyed Sadegh; Afacan, Onur; Scherrer, Benoit; Rollins, Caitlin K; Yang, Edward; Estroff, Judy A; Warfield, Simon K; Gholipour, Ali

    2017-08-01

    Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average

  17. Conventions and nomenclature for double diffusion encoding NMR and MRI

    DEFF Research Database (Denmark)

    Shemesh, Noam; Jespersen, Sune N; Alexander, Daniel C

    2015-01-01

    , such as double diffusion encoding (DDE) NMR and MRI, may provide novel quantifiable metrics that are less easily inferred from conventional diffusion acquisitions. Despite the growing interest on the topic, the terminology for the pulse sequences, their parameters, and the metrics that can be derived from them...

  18. Purulent meningitis with unusual diffusion-weighted MRI findings

    International Nuclear Information System (INIS)

    Abe, M.; Takayama, Y.; Yamashita, H.; Noguchi, M.; Sagoh, T.

    2002-01-01

    We describe unusual findings obtained by diffusion-weighted magnetic resonance imaging (MRI) in a patient with acute purulent meningitis caused by penicillin-resistant Streptococcus pneumoniae. Along cerebral convexities and the Sylvian fissure, multiple small intense lesions showed high signal intensity in these sequences. This may be the first report of diffusion-weighted in purulent meningitis

  19. Diffusion tensor driven contour closing for cell microinjection targeting.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  20. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d...... microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based...... neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate...

  1. Diffusion microscopist simulator - The development and application of a Monte Carlo simulation system for diffusion MRI

    International Nuclear Information System (INIS)

    Yeh, C.H.

    2011-09-01

    Diffusion magnetic resonance imaging (dMRI) has made a significant breakthrough in neurological disorders and brain research thanks to its exquisite sensitivity to tissue cyto-architecture. However, as the water diffusion process in neuronal tissues is a complex biophysical phenomena at molecular scale, it is difficult to infer tissue microscopic characteristics on a voxel scale from dMRI data. The major methodological contribution of this thesis is the development of an integrated and generic Monte Carlo simulation framework, 'Diffusion Microscopist Simulator' (DMS), which has the capacity to create 3D biological tissue models of various shapes and properties, as well as to synthesize dMRI data for a large variety of MRI methods, pulse sequence design and parameters. DMS aims at bridging the gap between the elementary diffusion processes occurring at a micrometric scale and the resulting diffusion signal measured at millimetric scale, providing better insights into the features observed in dMRI, as well as offering ground-truth information for optimization and validation of dMRI acquisition protocols for different applications. We have verified the performance and validity of DMS through various benchmark experiments, and applied to address particular research topics in dMRI. Based on DMS, there are two major application contributions in this thesis. First, we use DMS to investigate the impact of finite diffusion gradient pulse duration (delta) on fibre orientation estimation in dMRI. We propose that current practice of using long delta, which is enforced by the hardware limitation of clinical MRI scanners, is actually beneficial for mapping fibre orientations, even though it violates the underlying assumption made in q-space theory. Second, we employ DMS to investigate the feasibility of estimating axon radius using a clinical MRI system. The results suggest that the algorithm for mapping the direct microstructures is applicable to dMRI data acquired from

  2. Outcome assessment of hemiparesis due to intracerebral hemorrhage using diffusion tensor fractional anisotropy.

    Science.gov (United States)

    Koyama, Tetsuo; Marumoto, Kohei; Uchiyama, Yuki; Miyake, Hiroji; Domen, Kazuhisa

    2015-04-01

    This study aimed to evaluate the prognostic efficacy of magnetic resonance diffusion tensor fractional anisotropy (FA) for patients with hemiparesis due to intracerebral hemorrhage. Diffusion tensor FA brain images were acquired 14-21 days after putaminal and/or thalamic hemorrhage. The ratio of FA values within the cerebral peduncles of the affected and unaffected hemispheres (rFA) was calculated for each patient (n = 40) and assessed for correlation with Brunnstrom stage (BRS, 1-6), motor component of the functional independence measure (FIM-motor, 13-91), and the total length of stay (LOS) until discharge from rehabilitation (P hemiparesis due to putaminal and/or thalamic hemorrhage, particularly hand function recovery. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Voxel-wise comparisons of the morphology of diffusion tensors across groups of experimental subjects

    DEFF Research Database (Denmark)

    Bansal, Ravi; Staib, Lawrence H; Plessen, Kerstin J

    2007-01-01

    method to compute their approximate covariance matrices. Our results show that the theoretically computed mean tensor (MT) eigenvectors and eigenvalues match well with their respective true values. Furthermore, a comparison of synthetically generated groups of DTs highlights the limitations of using FA...... to detect group differences. Finally, analyses of in vivo DT data using our method reveal significant between-group differences in diffusivity along fiber tracts within white matter, whereas analyses based on FA values failed to detect some of these differences....... neuropsychiatric illnesses. Comparisons of tensor morphology across groups have typically been performed on scalar measures of diffusivity, such as Fractional Anisotropy (FA) rather than directly on the complex 3D morphologies of DTs. Scalar measures, however, are related in nonlinear ways to the eigenvalues...

  4. Microstructural changes in thickened corpus callosum in children: contribution of magnetic resonance diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Merlini, Laura; Anooshiravani, Mehrak; Kanavaki, Aikaterini; Hanquinet, Sylviane [University of Geneva Children' s Hospital, Pediatric Radiology Unit, Geneva (Switzerland)

    2015-06-15

    Thickened corpus callosum is a rare finding and its pathophysiology is not well known. An anomalous supracallosal bundle has been depicted by fiber tracking in some cases but no diffusion tensor imaging metrics of thickened corpus callosum have been reported. To use diffusion tensor imaging (DTI) in cases of thickened corpus callosum to help in understanding its clinical significance. During a 7-year period five children (ages 6 months to 15 years) with thickened corpus callosum were studied. We determined DTI metrics of fractional anisotropy (FA), mean diffusivity, and axial (λ1) and radial (λ2, λ3) diffusivity and performed 3-D fiber tracking reconstruction of the thickened corpus callosum. We compared our results with data from the literature and 24 age-matched controls. Brain abnormalities were seen in all cases. All children had at least three measurements of corpus callosum thickness above the 97th percentile according to age. In all children 3-D fiber tracking showed an anomalous supracallosal bundle and statistically significant decrease in FA (P = 0.003) and λ1 (P = 0.001) of the corpus callosum compared with controls, but no significant difference in mean diffusivity and radial diffusivity. Thickened corpus callosum was associated with abnormal bundles, suggesting underlying axonal guidance abnormality. DTI metrics suggested abnormal fiber compactness and density, which may be associated with alterations in cognition. (orig.)

  5. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability

    OpenAIRE

    Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-01-01

    International audience; The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tra...

  6. Preoperative Identification of Facial Nerve in Vestibular Schwannomas Surgery Using Diffusion Tensor Tractography

    OpenAIRE

    Choi, Kyung-Sik; Kim, Min-Su; Kwon, Hyeok-Gyu; Jang, Sung-Ho; Kim, Oh-Lyong

    2014-01-01

    Objective Facial nerve palsy is a common complication of treatment for vestibular schwannoma (VS), so preserving facial nerve function is important. The preoperative visualization of the course of facial nerve in relation to VS could help prevent injury to the nerve during the surgery. In this study, we evaluate the accuracy of diffusion tensor tractography (DTT) for preoperative identification of facial nerve. Methods We prospectively collected data from 11 patients with VS, who underwent pr...

  7. Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis

    OpenAIRE

    Zhong-jun Hou; Yong Huang; Zi-wen Fan; Xin-chun Li; Bing-yi Cao

    2015-01-01

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diffusion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy v...

  8. Verifying the hypothesis of disconnection syndrome in patients with conduction aphasia using diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    Yanqin Guo; Jing Xu; Yindong Yang

    2007-01-01

    BACKGROUND: It is thought in disconnection theory that connection of anterior and posterior language function areas, i.e. the lesion of arcuate fasciculus causes conduction aphasia.OBJECTIVE: To verify the theory of disconnection elicited by repetition disorder in patients with conduction aphasia by comparing the characteristics of diffusion tensor imaging between healthy persons and patients with conduction aphasia.DESIGN: Case-control observation.SETTING: Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical College.PARTICIPANTS: Five male patients with cerebral infarction-involved arcuate fasciculus conduction aphasia, averaged (43±2) years, who hospitalized in the Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical College from February 2004 to February 2005 were involved in this experiment. The involved patients were all confirmed as cerebral infarction by skull CT and MRI, and met the diagnosis criteria revised in 1995 4th Cerebrovascular Conference. They were examined by the method of Aphasia Battery of Chinese (ABC) edited by Surong Gao. The results were poorer than auditory comprehension disproportionately, and consistented with the mode of conduction aphasia. Another 5 male healthy persons, averaged (43 ± 1 ) years, who were physicians receiving further training in the Department of Neurology, Beijing Tiantan Hospital were also involved in this experiment. Informed consents of detected items were obtained from all the subjects.METHODS: All the subjects were performed handedness assessment with assessment criteria of handedness formulated by Department of Neurology, First Hospital Affiliated to Beijing Medical University. Arcuate fasciculus of involved patients and health controls were analyzed with diffusion tensor imaging (DTI) and divided into 3 parts (anterior, middle and posterior segments) for determining FA value (mean value was obtained after three times of measurements), and a comparison of FA value was

  9. The importance of correcting for signal drift in diffusion MRI

    OpenAIRE

    Vos, Sjoerd B; Tax, Chantal M W; Luijten, Peter R; Ourselin, Sebastien; Leemans, Alexander; Froeling, Martijn

    2017-01-01

    PURPOSE: To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. METHODS: We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, a...

  10. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients.

    Science.gov (United States)

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-05-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients.

  11. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis.

    Science.gov (United States)

    Wang, Yalin; Yuan, Lei; Shi, Jie; Greve, Alexander; Ye, Jieping; Toga, Arthur W; Reiss, Allan L; Thompson, Paul M

    2013-07-01

    Many methods have been proposed for computer-assisted diagnostic classification. Full tensor information and machine learning with 3D maps derived from brain images may help detect subtle differences or classify subjects into different groups. Here we develop a new approach to apply tensor-based morphometry to parametric surface models for diagnostic classification. We use this approach to identify cortical surface features for use in diagnostic classifiers. First, with holomorphic 1-forms, we compute an efficient and accurate conformal mapping from a multiply connected mesh to the so-called slit domain. Next, the surface parameterization approach provides a natural way to register anatomical surfaces across subjects using a constrained harmonic map. To analyze anatomical differences, we then analyze the full Riemannian surface metric tensors, which retain multivariate information on local surface geometry. As the number of voxels in a 3D image is large, sparse learning is a promising method to select a subset of imaging features and to improve classification accuracy. Focusing on vertices with greatest effect sizes, we train a diagnostic classifier using the surface features selected by an L1-norm based sparse learning method. Stability selection is applied to validate the selected feature sets. We tested the algorithm on MRI-derived cortical surfaces from 42 subjects with genetically confirmed Williams syndrome and 40 age-matched controls, multivariate statistics on the local tensors gave greater effect sizes for detecting group differences relative to other TBM-based statistics including analysis of the Jacobian determinant and the largest eigenvalue of the surface metric. Our method also gave reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry studies, and may assist with image-based classification. Copyright © 2013

  12. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases

    OpenAIRE

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-01-01

    Purpose: The activity of the glymphatic system is impaired in animal models of Alzheimer’s disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Materials and methods: Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along t...

  13. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Zhang Kaiyuan; Yu Chunshui; Zhang Yujin; Wu Xiaoli; Zhu Chaozhe; Chan Piu; Li Kuncheng

    2011-01-01

    Purpose: To investigate the abnormal diffusion in cerebral white matter and its relationship with the olfactory dysfunction in patients with Parkinson's disease (PD) through diffusion tensor imaging (DTI). Materials and methods: Diffusion tensor imaging of the cerebrum was performed in 25 patients with Parkinson's disease and 25 control subjects matched for age and sex. Differences in fractional anisotropy (FA) and mean diffusivity (MD) between these two groups were studied by voxel-based analysis of the DTI data. Correlations between diffusion indices and the olfactory function in PD patients were evaluated using the multiple regression model after controlling for the duration of the disease, Unified Parkinson's Disease Rating Sale (UPDRS), and age. Results: The damaged white and gray matter showed decreased FA or increased MD, localized bilaterally in the cerebellar and orbitofrontal cortex. In addition, in PD patients there was a positive correlation between FA values in the white matter of the left cerebellum and the thresholds of olfactory identification (TOI) and a negative correlation between MD values in the white matter of right cerebellum and the TOI. Conclusion: In patients with PD, there was disruption in the cerebellar white matter which may play an important role in the olfactory dysfunction in patients with Parkinson's disease.

  14. Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI.

    Science.gov (United States)

    Merlet, Sylvain L; Deriche, Rachid

    2013-07-01

    In this paper, we exploit the ability of Compressed Sensing (CS) to recover the whole 3D Diffusion MRI (dMRI) signal from a limited number of samples while efficiently recovering important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Some attempts to use CS in estimating diffusion signals have been done recently. However, this was mainly an experimental insight of CS capabilities in dMRI and the CS theory has not been fully exploited. In this work, we also propose to study the impact of the sparsity, the incoherence and the RIP property on the reconstruction of diffusion signals. We show that an efficient use of the CS theory enables to drastically reduce the number of measurements commonly used in dMRI acquisitions. Only 20-30 measurements, optimally spread on several b-value shells, are shown to be necessary, which is less than previous attempts to recover the diffusion signal using CS. This opens an attractive perspective to measure the diffusion signals in white matter within a reduced acquisition time and shows that CS holds great promise and opens new and exciting perspectives in diffusion MRI (dMRI). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    International Nuclear Information System (INIS)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang; Wei, Kuo-Chen; Ng, Shu-Hang

    2007-01-01

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P -3 mm 2 /s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 ± 0.057 and 0.820 ± 0.094, the mean MD ratios were 220.3 ± 22.6 and 193.1 ± 23.4, the mean FA values were 0.146 ± 0.026 and 0.199 ± 0.052, and the mean FA ratios were 32.3 ± 5.9 and 46.0 ± 12.1. All the values were significantly different between metastases and meningiomas (MD values P 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  16. Peritumoral edema of meningiomas and metastatic brain tumors: differences in diffusion characteristics evaluated with diffusion-tensor MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Cheng-Hong; Wong, Alex M.-C; Wong, Ho-Fai; Wan, Yung-Liang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Wei, Kuo-Chen [Chang Gung Memorial Hospital, Department of Neurosurgery, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Tao-Yuan (China); Chang Gung University, School of Medicine and Medical Technology, Tao-Yuan (China); Chang Gung Memorial Hospital, Molecular Image Center, Tao-Yuan (China)

    2007-06-15

    We prospectively compared the fractional anisotropy (FA) and mean diffusivity (MD) of the peritumoral edema of meningiomas and metastatic brain tumors with diffusion-tensor magnetic resonance (MR) imaging. The study protocol was approved by the local ethics committee, and written informed consent was obtained. Preoperative diffusion-tensor MR imaging was performed in 15 patients with meningiomas and 11 patients with metastatic brain tumors. Regions of interest (ROI) were placed in the peritumoral edema and normal-appearing white matter (NAWM) of the contralateral hemisphere to measure the FA and MD. The FA and MD ratios were calculated for each ROI in relation to the NAWM of the contralateral hemisphere. Changes in peritumoral MD and FA, in terms of primary values and ratios, were compared using a two-sample t-test; P < 0.05 was taken as indicating statistical significance. The mean MD values (x 10{sup -3} mm{sup 2}/s) of the peritumoral edema for metastases and meningiomas, respectively, were 0.902 {+-} 0.057 and 0.820 {+-} 0.094, the mean MD ratios were 220.3 {+-} 22.6 and 193.1 {+-} 23.4, the mean FA values were 0.146 {+-} 0.026 and 0.199 {+-} 0.052, and the mean FA ratios were 32.3 {+-} 5.9 and 46.0 {+-} 12.1. All the values were significantly different between metastases and meningiomas (MD values P = 0.016, MD ratios P = 0.006, FA values P = 0.005, FA ratios P = 0.002). The peritumoral edema of metastatic brain tumors and meningiomas show different MD and FA on diffusion-tensor MR imaging. (orig.)

  17. Tuberous sclerosis: diffusion MRI findings in the brain

    International Nuclear Information System (INIS)

    Sener, R.N.

    2002-01-01

    Diffusion MRI has mainly been used for detection of acute ischemia, and for distinction of cytotoxic and vasogenic edema. We applied diffusion MRI in patients with tuberous sclerosis in order to evaluate diffusion imaging characteristics of parenchymal changes. Five children with known tuberous sclerosis were included in this study. The MRI examinations were performed on a 1.5-T MR unit. Diffusion MRI was obtained using the echo-planar imaging sequence. Apparent diffusion coefficient (ADC) values from the abnormal brain parenchyma were calculated directly from automatically generated ADC maps. Seven normal children were available for comparison. In this control group the mean ADC value of the normal white matter was 0.84±0.12 x 10 -3 mm 2 /s. In tuberous sclerosis patients the mean ADC value of the white matter hamartomas (n=20) was apparently high (1.52±0.24 x 10 -3 mm 2 /s) compared with that of normal white matter. The ADC value of calcified hamartomas was ''zero''. The ADC value within a giant cell tumor was 0.89 x 10 -3 mm 2 /s, similar to that of normal cerebral white matter. The ADC maps were superior to b=1000 s/mm 2 (true diffusion) images with respect to lesion evaluation, and they provided mathematical information on tissue integrity. With respect to detection of the exact numbers and sizes of the parenchymal hamartomas fluid-attenuated inversion recovery images were superior to ADC maps. It is believed that diffusion MRI can be useful in evaluation of various parenchymal changes associated with tuberous sclerosis. Further studies on tuberous sclerosis, and on various brain lesions, would provide increasing data on this relatively new MRI sequence. (orig.)

  18. In vivo 3D neuroanatomical evaluation of periprostatic nerve plexus with 3T-MR Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Panebianco, Valeria; Barchetti, Flavio; Sciarra, Alessandro; Marcantonio, Andrea; Zini, Chiara; Salciccia, Stefano; Collettini, Federico; Gentile, Vincenzo; Hamm, Bernard; Catalano, Carlo

    2013-01-01

    Objectives: To evaluate if Diffusion Tensor Imaging technique (DTI) can improve the visualization of periprostatic nerve fibers describing the location and distribution of entire neurovascular plexus around the prostate in patients who are candidates for prostatectomy. Materials and methods: Magnetic Resonance Imaging (MRI), including a 2D T2-weighted FSE sequence in 3 planes, 3D T2-weighted and DTI using 16 gradient directions and b = 0 and 1000, was performed on 36 patients. Three out of 36 patients were excluded from the analysis due to poor image quality (blurring N = 2, artifact N = 1). The study was approved by local ethics committee and all patients gave an informed consent. Images were evaluated by two radiologists with different experience in MRI. DTI images were analyzed qualitatively using dedicated software. Also 2D and 3D T2 images were independently considered. Results: 3D-DTI allowed description of the entire plexus of the periprostatic nerve fibers in all directions, while 2D and 3D T2 morphological sequences depicted part of the fibers, in a plane by plane analysis of fiber courses. DTI demonstrated in all patients the dispersion of nerve fibers around the prostate on both sides including the significant percentage present in the anterior and anterolateral sectors. Conclusions: DTI offers optimal representation of the widely distributed periprostatic plexus. If validated, it may help guide nerve-sparing radical prostatectomy

  19. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  20. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Exploratory analysis of diffusion tensor imaging in children with attention deficit hyperactivity disorder: evidence of abnormal white matter structure.

    Science.gov (United States)

    Pastura, Giuseppe; Doering, Thomas; Gasparetto, Emerson Leandro; Mattos, Paulo; Araújo, Alexandra Prüfer

    2016-06-01

    Abnormalities in the white matter microstructure of the attentional system have been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Diffusion tensor imaging (DTI) is a promising magnetic resonance imaging (MRI) technology that has increasingly been used in studies of white matter microstructure in the brain. The main objective of this work was to perform an exploratory analysis of white matter tracts in a sample of children with ADHD versus typically developing children (TDC). For this purpose, 13 drug-naive children with ADHD of both genders underwent MRI using DTI acquisition methodology and tract-based spatial statistics. The results were compared to those of a sample of 14 age- and gender-matched TDC. Lower fractional anisotropy was observed in the splenium of the corpus callosum, right superior longitudinal fasciculus, bilateral retrolenticular part of the internal capsule, bilateral inferior fronto-occipital fasciculus, left external capsule and posterior thalamic radiation (including right optic radiation). We conclude that white matter tracts in attentional and motor control systems exhibited signs of abnormal microstructure in this sample of drug-naive children with ADHD.

  2. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  3. Study of diffusion tensor imaging in subcortical ischemic vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    Hui-ying GUO

    2014-04-01

    Full Text Available Objective Using diffusion tensor imaging (DTI to explore the microstructure changes of white matter in subcortical ischemic vascular cognitive impairment (SIVCI and its correlation with cognitive function.  Methods Forty-nine patients with subcortical ischemic cerebrovascular diseases were collected. By using Clinical Dementia Rating Scale (CDR, they were classified into 10 cases of vascular dementia (VaD group, 20 cases of vascular cognitive impairment-no dementia (VCIND group and 19 cases of normal cognitive function (control group. Conventional MRI and DTI were performed in all cases. Based on the DTI data, voxel-based analysis was used to assess the whole brain region. Correlation analysis was applied to illustrate the relationship between DTI parameters and cognitive scale in VaD patients.  Results Compared with the control group, fractional anisotropy (FA values of patients in VaD group decreased in medial prefrontal cortex, anterior cingulate cortex, corpus callosum stem, bilateral parietal lobes, right temporal lobe and bilateral orbitofrontal lobes (P = 0.000, for all, and FA values of patients in VCIND group decreased in right inferior frontal gyrus, right hippocampus and bilateral precuneus (P = 0.000, for all. Compared with VCIND group, FA values of patients in VaD group decreased in medial prefrontal cortex, anterior cingulate, corpus callosum, bilateral parietal lobes and right temporal lobe (P = 0.000, for all. Compared with the control group, mean diffusivity (MD values in VaD group increased in medial prefrontal cortex, corpus callosum, bilateral parietal lobes, bilateral temporal lobes and anterior cingulate (P = 0.000, for all, while in VCIND group increased in bilateral precuneus and right hippocampus (P = 0.000, for all. Compared with VCIND group, MD values in VaD group increased in right medial prefrontal cortex, anterior cingulate cortex, corpus callosum stem, bilateral parietal lobes and bilateral temporal lobes (P = 0

  4. Abnormal diffusion-weighted MRI in medulloblastoma: does it reflect small cell histology?

    International Nuclear Information System (INIS)

    Kotsenas, A.L.; Roth, T.C.; Manness, W.K.; Faerber, E.N.

    1999-01-01

    A 12-year-old boy presented with the classic CT and MRI findings of medulloblastoma and the unusual finding of increased signal on diffusion MRI. The small-cell histology of medulloblastoma may account for the increased signal seen on diffusion MRI. Diffusion MRI with echoplanar technique may be useful in evaluation of these tumors and metastatic disease. (orig.)

  5. White matter biomarkers from diffusion MRI

    Science.gov (United States)

    Nørhøj Jespersen, Sune

    2018-06-01

    As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.

  6. Study of optic nerve in patients with neuromyelitis optica using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Chen Zhiye; Zhu Lijun; Lou Xin; Li Jinfeng; Yang Yang; Ma Lin

    2012-01-01

    Objective: To explore the diagnostic value of optic diffusion tensor imaging (DTI) in detecting the impairment of optic nerve in neuromyelitis optica (NMO) patients. Methods: Conventional MRI and optic DTI were performed in 28 NMO patients and 38 normal controls (NC). Fractional anisotropy (FA) values were measured in the anterior part, middle part and posterior part of intraorbital segment of optic nerve. The patients were classified into 3 groups based on the impairment of vision and visual evoked potential (VEP): monocular impairment (MI) group, 10 eyes; biocular impairment (BI) group, 36 eyes; and normal-appearing (NA) group, 10 eyes. All patients were performed with the evaluation of expanded disability status scale (EDSS). One-way analysis of variance (ANOVA), receiver operating characteristic (ROC) curve, and Spearman correlation analysis were performed among the subgroups of NMO and normal controls. Results: There was significantly statistical difference between the four groups (F=43.54, P<0.01). Decreased FA values were demonstrated in the MI group (0.29 ±0.08), BI group (0.27 ±0.08), and NA group (0.35 ±0.13) compared with NC (0.45 ±0.07) (P<0.01). FA value in BI group was significantly lower than that of NA group (P<0.01). Area under curve by ROC analysis in NC vs MI, NC vs BI, NC vs NA, and NC vs NMO was 0.92, 0.95, 0.74, and 0.91, respectively. The diagnostic sensitivity of ROC was 80%, 86%, 50%, and 79%, respectively. The diagnostic specificity of ROC was 95% for the each compared groups. FA value showed no correlation with EDSS for each NMO groups, and showed negative correlation with disease duration for BI group (r=-0.371, P<0.05). Conclusions: Various degrees of optic nerve injuries, indicated by decreased FA value,are present in NMO patients, and optic DTI may be a simple and effective tool for the quantitative evaluation of optic nerve in NMO patients. (authors)

  7. Diffusion tensor imaging study of the temporal stem in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yue WANG

    2014-03-01

    Full Text Available Objective To study the changes of fractional anisotropy (FA value of white matter of brain and temporal stem in Alzheimer's disease (AD and amnestic mild cognitive impairment (aMCI patients as well as normal cognitive (NC aged people with diffusion tensor imaging (DTI, and explore the damage mechanism of temporal stem and its diagnostic value on AD and aMCI. Methods Ten patients with AD, 10 patients with aMCI and 10 NC volunteers as control group were scanned by routine MRI and DTI. FA values were calculated by post-processing software (DTIstudio in temporal stem (including anterior commissure, uncinate fasciculus and inferior occipitofrontal fasciculus, and white matter in anterior frontal, temperal, parietal and occipital lobes. The data were analyzed by SPSS 13.0. If bilateral differences of FA values were not statistically significant (P > 0.05, the average values of bilateral FA were selected and compared among 3 groups. If bilateral differences of FA values were statistically significant (P < 0.05, the measurement values were directly compared. Results 1 There was no significantdifference of FA values in bilateral symmetric white matter and temporal stem among AD, aMCI and NC groups (P > 0.05, for all. 2 There was significant difference of FA values in anterior commissure, uncinate fasciculus and inferior occipitofrontal fasciculus between AD and aMCI groups (P < 0.05, for all. 3 There was significant difference of FA values in anterior commissure, uncinate fasciculus, inferior occipitofrontal fasciculus, anterior frontal and parietal lobes between AD and NC groups (P < 0.05, for all. 4 There was no significant difference of FA values in anterior commissure, uncinate fasciculus, inferior occipitofrontal fasciculus, anterior frontal lobe between aMCI and NC groups (P > 0.05, for all. Conclusions The significant difference of FA values in temporal stem among AD, aMCI and NC groups suggests that temporal stem fiber bundles are of great

  8. Voxel-based morphometry and voxel-based diffusion tensor analysis in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Chen Zhiye; Ma Lin; Lou Xin; Wang Yan

    2010-01-01

    Objective: To evaluate gray matter volume, white matter volume and FA value changes in amyatrophic lateral sclerosis (ALS) patients by voxel-based morphometry (VBM) and voxel-based diffusion tensor analysis (VBDTA). Methods: Thirty-nine definite or probable ALS patients diagnosed by El Escorial standard and 39 healthy controls were recruited and underwent conventional MR scans and the neuropsychological evaluation. The 3D FSPGR T 1 WI and DTI data were collected on GE Medical 3.0 T MRI system. The 3DT 1 structural images were normalized, segmented and smoothed, and then VBM analysis was performed. DTI data were acquired from 76 healthy controls, and FA map template was made. FA maps generated from the DTI data of ALS patients and healthy controls were normalized to the FA map template for voxel-based analysis. ANCOVA was applied, controlling with age and total intracranial volume for VBM and age for VBDDTA. A statistical threshold of P<0.01 (uncorrected) and cluster level of more than continuous 20 voxels determined significance. Results: Statistical results showed no significant difference in the global volumes of gray matter and white matter, total intracranial volumes and gray matter fraction between ALS patients and healthy controls, but the white matter fraction of ALS patients (0.29 ± 0.02) was significantly less than that of healthy controls (0.30 ± 0.02) statistically (P=0.003). There was significant reduction of gray matter volumes in bilateral superior frontal gyri and precentral gyri, right middle frontal gyrus, right middle and inferior temporal gyrus, left superior occipital gyrus and cuneus and left insula in ALS patients when compared with healthy controls; and the regional reduction of white matter volumes in ALS patients mainly located in genu of corpus callosum, bilateral medial frontal gyri, paracentral lobule and insula, right superior and middle frontal gyrus and left postcentral gyrus. VBDTA showed decrease in FA values in bilateral

  9. In the assessment of supratentorial glioma grade: The combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Q.-G. [Department of Neuroradiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xu, H.-B., E-mail: xuhaibo1120@hotmail.com [Department of Neuroradiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Liu, F.; Guo, W. [Department of Neuroradiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Kong, X.-C. [Department of Imaging technology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wu, Y. [Department of Maternal and Child Health Care, Public Health School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2011-10-15

    Aim: To detect a difference in the parameters derived from proton magnetic resonance spectroscopy ({sup 1}H-MRS) and diffusion tensor imaging (DTI) between low-grade and high-grade gliomas, and to evaluate whether the combination of these two techniques can improve the diagnostic accuracy of conventional magnetic resonance imaging (MRI) in supratentorial glioma grading. Materials and methods: Thirty patients with histologically proved supratentorial brain gliomas (12 low grade, 18 high grade) were prospectively evaluated with contrast material-enhanced MRI, DTI, and multivoxel {sup 1}H-MRS (135 ms echo time). The tumour grades determined using the three methods were then compared with those obtained at histopathology. Receiver operating characteristic (ROC) analyses were performed to determine the optimum thresholds for glioma grading. Independent sample t-test, Spearman's rank correlation, and the Fisher's exact test were also carried out for statistical analysis. p < 0.05 was considered statistically significant. Results: Statistically significant differences were found between the low-grade and high-grade gliomas for the choline (Cho)/creatine (Cr), N-acetylaspartate (NAA)/Cr, NAA/Cho ratio in the tumours (p < 0.01), apparent diffusion coefficient (ADC) value (p < 0.01), and fractional anisotropy (FA) value (p < 0.05) in the tumours. The NAA/Cr and NAA/Cho ratios and the calculated ADC value significantly correlated with the histological grading of the gliomas (p < 0.01). Using a threshold value of 0.66 for tumour NAA/Cr, 0.265 for NAA/Cho, 1118.1 x 10{sup -6} mm{sup 2}/s for the calculated ADC value, corresponding to the maximum Youden index from the ROC curve of the above-selected parameters, the resultant sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Kappa values were all higher and the fraction of misclassified tumour was lower when compared with conventional MRI. However, only NAA/Cho and

  10. Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Ciaran K. Simms

    2010-01-01

    Full Text Available MR diffusion tensor imaging (DTI was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 × 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm × 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near 0∘ and 180∘ to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of 15±2.5∘ and 175±2.5∘. The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue.

  11. Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Directory of Open Access Journals (Sweden)

    Kerskens Christian

    2010-01-01

    Full Text Available Abstract MR diffusion tensor imaging (DTI was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near and to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of and . The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue.

  12. Diffusion tensor imaging and diffusion tensor imaging-fibre tractograph depict the mechanisms of Broca-like and Wernicke-like conduction aphasia.

    Science.gov (United States)

    Song, Xinjie; Dornbos, David; Lai, Zongli; Zhang, Yumei; Li, Tieshan; Chen, Hongyan; Yang, Zhonghua

    2011-06-01

    Conduction aphasia is usually considered a result of damage of the arcuate fasciculus, which is subjacent to the parietal portion of the supra-marginal gyrus and the upper part of the insula. It is important to stress that many features of conduction aphasia relate to a cortical deficit, more than a pure disconnection mechanism. In this study, we explore the mechanism of Broca-like and Wernicke-like conduction aphasia by using diffusion tensor imaging (DTI) and diffusion tensor imaging-fibre tractograph (DT-FT). We enrolled five Broca-like conduction aphasia cases, five Wernicke-like aphasia conduction cases and 10 healthy volunteers residing in Beijing and speaking Mandarin. All are right handed. We analyzed the arcuate fasciculus, Broca's areas and Wernicke's areas by DTI and measured fractional anisotrogy (FA). The results of left and right hemispheres were compared in both conduction aphasia cases and volunteers. Then the results of the conduction aphasia cases were compared with those of volunteers. The fibre construction of Broca's and Wernicke's areas was also compared by DTI-FT. The FA occupied by the identified connective pathways (Broca's area, Wernicke's area and the arcuate fasciculus) in the left hemisphere was larger than that in the right hemisphere in the control group (Paphasia cases, the FA of the left Broca's area was smaller than that of the right mirror side (PWernicke-like conduction aphasia patients, the FA of the left Wernicke's area was smaller than that of right mirror side (Paphasia results from not only arcuate fasciculus destruction, but also from disruption of the associated cortical areas. Along different segments of the arcuate fasciculus, the characteristics of language disorders of conduction aphasia were different. A lesion involving Broca's area and the anterior segments of the arcuate fasciculus would lead to Broca-like conduction aphasia, whereas a lesion involved Wernicke's area and posterior segments of the arcuate fasciculus

  13. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder.

    Science.gov (United States)

    Nenadić, Igor; Hoof, Anna; Dietzek, Maren; Langbein, Kerstin; Reichenbach, Jürgen R; Sauer, Heinrich; Güllmar, Daniel

    2017-08-30

    Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Brain involvement in patients with inflammatory bowel disease: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Zikou, Anastasia K; Kosmidou, Maria; Astrakas, Loukas G; Tzarouchi, Loukia C; Tsianos, Epameinondas; Argyropoulou, Maria I

    2014-10-01

    To investigate structural brain changes in inflammatory bowel disease (IBD). Brain magnetic resonance imaging (MRI) was performed on 18 IBD patients (aged 45.16 ± 14.71 years) and 20 aged-matched control subjects. The imaging protocol consisted of a sagittal-FLAIR, a T1-weighted high-resolution three-dimensional spoiled gradient-echo sequence, and a multisession spin-echo echo-planar diffusion-weighted sequence. Differences between patients and controls in brain volume and diffusion indices were evaluated using the voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) methods, respectively. The presence of white-matter hyperintensities (WMHIs) was evaluated on FLAIR images. VBM revealed decreased grey matter (GM) volume in patients in the fusiform and the inferior temporal gyrus bilaterally, the right precentral gyrus, the right supplementary motor area, the right middle frontal gyrus and the left superior parietal gyrus (p tensor imaging detects microstructural brain abnormalities in IBD. • Voxel based morphometry reveals brain atrophy in IBD.

  15. Diffusion tensor and volumetric magnetic resonance measures as biomarkers of brain damage in a small animal model of HIV.

    Directory of Open Access Journals (Sweden)

    Margaret R Lentz

    Full Text Available There are currently no widely accepted neuro-HIV small animal models. We wanted to validate the HIV-1 Transgenic rat (Tg as an appropriate neuro-HIV model and then establish in vivo imaging biomarkers of neuropathology, within this model, using MR structural and diffusion tensor imaging (DTI.Young and middle-aged Tg and control rats were imaged using MRI. A subset of middle-aged animals underwent longitudinal repeat imaging six months later. Total brain volume (TBV, ventricular volume (VV and parenchymal volume (PV = TBV-VV were measured. Fractional anisotropy (FA and mean diffusivity (MD values of the corpus callosum (CC were calculated from DTI data.TBV and PV were smaller in Tg compared to control rats in young and middle-aged cohorts (p0.05.We detected brain volume loss in the Tg rat, probably due to astrocytic dysfunction/loss, loss of structural/axonal matrix and striatal neuronal loss as suggested by immunofluorescence. Increased MD and decreased FA in the CC probably reflect microstructural differences between the Tg and Control rats which could include increased extracellular space between white matter tracts, demyelination and axonal degeneration, among other pathologies. We believe that the Tg rat is an adequate model of neuropathology in HIV and that volumetric MR and DTI measures can be potentially used as biomarkers of disease progression.

  16. Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation.

    Science.gov (United States)

    Graña, M; Termenon, M; Savio, A; Gonzalez-Pinto, A; Echeveste, J; Pérez, J M; Besga, A

    2011-09-20

    The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takashi; Morimoto, Masafumi; Hasegawa, Tatsuji; Morioka, Shigemi; Kidowaki, Satoshi; Moroto, Masaharu; Yamashita, Satoshi; Maeda, Hiroshi; Chiyonobu, Tomohiro; Tokuda, Sachiko; Hosoi, Hajime [Kyoto Prefectural University of Medicine, Department of Pediatrics, Graduate School of Medical Science, Kyoto (Japan); Yamada, Kei [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto (Japan)

    2015-05-01

    Recent diffusion tensor imaging (DTI) studies have demonstrated that leakage of hemosiderin into cerebrospinal fluid (CSF), which is caused by high-grade intraventricular hemorrhage (IVH), can affect cerebellar development in preterm born infants. However, a direct effect of low-grade IVH on cerebellar development is unknown. Thus, we evaluated the cerebellar and cerebral white matter (WM) of preterm infants with low-grade IVH. Using DTI tractography performed at term-equivalent age, we analyzed 42 infants who were born less than 30 weeks gestational age (GA) at birth (22 with low-grade IVH, 20 without). These infants were divided into two birth groups depending on GA, and we then compared the presence and absence of IVH which was diagnosed by cerebral ultrasound (CUS) within 10 days after birth or conventional magnetic resonance imaging (MRI) at term-equivalent age in each group. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) at the superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP), motor tract, and sensory tract were measured. In the SCP, preterm born infants with IVH had lower FA values compared with infants without IVH. In particular, younger preterm birth with IVH had lower FA values in the SCP and motor tract and higher ADC values in the MCP. Low-grade IVH impaired cerebellar and cerebral WM, especially in the SCP. Moreover, younger preterm infants exhibited greater disruptions to cerebellar WM and the motor tract than infants of older preterm birth. (orig.)

  18. Role of Diffusion Tensor Imaging in Prognostication and Treatment Monitoring in Niemann-Pick Disease Type C1

    Directory of Open Access Journals (Sweden)

    Meghann W. Lau

    2016-09-01

    Full Text Available Niemann-Pick Disease, type C1 (NPC1 is a rapidly progressive neurodegenerative disorder characterized by cholesterol sequestration within late endosomes and lysosomes, for which no reliable imaging marker exists for prognostication and management. Cerebellar volume deficits are found to correlate with disease severity and diffusion tensor imaging (DTI of the corpus callosum and brainstem, which has shown that microstructural disorganization is associated with NPC1 severity. This study investigates the utility of cerebellar DTI in clinical severity assessment. We hypothesize that cerebellar volume, fractional anisotropy (FA and mean diffusivity (MD negatively correlate with NIH NPC neurological severity score (NNSS and motor severity subscores. Magnetic resonance imaging (MRI was obtained for thirty-nine NPC1 subjects, ages 1–21.9 years (mean = 11.1, SD = 6.1. Using an atlas-based automated approach, the cerebellum of each patient was measured for FA, MD and volume. Additionally, each patient was given an NNSS. Decreased cerebellar FA and volume, and elevated MD correlate with higher NNSS. The cognition subscore and motor subscores for eye movement, ambulation, speech, swallowing, and fine motor skills were also statistically significant. Microstructural disorganization negatively correlated with motor severity in subjects. Additionally, Miglustat therapy correlated with lower severity scores across ranges of FA, MD and volume in all regions except the inferior peduncle, where a paradoxical effect was observed at high FA values. These findings suggest that DTI is a promising prognostication tool.

  19. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, F.; Mavilla, L. [Servizio di Neuroradiologia, Azienda Ospedaliera Policlinico, Modena (Italy); Berardi, A.; Ferrari, F. [Servizio di Neonatologia, Azienda Ospedaliera Policlinico, Modena (Italy); Burlina, A.B. [Dipartimento di Pediatria, Azienda Ospedaliera, Universita di Padova, Padua (Italy)

    2002-06-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  20. Diffusion-weighted MRI of maple syrup urine disease encephalopathy

    International Nuclear Information System (INIS)

    Cavalleri, F.; Mavilla, L.; Berardi, A.; Ferrari, F.; Burlina, A.B.

    2002-01-01

    We report the case of a newborn child with maple syrup urine disease (MSUD), diagnosed at 10 days of life. Diffusion-weighted echoplanar MRI showed marked hyperintensity of the cerebellar white matter, the brainstem, the cerebral peduncles, the thalami, the dorsal limb of the internal capsule and the centrum semiovale, while conventional dual-echo sequence evidenced only a weak diffuse T2 hyperintensity in the cerebellar white matter and in the dorsal brainstem. The apparent diffusion coefficient (ADC) of these regions was markedly (>80%) decreased. Therefore, in agreement with current hypotheses on MSUD pathogenesis, MSUD oedema proves to be a cytotoxic oedema. Diffusion-weighted MRI may be a valuable tool, more sensitive than conventional spin-echo techniques, to assess the extent and progression of cytotoxicity in MSUD, as well as the effectiveness of the therapeutic interventions. (orig.)

  1. Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study.

    Directory of Open Access Journals (Sweden)

    Nicolás Fayed

    Full Text Available INTRODUCTION: This work aimed to determine whether (1H magnetic resonance imaging (MRI, magnetic resonance spectroscopy (MRS, diffusion-weighted imaging (DWI and diffusion tensor imaging (DTI are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. MATERIALS AND METHODS: Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. (1H-MRS (1.5 T of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC and fractional anisotropy (FA by MR-DTI. RESULTS: Myo-inositol (mI was increased in the posterior cingulate gyrus and Glutamate (Glu, N-acetyl-aspartate (NAA and N-acetyl-aspartate/Creatine (NAA/Cr was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019. We also found significant negative correlations between Glu (r = -0.452; p = .045, NAA (r = -0.617; p = .003 and NAA/Cr (r = -0.448; P = .047 in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r = -0.4850, p = .0066. CONCLUSIONS: The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators.

  2. Diffusion tensor magnetic resonance imaging of the breast: a pilot study

    International Nuclear Information System (INIS)

    Baltzer, Pascal A.T.; Schaefer, Anja; Dietzel, Matthias; Kaiser, Werner A.; Graessel, David; Gajda, Mieczyslaw; Camara, Oumar

    2011-01-01

    Diffusion-weighted MR imaging has shown diagnostic value for differential diagnosis of breast lesions. Diffusion tensor imaging (DTI) adds information about tissue microstructure by addressing diffusion direction. We have examined the diagnostic application of DTI of the breast. A total of 59 patients (71 lesions: 54 malignant, 17 benign) successfully underwent prospective echo planar imaging-DTI (EPI-DTI) (1.5 T). First, diffusion direction both of parenchyma as well as lesions was assessed on parametric maps. Subsequently, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured. Statistics included univariate (Mann-Whitney U test, receiver operating analysis) and multivariate (logistic regression analysis, LRA) tests. Main diffusion direction of parenchyma was anterior-posterior in the majority of cases (66.1%), whereas lesions (benign, malignant) showed no predominant diffusion direction in the majority of cases (23.9%). ADC values showed highest differences between benign and malignant lesions (P < 0.001) with resulting area under the curve (AUC) of 0.899. FA values were lower in benign (interquartile range, IR, 0.14-0.24) compared to malignant lesions (IR 0.21-0.35, P < 0.002) with an AUC of 0.751-0.770. Following LRA, FA did not prove to have incremental value for differential diagnosis over ADC values. Microanatomical differences between benign and malignant breast lesions as well as breast parenchyma can be visualized by using DTI. (orig.)

  3. Effect of cocaine on structural changes in brain: MRI volumetry using tensor-based morphometry.

    Science.gov (United States)

    Narayana, Ponnada A; Datta, Sushmita; Tao, Guozhi; Steinberg, Joel L; Moeller, F Gerard

    2010-10-01

    Magnetic resonance imaging (MRI) was performed in cocaine-dependent subjects to determine the structural changes in brain compared to non-drug using controls. Cocaine-dependent subjects and controls were carefully screened to rule out brain pathology of undetermined origin. Magnetic resonance images were analyzed using tensor-based morphometry (TBM) and voxel-based morphometry (VBM) without and with modulation to adjust for volume changes during normalization. For TBM analysis, unbiased atlases were generated using two different inverse consistent and diffeomorphic nonlinear registration techniques. Two different control groups were used for generating unbiased atlases. Independent of the nonlinear registration technique and normal cohorts used for creating the unbiased atlases, our analysis failed to detect any statistically significant effect of cocaine on brain volumes. These results show that cocaine-dependent subjects do not show differences in regional brain volumes compared to non-drug using controls. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Kaeko; Nakayama, Keiko; Yamada, Eiji; Inoue, Yuichi [Osaka City University Graduate School of Medicine, Department of Radiology, Osaka (Japan); Kosaka, Satoru; Shimada, Hiroyuki; Miki, Takami [Osaka City University Graduate School of Medicine, Department of Neurology, Osaka (Japan)

    2008-04-15

    We sought to determine whether diffusion-tensor imaging (DTI) can detect in vivo axonal damage in the corticopontocerebellar pathway of patients with adult-onset ataxic neurodegenerative disease. Conventional MRI and DTI were performed on 18 patients with adult-onset ataxic neurodegenerative disease and 28 age-matched control subjects. Fractional anisotropy (FA) and the mean diffusivity (MD) were measured in the ventral, central, and dorsal pons, middle cerebellar peduncle (MCP) and internal capsule to evaluate corticopontocerebellar projection. Changes in FA and MD values were compared between patients and controls. Clinical disability was assessed according to the International Cooperative Ataxia Rating Scale (ICARS). The relationship between DTI measurements and ICARS was studied. Follow-up MRI was performed in five patients approximately 1 year later. FA values were significantly lower in the ventral and central portions of the pons, MCP, and internal capsules than in these areas in control subjects (P < 0.05) with the lower FA values correlating with poorer ICARS (r > -0.57, P < 0.05). MD values were elevated in these areas, but the differences were smaller than for the FA values. No relationship was observed between the MD and ICARS. In the five patients who underwent the follow-up study, there were significant decreases between the initial study and the follow-up DTI study for FA in the MCP and internal capsule (P < 0.05). DTI can demonstrate a degenerated corticopontocerebellar pathway in patients, and FA values can be correlated with ataxia severity. DTI may be a clinically useful tool as a quantitative surrogate marker for monitoring disease progression. (orig.)

  5. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease

    International Nuclear Information System (INIS)

    Kitamura, Kaeko; Nakayama, Keiko; Yamada, Eiji; Inoue, Yuichi; Kosaka, Satoru; Shimada, Hiroyuki; Miki, Takami

    2008-01-01

    We sought to determine whether diffusion-tensor imaging (DTI) can detect in vivo axonal damage in the corticopontocerebellar pathway of patients with adult-onset ataxic neurodegenerative disease. Conventional MRI and DTI were performed on 18 patients with adult-onset ataxic neurodegenerative disease and 28 age-matched control subjects. Fractional anisotropy (FA) and the mean diffusivity (MD) were measured in the ventral, central, and dorsal pons, middle cerebellar peduncle (MCP) and internal capsule to evaluate corticopontocerebellar projection. Changes in FA and MD values were compared between patients and controls. Clinical disability was assessed according to the International Cooperative Ataxia Rating Scale (ICARS). The relationship between DTI measurements and ICARS was studied. Follow-up MRI was performed in five patients approximately 1 year later. FA values were significantly lower in the ventral and central portions of the pons, MCP, and internal capsules than in these areas in control subjects (P -0.57, P < 0.05). MD values were elevated in these areas, but the differences were smaller than for the FA values. No relationship was observed between the MD and ICARS. In the five patients who underwent the follow-up study, there were significant decreases between the initial study and the follow-up DTI study for FA in the MCP and internal capsule (P < 0.05). DTI can demonstrate a degenerated corticopontocerebellar pathway in patients, and FA values can be correlated with ataxia severity. DTI may be a clinically useful tool as a quantitative surrogate marker for monitoring disease progression. (orig.)

  6. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING.

    Science.gov (United States)

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white matter connectivity in a clinical population is determined.

  7. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  8. FADTTSter: accelerating hypothesis testing with functional analysis of diffusion tensor tract statistics

    Science.gov (United States)

    Noel, Jean; Prieto, Juan C.; Styner, Martin

    2017-03-01

    Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.

  9. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  10. Age Related Differences in Diffusion Tensor Indices and Fiber Architecture in the Medial and Lateral Gastrocnemius

    Science.gov (United States)

    Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu

    2014-01-01

    Purpose To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). Materials and Methods The lower leg of five young and five senior subjects was scanned at 3T and DTI indices extracted using three methods: ROI, histogram and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. Results The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (p<0.05), while the small increase in fractional anisotropy (FA) with age was not significant (MG/LG: p=0.39/0.85; 95% CI:[ −0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (p<0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Conclusion Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. PMID:24771672

  11. Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

    Directory of Open Access Journals (Sweden)

    Mostafa Charmi

    2010-06-01

    Full Text Available Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this paper is to assess the possible substitution of the geodesic metric with the Log-Euclidean one to reduce the computational cost of a statistical surface evolution algorithm. Materials and Methods: We incorporated the Log-Euclidean metric in the statistical surface evolution algorithm framework. To achieve this goal, the statistics and gradients of diffusion tensor images were defined using the Log-Euclidean metric. Numerical implementation of the segmentation algorithm was performed in the MATLAB software using the finite difference techniques. Results: In the statistical surface evolution framework, the Log-Euclidean metric was able to discriminate the torus and helix patterns in synthesis datasets and rat spinal cords in biological phantom datasets from the background better than the Euclidean and J-divergence metrics. In addition, similar results were obtained with the geodesic metric. However, the main advantage of the Log-Euclidean metric over the geodesic metric was the dramatic reduction of computational cost of the segmentation algorithm, at least by 70 times. Discussion and Conclusion: The qualitative and quantitative results have shown that the Log-Euclidean metric is a good substitute for the geodesic metric when using a statistical surface evolution algorithm in DTIs segmentation.

  12. An exploration of diffusion tensor eigenvector variability within human calf muscles.

    Science.gov (United States)

    Rockel, Conrad; Noseworthy, Michael D

    2016-01-01

    To explore the effect of diffusion tensor imaging (DTI) acquisition parameters on principal and minor eigenvector stability within human lower leg skeletal muscles. Lower leg muscles were evaluated in seven healthy subjects at 3T using an 8-channel transmit/receive coil. Diffusion-encoding was performed with nine signal averages (NSA) using 6, 15, and 25 directions (NDD). Individual DTI volumes were combined into aggregate volumes of 3, 2, and 1 NSA according to number of directions. Tensor eigenvalues (λ1 , λ2 , λ3 ), eigenvectors (ε1 , ε2 , ε3 ), and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) were calculated for each combination of NSA and NDD. Spatial maps of signal-to-noise ratio (SNR), λ3 :λ2 ratio, and zenith angle were also calculated for region of interest (ROI) analysis of vector orientation consistency. ε1 variability was only moderately related to ε2 variability (r = 0.4045). Variation of ε1 was affected by NDD, not NSA (P < 0.0002), while variation of ε2 was affected by NSA, not NDD (P < 0.0003). In terms of tensor shape, vector variability was weakly related to FA (ε1 :r = -0.1854, ε2 : ns), but had a stronger relation to the λ3 :λ2 ratio (ε1 :r = -0.5221, ε2 :r = -0.1771). Vector variability was also weakly related to SNR (ε1 :r = -0.2873, ε2 :r = -0.3483). Zenith angle was found to be strongly associated with variability of ε1 (r = 0.8048) but only weakly with that of ε2 (r = 0.2135). The second eigenvector (ε2 ) displayed higher directional variability relative to ε1 , and was only marginally affected by experimental conditions that impacted ε1 variability. © 2015 Wiley Periodicals, Inc.

  13. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: Evaluation using a diffusional anisotropic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Sung Cheol [Dept. of Biostatistics, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jeong, Ha Kyu [Dept. of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Clinical Scientist, MR, Philips Healthcare, Seoul (Korea, Republic of)

    2015-04-15

    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  14. Automatic classification of patients with idiopathic Parkinson's disease and progressive supranuclear palsy using diffusion MRI datasets

    Science.gov (United States)

    Talai, Sahand; Boelmans, Kai; Sedlacik, Jan; Forkert, Nils D.

    2017-03-01

    Parkinsonian syndromes encompass a spectrum of neurodegenerative diseases, which can be classified into various subtypes. The differentiation of these subtypes is typically conducted based on clinical criteria. Due to the overlap of intra-syndrome symptoms, the accurate differential diagnosis based on clinical guidelines remains a challenge with failure rates up to 25%. The aim of this study is to present an image-based classification method of patients with Parkinson's disease (PD) and patients with progressive supranuclear palsy (PSP), an atypical variant of PD. Therefore, apparent diffusion coefficient (ADC) parameter maps were calculated based on diffusion-tensor magnetic resonance imaging (MRI) datasets. Mean ADC values were determined in 82 brain regions using an atlas-based approach. The extracted mean ADC values for each patient were then used as features for classification using a linear kernel support vector machine classifier. To increase the classification accuracy, a feature selection was performed, which resulted in the top 17 attributes to be used as the final input features. A leave-one-out cross validation based on 56 PD and 21 PSP subjects revealed that the proposed method is capable of differentiating PD and PSP patients with an accuracy of 94.8%. In conclusion, the classification of PD and PSP patients based on ADC features obtained from diffusion MRI datasets is a promising new approach for the differentiation of Parkinsonian syndromes in the broader context of decision support systems.

  15. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    International Nuclear Information System (INIS)

    Szubiakowski, Jacek P.

    2014-01-01

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed

  16. White matter biomarkers from diffusion MRI

    DEFF Research Database (Denmark)

    Jespersen, Sune

    2018-01-01

    Abstract As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specific...

  17. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally...

  18. Cumulant expansions for measuring water exchange using diffusion MRI

    Science.gov (United States)

    Ning, Lipeng; Nilsson, Markus; Lasič, Samo; Westin, Carl-Fredrik; Rathi, Yogesh

    2018-02-01

    The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.

  19. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    International Nuclear Information System (INIS)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin; Yu, Tong Gang

    2015-01-01

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  20. Effect of increasing diffusion gradient direction number on diffusion tensor imaging fiber tracking in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin [School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology, Shanghai (China); Yu, Tong Gang [Dept. of Radiology, Huashan Hospital, Fudan University, Shanghai (China)

    2015-04-15

    To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.

  1. Diffusion tensor imaging for nerve fiber bundles in the brain stem and spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Honma, Tsuguo

    2009-01-01

    Diffusion tensor imaging (DTI) can create an image of the anisotropic nature of diffusion and express it quantitatively. Nerve fibers have a large anisotropic diffusion, and it is possible to obtain images of the nerve fiber bundle. The purpose of this study is to observe the nerve fiber bundles in the brain stem using DTI and study its potential for diagnosing the type of spinocerebellar degeneration (SCD). Fractional anisotropy (FA) maps and 3D-tractography images were obtained for 41 subjects with no brain stem abnormalities. We created an apparent diffusion coefficient (ADC) map and an FA map using DTI for 16 subjects in the disease group (11 with hereditary SCD and 5 with non-hereditary SCD) and 25 in the control group. The diffusion value of the pons and middle cerebellar peduncle was measured using ADC, and the degree of anisotropic diffusion was measured using FA. The pyramidal tract, superior cerebellar peduncle, and inferior cerebellar peduncle were clearly demonstrated for all cases. ADC for the middle cerebellar peduncle in spinocerebellar ataxin (SCA)1 was significantly higher, similar to that for the pons in dentatorubro-pallidoluysian atrophy (DRPLA). In MSA-C, ADC for both the pons and middle cerebellar peduncle was significantly elevated and FA was significantly decreased. There were no significant changes in SCA3. We could observe the nerve fiber bundles in the brain stem using DTI. FA and ADC measurements with DTI can aid in diagnosing the type of SCD. (author)

  2. Diffusion tensor imaging differentiates vascular parkinsonism from parkinsonian syndromes of degenerative origin in elderly subjects

    Energy Technology Data Exchange (ETDEWEB)

    Deverdun, Jérémy [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Laboratoire Charles Coulomb, CNRS UMR 5221 - Université Montpellier II, Montpellier (France); I2FH, Institut d’Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de, Montpellier (France); Menjot de Champfleur, Sophie [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Clinique du Parc, Castelnau-le-Lez (France); Cabello-Aguilar, Simon [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); I2FH, Institut d’Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de, Montpellier (France); Maury, Florence [Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Molino, François [Laboratoire Charles Coulomb, CNRS UMR 5221 - Université Montpellier II, Montpellier (France); Institut de Génomique Fonctionnelle, UMR 5203 - INSERM U661 - Université Montpellier II - Université, Montpellier I (France); Charif, Mahmoud [Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Leboucq, Nicolas [Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); Ayrignac, Xavier; Labauge, Pierre [Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier (France); and others

    2014-11-15

    Background and Purpose: The etiologic diagnosis of parkinsonian syndromes is of particular importance when considering syndromes of vascular or degenerative origin. The purpose of this study is to find differences in the white-matter architecture between those two groups in elderly patients. Materials and Methods: Thirty-five patients were prospectively included (multiple-system atrophy, n = 5; Parkinson's disease, n = 15; progressive supranuclear palsy, n = 9; vascular parkinsonism, n = 6), with a mean age of 76 years. Patients with multiple-system atrophy, progressive supranuclear palsy and Parkinson's disease were grouped as having parkinsonian syndromes of degenerative origin. Brain MRIs included diffusion tensor imaging. Fractional anisotropy and mean-diffusivity maps were spatially normalized, and group analyses between parkinsonian syndromes of degenerative origin and vascular parkinsonism were performed using a voxel-based approach. Results: Statistical parametric-mapping analysis of diffusion tensor imaging data showed decreased fractional anisotropy value in internal capsules bilaterally in patients with vascular parkinsonism compared to parkinsonian syndromes of degenerative origin (p = 0.001) and showed a lower mean diffusivity in the white matter of the left superior parietal lobule (p = 0.01). Fractional anisotropy values were found decreased in the middle cerebellar peduncles in multiple-system atrophy compared to Parkinson's disease and progressive supranuclear palsy. The mean diffusivity was increased in those regions for these subgroups. Conclusion: Clinically defined vascular parkinsonism was associated with decreased fractional anisotropy in the deep white matter (internal capsules) compared to parkinsonian syndromes of degenerative origin. These findings are consistent with previously published neuropathological data.

  3. Diffusion tensor imaging differentiates vascular parkinsonism from parkinsonian syndromes of degenerative origin in elderly subjects

    International Nuclear Information System (INIS)

    Deverdun, Jérémy; Menjot de Champfleur, Sophie; Cabello-Aguilar, Simon; Maury, Florence; Molino, François; Charif, Mahmoud; Leboucq, Nicolas; Ayrignac, Xavier; Labauge, Pierre

    2014-01-01

    Background and Purpose: The etiologic diagnosis of parkinsonian syndromes is of particular importance when considering syndromes of vascular or degenerative origin. The purpose of this study is to find differences in the white-matter architecture between those two groups in elderly patients. Materials and Methods: Thirty-five patients were prospectively included (multiple-system atrophy, n = 5; Parkinson's disease, n = 15; progressive supranuclear palsy, n = 9; vascular parkinsonism, n = 6), with a mean age of 76 years. Patients with multiple-system atrophy, progressive supranuclear palsy and Parkinson's disease were grouped as having parkinsonian syndromes of degenerative origin. Brain MRIs included diffusion tensor imaging. Fractional anisotropy and mean-diffusivity maps were spatially normalized, and group analyses between parkinsonian syndromes of degenerative origin and vascular parkinsonism were performed using a voxel-based approach. Results: Statistical parametric-mapping analysis of diffusion tensor imaging data showed decreased fractional anisotropy value in internal capsules bilaterally in patients with vascular parkinsonism compared to parkinsonian syndromes of degenerative origin (p = 0.001) and showed a lower mean diffusivity in the white matter of the left superior parietal lobule (p = 0.01). Fractional anisotropy values were found decreased in the middle cerebellar peduncles in multiple-system atrophy compared to Parkinson's disease and progressive supranuclear palsy. The mean diffusivity was increased in those regions for these subgroups. Conclusion: Clinically defined vascular parkinsonism was associated with decreased fractional anisotropy in the deep white matter (internal capsules) compared to parkinsonian syndromes of degenerative origin. These findings are consistent with previously published neuropathological data

  4. Preliminary study of diffusion tensor MR on the cervical spinal cord in normal subjects

    International Nuclear Information System (INIS)

    Zheng Kuihong; Ma Lin; Guo Xinggao; Liang Li

    2006-01-01

    Objective: To investigate a simplified and practical strategy for MR diffusion tensor imaging (DTI) of the cervical spinal cord and acquire the normal values of DTI parameters in normal subjects, and to offer the basis for the research of the cervical spinal cord disorders. Methods: DTI examinations were performed in 36 consecutive healthy subjects by using SE-EPI sequence on the cervical spinal cord. The values of apparent diffusion coefficient (ADC), fractional anisotropy (FA), λ 1 , λ 2 , and λ 3 were measured in regions of interest positioned in the normal cervical cords. Results: All 36 subjects completed the examinations. The cervical spinal cords were clearly demonstrated on the postprocessing images, and there were no obvious artifacts on the diffusion tensor images. The average value of ADC was (914.44±82.61) x 10 -6 mm 2 /s and FA was (593.84±52.22) x 10 -3 . The diffusivity components parallel (λ 1 ) and orthogonal (λ 2 and λ 3 ) to the longitudinal axes of the spinal cord were (1585.10±130.07) x 10 -6 mm 2 /s, (559.84±66.49) x 10 -6 mm 2 /s, and (613.28±128.71) x 10 -6 mm 2 /s, respectively. The value of λ 1 was significantly higher than that of λ 2 and λ 3 (P 2 and λ 3 (P>0.05). The value of 2λ 1 /(λ 2 +λ 3 ) was 2.74± 0.32. Conclusion: The normal cervical spinal cord can be well demonstrated in vivo by using DTI with SE-EPI sequence, and various parameters acquired on DTI are stable. The water diffusivity in the direction parallel to the longitudinal axes of the spinal cord is found to be higher than that in directions perpendicular to the longitudinal axes of the spinal cord, thus suggesting the cylindrical anisotropic characteristics in the cervical spinal cord. (authors)

  5. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ancora, G. [Neonatal Intensive Care Unit, Department of Mother and Infant Infermi Hospital of Rimini, Rimini (Italy); Testa, C.; Tonon, C.; Manners, D.N.; Gramegna, L.L.; Lodi, R. [Department of Biomedical and Neuromotor Sciences University of Bologna, MR Functional Unit, Bologna (Italy); Grandi, S.; Sbravati, F.; Savini, S.; Corvaglia, L.T.; Faldella, G. [University of Bologna, Neonatology Unit, Department of Woman, Child and Adolescent Health, Bologna (Italy); Tani, G. [University of Bologna, Radiology Unit, Department of Woman, Child and Adolescent Health, Bologna (Italy); Malucelli, E. [University of Bologna, Department of Pharmacy and Biotechnologies, Bologna (Italy)

    2013-08-15

    MRI, proton magnetic resonance spectroscopy ({sup 1}H-MRS), and diffusion tensor imaging (DTI) have been shown to be of great prognostic value in term newborns with moderate-severe hypoxic-ischemic encephalopathy (HIE). Currently, no data are available on {sup 1}H-MRS and DTI performed in the subacute phase after hypothermic treatment. The aim of the present study was to assess their prognostic value in newborns affected by moderate-severe HIE and treated with selective brain cooling (BC). Twenty infants treated with BC underwent conventional MRI and {sup 1}H-MRS at a mean (SD) age of 8.3 (2.8) days; 15 also underwent DTI. Peak area ratios of metabolites and DTI variables, namely mean diffusivity (MD), axial and radial diffusivity, and fractional anisotropy (FA), were calculated. Clinical outcome was monitored until 2 years of age. Adverse outcome was observed in 6/20 newborns. Both {sup 1}H-MRS and DTI variables showed higher prognostic accuracy than conventional MRI. N-acetylaspartate/creatine at a basal ganglia localisation showed 100 % PPV and 93 % NPV for outcome. MD showed significantly decreased values in many regions of white and gray matter, axial diffusivity showed the best predictive value (PPV and NPV) in the genu of corpus callosum (100 and 91 %, respectively), and radial diffusivity was significantly decreased in fronto white matter (FWM) and fronto parietal (FP) WM. The decrement of FA showed the best AUC (0.94) in the FPWM. Selective BC in HIE neonates does not affect the early and accurate prognostic value of {sup 1}H-MRS and DTI, which outperform conventional MRI. (orig.)

  6. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling

    International Nuclear Information System (INIS)

    Ancora, G.; Testa, C.; Tonon, C.; Manners, D.N.; Gramegna, L.L.; Lodi, R.; Grandi, S.; Sbravati, F.; Savini, S.; Corvaglia, L.T.; Faldella, G.; Tani, G.; Malucelli, E.

    2013-01-01

    MRI, proton magnetic resonance spectroscopy ( 1 H-MRS), and diffusion tensor imaging (DTI) have been shown to be of great prognostic value in term newborns with moderate-severe hypoxic-ischemic encephalopathy (HIE). Currently, no data are available on 1 H-MRS and DTI performed in the subacute phase after hypothermic treatment. The aim of the present study was to assess their prognostic value in newborns affected by moderate-severe HIE and treated with selective brain cooling (BC). Twenty infants treated with BC underwent conventional MRI and 1 H-MRS at a mean (SD) age of 8.3 (2.8) days; 15 also underwent DTI. Peak area ratios of metabolites and DTI variables, namely mean diffusivity (MD), axial and radial diffusivity, and fractional anisotropy (FA), were calculated. Clinical outcome was monitored until 2 years of age. Adverse outcome was observed in 6/20 newborns. Both 1 H-MRS and DTI variables showed higher prognostic accuracy than conventional MRI. N-acetylaspartate/creatine at a basal ganglia localisation showed 100 % PPV and 93 % NPV for outcome. MD showed significantly decreased values in many regions of white and gray matter, axial diffusivity showed the best predictive value (PPV and NPV) in the genu of corpus callosum (100 and 91 %, respectively), and radial diffusivity was significantly decreased in fronto white matter (FWM) and fronto parietal (FP) WM. The decrement of FA showed the best AUC (0.94) in the FPWM. Selective BC in HIE neonates does not affect the early and accurate prognostic value of 1 H-MRS and DTI, which outperform conventional MRI. (orig.)

  7. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.

    Science.gov (United States)

    Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2014-11-12

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.

  8. White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging

    Science.gov (United States)

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513

  9. Quantifying brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Novikov, Dmitry S.; Jespersen, Sune N.; Kiselev, Valerij G.

    2016-01-01

    the potential to quantify the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, the degree of neuronal beading, and compartment sizes. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple non......-exchanging anisotropic Gaussian components. Here the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook...... on the future research directions which can open exciting possibilities for developing markers of pathology and development based on methods of studying mesoscopic transport in disordered systems....

  10. MRI shows thickening and altered diffusion in the median and ulnar nerves in multifocal motor neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Haakma, Wieke [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Aarhus University, Department of Forensic Medicine and Comparative Medicine Lab, Aarhus (Denmark); Jongbloed, Bas A.; Goedee, H.S.; Berg, Leonard H. van den; Pol, W.L. van der [University Medical Center Utrecht, Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, Utrecht (Netherlands); Froeling, Martijn; Bos, Clemens; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2017-05-15

    To study disease mechanisms in multifocal motor neuropathy (MMN) with magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of the median and ulnar nerves. We enrolled ten MMN patients, ten patients with amyotrophic lateral sclerosis (ALS) and ten healthy controls (HCs). Patients underwent MRI (in a prone position) and nerve conduction studies. DTI and fat-suppressed T2-weighted scans of the forearms were performed on a 3.0T MRI scanner. Fibre tractography of the median and ulnar nerves was performed to extract diffusion parameters: fractional anisotropy (FA), mean (MD), axial (AD) and radial (RD) diffusivity. Cross-sectional areas (CSA) were measured on T2-weighted scans. Forty-five out of 60 arms were included in the analysis. AD was significantly lower in MMN patients (2.20 ± 0.12 x 10{sup -3} mm{sup 2}/s) compared to ALS patients (2.31 ± 0.17 x 10{sup -3} mm{sup 2}/s; p < 0.05) and HCs (2.31± 0.17 x 10{sup -3} mm{sup 2}/s; p < 0.05). Segmental analysis showed significant restriction of AD, RD and MD (p < 0.005) in the proximal third of the nerves. CSA was significantly larger in MMN patients compared to ALS patients and HCs (p < 0.01). Thickening of nerves is compatible with changes in the myelin sheath structure, whereas lowered AD values suggest axonal dysfunction. These findings suggest that myelin and axons are diffusely involved in MMN pathogenesis. (orig.)

  11. Diffusion MRI: Mitigation of Magnetic Field Inhomogeneities

    Czech Academy of Sciences Publication Activity Database

    Marcon, P.; Bartušek, Karel; Dokoupil, Zdeněk; Gescheidtová, E.

    2012-01-01

    Roč. 12, č. 5 (2012), s. 205-212 ISSN 1335-8871 R&D Projects: GA MŠk ED0017/01/01; GA ČR GAP102/11/0318; GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : correction * diffusion * inhomogeneity * eddy currents * magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.233, year: 2012

  12. MRI findings in acute diffuse axonal injured patients

    International Nuclear Information System (INIS)

    Sato, Hidetaka

    2001-01-01

    Diffuse axonal injury (DAI) in the acute stage was clinically evaluated using magnetic resonance imaging (MRI), which is considered superior to computed tomography (CT) in detecting parenchymal brain lesions. MRI was disadvantageous, however, to patients suffering from acute severe head injury because of the long time required to construct imaging and unstable patient vital signs. We conducted MRI safely under a high magnetic field (1.5 tesla) in acute DAI by close observation and with nonmagnetic respirator and electrocardiographic monitoring. MRI was conducted in 95 patients diagnosed with DAI classified into mild (14), moderate (17) and severe (64) DAI by criteria established by Gennarelli (1986). In patients with mild or moderate DAI, CT revealed no lesion in the parenchymal area although MRI detected lesions in every case, mainly in cortical white matter or basal ganglia. In patients with severe DAI, CT revealed parenchymal lesions in 14 although MRI detected further lesions in cortical white matter, basal ganglia, corpus callosum and brainstem in every case. These results correspond well to the experimental model Gennarelli's. This study concluded that MRI was useful in assessing acute DAI patients. (author)

  13. Diffusion tensor imaging and 1H-MRS study on radiation-induced brain injury after nasopharyngeal carcinoma radiotherapy.

    Science.gov (United States)

    Wang, H-Z; Qiu, S-J; Lv, X-F; Wang, Y-Y; Liang, Y; Xiong, W-F; Ouyang, Z-B

    2012-04-01

    To investigate the metabolic characteristics of the temporal lobes following radiation therapy for nasopharyngeal carcinoma using diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H-MRS). DTI and (1)H-MRS were performed in 48 patients after radiotherapy for nasopharyngeal carcinoma and in 24 healthy, age-matched controls. All patients and controls had normal findings on conventional MRI. Apparent diffusion coefficient (ADC), fractional anisotropy (FA), three eigenvalues λ1, λ2, λ3, N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatinine (Cr), and Cho/Cr were measured in both temporal lobes. Patients were divided into three groups according to time after completion of radiotherapy: group 1, less than 6 months; group 2, 6-12 months; group 3, more than 12 months. Mean values for each parameter were compared using one-way analysis of variance (ANOVA). Mean FA in group 1 was significantly lower compared to group 3 and the control group (p < 0.05). Group-wise comparisons of apparent diffusion coefficient (ADC) values among all the groups were not significantly different. Eigenvalue λ1 was significantly lower in groups 1 and 3 compared to the control group (p < 0.05). NAA/Cho and NAA/Cr were significantly lower in each group compared to the control group (p < 0.01 for both). The decrease in NAA/Cho was greatest in group 1. There were no significant between-group differences regarding Cho/Cr. A combination of DTI and (1)H-MRS can be used to detect radiation-induced brain injury, in patients treated for nasopharyngeal carcinoma. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Experimental study of dynamic diffusion tensor imaging in spinal cord of goats under persistent compression

    International Nuclear Information System (INIS)

    Liu Jicun; Liu Huaijun; He Dan; Huang Boyuan; Cui Caixia; Wang Zhihong; Xu Yingjin

    2009-01-01

    Objective: To explore the dynamic changes of diffusion tensor imaging (DTI) in spinal cord of goats with persistent compression injury. Methods: Eighteen goats weighted 20-25 kg were divided into three groups with completely random design: A, B and C. A balloon catheter was inserted into the epidural space at C3-4 level via intervertabral foramen for each goat. The balloon was inflated by injection of variable volumes of saline in group A and B 10 days following operation. The volume of saline was 0.3 ml in group A and 0.2 ml in group B, respectively. The compression sustained for 40 days. Group C served as uncompressed control without injection of saline. The locomotor rating score was applied to each group. Conventional MRI and DTI were performed. The apparent diffusion coefficient (ADC)and fractional anisotropy(FA) values were measured. Histopathological assessments of the compressed spinal cord were performed 50 days following operation with light microscope and transmission electron microscopy. Results: Before operation, the locomotor rating score was 5, the ADC value was (1.23 ± 0.05) x 10 -3 mm 2 /s and the FA value was (0.72 ± 0.05) each group. Of six goats in Group A, the locomotor rating score severely decreased and reached (1.5 ± 0.4)on the 40 th day after compression. The ADC value at compression site decreased soon and reached the minimum (0.75 ± 0.04) x 10 -3 mm 2 /s on the 5 th day after compression. Then the ADC value increased gradually, restored normal on the 10 th day or so, then became markedly higher than normal and reached (1.61±0.05) x 10 -3 mm 2 /s on the 40 th day. The FA value at compression site decreased soon, reached (0.54±0.04)on the 1st day, then decreased gradually and reached (0.43± 0.05) on the 40 th day. It appeared high signal intensity on T 2 WI on the 10 th day. In Group B, the locomotor rating score was moderately decreased and reached (3.4 ± 0.5) on the 40 th day. The ADC value at compression site decreased slightly

  15. Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture

    International Nuclear Information System (INIS)

    Winklhofer, Sebastian; Berger, Nicole; Stolzmann, Paul; Stoeck, Christian T.; Kozerke, Sebastian; Thali, Michael; Manka, Robert; Alkadhi, Hatem

    2014-01-01

    To investigate the accuracy of post-mortem diffusion tensor imaging (DTI) for the detection of myocardial infarction (MI) and to demonstrate the feasibility of helix angle (HA) calculation to study remodelling of myofibre architecture. Cardiac DTI was performed in 26 deceased subjects prior to autopsy for medicolegal reasons. Fractional anisotropy (FA) and mean diffusivity (MD) were determined. Accuracy was calculated on per-segment (AHA classification), per-territory, and per-patient basis, with pathology as reference standard. HAs were calculated and compared between healthy segments and those with MI. Autopsy demonstrated MI in 61/440 segments (13.9 %) in 12/26 deceased subjects. Healthy myocardial segments had significantly higher FA (p 0.05). Post-mortem cardiac DTI enablesdifferentiation between healthy and infarcted myocardial segments by means of FA and MD. HA assessment allows for the demonstration of remodelling of myofibre architecture following chronic MI. (orig.)

  16. Hyperintensity on diffusion weighted image along ipsilateral cortical spinal tract after cerebral ischemic stroke: A diffusion tensor analysis

    International Nuclear Information System (INIS)

    Liu Xiang; Tian Wei; Li Lilin; Kolar, Balasubramanya; Qiu Xing; Chen, Feng; Dogra, Vikram S.

    2012-01-01

    Purpose: Hyperintensity along the ipsilateral cortical spinal tract (CST) on a diffusion weighted imaging (DWI) has been reported to may be associated with motor disability after brain infarction and can be misdiagnosed as a new infarction. However, the underlying patho-physiology related to this finding is not clear. The goal of our study was to analyze the diffusion tensor imaging (DTI) changes in patients with this hyperintensity. Materials and methods: Eight patients (50 ± 10 years) who exhibited hyperintensity on DWI along ipsilateral CST from 3 to 21 days after stroke onset were reviewed as positive group, including 5 patients with serial DTI examinations. Twelve patients without hyperintensity during the matched examination time were classified as reference group. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues and their ratios (ipsilateral/contralateral value) in cerebral peduncle were measured, their correlation with motor function scale at eight months after stroke onset were evaluated. Results: The serial examinations showed that hyperintensity could eventually disappear. Both the ipsilateral ADC and FA values were significantly decreased (p < 0.05) compared to the contralateral side. The ipsilateral FA significantly correlated with motor function scale in both groups (r = 0.875, 0.738; p = 0.004, 0.006 respectively). Conclusions: The hyperintensity on DWI is a transient pathological process of Wallerian degeneration after ischemic stroke, its diffusion characteristics include concurrent significant decrease of ipsilateral ADC and FA. The ipsilateral FA value has the potential to predict neurological motor function outcome in such patients.

  17. Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Salomonowitz, Erich; Strunk, Guido; Hammen, Thilo; Ganslandt, Oliver

    2008-01-01

    Cerebral white matter is known to undergo degradation with aging, and diffusion tensor imaging (DTI) is capable of revealing the white matter integrity. We assessed age-related changes of quantitative diffusivity parameters and fiber characteristics within the fornix and the cingulum. Thirty-eight healthy subjects aged 18-88 years were examined at 3 Tesla using a 1.9-mm isotropic DTI sequence. Quantitative fiber tracking was performed for 3D-segmentation of the fornix and the cingulum to determine fractional anisotropy (FA), mean diffusivity (MD), eigenvalues (λ 1 , λ 2 , and λ 3 ), number of fibers (NoF), and mean NoF/voxel (FpV). In the fornix, all diffusivity parameters (FA, MD, and eigenvalues) were moderately correlated with age. Strong and moderate negative correlations for NoF and FpV were found, respectively. In the cingulum, no correlation was observed between FA and age, and only weak correlations for the other quantitative parameters. Differences in correlations between the fornix and the cingulum were significant for all diffusivity parameters and for NoF, but not for FpV. The strongest relative changes per decade of age were found in the fornix: FA -2.1%, MD 4.2%, NoF -10.6%, and FpV -4.6%. Our quantitative 3D fiber tracking approach shows that the cingulum is resistant to aging while the fornix is not. (orig.)

  18. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio

    2014-06-01

    Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

  19. Comparison between cerebral ischemia disease and multiple sclerosis by using MR diffusion tensor imaging

    International Nuclear Information System (INIS)

    Lou Xin; Cai Youquan; Ma Lin; Cai Jianming

    2007-01-01

    Objective: To assess the value of MR diffusion tensor imaging (DTI) in the differentiation between the patients with cerebral ischemia disease and multiple sclerosis. Methods: MR diffusion tensor imaging was performed in thirty-two patients with internal carotid artery stenosis ≥70% and eighteen patients with clinical diagnosed multiple sclerosis. Fractional anisotropy (FA) value of the germ, splenium, body of the corpus callosum, and the white matter of the frontal and occipital lobe were measured respectively, and independent-sample t-test statistical analysis was performed. Results: The FA value was decreased obviously in the anterior and posterior body and splenium of the corpus callosumin the MS patients compared with the ICA severe stenosis patients (0.67 ± 0.12 vs. 0.75 ± 0.05, t=3.443, P 0.05; 0.34 ± 0.08 vs. 0.34 ± 0.05, t=0.137, P> 0.05; 0.29 ± 0.06 vs. 0.40 ± 0.06, t=5.449, P>0.05). Conclusion: DTI can noninvasive detect the potential disorder of corpus callosum in vivo, thus providing useful information to differentiate the cerebral ischemia disease from multiple sclerosis. (authors)

  20. Motion-robust diffusion tensor acquisition at routine 3T magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yasmin, Hasina; Abe, Osamu; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Kabasawa, Hiroyuki; Aoki, Shigeki

    2010-01-01

    We compared different acquisition and reconstruction methods in phantom and human studies in the clinical setting to validate our hypothesis that optimizing the k-space acquisition and reconstruction method could decrease motion artifacts. Diffusion tensor images of a water phantom were obtained with three table displacement magnitudes: 1 mm, 2 mm, and 3 mm. Images were reconstructed using homodyne and zero-fill reconstruction. Overscanning in 8- and 16-k y lines was tested. We performed visual assessment of the artifacts using reconstructed coronal images and analyzed them with Wilcoxon signed-ranks test both for phantom and human studies. Also, fractional anisotropy (FA) changes between acquisition methods were compared. Artifacts due to smaller displacement (1 and 2 mm) were significantly reduced in 16-k y overscan with zero filling. The Wilcoxon signed-ranks test showed significant differences (P<0.031 for reconstruction methods and P<0.016 for overscanning methods). FA changes were statistically significant (P<0.037; Student's t-test). The Wilcoxon signed-ranks test showed significant reductions (P<0.005) in the human study. Motion-induced artifacts can be reduced by optimizing acquisition and reconstruction methods. The techniques described in this study offer an effective method for robust estimation of diffusion tensor in the presence of motion-related artifactual data points. (author)

  1. Quantitative diffusion tensor deterministic and probabilistic fiber tractography in relapsing-remitting multiple sclerosis

    International Nuclear Information System (INIS)

    Hu Bing; Ye Binbin; Yang Yang; Zhu Kangshun; Kang Zhuang; Kuang Sichi; Luo Lin; Shan Hong

    2011-01-01

    Purpose: Our aim was to study the quantitative fiber tractography variations and patterns in patients with relapsing-remitting multiple sclerosis (RRMS) and to assess the correlation between quantitative fiber tractography and Expanded Disability Status Scale (EDSS). Material and methods: Twenty-eight patients with RRMS and 28 age-matched healthy volunteers underwent a diffusion tensor MR imaging study. Quantitative deterministic and probabilistic fiber tractography were generated in all subjects. And mean numbers of tracked lines and fiber density were counted. Paired-samples t tests were used to compare tracked lines and fiber density in RRMS patients with those in controls. Bivariate linear regression model was used to determine the relationship between quantitative fiber tractography and EDSS in RRMS. Results: Both deterministic and probabilistic tractography's tracked lines and fiber density in RRMS patients were less than those in controls (P < .001). Both deterministic and probabilistic tractography's tracked lines and fiber density were found negative correlations with EDSS in RRMS (P < .001). The fiber tract disruptions and reductions in RRMS were directly visualized on fiber tractography. Conclusion: Changes of white matter tracts can be detected by quantitative diffusion tensor fiber tractography, and correlate with clinical impairment in RRMS.

  2. A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.

    Science.gov (United States)

    Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W

    2009-03-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.

  3. Diffusion tensor imaging in inflammatory and neoplastic intramedullary spinal cord lesions: Focusing on fiber tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Jin; Lee, Joon Woo; Lee, Eugene; Kim, Sung Gon; Kang, Yu Suhn; Ahn, Joong Mo; Kang, Heung Sik [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2017-02-15

    Inflammatory and neoplastic intramedullary spinal cord lesions have overlapping clinical features, and it is occasionally difficult to distinguish one from the other on conventional magnetic resonance imaging. We aimed to compare diffusion tensor imaging findings between inflammatory and neoplastic intramedullary spinal cord lesions, with a specific focus on patterns of fiber tracking. Diffusion tensor imaging was performed in patients with either inflammatory or neoplastic intramedullary spinal cord lesions. The fiber tracking patterns (categorized as “intact,” “displaced,” or “interrupted”) were compared between these two groups. Eight patients were included in the study: 5 patients with pathologically or clinically confirmed inflammatory lesions and 3 patients with pathologically or clinically confirmed neoplastic lesions. Among the 5 patients with inflammatory lesions, 2 patients exhibited the displaced pattern and 3 patients exhibited the intact pattern. Among the 3 patients with neoplastic lesions, 1 patient exhibited the intact pattern, 1 patient exhibited the displaced pattern, and 1 patient exhibited the interrupted pattern. In this study, inflammatory and neoplastic intramedullary spinal cord lesions were not clearly differentiated by fiber tracking; both conditions can present with overlapping features such as displaced fibers. The exclusion of inflammatory conditions based on the presence of displaced fibers in fiber tracking images should be avoided.

  4. Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps

    International Nuclear Information System (INIS)

    Jakab, Andras; Berenyi, Ervin; Molnar, Peter; Emri, Miklos

    2011-01-01

    Current endeavors in neuro-oncology include morphological validation of imaging methods by histology, including molecular and immunohistochemical techniques. Diffusion tensor imaging (DTI) is an up-to-date methodology of intracranial diagnostics that has gained importance in studies of neoplasia. Our aim was to assess the feasibility of discriminant analysis applied to histograms of preoperative diffusion tensor imaging-derived images for the prediction of glioma grade validated by histomorphology. Tumors of 40 consecutive patients included 13 grade II astrocytomas, seven oligoastrocytomas, six grade II oligodendrogliomas, three grade III oligoastrocytomas, and 11 glioblastoma multiformes. Preoperative DTI data comprised: unweighted (B 0 ) images, fractional anisotropy, longitudinal and radial diffusivity maps, directionally averaged diffusion-weighted imaging, and trace images. Sampling consisted of generating histograms for gross tumor volumes; 25 histogram bins per scalar map were calculated. The histogram bins that allowed the most precise determination of low-grade (LG) or high-grade (HG) classification were selected by multivariate discriminant analysis. Accuracy of the model was defined by the success rate of the leave-one-out cross-validation. Statistical descriptors of voxel value distribution did not differ between LG and HG tumors and did not allow classification. The histogram model had 88.5% specificity and 85.7% sensitivity in the separation of LG and HG gliomas; specificity was improved when cases with oligodendroglial components were omitted. Constructing histograms of preoperative radiological images over the tumor volume allows representation of the grade and enables discrimination of LG and HG gliomas which has been confirmed by histopathology. (orig.)

  5. Reproducibility of corticospinal diffusion tensor tractography in normal subjects and hemiparetic stroke patients

    International Nuclear Information System (INIS)

    Lin, Chao-Chun; Tsai, Miao-Yu; Lo, Yu-Chien; Liu, Yi-Jui; Tsai, Po-Pang; Wu, Chiao-Ying; Lin, Chia-Wei; Shen, Wu-Chung; Chung, Hsiao-Wen

    2013-01-01

    Purpose: The reproducibility of corticospinal diffusion tensor tractography (DTT) for a guideline is important before longitudinal monitoring of the therapy effects in stroke patients. This study aimed to establish the reproducibility of corticospinal DTT indices in healthy subjects and chronic hemiparetic stroke patients. Materials and methods: Written informed consents were obtained from 10 healthy subjects (mean age 25.8 ± 6.8 years), who underwent two scans in one session plus the third scan one week later, and from 15 patients (mean age 47.5 ± 9.1 years, 6–60 months after the onset of stroke, NIHSS scores between 9 and 20) who were scanned thrice on separate days within one month. Diffusion-tensor imaging was performed at 3 T with 25 diffusion directions. Corticospinal tracts were reconstructed using fiber assignment by continuous tracking without and with motion/eddy-current corrections. Intra- and inter-rater as well as intra- and inter-session variations of the DTT derived indices (fiber number, apparent diffusion coefficient (ADC), and fractional anisotropy (FA)) were assessed. Results: Intra-session and inter-session coefficients of variations (CVs) are small for FA (1.13–2.09%) and ADC (0.45–1.64%), but much larger for fiber number (8.05–22.4%). Inter-session CVs in the stroke side of patients (22.4%) are higher than those in the normal sides (18.0%) and in the normal subjects (14.7%). Motion/eddy-current correction improved inter-session reproducibility only for the fiber number of the infarcted corticospinal tract (CV reduced from 22.4% to 14.1%). Conclusion: The fiber number derived from corticospinal DTT shows substantially lower precision than ADC and FA, with infarcted tracts showing lower reproducibility than the healthy tissues

  6. Comparison of diffusion tensor imaging and voxel-based morphometry to detect white matter damage in Alzheimer's disease.

    Science.gov (United States)

    Yoon, Bora; Shim, Yong-S; Hong, Yun-Jeong; Koo, Bang-Bon; Kim, Yong-Duk; Lee, Kee-Ook; Yang, Dong-Won

    2011-03-15

    Regional atrophy of gray matter (GM) in Alzheimer's disease (AD) is well known; however, the relationship between macroscopic and microscopic changes of cerebral white matter (WM) is uncertain. The aim of this study was to investigate the pattern of GM, WM atrophy, and microscopic WM changes in the same individuals with AD. All subjects (10AD and 15 healthy controls [HC]) underwent a MRI scanning at 1.5 T, including a 3-dimensional volumetric scan and diffusion tensor imaging (DTI). We performed statistical parametric mapping (SPM) with DTI to evaluate the patterns of the microscopic WM changes, as well as voxel-based morphometry (VBM) for GM and WM volume changes between patients with AD and HC. GM atrophy was detected, mainly in posterior regions, and WM atrophy was similarly distributed, but less involved on VBM analysis. Unlike WM atrophy on VBM analysis, microscopic WM changes were shown in the medial frontal, orbitofrontal, splenium of the corpus callosum, and cingulum on DTI analysis with SPM. We demonstrated that the pattern of macroscopic WM atrophy was similar to GM atrophy, while microscopic WM changes had a different pattern and distribution. Our findings suggest that WM atrophy may preferentially reflect the secondary changes of GM atrophy, while microscopic WM changes start earlier in frontal areas before GM and WM atrophy can be detected macroscopically. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  8. A longitudinal study of changes in Diffusion Tensor Value and their association with cognitive sequelae among patients with mild head injury.

    Science.gov (United States)

    Munivenkatappa, Ashok; Bhagavatula, Indira D; Shukla, Dhaval P; Rajeswaran, Jamuna

    2017-06-01

    Diffusion tensor imaging (DTI) is an advanced and sensitive technique that detects sub-threshold pathology in normal imaging brain injury patients. Currently, there are no longitudinal DTI studies to look for time-based changes. The present study has investigated longitudinal imaging and its association with cognitive deficits. Twenty-one patients were available for MRI and neuropsychological test (NPT) assessment for all the 3 time points. Initially (presented with GCS 15 and normal scan findings. The DTI (Pvalues were correlated with specific time-point NPT scores using partial correlation (0.05). Right cerebral-hemisphere showed significant alterations in both anisotropy and diffusivity values overtime. Cingulate gyrus and occipital lobe showed prominent changes in anisotropy value. Significant improvement in thalamo-cortical anisotropy value after 3-4 months after injury was seen. The changes in diffusivity values were mainly seen in frontal, parietal lobe, right inferior fronto-occipital and superior longitudinal fasciculus, and posterior supramarginal gyrus. Time-related changes of tensor values of thalamus, frontal and temporal lobe had persistent and significant association with attention and learning/memory aspects. The findings of this study suggest that DTI detects and observes natural-recovery of brain regions affected by sub-threshold force.

  9. Evaluation of the Differences of Myocardial Fibers between Acute and Chronic Myocardial Infarction: Application of Diffusion Tensor Magnetic Resonance Imaging in a Rhesus Monkey Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuqing [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190 (China); Cai, Wei [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Department of Radiology, Beijing Jishuitan Hospital, 4th Clinical Medical College of Peking University, Beijing 100035 (China); Wang, Lei [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Xia, Rui [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016 (China); Chen, Wei [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China); Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Yunnan 650032 (China); Zheng, Jie [Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis, MO 63110 (United States); Gao, Fabao [Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041 (China)

    2016-11-01

    To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 × 10{sup -4} mm{sup 2}/s; HA: 94.5 ± 4.4°), chronic MI monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 × 10{sup -4}mm{sup 2}/s), decreased HA transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 ± 2.7°–66.5 ± 4.9°) than in acute MI monkeys (-59.5 ± 3.4°–64.9 ± 4.3°). Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey's models.

  10. Evaluation of the differences of myocardial fibers between acute and chronic myocardial infarction: Application of diffusion tensor magnetic resonance imaging INA Rhesus monkey model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu Qing; Cai, Wei; Wang, Lei; Xia, Rui; Chen, Wei; Zheng, Jie [Dept. of Radiology, West China Hospital, Sichuan University, Sichuan (China); Gao, Fabao [Mallinckrodt Institute of Radiology, School of Medicine, Washington University, St. Louis (United States)

    2016-09-15

    To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Comparing with acute MI monkeys (FA: 0.59 ± 0.02; ADC: 5.0 ± 0.6 × 10{sup -4} mm{sup 2}/s; HA: 94.5 ± 4.4°), chronic MI monkeys showed remarkably decreased FA value (0.26 ± 0.03), increased ADC value (7.8 ± 0.8 × 10{sup -4} mm{sup 2}/s), decreased HA transmural range (49.5 ± 4.6°) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 ± 5.0°–11.2 ± 4.3°) than in acute MI monkeys (-41.4 ± 5.1°–53.1 ± 3.7°), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 ± 2.7°